Science.gov

Sample records for ischemic cardiomyopathy induced

  1. Cardiomyopathy

    MedlinePlus

    ... and the most common reason for needing a heart transplant. Cardiomyopathy is so dangerous because it often goes ... damaged by ischemic cardiomyopathy, doctors may recommend a heart transplant. Arrhythmogenic Right Ventricular Dysplasia Arrhythmogenic right ventricular dysplasia ( ...

  2. Non-ischemic diabetic cardiomyopathy may initially exhibit a transient subclinical phase of hyperdynamic myocardial performance.

    PubMed

    Hensel, Kai O

    2016-09-01

    Cardiovascular complications are the key cause for mortality in diabetes mellitus. Besides ischemia-related cardiac malfunction there is growing evidence for non-ischemic diabetes-associated heart failure in both type 1 and type 2 diabetes mellitus. The underlying pathophysiology of non-ischemic diabetic cardiomyopathy (NIDC) is poorly understood and data on myocardial mechanics in early stages of the disease are rare. However, several studies in both human and experimental animal settings have reported prima facie unexplained features indicating myocardial hyperdynamics early in the course of the disease. The new hypothesis is that - other than previously thought - NIDC may be non-linear and initially feature an asymptomatic subclinical phase of myocardial hypercontractility that precedes the long-term development of diabetes-associated cardiac dysfunction and ultimately heart failure. Diabetes-induced metabolic imbalances may lead to a paradoxic inotropic increase and inefficient myocardial mechanics that finally result in a gradual deterioration of myocardial performance. In conclusion, diabetic patients should be screened regularly and early in the course of the disease utilizing ultra-sensitive myocardial deformation imaging in order to identify patients at risk for diabetes-associated heart failure. Moreover, hyperdynamic myocardial deformation might help distinguish non-ischemic from ischemic diabetic cardiomyopathy. Further studies are needed to illuminate the underlying pathophysiological mechanisms, the exact spatiotemporal evolvement of diabetic cardiomyopathy and its long-term relation to clinical outcome parameters. PMID:27515189

  3. Magnetic Resonance Imaging of Non-ischemic Cardiomyopathies: A Pictorial Essay.

    PubMed

    Olivas-Chacon, Cristina I; Mullins, Carola; Stewart, Kevan; Akle, Nassim; Calleros, Jesus E; Ramos-Duran, Luis R

    2015-01-01

    Non-ischemic cardiomyopathies are defined as either primary or secondary diseases of the myocardium resulting in cardiac dysfunction. While primary cardiomyopathies are confined to the heart and can be genetic or acquired, secondary cardiomyopathies show involvement of the heart as a manifestation of an underlying systemic disease including metabolic, inflammatory, granulomatous, infectious, or autoimmune entities. Non-ischemic cardiomyopathies are currently classified as hypertrophic, dilated, restrictive, or unclassifiable, including left ventricular non-compaction. Cardiovascular Magnetic Resonance Imaging (CMRI) not only has the capability to assess cardiac morphology and function, but also the ability to detect edema, hemorrhage, fibrosis, and intramyocardial deposits, providing a valuable imaging tool in the characterization of non-ischemic cardiomyopathies. This pictorial essay shows some of the most important non-ischemic cardiomyopathies with an emphasis on magnetic resonance imaging features. PMID:26199786

  4. [Microvolt T-wave alternans. Ischemic vs. nonischemic dilated cardiomyopathy].

    PubMed

    Klingenheben, Thomas

    2015-03-01

    The use of implantable cardioverter defibrillators (ICD) for primary preventive therapy of sudden arrhythmogenic death has become a mainstay in selected patients with systolic congestive heart failure, particularly in the setting of ischemic and nonischemic cardiomyopathy (Moss et al., N Engl J Med 346:877–883, 2002; Bardy et al., N Engl J Med 352:225–237, 2005). However, more accurate identification of high-risk patients is desirable in order to avoid unnecessary ICD implants. Since currently available risk stratification methods have limited predictive accuracy, development of new techniques is important in order to noninvasively assess arrhythmogenic risk in patients prone to sudden death.Microvolt level T-wave alternans (mTWA) has recently been proposed to assess abnormalities in ventricular repolarization favoring the occurrence of reentrant arrhythmias (Adam et al., J Electrocardiol 17:209–218, 1984; Pastore et al., Circulation 99:1385–1394, 1999). In 1994, a preliminary clinical study by Rosenbaum et al. convincingly demonstrated that mTWA is closely related to arrhythmia induction in the electrophysiology laboratory as well as to the occurrence of spontaneous ventricular tachyarrhythmias during follow-up (Rosenbaum et al., N Engl J Med 330:235–241,1994). More recently, a number of clinical studies have examined its clinical applicability in ischemic and nonischemic cardiomyopathy. PMID:25693483

  5. Trimetazidine therapy prevents obesity-induced cardiomyopathy in mice.

    PubMed

    Ussher, John R; Fillmore, Natasha; Keung, Wendy; Mori, Jun; Beker, Donna L; Wagg, Cory S; Jaswal, Jagdip S; Lopaschuk, Gary D

    2014-08-01

    Obesity is a significant risk factor for the development of cardiovascular disease. Inhibiting fatty acid oxidation has emerged as a novel approach for the treatment of ischemic heart disease. Our aim was to determine whether pharmacologic inhibition of 3-ketoacyl-coenzyme A thiolase (3-KAT), which catalyzes the final step of fatty acid oxidation, could improve obesity-induced cardiomyopathy. A 3-week treatment with the 3-KAT inhibitor trimetazidine prevented obesity-induced reduction in both systolic and diastolic function. Therefore, targeting cardiac fatty acid oxidation may be a novel therapeutic approach to alleviate the growing burden of obesity-related cardiomyopathy. PMID:25064584

  6. Impact of cardiac magnetic resonance imaging in non-ischemic cardiomyopathies

    PubMed Central

    Kalisz, Kevin; Rajiah, Prabhakar

    2016-01-01

    Non-ischemic cardiomyopathies include a wide spectrum of disease states afflicting the heart, whether a primary process or secondary to a systemic condition. Cardiac magnetic resonance imaging (CMR) has established itself as an important imaging modality in the evaluation of non-ischemic cardiomyopathies. CMR is useful in the diagnosis of cardiomyopathy, quantification of ventricular function, establishing etiology, determining prognosis and risk stratification. Technical advances and extensive research over the last decade have resulted in the accumulation of a tremendous amount of data with regards to the utility of CMR in these cardiomyopathies. In this article, we review CMR findings of various non-ischemic cardiomyopathies and focus on current literature investigating the clinical impact of CMR on risk stratification, treatment, and prognosis. PMID:26981210

  7. Application and Progress of Combined Mesenchymal Stem Cell Transplantation in the Treatment of Ischemic Cardiomyopathy

    PubMed Central

    Hua, Ping; Liu, Jian-Yang; Tao, Jun; Yang, Song-Ran

    2015-01-01

    Treatment of ischemic cardiomyopathy caused by myocardial infarction (MI) using mesenchymal stem cell (MSC) transplantation is a widely researched field, with promising clinical application. However, the low survival rate of transplanted cells has a severe impact on treatment outcome. Currently, research is focused on investigating the strategy of combining genetic engineering, tissue engineering materials, and drug/hypoxia preconditioning to improve ischemic cardiomyopathy treatment outcome using MSC transplantation treatment (MSCTT). This review discusses the application and progress of these techniques. PMID:26295041

  8. The Clinical Status of Stem Cell Therapy for Ischemic Cardiomyopathy

    PubMed Central

    Wang, Xianyun; Zhang, Jun; Zhang, Fan; Li, Jing; Li, Yaqi; Tan, Zirui; Hu, Jie; Qi, Yixin; Yan, Baoyong

    2015-01-01

    Ischemic cardiomyopathy (ICM) is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ICM. Several stem cell types including cardiac-derived stem cells (CSCs), bone marrow-derived stem cells, mesenchymal stem cells (MSCs), skeletal myoblasts (SMs), and CD34+ and CD 133+ stem cells have been applied in clinical researches. The clinical effect produced by stem cell administration in ICM mainly depends on the transdifferentiation and paracrine effect. One important issue is that low survival and residential rate of transferred stem cells in the infracted myocardium blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ICM mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical condition, the particular microenvironment onto which the cells are delivered, and clinical condition remain to be addressed. Here we provide an overview of the pros and cons of these transferred cells and discuss the current state of their therapeutic potential. We believe that stem cell translation will be an ideal option for patients following ischemic heart disease in the future. PMID:26101528

  9. Sepsis-induced Cardiomyopathy

    PubMed Central

    Romero-Bermejo, Francisco J; Ruiz-Bailen, Manuel; Gil-Cebrian, Julián; Huertos-Ranchal, María J

    2011-01-01

    Myocardial dysfunction is one of the main predictors of poor outcome in septic patients, with mortality rates next to 70%. During the sepsis-induced myocardial dysfunction, both ventricles can dilate and diminish its ejection fraction, having less response to fluid resuscitation and catecholamines, but typically is assumed to be reversible within 7-10 days. In the last 30 years, It´s being subject of substantial research; however no explanation of its etiopathogenesis or effective treatment have been proved yet. The aim of this manuscript is to review on the most relevant aspects of the sepsis-induced myocardial dysfunction, discuss its clinical presentation, pathophysiology, etiopathogenesis, diagnostic tools and therapeutic strategies proposed in recent years. PMID:22758615

  10. Trastuzumab-induced cardiomyopathy.

    PubMed

    Guglin, Maya; Cutro, Raymond; Mishkin, Joseph D

    2008-06-01

    Trastuzumab is a recombinant humanized monoclonal antibody used for the treatment of advanced breast cancer. It improves survival and increases response to chemotherapy. The major side effect of trastuzumab is cardiotoxicity manifesting as a reduction in left ventricular systolic function, either asymptomatic or with signs and symptoms of heart failure. Although reversible in most cases, cardiotoxicity frequently results in the discontinuation of trastuzumab. The objective of this review is to summarize facts about trastuzumab-induced cardiotoxicity and to highlight the areas of future investigations. We searched PubMed for trials involving trastuzumab used as an adjuvant therapy for breast cancer, including the metastatic breast cancer setting, and focused on cardiotoxicity. PMID:18514938

  11. Atherosclerosis and ischemic cardiomyopathy in a captive, adult red-tailed hawk (Buteo jamaicensis).

    PubMed

    Shrubsole-Cockwill, Alana; Wojnarowicz, Chris; Parker, Dennilyn

    2008-09-01

    An adult, male, captive red-tailed hawk (Buteo jamaicensis) of at least 19 years of age presented in dorsal recumbency. The hawk was nonresponsive, and despite initial supportive care, died shortly after presentation. Gross postmortem revealed no abnormal findings. Histologic examination demonstrated atherosclerosis and ischemic cardiomyopathy. This is the first reported case of atherosclerosis in a red-tailed hawk. PMID:18939649

  12. Lubiprostone induced ischemic colitis.

    PubMed

    Sherid, Muhammed; Sifuentes, Humberto; Samo, Salih; Deepak, Parakkal; Sridhar, Subbaramiah

    2013-01-14

    Ischemic colitis accounts for 6%-18% of the causes of acute lower gastrointestinal bleeding. It is often multifactorial and more commonly encountered in the elderly. Several medications have been implicated in the development of colonic ischemia. We report a case of a 54-year old woman who presented with a two-hour history of nausea, vomiting, abdominal pain, and bloody stool. The patient had recently used lubiprostone with close temporal relationship between the increase in the dose and her symptoms of rectal bleeding. The radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her condition improved without any serious complications after the cessation of lubiprostone. This is the first reported case of ischemic colitis with a clear relationship with lubiprostone (Naranjo score of 10). Clinical vigilance for ischemic colitis is recommended for patients receiving lubiprostone who are presenting with abdominal pain and rectal bleeding. PMID:23345954

  13. Mitral valve function following ischemic cardiomyopathy: a biomechanical perspective

    PubMed Central

    Rim, Yonghoon; McPherson, David D.; Kim, Hyunggun

    2014-01-01

    Ischemic mitral valve (MV) is a common complication of pathologic remodeling of the left ventricle due to acute and chronic coronary artery diseases. It frequently represents the pathologic consequences of increased tethering forces and reduced coaptation of the MV leaflets. Ischemic MV function has been investigated from a biomechanical perspective using finite element-based computational MV evaluation techniques. A virtual 3D MV model was created utilizing 3D echocardiographic data in a patient with normal MV. Two types of ischemic MVs containing asymmetric medial-dominant or symmetric leaflet tenting were modeled by altering the configuration of the normal papillary muscle (PM) locations. Computational simulations of MV function were performed using dynamic finite element methods, and biomechanical information across the MV apparatus was evaluated. The ischemic MV with medial-dominant leaflet tenting demonstrated distinct large stress distributions in the posteromedial commissural region due to the medial PM displacement toward the apical-medial direction resulting in a lack of leaflet coaptation. In the ischemic MV with balanced leaflet tenting, mitral incompetency with incomplete leaflet coaptation was clearly identified all around the paracommissural regions. This computational MV evaluation strategy has the potential for improving diagnosis of ischemic mitral regurgitation and treatment of ischemic MVs. PMID:24211876

  14. Risk Stratification for Sudden Cardiac Death In Patients With Non-ischemic Dilated Cardiomyopathy

    PubMed Central

    Shekha, Karthik; Ghosh, Joydeep; Thekkoott, Deepak; Greenberg, Yisachar

    2005-01-01

    Non ischemic dilated cardiomyopathy (NIDCM) is a disorder of myocardium. It has varying etiologies. Albeit the varying etiologies of this heart muscle disorder, it presents with symptoms of heart failure, and rarely as sudden cardiac death (SCD). Manifestations of this disorder are in many ways similar to its counterpart, ischemic dilated cardiomyopathy (IDCM). A proportion of patients with NIDCM carries a grave prognosis and is prone to sudden cardiac death from sustained ventricular arrhythmias. Identification of this subgroup of patients who carry the risk of sudden cardiac death despite adequate medical management is a challenge .Yet another method is a blanket treatment of patients with this disorder with anti arrhythmic medications or anti tachyarrhythmia devices like implantable cardioverter defibrillators (ICD). However this modality of treatment could be a costly exercise even for affluent economies. In this review we try to analyze the existing data of risk stratification of NIDCM and its clinical implications in practice. PMID:16943952

  15. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update.

    PubMed

    Assunção, Fernanda Boldrini; de Oliveira, Diogo Costa Leandro; Souza, Vitor Frauches; Nacif, Marcelo Souto

    2016-01-01

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies. PMID:26929458

  16. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update*

    PubMed Central

    Assunção, Fernanda Boldrini; de Oliveira, Diogo Costa Leandro; Souza, Vitor Frauches; Nacif, Marcelo Souto

    2016-01-01

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies. PMID:26929458

  17. Sudden cardiac death markers in non-ischemic cardiomyopathy.

    PubMed

    Pimentel, Mauricio; Rohde, Luis Eduardo; Zimerman, André; Zimerman, Leandro Ioschpe

    2016-01-01

    Heart failure is an increasingly prevalent disease associated with high morbidity and mortality. In 30-40% of patients, the etiology is non-ischemic. In this group of patients, the implantable cardioverter-defibrillator (ICD) prevents sudden death and decreases total mortality. However, due to burden of cost, the fact that many ICD patients will never need any therapy, and possible complications involved in implant and follow-up, the device should not be implanted in every patient with non-ischemic heart failure. There is an urgent need to adequately identify patients with highest sudden death risk, in whom the implant is most cost-effective. In the present paper, the authors discuss current available tests for risk stratification of sudden cardiac death in patients with non-ischemic heart failure. PMID:27016256

  18. Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice.

    PubMed

    Duerr, Georg D; Dewald, Daniela; Schmitz, Eva J; Verfuerth, Luise; Keppel, Katharina; Peigney, Christine; Ghanem, Alexander; Welz, Armin; Dewald, Oliver

    2016-01-01

    Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT(-/-))-mice (n = 8-10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT(-/-)-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2(-/-)-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT(-/-)-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2(-/-)-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling. PMID:27403038

  19. Ergotamine-Induced Takotsubo Cardiomyopathy.

    PubMed

    Ozpelit, Ebru; Ozpelit, Mehmet E; Akdeniz, Bahri; Göldeli, Özhan

    2016-01-01

    Takotsubo cardiomyopathy (TC) is a recently increasing diagnosed disease showed by transient apical or mid-apical left ventricular dysfunction. It is known as a disease of postmenopausal women, which is usually triggered by emotional or physical stress. Although the trigger is mostly endogenous, some drugs have also been reported as the cause. Published case reports of TC associated with drug usage consist of sympathomimetic drugs, inotropic agents, thyroid hormone, cocaine, and 5-fluorouracil. We present an unusual case of TC in which the possible trigger is ergotamine toxicity. PMID:25099482

  20. Cardiomyopathy

    MedlinePlus

    ... or surgeries may also be used, including: A defibrillator that sends an electrical pulse to stop life- ... failure - overview Heart transplant Hypertrophic cardiomyopathy Implantable cardioverter-defibrillator Peripartum cardiomyopathy Restrictive cardiomyopathy Patient Instructions Heart failure - ...

  1. Cardiomyopathy

    MedlinePlus

    ... page from the NHLBI on Twitter. What Is Cardiomyopathy? Cardiomyopathy refers to diseases of the heart muscle. These ... many causes, signs and symptoms, and treatments. In cardiomyopathy, the heart muscle becomes enlarged, thick, or rigid. ...

  2. [Nuclear changes and p62 expression in ischemic and dilated cardiomyopathy].

    PubMed

    Cortés, Raquel; Portolés, Manuel; Roselló-Lletí, Esther; Martínez-Dolz, Luis; Almenar, Luis; Salvador, Antonio; Rivera, Miguel

    2007-12-01

    The study's objectives were to investigate nuclear stereology and to determine the level of p62, a protein involved in nuclear transport, in human cardiomyocytes from patients with heart failure due to ischemic cardiomyopathy (ICM) or dilated cardiomyopathy (DCM). We studied 23 human hearts: 10 had ICM, 10 had DCM, and three were from control subjects. The size of the nucleus was significantly increased in ICM and DCM hearts compared with those from controls (by 60% and 66%, respectively, P=.03), as was the size of the nucleolus (by 59%, P=.02 and 75%, P=.03, respectively). In addition, the p62 level was significantly increased in both forms of cardiomyopathy compared with controls (ICM 110%, P=.01; and DCM 145%, P=.04). In the ICM group, there were correlations between the p62 level and nuclear size (r=0.615, P=.05) and between the p62 level and the heterochromatin percentage (r=-0.707; P=.02). In conclusion, cardiomyocytes from hearts affected by ICM and DCM showed changes in nuclear and nucleolar morphology. The p62 level had doubled in both forms of cardiomyopathy and, in ICM hearts, there was a correlation with nuclear changes. PMID:18082099

  3. Stress-Induced Cardiomyopathy Presenting as Shock

    PubMed Central

    Yoo, Tae Kyung; Lee, Jong-Young; Oh, Sam Sae; Song, Young Seok; Lee, Seung Jae; Ko, Kyung Jin

    2016-01-01

    Stress-induced cardiomyopathy has become a more recognized and reported entity. It can be caused by emotional or physical stress, which causes excessive catecholamine release. Typically, the clinical course is benign with conservative treatment being effective. However, stress-induced cardiomyopathy can be fatal. A 41-year-old female presented with cardiogenic shock followed by sudden back pain. Initial echocardiographic finding showed severely decreased ejection fraction with akinesia at all mid-to-apical walls with relatively preserved basal wall contractility. The coronary artery was intact on coronary angiography. Cardiac resuscitation and extra-corporeal membrane oxygenation was needed to manage the cardiogenic shock. Recovery was complete after 2 weeks. PMID:27081451

  4. Fragmented narrow QRS complex: Predictor of left ventricular dyssynchrony in non-ischemic dilated cardiomyopathy

    PubMed Central

    Yusuf, Jamal; Agrawal, Devendra Kumar; Mukhopadhyay, Saibal; Mehta, Vimal; Trehan, Vijay; Tyagi, Sanjay

    2013-01-01

    Background Cardiac resynchronization therapy is an important therapeutic modality in drug refractory symptomatic patients of heart failure with wide QRS (≥120 ms) on electrocardiogram. However, wide QRS (considered as a marker of electrical dyssynchrony) occurs in only 30% of heart failure patients, making majority of drug refractory heart failure patients ineligible for resynchronization therapy. Significant numbers of patients with narrow QRS have echocardiographic evidence of left ventricular dyssynchrony. However, there is sparse data about additional features on the surface ECG which can predict intraventricular dyssynchrony. This study was undertaken to assess the utility of fragmented narrow QRS complex to predict significant intraventricular dyssynchrony in symptomatic patients of non-ischemic dilated cardiomyopathy. Method 100 symptomatic patients of non-ischemic dilated cardiomyopathy with narrow QRS complexes (50 each with fragmented and normal QRS) were recruited. Tissue Doppler imaging was used to assess intraventricular dyssynchrony as per ‘Yu index’. Results 78% patients (n = 39) in fQRS complex group and 14% (n = 7) in normal QRS complex group had significant intraventricular dyssynchrony (χ2 = 20.61; p < 0.000005). fQRS complexes had 84.78% sensitivity, 79.62% specificity, a positive predictive value of 78% and negative predictive value of 86% to detect intraventricular dyssynchrony. fQRS also had sensitivity and specificity of 93% and 90% respectively to localize the dyssynchronous segment. Conclusion fQRS is a marker of electrical dyssynchrony, which results in significant intraventricular dyssynchrony in patients of non-ischemic dilated cardiomyopathy and a narrow QRS interval. fQRS localizes the dyssynchronous segment and might be useful in identifying patients who can benefit from cardiac resynchronization therapy. PMID:23647897

  5. Computer-based assessment of left ventricular wall stiffness in patients with ischemic dilated cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Su, Y.; Teo, S. K.; Tan, R. S.; Lim, C. W.; Zhong, L.

    2013-02-01

    Ischemic dilated cardiomyopathy (IDCM) is a degenerative disease of the myocardial tissue accompanied by left ventricular (LV) structural changes such as interstitial fibrosis. This can induce increased passive stiffness of the LV wall. However, quantification of LV passive wall stiffness in vivo is extremely difficult, particularly in ventricles with complex geometry. Therefore, we sought to (i) develop a computer-based assessment of LV passive wall stiffness from cardiac magnetic resonance (CMR) imaging in terms of a nominal stiffness index (E*); and (ii) investigate whether E* can offer an insight into cardiac mechanics in IDCM. CMR scans were performed in 5 normal subjects and 5 patients with IDCM. For each data sample, an in-house software was used to generate a 1-to-1 corresponding mesh pair of the LV from the ED and ES phases. The E* values are then computed as a function of local ventricular wall strain. We found that E* in the IDCM group (40.66 - 215.12) was at least one order of magnitude larger than the normal control group (1.00 - 6.14). In addition, the IDCM group revealed much higher inhomogeneity of E* values manifested by a greater spread of E* values throughout the LV. In conclusion, there is a substantial elevated ventricular stiffness index in IDCM. This would suggest that E* could be used as discriminator for early detection of disease state. The computational performance per data sample took approximately 25 seconds, which demonstrates its clinical potential as a real-time cardiac assessment tool.

  6. Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice

    PubMed Central

    Dewald, Daniela; Schmitz, Eva J.; Verfuerth, Luise; Keppel, Katharina; Peigney, Christine; Ghanem, Alexander; Welz, Armin; Dewald, Oliver

    2016-01-01

    Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT−/−)-mice (n = 8–10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT−/−-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2−/−-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT−/−-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2−/−-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling. PMID:27403038

  7. What About Tachycardia-induced Cardiomyopathy?

    PubMed Central

    Ellis, Ethan R; Josephson, Mark E

    2013-01-01

    Long-standing tachycardia is a well-recognised cause of heart failure and left ventricular dysfunction, and has led to the nomenclature, tachycardia-induced cardiomyopathy (TIC). TIC is generally a reversible cardiomyopathy if the causative tachycardia can be treated effectively, either with medications, surgery or catheter ablation. The diagnosis is usually made after demonstrating recovery of left ventricular function with normalisation of heart rate in the absence of other identifiable aetiologies. One hundred years after the first reported case of TIC, our understanding of the pathophysiology of TIC in humans remains limited despite extensive work in animal models of TIC. In this review we will discuss the proposed mechanisms of TIC, the causative tachyarrhythmias and their treatment, outcomes for patients diagnosed with TIC, and future directions for research and clinical care. PMID:26835045

  8. What About Tachycardia-induced Cardiomyopathy?

    PubMed

    Ellis, Ethan R; Josephson, Mark E

    2013-11-01

    Long-standing tachycardia is a well-recognised cause of heart failure and left ventricular dysfunction, and has led to the nomenclature, tachycardia-induced cardiomyopathy (TIC). TIC is generally a reversible cardiomyopathy if the causative tachycardia can be treated effectively, either with medications, surgery or catheter ablation. The diagnosis is usually made after demonstrating recovery of left ventricular function with normalisation of heart rate in the absence of other identifiable aetiologies. One hundred years after the first reported case of TIC, our understanding of the pathophysiology of TIC in humans remains limited despite extensive work in animal models of TIC. In this review we will discuss the proposed mechanisms of TIC, the causative tachyarrhythmias and their treatment, outcomes for patients diagnosed with TIC, and future directions for research and clinical care. PMID:26835045

  9. Cardiomyopathy

    MedlinePlus

    Cardiomyopathy is disease in which the heart muscle becomes weakened, stretched, or has another structural problem. It ... cannot pump or function well. Most people with cardiomyopathy have heart failure .

  10. Cardiomyopathy

    MedlinePlus

    Cardiomyopathy is the name for diseases of the heart muscle. These diseases enlarge your heart muscle or ... tissue. Some people live long, healthy lives with cardiomyopathy. Some people don't even realize they have ...

  11. Reversible catecholamine-induced cardiomyopathy due to pheochromocytoma: case report.

    PubMed

    Satendra, Milan; de Jesus, Cláudia; Bordalo e Sá, Armando L; Rosário, Luís; Rocha, José; Bicha Castelo, Henrique; Correia, Maria José; Nunes Diogo, António

    2014-03-01

    Pheochromocytoma is a tumor originating from chromaffin tissue. It commonly presents with symptoms and signs of catecholamine excess, such as hypertension, tachycardia, headache and sweating. Cardiovascular manifestations include catecholamine-induced cardiomyopathy, which may present as severe left ventricular dysfunction and congestive heart failure. We report a case of pheochromocytoma which was diagnosed following investigation of dilated cardiomyopathy. We highlight the dramatic symptomatic improvement and reversal of cardiomyopathy, with recovery of left ventricular function after treatment. PMID:24684896

  12. LV Dyssynchrony Is Helpful in Predicting Ventricular Arrhythmia in Ischemic Cardiomyopathy After Cardiac Resynchronization Therapy

    PubMed Central

    Tsai, Shih-Chuan; Chang, Yu-Cheng; Chiang, Kuo-Feng; Lin, Wan-Yu; Huang, Jin-Long; Hung, Guang-Uei; Kao, Chia-Hung; Chen, Ji

    2016-01-01

    Abstract For patients with coronary artery disease, larger scar burdens are associated with higher risk of ventricular arrhythmia. Left ventricular (LV) dyssynchrony is associated with increased risk of sudden cardiac death in patients with heart failure. The purpose of this study was to assess the values of LV dyssynchrony and myocardial scar assessed by myocardial perfusion SPECT (MPS) in predicting the development of ventricular arrhythmia in ischemic cardiomyopathy. Twenty-two patients (16 males, mean age: 66 ± 13) with irreversible ischemic cardiomyopathy received cardiac resynchronization therapy (CRT) for at least 12 months were enrolled for MPS. Quantitative parameters, including LV dyssynchrony with phase standard deviation (phase SD) and bandwidth, left ventricular ejection fraction (LVEF), and scar (% of total areas), were generated by Emory Cardiac Toolbox. Ventricular tachycardia (VT) and ventricular fibrillation (VF) recorded in the CRT device during follow-up were used as the reference standard of diagnosing ventricular arrhythmia. Stepwise logistic regression analysis was performed for determining the independent predictors of VT/VF and receiver operating characteristic (ROC) curve analysis was used for generating the optimal cut-off values for predicting VT/VF. Nine (41%) of the 22 patients developed VT/VF during the follow-up periods. Patients with VT/VF had significantly lower LVEF, larger scar, larger phase SD, and larger bandwidth (all P < 0.05). Logistic regression analysis showed LVEF and bandwidth were independent predictors of VT/VF. ROC curve analysis showed the areas under the curves were 0.71 and 0.83 for LVEF and bandwidth, respectively. The optimal cut-off values were <36% and > 139° for LVEF and bandwidth, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 39%, 53%, and 100%, respectively, for LVEF; and were 78%, 92%, 88%, and 86%, respectively, for bandwidth. LV

  13. Mitochondria as a Drug Target in Ischemic Heart Disease and Cardiomyopathy

    PubMed Central

    Walters, Andrew M; Porter, George A; Brookes, Paul S.

    2012-01-01

    Ischemic heart disease (IHD) is a significant cause of morbidity and mortality in Western society. Although interventions such as thrombolysis and percutaneous coronary intervention (PCI) have proven efficacious in ischemia and reperfusion (IR) injury, the underlying pathologic process of IHD, laboratory studies suggest further protection is possible, and an expansive research effort is aimed at bringing new therapeutic options to the clinic. Mitochondrial dysfunction plays a key role in the pathogenesis of IR injury and cardiomyopathy (CM). However, despite promising mitochondria-targeted drugs emerging from the lab, very few have successfully completed clinical trials. As such, the mitochondrion is a potential untapped target for new IHD and CM therapies. Notably, there are a number of overlapping therapies for both these diseases, and as such novel therapeutic options for one condition may find use in the other. This review summarizes efforts to date in targeting mitochondria for IHD and CM therapy, and outlines emerging drug targets in this field. PMID:23065345

  14. Diagnosis and management of ischemic cardiomyopathy: Role of cardiovascular magnetic resonance imaging.

    PubMed

    Doesch, Christina; Papavassiliu, Theano

    2014-11-26

    Coronary artery disease (CAD) represents an important cause of mortality. Cardiovascular magnetic resonance (CMR) imaging evolved as an imaging modality that allows the assessment of myocardial function, perfusion, contractile reserve and extent of fibrosis in a single comprehensive exam. This review highlights the role of CMR in the differential diagnosis of acute chest pain by detecting the location of obstructive CAD or necrosis and identifying other conditions like stress cardiomyopathy or myocarditis that can present with acute chest pain. Besides, it underlines the prognostic implication of perfusion abnormalities in the setting of acute chest pain. Furthermore, the review addresses the role of CMR to detect significant CAD in patients with stable CAD. It elucidates the accuracy and clinical utility of CMR with respect to other imaging modalities like single-photon emission computed tomography and positron emission tomography. Besides, the prognostic value of CMR stress testing is discussed. Additionally, it summarizes the available CMR techniques to assess myocardial viability and describes algorithm to identify those patient who might profit from revascularization those who should be treated medically. Finally, future promising imaging techniques that will provide further insights into the fundamental disease processes in ischemic cardiomyopathy are discussed. PMID:25429329

  15. Anabolic steroid-induced cardiomyopathy underlying acute liver failure in a young bodybuilder

    PubMed Central

    Bispo, Miguel; Valente, Ana; Maldonado, Rosário; Palma, Rui; Glória, Helena; Nóbrega, João; Alexandrino, Paula

    2009-01-01

    Heart failure may lead to subclinical circulatory disturbances and remain an unrecognized cause of ischemic liver injury. We present the case of a previously healthy 40-year-old bodybuilder, referred to our Intensive-Care Unit of Hepatology for treatment of severe acute liver failure, with the suspicion of toxic hepatitis associated with anabolic steroid abuse. Despite the absence of symptoms and signs of congestive heart failure at admission, an anabolic steroid-induced dilated cardiomyopathy with a large thrombus in both ventricles was found to be the underlying cause of the liver injury. Treatment for the initially unrecognized heart failure rapidly restored liver function to normal. To our knowledge, this is the first reported case of severe acute liver failure due to an unrecognized anabolic steroid-induced cardiomyopathy. Awareness of this unique presentation will allow for prompt treatment of this potentially fatal cause of liver failure. PMID:19533818

  16. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy.

    PubMed

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E; Puppala, Dheeraj; Armoundas, Antonis A; Hindle, Allyson; Bloch, Kenneth D; Buys, Emmanuel S; Scherrer-Crosbie, Marielle

    2015-07-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1(-/-)) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1(-/-) mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1(-/-) mice. UCP1(-/-) mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1(-/-) mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1(-/-) BAT transplanted to either UCP1(-/-) or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1(-/-) mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1(-/-) mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. PMID:25968336

  17. T−786→C polymorphism of the endothelial nitric oxide synthase gene is associated with insulin resistance in patients with ischemic or non ischemic cardiomyopathy

    PubMed Central

    2012-01-01

    Background Insulin resistance (IR) and endothelial dysfunction are frequently associated in cardiac disease. The T−786→C variant in the promoter region of the endothelial nitric oxide synthase (eNOS) gene has been associated with IR in both non-diabetic and diabetic subjects. Aim of the study was to assess the reciprocal relationships between T−786→C eNOS polymorphism and IR in ischemic and non-ischemic cardiomyopathy. Method A group of 132 patients (108 males, median age 65 years) with global left ventricular (LV) dysfunction secondary to ischemic or non-ischemic heart disease was enrolled. Genotyping of T−786→C eNOS gene promoter, fasting glucose, insulin, and insulin resistance (defined as HOMA-IR index > 2.5) were determined in all patients. Results Genotyping analysis yielded 37 patients homozygous for the T allele (TT), 70 heterozygotes (TC) and 25 homozygous for C (CC). Patients with CC genotype had significantly higher systemic arterial pressure, blood glucose, plasma insulin and HOMA index levels than TT. At multivariate logistic analysis, the history of hypertension and the genotype were the only predictors of IR. In particular, CC genotype increased the risk of IR (CI% 1.4-15.0, p < 0.01) 4.5-fold. The only parameter independently associated with the extent of LV dysfunction and the presence of heart failure (HF) was the HOMA index (2.4 CI% 1.1-5.6, p < 0.04). Conclusions T−786→C eNOS polymorphism was the major independent determinant of IR in a population of patients with ischemic and non-ischemic cardiomyopathy. The results suggest that a condition of primitive eNOS lower expression can predispose to an impairment of glucose homeostasis, which in turn is able to affect the severity of heart disease. PMID:23031426

  18. Coronary microcirculation changes in non-ischemic dilated cardiomyopathy identified by novel perfusion CT

    PubMed Central

    Miller, Wayne L.; Behrenbeck, Thomas R.; McCollough, Cynthia H.; Williamson, Eric E.; Leng, Shuai; Kline, Timothy L.

    2015-01-01

    Intramyocardial microvessels demonstrate functional changes in cardiomyopathies. However, clinical computed tomography (CT) does not have adequate spatial resolution to assess the microvessels. Our hypothesis is that these functional changes manifest as altered heterogeneity of the spatial distribution of arteriolar perfusion territories. Our goal was to determine whether the spatial analysis of perfusion CT could clinically detect changes in the function and structure of the intramyocardial microcirculation in a non-ischemic dilated cardiomyopathy (DCM). Two groups were studied: (1) a Control group (12 male plus 12 female) with no risk factors nor evidence of coronary artery disease, and (2) a DCM group (12 male plus 12 female)with left ventricular ejection fraction ≤40 %and no evidence of coronary artery disease. Using the CT scan, the LV free wall thickness and its radius of curvature were measured. The DCM group was sub divided into those with LV free wall thickness <11.5 mm and those with thickness≥11.5 mm. In themyocardial opacification phase of the CT scan sequence, myocardial perfusion (F) and intramyocardial blood volume (Bv) for multiple intramyocardial regions were computed. No significant differences between the groups were demonstrable in overall myocardial F or Bv. However, the myocardial regional data showed significantly increased spatial heterogeneity in the DCM group when compared to the Control group. The findings demonstrate that altered function of the subresolution intramyocardial microcirculation can be quantified with myocardial perfusion CT and that significant changes in these parameters occur in the DCM subjects with LV wall thickness greater than 11.5 mm. PMID:25712168

  19. Graves' thyrotoxicosis-induced reversible cardiomyopathy: a case report.

    PubMed

    Al-Ghamdi, Ahmad S; Aljohani, Naji

    2013-01-01

    The objective of this report is to present a case of Graves' thyrotoxicosis-induced cardiomyopathy. This is a case of a 26 year old woman that presented with severe symptomatic congestive heart failure and was subsequently diagnosed with dilated cardiomyopathy secondary to Graves' disease. Despite an initial left ventricular systolic ejection fraction of 20% on echocardiography, treatment with anti-thyroid agents led to rapid improvement of her clinical status and normalization of her ejection fraction. The proposed mechanisms underlying the development of systolic dysfunction in thyrotoxicosis are discussed and the literature on similar cases previously reported is highlighted. Cardiomyopathy should be considered even in young patients with Graves' thyrotoxicosis. PMID:23645990

  20. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: Functional recovery and reverse remodeling

    PubMed Central

    Williams, Adam R.; Trachtenberg, Barry; Velazquez, Darcy L.; McNiece, Ian; Altman, Peter; Rouy, Didier; Mendizabal, Adam M.; Pattany, Pradip M.; Lopera, Gustavo A.; Fishman, Joel; Zambrano, Juan P.; Heldman, Alan W.; Hare, Joshua M.

    2012-01-01

    Rationale Transcatheter, intramyocardial injections of bone marrow derived cell therapy produces reverse remodeling in large animal models of ischemic cardiomyopathy. Objective We used cardiac magnetic resonance imaging (CMR) in patients with LV dysfunction related to remote myocardial infarction (MI) to test the hypothesis that bone marrow progenitor cell injection cause functional recovery of scarred myocardium and reverse remodeling. Methods and Results Eight patients (age 57.2±13.3) received transendocardial, intramyocardial injection of autologous bone marrow progenitor cells (mononuclear or mesenchymal stem cells) in LV scar and border zone. All patients tolerated the procedure with no serious adverse events. CMR at 1-year demonstrated a decrease in end-diastolic volume (208.7±20.4 vs. 167.4±7.32mL; p=0.03), a trend towards decreased end-systolic volume (142.4±16.5 vs. 107.6±7.4mL; p=0.06), decreased infarct size (p<0.05), and improved regional LV function by peak Ecc in the treated infarct zone (-8.1±1.0 vs. -11.4±1.3; p=0.04). Improvements in regional function were evident at 3 months, while the changes in chamber dimensions were not significant until 6 months. Improved regional function in the infarct zone strongly correlated with reduction of EDV (r2=0.69, p=0.04) and ESV (r2=0.83, p=0.01). Conclusions These data suggest that transcatheter, intramyocardial injections of autologous bone marrow progenitor cells improve regional contractility of a chronic myocardial scar and these changes predict subsequent reverse remodeling. The findings support the potential clinical benefits of this new treatment strategy and ongoing randomized clinical trials. PMID:21415390

  1. Effect of Aging on Human Mesenchymal Stem Cell Therapy in Ischemic Cardiomyopathy Patients

    PubMed Central

    Golpanian, Samuel; El-Khorazaty, Jill; Mendizabal, Adam; DiFede, Darcy L.; Suncion, Viky; Karantalis, Vasileios; Fishman, Joel E.; Ghersin, Eduard; Balkan, Wayne; Hare, Joshua M.

    2015-01-01

    BACKGROUND The role of patient age on the efficacy of mesenchymal stem cell (MSC) therapy in ischemic cardiomyopathy (ICM) is controversial. OBJECTIVE We sought to determine whether the therapeutic effect of culture-expanded MSCs persists even in older subjects. METHODS Patients with ICM who received MSCs via transendocardial stem cell injection (TESI) as part of the TAC-HFT (n = 19) and POSEIDON (N = 30) clinical trials were divided into 2 age groups: <60 versus ≥60 years. Functional capacity was measured by 6-minute walk distance (6MWD) and quality of life using the Minnesota Living with Heart Failure Questionnaire (MLHFQ) score, measured at baseline, 6 months, and 1-year post-TESI. Various cardiac imaging parameters, including absolute scar size, were compared at baseline and 1 year post-TESI. RESULTS Mean 6MWD was similar at baseline and increased at 1 year post-TESI in both groups: 48.5 ± 14.6 m (p = 0.001) for the younger and 35.9 ± 18.3 m (p = 0.038) for the older participants (p = NS between groups). The older group exhibited a significant reduction in MLHFQ score (−7.04 ± 3.54; p = 0.022), while the <60 age group had a borderline significant reduction (−11.22 ± 5.24; p = 0.058) from baseline (p = NS between groups). While there were significant reductions in absolute scar size from baseline to 1 year post-TESI, the effect did not differ by age. CONCLUSION MSC therapy via TESI in ICM patients improves 6MWD and MLHFQ score and reduces MI size. Importantly, age did not impair response. PMID:25593053

  2. Association between High Endocardial Unipolar Voltage and Improved Left Ventricular Function in Patients with Ischemic Cardiomyopathy

    PubMed Central

    Park, Ki; Lai, Dejian; Handberg, Eileen M.; Perin, Emerson C.; Pepine, Carl J.; Anderson, R. David

    2016-01-01

    We know that endocardial mapping reports left ventricular electrical activity (voltage) and that these data can predict outcomes in patients undergoing traditional revascularization. Because the mapping data from experimental models have also been linked with myocardial viability, we hypothesized an association between increased unipolar voltage in patients undergoing intramyocardial injections and their subsequent improvement in left ventricular performance. For this exploratory analysis, we evaluated 86 patients with left ventricular dysfunction, heart-failure symptoms, possible angina, and no revascularization options, who were undergoing endocardial mapping. Fifty-seven patients received bone marrow mononuclear cell (BMC) injections and 29 patients received cell-free injections of a placebo. The average mapping site voltage was 9.7 ± 2 mV, and sites with voltage of ≥6.9 mV were engaged by needle and injected (with BMC or placebo). For all patients, at 6 months, left ventricular ejection fraction (LVEF) improved, and after covariate adjustment this improvement was best predicted by injection-site voltage. For every 2-mV increase in baseline voltage, we detected a 1.3 increase in absolute LVEF units for all patients (P=0.038). Multiple linear regression analyses confirmed that voltage and the CD34+ count present in bone marrow (but not treatment assignment) were associated with improved LVEF (P=0.03 and P=0.014, respectively). In an exploratory analysis, higher endocardial voltage and bone marrow CD34+ levels were associated with improved left ventricular function among ischemic cardiomyopathy patients. Intramyocardial needle injections, possibly through stimulation of angiogenesis, might serve as a future therapy in patients with reduced left ventricular function and warrants investigation. PMID:27547135

  3. Association between High Endocardial Unipolar Voltage and Improved Left Ventricular Function in Patients with Ischemic Cardiomyopathy.

    PubMed

    Park, Ki; Lai, Dejian; Handberg, Eileen M; Moyé, Lem; Perin, Emerson C; Pepine, Carl J; Anderson, R David

    2016-08-01

    We know that endocardial mapping reports left ventricular electrical activity (voltage) and that these data can predict outcomes in patients undergoing traditional revascularization. Because the mapping data from experimental models have also been linked with myocardial viability, we hypothesized an association between increased unipolar voltage in patients undergoing intramyocardial injections and their subsequent improvement in left ventricular performance. For this exploratory analysis, we evaluated 86 patients with left ventricular dysfunction, heart-failure symptoms, possible angina, and no revascularization options, who were undergoing endocardial mapping. Fifty-seven patients received bone marrow mononuclear cell (BMC) injections and 29 patients received cell-free injections of a placebo. The average mapping site voltage was 9.7 ± 2 mV, and sites with voltage of ≥6.9 mV were engaged by needle and injected (with BMC or placebo). For all patients, at 6 months, left ventricular ejection fraction (LVEF) improved, and after covariate adjustment this improvement was best predicted by injection-site voltage. For every 2-mV increase in baseline voltage, we detected a 1.3 increase in absolute LVEF units for all patients (P=0.038). Multiple linear regression analyses confirmed that voltage and the CD34(+) count present in bone marrow (but not treatment assignment) were associated with improved LVEF (P=0.03 and P=0.014, respectively). In an exploratory analysis, higher endocardial voltage and bone marrow CD34(+) levels were associated with improved left ventricular function among ischemic cardiomyopathy patients. Intramyocardial needle injections, possibly through stimulation of angiogenesis, might serve as a future therapy in patients with reduced left ventricular function and warrants investigation. PMID:27547135

  4. Sonographic and Endoscopic Findings in Cocaine-Induced Ischemic Colitis

    PubMed Central

    Leth, Thomas; Wilkens, Rune; Bonderup, Ole K.

    2015-01-01

    Cocaine-induced ischemic colitis is a recognized entity. The diagnosis is based on clinical and endoscopic findings. However, diagnostic imaging is helpful in the evaluation of abdominal symptoms and prior studies have suggested specific sonographic findings in ischemic colitis. We report sonographic and endoscopic images along with abdominal computed tomography in a case of cocaine-induced ischemic colitis. PMID:26798523

  5. Human Ischemic Cardiomyopathy Shows Cardiac Nos1 Translocation and its Increased Levels are Related to Left Ventricular Performance

    PubMed Central

    Roselló-Lletí, Esther; Carnicer, Ricardo; Tarazón, Estefanía; Ortega, Ana; Gil-Cayuela, Carolina; Lago, Francisca; González-Juanatey, Jose Ramón; Portolés, Manuel; Rivera, Miguel

    2016-01-01

    The role of nitric oxide synthase 1 (NOS1) as a major modulator of cardiac function has been extensively studied in experimental models; however, its role in human ischemic cardiomyopathy (ICM) has never been analysed. Thus, the objectives of this work are to study NOS1 and NOS-related counterparts involved in regulating physiological function of myocyte, to analyze NOS1 localisation, activity, dimerisation, and its relationship with systolic function in ICM. The study has been carried out on left ventricular tissue obtained from explanted human hearts. Here we demonstrate that the upregulation of cardiac NOS1 is not accompanied by an increase in NOS activity, due in part to the alterations found in molecules involved in the regulation of its activity. We observed partial translocation of NOS1 to the sarcolemma in ischemic hearts, and a direct relationship between its protein levels and systolic ventricular function. Our findings indicate that NOS1 may be significant in the pathophysiology of human ischemic heart disease with a preservative role in maintaining myocardial homeostasis. PMID:27041589

  6. The Effect of Cardiac Rehabilitation Exercise Training on Cardiopulmonary Function in Ischemic Cardiomyopathy With Reduced Left Ventricular Ejection Fraction

    PubMed Central

    2016-01-01

    Objective To observe the effect and safety of cardiac rehabilitation (CR) exercise in ischemic cardiomyopathy and to compare the results between patients with preserved left ventricular ejection fraction (LVEF) and reduced LVEF. Methods Patients with ischemic cardiomyopathy with LVEF <50% were included as subjects. The patients were classified into the preserved LVEF (pLVEF; LVEF 41%–49%) group and the reduced LVEF (rLVEF; LVEF ≤40%) group. Patients underwent hourly aerobic exercise training sessions with an intensity of 60%–85% of heart rate reserve, three times a week for 6 weeks. Graded exercise test and transthoracic echocardiogram were performed in all study patients before and after completion of the CR exercise program. Results After completion of the CR exercise program, both groups (pLVEF, n=30; rLVEF, n=18) showed significant increases in LVEF and VO2max. In the pLVEF group, LVEF and VO2max increased from 45.1%±4.8% to 52.5%±9.6% (p<0.001) and from 24.1±6.3 to 28.1±8.8 mL/kg/min (p=0.002), respectively. In the rLVEF group, LVEF and VO2max increased from 29.7%±7.7% to 37.6%±10.3% (p<0.001) and from 17.6±4.7 to 21.2±5.1 mL/kg/min (p<0.001), respectively. Both groups completed their exercise program safely. Conclusion In both groups, patients with ischemic cardiomyopathy who completed a 6-week supervised CR exercise program demonstrated remarkable improvements in cardiopulmonary function. This result implies that neither of the two groups showed higher efficacy in comparison to each other, but we can conclude that CR exercise in the rLVEF group was as effective and safe as that in the pLVEF group. PMID:27606271

  7. Mechanisms of Functional Mitral Regurgitation in Ischemic Cardiomyopathy Determined by Transesophageal Echocardiography (From the Surgical Treatment for Ischemic Heart Failure [STICH] Trial)

    PubMed Central

    Golba, Krzysztof; Mokrzycki, Krzysztof; Drozdz, Jaroslaw; Cherniavsky, Alexander; Wrobel, Krzysztof; Roberts, Bradley J.; Haddad, Haissam; Maurer, Gerald; Yii, Michael; Asch, Federico M.; Handschumacher, Mark D.; Holly, Thomas A.; Przybylski, Roman; Kron, Irving; Schaff, Hartzell; Aston, Susan; Horton, John; Lee, Kerry L.; Velazquez, Eric J.; Grayburn, Paul A.

    2013-01-01

    The mechanisms underlying functional mitral regurgitation (MR), and the relation between mechanism and severity of MR have not been evaluated in a large multicenter randomized controlled trial. Transesophageal echocardiography (TEE) was performed in 215 patients at 17 centers in the Surgical Treatment of Ischemic Heart Failure (STICH) trial. Both two-dimensional (2D, n=215) and three-dimensional (3D, n=81) TEE were used to assess multiple quantitative measures of the mechanism and severity of MR. By 2D TEE, leaflet tenting area, anterior and posterior leaflet angles, mitral annulus diameter, left ventricular (LV) end-systolic volume index, LV ejection fraction (LVEF), and sphericity index (p<0.05 for all) were significantly different across MR grades. By 3D TEE, mitral annulus area, leaflet tenting area, LV end-systolic volume index, LVEF, and sphericity index (p<0.05 for all) were significantly different across MR grades. A multivariable analysis showed a trend for annulus area (p=0.069) and LV end-systolic volume index (p=0.071) to predict effective regurgitant orifice area (EROA) and for annulus area (p=0.018) and LV end-systolic volume index (p=0.073) to predict vena contracta area. In the STICH trial, multiple quantitative parameters of the mechanism of functional MR are related to MR severity. The mechanism of functional MR in ischemic cardiomyopathy is heterogeneous but no single variable stands out as a strong predictor of quantitative severity of MR. PMID:24035166

  8. Cardiac Magnetic Resonance Scar Imaging for Sudden Cardiac Death Risk Stratification in Patients with Non-Ischemic Cardiomyopathy

    PubMed Central

    Kim, Eun Kyoung; Chattranukulchai, Pairoj

    2015-01-01

    In patients with non-ischemic cardiomyopathy (NICM), risk stratification for sudden cardiac death (SCD) and selection of patients who would benefit from prophylactic implantable cardioverter-defibrillators remains challenging. We aim to discuss the evidence of cardiac magnetic resonance (CMR)-derived myocardial scar for the prediction of adverse cardiovascular outcomes in NICM. From the 15 studies analyzed, with a total of 2747 patients, the average prevalence of myocardial scar was 41%. In patients with myocardial scar, the risk for adverse cardiac events was more than 3-fold higher, and risk for arrhythmic events 5-fold higher, as compared to patients without scar. Based on the available observational, single center studies, CMR scar assessment may be a promising new tool for SCD risk stratification, which merits further investigation. PMID:26175568

  9. Transendocardial Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells for Ischemic Cardiomyopathy: The TAC-HFT Randomized Trial

    PubMed Central

    Heldman, Alan W.; DiFede, Darcy L.; Fishman, Joel E; Zambrano, Juan P.; Trachtenberg, Barry H.; Karantalis, Vasileios; Mushtaq, Muzammil; Williams, Adam R.; Suncion, Viky Y.; McNiece, Ian K.; Ghersin, Eduard; Soto, Victor; Lopera, Gustavo; Miki, Roberto; Willens, Howard; Hendel, Robert; Mitrani, Raul; Pattany, Pradip; Feigenbaum, Gary; Oskouei, Behzad; Byrnes, John; Lowery, Maureen H.; Sierra, Julio; Pujol, Mariesty V; Delgado, Cindy; Gonzalez, Phillip J.; Rodriguez, Jose E.; Bagno, Luiza Lima; Rouy, Didier; Altman, Peter; Foo, Cheryl Wong Po; da Silva, Jose; Anderson, Erica; Schwarz, Richard; Mendizabal, Adam; Hare, Joshua M.

    2014-01-01

    Importance Whether culture expanded mesenchymal stem cells or whole bone marrow mononuclear cells are safe and effective in chronic ischemic cardiomyopathy (ICM) remains controversial. Objective To demonstrate the safety of transendocardial stem cell injection with autologous mesenchymal stem cells (MSCs) and whole bone marrow mononuclear cells (BMCs) in patients with ischemic cardiomyopathy. Design, Setting and Patients A phase 1 and 2 randomized blinded placebo-controlled study involving 65 patients with ischemic cardiomyopathy and left ventricular (LV) ejection fraction less than50%(September 1, 2009-July 12, 2013). The study compared injection of MSCs (N=19) and placebo (N=11) or BMCs (N=19) with placebo (N=10) with 1-year of follow up. Interventions Injections into 10 LV sites with an infusion catheter. Main Outcomes and Measures Treatment-emergent 30 day serious adverse event rate defined as composite of death, myocardial infarction, stroke, hospitalization for worsening heart failure, perforation, tamponade or sustained ventricular arrhythmias. Results No patient had a treatment-emergent serious adverse events at day 30. The 1-year incidence of serious adverse events was 31.6% (95% CI, 12.6%-56.6%) for MSCs, 31.6% (95% CI, 12.6%-56.6%) for BMCs, and 38.1% (95% CI, 18.1%-61.6%) for placebo. Over 1-year the Minnesota Living with Heart Failure (MLHF) score improved with MSCs (repeated measures ANOVA P= .02) and BMCs (P= .005) but not placebo (P= .38), and 6-minute walk distance increased with MSCs only (repeated measures model P= .03). Infarct size as a percentage of LV Mass was reduced by MSCs (-18.9%; 95% CI, -30.4 to -7.4; within-group P= .004) but not by BMCs (-7.0%; 95% CI, -15.7%-1.7%; within-group P= .11) or placebo (-5.2; 95% CI, -16.8%-6.5%; within-group P=.36). Regional myocardial function as peak Eulerian circumferential strain at the site of injection improved with MSCs (-4.9; 95% CI, -13.3-3.5; within-group repeated measures P=.03) but not BMCs (-2

  10. Dysferlin deficiency confers increased susceptibility to coxsackievirus-induced cardiomyopathy.

    PubMed

    Wang, Chen; Wong, Jerry; Fung, Gabriel; Shi, Junyan; Deng, Haoyu; Zhang, Jingchun; Bernatchez, Pascal; Luo, Honglin

    2015-10-01

    Coxsackievirus infection can lead to viral myocarditis and its sequela, dilated cardiomyopathy, which represent major causes of cardiovascular mortality worldwide in children. Yet, the host genetic susceptible factors and the underlying mechanisms by which viral infection damages cardiac function remain to be fully resolved. Dysferlin is a transmembrane protein highly expressed in skeletal and cardiac muscles. In humans, mutations in the dysferlin gene can cause limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Dysferlin deficiency has also been linked to cardiomyopathy. Defective muscle membrane repair has been suggested to be an important mechanism responsible for muscle degeneration in dysferlin-deficient patients and animals. Using both naturally occurring and genetically engineered dysferlin-deficient mice, we demonstrated that loss of dysferlin confers increased susceptibility to coxsackievirus infection and myocardial damage. More interestingly, we found that dysferlin is cleaved following coxsackieviral infection through the proteolytic activity of virally encoded proteinases, suggesting an important mechanism underlying virus-induced cardiac dysfunction. Our results in this study not only identify dysferlin deficiency as a novel host risk factor for viral myocarditis but also reveal a key mechanism by which coxsackievirus infection impairs cardiac function, leading to the development of dilated cardiomyopathy. PMID:26073173

  11. Impact of surgical ventricular reconstruction on sphericity index in patients with ischemic cardiomyopathy: follow-up from the STICH trial

    PubMed Central

    Choi, Jin-Oh; Daly, Richard C.; Lin, Grace; Lahr, Brian D.; Wiste, Heather J.; Beaver, Thomas M.; Iacovoni, Attilio; Malinowski, Marcin; Friedrich, Ivar; Rouleau, Jean L.; Favaloro, Roberto R.; Sopko, George; Lang, Irene M.; White, Harvey D.; Milano, Carmelo A.; Jones, Robert H.; Lee, Kerry L.; Velazquez, Eric J.; Oh, Jae K.

    2015-01-01

    Aims We sought to evaluate associations between baseline sphericity index (SI) and clinical outcome, and changes in SI after coronary artery bypass graft surgery (CABG) with or without surgical ventricular reconstruction (SVR) in ischemic cardiomyopathy patients enrolled in the SVR study (Hypothesis 2) of the Surgical Treatment for Ischemic Heart Failure (STICH) trial. Methods and results Among 1,000 patients in the STICH SVR study, we evaluated 546 patients (255 randomized to CABG alone and 291 to CABG+SVR) whose baseline SI values were available. SI was not significantly different between treatment groups at baseline. After 4 months, SI had increased in the CABG+SVR group, but was unchanged in the CABG alone group (0.69 ± 0.10 to 0.77 ± 0.12 versus 0.67 ± 0.07 to 0.66 ± 0.09, respectively; P < 0.001). SI did not significantly change from 4 months to 2 years in either group. Although LV end-systolic volume and ejection fraction improved significantly more in the CABG+SVR group compared to CABG alone, the severity of mitral regurgitation significantly improved only in the CABG alone group and estimated LV filling pressure (E/A ratio) increased only in the CABG+SVR group. Higher baseline SI was associated with worse survival after surgery (hazard ratio = 1.21, 95% confidence interval = 1.02−1.43; P = 0.026). Survival was not significantly different by treatment strategy. Conclusion Although SVR was designed to improve LV geometry, SI worsened after SVR despite improved LV ejection fraction and smaller LV volume. Survival was significantly better in patients with lower SI regardless of treatment strategy. (THE STICH TRIAL: Surgical Treatment for Ischemic Heart Failure trial; NCT00023595) PMID:25779355

  12. Direct intracardiac injection of umbilical cord-derived stromal cells and umbilical cord blood-derived endothelial cells for the treatment of ischemic cardiomyopathy.

    PubMed

    Suss, Paula H; Capriglione, Luiz Guilherme A; Barchiki, Fabiane; Miyague, Lye; Jackowski, Danielle; Fracaro, Letícia; Schittini, Andressa V; Senegaglia, Alexandra C; Rebelatto, Carmen L K; Olandoski, Márcia; Correa, Alejandro; Brofman, Paulo R S

    2015-07-01

    The development of new therapeutic strategies is necessary to reduce the worldwide social and economic impact of cardiovascular disease, which produces high rates of morbidity and mortality. A therapeutic option that has emerged in the last decade is cell therapy. The aim of this study was to compare the effect of transplanting human umbilical cord-derived stromal cells (UCSCs), human umbilical cord blood-derived endothelial cells (UCBECs) or a combination of these two cell types for the treatment of ischemic cardiomyopathy (IC) in a Wistar rat model. IC was induced by left coronary artery ligation, and baseline echocardiography was performed seven days later. Animals with a left ventricular ejection fraction (LVEF) of ≤40% were selected for the study. On the ninth day after IC was induced, the animals were randomized into the following experimental groups: UCSCs, UCBECs, UCSCs plus UCBECs, or vehicle (control). Thirty days after treatment, an echocardiographic analysis was performed, followed by euthanasia. The animals in all of the cell therapy groups, regardless of the cell type transplanted, had less collagen deposition in their heart tissue and demonstrated a significant improvement in myocardial function after IC. Furthermore, there was a trend of increasing numbers of blood vessels in the infarcted area. The median value of LVEF increased by 7.19% to 11.77%, whereas the control group decreased by 0.24%. These results suggest that UCSCs and UCBECs are promising cells for cellular cardiomyoplasty and can be an effective therapy for improving cardiac function following IC. PMID:25576340

  13. Anti-inflammatory and pro-angiogenic effects of beta blockers in a canine model of chronic ischemic cardiomyopathy: comparison between carvedilol and metoprolol

    PubMed Central

    Le, D. Elizabeth; Pascotto, Marco; Leong-Poi, Howard; Sari, Ibrahim; Micari, Antonio; Kaul, Sanjiv

    2013-01-01

    There is controversy regarding the superiority of carvedilol (C) over metoprolol (M) in congestive heart failure. We hypothesized that C is superior to M in chronic ischemic cardiomyopathy because of its better anti-inflammatory and pro-angiogenic effects. In order to test our hypothesis we used a chronic canine model of multivessel ischemic cardiomyopathy where myocardial microcatheters were placed from which interstitial fluid was collected over time to measure leukocyte count and cytokine levels. After development of left ventricular dysfunction, the animals were randomized into four groups: sham (n = 7), placebo (n = 8), M (n = 11), and C (n = 10), and followed for 3 months after treatment initiation. Tissue was examined for immunohistochemistry, oxidative stress, and capillary density. At 3 months both rest and stress wall thickening were better in C compared to the other groups. At the end of 3 months of treatment endsystolic wall stress also decreased the most in C. Similarly resting myocardial blood flow (MBF) improved the most in C as did the stress endocardial/epicardial MBF. Myocardial interstitial fluid showed greater attenuation of leukocytosis with C compared to M, which was associated with less fibrosis and oxidative stress. C also had higher IL-10 level and capillary density. In conclusion, in a chronic canine model of multivessel ischemic cardiomyopathy we found 3 months of C treatment resulted in better resting global and regional function as well as better regional function at stress compared to M. These changes were associated with higher myocardial levels of the anti-inflammatory cytokine IL-10 and less myocardial oxidative stress, leukocytosis, and fibrosis. Capillary density and MBF were almost normalized. Thus in the doses used in this study, C appears to be superior to M in a chronic canine model of ischemic cardiomyopathy from beneficial effects on inflammation and angiogenesis. Further studies are required for comparing additional doses

  14. Naproxen aggravates doxorubicin-induced cardiomyopathy in rats

    PubMed Central

    Pathan, Rahila Ahmad; Singh, Bhulan Kumar; Pillai, K.K.; Dubey, Kiran

    2010-01-01

    Background: The repercussion of the heated dispute on cyclooxygenase-2 (COX-2) selective nonsteroidal anti-inflammatory drugs (NSAIDs) led to the national and international withdrawal of several of the recently introduced coxibs. Further debate and research have highlighted risks of the classical NSAIDs too. There is much controversy about the cardiovascular safety of a nonselective NSAID naproxen (NAP) and its possible cardioprotective effect. Objectives: The study was undertaken to determine the cardiovascular effects of NAP on doxorubicin-induced cardiomyopathy in rats. Materials and Methods: Male albino rats received a single i.p. injection of normal saline (normal control group) and doxorubicin (DOX) 15 mg/kg (toxic control group). Naproxen was administered alone (50 mg/kg/day, p.o.) and in combination with DOX and DOX + trimetazidine (TMZ) (10 mg/kg/day, p.o.) for 5 days after 24 h of DOX treatment. DOX-induced cardiomyopathy was assessed in terms of increased activities of serum lactate dehydrogenase (LDH), tissue thiobarbituric acid reactive substances (TBARS) and decreased activities of myocardial glutathione, superoxide dismutase and catalase, followed by transmission electron microscopy of the cardiac tissue. Results: Doxorubicin significantly increased oxidative stress as evidenced by increased levels of LDH and TBARS and decreased antioxidant enzymes levels. Both biochemical and electron microscopic studies revealed that NAP itself was cardiotoxic and aggravated DOX-induced cardiomyopathy and abolished the protective effect of TMZ in rats. Conclusions: This study indicates that NAP has the potential to worsen the situation in patients with cardiovascular disease. Therefore, it should be used cautiously in patients with compromised cardiac function. PMID:20606837

  15. Safety and Efficacy of High Dose AAV9 Encoding SERCA2a Delivered by Molecular Cardiac Surgery with Recirculating Delivery (MCARD) in Ovine Ischemic Cardiomyopathy

    PubMed Central

    Katz, Michael G.; Fargnoli, Anthony S.; Williams, Richard D.; Steuerwald, Nury M.; Isidro, Alice; Ivanina, Anna V.; Sokolova, Inna M.; Bridges, Charles R.

    2014-01-01

    Objective Therapeutic safety and efficacy are the basic prerequisites for clinical gene therapy. Herein we investigate the effect of high dose MCARD-mediated AAV9/SERCA2a gene delivery on clinical parameters, oxidative stress, humoral and cellular immune response, and cardiac remodeling. Methods Ischemic cardiomyopathy was generated in a sheep model. Then animals were assigned to one of two groups: control (n=10), and study (MCARD, n=6). The control had no intervention while the study group received 1014 gc of AAV9.SERCA2a 4 weeks post-infarction. Results Our ischemic model produced reliable infarcts leading to heart failure. The baseline ejection fraction (EF) in the MCARD group was 57.6±1.6 vs. 61.2±1.9 in the control group, (p>0.05). Twelve weeks post-infarction, the MCARD group had superior LV function compared to control: stroke volume index (46.6±1.8 vs. 35.8±2.5 mL/m2, p<0.05), EF (46.2±1.9 vs. 38.7±2.5%, p<0.05); and LV end systolic and end diastolic dimensions [41.3±1.7 vs. 48.2±1.4 mm; 51.2±1.5 vs. 57.6±1.7 mm], p<0.05. Markers of oxidative stress were significantly reduced in the infarct zone in the MCARD group. There was no positive T cell mediated immune response in the MCARD group at any time point. Myocyte hypertrophy was also significantly attenuated in the MCARD group compared to control. Conclusions Cardiac overexpression of the SERCA2a gene via MCARD is a safe therapeutic intervention. It significantly improves LV function, decreases markers of oxidative stress, abrogates myocyte hypertrophy, arrests remodeling and does not induce a T cell mediated immune response. PMID:25037619

  16. Anthracycline-Induced Cardiomyopathy in Adults.

    PubMed

    Tan, Timothy C; Neilan, Tomas G; Francis, Sanjeev; Plana, Juan Carlos; Scherrer-Crosbie, Marielle

    2015-07-01

    Anthracyclines are one of the most commonly used antineoplastic agent classes, and a core part of the treatment in breast cancers, hematological malignancies, and sarcomas. Their benefit is decreased by their well-recognized cardiotoxicity. The purpose of this review is to outline the presentation, mechanisms, diagnosis, and treatment of anthracyclines-induced cardiotoxicity. Symptomatic heart failure occurs in 2% to 5% of patients treated with anthrayclines and may be higher in older patients or patients with cardiovascular risk factors. The mechanisms involved in anthracycline-induced cardiotoxicity involve myocyte loss by apoptosis in the presence of a limited regenerative capacity. Once symptomatic, anthracycline-induced cardiotoxicity is associated with markedly decreased survival. Left ventricular ejection fraction (LVEF), mostly determined using echocardiography, is used to monitor patients treated with anthracyclines. As more than 1/3 of patients treated with anthracyclines do not recover their baseline LVEF once it is decreased, more sensitive echocardiographic indices of LV function such as myocardial deformation or biomarkers have been studied in patients monitoring. Cardioprotective treatments such as angiotensin-converting enzyme inhibitors, beta-blockers, iron chelators, statins, and metformin are also the topic of research efforts. PMID:26140726

  17. Simultaneous interstitial pneumonitis and cardiomyopathy induced by venlafaxine* **

    PubMed Central

    Ferreira, Pedro Gonçalo; Costa, Susana; Dias, Nuno; Ferreira, António Jorge; Franco, Fátima

    2014-01-01

    Venlafaxine is a serotonin-norepinephrine reuptake inhibitor used as an antidepressant. Interindividual variability and herb-drug interactions can lead to drug-induced toxicity. We report the case of a 35-year-old female patient diagnosed with synchronous pneumonitis and acute cardiomyopathy attributed to venlafaxine. The patient sought medical attention due to dyspnea and dry cough that started three months after initiating treatment with venlafaxine for depression. The patient was concomitantly taking Centella asiatica and Fucus vesiculosus as phytotherapeutic agents. Chest CT angiography and chest X-ray revealed parenchymal lung disease (diffuse micronodules and focal ground-glass opacities) and simultaneous dilated cardiomyopathy. Ecocardiography revealed a left ventricular ejection fraction (LVEF) of 21%. A thorough investigation was carried out, including BAL, imaging studies, autoimmune testing, right heart catheterization, and myocardial biopsy. After excluding other etiologies and applying the Naranjo Adverse Drug Reaction Probability Scale, a diagnosis of synchronous pneumonitis/cardiomyopathy associated with venlafaxine was assumed. The herbal supplements taken by the patient have a known potential to inhibit cytochrome P450 enzyme complex, which is responsible for the metabolization of venlafaxine. After venlafaxine discontinuation, there was rapid improvement, with regression of the radiological abnormalities and normalization of the LVEF. This was an important case of drug-induced cardiopulmonary toxicity. The circumstantial intake of inhibitors of the CYP2D6 isoenzyme and the presence of a CYP2D6 slow metabolism phenotype might have resulted in the toxic accumulation of venlafaxine and the subsequent clinical manifestations. Here, we also discuss why macrophage-dominant phospholipidosis was the most likely mechanism of toxicity in this case. PMID:25029655

  18. Role of Interleukin-1 in Radiation-Induced Cardiomyopathy

    PubMed Central

    Mezzaroma, Eleonora; Mikkelsen, Ross B; Toldo, Stefano; Mauro, Adolfo G; Sharma, Khushboo; Marchetti, Carlo; Alam, Asim; Van Tassell, Benjamin W; Gewirtz, David A; Abbate, Antonio

    2015-01-01

    Thoracic X-ray therapy (XRT), used in cancer treatment, is associated with increased risk of heart failure. XRT-mediated injury to the heart induces an inflammatory response leading to cardiomyopathy. The aim of this study was to determine the role of interleukin (IL)-1 in response to XRT injury to the heart and on the cardiomyopathy development in the mouse. Female mice with genetic deletion of the IL-1 receptor type I (IL-1R1 knockout mice [IL-1R1 KO]) and treatment with recombinant human IL-1 receptor antagonist anakinra, 10 mg/kg twice daily for 7 d, were used as independent approaches to determine the role of IL-1. Wild-type (wt) or IL-1R1 KO mice were treated with a single session of XRT (20 or 14 gray [Gy]). Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson’s trichrome was used to assess myocardial fibrosis and pericardial thickening. After 20 Gy, the contractile reserve was impaired in wt mice at d 3, and the LV ejection fraction (EF) was reduced after 4 months when compared with sham-XRT. IL-1R1 KO mice had preserved contractile reserve at 3 d and 4 months and LVEF at 4 months after XRT. Anakinra treatment for 1 d before and 7 d after XRT prevented the impairment in contractile reserve. A significant increase in LV end-diastolic pressure, associated with increased myocardial interstitial fibrosis and pericardial thickening, was observed in wt mice, as well as in IL-1R1 KO–or anakinra-treated mice. In conclusion, induction of IL-1 by XRT mediates the development of some, such as the contractile impairment, but not all aspects of the XRT-induced cardiomyopathy, such as myocardial fibrosis or pericardial thickening. PMID:25822795

  19. Blood flow, flow reserve, and glucose utilization in viable and nonviable myocardium in patients with ischemic cardiomyopathy

    PubMed Central

    Zhang, Xiaoli; Schindler, Thomas H.; Prior, John O.; Sayre, James; Dahlbom, Magnus; Huang, Sung-Cheng

    2016-01-01

    Purpose The aim of the study was to determine whether glucose uptake in viable myocardium of ischemic cardiomyopathy patients depends on rest myocardial blood flow (MBF) and the residual myocardial flow reserve (MFR). Methods Thirty-six patients with ischemic cardiomyopathy (left ventricular ejection fraction 25±10 %) were studied with 13N-ammonia and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Twenty age-matched normals served as controls. Regional MBF was determined at rest and during dipyridamole hyperemia and regional FDG extraction was estimated from regional FDG to 13N-ammonia activity ratios. Results Rest MBF was reduced in viable (0.42±0.18 ml/min per g) and nonviable regions (0.32±0.09 ml/min per g) relative to remote regions (0.68±0.23 ml/min per g, p<0.001) and to normals (0.63±0.13 ml/min per g). Dipyridamole raised MBFs in controls, remote, viable, and nonviable regions. MBFs at rest (p<0.05) and stress (p<0.05) in viable regions were significantly higher than that in nonviable regions, while MFRs did not differ significantly (p>0.05). Compared to MFR in remote myocardium, MFRs in viable regions were similar (1.39±0.56 vs 1.70±0.45, p>0.05) but were significantly lower in nonviable regions (1.23±0.43, p<0.001). Moreover, the FDG and thus glucose extraction was higher in viable than in remote (1.40±0.14 vs 0.90±0.20, p<0.001) and in nonviable regions (1.13±0.21, p<0.001). The extraction of FDG in viable regions was independent of rest MBF but correlated inversely with MFRs (r=−0.424, p<0.05). No correlation between the FDG extraction and MFR was observed in nonviable regions. Conclusion As in the animal model, decreasing MFRs in viable myocardium are associated with increasing glucose extraction that likely reflects a metabolic adaptation of remodeling hibernating myocytes. PMID:23287994

  20. New Cell Adhesion Molecules in Human Ischemic Cardiomyopathy. PCDHGA3 Implications in Decreased Stroke Volume and Ventricular Dysfunction

    PubMed Central

    Tarazón, Estefanía; García-Manzanares, María; Montero, José Anastasio; Cinca, Juan; Portolés, Manuel; Rivera, Miguel; Roselló-Lletí, Esther

    2016-01-01

    Background Intercalated disks are unique structures in cardiac tissue, in which adherens junctions, desmosomes, and GAP junctions co-localize, thereby facilitating cardiac muscle contraction and function. Protocadherins are involved in these junctions; however, their role in heart physiology is poorly understood. We aimed to analyze the transcriptomic profile of adhesion molecules in patients with ischemic cardiomyopathy (ICM) and relate the changes uncovered with the hemodynamic alterations and functional depression observed in these patients. Methods and Results Twenty-three left ventricular tissue samples from patients diagnosed with ICM (n = 13) undergoing heart transplantation and control donors (CNT, n = 10) were analyzed using RNA sequencing. Forty-two cell adhesion genes involved in cellular junctions were differentially expressed in ICM myocardium. Notably, the levels of protocadherin PCDHGA3 were related with the stroke volume (r = –0.826, P = 0.003), ejection fraction (r = –0.793, P = 0.004) and left ventricular end systolic and diastolic diameters (r = 0.867, P = 0.001; r = 0.781, P = 0.005, respectively). Conclusions Our results support the importance of intercalated disks molecular alterations, closely involved in the contractile function, highlighting its crucial significance and showing gene expression changes not previously described. Specifically, altered PCDHGA3 gene expression was strongly associated with reduced stroke volume and ventricular dysfunction in ICM, suggesting a relevant role in hemodynamic perturbations and cardiac performance for this unexplored protocadherin. PMID:27472518

  1. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy.

    PubMed

    Hashizume, Ryotaro; Hong, Yi; Takanari, Keisuke; Fujimoto, Kazuro L; Tobita, Kimimasa; Wagner, William R

    2013-10-01

    Biodegradable polyurethane patches have been applied as temporary mechanical supports to positively alter the remodeling and functional loss following myocardial infarction. How long such materials need to remain in place is unclear. Our objective was to compare the efficacy of porous onlay support patches made from one of three types of biodegradable polyurethane with relatively fast (poly(ester urethane)urea; PEUU), moderate (poly(ester carbonate urethane)urea; PECUU), and slow (poly(carbonate urethane)urea; PCUU) degradation rates in a rat model of ischemic cardiomyopathy. Microporous PEUU, PECUU or PCUU (n = 10 each) patches were implanted over left ventricular lesions 2 wk following myocardial infarction in rat hearts. Infarcted rats without patching and age-matched healthy rats (n = 10 each) were controls. Echocardiography was performed every 4 wk up to 16 wk, at which time hemodynamic and histological assessments were performed. The end-diastolic area for the PEUU group at 12 and 16 wk was significantly larger than for the PECUU or PCUU groups. Histological analysis demonstrated greater vascular density in the infarct region for the PECUU or PCUU versus PEUU group at 16 wk. Improved left ventricular contractility and diastolic performance in the PECUU group was observed at 16 wk compared to infarction controls. The results indicate that the degradation rate of an applied elastic patch influences the functional benefits associated patch placement, with a moderately slow degrading PECUU patch providing improved outcomes. PMID:23827185

  2. Transient Cardiomyopathy and Quadriplegia Induced by Ephedrine Decongestant

    PubMed Central

    Kurklinsky, Andrew K.; Chirila, Razvan

    2015-01-01

    Ephedrine decongestant products are widely used. Common side effects include palpitations, nervousness, and headache. More severe adverse reactions include cardiomyopathy and vasospasm. We report the case of an otherwise healthy 37-year-old woman who presented with acute-onset quadriplegia and heart failure. She had a normal chest radiograph on admission, but developed marked pulmonary edema and bilateral effusions the next day. Echocardiography revealed a left ventricular ejection fraction of 0.18 and no obvious intrinsic pathologic condition such as foramen narrowing on spinal imaging. Laboratory screening was positive for methamphetamines in the urine, and the patient admitted to having used, over the past several weeks, multiple ephedrine-containing products for allergy-symptom relief. She was ultimately diagnosed with an acute catecholamine-induced cardiomyopathy and spinal artery vasospasm consequential to excessive use of decongestants. Her symptoms resolved completely with supportive care and appropriate heart-failure management. An echocardiogram 2 weeks after admission showed improvement of the left ventricular ejection fraction to 0.33. Ten months after the event, the patient was entirely asymptomatic and showed further improvement of her ejection fraction to 0.45. To our knowledge, ours is the first report of spinal artery vasospasm resulting in quadriplegia in a human being after ephedrine ingestion. PMID:26664316

  3. Implantation of a Novel Allogeneic Mesenchymal Precursor Cell Type in Patients with Ischemic Cardiomyopathy Undergoing Coronary Artery Bypass Grafting: an Open Label Phase IIa Trial.

    PubMed

    Anastasiadis, Kyriakos; Antonitsis, Polychronis; Westaby, Stephen; Reginald, Ajan; Sultan, Sabena; Doumas, Argirios; Efthimiadis, George; Evans, Martin John

    2016-06-01

    Heart failure is a life-limiting condition affecting over 40 million patients worldwide. Ischemic cardiomyopathy (ICM) is the most common cause. This study investigates in situ cardiac regeneration utilizing precision delivery of a novel mesenchymal precursor cell type (iMP) during coronary artery bypass surgery (CABG) in patients with ischemic cardiomyopathy (LVEF < 40 %). The phase IIa safety study was designed to enroll 11 patients. Preoperative scintigraphy imaging (SPECT) was used to identify hibernating myocardium not suitable for conventional myocardial revascularization for iMP implantation. iMP cells were implanted intramyocardially in predefined viable peri-infarct areas that showed poor perfusion, which could not be grafted due to poor target vessel quality. Postoperatively, SPECT was then used to identify changes in scar area. Intramyocardial implantation of iMP cells with CABG was safe with preliminary evidence of efficacy of improved myocardial contractility and perfusion of nonrevascularized territories resulting in a significant reduction in left ventricular scar area at 12 months after treatment. Clinical improvement was associated with a significant improvement in quality of life at 6 months posttreatment in all patients. The results suggest the potential for in situ myocardial regeneration in ischemic heart failure by delivery of iMP cells. PMID:27037806

  4. Selective Serotonin–norepinephrine Reuptake Inhibitors-induced Takotsubo Cardiomyopathy

    PubMed Central

    Vasudev, Rahul; Rampal, Upamanyu; Patel, Hiten; Patel, Kunal; Bikkina, Mahesh; Shamoon, Fayez

    2016-01-01

    Context: Takotsubo translates to “octopus pot” in Japanese. Takotsubo cardiomyopathy (TTC) is characterized by a transient regional systolic dysfunction of the left ventricle. Catecholamine excess is the one most studied and favored theories explaining the pathophysiology of TTC. Case Report: We present the case of a 52-year-old Hispanic female admitted for venlafaxine-induced TTC with a review literature on all the cases of Serotonin–norepinephrine reuptake inhibitors (SNRI)-associated TTC published so far. Conclusion: SNRI inhibit the reuptake of catecholamines into the presynaptic neuron, resulting in a net gain in the concentration of epinephrine and serotonin in the neuronal synapses and causing iatrogenic catecholamine excess, ultimately leading to TTC. PMID:27583240

  5. Novel MRI-derived quantitative biomarker for cardiac function applied to classifying ischemic cardiomyopathy within a Bayesian rule learning framework

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Morris, Lailonny; Staines, Mara; Lima, Joao; Lee, Daniel C.; Gopalakrishnan, Vanathi

    2014-03-01

    Characterization of regional left ventricular (LV) function may have application in prognosticating timely response and informing choice therapy in patients with ischemic cardiomyopathy. The purpose of this study is to characterize LV function through a systematic analysis of 4D (3D + time) endocardial motion over the cardiac cycle in an effort to define objective, clinically useful metrics of pathological remodeling and declining cardiac performance, using standard cardiac MRI data for two distinct patient cohorts accessed from CardiacAtlas.org: a) MESA - a cohort of asymptomatic patients; and b) DETERMINE - a cohort of symptomatic patients with a history of ischemic heart disease (IHD) or myocardial infarction. The LV endocardium was segmented and a signed phase-to-phase Hausdorff distance (HD) was computed at 3D uniformly spaced points tracked on segmented endocardial surface contours, over the cardiac cycle. An LV-averaged index of phase-to-phase endocardial displacement (P2PD) time-histories was computed at each tracked point, using the HD computed between consecutive cardiac phases. Average and standard deviation in P2PD over the cardiac cycle was used to prepare characteristic curves for the asymptomatic and IHD cohort. A novel biomarker of RMS error between mean patient-specific characteristic P2PD over the cardiac cycle for each individual patient and the cumulative P2PD characteristic of a cohort of asymptomatic patients was established as the RMS-P2PD marker. The novel RMS-P2PD marker was tested as a cardiac function based feature for automatic patient classification using a Bayesian Rule Learning (BRL) framework. The RMS-P2PD biomarker indices were significantly different for the symptomatic patient and asymptomatic control cohorts (p<0.001). BRL accurately classified 83.8% of patients correctly from the patient and control populations, with leave-one-out cross validation, using standard indices of LV ejection fraction (LV-EF) and LV end-systolic volume

  6. Native Myocardial T1 as a Biomarker of Cardiac Structure in Non-Ischemic Cardiomyopathy.

    PubMed

    Shah, Ravi V; Kato, Shingo; Roujol, Sebastien; Murthy, Venkatesh; Bellm, Steven; Kashem, Abyaad; Basha, Tamer; Jang, Jihye; Eisman, Aaron S; Manning, Warren J; Nezafat, Reza

    2016-01-15

    Diffuse myocardial fibrosis is involved in the pathology of nonischemic cardiomyopathy (NIC). Recently, the application of native (noncontrast) myocardial T1 measurement has been proposed as a method for characterizing diffuse interstitial fibrosis. To determine the association of native T1 with myocardial structure and function, we prospectively studied 39 patients with NIC (defined as left ventricular ejection fraction (LVEF) ≤ 50% without cardiac magnetic resonance (CMR) evidence of previous infarction) and 27 subjects with normal LVEF without known overt cardiovascular disease. T1, T2, and extracellular volume fraction (ECV) were determined over 16 segments across the base, mid, and apical left ventricular (LV). NIC participants (57 ± 15 years) were predominantly men (74%), with a mean LVEF 34 ± 10%. Subjects with NIC had a greater native T1 (1,131 ± 51 vs 1,069 ± 29 ms; p <0.0001), a greater ECV (0.28 ± 0.04 vs 0.25 ± 0.02, p = 0.002), and a longer myocardial T2 (52 ± 8 vs 47 ± 5 ms; p = 0.02). After multivariate adjustment, a lower global native T1 time in NIC was associated with a greater LVEF (β = -0.59, p = 0.0003), greater right ventricular ejection fraction (β = -0.47, p = 0.006), and smaller left atrial volume index (β = 0.51, p = 0.001). The regional distribution of native myocardial T1 was similar in patients with and without NIC. In NIC, native myocardial T1 is elevated in all myocardial segments, suggesting a global (not regional) abnormality of myocardial tissue composition. In conclusion, native T1 may represent a rapid, noncontrast alternative to ECV for delineating myocardial tissue remodeling in NIC. PMID:26684511

  7. Identification of nondiabetic heart failure-associated genes by bioinformatics approaches in patients with dilated ischemic cardiomyopathy

    PubMed Central

    YU, ANZHONG; ZHANG, JINGYAO; LIU, HAIYAN; LIU, BING; MENG, LINGDONG

    2016-01-01

    Heart failure (HF) is a common pathological condition affecting 4% of the worldwide population. However, approaches for predicting or treating nondiabetic HF (ND-HF) progression are insufficient. In the current study, the gene expression profile GSE26887 was analyzed, which contained samples from 5 healthy controls, 7 diabetes mellitus-HF patients and 12 ND-HF patients with dilated ischemic cardiomyopathy. The dataset of 5 healthy controls and 12 ND-HF patients was normalized with robust multichip average analysis and the differentially expressed genes (DEGs) were screened by unequal variance t-test and multiple-testing correction. In addition, the protein-protein interaction (PPI) network of the upregulated and downregulated genes was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins database and the Cytoscape software platform. Subsequently, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. A total of 122 upregulated and 133 downregulated genes were detected. The most significantly up- and downregulated genes were EIF1AY and SERPINE1, respectively. In addition, 38 and 77 nodes were obtained in the up- and downregulated PPI network. DEGs that owned the highest connectivity degree were USP9Y and UTY in the upregulated network, and CD44 in the downregulated networks, respectively. NPPA and SERPINE1 were also found to be hub genes in the PPI network. Several GO terms and pathways that were enriched by DEGs were identified, and the most significantly enriched KEGG pathways were drug metabolism and extracellular matrix-receptor interaction. In conclusion, the two DEGs, NPPA and SERPINE1, may be important in the pathogenesis of HF and may be used for the diagnosis and treatment of HF. PMID:27284354

  8. Time-domain analysis of beat-to-beat variability of repolarization morphology in patients with ischemic cardiomyopathy.

    PubMed

    Burattini, L; Zareba, W

    1999-01-01

    There is growing evidence that beat-to-beat changes in ventricular repolarization contribute to increased vulnerability to ventricular arrhythmias. Beat-to-beat repolarization variability is usually measured in the electrocardiogram (ECG) by tracking consecutive QT or RT intervals. However, these measurements strongly depend on the accurate identification of T-wave endpoints, and they do not reflect changes in repolarization morphology. In this article, we propose a new computerized time-domain method to measure beat-to-beat variability of repolarization morphology without the need to identify T-wave endpoints. The repolarization correlation index (RCI) is computed for each beat to determine the difference between the morphology of repolarization within a heart-rate dependent repolarization window compared to a template (median) repolarization morphology. The repolarization variability index (RVI) describes the mean value of repolarization correlation in a studied ECG recording. To validate our method, we analyzed repolarization variability in 128-beat segments from Holter ECG recordings of 42 ischemic cardiomyopathy (ICM) patients compared to 36 healthy subjects. The ICM patients had significantly higher values of RVI than healthy subjects (in lead X: 0.045 +/- 0.035 vs. 0.024 +/- 0.010, respectively; P < .001); 18 (43%) ICM patients had RVI values above the 97.5th percentile of healthy subjects (>0.044). No significant correlation was found between the RVI values and the magnitude of heart rate, heart rate variability, QTc interval duration, or ejection fraction in studied ICM patients. In conclusion, our time-domain method, based on computation of repolarization correlation indices for consecutive beats, provides a new approach to quantify beat-to-beat variability of repolarization morphology without the need to identify T-wave endpoints. PMID:10688321

  9. Ventricular Tachycardia and Early Fibrillation in Patients With Brugada Syndrome and Ischemic Cardiomyopathy Show Predictable Frequency-Phase Properties on the Precordial ECG Consistent With the Respective Arrhythmogenic Substrate

    PubMed Central

    Calvo, David; Atienza, Felipe; Saiz, Javier; Martínez, Laura; Ávila, Pablo; Rubín, José; Herreros, Benito; Arenal, Ángel; García-Fernández, Javier; Ferrer, Ana; Sebastián, Rafael; Martínez-Camblor, Pablo; Jalife, José

    2015-01-01

    Background— Ventricular fibrillation (VF) has been proposed to be maintained by localized high-frequency sources. We tested whether spectral-phase analysis of the precordial ECG enabled identification of periodic activation patterns generated by such sources. Methods and Results— Precordial ECGs were recorded from 15 ischemic cardiomyopathy and 15 Brugada syndrome (type 1 ECG) patients during induced VF and analyzed in the frequency-phase domain. Despite temporal variability, induced VF episodes lasting 19.6±7.9 s displayed distinctly high power at a common frequency (shared frequency, 5.7±1.1 Hz) in all leads about half of the time. In patients with Brugada syndrome, phase analysis of shared frequency showed a V1–V6 sequence as would be expected from patients displaying a type 1 ECG pattern (P<0.001). Hilbert-based phases confirmed that the most stable sequence over the whole VF duration was V1–V6. Analysis of shared frequency in ischemic cardiomyopathy patients with anteroseptal (n=4), apical (n=3), and inferolateral (n=4) myocardial infarction displayed a sequence starting at V1–V2, V3–V4, and V5–V6, respectively, consistent with an activation origin at the scar location (P=0.005). Sequences correlated with the Hilbert-based phase analysis (P<0.001). Posterior infarction (n=4) displayed no specific sequence. On paired comparison, phase sequences during monomorphic ventricular tachycardia correlated moderately with VF (P<0.001). Moreover, there was a dominant frequency gradient from precordial leads facing the scar region to the contralateral leads (5.8±0.8 versus 5.4±1.1 Hz; P=0.004). Conclusions— Noninvasive analysis of ventricular tachycardia and early VF in patients with Brugada syndrome and ischemic cardiomyopathy shows a predictable sequence in the frequency-phase domain, consistent with anatomic location of the arrhythmogenic substrate. PMID:26253505

  10. Anthracycline-induced cardiomyopathy in a dog treated with epirubicin

    PubMed Central

    Lee, Ye-Rin; Kang, Min-Hee; Park, Hee-Myung

    2015-01-01

    An 8-year-old American cocker spaniel dog was diagnosed with dilated cardiomyopathy. Four years earlier, the dog had been diagnosed with multicentric lymphoma and had received 4 cycles of multi-agent chemotherapy, including doxorubicin and epirubicin. The total cumulative dose of epirubicin was 168 mg/m2. Dilated cardiomyopathy was considered a consequence of epirubicin toxicity. PMID:26028676

  11. Early Administration of Carvedilol Protected against Doxorubicin-Induced Cardiomyopathy.

    PubMed

    Chen, Yung-Lung; Chung, Sheng-Ying; Chai, Han-Tan; Chen, Chih-Hung; Liu, Chu-Feng; Chen, Yi-Ling; Huang, Tien-Hung; Zhen, Yen-Yi; Sung, Pei-Hsun; Sun, Cheuk-Kwan; Chua, Sarah; Lu, Hung-I; Lee, Fan-Yen; Sheu, Jiunn-Jye; Yip, Hon-Kan

    2015-12-01

    This study tested for the benefits of early administration of carvedilol as protection against doxorubicin (DOX)-induced cardiomyopathy. Thirty male, adult B6 mice were categorized into group 1 (untreated control), group 2 [DOX treatment (15 mg/every other day for 2 weeks, i.p.], and group 3 [carvedilol (15 mg/kg/d, from day 7 after DOX treatment for 28 days)], and euthanized by day 35 after DOX treatment. By day 35, the left ventricular ejection fraction (LVEF) was significantly lower in group 2 than in groups 1 and 3, and significantly lower in group 3 than in group 1, whereas the left ventricular (LV) end-diastolic and LV end-systolic dimensions showed an opposite pattern to the LVEF among the three groups. The protein expressions of fibrotic (Smad3, TGF-β), apoptotic (BAX, cleaved caspase 3, PARP), DNA damage (γ-H2AX), oxidative stress (oxidized protein), mitochondrial damage (cytosolic cytochrome-C), heart failure (brain natriuretic peptide), and hypertrophic (β-MHC) biomarkers of the LV myocardium showed an opposite pattern to the LVEF among the three groups. The protein expressions of antifibrotic (BMP-2, Smad1/5), α-MHC, and phosphorylated-Akt showed an identical pattern to the LVEF among the three groups. The microscopic findings of fibrotic and collagen-deposition areas and the numbers of γ-H2AX(+) and 53BP1(+) cells in the LV myocardium exhibited an opposite pattern, whereas the numbers of endothelial cell (CD31(+), vWF(+)) markers showed an identical pattern to the LVEF among the three groups. Cardiac stem cell markers (C-kit(+) and Sca-1(+) cells) were significantly and progressively increased from group 1 to group 3. Additionally, the in vitro study showed carvedilol treatment significantly inhibited DOX-induced cardiomyoblast DNA (CD90/XRCC1(+), CD90/53BP1(+), and r-H2AX(+) cells) damage. Early carvedilol therapy protected against DOX-induced DNA damage and cardiomyopathy. PMID:26511374

  12. Short-term vs. long-term heart rate variability in ischemic cardiomyopathy risk stratification

    PubMed Central

    Voss, Andreas; Schroeder, Rico; Vallverdú, Montserrat; Schulz, Steffen; Cygankiewicz, Iwona; Vázquez, Rafael; Bayés de Luna, Antoni; Caminal, Pere

    2013-01-01

    In industrialized countries with aging populations, heart failure affects 0.3–2% of the general population. The investigation of 24 h-ECG recordings revealed the potential of nonlinear indices of heart rate variability (HRV) for enhanced risk stratification in patients with ischemic heart failure (IHF). However, long-term analyses are time-consuming, expensive, and delay the initial diagnosis. The objective of this study was to investigate whether 30 min short-term HRV analysis is sufficient for comparable risk stratification in IHF in comparison to 24 h-HRV analysis. From 256 IHF patients [221 at low risk (IHFLR) and 35 at high risk (IHFHR)] (a) 24 h beat-to-beat time series (b) the first 30 min segment (c) the 30 min most stationary day segment and (d) the 30 min most stationary night segment were investigated. We calculated linear (time and frequency domain) and nonlinear HRV analysis indices. Optimal parameter sets for risk stratification in IHF were determined for 24 h and for each 30 min segment by applying discriminant analysis on significant clinical and non-clinical indices. Long- and short-term HRV indices from frequency domain and particularly from nonlinear dynamics revealed high univariate significances (p < 0.01) discriminating between IHFLR and IHFHR. For multivariate risk stratification, optimal mixed parameter sets consisting of 5 indices (clinical and nonlinear) achieved 80.4% AUC (area under the curve of receiver operating characteristics) from 24 h HRV analysis, 84.3% AUC from first 30 min, 82.2 % AUC from daytime 30 min and 81.7% AUC from nighttime 30 min. The optimal parameter set obtained from the first 30 min showed nearly the same classification power when compared to the optimal 24 h-parameter set. As results from stationary daytime and nighttime, 30 min segments indicate that short-term analyses of 30 min may provide at least a comparable risk stratification power in IHF in comparison to a 24 h analysis period. PMID:24379785

  13. Epicardial Placement of Mesenchymal Stromal Cell-sheets for the Treatment of Ischemic Cardiomyopathy; In Vivo Proof-of-concept Study

    PubMed Central

    Tano, Nobuko; Narita, Takuya; Kaneko, Masahiro; Ikebe, Chiho; Coppen, Steven R; Campbell, Niall G; Shiraishi, Manabu; Shintani, Yasunori; Suzuki, Ken

    2014-01-01

    Transplantation of bone marrow mesenchymal stromal cells (MSCs) is an emerging treatment for heart failure. We have reported that epicardial placement of MSC-sheets generated using temperature-responsive dishes markedly increases donor MSC survival and augments therapeutic effects in an acute myocardial infarction (MI) model, compared to intramyocardial (IM) injection. This study aims to expand this knowledge for the treatment of ischemic cardiomyopathy, which is likely to be more difficult to treat due to mature fibrosis and chronically stressed myocardium. Four weeks after MI, rats underwent either epicardial MSC-sheet placement, IM MSC injection, or sham treatment. At day 28 after treatment, the cell-sheet group showed augmented cardiac function improvement, which was associated with over 11-fold increased donor cell survival at both days 3 and 28 compared to IM injection. Moreover, the cell-sheet group showed improved myocardial repair, in conjunction with amplified upregulation of a group of reparative factors. Furthermore, by comparing with our own previous data, this study highlighted similar dynamics and behavior of epicardially placed MSCs in acute and chronic stages after MI, while the acute-phase myocardium may be more responsive to the stimuli from donor MSCs. These proof-of-concept data encourage further development of the MSC-sheet therapy for ischemic cardiomyopathy toward clinical application. PMID:24930600

  14. Patient with Eating Disorder, Carnitine Deficiency and Dilated Cardiomyopathy.

    PubMed

    Fotino, A Domnica; Sherma, A

    2015-01-01

    Dilated cardiomyopathy is characterized by a dilated and poorly functioning left ventricle and can result from several different etiologies including ischemic, infectious, metabolic, toxins, autoimmune processes or nutritional deficiencies. Carnitine deficiency-induced cardiomyopathy (CDIM) is an uncommon cause of dilated cardiomyopathy that can go untreated if not considered. Here, we describe a 30-year-old woman with an eating disorder and recent percutaneous endoscopic gastrotomy (PEG) tube placement for weight loss admitted to the hospital for possible PEG tube infection. Carnitine level was found to be low. Transthoracic echocardiogram (TTE) revealed ejection fraction 15%. Her hospital course was complicated by sepsis from a peripherally inserted central catheter (PICC). She was discharged on a beta-blocker and carnitine supplementation. One month later her cardiac function had normalized. Carnitine deficiency-induced myopathy is an unusual cause of cardiomyopathy and should be considered in adults with decreased oral intake or malabsorption who present with cardiomyopathy. PMID:27159507

  15. Dietary Salt Exacerbates Isoproterenol-induced Cardiomyopathy in Rats

    EPA Science Inventory

    Spontaneously Hypertensive Heart Failure rats (SHHFs) take far longer to develop compensated heart failure and congestive decompensation than common surgical models of heart failure. Isoproterenol (ISO) infusion can accelerate cardiomyopathy in young SHHFs, while dietary salt loa...

  16. Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy.

    PubMed

    Joanne, Pierre; Kitsara, Maria; Boitard, Solène-Emmanuelle; Naemetalla, Hany; Vanneaux, Valérie; Pernot, Mathieu; Larghero, Jérôme; Forest, Patricia; Chen, Yong; Menasché, Philippe; Agbulut, Onnik

    2016-02-01

    Limited data are available on the effects of stem cells in non-ischemic dilated cardiomyopathy (DCM). Since the diffuse nature of the disease calls for a broad distribution of cells, this study investigated the scaffold-based delivery of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) in a mouse model of DCM. Nanofibrous scaffolds were produced using a clinical grade atelocollagen which was electrospun and cross-linked under different conditions. As assessed by scanning electron microscopy and shearwave elastography, the optimum crosslinking conditions for hiPS-CM colonization proved to be a 10% concentration of citric acid crosslinking agent and 150 min of post-electrospinning baking. Acellular collagen scaffolds were first implanted in both healthy mice and those with induced DCM by a cardiac-specific invalidation of serum response factor (SRF). Seven and fourteen days after implantation, the safety of the scaffold was demonstrated by echocardiography and histological assessments. The subsequent step of implantation of the scaffolds seeded with hiPS-CM in DCM induced mice, using cell-free scaffolds as controls, revealed that after fourteen days heart function decreased in controls while it remained stable in the treated mice. This pattern was associated with an increased number of endothelial cells, in line with the greater vascularity of the scaffold. Moreover, a lesser degree of fibrosis consistent with the upregulation of several genes involved in extracellular matrix remodeling was observed. These results support the interest of the proposed hiPS-CM seeded electrospun scaffold for the stabilization of the DCM outcome with potential for its clinical use in the future. PMID:26708641

  17. Real-time three-dimensional echocardiographic study of left ventricular function after infarct exclusion surgery for ischemic cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Shiota, T.; McCarthy, P. M.; Firstenberg, M. S.; Greenberg, N. L.; Tsujino, H.; Bauer, F.; Travaglini, A.; Hoercher, K. J.; Buda, T.; Smedira, N. G.; Thomas, J. D.

    2000-01-01

    BACKGROUND: Infarct exclusion (IE) surgery, a technique of left ventricular (LV) reconstruction for dyskinetic or akinetic LV segments in patients with ischemic cardiomyopathy, requires accurate volume quantification to determine the impact of surgery due to complicated geometric changes. METHODS AND RESULTS: Thirty patients who underwent IE (mean age 61+/-8 years, 73% men) had epicardial real-time 3-dimensional echocardiographic (RT3DE) studies performed before and after IE. RT3DE follow-up was performed transthoracically 42+/-67 days after surgery in 22 patients. Repeated measures ANOVA was used to compare the values before and after IE surgery and at follow-up. Significant decreases in LV end-diastolic (EDVI) and end-systolic (ESVI) volume indices were apparent immediately after IE and in follow-up (EDVI 99+/-40, 67+/-26, and 71+/-31 mL/m(2), respectively; ESVI 72+/-37, 40+/-21, and 42+/-22 mL/m(2), respectively; P:<0.05). LV ejection fraction increased significantly and remained higher (0.29+/-0.11, 0.43+/-0.13, and 0.42+/-0.09, respectively, P:<0.05). Forward stroke volume in 16 patients with preoperative mitral regurgitation significantly improved after IE and in follow-up (22+/-12, 53+/-24, and 58+/-21 mL, respectively, P:<0.005). New York Heart Association functional class at an average 285+/-144 days of clinical follow-up significantly improved from 3.0+/-0.8 to 1.8+/-0.8 (P:<0.0001). Smaller end-diastolic and end-systolic volumes measured with RT3DE immediately after IE were closely related to improvement in New York Heart Association functional class at clinical follow-up (Spearman's rho=0.58 and 0.60, respectively). CONCLUSIONS: RT3DE can be used to quantitatively assess changes in LV volume and function after complicated LV reconstruction. Decreased LV volume and increased ejection fraction imply a reduction in LV wall stress after IE surgery and are predictive of symptomatic improvement.

  18. Reversal of Ischemic Cardiomyopathy with Sca-1+ Stem Cells Modified with Multiple Growth Factors

    PubMed Central

    Li, Ning; Pasha, Zeeshan; Ashraf, Muhammad

    2014-01-01

    Background We hypothesized that bone marrow derived Sca-1+ stem cells (BM Sca-1+) transduced with multiple therapeutic cytokines with diverse effects will induce faster angiomyogenic differentiation in the infarcted myocardium. Methods and Results BM Sca-1+ were purified from transgenic male mice expressing GFP. Plasmids encoding for select quartet of growth factors, i.e., human IGF-1, VEGF, SDF-1α and HGF were prepared and used for genetic modification of Sca-1+ cells (GFSca-1+). Scramble transfected cells (ScSca-1+) were used as a control. RT-PCR and western blotting showed significantly higher expression of the growth factors in GFSca-1+. Besides the quartet of the therapeutic growth factors, PCR based growth factor array showed upregulation of multiple angiogenic and prosurvival factors such as Ang-1, Ang-2, MMP9, Cx43, BMP2, BMP5, FGF2, and NGF in GFSca-1+ (p<0.01 vs ScSca-1+). LDH and TUNEL assays showed enhanced survival of GFSca-1+ under lethal anoxia (p<0.01 vs ScSca-1+). MTS assay showed significant increased cell proliferation in GFSca-1+ (p<0.05 vs ScSca-1+). For in vivo study, female mice were grouped to receive the intramyocardial injection of 15 μl DMEM without cells (group-1) or containing 2.5×105 ScSca-1+ (group-2) or GFSca-1+ (group-3) immediately after coronary artery ligation. As indicated by Sry gene, a higher survival of GFSca-1+ in group-3 on day4 (2.3 fold higher vs group-2) was observed with massive mobilization of stem and progenitor cells (cKit+, Mdr1+, Cxcr4+ cells). Heart tissue sections immunostained for actinin and Cx43 at 4 weeks post engraftment showed extensive myofiber formation and expression of gap junctions. Immunostaining for vWF showed increased blood vessel density in both peri-infarct and infarct regions in group-3. Infarct size was attenuated and the global heart function was improved in group-3 as compared to group-2. Conclusions Administration of BM Sca-1+ transduced with multiple genes is a novel approach to treat

  19. Laser-Supported CD133+ Cell Therapy in Patients with Ischemic Cardiomyopathy: Initial Results from a Prospective Phase I Multicenter Trial

    PubMed Central

    Kröpil, Patric; Ptok, Lena; Hafner, Dieter; Ohmann, Christian; Martens, Andreas; Karluß, Antje; Emmert, Maximilian Y.; Kutschka, Ingo; Sievers, Hans-Hinrich; Klein, Hans-Michael

    2014-01-01

    Objectives This study evaluates the safety, principal feasibility and restoration potential of laser-supported CD133+ intramyocardial cell transplantation in patients with ischemic cardiomyopathy. Methods Forty-two patients with severe ischemic cardiomyopathy (left ventricular ejection fraction (LVEF) >15% and <35%) were included in this prospective multicenter phase I trial. They underwent coronary artery bypass grafting (CABG) with subsequent transepicardial low-energy laser treatment and autologous CD133+ cell transplantation, and were followed up for 12 months. To evaluate segmental myocardial contractility as well as perfusion and to identify the areas of scar tissue, cardiac MRI was performed at 6 months and compared to the preoperative baseline. In addition, clinical assessment comprising of CCS scoring, blood and physical examination was performed at 3, 6 and 12 months, respectively. Results Intraoperative cell isolation resulted in a mean cell count of 9.7±1.2×106. Laser treatment and subsequent CD133+ cell therapy were successfully and safely carried out in all patients and no procedure-related complications occurred. At 6 months, the LVEF was significantly increased (29.7±1.9% versus 24.6±1.5% with p = 0.004). In addition, freedom from angina was achieved, and quality of life significantly improved after therapy (p<0.0001). Interestingly, an extended area of transmural delayed enhancement (>3 myocardial segments) determined in the preoperative MRI was inversely correlated with a LVEF increase after laser-supported cell therapy (p = 0.024). Conclusions This multicenter trial demonstrates that laser-supported CD133+ cell transplantation is safe and feasible in patients with ischemic cardiomyopathy undergoing CABG, and in most cases, it appears to significantly improve the myocardial function. Importantly, our data show that the beneficial effect was significantly related to the extent of transmural delayed enhancement, suggesting that MRI

  20. An Upgrade on the Rabbit Model of Anthracycline-Induced Cardiomyopathy: Shorter Protocol, Reduced Mortality, and Higher Incidence of Overt Dilated Cardiomyopathy

    PubMed Central

    Talavera, Jesús; Fernández-Del-Palacio, María Josefa; García-Nicolás, Obdulio; Seva, Juan; Brooks, Gavin; Moraleda, Jose M.

    2015-01-01

    Current protocols of anthracycline-induced cardiomyopathy in rabbits present with high premature mortality and nephrotoxicity, thus rendering them unsuitable for studies requiring long-term functional evaluation of myocardial function (e.g., stem cell therapy). We compared two previously described protocols to an in-house developed protocol in three groups: Group DOX2 received doxorubicin 2 mg/kg/week (8 weeks); Group DAU3 received daunorubicin 3 mg/kg/week (10 weeks); and Group DAU4 received daunorubicin 4 mg/kg/week (6 weeks). A cohort of rabbits received saline (control). Results of blood tests, cardiac troponin I, echocardiography, and histopathology were analysed. Whilst DOX2 and DAU3 rabbits showed high premature mortality (50% and 33%, resp.), DAU4 rabbits showed 7.6% premature mortality. None of DOX2 rabbits developed overt dilated cardiomyopathy; 66% of DAU3 rabbits developed overt dilated cardiomyopathy and quickly progressed to severe congestive heart failure. Interestingly, 92% of DAU4 rabbits showed overt dilated cardiomyopathy and 67% developed congestive heart failure exhibiting stable disease. DOX2 and DAU3 rabbits showed alterations of renal function, with DAU3 also exhibiting hepatic function compromise. Thus, a shortened protocol of anthracycline-induced cardiomyopathy as in DAU4 group results in high incidence of overt dilated cardiomyopathy, which insidiously progressed to congestive heart failure, associated to reduced systemic compromise and very low premature mortality. PMID:26788502

  1. Initial clinical experience of real-time three-dimensional echocardiography in patients with ischemic and idiopathic dilated cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Shiota, T.; McCarthy, P. M.; White, R. D.; Qin, J. X.; Greenberg, N. L.; Flamm, S. D.; Wong, J.; Thomas, J. D.

    1999-01-01

    The geometry of the left ventricle in patients with cardiomyopathy is often sub-optimal for 2-dimensional ultrasound when assessing left ventricular (LV) function and localized abnormalities such as a ventricular aneurysm. The aim of this study was to report the initial experience of real-time 3-D echocardiography for evaluating patients with cardiomyopathy. A total of 34 patients were evaluated with the real-time 3D method in the operating room (n = 15) and in the echocardiographic laboratory (n = 19). Thirteen of 28 patients with cardiomyopathy and 6 other subjects with normal LV function were evaluated by both real-time 3-D echocardiography and magnetic resonance imaging (MRI) for obtaining LV volumes and ejection fractions for comparison. There were close relations and agreements for LV volumes (r = 0.98, p <0.0001, mean difference = -15 +/- 81 ml) and ejection fractions (r = 0.97, p <0.0001, mean difference = 0.001 +/- 0.04) between the real-time 3D method and MRI when 3 cardiomyopathy cases with marked LV dilatation (LV end-diastolic volume >450 ml by MRI) were excluded. In these 3 patients, 3D echocardiography significantly underestimated the LV volumes due to difficulties with imaging the entire LV in a 60 degrees x 60 degrees pyramidal volume. The new real-time 3D echocardiography is feasible in patients with cardiomyopathy and may provide a faster and lower cost alternative to MRI for evaluating cardiac function in patients.

  2. Implication of Right Ventricular Dysfunction on Long-term Outcome in Patients with Ischemic Cardiomyopathy Undergoing Coronary Artery Bypass Grafting with or without Surgical Ventricular Reconstruction

    PubMed Central

    Kukulski, Tomasz; She, Lilin; Racine, Normand; Gradinac, Sinisa; Panza, Julio A.; Velazquez, Eric J.; Chan, Kwan; Petrie, Mark C.; Lee, Kerry L.; Pellikka, Patricia A.; Romanov, Alexander; Biernat, Jolanta; Rouleau, Jean L.; Batlle, Carmen; Rogowski, Jan; Ferrazzi, Paolo; Zembala, Marian; Oh, Jae K.

    2014-01-01

    Background Whether right ventricular (RV) dysfunction affects clinical outcome after CABG with or without SVR is still unknown. Thus, the aim of the study was to assess the impact of RV dysfunction on clinical outcome in patients with ischemic cardiomyopathy undergoing coronary artery bypass grafting (CABG) with or without surgical ventricular reconstruction (SVR). Methods and Results Of 1,000 STICH patients with coronary artery disease (CAD), left ventricular (LV) ejection fraction (EF) ≤35% and anterior dysfunction randomized to undergo CABG or CABG + SVR, baseline RV function could be assessed by echocardiography in 866 patients. Patients were followed for a median of 48 months. All-cause mortality or cardiovascular hospitalization was the primary endpoint, and all-cause mortality alone was a secondary endpoint. RV dysfunction was mild in 102 (12%) patients and moderate or severe in 78 (9%) patients. Moderate to severe RV dysfunction was associated with larger LV, lower EF, more severe mitral regurgitation, higher filling pressure, and higher pulmonary artery systolic pressure (all p<0.0001) compared to normal or mildly reduced RV function. A significant interaction between RV dysfunction and treatment allocation was observed. Patients with moderate or severe RV dysfunction who received CABG + SVR had significantly worse outcomes compared to patients who received CABG alone on both the primary (HR=1.86; CI=1.06–3.26; p=0.028) and the secondary endpoint (HR=3.37; CI=1.36–8.37; p=0.005). After adjusting for all other prognostic clinical factors, the interaction remained significant with respect to all-cause mortality (p=0.022). Conclusion Adding SVR to CABG may worsen long-term survival in ischemic cardiomyopathy patients with moderate to severe RV dysfunction, which reflects advanced LV remodeling. PMID:25451487

  3. [Wasp-sting-induced pheochromozytoma crisis with stress-related cardiomyopathy (Takotsubo)].

    PubMed

    Hausen, S; Treusch, A; Hermes, C; Boekstegers, P

    2014-11-01

    This article presents the case of a patient with sudden onset of heart failure caused by transient severe left ventricular dysfunction with the typical pattern of stress-induced cardiomyopathy (takotsubo cardiomyopathy) who had wasp sting a few hours before admission in the presence of a previously asymptomatic pheochromocytoma. There seems to be correlation between the wasp-venom-induced pheochomocytoma crisis and acute onset of heart failure. Once pheocromocytoma is diagnosed, medical therapy is preferable before surgical treatment. This case demonstrates that a previously asymptomatic pheochromocytoma can become clinically relevant by catecholamine-releasing wasp venom causing stress-related cardiomyopathy and that patient history is mandatory for evaluating the cause of sudden clinical outcome. PMID:25369903

  4. Metabolic stress–induced activation of FoxO1 triggers diabetic cardiomyopathy in mice

    PubMed Central

    Battiprolu, Pavan K.; Hojayev, Berdymammet; Jiang, Nan; Wang, Zhao V.; Luo, Xiang; Iglewski, Myriam; Shelton, John M.; Gerard, Robert D.; Rothermel, Beverly A.; Gillette, Thomas G.; Lavandero, Sergio; Hill, Joseph A.

    2012-01-01

    The leading cause of death in diabetic patients is cardiovascular disease; diabetic cardiomyopathy is typified by alterations in cardiac morphology and function, independent of hypertension or coronary disease. However, the molecular mechanism that links diabetes to cardiomyopathy is incompletely understood. Insulin resistance is a hallmark feature of diabetes, and the FoxO family of transcription factors, which regulate cell size, viability, and metabolism, are established targets of insulin and growth factor signaling. Here, we set out to evaluate a possible role of FoxO proteins in diabetic cardiomyopathy. We found that FoxO proteins were persistently activated in cardiac tissue in mice with diabetes induced either genetically or by high-fat diet (HFD). FoxO activity was critically linked with development of cardiomyopathy: cardiomyocyte-specific deletion of FoxO1 rescued HFD-induced declines in cardiac function and preserved cardiomyocyte insulin responsiveness. FoxO1-depleted cells displayed a shift in their metabolic substrate usage, from free fatty acids to glucose, associated with decreased accumulation of lipids in the heart. Furthermore, we found that FoxO1-dependent downregulation of IRS1 resulted in blunted Akt signaling and insulin resistance. Together, these data suggest that activation of FoxO1 is an important mediator of diabetic cardiomyopathy and is a promising therapeutic target for the disease. PMID:22326951

  5. Cardiac incoordination induced by left bundle branch block: its relation with left ventricular systolic function in patients with and without cardiomyopathy

    PubMed Central

    Quintana, Miguel; Saha, Samir; Govind, Satish; Brodin, Lars Åke; del Furia, Francesca; Bertomeu, Vicente

    2008-01-01

    Background Although left bundle branch block (LBBB) alters the electrical activation of the heart, it is unknown how it might change the process of myocardial coordination (MC) and how it may affect the left ventricular (LV) systolic function. The present study assessed the effects of LBBB on MC in patients with LBBB with and without dilated (DCMP) or ischemic cardiomyopathy (ICMP). Methods Tissue Doppler echocardiography (TDE) was performed in 86 individuals: 21 with isolated LBBB, 26 patients with DCMP + LBBB, 19 patients with ICMP + LBBB and in 20 healthy individuals (Controls). MC was assessed analyzing the myocardial velocity profiles obtained from six basal segments of the LV using TDE. The LV systolic function was assessed by standard two-dimensional echocardiography and by TDE. Results Severe alterations in MC were observed in subjects with LBBB as compared with controls (P < 0.01 for all comparisons); these derangements were even worse in patients with DCMP and ICMP (P < 0.001 for comparisons with Controls and P < 0.01 for comparison with individuals with isolated LBBB). Some parameters of MC differed significantly between DCMP and ICMP (P < 0.01). A good or very good correlation coefficient was found between variables of MC and variables of LV systolic function. Conclusion LBBB induces severe derangement in the process of MC that are more pronounced in patients with cardiomyopathies and that significantly correlates with the LV systolic function. The assessment of MC may help in the evaluation of the etiology of dilated cardiomyopathy. PMID:18681971

  6. Reversible cardiogenic shock due to catecholamine-induced cardiomyopathy: a variant of takotsubo?

    PubMed

    Law, Catherine; Khaliq, Asma; Guglin, Maya

    2013-11-01

    Catecholamine-induced cardiomyopathy, including takotsubo, neurogenic stunned myocardium, and pheochromocytoma-related cardiomyopathy, is a reversible and generally benign condition. We are reporting a case series of young women who had cardiogenic shock and pulmonary edema due to severe left ventricular systolic dysfunction, which completely recovered in the course of 2 to 3 weeks. Both patients had high catecholamine levels, due to pheochromocytoma in the first case and due to intravenous high-dose catecholamines in the second case. We suggest that screening for pheochromocytoma should be considered in patients who present with takotsubo cardiomyopathy without obvious cause. Most importantly, widely used intravenous catecholamines may cause severe transient left ventricular dysfunction, and consideration should be given to noncatecholamine vasopressors. PMID:23810075

  7. Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice.

    PubMed

    Betts, Corinne A; Saleh, Amer F; Carr, Carolyn A; Hammond, Suzan M; Coenen-Stass, Anna M L; Godfrey, Caroline; McClorey, Graham; Varela, Miguel A; Roberts, Thomas C; Clarke, Kieran; Gait, Michael J; Wood, Matthew J A

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder caused by mutations in the Dmd gene. In addition to skeletal muscle wasting, DMD patients develop cardiomyopathy, which significantly contributes to mortality. Antisense oligonucleotides (AOs) are a promising DMD therapy, restoring functional dystrophin protein by exon skipping. However, a major limitation with current AOs is the absence of dystrophin correction in heart. Pip peptide-AOs demonstrate high activity in cardiac muscle. To determine their therapeutic value, dystrophic mdx mice were subject to forced exercise to model the DMD cardiac phenotype. Repeated peptide-AO treatments resulted in high levels of cardiac dystrophin protein, which prevented the exercised induced progression of cardiomyopathy, normalising heart size as well as stabilising other cardiac parameters. Treated mice also exhibited significantly reduced cardiac fibrosis and improved sarcolemmal integrity. This work demonstrates that high levels of cardiac dystrophin restored by Pip peptide-AOs prevents further deterioration of cardiomyopathy and pathology following exercise in dystrophic DMD mice. PMID:25758104

  8. Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice

    PubMed Central

    Betts, Corinne A.; Saleh, Amer F.; Carr, Carolyn A.; Hammond, Suzan M.; Coenen-Stass, Anna M. L.; Godfrey, Caroline; McClorey, Graham; Varela, Miguel A.; Roberts, Thomas C.; Clarke, Kieran; Gait, Michael J.; Wood, Matthew J. A.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder caused by mutations in the Dmd gene. In addition to skeletal muscle wasting, DMD patients develop cardiomyopathy, which significantly contributes to mortality. Antisense oligonucleotides (AOs) are a promising DMD therapy, restoring functional dystrophin protein by exon skipping. However, a major limitation with current AOs is the absence of dystrophin correction in heart. Pip peptide-AOs demonstrate high activity in cardiac muscle. To determine their therapeutic value, dystrophic mdx mice were subject to forced exercise to model the DMD cardiac phenotype. Repeated peptide-AO treatments resulted in high levels of cardiac dystrophin protein, which prevented the exercised induced progression of cardiomyopathy, normalising heart size as well as stabilising other cardiac parameters. Treated mice also exhibited significantly reduced cardiac fibrosis and improved sarcolemmal integrity. This work demonstrates that high levels of cardiac dystrophin restored by Pip peptide-AOs prevents further deterioration of cardiomyopathy and pathology following exercise in dystrophic DMD mice. PMID:25758104

  9. Reversibility of tachycardia-induced cardiomyopathy after radiofrequency ablation of incessant supraventricular tachycardia in infants.

    PubMed Central

    Sanchez, C.; Benito, F.; Moreno, F.

    1995-01-01

    Tachycardia-induced cardiomyopathy developed in a 3 month old infant with permanent junctional reciprocating tachycardia, which was incessant despite medical treatment. The patient underwent transcatheter radiofrequency ablation. There were no complications and 8 months after the procedure the patient was symptom free without medication. Images PMID:7547032

  10. Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustained pressure overload causes cardiac hypertrophy and the transition to heart failure. We show here that dietary supplementation with physiologically relevant levels of copper (Cu) reverses pre-established hypertrophic cardiomyopathy in the presence of pressure overload induced by ascending aor...

  11. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study

    NASA Technical Reports Server (NTRS)

    Kwan, Jun; Shiota, Takahiro; Agler, Deborah A.; Popovic, Zoran B.; Qin, Jian Xin; Gillinov, Marc A.; Stewart, William J.; Cosgrove, Delos M.; McCarthy, Patrick M.; Thomas, James D.

    2003-01-01

    BACKGROUND: This study was conducted to elucidate the geometric differences of the mitral apparatus in patients with significant mitral regurgitation caused by ischemic cardiomyopathy (ICM-MR) and by idiopathic dilated cardiomyopathy (DCM-MR) by use of real-time 3D echocardiography (RT3DE). METHODS AND RESULTS: Twenty-six patients with ICM-MR caused by posterior infarction, 18 patients with DCM-MR, and 8 control subjects were studied. With the 3D software, commissure-commissure plane and 3 perpendicular anteroposterior (AP) planes were generated for imaging the medial, central, and lateral sides of the mitral valve (MV) during mid systole. In 3 AP planes, the angles between the annular plane and each leaflet (anterior, Aalpha; posterior, Palpha) were measured. In ICM-MR, Aalpha measured in the medial and central planes was significantly larger than that in the lateral plane (39+/-5 degrees, 34+/-6 degrees, and 27+/-5 degrees, respectively; P<0.01), whereas Palpha showed no significant difference in any of the 3 AP planes (61+/-7 degrees, 57+/-7 degrees, and 56+/-7 degrees, P>0.05). In DCM-MR, both Aalpha (38+/-8 degrees, 37+/-9 degrees, and 36+/-7 degrees, P>0.05) and Palpha (59+/-6 degrees, 58+/-5 degrees, and 57+/-6 degrees, P>0.05) revealed no significant differences in the 3 planes. CONCLUSIONS: The pattern of MV deformation from the medial to the lateral side was asymmetrical in ICM-MR, whereas it was symmetrical in DCM-MR. RT3DE is a helpful tool for differentiating the geometry of the mitral apparatus between these 2 different types of functional mitral regurgitation.

  12. Relation of brain natriuretic peptide level to extent of left ventricular scarring in patients with chronic heart failure secondary to ischemic cardiomyopathy.

    PubMed

    Aktas, Mehmet Kemal; Allen, Drew; Jaber, Wael A; Chuang, Hsuan-Hung; Taylor, David O; Yamani, Mohamad H

    2009-01-15

    Multiple factors influence brain natriuretic peptide (BNP) release in patients with heart failure. We hypothesized that extensive myocardial scarring could result in an attenuated BNP response. A total of 115 patients with New York Heart Association class III chronic heart failure and ischemic cardiomyopathy were evaluated for ischemia, hibernation, and myocardial scarring by dipyridamole-rubidium-positron emission tomographic scanning with fluorine-18, 2-fluoro-2-deoxyyglucose. Plasma BNP levels were determined within 2 weeks of the study. Left ventricular dimension and function were evaluated by echocardiography. Patients were categorized as having <33% myocardial scar (n=67) or>or=33% myocardial scar (n=48). BNP measurements were correlated with amount of myocardial scarring. Compared with patients with less scar, those with >or=33% scar had lower BNP levels (mean 317+/-364 vs 635+/-852 pg/ml, median 212 vs 357, p=0.016). Using multiple regression analysis, presence of scarring was associated with decreased BNP response (p=0.022). Further, patients with <33% scar in whom a higher BNP level was noted had more ischemia (51% vs 27%, p=0.01) and greater myocardial hibernation (22+/-14% vs 12+/-7%, p=0.02) compared with patients with >or=33% scar. In conclusion, in patients with chronic heart failure, a decreased BNP response indicated extensive myocardial scarring. PMID:19121444

  13. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  14. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    PubMed Central

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-01-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis. PMID:26689945

  15. Sepsis-Induced Takotsubo Cardiomyopathy Leading to Torsades de Pointes.

    PubMed

    Patel, Nirav; Shenoy, Abhishek; Dous, George; Kamran, Haroon; El-Sherif, Nabil

    2016-01-01

    Background. Takotsubo cardiomyopathy (TCM) is sudden and reversible myocardial dysfunction often attributable to physical or emotional triggers. Case Report. We describe a 51-year-old man presented to emergency department with sepsis from urinary tract infection (UTI). He was placed on cefepime for UTI and non-ST-elevation myocardial infarction protocol given elevated troponins with chest pain. Subsequently, patient was pulseless with torsades de pointes (TdP) and then converted to sinus rhythm with cardioversion. An echocardiogram revealed low ejection fraction with hypokinesis of the apical wall. Over 48 hours, the patient was extubated and stable on 3 L/min nasal cannula. He underwent a cardiac catheterization to evaluate coronary artery disease (CAD) and was found to have mild nonobstructive CAD with no further findings. Conclusion. TCM is a rare disorder presenting with symptoms similar to acute coronary syndrome. Though traditionally elicited by physical and emotional triggers leading to transient left ventricular dysfunction, our case suggests that it may also be triggered by a urinary tract infection and lead to severe QT prolongation and a malignant ventricular arrhythmia in TdP. PMID:27525128

  16. Sepsis-Induced Takotsubo Cardiomyopathy Leading to Torsades de Pointes

    PubMed Central

    Kamran, Haroon; El-Sherif, Nabil

    2016-01-01

    Background. Takotsubo cardiomyopathy (TCM) is sudden and reversible myocardial dysfunction often attributable to physical or emotional triggers. Case Report. We describe a 51-year-old man presented to emergency department with sepsis from urinary tract infection (UTI). He was placed on cefepime for UTI and non-ST-elevation myocardial infarction protocol given elevated troponins with chest pain. Subsequently, patient was pulseless with torsades de pointes (TdP) and then converted to sinus rhythm with cardioversion. An echocardiogram revealed low ejection fraction with hypokinesis of the apical wall. Over 48 hours, the patient was extubated and stable on 3 L/min nasal cannula. He underwent a cardiac catheterization to evaluate coronary artery disease (CAD) and was found to have mild nonobstructive CAD with no further findings. Conclusion. TCM is a rare disorder presenting with symptoms similar to acute coronary syndrome. Though traditionally elicited by physical and emotional triggers leading to transient left ventricular dysfunction, our case suggests that it may also be triggered by a urinary tract infection and lead to severe QT prolongation and a malignant ventricular arrhythmia in TdP. PMID:27525128

  17. Myocardial ischemic reperfusion induces de novo Nrf2 protein translation

    PubMed Central

    Xu, Beibei; Zhang, Jack; Strom, Joshua; Lee, Sang; Chen, Qin M.

    2016-01-01

    Nrf2 is a bZIP transcription factor regulating the expression of antioxidant and detoxification genes. We have found that Nrf2 knockout mice have an increased infarction size in response to regional ischemic reperfusion and have a reduced degree of cardiac protection by means of ischemic preconditioning. With cycles of brief ischemia and reperfusion (5′I/5′R) that induce cardiac protection in wild type mice, an elevated Nrf2 protein was observed without prior increases of Nrf2 mRNA. When an mRNA species is being translated into a protein, it is occupied by multiple ribosomes. The level of ribosome-associated Nrf2 mRNA increased following cycles of 5′I/5′R, supporting de novo Nrf2 protein translation. A dicistronic reporter assay indicated a role of the 5′ untranslated region (5′ UTR) of Nrf2 mRNA in oxidative stress induced Nrf2 protein translation in isolated cardiomyocytes. Western blot analyses after isolation of proteins binding to biotinylated Nrf2 5′ UTR from the myocardium or cultured cardiomyocytes demonstrated that cycles of 5′I/5′R or oxidants caused an increased association of La protein with Nrf2 5′ UTR. Ribonucleoprotein complex immunoprecipitation assays confirmed such association indeed occurring in vivo. Knocking down La using siRNA was able to prevent Nrf2 protein elevation by oxidants in cultured cardiomyocytes and by cycles of 5′I/5′R in the myocardium. Our data point out a novel mechanism of cardiac protection by de novo Nrf2 protein translation involving interaction of La protein with 5′ UTR of Nrf2 mRNA in cardiomyocytes. PMID:24915518

  18. Reversible Cardiomyopathies

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness–induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions. PMID:26052233

  19. Cardiac-specific VLCAD deficiency induces dilated cardiomyopathy and cold intolerance

    PubMed Central

    Xiong, Dingding; He, Huamei; James, Jeanne; Tokunaga, Chonan; Powers, Corey; Huang, Yan; Osinska, Hanna; Towbin, Jeffrey A.; Purevjav, Enkhsaikhan; Balschi, James A.; Javadov, Sabzali; McGowan, Francis X.; Strauss, Arnold W.

    2013-01-01

    The very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme catalyzes the first step of mitochondrial β-oxidation. Patients with VLCAD deficiency present with hypoketotic hypoglycemia and cardiomyopathy, which can be exacerbated by fasting and/or cold stress. Global VLCAD knockout mice recapitulate these phenotypes: mice develop cardiomyopathy, and cold exposure leads to rapid hypothermia and death. However, the contribution of different tissues to development of these phenotypes has not been studied. We generated cardiac-specific VLCAD-deficient (cVLCAD−/−) mice by Cre-mediated ablation of the VLCAD in cardiomyocytes. By 6 mo of age, cVLCAD−/− mice demonstrated increased end-diastolic and end-systolic left ventricular dimensions and decreased fractional shortening. Surprisingly, selective VLCAD gene ablation in cardiomyocytes was sufficient to evoke severe cold intolerance in mice who rapidly developed severe hypothermia, bradycardia, and markedly depressed cardiac function in response to fasting and cold exposure (+5°C). We conclude that cardiac-specific VLCAD deficiency is sufficient to induce cold intolerance and cardiomyopathy and is associated with reduced ATP production. These results provide strong evidence that fatty acid oxidation in myocardium is essential for maintaining normal cardiac function under these stress conditions. PMID:24285112

  20. Levosimendan suppresses oxidative injury, apoptotic signaling and mitochondrial degeneration in streptozotocin-induced diabetic cardiomyopathy.

    PubMed

    Akhtar, Md Sayeed; Pillai, Krishna Kolappa; Hassan, Quamrul; Ansari, Shahid Husain; Ali, Javed; Akhtar, Mohammed; Najmi, Abul Kalam

    2016-01-01

    Diabetic cardiomyopathy plays a major role in morbidity and mortality among cardiovascular disorder-related complications. This study was designed to explore long-term benefits of Levosimendan (LEVO) along with Ramipril and Insulin. Diabetic cardiomyopathy was induced using streptozotocin (STZ) at the dose of 25 mg/kg/body weight/day for three consecutive days in Wistar rats. Rats were randomly divided into 10 groups and treatments were started after 2 weeks of STZ administration. A gradual but severe hyperglycemia ((§§§)p < 0.001) was observed in all STZ-treated groups except those received insulin (2  U/day). LEVO alone and in combination with Ramipril and Insulin normalized (**p < 0.01) mean arterial pressure and heart rate, restored catalase, superoxide dismutase, malondialdehyde, glutathione level and also attenuated (***p < 0.001) the raised serum levels of creatine kinase-heart type, lactate dehydrogenase, tumor necrosis factor-alpha, C-reactive protein, and caspase-3 level in heart tissue altered after STZ treatment. Myofibril degeneration, mitochondrial fibrosis and vacuolization occurred after STZ treatment, were also reversed by LEVO in combination with Ramipril and Insulin. The combination of LEVO with Ramipril and Insulin improved hemodynamic functions, maintained cardiac enzymes and ameliorated myofibril damage in diabetic cardiomyopathy. PMID:26207881

  1. Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy.

    PubMed

    Carll, Alex P; Haykal-Coates, Najwa; Winsett, Darrell W; Rowan, William H; Hazari, Mehdi S; Ledbetter, Allen D; Nyska, Abraham; Cascio, Wayne E; Watkinson, William P; Costa, Daniel L; Farraj, Aimen K

    2010-04-01

    Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were infused with isoproterenol (ISO; 2.5 mg/kg/day subcutaneous [sc]), a beta-adrenergic agonist, for 28 days and subsequently exposed to PM by inhalation. ISO induced tachycardia and hypotension throughout treatment followed by postinfusion decrements in heart rate, contractility, and blood pressures (systolic, diastolic, pulse), and fibrotic cardiomyopathy. Changes in heart rate and heart rate variability (HRV) 17 days after ISO cessation indicated parasympathetic dominance with concomitantly altered ventilation. Rats were subsequently exposed to filtered air or Harvard Particle 12 (HP12) (12 mg/m(3))--a metal-rich oil combustion-derived PM--at 18 and 19 days (4 h/day) after ISO infusion via nose-only inhalation to determine if cardio-impaired rats were more responsive to the effects of PM exposure. Inhalation of PM among ISO-pretreated rats significantly increased pulmonary lactate dehydrogenase, serum high-density lipoprotein (HDL) cholesterol, and heart-to-body mass ratio. PM exposure increased the number of ISO-pretreated rats that experienced bradyarrhythmic events, which occurred concomitantly with acute alterations of HRV. PM, however, did not significantly affect mean HRV in the ISO- or saline-pretreated groups. In summary, subchronic ISO treatment elicited some pathophysiologic and histopathological features of heart failure, including cardiomyopathy. The enhanced sensitivity to PM exposure in SHHF rats with ISO-accelerated cardiomyopathy suggests that this model may be useful for elucidating the mechanisms by which PM exposure exacerbates heart disease. PMID:20121584

  2. Importance of mitral valve repair associated with left ventricular reconstruction for patients with ischemic cardiomyopathy: a real-time three-dimensional echocardiographic study

    NASA Technical Reports Server (NTRS)

    Qin, Jian Xin; Shiota, Takahiro; McCarthy, Patrick M.; Asher, Craig R.; Hail, Melanie; Agler, Deborah A.; Popovic, Zoran B.; Greenberg, Neil L.; Smedira, Nicholas G.; Starling, Randall C.; Young, James B.; Thomas, James D.

    2003-01-01

    BACKGROUND: Left ventricular (LV) reconstruction surgery leads to early improvement in LV function in ischemic cardiomyopathy (ICM) patients. This study was designed to evaluate the impact of mitral valve (MV) repair associated with LV reconstruction on LV function 1-year after surgery in ICM patients assessed by real-time 3-dimensional echocardiography (3DE). METHODS AND RESULTS: Sixty ICM patients who underwent the combination surgery (LV reconstruction in 60, MV repair in 30, and revascularization in 52 patients) were studied. Real-time 3DE was performed and LV volumes were obtained at baseline, discharge, 6-month and >or=12-month follow-up. Reduction in end-diastolic volumes (EDV) by 29% and in end-systolic volumes by 38% were demonstrated immediately after surgery and remained at subsequent follow-up (P<0.0001). The LV ejection fraction significantly increased by about 10% at discharge and was maintained >or=12-month (P<0.0001). Although the LV volumes were significantly larger in patients with MV repair before surgery (EDV, 235+/-87 mL versus 193+/-67 mL, P<0.05), they were similar to LV volumes of the patients without MV repair at subsequent follow-ups. However, the EDV increased from 139+/-24 mL to 227+/-79 mL (P<0.01) in 7 patients with recurrent mitral regurgitation (MR). Improvement in New York Heart Association functional class occurred in 81% patients during late follow-up. CONCLUSIONS: Real-time 3DE demonstrates that LV reconstruction provides significant reduction in LV volumes and improvement in LV function which is sustained throughout the 1-year follow-up with 84% cardiac event free survival. If successful, MV repair may prevent LV redilation, while recurrent MR is associated with increased LV volumes.

  3. Extracellular Volume Fraction Is More Closely Associated With Altered Regional Left Ventricular Velocities Than Left Ventricular Ejection Fraction in Non-Ischemic Cardiomyopathy

    PubMed Central

    Collins, Jeremy; Sommerville, Cort; Magrath, Patrick; Spottiswoode, Bruce; Freed, Benjamin H; Benzuly, Keith H; Gordon, Robert; Vidula, Himabindu; Lee, Dan C; Yancy, Clyde; Carr, James; Markl, Michael

    2014-01-01

    Background Non-ischemic cardiomyopathy (NICM) is a common cause of left ventricular (LV) dysfunction and myocardial fibrosis. The purpose of this study was to non-invasively evaluate changes in segmental LV extracellular volume fraction (ECV), LV velocities, myocardial scar, and wall motion in NICM patients. Methods and Results Cardiac MRI including pre- and post-contrast myocardial T1-mapping and velocity quantification (tissue phase mapping, TPM) of the LV (basal, mid-ventricular, apical short axis) was applied in 31 patients with NICM (50±18years). Analysis based on the 16-segment AHA model was employed to evaluate the segmental distribution of ECV, peak systolic and diastolic myocardial velocities, scar determined by late gadolinium enhancement (LGE), and wall motion abnormalities. LV segments with scar or impaired wall motion were significantly associated with elevated ECV (r=0.26, p<0.001) and reduced peak systolic radial velocities (r=−0.43, p<0.001). Regional myocardial velocities and ECV were similar for patients with reduced (n=12, ECV=0.28±0.06) and preserved LV ejection fraction (LVEF) (n=19, ECV=0.30±0.09). Patients with preserved LVEF showed significant relationships between increasing ECV and reduced systolic (r=−0.19, r=−0.30) and diastolic (r=0.34, r=0.26) radial and long-axis peak velocities (p<0.001). Even after excluding myocardial segments with LGE, significant relationships between ECV and segmental LV velocities were maintained indicating the potential of elevated ECV to identify regional diffuse fibrosis not visible by LGE which was associated with impaired regional LV function Conclusions Regionally elevated ECV negatively impacted myocardial velocities. The association of elevated regional ECV with reduced myocardial velocities independent of LVEF suggests a structure-function relationship between altered ECV and segmental myocardial function in NICM. PMID:25552491

  4. Bradykinin in ischemic conditioning-induced tissue protection: Evidences and possible mechanisms.

    PubMed

    Sharma, Roohani; Randhawa, Puneet Kaur; Singh, Nirmal; Jaggi, Amteshwar Singh

    2015-12-01

    Ischemic conditioning is an intrinsic protective mechanism in which repeated short episodes of reversible ischemia protects the tissue and increases its tolerance against a subsequent longer period of ischemia (index ischemia). Bradykinin is a physiologically and pharmacologically active peptide of the kallikrein-kinin system. Besides the involvement of bradykinin in a variety of physiological and pathological responses such as pain, inflammation and in cardiovascular system as a potent vasodilator, it also acts as an endogenous cytoprotective mediator in the ischemic tissue. Pretreatment with various pharmacological modulators of bradykinin has confirmed the involvement of bradykinin in ischemic conditioning-induced protection. The protective actions of bradykinin in three major paradigms of ischemic conditioning i.e. ischemic preconditioning, ischemic postconditioning and remote ischemic preconditioning involves activation and regulation of various endogenous signaling cascades to render the heart resistant to infarction. In ischemic preconditioning, bradykinin exerts cardioprotective effect via activation of PI3K/Akt/eNOS signaling pathway and regulation of redox state via NO release. The role of bradykinin and its B2 receptors in ischemic-postconditioning induced neuroprotection has been described mainly due to its increased redox signaling cascade and activation of mitochondrial anti-apoptotic pathway. Furthermore, its cardioprotective role during remote ischemic preconditioning has been associated with activation of B2 receptors mediated neurogenic pathway and internalization of B2 receptors along with the formation of signalosomes that activates intracellular cytoprotective transduction pathways. The present review focuses on the potential role of bradykinin in mediating different forms of ischemic conditioning (pre/post/remote)-induced cardioprotection and neuroprotection along with the possible mechanisms. PMID:26499976

  5. Effect of selenium-vitamin E on adriamycin-induced cardiomyopathy in rabbits.

    PubMed

    Van Vleet, J F; Greenwood, L; Ferrans, V J; Rebar, A H

    1978-06-01

    Administration of selenium-vitamin E (Se-E) to weanling rabbits chronically treated with adriamycin (ADR) resulted in decreased incidence and severity of cardiomyopathy and decreased cumulative mortality during a 10-week experiment. However, Se-E did not protect against extracardiac lesions or against a number of clinicopathologic alterations induced by chronic ADR toxicosis. Histopathologic alterations of ADR-induced cardiomyopathy were concentrated periarterially in the free and septal walls of the left ventricle. Initial vacuolar degeneration of injured cardiac muscle cells was followed by myofibrillar lysis and eventual cell death with subsequent interstitial fibrosis. Ultrastructurally, degenerated cardiac muscle cells had 3 prominent alterations: (1) sarcoplasmic vacuolization caused by distention of elements of sarcoplasmic reticulum and T-tubules, (2) degeneration of mitochondria forming large myelin figures from disrupted membranes, and (3) lysis of myofibrils producing granular sarcoplasmic masses. Severely injured fibers were necrotic and macrophages invaded to remove cellular debris. The interstitium was distended by edema and increased amounts of collagen. Extracardiac lesions in rabbits with chronic ADR toxicosis included the usually recognized alterations involving cell-renewal systems in kidney, testis, bone marrow, skin, and alimentary tract, as well as vacuolar degeneration of skeletal muscle and focal loss of pancreatic tissue, with ensuing pancreatic fibrosis and fat necrosis. Deaths in ADR-treated rabbits usually were precipitated by terminal septic embolism. The partial protection afforded by Se-E against ADR-induced cardiomyopathy may be associated with stabilization of the membranes of injured muscle cells or with prevention of ADR-induced inhibition of coenzyme Q10-dependent mitochondrial enzymes. PMID:666098

  6. Intrathecal Clonidine Pump Failure Causing Acute Withdrawal Syndrome With 'Stress-Induced' Cardiomyopathy.

    PubMed

    Lee, Hwee Min D; Ruggoo, Varuna; Graudins, Andis

    2016-03-01

    Clonidine is a central alpha(2)-agonist antihypertensive used widely for opioid/alcohol withdrawal, attention deficit hyperactivity disorder and chronic pain management. We describe a case of clonidine withdrawal causing life-threatening hypertensive crisis and stress-induced cardiomyopathy. A 47-year-old man with chronic back pain, treated with clonidine for many years via intrathecal pump (550 mcg/24 h), presented following a collapse and complaining of sudden worsening of back pain, severe headache, diaphoresis, nausea and vomiting. A few hours prior to presentation, his subcutaneous pump malfunctioned. On presentation, vital signs included pulse 100 bpm, BP 176/103 mmHg, temperature 37.8 °C and O2 saturation 100 % (room air). Acute clonidine withdrawal with hypertensive crisis was suspected. Intravenous clonidine loading dose and a 50 mcg/h infusion were commenced. Five hours later, severe chest pain, dyspnoea, tachycardia, hypoxia, with BP 180/120 mmHg and pulmonary edema ensued. ECG showed sinus tachycardia with no ST elevation. Repeated intravenous clonidine doses were given (25 mcg every 5-10 min), with ongoing clonidine infusion to control blood pressure. Glyceryl trinitrate infusion, positive pressure ventilation and intravenous benzodiazepines were added. Bedside echocardiogram showed stress-induced cardiomyopathy pattern. Serum troponin-I was markedly elevated. His coronary angiography showed minor irregularities in the major vessels. Over the next 3 days in the ICU, drug infusions were weaned. Discharge was 12 days later on oral clonidine, metoprolol, perindopril, aspirin and oxycodone-SR. Two months later, his echocardiogram was normal. The intrathecal pump was removed. We report a case of stress-induced cardiomyopathy resulting from the sudden cessation of long-term intrathecal clonidine. This was managed by re-institution of clonidine and targeted organ-specific therapies. PMID:26370679

  7. Reversal of Pacing-Induced Cardiomyopathy by Normal QRS Axis Pacing

    PubMed Central

    Yang, Ji Hyun; Kim, Ju Youn; Kim, Sung-Hwan

    2016-01-01

    Right ventricular apical pacing has been a commonly used method for placement of permanent pacemaker, but it is known to be associated with ventricular dyssynchrony and may lead to heart failure. Septal pacing could be an alternative method to improve this complication but the results have been conflicting; hence, other strategies are needed. This case is about a patient with pacing-induced cardiomyopathy who showed much improvement after repositioning the leads to a site different from that of normally paced QRS axis. PMID:27275181

  8. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells

    PubMed Central

    Gowran, Aoife; Rasponi, Marco; Perrucci, Gianluca L.; Righetti, Stefano; Zanobini, Marco; Pompilio, Giulio

    2016-01-01

    A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy. PMID:27110250

  9. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells.

    PubMed

    Gowran, Aoife; Rasponi, Marco; Visone, Roberta; Nigro, Patrizia; Perrucci, Gianluca L; Righetti, Stefano; Zanobini, Marco; Pompilio, Giulio

    2016-01-01

    A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy. PMID:27110250

  10. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase

    PubMed Central

    Liu, Yan; Asnani, Aarti; Zou, Lin; Bentley, Victoria L.; Yu, Min; Wang, You; Dellaire, Graham; Sarkar, Kumar S.; Dai, Matthew; Chen, Howard H.; Sosnovik, David E.; Shin, Jordan T.; Haber, Daniel A.; Berman, Jason N.; Chao, Wei; Peterson, Randall T.

    2015-01-01

    Doxorubicin is a highly effective anti-cancer chemotherapy agent, but its usage is limited by its cardiotoxicity. To develop a drug that prevents the cardiac toxicity of doxorubicin while preserving its anti-tumor potency, we established a doxorubicin-induced cardiomyopathy model in zebrafish that recapitulated the cardiomyocyte apoptosis and contractility decline observed in patients. Using this model, we screened 3000 compounds and discovered that visnagin (VIS) and diphenylurea (DPU) rescue cardiac performance and circulatory defects caused by doxorubicin treatment in zebrafish. VIS and DPU reduced doxorubicin-induced apoptosis in cultured cardiomyocytes and in vivo in zebrafish and mouse hearts. Furthermore, VIS treatment improved cardiac contractility in doxorubicin-treated mice. Importantly, VIS and DPU caused no reduction in the chemotherapeutic efficacy of doxorubicin in several cultured tumor lines or in zebrafish and mouse xenograft models. Using affinity chromatography, we discovered that VIS binds to mitochondrial malate dehydrogenase (MDH2), one of the key enzymes in the tricarboxylic acid cycle. As with VIS, treatment with the MDH2 inhibitors mebendazole, thyroxine, and iodine prevented doxorubicin cardiotoxicity, as did treatment with malate itself, suggesting that modulation of MDH2 activity is responsible for VIS’s cardioprotective effects. Taken together, this study identified VIS and DPU as potent cardioprotective compounds and implicates MDH2 as a previously undescribed, druggable target for doxorubicin-induced cardiomyopathy. PMID:25504881

  11. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase.

    PubMed

    Liu, Yan; Asnani, Aarti; Zou, Lin; Bentley, Victoria L; Yu, Min; Wang, You; Dellaire, Graham; Sarkar, Kumar S; Dai, Matthew; Chen, Howard H; Sosnovik, David E; Shin, Jordan T; Haber, Daniel A; Berman, Jason N; Chao, Wei; Peterson, Randall T

    2014-12-10

    Doxorubicin is a highly effective anticancer chemotherapy agent, but its use is limited by its cardiotoxicity. To develop a drug that prevents this toxicity, we established a doxorubicin-induced cardiomyopathy model in zebrafish that recapitulates the cardiomyocyte apoptosis and contractility decline observed in patients. Using this model, we screened 3000 compounds and found that visnagin (VIS) and diphenylurea (DPU) rescue the cardiac performance and circulatory defects caused by doxorubicin in zebrafish. VIS and DPU reduced doxorubicin-induced apoptosis in cultured cardiomyocytes and in vivo in zebrafish and mouse hearts. VIS treatment improved cardiac contractility in doxorubicin-treated mice. Further, VIS and DPU did not reduce the chemotherapeutic efficacy of doxorubicin in several cultured tumor lines or in zebrafish and mouse xenograft models. Using affinity chromatography, we found that VIS binds to mitochondrial malate dehydrogenase (MDH2), a key enzyme in the tricarboxylic acid cycle. As with VIS, treatment with the MDH2 inhibitors mebendazole, thyroxine, and iodine prevented doxorubicin cardiotoxicity, as did treatment with malate itself, suggesting that modulation of MDH2 activity is responsible for VIS' cardioprotective effects. Thus, VIS and DPU are potent cardioprotective compounds, and MDH2 is a previously undescribed, druggable target for doxorubicin-induced cardiomyopathy. PMID:25504881

  12. Dimethyl α-ketoglutarate inhibits maladaptive autophagy in pressure overload-induced cardiomyopathy.

    PubMed

    Mariño, Guillermo; Pietrocola, Federico; Kong, Yongli; Eisenberg, Tobias; Hill, Joseph A; Madeo, Frank; Kroemer, Guido

    2014-05-01

    It has been a longstanding problem to identify specific and efficient pharmacological modulators of autophagy. Recently, we found that depletion of acetyl-coenzyme A (AcCoA) induced autophagic flux, while manipulations designed to increase cytosolic AcCoA efficiently inhibited autophagy. Thus, the cell permeant ester dimethyl α-ketoglutarate (DMKG) increased the cytosolic concentration of α-ketoglutarate, which was converted into AcCoA through a pathway relying on either of the 2 isocitrate dehydrogenase isoforms (IDH1 or IDH2), as well as on ACLY (ATP citrate lyase). DMKG inhibited autophagy in an IDH1-, IDH2- and ACLY-dependent fashion in vitro, in cultured human cells. Moreover, DMKG efficiently prevented autophagy induced by starvation in vivo, in mice. Autophagy plays a maladaptive role in the dilated cardiomyopathy induced by pressure overload, meaning that genetic inhibition of autophagy by heterozygous knockout of Becn1 suppresses the pathological remodeling of heart muscle responding to hemodynamic stress. Repeated administration of DMKG prevents autophagy in heart muscle responding to thoracic aortic constriction (TAC) and simultaneously abolishes all pathological and functional correlates of dilated cardiomyopathy: hypertrophy of cardiomyocytes, fibrosis, dilation of the left ventricle, and reduced contractile performance. These findings indicate that DMKG may be used for therapeutic autophagy inhibition. PMID:24675140

  13. Hypoxia Inducible Factor 1 as a Therapeutic Target in Ischemic Stroke

    PubMed Central

    Shi, H

    2010-01-01

    In stroke research, a significant focus is to develop therapeutic strategies that prevent neuronal death and improve recovery. Yet, few successful therapeutic strategies have emerged. Hypoxia-inducible factor 1 (HIF-1) is a key regulator in hypoxia. It has been suggested to be an important player in neurological outcomes following ischemic stroke due to the functions of its downstream genes. These include genes that promote glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Many lines of evidence have shown that HIF-1 is induced in ischemic brains. Importantly, it seems that HIF-1 is primarily induced in the salvageable tissue of an ischemic brain, penumbra. However, the effect of HIF-1 on neuronal tissue injuries is still debatable based on evidence from in vitro and preclinical studies. Furthermore, it is of importance to understand the mechanism of HIF-1 degradation after its induction in ischemic brain. This review provides a present understanding of the mechanism of HIF-1 induction in ischemic neurons and the potential effect of HIF-1 on ischemic brain tissue. The author also elaborates on potential therapeutic approaches through understanding of the induction mechanism and of the potential role of HIF-1 in ischemic stroke. PMID:19903149

  14. Methylglyoxal-Induced Endothelial Cell Loss and Inflammation Contribute to the Development of Diabetic Cardiomyopathy.

    PubMed

    Vulesevic, Branka; McNeill, Brian; Giacco, Ferdinando; Maeda, Kay; Blackburn, Nick J R; Brownlee, Michael; Milne, Ross W; Suuronen, Erik J

    2016-06-01

    The mechanisms for the development of diabetic cardiomyopathy remain largely unknown. Methylglyoxal (MG) can accumulate and promote inflammation and vascular damage in diabetes. We examined if overexpression of the MG-metabolizing enzyme glyoxalase 1 (GLO1) in macrophages and the vasculature could reduce MG-induced inflammation and prevent ventricular dysfunction in diabetes. Hyperglycemia increased circulating inflammatory markers in wild-type (WT) but not in GLO1-overexpressing mice. Endothelial cell number was reduced in WT-diabetic hearts compared with nondiabetic controls, whereas GLO1 overexpression preserved capillary density. Neuregulin production, endothelial nitric oxide synthase dimerization, and Bcl-2 expression in endothelial cells was maintained in the hearts of GLO1-diabetic mice and corresponded to less myocardial cell death compared with the WT-diabetic group. Lower receptor for advanced glycation end products and tumor necrosis factor-α (TNF-α) levels were also observed in GLO1-diabetic versus WT-diabetic mice. Over a period of 8 weeks of hyperglycemia, GLO1 overexpression delayed and limited the loss of cardiac function. In vitro, MG and TNF-α were shown to synergize in promoting endothelial cell death, which was associated with increased angiopoietin 2 expression and reduced Bcl-2 expression. These results suggest that MG in diabetes increases inflammation, leading to endothelial cell loss. This contributes to the development of diabetic cardiomyopathy and identifies MG-induced endothelial inflammation as a target for therapy. PMID:26956489

  15. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis

    PubMed Central

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-01

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  16. Prediction of Appropriate Shocks Using 24-Hour Holter Variables and T-Wave Alternans After First Implantable Cardioverter-Defibrillator Implantation in Patients With Ischemic or Nonischemic Cardiomyopathy.

    PubMed

    Seegers, Joachim; Bergau, Leonard; Expósito, Pascal Muñoz; Bauer, Axel; Fischer, Thomas H; Lüthje, Lars; Hasenfuß, Gerd; Friede, Tim; Zabel, Markus

    2016-07-01

    In patients treated with implantable cardioverter defibrillator (ICD), prediction of both overall survival and occurrence of shocks is important if improved patient selection is desired. We prospectively studied the predictive value of biomarkers and indexes of cardiac and renal function and spectral microvolt T-wave alternans testing and 24-hour Holter variables in a population who underwent first ICD implantation. Consecutive patients in sinus rhythm with ischemic or dilated cardiomyopathy scheduled for primary or secondary prophylactic ICD implantation were enrolled. Exercise microvolt T-wave alternans and 24-hour Holter for number of ventricular premature contractions (VPCs), deceleration capacity, heart rate variability, and heart rate turbulence were done. Death of any cause and first appropriate ICD shock were defined as end points. Over 33 ± 15 months of follow-up, 36 of 253 patients (14%) received appropriate shocks and 39 of 253 patients (15%) died. Only 3 of 253 patients (1%) died after receiving at least 1 appropriate shock. In univariate analyses, New York Heart Association class, ejection fraction, N-terminal pro brain-type natriuretic peptide (NT-proBNP), renal function, ICD indication, deceleration capacity, heart rate variability, and heart rate turbulence were predictive of all-cause mortality and VPC number and deceleration capacity predicted first appropriate shock. NT-proBNP (≥1,600 pg/ml) was identified as the only independent predictor of all-cause mortality (hazard ratio 3.0, confidence interval 1.3 to 7.3, p = 0.014). In contrast, VPC number predicted appropriate shocks (hazard ratio 2.3, confidence interval 1.0 to 5.5, p = 0.047) as the only independent risk marker. In conclusion, NT-proBNP is a strong independent predictor of mortality in a typical prospective cohort of newly implanted patients with ICD, among many electrocardiographic and clinical variables studied. Number of VPCs was identified as a predictor of appropriate shocks

  17. Ranolazine versus placebo in patients with ischemic cardiomyopathy and persistent chest pain or dyspnea despite optimal medical and revascularization therapy: randomized, double-blind crossover pilot study

    PubMed Central

    Shammas, Nicolas W; Shammas, Gail A; Keyes, Kathleen; Duske, Shawna; Kelly, Ryan; Jerin, Michael

    2015-01-01

    Background Patients with ischemic cardiomyopathy (ICM) may continue to experience persistent chest pain and/or dyspnea despite pharmacologic therapy and revascularization. We hypothesized that ranolazine would reduce anginal symptoms or dyspnea in optimally treated ICM patients. Methods In this randomized, double-blind, crossover-design pilot study, 28 patients with ICM (ejection fraction less or equal 40%) were included after providing informed consent. A total of 24 patients completed both placebo and ranolazine treatments and were analyzed. All patients were on treatment with a beta blocker, an angiotensin-converting enzyme inhibitor (or angiotensin receptor blocker), and at least one additional antianginal drug. After randomization, patients received up to 1,000 mg ranolazine orally twice a day, as tolerated, versus placebo. The primary end point was change in angina as assessed by the Seattle Angina Questionnaire (SAQ), or in dyspnea as assessed by the Rose Dyspnea Scale (RDS). Change in the RDS and SAQ score from baseline was compared, for ranolazine and placebo, using the Wilcoxon signed rank test or paired t-test. Results Patients had the following demographic and clinical variables: mean age of 71.5 years; male (82.1%); prior coronary bypass surgery (67.9%); prior coronary percutaneous intervention (85.7%); prior myocardial infarction (82.1%); diabetes (67.9%); and mean ejection fraction of 33.1%. No statistical difference was seen between baseline RDS score and that after placebo or ranolazine (n=20) (P≥0.05). There was however, an improvement in anginal frequency (8/10 patients) (P=0.058), quality of life (8/10 patients) (P=0.048), and mean score of all components of the SAQ questionnaire (n=10) (P=0.047) with ranolazine compared with placebo. Conclusion In optimally treated ICM patients with continued chest pain or dyspnea, ranolazine possibly had a positive impact on quality of life, a reduction in anginal frequency, and an overall improvement in the

  18. Efficacy of different doses of atorvastatin treatment on serum levels of 8-hydroxy-guanin (8-OHdG) and cardiac function in patients with ischemic cardiomyopathy

    PubMed Central

    Jin, Yu; Qiu, Chunguang; Zheng, Qiangsun; Liu, Ling; Liu, Zhiqiang; Wang, Yi

    2015-01-01

    Objective: To compare the efficacy of 40 mg and l0 mg atorvastatin on serum levels of 8-Hydroxy-Guanin (8-OHdG) and the cardiac function in patients with ischemic cardiomyopathy (ICM). Methods: One hundred twenty three hospitalized ICM patients and 120 healthy controls were included in this study. All subjects were randomly divided into two groups: 10 mg/d atorvastatin group (n=62) and 40 mg/d atorvastatin group (n=61). Serum levels of C-reactive protein (CRP), creatine kinase, glutamic-pyruvic transaminase, lipids and B-type natriuretic peptide (BNP) were tested in all subjects both at the initial phase and the terminal phase of this study. Adverse drug reaction events were recorded in this study. Echocardiographic method was applied to compare the cardiac function before and after treatment in the double blind study. Serum 8-OHdG levels were tested by enzyme-linked immunosorbent assay (ELISA) before and after treatment, and the results in atorvastatin treatment groups were compared with the healthy controls. Results: Serum 8-OHdG levels in ICM patients were significantly higher than that in normal control groups (p<0.05). There was significant difference of Serum 8-OHdG levels in 40 mg/d atorvastatin group (p<0.05), but was no significant difference in 10 mg/d atorvastatin group before and after the treatment. The 8-OHdG level in 40 mg/d atorvastatin group was significantly lower than that in 10 mg/d atorvastatin group before the treatment as well as after the treatment (p<0.05). The systolic and diastolic function improved significantly in 40 mg/d atorvastatin group before and after treatment, as well as in comparison with 10 mg/d atorvastatin group (p<0.05). Conclusion: Serum 8-OHdG possibly plays an important role in the pathogenesis of ICM. Atorvastatin is safe and effective in ICM treatment; furthermore atorvastatin which also has independent lipid lowering effect, is significantly better in the dose of 40 mg/day. PMID:25878611

  19. Myocardial Expression Analysis of Osteopontin and Its Splice Variants in Patients Affected by End-Stage Idiopathic or Ischemic Dilated Cardiomyopathy

    PubMed Central

    Cabiati, Manuela; Svezia, Benedetta; Matteucci, Marco; Botta, Luca; Pucci, Angela; Rinaldi, Mauro; Caselli, Chiara; Lionetti, Vincenzo; Del Ry, Silvia

    2016-01-01

    Osteopontin (OPN) is a phosphoglycoprotein of cardiac extracellular matrix and it is still poorly defined whether its expression changes in failing heart of different origin. The full-length OPN-a and its isoforms (OPN-b, OPN-c) transcriptomic profile were evaluated in myocardium of patients with dilated or ischemic cardiomyopathy (DCM n = 8; LVEF% = 17.5±3; ICM n = 8; LVEF% = 19.5±5.2) and in auricle of valvular patients (VLP n = 5; LVEF%≥50), by Real-time PCR analysis. OPN-a and thrombin mRNA levels resulted significantly higher in DCM compared to ICM patients (DCM:31.3±7.4, ICM:2.7±1.1, p = 0.0002; DCM:19.1±4.9, ICM:5.4±2.2, p = 0.007, respectively). Although both genes’ mRNA levels increased in patients with LVEF<50% (DCM+ICM) with respect to VLP with LVEF>50%, a significant increase in OPN (p = 0.0004) and thrombin (p = 0.001) expression was observed only in DCM. In addition, a correlation between OPN-a and thrombin was found in patients with LVEF<50% (r = 0.6; p = 0.003). The mRNA pattern was confirmed by OPN-a cardiac protein concentration (VLP:1.127±0.26; DCM:1.29±0.22; ICM:1.00±0.077 ng/ml). The OPN splice variants expression were detectable only in ICM (OPN-b: 0.357±0.273; OPN-c: 0.091±0.033) and not in DCM patients. A significant correlation was observed between collagen type I, evaluated by immunohistochemistry analysis, and both OPN-a mRNA expression (r = 0.87, p = 0.002) and OPN protein concentrations (r = 0.77, p = 0.016). Concluding, OPN-a and thrombin mRNA resulted dependent on the origin of heart failure while OPN-b and OPN-c highlighted a different expression for DCM and ICM patients, suggesting their correlation with different clinical-pathophysiological setting. PMID:27479215

  20. Are the different patterns of stress-induced (Takotsubo) cardiomyopathy explained by regional mechanical overload and demand: supply mismatch in selected ventricular regions?

    PubMed

    Redfors, Bjorn; Shao, Yangzhen; Ali, Anwar; Omerovic, Elmir

    2013-11-01

    Takotsubo cardiomyopathy (TCM) or stress-induced cardiomyopathy is an increasingly recognized syndrome characterized by severe regional left ventricular dysfunction in the absence of an explanatory coronary lesion. TCM may lead to lethal complications but is completely reversible if the patient survives the acute phase. The pathogenesis of TCM and the mechanism behind this remarkable recovery are unknown. Plasma levels of catecholamine are elevated in many TCM patients and exogenously administered catecholamine induces TCM-like cardiac dysfunction in both humans and rats. A catecholamine excess increases myocardial metabolic demand by increasing the force of contraction as well as the heart rate, and also alters cardiac depolarization patterns. We propose that an altered spatiotemporal pattern of cardiac contraction and excessive force of contraction may lead to a redistribution of wall stresses in the left ventricle. This redistribution of wall stress causes regional mechanical overload of regions where wall tension becomes disproportionately great and renders these cardiomyocytes "metabolically insufficient". In other words, these cardiomyocytes experience a demand: supply mismatch on the basis of excessive metabolic demand. In order to prevent the death of these cardiomyocytes and to prevent excessive wall tension from developing in neighboring regions, a protective metabolic shutdown occurs in the affected cardiomyocytes. This metabolic shutdown, i.e., acute down regulation of non-vital cellular functions, serves to protect the affected regions from necrosis and explains the apparently complete recovery observed in TCM. We propose that this phenomenon may share important characteristics with phenomena such as ischemic conditioning, stunning and hibernation. In this manuscript, we discuss our hypothesis in the context of available knowledge and discuss important experiments that would help to corroborate or refute the hypothesis. PMID:24075594

  1. CARDIOMYOPATHY AND WORSENED ISCHEMIC HEART FAILURE IN SM22-α CRE-MEDIATED NEUROPILIN-1 NULL MICE: DYSREGULATION OF PGC1α AND MITOCHONDRIAL HOMEOSTASIS

    PubMed Central

    Wang, Ying; Cao, Ying; Yamada, Satsuki; Thirunavukkarasu, Mahesh; Nin, Veronica; Joshi, Mandip; Rishi, Muhammed T.; Bhattacharya, Santanu; Camacho-Pereira, Juliana; Sharma, Anil K.; Shameer, Khader; Kocher, Jean-Pierre A.; Sanchez, Juan A; Wang, Enfeng; Hoeppner, Luke H.; Dutta, Shamit K.; Leof1, Edward B.; Shah, Vijay; Claffey, Kevin P.; Chini, Eduardo; Simons, Michael; Terzic, Andre; Maulik, Nilanjana; Mukhopadhyay, Debabrata

    2015-01-01

    Objective Neuropilin-1 (NRP-1) is a multi-domain membrane receptor involved in angiogenesis and development of neuronal circuits, however, the role of NRP-1 in cardiovascular pathophysiology remains elusive. Approach and Results In this study, we first observed that deletion of NRP-1 induced peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) in cardiomyocytes (CMs) and vascular smooth muscle cells (VSMCs), which was accompanied by dysregulated cardiac mitochondrial accumulation and induction of cardiac hypertrophy- and stress-related markers. To investigate the role of NRP-1 in vivo, we generated mice lacking Nrp-1 in CMs and VSMCs (SM22-α-Nrp-1 KO), which exhibited decreased survival rates, developed cardiomyopathy and aggravated ischemia-induced heart failure. Mechanistically, we found that NRP-1 specifically controls PGC1α and PPARγ in CMs through crosstalk with Notch1 and Smad2 signaling pathways respectively. Moreover, SM22-α-Nrp-1 KO mice exhibited impaired physical activities and altered metabolite levels in serum, liver, and adipose tissues, as demonstrated by global metabolic profiling analysis. Conclusions Our findings provide new insights into the cardio-protective role of NRP-1 and its influence on global metabolism. PMID:25882068

  2. Mitochondrial Peroxiredoxin-3 protects against hyperglycemia induced myocardial damage in Diabetic cardiomyopathy.

    PubMed

    Arkat, Silpa; Umbarkar, Prachi; Singh, Sarojini; Sitasawad, Sandhya L

    2016-08-01

    Mitochondrial oxidative stress has emerged as a key contributor towards the development of diabetic cardiomyopathy. Peroxiredoxin-3 (Prx-3), a mitochondrial antioxidant, scavenges H2O2 and offers protection against ROS related pathologies. We observed a decrease in the expression of Prx-3 in the hearts of streptozotocin (STZ) induced diabetic rats, and also high glucose treated H9c2 cardiac cells, which may augment oxidative stress mediated damage. Hence we hypothesized that overexpression of Prx-3 could prevent the cardiac damage associated with diabetes. In this study we used quercetin (QUE) to achieve Prx-3 induction in vivo, while a Prx-3 overexpressing H9c2 cell line was employed for carrying out in vitro studies. Diabetes was induced in Wistar rats by a single intraperitoneal injection of STZ. Quercetin (50mg/kg body weight) was delivered orally to hyperglycemic and age matched control rats for 2 months. Quercetin treatment induced the myocardial expression of Prx-3 but not Prx-5 both in control and STZ rats. Prx-3 induction by quercetin prevented diabetes induced oxidative stress as confirmed by decrease in expression of markers such as 4-HNE and mitochondrial uncoupling protein, UCP-3. It was also successful in reducing cardiac cell apoptosis, hypertrophy and fibrosis leading to amelioration of cardiac contractility defects. Overexpression of Prx-3 in cultured H9c2 cardiac cells could significantly diminish high glucose inflicted mitochondrial oxidative damage and apoptosis, thus strengthening our hypothesis. These results suggest that diabetes induced cardiomyopathy can be prevented by elevating Prx-3 levels thereby providing extensive protection to the diabetic heart. PMID:27393003

  3. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model

    PubMed Central

    Martínez-Morentin, Leticia; Martínez, Lidia; Piloto, Sarah; Yang, Hua; Schon, Eric A.; Garesse, Rafael; Bodmer, Rolf; Ocorr, Karen; Cervera, Margarita; Arredondo, Juan J.

    2015-01-01

    The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox reduces fly lifespan, and it severely compromises heart function and structure, producing dilated cardiomyopathy. Cardiomyocytes with low levels of scox have a significant reduction in COX activity and they undergo a metabolic switch from OXPHOS to glycolysis, mimicking the clinical features found in patients harbouring Sco mutations. The major cardiac defects observed are produced by a significant increase in apoptosis, which is dp53-dependent. Genetic and molecular evidence strongly suggest that dp53 is directly involved in the development of the cardiomyopathy induced by scox deficiency. Remarkably, apoptosis is enhanced in the muscle and liver of Sco2 knock-out mice, clearly suggesting that cell death is a key feature of the COX deficiencies produced by mutations in Sco genes in humans. PMID:25792727

  4. Left Ventricular Thrombus as a Complication of Clozapine-Induced Cardiomyopathy: A Case Report and Brief Literature Review

    PubMed Central

    Malik, Shahbaz A.; Malik, Sarah; Dowsley, Taylor F.; Singh, Balwinder

    2015-01-01

    A 48-year-old male with history of schizoaffective disorder on clozapine presented with chest pain, dyspnea, and new left bundle branch block. He underwent coronary angiography, which revealed no atherosclerosis. The patient's workup was unrevealing for a cause for the cardiomyopathy and thus it was thought that clozapine was the offending agent. The patient was taken off clozapine and started on guideline directed heart failure therapy. During the course of hospitalization, he was also discovered to have a left ventricular (LV) thrombus for which he received anticoagulation. To our knowledge, this is the first case report of clozapine-induced cardiomyopathy complicated by a LV thrombus. PMID:26664756

  5. Arrhythmia-induced cardiomyopathies: the riddle of the chicken and the egg still unanswered?

    PubMed

    Simantirakis, Emmanuel N; Koutalas, Emmanuel P; Vardas, Panos E

    2012-04-01

    The hypothesis testing of inappropriate fast, irregular, or asynchronous myocardial contraction provoking cardiomyopathy has been the primary focus of numerous research efforts, especially during the last few decades. Rapid ventricular rates resulting from supraventricular arrhythmias and atrial fibrillation (AF), irregularity of heart rhythm-basic element of AF-and asynchrony, as a consequence of right ventricular pacing, bundle branch block, or frequent premature ventricular complexes, have been established as primary causes of arrhythmia-induced cardiomyopathy. The main pathophysiological pathways involved have been clarified, including neurohumoral activation, energy stores depletion, and abnormalities in stress and strain. Unfortunately, from a clinical point of view, patients usually seek medical advice only when symptoms develop, while the causative arrhythmia may be present for months or years, resulting in myocardial remodelling, diastolic, and systolic dysfunction. In some cases, making a definite diagnosis may become a strenuous exercise for the treating physician, as the arrhythmia may not be present and, additionally, therapy must be applied for the diagnosis to be confirmed retrospectively. The diagnostic process is also hardened due to the fact that strict diagnosing criteria are still a matter of discrepancy. Therapy options include pharmaceutical agents trials, catheter-based therapies and, in the context of chronic ventricular pacing, resynchronization. For the majority of patients, partial or complete recovery is expected, although they have to be followed up thoroughly due to the risk of recurrence. Large, randomized controlled trials are more than necessary to optimize patients' stratification and therapeutic strategy choices. PMID:22084300

  6. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy.

    PubMed

    Sun, Ning; Yazawa, Masayuki; Liu, Jianwei; Han, Leng; Sanchez-Freire, Veronica; Abilez, Oscar J; Navarrete, Enrique G; Hu, Shijun; Wang, Li; Lee, Andrew; Pavlovic, Aleksandra; Lin, Shin; Chen, Rui; Hajjar, Roger J; Snyder, Michael P; Dolmetsch, Ricardo E; Butte, Manish J; Ashley, Euan A; Longaker, Michael T; Robbins, Robert C; Wu, Joseph C

    2012-04-18

    Characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure, dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy in patients. DCM is the most common diagnosis leading to heart transplantation and places a significant burden on healthcare worldwide. The advent of induced pluripotent stem cells (iPSCs) offers an exceptional opportunity for creating disease-specific cellular models, investigating underlying mechanisms, and optimizing therapy. Here, we generated cardiomyocytes from iPSCs derived from patients in a DCM family carrying a point mutation (R173W) in the gene encoding sarcomeric protein cardiac troponin T. Compared to control healthy individuals in the same family cohort, cardiomyocytes derived from iPSCs from DCM patients exhibited altered regulation of calcium ion (Ca(2+)), decreased contractility, and abnormal distribution of sarcomeric α-actinin. When stimulated with a β-adrenergic agonist, DCM iPSC-derived cardiomyocytes showed characteristics of cellular stress such as reduced beating rates, compromised contraction, and a greater number of cells with abnormal sarcomeric α-actinin distribution. Treatment with β-adrenergic blockers or overexpression of sarcoplasmic reticulum Ca(2+) adenosine triphosphatase (Serca2a) improved the function of iPSC-derived cardiomyocytes from DCM patients. Thus, iPSC-derived cardiomyocytes from DCM patients recapitulate to some extent the morphological and functional phenotypes of DCM and may serve as a useful platform for exploring disease mechanisms and for drug screening. PMID:22517884

  7. Rationale and design of the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy (the POSEIDON-DCM study): a phase I/II, randomized pilot study of the comparative safety and efficacy of transendocardial injection of autologous mesenchymal stem cell vs. allogeneic mesenchymal stem cells in patients with non-ischemic dilated cardiomyopathy.

    PubMed

    Mushtaq, Muzammil; DiFede, Darcy L; Golpanian, Samuel; Khan, Aisha; Gomes, Samirah A; Mendizabal, Adam; Heldman, Alan W; Hare, Joshua M

    2014-12-01

    While accumulating clinical trials have focused on the impact of cell therapy in patients with acute myocardial infarction (MI) and ischemic cardiomyopathy, there are fewer efforts to examine cell-based therapy in patients with non-ischemic cardiomyopathy (NICM). We hypothesized that cell therapy could have a similar impact in NICM. The POSEIDON-DCM trial is a phase I/II trial designed to address autologous vs. allogeneic bone marrow-derived mesenchymal stem cells (MSCs) in patients with NICM. In this study, cells will be administered transendocardially with the NOGA injection-catheter system to patients (n = 36) randomly allocated to two treatment groups: group 1 (n = 18 auto-human mesenchymal stem cells (hMSC)) and group 2 (n = 18 allo-hMSCs). The primary and secondary objectives are, respectively, to demonstrate the safety and efficacy of allo-hMSCS vs. auto-hMSCs in patients with NICM. This study will establish safety of transendocardial injection of stem cells (TESI), compare phenotypic outcomes, and offer promising advances in the field of cell-based therapy in patients with NICM. PMID:25354998

  8. Radiofrequency catheter ablation for dyssynchrony-induced dilated cardiomyopathy in an infant.

    PubMed

    Kwon, Elena N; Carter, Kerri A; Kanter, Ronald J

    2014-01-01

    The relationship between accessory pathway-mediated ventricular preexcitation and left ventricular dyssynchrony-induced dysfunction has been described in patients with Wolff-Parkinson-White (WPW) syndrome in the absence of sustained supraventricular tachycardia (SVT). Supraventricular tachycardia in infants is usually successfully suppressed with antiarrhythmic medications, but catheter ablation has ultimately been required as definitive treatment in medically resistant cases. Catheter ablation has not been described in young infants for dyssynchrony-related dilated cardiomyopathy in the absence of SVT. We describe a case of an infant with WPW who did not have sustained supraventricular tachycardia, but who developed rapid progression of ventricular dysfunction after birth. Preexcitation could not be medically suppressed but was successfully ablated. This was followed by complete resolution of ventricular dysfunction within 2 months. PMID:23902593

  9. Cardiomyopathy induced by sinus tachycardia in combat wounded: a case study.

    PubMed

    Kavanaugh, Michael; McDivitt, Jonathan; Philip, Andrew; Froehner, Jerald W; Rotruck, John; Hemann, Brian; Haigney, Mark; Atwood, John; Nations, Joel Anthony

    2014-09-01

    Tachycardia induced cardiomyopathy is a potentially lethal cause of heart failure generally because of atrial tachycardia and less frequently ventricular tachycardia. We present two cases of Marines with severe traumatic blast injuries secondary to improvised explosive device attacks whose hospital courses included amputation, massive blood transfusions, and multiple surgeries. Both patients had prolonged sinus tachycardia averaging >110 beats per minute and developed depressed left ventricular function, which recovered when treated with β blockers. Sinus tachycardia is often considered a physiological response to stress, and the purpose of this manuscript is to describe the cardiac injury apparently related to a prolonged stress response. In addition, the literature does not clearly recommend controlling heart rates in trauma patients with persistent sinus tachycardia, but it is a therapeutic option that should be considered by providers. PMID:25181728

  10. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice

    SciTech Connect

    Yin, Xia; Zhou, Shanshan; Zheng, Yang; Tan, Yi; Kong, Maiying; Wang, Bo; Feng, Wenke; Epstein, Paul N.; Cai, Jun; Cai, Lu

    2014-05-15

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O{sub 2}/8% O{sub 2} F{sub I}O{sub 2} (30 episodes per hour) with 20 s at the nadir F{sub I}O{sub 2} for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes. - Highlights: • The effect of intermittent hypoxia (IH) on cardiac metallothionein (MT) • Cardiac MT expression was up-regulated in response to 3-day IH. • Exposure to 4- or 8-week IH downregulated cardiac MT expression. • Overexpression of cardiac MT protects from IH-induced cardiac damage. • Global deletion of MT gene made the heart more sensitive to IH damage.

  11. Cyclovirobuxine D Attenuates Doxorubicin-Induced Cardiomyopathy by Suppression of Oxidative Damage and Mitochondrial Biogenesis Impairment

    PubMed Central

    Guo, Qian; Guo, Jiabin; Yang, Rong; Peng, Hui; Zhao, Jun; Li, Li; Peng, Shuangqing

    2015-01-01

    The clinical application of doxorubicin (DOX) is compromised by its cardiac toxic effect. Cyclovirobuxine D (CVB-D) is a steroid alkaloid extracted from a traditional Chinese medicine, Buxus microphylla. Our results showed that CVB-D pretreatment markedly attenuated DOX-induced cardiac contractile dysfunction and histological alterations. By using TUNEL assay and western blot analysis, we found that CVB-D pretreatment reduced DOX-induced apoptosis of myocardial cells and mitochondrial cytochrome c release to cytosol. CVB-D pretreatment ameliorated DOX-induced cardiac oxidative damage including lipid peroxidation and protein carbonylation and a decrease in the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Moreover, CVB-D was found to prevent DOX-induced mitochondrial biogenesis impairment as evidenced by preservation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and nuclear respiratory factor 1 (NRF1), as well as mitochondrial DNA copy number. These findings demonstrate that CVB-D protects against DOX-induced cardiomyopathy, at least in part, by suppression of oxidative damage and mitochondrial biogenesis impairment. PMID:26075032

  12. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy.

    PubMed

    Zhang, Ning; Yang, Zheng; Xiang, Shi-Zhao; Jin, Ya-Ge; Wei, Wen-Ying; Bian, Zhou-Yan; Deng, Wei; Tang, Qi-Zhu

    2016-06-01

    Diabetic cardiomyopathy, characterized by the presence of diastolic and/or systolic myocardial dysfunction, is one of the major causes of heart failure. Nobiletin, which is extracted from the fruit peel of citrus, is reported to possess anti-inflammatory, anti-oxidative, and hypolipidemic properties. The purpose of this study was to investigate whether nobiletin exerts the therapeutic effect on streptozotocin-induced diabetic cardiomyopathy (DCM) in mice. 80 experimental male C57BL mice were randomly assigned into four groups: sham + vehicle (VEH/SH), sham + nobiletin (NOB/SH), DCM + vehicle (VEH/DM), and DCM + nobiletin (NOB/DM). Nobiletin treatment ameliorated cardiac dysfunction in the DCM group, as shown by the result of echocardiography and hemodynamic measurements. Nobiletin treatment also blunted the mRNA expression of NADPH oxidase isoforms p67(phox), p22(phox), and p91(phox), and abated oxidative stress. Although administration of diabetic mice with nobiletin did not significantly effect the level of blood glucose, it decreased the TGF-β1, CTGF, fibronectin, and collagen Iα expressions and blunted cardiac fibrosis. In addition, nobiletin inhibited the activation of c-Jun NH2-terminal kinase (JNK), P38, and NF-κB in the cardiac tissue of diabetic mice. Collectively, our study indicates that treatment with nobiletin mitigates cardiac dysfunction and interstitial fibrosis, and these beneficial of nobiletin may belong to the suppression of JNK, P38, and NF-κB signaling pathways. PMID:27160937

  13. Pediatric Cardiomyopathies

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Pediatric Cardiomyopathies Updated:Oct 22,2015 Patient education material ... oxygen or high blood pressure. According to the Pediatric Cardiomyopathy Registry, one in every 100,000 children ...

  14. S-diclofenac Protects against Doxorubicin-Induced Cardiomyopathy in Mice via Ameliorating Cardiac Gap Junction Remodeling

    PubMed Central

    Zhang, Huili; Zhang, Alian; Guo, Changfa; Shi, Chunzhi; Zhang, Yang; Liu, Qing; Sparatore, Anna; Wang, Changqian

    2011-01-01

    Hydrogen sulfide (H2S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H2S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p.), diclofenac (25 and 50 µmol/kg, i.p.), NaHS (50 µmol/kg, i.p.), or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45) and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H2S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H2S in the pathogenesis of doxorubicin-induced cardiomyopathy. PMID:22039489

  15. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    SciTech Connect

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin; Park, Ji-hoon; Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook; Kim, Soon Ha

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  16. Antioxidant, lipid lowering, and membrane stabilization effect of sesamol against doxorubicin-induced cardiomyopathy in experimental rats.

    PubMed

    Chennuru, Anusha; Saleem, Mohamed T S

    2013-01-01

    The present study was designed to evaluate the cardioprotective effect of sesamol against doxorubicin-induced cardiomyopathy in rats. In this study, the cardioprotective effect of sesamol against doxorubicin induced cardiomyopathy in experimental rats was evaluated at the dosage of 50 mg/kg bw. Doxorubicin was administered to rats at a total cumulative dose of 15 mg/kg through intraperitoneal route for 2 weeks in six-divided dose on 8th, 10th, 14th, 16th, 18th, and 21st day. After the last dose administration, the endogenous antioxidants and lipid peroxidation were estimated in heart tissue homogenate. Cardiac biomarkers such as troponin T, LDH, CK, and AST and lipid profiles such as cholesterol, triglycerides, HDL, LDL, and VLDL were estimated in serum. Sesamol has cardioprotective activity through normalization of doxorubicin-induced-altered biochemical parameters. Biochemical study was further supported by histopathological study, which shows that sesamol offered myocardial protection from necrotic damage. From these findings, it has been concluded that the sesamol has significant cardioprotection against doxorubicin induced cardiomyopathy via amelioration of oxidative stress, lipid lowering, and membrane stabilization effect. PMID:24228260

  17. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis

    PubMed Central

    Maya, Lisandro; Villarreal, Francisco J.

    2009-01-01

    In diabetes mellitus, alterations in cardiac structure/function in the absence of ischemic heart disease, hypertension or other cardiac pathologies is termed diabetic cardiomyopathy. In the United States, the prevalence of diabetes mellitus continues to rise and the disease currently affects about 8% of the general population. Hence, it is imperative the use of appropriate diagnostic strategies for diabetic cardiomyopathy, which may help correctly identify the disease at early stages and implement suitable corrective therapies. Currently, there is no single diagnostic method for the identification of diabetic cardiomyopathy. Diabetic cardiomyopathy is known to induce changes in cardiac structure such as, myocardial hypertrophy, fibrosis and fat droplet deposition. Early changes in cardiac function are typically manifested as abnormal diastolic function that with time leads to loss of contractile function. Echocardiography based methods currently stands as the preferred diagnostic approach for diabetic cardiomyopathy, due to its wide availability and economical use. In addition to conventional techniques, magnetic resonance imaging and spectroscopy along with contrast agents are now leading new approaches in the diagnosis of myocardial fibrosis, and cardiac and hepatic metabolic changes. These strategies can be complemented with serum biomarkers so they can offer a clear picture as to diabetes-induced changes in cardiac structure/function even at very early stages of the disease. This review article intends to provide a summary of experimental and routine tools currently available to diagnose diabetic cardiomyopathy induced changes in cardiac structure/function. These tools can be reliably used in either experimental models of diabetes or for clinical applications. PMID:19595694

  18. Aberrant sialylation causes dilated cardiomyopathy and stress-induced heart failure.

    PubMed

    Deng, Wei; Ednie, Andrew R; Qi, Jianyong; Bennett, Eric S

    2016-09-01

    Dilated cardiomyopathy (DCM), the third most common cause of heart failure, is often associated with arrhythmias and sudden cardiac death if not controlled. The majority of DCM is of unknown etiology. Protein sialylation is altered in human DCM, with responsible mechanisms not yet described. Here we sought to investigate the impact of clinically relevant changes in sialylation on cardiac function using a novel model for altered glycoprotein sialylation that leads to DCM and to chronic stress-induced heart failure (HF), deletion of the sialyltransferase, ST3Gal4. We previously reported that 12- to 20-week-old ST3Gal4 (-/-) mice showed aberrant cardiac voltage-gated ion channel sialylation and gating that contribute to a pro-arrhythmogenic phenotype. Here, echocardiography supported by histology revealed modest dilated and thinner-walled left ventricles without increased fibrosis in ST3Gal4 (-/-) mice starting at 1 year of age. Cardiac calcineurin expression in younger (16-20 weeks old) ST3Gal4 (-/-) hearts was significantly reduced compared to WT. Transverse aortic constriction (TAC) was used as a chronic stressor on the younger mice to determine whether the ability to compensate against a pathologic insult is compromised in the ST3Gal4 (-/-) heart, as suggested by previous reports describing the functional implications of reduced cardiac calcineurin levels. TAC'd ST3Gal4 (-/-) mice presented with significantly reduced systolic function and ventricular dilation that deteriorated into congestive HF within 6 weeks post-surgery, while constricted WT hearts remained well-adapted throughout (ejection fraction, ST3Gal4 (-/-) = 34 ± 5.2 %; WT = 53.8 ± 7.4 %; p < 0.05). Thus, a novel, sialo-dependent model for DCM/HF is described in which clinically relevant reduced sialylation results in increased arrhythmogenicity and reduced cardiac calcineurin levels that precede cardiomyopathy and TAC-induced HF, suggesting a causal link among aberrant sialylation

  19. A rare manifestation of atrial fibrillation in the presence of Wolff-Parkinson-White syndrome: tachycardia-induced cardiomyopathy.

    PubMed

    Değirmencioğu, Aleks; Karakuş, Gültekin; Baysal, Erkan; Zencirci, Ertuğrul; Çakmak, Nazmiye

    2014-03-01

    We report a 68-year-old man who presented with heart failure and atrial fibrillation (AF) with rapid ventricular response and wide QRS complexes. Tachycardia-induced cardiomyopathy (TIC) due to persistent AF developing on the basis of Wolff-Parkinson-White (WPW) syndrome was considered. Signs and symptoms of heart failure improved with restoration of sinus rhythm. This case suggested that persistent AF in a patient with WPW syndrome is one of the rare causes of TIC. PMID:24643151

  20. Tocotrienol vitamin E protects against preclinical canine ischemic stroke by inducing arteriogenesis.

    PubMed

    Rink, Cameron; Christoforidis, Greg; Khanna, Savita; Peterson, Laura; Patel, Yojan; Khanna, Suchin; Abduljalil, Amir; Irfanoglu, Okan; Machiraju, Raghu; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    Vitamin E consists of tocopherols and tocotrienols, in which α-tocotrienol is the most potent neuroprotective form that is also effective in protecting against stroke in rodents. As neuroprotective agents alone are insufficient to protect against stroke, we sought to test the effects of tocotrienol on the cerebrovascular circulation during ischemic stroke using a preclinical model that enables fluoroscopy-guided angiography. Mongrel canines (mean weight=26.3±3.2 kg) were supplemented with tocotrienol-enriched (TE) supplement (200 mg b.i.d, n=11) or vehicle placebo (n=9) for 10 weeks before inducing transient middle cerebral artery (MCA) occlusion. Magnetic resonance imaging was performed 1 hour and 24 hours post reperfusion to assess stroke-induced lesion volume. Tocotrienol-enriched supplementation significantly attenuated ischemic stroke-induced lesion volume (P<0.005). Furthermore, TE prevented loss of white matter fiber tract connectivity after stroke as evident by probabilistic tractography. Post hoc analysis of cerebral angiograms during MCA occlusion revealed that TE-supplemented canines had improved cerebrovascular collateral circulation to the ischemic MCA territory (P<0.05). Tocotrienol-enriched supplementation induced arteriogenic tissue inhibitor of metalloprotease 1 and subsequently attenuated the activity of matrix metalloproteinase-2. Outcomes of the current preclinical trial set the stage for a clinical trial testing the effects of TE in patients who have suffered from transient ischemic attack and are therefore at a high risk for stroke. PMID:21673716

  1. Role of NO Synthase in the Development of Trypanosoma cruzi–Induced Cardiomyopathy in Mice

    PubMed Central

    Durand, Jorge L.; Mukherjee, Shankar; Commodari, Fernando; De Souza, Andrea P.; Zhao, Dazhi; Machado, Fabiana S.; Tanowitz, Herbert B.; Jelicks, Linda A.

    2009-01-01

    Trypanosoma cruzi infection results in an increase in myocardial NO and intense inflammation. NO modulates the T. cruzi–induced myocardial inflammatory reaction. NO synthase (NOS)1-, NOS2-, and NOS3-null mice were infected with T. cruzi (Brazil strain). Infected NOS1-null mice had increased parasitemia, mortality, and left ventricular inner diameter (LVID). Chronically infected NOS1- and NOS2-null and wild-type mice (WT) exhibited increased right ventricular internal diameter (RVID), although the fold increase in the NOS2-null mice was smaller. Infected NOS3-null mice exhibited a significant reduction both in LVID and RVID. Reverse transcriptase-polymerase chain reaction showed expression of NOS2 and NOS3 in hearts of infected NOS1-null and WT mice, whereas infected NOS2-null hearts showed little change in expression of other NOS isoforms. Infected NOS3-null hearts showed an increase only in NOS1 expression. These results may indicate different roles for NOS isoforms in T. cruzi–induced cardiomyopathy. PMID:19407124

  2. Protective effects of aliskiren in doxorubicin-induced acute cardiomyopathy in rats.

    PubMed

    Rashikh, Azhar; Abul Kalam Najmi; Akhtar, Mohammad; Mahmood, Danish; Pillai, Krishna K; Ahmad, Shibli J

    2011-02-01

    In this study, effect of aliskiren (ALK) on doxorubicin (DXR)-induced cardiomyopathy in rats was evaluated. ALK (50 and 100 mg/kg/day) was administered for 7 days and a single intraperitoneal injection of DXR (20 mg/kg) on day 5. The animals were sacrificed 48 h after DXR administration. DXR produced significant elevation in malondialdehyde (MDA) and significantly inhibited the activity of glutathione (GSH) in heart tissue, with a significant rise in the serum levels of lactate dehydrogenase (LDH), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) and reduction in high-density lipoprotein (HDL), indicating acute cardiac toxicity. ALK pretreatment significantly reduced the MDA concentration and ameliorated the inhibition of cardiac GSH activity. ALK also significantly improved the serum levels of LDH, TC, TG, LDL and reduction in HDL in DXR-treated rats. Furthermore, histological examination of the heart sections confirmed the myocardial injury with DXR administration and the near-normal pattern with ALK pretreatment. The results provide clear evidence that the ALK pretreatment offered significant protection against DXR-induced enzymatic changes and cardiac tissue damage. PMID:20418268

  3. Depletion of T lymphocytes ameliorates cardiac fibrosis in streptozotocin-induced diabetic cardiomyopathy.

    PubMed

    Abdullah, Chowdhury S; Li, Zhao; Wang, Xiuqing; Jin, Zhu-Qiu

    2016-10-01

    T cell infiltration has been associated with increased coronary heart disease risk in patients with diabetes mellitus. Effect of modulation of T cell trafficking on diabetes-induced cardiac fibrosis has yet to be determined. Therefore, our aim was to investigate the circulatory T cell depletion-mediated cardioprotection in streptozotocin-induced diabetic cardiomyopathy. Fingolimod (FTY720), an immunomodulatory drug, was tested in wild-type (WT) C57BL/6 and recombination activating gene 1 (Rag1) knockout (KO) mice without mature lymphocytes in streptozotocin-induced type 1 diabetic model. FTY720 (0.3mg/kg/day) was administered intraperitoneally daily for the first 4weeks with interim 3weeks then resumed for another 4weeks in 11weeks study period. T lymphocyte counts, cardiac histology, function, and fibrosis were examined in diabetic both WT and KO mice. FTY720 reduced both CD4(+) and CD8(+) T cells in diabetic WT mice. FTY720-treated diabetic WT mouse myocardium showed reduction in CD3 T cell infiltration and decreased expression of S1P1 and TGF-β1 in cardiac tissue. Fibrosis was reduced after FTY720 treatment in diabetic WT mice. Rag1 KO mice exhibited no CD4(+) and CD8(+) T cells in the blood and CD3 T cells in the heart. Diabetic Rag1 KO mouse hearts appeared no fibrosis and exhibited preserved myocardial contractility. FTY720-induced antifibrosis was abolished in diabetic Rag1 KO mice. These findings demonstrate that chronic administration with FTY720 induces lymphopenia and protects diabetic hearts in WT mice whereas FTY720 increases cardiac fibrosis and myocardial dysfunction in diabetic Rag1 KO mice without mature lymphocytes. PMID:27494688

  4. Autoantibodies in dilated cardiomyopathy induce vascular endothelial growth factor expression in cardiomyocytes

    SciTech Connect

    Saygili, Erol; Noor-Ebad, Fawad; Schröder, Jörg W.; Mischke, Karl; Saygili, Esra; Rackauskas, Gediminas; Marx, Nikolaus; Kelm, Malte; Rana, Obaida R.

    2015-09-11

    Background: Autoantibodies have been identified as major predisposing factors for dilated cardiomyopathy (DCM). Patients with DCM show elevated serum levels of vascular endothelial growth factor (VEGF) whose source is unknown. Besides its well-investigated effects on angiogenesis, evidence is present that VEGF signaling is additionally involved in fibroblast proliferation and cardiomyocyte hypertrophy, hence in cardiac remodeling. Whether autoimmune effects in DCM impact cardiac VEGF signaling needs to be elucidated. Methods: Five DCM patients were treated by the immunoadsorption (IA) therapy on five consecutive days. The eluents from the IA columns were collected and prepared for cell culture. Cardiomyocytes from neonatal rats (NRCM) were incubated with increasing DCM-immunoglobulin-G (IgG) concentrations for 48 h. Polyclonal IgG (Venimmun N), which was used to restore IgG plasma levels in DCM patients after the IA therapy was additionally used for control cell culture purposes. Results: Elevated serum levels of VEGF decreased significantly after IA (Serum VEGF (ng/ml); DCM pre-IA: 45 ± 9.1 vs. DCM post–IA: 29 ± 6.7; P < 0.05). In cell culture, pretreatment of NRCM by DCM-IgG induced VEGF expression in a time and dose dependent manner. Biologically active VEGF that was secreted by NRCM significantly increased BNP mRNA levels in control cardiomyocytes and induced cell-proliferation of cultured cardiac fibroblast (Fibroblast proliferation; NRCM medium/HC-IgG: 1 ± 0.0 vs. NRCM medium/DCM-IgG 100 ng/ml: 5.6 ± 0.9; P < 0.05). Conclusion: The present study extends the knowledge about the possible link between autoimmune signaling in DCM and VEGF induction. Whether this observation plays a considerable role in cardiac remodeling during DCM development needs to be further elucidated. - Highlights: • Mechanisms of remodeling in dilated cardiomyopathy (DCM) are not fully understood. • Autoantibodies have been identified as major predisposing factors

  5. Incidence of ischemic stroke and systemic embolism in patients with hypertrophic cardiomyopathy, nonvalvular atrial fibrillation, CHA2DS2-VASc score of ≤1 and without anticoagulant therapy.

    PubMed

    Yang, Yin-Jian; Yuan, Jin-Qing; Fan, Chao-Mei; Pu, Jie-Lin; Fang, Pi-Hua; Ma, Jian; Guo, Xi-Ying; Li, Yi-Shi

    2016-07-01

    Data on the risk of ischemic stroke and systemic embolism (iSSE) events in patients with nonvalvular atrial fibrillation (NVAF), a CHA2DS2-VASc score of ≤1, hypertrophic cardiomyopathy (HCM), and without anticoagulant therapy are still lacking. The aim of this study was to investigate the incidence of iSSE events in these patients. We consecutively screened medical records of patients with HCM and NVAF referred to Fuwai Hospital between January 1994 and March 2014. The primary end point was iSSE events, defined as a composite of ischemic stroke and systemic embolism. Follow-up was carried out to ascertain end point status. Medical records of 522 patients with NVAF and HCM were screened. A total of 108 patients (20.7 %) with a CHA2DS2-VASc score of ≤1 and without anticoagulant therapy were enrolled and constituted our study population. After a median follow-up of 2.4 years (range 0.6-14.1 years; 376.2 patient-years), ischemic stroke occurred in 2 patients, resulting in death of 1 patient in the first year and paralysis of the other patient in the fourth year. No other iSSE events occurred. The incidence of iSSE was 0.9 % [95 % confidence interval (CI) 0.0-5.0 %] in the first year, and 0.5 % per 100 patient-years (95 % CI 0.1-1.9 %). The risk of iSSE events seems low in patients with NVAF, a CHA2DS2-VASc score of ≤1, HCM, and without anticoagulant therapy. Multicenter studies with sizeable study populations are needed to validate the risk of iSSE events in these patients. PMID:26231425

  6. Preventive Effects of Antioxidants and Exercise on Muscle Atrophy Induced by Ischemic Reperfusion

    PubMed Central

    Umei, Namiko; Ono, Takeya; Oki, Sadaaki; Otsuka, Akira; Otao, Hiroshi; Tsumiyama, Wakako; Tasaka, Atsushi; Ishikura, Hideki; Aihara, Kazuki; Sato, Yuta; Shimizu, Michele Eisemann

    2014-01-01

    [Purpose] This study aimed to determine whether muscle atrophy induced by ischemic reperfusion injury in rats can be prevented by the administration of antioxidants and exercise. [Subjects] Rats were randomly divided into five groups: non-treated, ischemic, exercise, ascorbic acid and exercise, and tocopherol and exercise. [Methods] The relative weight ratio of the soleus muscle and the length of the soleus muscle fiber cross-section minor axis were used for the evaluation of muscle atrophy. Pain was assessed as the weight-bearing ratio of the ischemic side. A multiple comparison test and the paired t-test were used for the statistical analyses. [Results] Compared with the non-treated group, the relative weight ratios of the soleus muscle and the lengths of the soleus muscle fiber cross-section minor axis significantly decreased in the other groups. Excluding the non-treated group, the relative weight ratios of the soleus muscle were heaviest in the tocopherol and exercise group. Excluding the non-treated group, the lengths of the soleus muscle fiber cross-section minor axis were longest in the tocopherol and exercise group, followed by the ischemic, exercise, and ascorbic acid and exercise groups. The amount of antioxidant substances did not decrease on the weight-bearing ratio of the ischemic side. [Conclusion] In this study, using an experimental rat model, we confirmed that antioxidants and exercise effect muscle atrophy induced by ischemic reperfusion. The results show that muscle regeneration was facilitated by phagocytosis in the tocopherol and exercise group. PMID:25540491

  7. Cardiomyopathy Induced by Pulmonary Sequestration in a 50-Year-Old Man

    PubMed Central

    Chatelain, Shaun; Comp, Robert A.; Grace, R. Randal

    2015-01-01

    A 50-year-old black man presented at the emergency department with midsternal, nonradiating chest pressure and chronic dyspnea on exertion. Four years before the current admission, he had been diagnosed with nonischemic cardiomyopathy at another facility. After our complete evaluation, we suspected that his symptoms arose from left-to-left shunting in association with pulmonary sequestration, a congenital malformation. Our preliminary diagnosis of secondary dilated cardiomyopathy was confirmed by normalization of the patient's ventricular size and function after lobectomy. To our knowledge, this patient is the oldest on record to present with cardiomyopathy consequent to pulmonary sequestration. His case is highly unusual because of his age and the rapid resolution of his symptoms after lobectomy. We believe that pulmonary sequestration should be included in the differential diagnosis of dilated cardiomyopathy. PMID:25873803

  8. Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy

    EPA Science Inventory

    Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were...

  9. Pycnogenol improves left ventricular function in streptozotocin-induced diabetic cardiomyopathy in rats.

    PubMed

    Klimas, Jan; Kmecova, Jana; Jankyova, Stanislava; Yaghi, Diana; Priesolova, Elena; Kyselova, Zuzana; Musil, Peter; Ochodnicky, Peter; Krenek, Peter; Kyselovic, Jan; Matyas, Stefan

    2010-07-01

    We studied whether Pycnogenol (PYC) may attenuate the development of experimental streptozotocin-induced diabetic cardiomyopathy in rat. In addition, we aimed to study whether PYC affects cardiac oxidative stress and the protein expression of reactive oxygen species (ROS)-producing molecules (gp91(phox)-containing NADPH oxidase and NO-signalling proteins). Experimental diabetes mellitus was manifested by hyperglycaemia and impaired cardiac function estimated using left ventricular catheterisation in vivo. PYC lowered fasting plasma glucose and normalized basal cardiac function. Excessive oxidative stress in streptozotocin (STZ) hearts, evidenced by 40% increase (P < 0.05) of thiobarbituric acid reactive substances (TBARS) concentration, was associated with increased expression of gp91(phox) (by 75%, P < 0.05), iNOS (by 40%, P < 0.05) and alpha-tubulin (by 49%, P < 0.05), but unchanged expression of eNOS and its alosteric regulators, as compared to CON. PYC failed to affect these expression abnormalities. Our study shows that PYC corrects diabetic cardiac dysfunction, probably by its metabolic and direct radical scavenging activity without affecting the molecular maladaptations of ROS-producing enzymes and cytoskeletal components. PMID:19957251

  10. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies.

    PubMed

    Wang, Gang; McCain, Megan L; Yang, Luhan; He, Aibin; Pasqualini, Francesco Silvio; Agarwal, Ashutosh; Yuan, Hongyan; Jiang, Dawei; Zhang, Donghui; Zangi, Lior; Geva, Judith; Roberts, Amy E; Ma, Qing; Ding, Jian; Chen, Jinghai; Wang, Da-Zhi; Li, Kai; Wang, Jiwu; Wanders, Ronald J A; Kulik, Wim; Vaz, Frédéric M; Laflamme, Michael A; Murry, Charles E; Chien, Kenneth R; Kelley, Richard I; Church, George M; Parker, Kevin Kit; Pu, William T

    2014-06-01

    Study of monogenic mitochondrial cardiomyopathies may yield insights into mitochondrial roles in cardiac development and disease. Here, we combined patient-derived and genetically engineered induced pluripotent stem cells (iPSCs) with tissue engineering to elucidate the pathophysiology underlying the cardiomyopathy of Barth syndrome (BTHS), a mitochondrial disorder caused by mutation of the gene encoding tafazzin (TAZ). Using BTHS iPSC-derived cardiomyocytes (iPSC-CMs), we defined metabolic, structural and functional abnormalities associated with TAZ mutation. BTHS iPSC-CMs assembled sparse and irregular sarcomeres, and engineered BTHS 'heart-on-chip' tissues contracted weakly. Gene replacement and genome editing demonstrated that TAZ mutation is necessary and sufficient for these phenotypes. Sarcomere assembly and myocardial contraction abnormalities occurred in the context of normal whole-cell ATP levels. Excess levels of reactive oxygen species mechanistically linked TAZ mutation to impaired cardiomyocyte function. Our study provides new insights into the pathogenesis of Barth syndrome, suggests new treatment strategies and advances iPSC-based in vitro modeling of cardiomyopathy. PMID:24813252

  11. Oleuropein prevents doxorubicin-induced cardiomyopathy interfering with signaling molecules and cardiomyocyte metabolism.

    PubMed

    Andreadou, Ioanna; Mikros, Emmanuel; Ioannidis, Konstantinos; Sigala, Fragiska; Naka, Katerina; Kostidis, Sarantos; Farmakis, Dimitrios; Tenta, Roxane; Kavantzas, Nikolaos; Bibli, Sofia-Iris; Gikas, Evangelos; Skaltsounis, Leandros; Kremastinos, Dimitrios Th; Iliodromitis, Efstathios K

    2014-04-01

    Oleuropein, a natural phenolic compound, prevents acute doxorubicin (DXR)-induced cardiotoxicity but there is no evidence regarding its role in chronic DXR-induced cardiomyopathy (DXR-CM). In the present study, we investigated the role of oleuropein in DXR-CM by addressing cardiac geometry and function (transthoracic echocardiography), cardiac histopathology, nitro-oxidative stress (MDA, PCs, NT), inflammatory cytokines (IL-6, Big ET-1), NO homeostasis (iNOS and eNOS expressions), kinases involved in apoptosis and metabolism (Akt, AMPK) and myocardial metabonomics. Rats were randomly divided into 6 groups: Control, OLEU-1 and OLEU-2 [oleuropein at 1000 and 2000 mg/kg in total, respectively, intraperitoneally (i.p.) for 14 days], DXR (18 mg/kg, i.p. divided into 6 equal doses for 2 weeks), DXR-OLEU-1 and DXR-OLEU-2 (both oleuropein and DXR as previously described). Impaired left ventricular contractility and inflammatory and degenerative pathology lesions were encountered only in the DXR group. The DXR group also had higher MDA, PCs, NT, IL-6 and Big ET-1 levels, higher iNOS and lower eNOS, Akt and AMPK activation compared to controls and the oleuropein-treated groups. Metabonomics depicted significant metabolite alterations in the DXR group suggesting perturbed energy metabolism and protein biosynthesis. The effectiveness of DXR in inhibiting cell proliferation is not compromised when oleuropein is present. We documented an imbalance between iNOS and eNOS expressions and a disturbed protein biosynthesis and metabolism in DXR-CM; these newly recognized pathways in DXR cardiotoxicity may help identifying novel therapeutic targets. Activation of AMPK and suppression of iNOS by oleuropein seem to prevent the structural, functional and histopathological cardiac effects of chronic DXR toxicity. PMID:24486195

  12. Pilocarpine-Induced Status Epilepticus in Rats Involves Ischemic and Excitotoxic Mechanisms

    PubMed Central

    Fabene, Paolo Francesco; Merigo, Flavia; Galiè, Mirco; Benati, Donatella; Bernardi, Paolo; Farace, Paolo; Nicolato, Elena; Marzola, Pasquina; Sbarbati, Andrea

    2007-01-01

    The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology. PMID:17971868

  13. Mitochondrial Cardiomyopathies

    PubMed Central

    El-Hattab, Ayman W.; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20–40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  14. Mitochondrial Cardiomyopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  15. Clinical significance of changes in the corrected QT interval in stress-induced cardiomyopathy

    PubMed Central

    Lee, Jung-Hee; Uhm, Jae-Sun; Shin, Dong Geum; Joung, Boyoung; Pak, Hui-Nam; Ko, Young-Guk; Hong, Geu-Ru; Lee, Moon-Hyoung

    2016-01-01

    Background/Aims: Although transient changes in the electrocardiogram (ECG) of patients with stress-induced cardiomyopathy (SCMP) are common, there are little data about ECG changes in patients with SCMP and the clinical implications of these variations. Methods: We investigated a total of 128 patients (age, 63.2 ± 15.4 years; female, 60.9%) diagnosed with SCMP. We compared the ECGs taken after SCMP diagnosis and during the recovery phase to those taken before SCMP diagnosis under baseline conditions. All patients were divided into two groups according to corrected QT (QTc) interval changes: recovered QTc group (QTc in SCMP > QTc in recovery phase, n = 77) and nonrecovered QTc group (QTc in SCMP ≤ QTc in recovery phase, n = 51). Results: In comparison of baseline, SCMP, and recovery phase, we found the mean heart rate (81.5 ± 18.7, 96.8 ± 25.3, and 83.0 ± 19.4/min, respectively; p < 0.001), frequencies of ST segment elevation (0.0%, 8.6%, and 1.6%, p = 0.004), ST segment depression (0.0%, 6.3%, and 1.6%, p = 0.007), T wave inversion (4.4 %, 43.8%, and 61.7%, p < 0.001), and QTc (447.4 ± 35.3, 488.9 ± 67.1, and 468.0 ± 49.5, p < 0.001) showed significant changes. In-hospital mortality (9.1% vs. 25.5%, p = 0.012) and critical care (54.5% vs. 72.5%, p = 0.040) occurred more frequently in the nonrecovered QTc group than in recovered QTc group. Conclusions: The QTc can be prolonged in patients with SCMP. Short-term mortality was increased in patients where the QTc did not recover. PMID:27052264

  16. Modeling human protein aggregation cardiomyopathy using murine induced pluripotent stem cells.

    PubMed

    Limphong, Pattraranee; Zhang, Huali; Christians, Elisabeth; Liu, Qiang; Riedel, Michael; Ivey, Kathryn; Cheng, Paul; Mitzelfelt, Katie; Taylor, Graydon; Winge, Dennis; Srivastava, Deepak; Benjamin, Ivor

    2013-03-01

    Several mutations in αB-crystallin (CryAB), a heat shock protein with chaperone-like activities, are causally linked to skeletal and cardiac myopathies in humans. To better understand the underlying pathogenic mechanisms, we had previously generated transgenic (TG) mice expressing R120GCryAB, which recapitulated distinguishing features of the myopathic disorder (e.g., protein aggregates, hypertrophic cardiomyopathy). To determine whether induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a new experimental approach for human disease modeling, would be relevant to aggregation-prone disorders, we decided to exploit the existing transgenic mouse model to derive iPSCs from tail tip fibroblasts. Several iPSC lines were generated from TG and non-TG mice and validated for pluripotency. TG iPSC-derived cardiomyocytes contained perinuclear aggregates positive for CryAB staining, whereas CryAB protein accumulated in both detergent-soluble and insoluble fractions. iPSC-derived cardiomyocytes identified by cardiac troponin T staining were significantly larger when expressing R120GCryAB at a high level in comparison with TG low expressor or non-TG cells. Expression of fetal genes such as atrial natriuretic factor, B-type natriuretic peptide, and α-skeletal α-actin, assessed by quantitative reverse transcription-polymerase chain reaction, were increased in TG cardiomyocytes compared with non-TG, indicating the activation of the hypertrophic genetic program in vitro. Our study demonstrates for the first time that differentiation of R120G iPSCs into cardiomyocytes causes protein aggregation and cellular hypertrophy, recapitulating in vitro key pathognomonic hallmarks found in both animal models and patients. Our findings pave the way for further studies exploiting this cell model system for mechanistic and therapeutic investigations. PMID:23430692

  17. Reversible T-wave inversions and neurogenic myocardial stunning in a patient with recurrent stress-induced cardiomyopathy.

    PubMed

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Suyama, Jumpei; Toshida, Tsutomu; Kayano, Hiroyuki; Shinozuka, Akira; Gokan, Takehiko; Kobayashi, Youichi

    2014-05-01

    A 72-year-old female was diagnosed as a stress-induced cardiomyopathy from apical ballooning pattern of left ventricular dysfunction without coronary artery stenosis after the mental stress. ECG showed the transient T-wave inversions after the ST-segment elevations. By the mental stress after 1 year, she showed a transient dysfunction with similar ECG changes again. T-wave inversions recovered earlier, and cardiac sympathetic dysfunction showed a lighter response corresponding to the less severe dysfunction than those after the first onset. Wellens' ECG pattern was associated with the degree of neurogenic myocardial stunning with sympathetic hyperinnervation caused by mental stress. PMID:24147830

  18. Potent Paracrine Effects of human induced Pluripotent Stem Cell-derived Mesenchymal Stem Cells Attenuate Doxorubicin-induced Cardiomyopathy

    PubMed Central

    Zhang, Yuelin; Liang, Xiaoting; Liao, Songyan; Wang, Weixin; Wang, Junwen; Li, Xiang; Ding, Yue; Liang, Yingmin; Gao, Fei; Yang, Mo; Fu, Qingling; Xu, Aimin; Chai, Yuet-Hung; He, Jia; Tse, Hung-Fat; Lian, Qizhou

    2015-01-01

    Transplantation of bone marrow mesenchymal stem cells (BM-MSCs) can protect cardiomyocytes against anthracycline-induced cardiomyopathy (AIC) through paracrine effects. Nonetheless the paracrine effects of human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) on AIC are poorly understood. In vitro studies reveal that doxorubicin (Dox)-induced reactive oxidative stress (ROS) generation and cell apoptosis in neonatal rat cardiomyocytes (NRCMs) are significantly reduced when treated with conditioned medium harvested from BM-MSCs (BM-MSCs-CdM) or iPSC-MSCs (iPSC-MSCs-CdM). Compared with BM-MSCs-CdM, NRCMs treated with iPSC-MSCs-CdM exhibit significantly less ROS and cell apoptosis in a dose-dependent manner. Transplantation of BM-MSCs-CdM or iPSC-MSCs-CdM into mice with AIC remarkably attenuated left ventricular (LV) dysfunction and dilatation. Compared with BM-MSCs-CdM, iPSC-MSCs-CdM treatment showed better alleviation of heart failure, less cardiomyocyte apoptosis and fibrosis. Analysis of common and distinct cytokines revealed that macrophage migration inhibitory factor (MIF) and growth differentiation factor-15 (GDF-15) were uniquely overpresented in iPSC-MSC-CdM. Immunodepletion of MIF and GDF-15 in iPSC-MSCs-CdM dramatically decreased cardioprotection. Injection of GDF-15/MIF cytokines could partially reverse Dox-induced heart dysfunction. We suggest that the potent paracrine effects of iPSC-MSCs provide novel “cell-free” therapeutic cardioprotection against AIC, and that MIF and GDF-15 in iPSC-MSCs-CdM are critical for these enhanced cardioprotective effects. PMID:26057572

  19. [Peripartum cardiomyopathy].

    PubMed

    Fennira, S; Demiraj, A; Khouaja, A; Boujnah, M R

    2006-10-01

    Peripartum cardiomyopathy is a rare and under recognized form of dilated cardiomyopathy, defined as a heart failure in the last month of pregnancy or in the first five months post-partum with absence of determinable cause for cardiac failure and absence of demonstrable heart disease. The incidence of peripartum cardiomyopathy ranges from 1 in 1300 to 1 in 15,000 pregnancy. Advanced maternal age, multiparity, twin births, preeclampsia and black race are known risk factors. The etiology of peripartum cardiomyopathy remains unknown but viral, autoimmune or idiopathic myocarditis are highly suggested. The clinical presentation on patients with peripartum cardiomyopathy is similar to that of patients with systolic heart failure. The treatment is based on drugs for sympyomatic control. Studies in graeter populations are need to determine the role of immunosupressive treatment. About half patients of peripartum cardiomyopathy recover. The left ventricular ejection fraction and the left ventricular end-diastolic diameter are statistically significant prognostic factors. The risk of developing peripartum cardiomyopathy in subsequent pregnancies remains high. The place of dobutamine stress test in counseling the patients who desire pregnancy must be more studied. PMID:17078264

  20. [A case of transient ischemic attack of hemodynamic origin induced by postprandial hypotension].

    PubMed

    Sakima, Hirokuni; Isa, Katsunori; Nakachi, Koh; Shiroma, Kanako; Tokashiki, Takashi; Ohya, Yusuke

    2014-01-01

    An 82-year-old man had a transient ischemic attack (TIA) with symptoms of consciousness disturbance and right hemiparesis while resting in a sitting position after breakfast. His symptoms improved around 1 h after onset when he lied in a supine position and received intravenous hydration. Duplex carotid ultrasonography revealed severe stenosis of the left common carotid artery. A decrease in the brain perfusion reserve was confirmed by acetazolamide-stress brain perfusion scintigraphy. Moreover, ambulatory blood pressure monitoring revealed a reduction in systolic blood pressure below 90 mmHg after each meal, indicating postprandial hypotension (PPH). The PPH was improved by oral administration of α-glucosidase inhibitor without any subsequent recurrences of TIA. The patient was diagnosed with TIA of hemodynamic origin that was induced by PPH and exhibited severe carotid stenosis. PPH is common in elderly people, and it should be recognized as a significant trigger for ischemic cerebrovascular disease. PMID:24583593

  1. CNS disease triggering Takotsubo stress cardiomyopathy.

    PubMed

    Finsterer, Josef; Wahbi, Karim

    2014-12-15

    There are a number of hereditary and non-hereditary central nervous system (CNS) disorders, which directly or indirectly affect the heart (brain-heart disorders). The most well-known of these CNS disorders are epilepsy, stroke, infectious or immunological encephalitis/meningitis, migraine, and traumatic brain injury. In addition, a number of hereditary and non-hereditary neurodegenerative disorders may impair cardiac functions. Affection of the heart may manifest not only as arrhythmias, myocardial infarction, autonomic impairment, systolic dysfunction/heart failure, arterial hypertension, or pulmonary hypertension, but also as stress cardiomyopathy (Takotsubo syndrome, TTS). CNS disease triggering TTS includes subarachnoid bleeding, epilepsy, ischemic stroke, intracerebral bleeding, migraine, encephalitis, traumatic brain injury, PRES syndrome, or ALS. Usually, TTS is acutely precipitated by stress triggered by various different events. TTS is one of the cardiac abnormalities most frequently induced by CNS disorders. Appropriate management of TTS from CNS disorders is essential to improve the outcome of affected patients. PMID:25213573

  2. Interaction of heritable and estrogen-induced thrombophilia: possible etiologies for ischemic optic neuropathy and ischemic stroke.

    PubMed

    Glueck, C J; Fontaine, R N; Wang, P

    2001-02-01

    Our specific aim was to assess how thrombophilic exogenous estrogens interacted with heritable thrombophilias leading to non-arteritic ischemic optic neuropathy (NAION) and ischemic stroke. Coagulation measures were performed in a 74 year old patient and her immediate family. The proband had a 47 year history of 9 previous thrombotic episodes, and developed unilateral NAION 4 years after starting estrogen replacement therapy (ERT). The proband was heterozygous for two thrombophilic gene mutations (G20210A prothrombin gene, platelet glycoprotein IIIa P1A1/A2 polymorphism), and homozygous for the C677T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene. Of 238 normal controls, none had these 3 gene mutations together. The proband's mother and brother had deep venous thrombosis (DVT). The proband's brother, sister, nephew, daughter, and two granddaughters were homozygous for the C677T MTHFR mutation. The proband's brother was heterozygous for the G20210A prothrombin gene mutation. The proband's niece was heterozygous for the G20210A prothrombin gene mutation, homozygous for the C677T MTHFR mutation, homozygous for the hypofibrinolytic 4G polymorphism of the plasminogen activator inhibitor-1 (PAI-1) gene, and heterozygous for the platelet glycoprotein IIIa P1A1/A2 polymorphism. Of 238 normal controls, none had the niece's combination of 4 gene mutations. When ERT-mediated thrombophilia was superimposed on the proband's heritable thrombophilias, unilateral ischemic optic neuropathy developed, her tenth thrombotic event over a 5 decade period. When estrogen-progestin oral contraceptives were given to the proband's niece, she had an ischemic stroke at age 22. Exogenous estrogen-mediated thrombophilia superimposed on heritable thrombophilia and hypofibrinolysis is associated with arterial and venous thrombi, and appears to be a preventable, and potentially reversible etiology for ischemic optic neuropathy and ischemic stroke. PMID:11246543

  3. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    PubMed

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. PMID:23725345

  4. Restrictive cardiomyopathy

    MedlinePlus

    ... blood returns from the body (diastole). When the disease progresses, the heart may not pump blood strongly. The abnormal heart function can affect the lungs, liver, and other body systems. Restrictive cardiomyopathy may affect either or both of the ...

  5. Dilated cardiomyopathy

    MedlinePlus

    Hare JM. The dilated, restrictive, and infiltrative cardiomyopathies. In: Bonow RO, Mann DL, Zipes DP, Libby P, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . 9th ed. Philadelphia, PA: Elsevier Saunders; 2011:chap 68.

  6. What's Cardiomyopathy

    MedlinePlus

    ... or more chambers of the heart. Usually, the enlargement begins in one of the two lower pumping ... idiopathic hypertrophic subaortic stenosis (IHSS) and asymmetrical septal hypertrophy (ASH), non-obstructive hypertrophic cardiomyopathy (HCM) The second ...

  7. Restrictive cardiomyopathy

    MedlinePlus

    ... blood returns from the body (diastole). When the disease progresses, the heart may not pump blood strongly. The abnormal heart function can affect the lungs, liver, and other body systems. Restrictive cardiomyopathy may affect ...

  8. [Phytoadaptogens-induced phenomenon similar to ischemic preconditioning].

    PubMed

    Arbuzov, A G; Maslov, L N; Burkova, V N; Krylatov, A V; Konkovskaia, Iu N; Safronov, S M

    2009-04-01

    The course administration (16 mg/kg per os for 5 days) of extracts of Panax ginseng or Rhodiola rosea induced a decrease in the infarction size/the area at risk (IS AAR) ratio during a 45-min local ischemia and a 2-hr reperfusion in artificially ventilated chloralose-anaesthetized rats. Single administration of ginseng or Rhodiola 24 h before ischemia did not affect the IS/AAR ratio. Chronic administration of Extracts of Eleutherococcus senticosus, Leuzea carthamoides and Aralia mandshurica had no effect on the IS/AAR ratio. Pretreatment with extract ofAralia mandshurica prevented appearance of ventricular arrhythmias during first 10 min coronary artery occlusion. Pretreatment with extract of Rhodiola rosea decreased the incidence of ventricular fibrillation during ischemia. Single administration of extracts of Panax ginseng or Rhodiola rosea in a dose of 16 mg/kg had no effect on the IS/AAR ratio. The authors conclude that extracts of ginseng or Rhodiola exhibit a powerful cardioprotective effect. Extract of Aralia exhibit a strong antiarrhythmic effect. Extracts of ginseng and Rhodiola do not mimic phenomena of ischemia preconditioning. PMID:19505042

  9. Brimonidine Blocks Glutamate Excitotoxicity-Induced Oxidative Stress and Preserves Mitochondrial Transcription Factor A in Ischemic Retinal Injury

    PubMed Central

    Lee, Dongwook; Kim, Keun-Young; Noh, You Hyun; Chai, Stephen; Lindsey, James D.; Ellisman, Mark H.; Weinreb, Robert N.; Ju, Won-Kyu

    2012-01-01

    Glutamate excitotoxicity-induced oxidative stress have been linked to mitochondrial dysfunction in retinal ischemia and optic neuropathies including glaucoma. Brimonindine (BMD), an alpha 2-adrenergic receptor agonist, contributes to the neuroprotection of retinal ganglion cells (RGCs) against glutamate excitotoxicity or oxidative stress. However, the molecular mechanisms of BMD-associated mitochondrial preservation in RGC protection against glutamate excitotoxicity-induced oxidative stress following retinal ischemic injury remain largely unknown. Here, we tested whether activation of alpha 2 adrenergic receptor by systemic BMD treatment blocks glutamate excitotoxicity-induced oxidative stress, and preserves the expression of mitochondrial transcription factor A (Tfam) and oxidative phosphorylation (OXPHOS) complex in ischemic retina. Sprague-Dawley rats received BMD (1 mg/kg/day) or vehicle (0.9% saline) systemically and then transient ischemia was induced by acute intraocular pressure elevation. Systemic BMD treatment significantly increased RGC survival at 4 weeks after ischemia. At 24 hours, BMD significantly decreased Bax expression but increased Bcl-xL and phosphorylated Bad protein expression in ischemic retina. Importantly. BMD significantly blocked the upregulations of N-methyl-D-aspartate receptors 1 and 2A protein expression, as well as of SOD2 protein expression in ischemic retina at 24 hours. During the early neurodegeneration following ischemic injury (12–72 hours), Tfam and OXPHOS complex protein expression were significantly increased in vehicle-treated retina. At 24 hours after ischemia, Tfam immunoreactivity was increased in the outer plexiform layer, inner nuclear layer, inner plexiform layer and ganglion cell layer. Further, Tfam protein was expressed predominantly in RGCs. Finally, BMD preserved Tfam immunoreactivity in RGCs as well as Tfam/OXPHOS complex protein expression in the retinal extracts against ischemic injury. Our findings suggest

  10. CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury

    PubMed Central

    Bezzerides, Vassilios J.; Platt, Colin; Lerchenmüller, Carolin; Paruchuri, Kaavya; Oh, Nul Loren; Xiao, Chunyang; Cao, Yunshan; Mann, Nina; Spiegelman, Bruce M.; Rosenzweig, Anthony

    2016-01-01

    The mechanisms by which exercise mediates its multiple cardiac benefits are only partly understood. Prior comprehensive analyses of the cardiac transcriptional components and microRNAs dynamically regulated by exercise suggest that the CBP/p300-interacting protein CITED4 is a downstream effector in both networks. While CITED4 has documented functional consequences in neonatal cardiomyocytes in vitro, nothing is known about its effects in the adult heart. To investigate the impact of cardiac CITED4 expression in adult animals, we generated transgenic mice with regulated, cardiomyocyte-specific CITED4 expression. Cardiac CITED4 expression in adult mice was sufficient to induce an increase in heart weight and cardiomyocyte size with normal systolic function, similar to the effects of endurance exercise training. After ischemia-reperfusion, CITED4 expression did not change initial infarct size but mediated substantial functional recovery while reducing ventricular dilation and fibrosis. Forced cardiac expression of CITED4 also induced robust activation of the mTORC1 pathway after ischemic injury. Moreover, pharmacological inhibition of mTORC1 abrogated CITED4’s effects in vitro and in vivo. Together, these data establish CITED4 as a regulator of mTOR signaling that is sufficient to induce physiologic hypertrophy at baseline and mitigate adverse ventricular remodeling after ischemic injury. PMID:27430023

  11. A Bioengineered Hydrogel System Enables Targeted and Sustained Intramyocardial Delivery of Neuregulin, Activating the Cardiomyocyte Cell Cycle and Enhancing Ventricular Function in a Murine Model of Ischemic Cardiomyopathy

    PubMed Central

    Cohen, Jeffrey E.; Purcell, Brendan P.; MacArthur, John W.; Mu, Anbin; Shudo, Yasuhiro; Patel, Jay B.; Brusalis, Christopher M.; Trubelja, Alen; Fairman, Alexander S.; Edwards, Bryan B.; Davis, Mollie S.; Hung, George; Hiesinger, William; Atluri, Pavan; Margulies, Kenneth B.; Burdick, Jason A.; Woo, Y. Joseph

    2014-01-01

    Background Neuregulin (NRG) is a member of the epidermal growth factor family possessing a critical role in cardiomyocyte development and proliferation. Systemic administration of NRG demonstrated efficacy in cardiomyopathy animal models, leading to clinical trials employing daily NRG infusions. This approach is hindered by requiring daily infusions and off-target exposure. Therefore, this study aimed to encapsulate NRG in a hydrogel (HG) to be directly delivered to the myocardium, accomplishing sustained localized NRG delivery. Methods and Results NRG was encapsulated in HG and release over 14 days confirmed by ELISA in vitro. Sprague-Dawly rats were utilized for cardiomyocyte isolation. Cells were stimulated by PBS, NRG, HG, or NRG-HG and evaluated for proliferation. Cardiomyocytes demonstrated EdU and phosphorylated histone-H3 (PH3) positivity in the NRG-HG group only. For in vivo studies, 2 month old mice (n=60) underwent LAD ligation and were randomized to the 4 treatment groups mentioned. Only NRG-HG treated mice demonstrated PH3 and Ki67 positivity along with decreased caspase-3 activity compared to all controls. NRG was detected in myocardium 6 days following injection without evidence of off-target exposure in NRG-HG animals. At 2 weeks, the NRG-HG group exhibited enhanced LVEF, decreased LV area, and augmented borderzone thickness. Conclusions Targeted and sustained delivery of NRG directly to the myocardial borderzone augments cardiomyocyte mitotic activity, decreases apoptosis, and greatly enhances LV function in a model of ICM. This novel approach to NRG administration avoids off-target exposure and represents a clinically translatable strategy in myocardial regenerative therapeutics. PMID:24902740

  12. Sarco“MiR” friend or foe: a perspective on the mechanisms of doxorubicin-induced cardiomyopathy

    PubMed Central

    Saddic, Louis A.

    2016-01-01

    Anthracyclines are a class of chemotherapeutics used to treat a variety of human cancers including both solid tumors such as breast, ovarian, and lung, as well as malignancies of the blood including leukemia and lymphoma. Despite being extremely effective anti-cancer agents, the application of these drugs is offset by side effects, most notably cardiotoxicity. Many patients treated with doxorubicin (DOX), one of the most common anthracyclines used in oncology, will develop radiographic signs and/or symptoms of cardiomyopathy. Since more and more patients treated with these drugs are surviving their malignancies and manifesting with heart disease, there is particular interest in understanding the mechanisms of anthracycline-induced injury and developing ways to prevent and treat its most feared complication, heart failure. MicroRNAs (miRNAs) are small noncoding RNAs that regulate the expression of mRNAs. Since miRNAs can regulate many mRNAs in a single network they tend to play a crucial role in the pathogenesis of several diseases, including heart failure. Here we present a perspective on a recent work by Roca-Alonso and colleagues who demonstrate a cardioprotective function of the miR-30 family members following DOX-induced cardiac injury. They provide evidence for direct targeting of these miRNAs on key elements of the β-adrenergic pathway and further show that this interaction regulates cardiac function and apoptosis. These experiments deliver fresh insights into the biology of toxin-induced cardiomyopathy and suggest the potential for novel therapeutic targets. PMID:27294099

  13. Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133+ Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy

    PubMed Central

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133+ cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 106 of CD133+ cells (range 2.85 × 106–30.84 × 106), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133+ cells of 90,60% (range 81,40%–96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 106 cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial). PMID:26495296

  14. Diabetic cardiomyopathy

    PubMed Central

    Asghar, Omar; Al-Sunni, Ahmed; Khavandi, Kaivan; Khavandi, Ali; Withers, Sarah; Greenstein, Adam; Heagerty, Anthony M.; Malik, Rayaz A.

    2009-01-01

    Diabetic cardiomyopathy is a distinct primary disease process, independent of coronary artery disease, which leads to heart failure in diabetic patients. Epidemiological and clinical trial data have confirmed the greater incidence and prevalence of heart failure in diabetes. Novel echocardiographic and MR (magnetic resonance) techniques have enabled a more accurate means of phenotyping diabetic cardiomyopathy. Experimental models of diabetes have provided a range of novel molecular targets for this condition, but none have been substantiated in humans. Similarly, although ultrastructural pathology of the microvessels and cardiomyocytes is well described in animal models, studies in humans are small and limited to light microscopy. With regard to treatment, recent data with thiazoledinediones has generated much controversy in terms of the cardiac safety of both these and other drugs currently in use and under development. Clinical trials are urgently required to establish the efficacy of currently available agents for heart failure, as well as novel therapies in patients specifically with diabetic cardiomyopathy. PMID:19364331

  15. [Peripartum cardiomyopathy].

    PubMed

    Mouquet, Frédéric; Bouabdallaoui, Nadia

    2015-01-01

    The peripartum cardiomyopathy is a rare form of dilated cardiomyopathy resulting from alteration of angiogenesis toward the end of pregnancy. The diagnosis is based on the association of clinical heart failure and systolic dysfunction assessed by echocardiography or magnetic resonance imaging. Diagnoses to rule out are myocardial infarction, amniotic liquid embolism, myocarditis, inherited cardiomyopathy, and history of treatment by anthracycline. Risk factors are advance maternal age (>30), multiparity, twin pregnancy, African origin, obesity, preeclampsia, gestational hypertension, and prolonged tocolytic therapy. Treatment of acute phase is identical to usual treatment of acute systolic heart failure. After delivery, VKA treatment should be discussed in case of systolic function <25% because of higher risk of thrombus. A specific treatment by bromocriptine can be initiated on a case-by-case basis. Complete recovery of systolic function is observed in 50% of cases. The mortality risk is low. Subsequent pregnancy should be discouraged, especially if systolic function did not recover. PMID:26160284

  16. Molecular Imaging of Induced Pluripotent Stem Cell Immunogenicity with In Vivo Development in Ischemic Myocardium

    PubMed Central

    Wang, Haibin; Zhou, Jin; Zhao, Mengge; Lin, Qiuxia; Wang, Yan; Li, Junjie; Li, Dexue; Du, Zhiyan; Yao, Anning; Cao, Feng; Wang, Changyong

    2013-01-01

    Whether differentiation of induced pluripotent stem cells (iPSCs) in ischemic myocardium enhances their immunogenicity, thereby increasing their chance for rejection, is unclear. Here, we dynamically demonstrated the immunogenicity and rejection of iPSCs in ischemic myocardium using bioluminescent imaging (BLI). Murine iPSCs were transduced with a tri-fusion (TF) reporter gene consisting of firefly luciferase-red fluorescent protein-truncated thymidine kinase (fluc-mrfp-tTK). Ascorbic acid (Vc) were used to induce iPSCs to differentiate into cardiomyocytes (CM). iPSCs and iPS-CMs were intramyocardially injected into immunocompetent or immunosuppressed allogenic murine with myocardial infarction. BLI was performed to track transplanted cells. Immune cell infiltration was evaluated by immunohistochemistry. Syngeneic iPSCs were also injected and evaluated. The results demonstrated that undifferentiated iPSCs survived and proliferated in allogenic immunocompetent recipients early post-transplantation, accompanying with mild immune cell infiltration. With in vivo differentiation, a progressive immune cell infiltration could be detected. While transplantation of allogenic iPSC-CMs were observed an acute rejection from receipts. In immune-suppressed recipients, the proliferation of iPSCs could be maintained and intramyocardial teratomas were formed. Transplantation of syngeneic iPSCs and iPSC-CMs were also observed progressive immune cell infiltration. This study demonstrated that iPSC immunogenicity increases with in vivo differentiation, which will increase their chance for rejection in iPSC-based therapy. PMID:23840453

  17. Ischemia-induced mitochondrial apoptosis is significantly attenuated by ischemic preconditioning.

    PubMed

    Racay, Peter; Chomova, Maria; Tatarkova, Zuzana; Kaplan, Peter; Hatok, Jozef; Dobrota, Dusan

    2009-09-01

    Ischemic preconditioning (IPC) represents an important adaptation of CNS to sub-lethal ischemia, which results in increased tolerance of CNS to the lethal ischemia. Ischemia-induced mitochondrial apoptosis is considered to be an important event leading to neuronal cell death after cerebral blood flow arrest. In presented study, we have determined the effect of IPC on ischemia/reperfusion-induced mitochondrial apoptosis. Global brain ischemia was induced by permanent occlusion of vertebral arteries and temporal occlusion of carotid arteries for 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later 15 min of lethal ischemia was induced. With respect to mitochondrial apoptosis initiation, translocation of p53 to mitochondria was observed in hippocampus but not in cerebral cortex. However, level of both apoptotic bax and anti-apoptotic bcl-xl in both hippocampal and cortical mitochondria was unchanged after global brain ischemia. Detection of genomic DNA fragmentation as well as Fluoro-Jade C staining showed that ischemia induces apoptosis in vulnerable CA1 layer of rat hippocampus. IPC abolished completely ischemia-induced translocation of p53 to mitochondria and had significant protective effect on ischemia-induced DNA fragmentation. In addition, significant decrease of Fluoro-Jade C positive cells was observed as well. Our results indicate that IPC abolished almost completely both initiation and execution of mitochondrial apoptosis induced by global brain ischemia. PMID:19283470

  18. Unveiling nonischemic cardiomyopathies with cardiac magnetic resonance.

    PubMed

    Aggarwal, Niti R; Peterson, Tyler J; Young, Phillip M; Araoz, Philip A; Glockner, James; Mankad, Sunil V; Williamson, Eric E

    2014-02-01

    Cardiomyopathy is defined as a heterogeneous group of myocardial disorders with mechanical or electrical dysfunction. Identification of the etiology is important for accurate diagnosis, treatment and prognosis, but continues to be challenging. The ability of cardiac MRI to non-invasively obtain 3D-images of unparalleled resolution without radiation exposure and to provide tissue characterization gives it a distinct advantage over any other diagnostic tool used for evaluation of cardiomyopathies. Cardiac MRI can accurately visualize cardiac morphology and function and also help identify myocardial edema, infiltration and fibrosis. It has emerged as an important diagnostic and prognostic tool in tertiary care centers for work up of patients with non-ischemic cardiomyopathies. This review covers the role of cardiac MRI in evaluation of nonischemic cardiomyopathies, particularly in the context of other diagnostic and prognostic imaging modalities. PMID:24417294

  19. Cirrhotic cardiomyopathy.

    PubMed

    Milani, A; Zaccaria, R; Bombardieri, G; Gasbarrini, A; Pola, P

    2007-06-01

    Decompensated liver cirrhosis is characterized by a peripheral vasodilation with a low-resistance hyperdynamic circulation. The sustained increase of cardiac work load associated with such a condition may result in an inconstant and often subclinical series of heart abnormalities, constituting a new clinical entity known as "cirrhotic cardiomyopathy". Cirrhotic cardiomyopathy is variably associated with baseline increase in cardiac output, defective myocardial contractility and lowered systo-diastolic response to inotropic and chronotropic stimuli, down-regulated beta-adrenergic function, slight histo-morphological changes, and impaired electric "recovery" ability of ventricular myocardium. Cirrhotic cardiomyopathy is usually clinically latent or mild, likely because the peripheral vasodilation significantly reduces the left ventricle after-load, thus actually "auto-treating" the patient and masking any severe manifestation of heart failure. In cirrhotic patients, the presence of cirrhotic cardiomyopathy may become unmasked and clinically evident by certain treatment interventions that increase the effective blood volume and cardiac pre-load, including surgical or transjugular intrahepatic porto-systemic shunts, peritoneo-venous shunts (LeVeen) and orthotopic liver transplantation. Under these circumstances, an often transient overt congestive heart failure may develop, with increased cardiac output as well as right atrial, pulmonary artery and capillary wedge pressures. PMID:17383244

  20. Cirrhotic cardiomyopathy

    PubMed Central

    Ruiz-del-Árbol, Luis; Serradilla, Regina

    2015-01-01

    During the course of cirrhosis, there is a progressive deterioration of cardiac function manifested by the disappearance of the hyperdynamic circulation due to a failure in heart function with decreased cardiac output. This is due to a deterioration in inotropic and chronotropic function which takes place in parallel with a diastolic dysfunction and cardiac hypertrophy in the absence of other known cardiac disease. Other findings of this specific cardiomyopathy include impaired contractile responsiveness to stress stimuli and electrophysiological abnormalities with prolonged QT interval. The pathogenic mechanisms of cirrhotic cardiomyopathy include impairment of the b-adrenergic receptor signalling, abnormal cardiomyocyte membrane lipid composition and biophysical properties, ion channel defects and overactivity of humoral cardiodepressant factors. Cirrhotic cardiomyopathy may be difficult to determine due to the lack of a specific diagnosis test. However, an echocardiogram allows the detection of the diastolic dysfunction and the E/e′ ratio may be used in the follow-up progression of the illness. Cirrhotic cardiomyopathy plays an important role in the pathogenesis of the impairment of effective arterial blood volume and correlates with the degree of liver failure. A clinical consequence of cardiac dysfunction is an inadequate cardiac response in the setting of vascular stress that may result in renal hypoperfusion leading to renal failure. The prognosis is difficult to establish but the severity of diastolic dysfunction may be a marker of mortality risk. Treatment is non-specific and liver transplantation may normalize the cardiac function. PMID:26556983

  1. Hypoxia-Inducible Factor 1: Regulator of Mitochondrial Metabolism and Mediator of Ischemic Preconditioning

    PubMed Central

    Semenza, Gregg L.

    2010-01-01

    Hypoxia-inducible factor 1 (HIF-1) mediates adaptive responses to reduced oxygen availability by regulating gene expression. A critical cell-autonomous adaptive response to chronic hypoxia controlled by HIF-1 is reduced mitochondrial mass and/or metabolism. Exposure of HIF-1-deficient fibroblasts to chronic hypoxia results in cell death due to excessive levels of reactive oxygen species (ROS). HIF-1 reduces ROS production under hypoxic conditions by multiple mechanisms including: a subunit switch in cytochrome c oxidase from the COX4-1 to COX4-2 regulatory subunit that increases the efficiency of complex IV; induction of pyruvate dehydrogenase kinase 1, which shunts pyruvate away from the mitochondria; induction of BNIP3, which triggers mitochondrial selective autophagy; and induction of microRNA-210, which blocks assembly of Fe/S clusters that are required for oxidative phosphorylation. HIF-1 is also required for ischemic preconditioning and this effect may be due in part to its induction of CD73, the enzyme that produces adenosine. HIF-1-dependent regulation of mitochondrial metabolism may also contribute to the protective effects of ischemic preconditioning. PMID:20732359

  2. iASPP, a previously unidentified regulator of desmosomes, prevents arrhythmogenic right ventricular cardiomyopathy (ARVC)-induced sudden death.

    PubMed

    Notari, Mario; Hu, Ying; Sutendra, Gopinath; Dedeić, Zinaida; Lu, Min; Dupays, Laurent; Yavari, Arash; Carr, Carolyn A; Zhong, Shan; Opel, Aaisha; Tinker, Andrew; Clarke, Kieran; Watkins, Hugh; Ferguson, David J P; Kelsell, David P; de Noronha, Sofia; Sheppard, Mary N; Hollinshead, Mike; Mohun, Timothy J; Lu, Xin

    2015-03-01

    Desmosomes are anchoring junctions that exist in cells that endure physical stress such as cardiac myocytes. The importance of desmosomes in maintaining the homeostasis of the myocardium is underscored by frequent mutations of desmosome components found in human patients and animal models. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a phenotype caused by mutations in desmosomal components in ∼ 50% of patients, however, the causes in the remaining 50% of patients still remain unknown. A deficiency of inhibitor of apoptosis-stimulating protein of p53 (iASPP), an evolutionarily conserved inhibitor of p53, caused by spontaneous mutation recently has been associated with a lethal autosomal recessive cardiomyopathy in Poll Hereford calves and Wa3 mice. However, the molecular mechanisms that mediate this putative function of iASPP are completely unknown. Here, we show that iASPP is expressed at intercalated discs in human and mouse postmitotic cardiomyocytes. iASPP interacts with desmoplakin and desmin in cardiomyocytes to maintain the integrity of desmosomes and intermediate filament networks in vitro and in vivo. iASPP deficiency specifically induces right ventricular dilatation in mouse embryos at embryonic day 16.5. iASPP-deficient mice with exon 8 deletion (Ppp1r13l(Δ8/Δ8)) die of sudden cardiac death, displaying features of ARVC. Intercalated discs in cardiomyocytes from four of six human ARVC cases show reduced or loss of iASPP. ARVC-derived desmoplakin mutants DSP-1-V30M and DSP-1-S299R exhibit weaker binding to iASPP. These data demonstrate that by interacting with desmoplakin and desmin, iASPP is an important regulator of desmosomal function both in vitro and in vivo. This newly identified property of iASPP may provide new molecular insight into the pathogenesis of ARVC. PMID:25691752

  3. iASPP, a previously unidentified regulator of desmosomes, prevents arrhythmogenic right ventricular cardiomyopathy (ARVC)-induced sudden death

    PubMed Central

    Notari, Mario; Hu, Ying; Sutendra, Gopinath; Dedeić, Zinaida; Lu, Min; Dupays, Laurent; Yavari, Arash; Carr, Carolyn A.; Zhong, Shan; Opel, Aaisha; Tinker, Andrew; Clarke, Kieran; Watkins, Hugh; Ferguson, David J. P.; Kelsell, David P.; de Noronha, Sofia; Sheppard, Mary N.; Hollinshead, Mike; Mohun, Timothy J.; Lu, Xin

    2015-01-01

    Desmosomes are anchoring junctions that exist in cells that endure physical stress such as cardiac myocytes. The importance of desmosomes in maintaining the homeostasis of the myocardium is underscored by frequent mutations of desmosome components found in human patients and animal models. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a phenotype caused by mutations in desmosomal components in ∼50% of patients, however, the causes in the remaining 50% of patients still remain unknown. A deficiency of inhibitor of apoptosis-stimulating protein of p53 (iASPP), an evolutionarily conserved inhibitor of p53, caused by spontaneous mutation recently has been associated with a lethal autosomal recessive cardiomyopathy in Poll Hereford calves and Wa3 mice. However, the molecular mechanisms that mediate this putative function of iASPP are completely unknown. Here, we show that iASPP is expressed at intercalated discs in human and mouse postmitotic cardiomyocytes. iASPP interacts with desmoplakin and desmin in cardiomyocytes to maintain the integrity of desmosomes and intermediate filament networks in vitro and in vivo. iASPP deficiency specifically induces right ventricular dilatation in mouse embryos at embryonic day 16.5. iASPP-deficient mice with exon 8 deletion (Ppp1r13lΔ8/Δ8) die of sudden cardiac death, displaying features of ARVC. Intercalated discs in cardiomyocytes from four of six human ARVC cases show reduced or loss of iASPP. ARVC-derived desmoplakin mutants DSP-1-V30M and DSP-1-S299R exhibit weaker binding to iASPP. These data demonstrate that by interacting with desmoplakin and desmin, iASPP is an important regulator of desmosomal function both in vitro and in vivo. This newly identified property of iASPP may provide new molecular insight into the pathogenesis of ARVC. PMID:25691752

  4. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis.

    PubMed

    Zhou, Jun-Hao; Zhang, Tong-Tong; Song, Dan-Dan; Xia, Yun-Fei; Qin, Zheng-Hong; Sheng, Rui

    2016-01-01

    Previous study showed that TIGAR (TP53-induced glycolysis and apoptosis regulator) protected ischemic brain injury via enhancing pentose phosphate pathway (PPP) flux and preserving mitochondria function. This study was aimed to study the role of TIGAR in cerebral preconditioning. The ischemic preconditioning (IPC) and isoflurane preconditioning (ISO) models were established in primary cultured cortical neurons and in mice. Both IPC and ISO increased TIGAR expression in cortical neurons. Preconditioning might upregulate TIGAR through SP1 transcription factor. Lentivirus mediated knockdown of TIGAR significantly abolished the ischemic tolerance induced by IPC and ISO. ISO also increased TIGAR in mouse cortex and hippocampus and alleviated subsequent brain ischemia-reperfusion injury, while the ischemic tolerance induced by ISO was eliminated with TIGAR knockdown in mouse brain. ISO increased the production of NADPH and glutathione (GSH), and scavenged reactive oxygen species (ROS), while TIGAR knockdown decreased GSH and NADPH production and increased the level of ROS. Supplementation of ROS scavenger NAC and PPP product NADPH effectively rescue the neuronal injury caused by TIGAR deficiency. Notably, TIGAR knockdown inhibited ISO-induced anti-apoptotic effects in cortical neurons. These results suggest that TIGAR participates in the cerebral preconditioning through reduction of ROS and subsequent cell apoptosis. PMID:27256465

  5. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis

    PubMed Central

    Zhou, Jun-Hao; Zhang, Tong-Tong; Song, Dan-Dan; Xia, Yun-Fei; Qin, Zheng-Hong; Sheng, Rui

    2016-01-01

    Previous study showed that TIGAR (TP53-induced glycolysis and apoptosis regulator) protected ischemic brain injury via enhancing pentose phosphate pathway (PPP) flux and preserving mitochondria function. This study was aimed to study the role of TIGAR in cerebral preconditioning. The ischemic preconditioning (IPC) and isoflurane preconditioning (ISO) models were established in primary cultured cortical neurons and in mice. Both IPC and ISO increased TIGAR expression in cortical neurons. Preconditioning might upregulate TIGAR through SP1 transcription factor. Lentivirus mediated knockdown of TIGAR significantly abolished the ischemic tolerance induced by IPC and ISO. ISO also increased TIGAR in mouse cortex and hippocampus and alleviated subsequent brain ischemia-reperfusion injury, while the ischemic tolerance induced by ISO was eliminated with TIGAR knockdown in mouse brain. ISO increased the production of NADPH and glutathione (GSH), and scavenged reactive oxygen species (ROS), while TIGAR knockdown decreased GSH and NADPH production and increased the level of ROS. Supplementation of ROS scavenger NAC and PPP product NADPH effectively rescue the neuronal injury caused by TIGAR deficiency. Notably, TIGAR knockdown inhibited ISO-induced anti-apoptotic effects in cortical neurons. These results suggest that TIGAR participates in the cerebral preconditioning through reduction of ROS and subsequent cell apoptosis. PMID:27256465

  6. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  7. Unraveling the role of adenosine in remote ischemic preconditioning-induced cardioprotection.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2016-06-15

    Remote ischemic preconditioning (RIPC) induced by alternate cycles of preconditioning ischemia and reperfusion protects the heart against sustained ischemia-reperfusion-induced injury. This technique has been translated to clinical levels in patients undergoing various surgical interventions including coronary artery bypass graft surgery, abdominal aortic aneurysm repair, percutaneous coronary intervention and heart valve surgery. Adenosine is a master regulator of energy metabolism and reduces myocardial ischemia-reperfusion-induced injury. Furthermore, adenosine is a critical trigger as well as a mediator in RIPC-induced cardioprotection and scientists have demonstrated the role of adenosine by showing an increase in its levels in the systemic circulation during RIPC delivery. Furthermore, the blockade of cardioprotective effects of RIPC in the presence of specific adenosine receptor blockers and transgenic animals with targeted ablation of A1 receptors has also demonstrated its critical role in RIPC. The studies have shown that adenosine may elicit cardioprotection via activation of neurogenic pathway. The present review describes the possible role and mechanism of adenosine in mediating RIPC-induced cardioprotection. PMID:27157518

  8. Neonatal Hypoxic/Ischemic Brain Injury Induces Production of Calretinin-Expressing Interneurons in the Striatum

    PubMed Central

    YANG, ZHENGANG; YOU, YAN; LEVISON, STEVEN W.

    2011-01-01

    Ischemia-induced striatal neurogenesis from progenitors in the adjacent subventricular zone (SVZ) in young and adult rodents has been reported. However, it has not been established whether the precursors that reside in the SVZ retain the capacity to produce the full range of striatal neurons that has been destroyed. By using a neonatal rat model of hypoxic/ischemic brain damage, we show here that virtually all of the newly produced striatal neurons are calretinin (CR)-immunoreactive (+), but not DARPP-32+, calbindin-D-28K+, parvalbumin+, somatostatin+, or choline acetyltransferase+. Retroviral fate-mapping studies confirm that these newly born CR++neurons are indeed descendants of the SVZ. Our studies indicate that, although the postnatal SVZ has the capacity to produce a range of neurons, only a subset of this repertoire is manifested in the brain after injury. PMID:18720478

  9. Metabolic imaging of patients with cardiomyopathy

    SciTech Connect

    Geltman, E.M. )

    1991-09-01

    The cardiomyopathies comprise a diverse group of illnesses that can be characterized functionally by several techniques. However, the delineation of derangements of regional perfusion and metabolism have been accomplished only relatively recently with positron emission tomography (PET). Regional myocardial accumulation and clearance of 11C-palmitate, the primary myocardial substrate under most conditions, demonstrate marked spatial heterogeneity when studied under fasting conditions or with glucose loading. PET with 11C-palmitate permits the noninvasive differentiation of patients with nonischemic from ischemic dilated cardiomyopathy, since patients with ischemic cardiomyopathy demonstrate large zones of intensely depressed accumulation of 11C-palmitate, probably reflecting prior infarction. Patients with hypertrophic cardiomyopathy and Duchenne's muscular dystrophy demonstrate relatively unique patterns of myocardial abnormalities of perfusion and metabolism. The availability of new tracers and techniques for the evaluation of myocardial metabolism (11C-acetate), perfusion (H2(15)O), and autonomic tone (11-C-hydroxyephedrine) should facilitate further understanding of the pathogenesis of the cardiomyopathies.

  10. Role of stress-inducible protein-1 in recruitment of bone marrow derived cells into the ischemic brains

    PubMed Central

    Lee, Shin-Da; Lai, Ted Weita; Lin, Shinn-Zong; Lin, Chen-Huan; Hsu, Yung-Hsiang; Li, Chi-Yuan; Wang, Hsiao-Jung; Lee, Wei; Su, Ching-Yuan; Yu, Yung-Luen; Shyu, Woei-Cherng

    2013-01-01

    Stress-inducible protein-1 (STI-1) is the proposed ligand for the cellular prion protein (PrPC), which is thought to facilitate recovery following stroke. Whether STI-1 expression is affected by stroke and how its signalling facilitates recovery remain elusive. Brain slices from patients that died of ischemic stroke were collected for STI-1 immunohistochemistry. These findings were compared to results from cell cultures, mice with or without the PrPC knockout, and rats. Based on these findings, molecular and pharmacological interventions were administered to investigate the underlying mechanisms and to test the possibility for therapy in experimental stroke models. STI-1 was upregulated in the ischemic brains from humans and rodents. The increase in STI-1 expression in vivo was not cell-type specific, as it was found in neurons, glia and endothelial cells. Likewise, this increase in STI-1 expression can be mimicked by sublethal hypoxia in primary cortical cultures (PCCs) in vitro, and appear to have resulted from the direct binding of the hypoxia inducible factor-1α (HIF-1α) to the STI-1 promoter. Importantly, this STI-1 signalling promoted bone marrow derived cells (BMDCs) proliferation and migration in vitro and recruitment to the ischemic brain in vivo, and augmenting its signalling facilitated neurological recovery in part by recruiting BMDCs to the ischemic brain. Our results thus identified a novel mechanism by which ischemic insults can trigger a self-protective mechanism to facilitate recovery. This work identifies HIF-1α-mediated transcription of STI-1 and PrPc interaction as leading to BMDCs recruitment into ischemic brains following stroke in both patients and animal models of stroke, highlighting novel neuroprotective possibilities. PMID:23836498

  11. Alcoholic cardiomyopathy

    PubMed Central

    Guzzo-Merello, Gonzalo; Cobo-Marcos, Marta; Gallego-Delgado, Maria; Garcia-Pavia, Pablo

    2014-01-01

    Alcohol is the most frequently consumed toxic substance in the world. Low to moderate daily intake of alcohol has been shown to have beneficial effects on the cardiovascular system. In contrast, exposure to high levels of alcohol for a long period could lead to progressive cardiac dysfunction and heart failure. Cardiac dysfunction associated with chronic and excessive alcohol intake is a specific cardiac disease known as alcoholic cardiomyopathy (ACM). In spite of its clinical importance, data on ACM and how alcohol damages the heart are limited. In this review, we evaluate available evidence linking excessive alcohol consumption with heart failure and dilated cardiomyopathy. Additionally, we discuss the clinical presentation, prognosis and treatment of ACM. PMID:25228956

  12. Infiltrative Cardiomyopathies

    PubMed Central

    Bejar, David; Colombo, Paolo C; Latif, Farhana; Yuzefpolskaya, Melana

    2015-01-01

    Infiltrative cardiomyopathies can result from a wide spectrum of both inherited and acquired conditions with varying systemic manifestations. They portend an adverse prognosis, with only a few exceptions (ie, glycogen storage disease), where early diagnosis can result in potentially curative treatment. The extent of cardiac abnormalities varies based on the degree of infiltration and results in increased ventricular wall thickness, chamber dilatation, and disruption of the conduction system. These changes often lead to the development of heart failure, atrioventricular (AV) block, and ventricular arrhythmia. Because these diseases are relatively rare, a high degree of clinical suspicion is important for diagnosis. Electrocardiography and echocardiography are helpful, but advanced techniques including cardiac magnetic resonance (CMR) and nuclear imaging are increasingly preferred. Treatment is dependent on the etiology and extent of the disease and involves medications, device therapy, and, in some cases, organ transplantation. Cardiac amyloid is the archetype of the infiltrative cardiomyopathies and is discussed in great detail in this review. PMID:26244036

  13. Effects of adrenaline infusion on plasma lipids and noradrenaline levels in rabbits with adriamycin-induced cardiomyopathy.

    PubMed

    Minatoguchi, S; Uno, Y; Seishima, M; Koshiji, M; Kakami, M; Yokoyama, H; Ito, H; Fujiwara, H

    1997-07-01

    1. We investigated the acute effects of adrenaline infusion on plasma lipid levels in vehicle- and adriamycin-treated rabbits. Lipids were measured before and 30 and 60 min after the commencement of continuous intravenous administration of adrenaline (0.06 microgram/kg per min) or saline in pentobarbital-anaesthetized rabbits. 2. Adrenaline infusion significantly increased plasma free fatty acid (P < 0.05) and noradrenaline (NA) levels (P < 0.05) in vehicle-treated control rabbits, but not in adriamycin-treated rabbits. However, adrenaline had no effect on plasma total cholesterol, free cholesterol, high-density lipoprotein-cholesterol, triglyceride or phospholipid levels. 3. Pretreatment with propranolol almost completely inhibited increased plasma free fatty acid and NA levels associated with adrenaline infusion, suggesting that adrenaline increases plasma free fatty acid and NA levels via the stimulation of beta-adrenoceptors in vehicle-treated rabbits. 4. It is suggested that both the production of plasma free fatty acids and the release of NA via the activation of beta-adrenoceptors is reduced in rabbits with adriamycin-induced cardiomyopathy. This may be related to the down-regulation of beta-adrenoceptors caused by elevated plasma NA levels induced by cardiac failure. PMID:9248663

  14. Cardiomyopathy induced by artificial cardiac pacing: myth or reality sustained by evidence?

    PubMed Central

    Ferrari, Andrés Di Leoni; Borges, Anibal Pires; Albuquerque, Luciano Cabral; Sussenbach, Carolina Pelzer; da Rosa, Priscila Raupp; Piantá, Ricardo Medeiros; Wiehe, Mario; Goldani, Marco Antônio

    2014-01-01

    Implantable cardiac pacing systems are a safe and effective treatment for symptomatic irreversible bradycardia. Under the proper indications, cardiac pacing might bring significant clinical benefit. Evidences from literature state that the action of the artificial pacing system, mainly when the ventricular lead is located at the apex of the right ventricle, produces negative effects to cardiac structure (remodeling, dilatation) and function (dissinchrony). Patients with previously compromised left ventricular function would benefit the least with conventional right ventricle apical pacing, and are exposed to the risk of developing higher incidence of morbidity and mortality for heart failure. However, after almost 6 decades of cardiac pacing, just a reduced portion of patients in general would develop these alterations. In this context, there are not completely clear some issues related to cardiac pacing and the development of this cardiomyopathy. Causality relationships among QRS widening with a left bundle branch block morphology, contractility alterations within the left ventricle, and certain substrates or clinical (previous systolic dysfunction, structural heart disease, time from implant) or electrical conditions (QRS duration, percentage of ventricular stimulation) are still subjecte of debate. This review analyses contemporary data regarding this new entity, and discusses alternatives of how to use cardiac pacing in this context, emphasizing cardiac resynchronization therapy. PMID:25372916

  15. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    PubMed Central

    Koenitzer, Jeffrey R.; Bonacci, Gustavo; Woodcock, Steven R.; Chen, Chen-Shan; Cantu-Medellin, Nadiezhda; Kelley, Eric E.; Schopfer, Francisco J.

    2015-01-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval. PMID:26722838

  16. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II.

    PubMed

    Koenitzer, Jeffrey R; Bonacci, Gustavo; Woodcock, Steven R; Chen, Chen-Shan; Cantu-Medellin, Nadiezhda; Kelley, Eric E; Schopfer, Francisco J

    2016-08-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H(+) and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval. PMID:26722838

  17. Age-dependence of free radical-induced oxidative damage in ischemic-reperfused rat heart.

    PubMed

    Nagy, K; Takács, I E; Pankucsi, C

    1996-01-01

    Oxygen free radical-induced oxidative damage is involved in both aging and ischemia-reperfusion. The purpose of this study was to determine the aging-induced oxidative alterations in rat heart as well as the age-dependence of heart injury following ischemia-reperfusion. A comparative study was performed on young and old ischemic-reperfused rat hearts. Protein oxidation and the ascorbyl radical level in heart tissue were determined in order to characterize the oxidative stress. Comparing the control conditions, old hearts have 31% more oxidized proteins as measured by protein carbonyl content, and 18% lower ascorbyl radical level as determined by ESR, than young ones. The extent of increase of protein oxidation and ascorbyl free radical depletion induced by ischemia-reperfusion is less pronounced in the old hearts (7 and 8% respectively), as compared to the young ones (55 and 21% respectively). Pre-treatment with a free radical scavenger, such as centrophenoxine, diminished the ischemia-reperfusion injury in both young and old rat hearts. PMID:15374178

  18. Carperitide induces coronary vasodilation and limits infarct size in canine ischemic hearts: role of NO.

    PubMed

    Asanuma, Hiroshi; Sanada, Shoji; Asakura, Masanori; Asano, Yoshihiro; Kim, Jiyoong; Shinozaki, Yoshiro; Mori, Hidezo; Minamino, Tetsuo; Takashima, Seiji; Kitakaze, Masafumi

    2014-08-01

    Carperitide is effective for heart failure (HF) owing to its diuretic and vasodilatory effects. This recombinant peptide may also have direct cardioprotective effects because carperitide reduces the severity of heart failure and limits infarct size. Because coronary vasodilation is an important cardioprotective treatment modality, we investigated whether carperitide increased coronary blood flow (CBF) and improved myocardial metabolic and contractile dysfunction during ischemia in canine hearts. We also tested whether carperitide is directly responsible for limiting the infarct size. We infused carperitide at 0.025-0.2 μg kg(-1) min(-1) into the canine coronary artery. A minimum dose of 0.1 μg kg(-1) min(-1) was required to obtain maximal vasodilation. To test the effects of carperitide on ischemic hearts, we reduced perfusion pressure in the left anterior descending coronary artery such that CBF decreased to one-third of the baseline value. At 10 min after carperitide was infused at a dose of 0.1 μg kg(-1) min(-1), we observed increases in CBF, fractional shortening (FS) and pH levels in coronary venous blood without concomitant increases in cardiac nitric oxide (NO) levels; these changes were attenuated using either the atrial natriuretic peptide receptor antagonist HS-142-1 or the NO synthase inhibitor L(ω)-nitroarginine methyl ester (L-NAME). Cyclic guanosine monophosphate (GMP) levels in the coronary artery were elevated in response to carperitide that also limited the infarct size after 90 min of ischemia and subsequent reperfusion. Again, these effects were blunted by L-NAME. Carperitide increases CBF, reduces myocardial contractile and metabolic dysfunction and limits infarct size. In addition, NO is necessary for carperitide-induced vasodilation and cardioprotection in ischemic hearts. PMID:24694647

  19. Oncostatin M-induced cardiomyocyte dedifferentiation regulates the progression of diabetic cardiomyopathy through B-Raf/Mek/Erk signaling pathway.

    PubMed

    Zhang, Xiaotian; Ma, Sai; Zhang, Ran; Li, Shuang; Zhu, Di; Han, Dong; Li, Xiujuan; Li, Congye; Yan, Wei; Sun, Dongdong; Xu, Bin; Wang, Yabin; Cao, Feng

    2016-03-01

    It has been reported that oncostatin M (OSM) could initiate cardiomyocyte dedifferentiation both in vivo and in vitro. OSM-induced cardiomyocyte dedifferentiation might be a new target for the treatment of diabetic cardiomyopathy (DCM). This study was designed to determine the role of OSM in cardiomyocyte dedifferentiation and the progression of DCM. A mouse DCM model was established to evaluate the effects of OSM in vivo. Echocardiography was applied to determine cardiac function. Sirius red staining was used to detect fibrosis area. Transmission electron microscopy was used to evaluate mitochondria impairment. Real-time polymerase chain reaction and western blot analysis were performed to detect relative mRNA expressions and cardiomyocyte dedifferentiation-related protein expressions, respectively. OSM treatment induced similar impaired cardiac function and cardiac ultrastructure impairment to those detected in DCM mice. The expressions of dedifferentiation markers of cardiomyocyte (Runx1, and α-SM-actin) were up-regulated in the OSM-treated mice compared with those in the control group. To further demonstrate the important role of OSM, OSM receptor knockout (Oβ(ko)) mice were used. In Oβ(ko) mice, cardiomyocytes dedifferentiation markers of c-kit, Runx1, and atrial natriuretic peptide were down-regulated, with attenuated DCM injury and abrogated OSM/B-Raf/Mek/Erk signaling pathway. In conclusion, OSM-induced cardiomyocyte dedifferentiation plays a crucial role in the progression of DCM. The mechanism of OSM-induced cardiomyocyte dedifferentiation is associated with B-Raf/Mek/Erk signaling pathway through the OSM receptor Oβ. PMID:26837420

  20. A dilated cardiomyopathy mutation blunts adrenergic response and induces contractile dysfunction under chronic angiotensin II stress.

    PubMed

    Wilkinson, Ross; Song, Weihua; Smoktunowicz, Natalia; Marston, Steven

    2015-12-01

    We investigated cardiac contractility in the ACTC E361G transgenic mouse model of dilated cardiomyopathy (DCM). No differences in cardiac dimensions or systolic function were observed in young mice, whereas young adult mice exhibited only mild diastolic abnormalities. Dobutamine had an inotropic and lusitropic effect on the mouse heart. In papillary muscle at 37°C, dobutamine increased relaxation rates [∼50% increase of peak rate of force decline normalized to force (dF/dtmin/F), 25% reduction of time to 90% relaxation (t90) in nontransgenic (NTG) mice], but in the ACTC E361G mouse, dF/dtmin/F was increased 20-30%, and t90 was only reduced 10% at 10 Hz. Pressure-volume measurements showed increases in maximum rate of pressure decline and decreases in time constant of left ventricular pressure decay in the ACTC E361G mouse that were 25-30% of the changes in the NTG mouse, consistent with blunting of the lusitropic response. The inotropic effect of dobutamine was also blunted in ACTC E361G mice, and the dobutamine-stimulated increase in cardiac output (CO) was reduced from 2,100 to 900 μl/min. Mice were treated with high doses of ANG II for 4 wk. The chronic stress treatment evoked systolic dysfunction in ACTC E361G mice but not in NTG. There was a significant reduction in rates of pressure increase and decrease, as well as reduced end-systolic pressure and increased volume. Ejection fraction and CO were reduced in the ACTC E361G mouse, indicating DCM. In vitro DCM-causing mutations uncouple the relationship between Ca(2+) sensitivity and troponin I phosphorylation. We conclude that this leads to the observed, reduced response to β1 agonists and reduced cardiac reserve that predisposes the heart to DCM under conditions of chronic stress. PMID:26432839

  1. Heart Failure Therapies for End-Stage Chemotherapy-Induced Cardiomyopathy.

    PubMed

    Mukku, Roy B; Fonarow, Gregg C; Watson, Karol E; Ajijola, Olujimi A; Depasquale, Eugene C; Nsair, Ali; Baas, Arnold S; Deng, Mario C; Yang, Eric H

    2016-06-01

    With ongoing advancements in cancer-related treatments, the number of cancer survivors continues to grow globally, with numbers in the United States predicted to reach 18 million by 2020. As a result, it is expected that a greater number of patients will present with chemotherapy-related side effects. One entity in particular, chemotherapy-related cardiomyopathy (CCMP), is a known cardiotoxic manifestation associated with agents such as anthracyclines, trastuzumab, and tyrosine kinase inhibitors. Although such effects have been described in the medical literature for decades, concrete strategies for screening, prevention, and management of CCMP continue to be elusive owing to limited studies. Late recognition of CCMP is associated with a poorer prognosis, including a lack of clinical response to pharmacologic therapy, and end-stage heart failure. A number of advanced cardiac therapies, including cardiac resynchronization therapy, ventricular assist devices, and orthotopic cardiac transplantation, are available to for end-stage heart failure; however, the role of these therapies in CCMP is unclear. In this review, management of end-stage CCMP with the use of advanced therapies and their respective effectiveness are discussed, as well as clinical characteristics of patients undergoing these treatments. The relative paucity of data in this field highlights the importance and need for larger-scale longitudinal studies and long-term registries tracking the outcomes of cancer survivors who have received cardiotoxic cancer therapy to determine the overall incidence of end-stage CCMP, as well as prognostic factors that will ultimately guide such patients toward receiving appropriate end-stage care. PMID:27109619

  2. Temporal expression of pro-inflammatory cytokines and inducible nitric oxide synthase in experimental acute Chagasic cardiomyopathy.

    PubMed Central

    Chandrasekar, B.; Melby, P. C.; Troyer, D. A.; Colston, J. T.; Freeman, G. L.

    1998-01-01

    To characterize the kinetics of myocardial cytokine and inducible nitric oxide synthase (iNOS) expression in acute Chagasic cardiomyopathy, we studied a rat model of acute Trypanosoma cruzi infection. Rats were euthanized 36 hours and 5, 10, and 15 days after infection, and hearts were collected for histology, mRNA, and protein analyses. Histological analysis of myocardium showed a progressive increase in the number of amastigotes and mononuclear inflammatory cells. Organisms were first detected 5 days after intraperitoneal inoculation as isolated nests and became numerous by day 15. Northern blot analysis of total RNA revealed no signal for interleukin (IL)-1beta or tumor necrosis factor (TNF)-alpha and a weak signal for IL-6 in control hearts. High levels of expression for the three genes were detected in the infected animals at 36 hours after infection. Although IL-1beta and IL-6 levels increased steadily up to 10 days, TNF-alpha levels were the highest at 5 days, remained high at 10 days, and declined thereafter. Western blot analysis showed similar results to that of mRNA expression. No signal was detected for iNOS in the controls, but both its mRNA and protein were found in the infected animals, with levels being highest at 15 days after infection. Immunohistochemistry revealed no iNOS immunoreactivity in uninfected animals, but intense iNOS staining was detected in blood vessels of infected animals, which decreased progressively with period of infection. Positive staining for iNOS in cardiomyocytes was first detected at 36 hours after infection (at a time when there was no histological inflammatory reaction), which steadily increased, being the highest at 15 days after infection. These results indicate that, in addition to mechanical damage by T. cruzi, substantial pro-inflammatory cytokine production within the myocardium is likely to participate in the pathophysiology of acute Chagasic cardiomyopathy. Images Figure 1 Figure 3 Figure 5 Figure 6 Figure 7

  3. APACHE II Score, Rather Than Cardiac Function, May Predict Poor Prognosis in Patients With Stress-Induced Cardiomyopathy

    PubMed Central

    Joe, Byung-Hyun; Jo, Uk; Kim, Hyun-Soo; Park, Chang-Bum; Hwang, Hui-Jeong; Sohn, Il-Suk; Jin, Eun-Sun; Cho, Jin-Man; Park, Jeong-Hwan

    2012-01-01

    While the disease course of stress-induced cardiomyopathy (SIC) is usually benign, it can be fatal. The prognostic factors to predict poorer outcome are not well established, however. We analyzed the Acute Physiology And Chronic Health Evaluation (APACHE) II score to assess its value for predicting poor prognosis in patients with SIC. Thirty-seven consecutive patients with SIC were followed prospectively during their hospitalization. Clinical factors, including APACHE II score, coronary angiogram, echocardiography and cardiac enzymes at presentation were analyzed. Of the 37 patients, 27 patients (73%) were women. The mean age was 66.1 ± 15.6 yr, and the most common presentation was chest pain (38%). Initial echocardiographic left ventricular ejection fraction (EF) was 42.5% ± 9.3%, and the wall motion score index (WMSI) was 1.9 ± 0.3. Six patients (16%) expired during the follow-up period of hospitalization. Based on the analysis of characteristics and clinical factors, the only predictable variable in prognosis was APACHE II score. The patients with APACHE II score greater than 20 had tendency to expire than the others (P = 0.001). Based on present study, APACHE II score more than 20, rather than cardiac function, is associated with mortality in patients with SIC. PMID:22219614

  4. Remote ischemic preconditioning to reduce contrast-induced nephropathy: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Despite the increasing use of pre- and posthydration protocols and low-osmolar instead of high-osmolar iodine-containing contrast media, the incidence of contrast-induced nephropathy (CIN) is still significant. There is evidence that contrast media cause ischemia-reperfusion injury of the medulla. Remote ischemic preconditioning (RIPC) is a non-invasive, safe, and low-cost method to reduce ischemia-reperfusion injury. Methods The RIPCIN study is a multicenter, single-blinded, randomized controlled trial in which 76 patients at risk of CIN will receive standard hydration combined with RIPC or hydration with sham preconditioning. RIPC will be applied by four cycles of 5 min ischemia and 5 min reperfusion of the forearm by inflating a blood pressure cuff at 50 mmHg above the actual systolic pressure. The primary outcome measure will be the change in serum creatinine from baseline to 48 to 72 h after contrast administration. Discussion A recent pilot study reported that RIPC reduced the incidence of CIN after coronary angioplasty. The unusual high incidence of CIN in this study is of concern and limits its generalizability. Therefore, we propose a randomized controlled trial to study whether RIPC reduces contrast-induced kidney injury in patients at risk for CIN according to the Dutch guidelines. Trial registration Current Controlled Trials ISRCTN76496973 PMID:24721127

  5. FOXO4-Knockdown Suppresses Oxidative Stress-Induced Apoptosis of Early Pro-Angiogenic Cells and Augments Their Neovascularization Capacities in Ischemic Limbs

    PubMed Central

    Nakayoshi, Takaharu; Sasaki, Ken-ichiro; Kajimoto, Hidemi; Koiwaya, Hiroshi; Ohtsuka, Masanori; Ueno, Takafumi; Chibana, Hidetoshi; Itaya, Naoki; Sasaki, Masahiro; Yokoyama, Shinji; Fukumoto, Yoshihiro; Imaizumi, Tsutomu

    2014-01-01

    The effects of therapeutic angiogenesis by intramuscular injection of early pro-angiogenic cells (EPCs) to ischemic limbs are unsatisfactory. Oxidative stress in the ischemic limbs may accelerate apoptosis of injected EPCs, leading to less neovascularization. Forkhead transcription factor 4 (FOXO4) was reported to play a pivotal role in apoptosis signaling of EPCs in response to oxidative stress. Accordingly, we assessed whether FOXO4-knockdown EPCs (FOXO4KD-EPCs) could suppress the oxidative stress-induced apoptosis and augment the neovascularization capacity in ischemic limbs. We transfected small interfering RNA targeted against FOXO4 of human EPCs to generate FOXO4KD-EPCs and confirmed a successful knockdown. FOXO4KD-EPCs gained resistance to apoptosis in response to hydrogen peroxide in vitro. Oxidative stress stained by dihydroethidium was stronger for the immunodeficient rat ischemic limb tissue than for the rat non-ischemic one. Although the number of apoptotic EPCs injected into the rat ischemic limb was greater than that of apoptotic EPCs injected into the rat non-ischemic limb, FOXO4KD-EPCs injected into the rat ischemic limb brought less apoptosis and more neovascularization than EPCs. Taken together, the use of FOXO4KD-EPCs with resistance to oxidative stress-induced apoptosis may be a new strategy to augment the effects of therapeutic angiogenesis by intramuscular injection of EPCs. PMID:24663349

  6. Medication-induced Takotsubo Cardiomyopathy presenting with cardiogenic shock-utility of extracorporeal membrane oxygenation (ECMO): case report and review of the literature.

    PubMed

    Rojas-Marte, Geurys; John, Jinu; Sadiq, Adnan; Moskovits, Norbert; Saunders, Paul; Shani, Jacob

    2015-01-01

    Takotsubo cardiomyopathy (TTC) is a transient condition that affects the myocardium and is seen mostly in post-menopausal women secondary to an emotional or physical stressor; however, certain drugs have been described as cause of this syndrome. We report the case of a young female with medication--induced TTC, who presented with cardiogenic shock as initial manifestation, treated successfully with extracorporeal membrane oxygenation (ECMO). To our knowledge, this is the first case in the literature describing the use of ECMO in cardiogenic shock due to medication-induced TTC. PMID:25172356

  7. Peripartum cardiomyopathy.

    PubMed

    Okeke, Tc; Ezenyeaku, Cct; Ikeako, Lc

    2013-07-01

    Peripartum cardiomyopathy (PPCM) is a rare form of unexplained cardiac failure of unknown origin, unique to the pregnant woman with highly variable outcome associated with high morbidity and mortality. PPCM is fraught with controversies in its definition, epidemiology, pathophysiology, diagnosis and management. PPCM is frequently under diagnosed, inadequately treated and without a laid down follow-up regimen, thus, the aim of this review. Publications on PPCM were accessed using Medline, Google scholar and Pubmed databases. Relevant materials on PPCM, selected references from internet services, journals, textbooks, and lecture notes on PPCM were also accessed and critically reviewed. PPCM is multifactorial in origin. It is a diagnosis of exclusion and should be based on classic echocardiographic criteria. The outcome of PPCM is also highly variable with high morbidity and mortality rates. Future pregnancies are not recommended in women with persistent ventricular dysfunction because the heart cannot tolerate increased cardiovascular workload associated with the pregnancy. Although, multiparity is associated with PPCM, there is an increased risk of fetal prematurity and fetal loss. PPCM is a rare form of dilated cardiomyopathy of unknown origin, unique to pregnant women. The pathophysiology is poorly understood. Echocardiography is central to diagnosis of PPCM and effective treatment monitoring in patients of PPCM. The outcome is highly variable and related to reversal of ventricular dysfunction. PMID:24116305

  8. The possible antianginal effect of allopurinol in vasopressin-induced ischemic model in rats.

    PubMed

    Al-Zahrani, Yahya A; Al-Harthi, Sameer E; Khan, Lateef M; El-Bassossy, Hani M; Edris, Sherif M; A Sattar, Mai A Alim

    2015-10-01

    The anti-anginal effects of allopurinol were assessed in experimental model rats of angina and their effects were evaluated with amlodipine. In the vasopressin-induced angina model, oral administration of allopurinol in dose of 10 mg/kg revealed remarkably analogous effects in comparison with amlodipine such as dose-dependent suppression of vasopressin-triggered time, duration and severity of ST depression. In addition, allopurinol produced dose dependent suppression of plasma Malondialdehyde (MDA) level, systolic blood pressure, cardiac contractility and cardiac oxygen consumption; while in contrast, amlodipine minimally suppressed the elevation of plasma MDA level. Endothelial NO synthase (eNOS) expression, serum nitrate were strikingly increased, however lipid profile was significantly reduced. Seemingly, allopurinol was found to be more potent than amlodipine - a calcium channel antagonist. To conclude, it was explicitly observed and verified that on the ischemic electrocardiography (ECG) changes in angina pectoris model in rats, allopurinol exerts a significant protective effects, reminiscent of enhancement of vascular oxidative stress, function of endothelial cells, improved coronary blood flow in addition to the potential enhancement in myocardial stress. Moreover, our findings were in conformity with several human studies. PMID:26594114

  9. The possible antianginal effect of allopurinol in vasopressin-induced ischemic model in rats

    PubMed Central

    Al-Zahrani, Yahya A.; Al-Harthi, Sameer E.; Khan, Lateef M.; El-Bassossy, Hani M.; Edris, Sherif M.; A. Sattar, Mai A. Alim

    2015-01-01

    The anti-anginal effects of allopurinol were assessed in experimental model rats of angina and their effects were evaluated with amlodipine. In the vasopressin-induced angina model, oral administration of allopurinol in dose of 10 mg/kg revealed remarkably analogous effects in comparison with amlodipine such as dose-dependent suppression of vasopressin-triggered time, duration and severity of ST depression. In addition, allopurinol produced dose dependent suppression of plasma Malondialdehyde (MDA) level, systolic blood pressure, cardiac contractility and cardiac oxygen consumption; while in contrast, amlodipine minimally suppressed the elevation of plasma MDA level. Endothelial NO synthase (eNOS) expression, serum nitrate were strikingly increased, however lipid profile was significantly reduced. Seemingly, allopurinol was found to be more potent than amlodipine – a calcium channel antagonist. To conclude, it was explicitly observed and verified that on the ischemic electrocardiography (ECG) changes in angina pectoris model in rats, allopurinol exerts a significant protective effects, reminiscent of enhancement of vascular oxidative stress, function of endothelial cells, improved coronary blood flow in addition to the potential enhancement in myocardial stress. Moreover, our findings were in conformity with several human studies. PMID:26594114

  10. Arrhythmogenic cardiomyopathy.

    PubMed

    Pilichou, Kalliopi; Thiene, Gaetano; Bauce, Barbara; Rigato, Ilaria; Lazzarini, Elisabetta; Migliore, Federico; Perazzolo Marra, Martina; Rizzo, Stefania; Zorzi, Alessandro; Daliento, Luciano; Corrado, Domenico; Basso, Cristina

    2016-01-01

    Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease clinically characterized by life-threatening ventricular arrhythmias and pathologically by an acquired and progressive dystrophy of the ventricular myocardium with fibro-fatty replacement. Due to an estimated prevalence of 1:2000-1:5000, AC is listed among rare diseases. A familial background consistent with an autosomal-dominant trait of inheritance is present in most of AC patients; recessive variants have also been reported, either or not associated with palmoplantar keratoderma and woolly hair. AC-causing genes mostly encode major components of the cardiac desmosome and up to 50% of AC probands harbor mutations in one of them. Mutations in non-desmosomal genes have been also described in a minority of AC patients, predisposing to the same or an overlapping disease phenotype. Compound/digenic heterozygosity was identified in up to 25% of AC-causing desmosomal gene mutation carriers, in part explaining the phenotypic variability. Abnormal trafficking of intercellular proteins to the intercalated discs of cardiomyocytes and Wnt/beta catenin and Hippo signaling pathways have been implicated in disease pathogenesis.AC is a major cause of sudden death in the young and in athletes. The clinical picture may include a sub-clinical phase; an overt electrical disorder; and right ventricular or biventricular pump failure. Ventricular fibrillation can occur at any stage. Genotype-phenotype correlation studies led to identify biventricular and dominant left ventricular variants, thus supporting the use of the broader term AC.Since there is no "gold standard" to reach the diagnosis of AC, multiple categories of diagnostic information have been combined and the criteria recently updated, to improve diagnostic sensitivity while maintaining specificity. Among diagnostic tools, contrast enhanced cardiac magnetic resonance is playing a major role in detecting left dominant forms of AC, even preceding morpho

  11. Molecular genetics and pathogenesis of cardiomyopathy.

    PubMed

    Kimura, Akinori

    2016-01-01

    Cardiomyopathy is defined as a disease of functional impairment in the cardiac muscle and its etiology includes both extrinsic and intrinsic factors. Cardiomyopathy caused by the intrinsic factors is called as primary cardiomyopathy of which two major clinical phenotypes are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Genetic approaches have revealed the disease genes for hereditary primary cardiomyopathy and functional studies have demonstrated that characteristic functional alterations induced by the disease-associated mutations are closely related to the clinical types, such that increased and decreased Ca(2+) sensitivities of muscle contraction are associated with HCM and DCM, respectively. In addition, recent studies have suggested that mutations in the Z-disc components found in HCM and DCM may result in increased and decreased stiffness of sarcomere, respectively. Moreover, functional analysis of mutations in the other components of cardiac muscle have suggested that the altered response to metabolic stresses is associated with cardiomyopathy, further indicating the heterogeneity in the etiology and pathogenesis of cardiomyopathy. PMID:26178429

  12. Peripartum cardiomyopathy

    PubMed Central

    Blauwet, Lori A; Sliwa, Karen

    2011-01-01

    Peripartum cardiomyopathy (PPCM) is a potentially devastating disease that affects women during the last months of pregnancy or the first months after delivery. The aetiology and pathogenesis of this disease remain unclear, but oxidative stress and the generation of a cardiotoxic fragment of prolactin may play key roles. Diagnosing PPCM remains a challenge, as symptoms may mimic those women experience during normal pregnancy and the peripartum period. A high index of suspicion is thus necessary to make the diagnosis. Patients with PPCM have a varied clinical course, as some patients achieve full recovery while others progress to end-stage heart failure and even death. Standard heart failure treatment is indicated, although special provisions are necessary in pregnant and lactating women. Additional research into the pathophysiology of this disease, including possible genetic contributions, may lead to novel treatment strategies that can improve outcomes.

  13. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy

    PubMed Central

    Johnson, Bryce V.; Gelb, Bruce D.; Costa, Kevin D.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  14. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    PubMed

    Cashman, Timothy J; Josowitz, Rebecca; Johnson, Bryce V; Gelb, Bruce D; Costa, Kevin D

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  15. Modeling structural and functional deficiencies of RBM20 familial dilated cardiomyopathy using human induced pluripotent stem cells.

    PubMed

    Wyles, Saranya P; Li, Xing; Hrstka, Sybil C; Reyes, Santiago; Oommen, Saji; Beraldi, Rosanna; Edwards, Jessica; Terzic, Andre; Olson, Timothy M; Nelson, Timothy J

    2016-01-15

    Dilated cardiomyopathy (DCM) is a leading cause of heart failure. In families with autosomal-dominant DCM, heterozygous missense mutations were identified in RNA-binding motif protein 20 (RBM20), a spliceosome protein induced during early cardiogenesis. Dermal fibroblasts from two unrelated patients harboring an RBM20 R636S missense mutation were reprogrammed to human induced pluripotent stem cells (hiPSCs) and differentiated to beating cardiomyocytes (CMs). Stage-specific transcriptome profiling identified differentially expressed genes ranging from angiogenesis regulator to embryonic heart transcription factor as initial molecular aberrations. Furthermore, gene expression analysis for RBM20-dependent splice variants affected sarcomeric (TTN and LDB3) and calcium (Ca(2+)) handling (CAMK2D and CACNA1C) genes. Indeed, RBM20 hiPSC-CMs exhibited increased sarcomeric length (RBM20: 1.747 ± 0.238 µm versus control: 1.404 ± 0.194 µm; P < 0.0001) and decreased sarcomeric width (RBM20: 0.791 ± 0.609 µm versus control: 0.943 ± 0.166 µm; P < 0.0001). Additionally, CMs showed defective Ca(2+) handling machinery with prolonged Ca(2+) levels in the cytoplasm as measured by greater area under the curve (RBM20: 814.718 ± 94.343 AU versus control: 206.941 ± 22.417 AU; P < 0.05) and higher Ca(2+) spike amplitude (RBM20: 35.281 ± 4.060 AU versus control:18.484 ± 1.518 AU; P < 0.05). β-adrenergic stress induced with 10 µm norepinephrine demonstrated increased susceptibility to sarcomeric disorganization (RBM20: 86 ± 10.5% versus control: 40 ± 7%; P < 0.001). This study features the first hiPSC model of RBM20 familial DCM. By monitoring human cardiac disease according to stage-specific cardiogenesis, this study demonstrates RBM20 familial DCM is a developmental disorder initiated by molecular defects that pattern maladaptive cellular mechanisms of pathological cardiac remodeling. Indeed, hiPSC-CMs recapitulate RBM20 familial DCM phenotype in a dish and establish a tool

  16. Children's Cardiomyopathy Foundation

    MedlinePlus

    Search The Children's Cardiomyopathy Foundation (CCF) is a national, non-profit organization focused on pediatric cardiomyopathy, a chronic disease of the heart muscle. CCF is dedicated to accelerating the search for ...

  17. Types of Cardiomyopathy

    MedlinePlus

    ... ventricles, making it harder for the heart to pump blood. Hypertrophic cardiomyopathy also can cause stiffness of the ... Over time, the heart loses the ability to pump blood effectively. Dilated cardiomyopathy can lead to heart failure , ...

  18. RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF

    PubMed Central

    Xu, Yang; Wang, Jingye; Song, Xinghui; Qu, Lindi; Wei, Ruili; He, Fangping; Wang, Kai; Luo, Benyan

    2016-01-01

    We have reported that nuclear translocation of Receptor-interacting protein 3 (RIP3) involves in neuronal programmed necrosis after 20-min global cerebral ischemia/reperfusion (I/R) injury. Herein, the underlying mechanisms and the nuclear role of RIP3 were investigated further. The necroptosis inhibitor necrostatin-1 (Nec-1), the autophagy inhibitor 3-methyladenine (3-MA), and the caspase-3 inhibitor acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspart-1-al (Ac-DMQD-CHO) were administered intracerebroventricularly 1 h before ischemia. Protein expression, location and interaction was determined by western blot, immunofluorescence or immunoprecipitation. Most CA1 neuronal death induced by 20-min global cerebral I/R injury was TUNEL-positive. Neuronal death and rat mortality rates were greatly inhibited by Nec-1 and 3-MA pre-treatment, but not by Ac-DMQD-CHO. And no activation of caspase-3 was detected after I/R injury. Caspase-8 was expressed richly in GFAP-positive astrocytes and Iba-1-positive microglia, but was not detected in Neun-positive neurons. The nuclear translocation and co-localization of RIP3 and AIF, and their interaction were detected after I/R injury. These processes were inhibited by Nec-1 and 3-MA pre-treatment, but not by Ac-DMQD-CHO. The formation of an RIP3-AIF complex and its nuclear translocation are critical to ischemic neuronal DNA degradation and programmed necrosis. Neurons are more likely to enter the programmed necrosis signal pathway for the loss of caspase-8 suppression. PMID:27377128

  19. Nrf2 activation in astrocytes contributes to spinal cord ischemic tolerance induced by hyperbaric oxygen preconditioning.

    PubMed

    Xu, Jiajun; Huang, Guoyang; Zhang, Kun; Sun, Jinchuan; Xu, Tao; Li, Runping; Tao, Hengyi; Xu, Weigang

    2014-08-01

    conclusion, our findings demonstrated that spinal cord ischemic tolerance induced by HBO-PC may be mainly related to Nrf2 activation in astrocytes. PMID:24716787

  20. Ischemic Stroke

    MedlinePlus

    A stroke is a medical emergency. There are two types - ischemic and hemorrhagic. Ischemic stroke is the most common type. It is usually ... are at risk for having a more serious stroke. Symptoms of stroke are Sudden numbness or weakness ...

  1. The Loss of Myocardial Benefit following Ischemic Preconditioning Is Associated with Dysregulation of Iron Homeostasis in Diet-Induced Diabetes

    PubMed Central

    Berenshtein, Eduard; Eliashar, Ron; Chevion, Mordechai

    2016-01-01

    Whether the diabetic heart benefits from ischemic preconditioning (IPC), similar to the non-diabetic heart, is a subject of controversy. We recently proposed new roles for iron and ferritin in IPC-protection in Type 1-like streptozotocin-induced diabetic rat heart. Here, we investigated iron homeostasis in Cohen diabetic sensitive rat (CDs) that develop hyperglycemia when fed on a high-sucrose/low-copper diet (HSD), but maintain normoglycemia on regular-diet (RD). Control Cohen-resistant rats (CDr) maintain normoglycemia on either diet. The IPC procedure improved the post-ischemic recovery of normoglycemic hearts (CDr-RD, CDr-HSD and CDs-RD). CDs-HSD hearts failed to show IPC-associated protection. The recovery of these CDs-HSD hearts following I/R (without prior IPC) was better than their RD controls. During IPC ferritin levels increased in normoglycemic hearts, and its level was maintained nearly constant during the subsequent prolonged ischemia, but decayed to its baseline level during the reperfusion phase. In CDs-HSD hearts the baseline levels of ferritin and ferritin-saturation with iron were notably higher than in the controls, and remained unchanged during the entire experiment. This unique and abnormal pattern of post-ischemic recovery of CDs-HSD hearts is associated with marked changes in myocardial iron homeostasis, and suggests that iron and iron-proteins play a causative role/s in the etiology of diabetes-associated cardiovascular disorders. PMID:27458721

  2. The Loss of Myocardial Benefit following Ischemic Preconditioning Is Associated with Dysregulation of Iron Homeostasis in Diet-Induced Diabetes.

    PubMed

    Vinokur, Vladimir; Weksler-Zangen, Sarah; Berenshtein, Eduard; Eliashar, Ron; Chevion, Mordechai

    2016-01-01

    Whether the diabetic heart benefits from ischemic preconditioning (IPC), similar to the non-diabetic heart, is a subject of controversy. We recently proposed new roles for iron and ferritin in IPC-protection in Type 1-like streptozotocin-induced diabetic rat heart. Here, we investigated iron homeostasis in Cohen diabetic sensitive rat (CDs) that develop hyperglycemia when fed on a high-sucrose/low-copper diet (HSD), but maintain normoglycemia on regular-diet (RD). Control Cohen-resistant rats (CDr) maintain normoglycemia on either diet. The IPC procedure improved the post-ischemic recovery of normoglycemic hearts (CDr-RD, CDr-HSD and CDs-RD). CDs-HSD hearts failed to show IPC-associated protection. The recovery of these CDs-HSD hearts following I/R (without prior IPC) was better than their RD controls. During IPC ferritin levels increased in normoglycemic hearts, and its level was maintained nearly constant during the subsequent prolonged ischemia, but decayed to its baseline level during the reperfusion phase. In CDs-HSD hearts the baseline levels of ferritin and ferritin-saturation with iron were notably higher than in the controls, and remained unchanged during the entire experiment. This unique and abnormal pattern of post-ischemic recovery of CDs-HSD hearts is associated with marked changes in myocardial iron homeostasis, and suggests that iron and iron-proteins play a causative role/s in the etiology of diabetes-associated cardiovascular disorders. PMID:27458721

  3. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    PubMed Central

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  4. Inducible Glutamate Oxaloacetate Transaminase as a Therapeutic Target Against Ischemic Stroke

    PubMed Central

    Khanna, Savita; Briggs, Zachary

    2015-01-01

    Abstract Significance: Glutamate serves multi-faceted (patho)physiological functions in the central nervous system as the most abundant excitatory neurotransmitter and under pathological conditions as a potent neurotoxin. Regarding the latter, elevated extracellular glutamate is known to play a central role in ischemic stroke brain injury. Recent Advances: Glutamate oxaloacetate transaminase (GOT) has emerged as a new therapeutic target in protecting against ischemic stroke injury. Oxygen-sensitive induction of GOT expression and activity during ischemic stroke lowers glutamate levels at the stroke site while sustaining adenosine triphosphate levels in brain. The energy demands of the brain are among the highest of all organs underscoring the need to quickly mobilize alternative carbon skeletons for metabolism in the absence of glucose during ischemic stroke. Recent work builds on the important observation of Hans Krebs that GOT-mediated metabolism of glutamate generates tri-carboxylic acid (TCA) cycle intermediates in brain tissue. Taken together, outcomes suggest GOT may enable the transformative switch of otherwise excitotoxic glutamate into life-sustaining TCA cycle intermediates during ischemic stroke. Critical Issues: Neuroprotective strategies that focus solely on blocking mechanisms of glutamate-mediated excitotoxicity have historically failed in clinical trials. That GOT can enable glutamate to assume the role of a survival factor represents a paradigm shift necessary to develop the overall significance of glutamate in stroke biology. Future Directions: Ongoing efforts are focused to develop the therapeutic significance of GOT in stroke-affected brain. Small molecules that target induction of GOT expression and activity in the ischemic penumbra are the focus of ongoing studies. Antioxid. Redox Signal. 22, 175–186. PMID:25343301

  5. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia and pulmonary inflammation in heart failure-prone rats.

    PubMed

    Carll, Alex P; Haykal-Coates, Najwa; Winsett, Darrell W; Hazari, Mehdi S; Ledbetter, Allen D; Richards, Judy H; Cascio, Wayne E; Costa, Daniel L; Farraj, Aimen K

    2015-02-01

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiological events precipitating these outcomes remain poorly understood but may involve inflammation, oxidative stress, arrhythmia and autonomic nervous system imbalance. Cardiomyopathy results from cardiac injury, is the leading cause of heart failure, and can be induced in heart failure-prone rats through sub-chronic infusion of isoproterenol (ISO). To test whether cardiomyopathy confers susceptibility to inhaled PM2.5 and can elucidate potential mechanisms, we investigated the cardiophysiologic, ventilatory, inflammatory and oxidative effects of a single nose-only inhalation of a metal-rich PM2.5 (580 µg/m(3), 4 h) in ISO-pretreated (35 days × 1.0 mg/kg/day sc) rats. During the 5 days post-treatment, ISO-treated rats had decreased HR and BP and increased pre-ejection period (PEP, an inverse correlate of contractility) relative to saline-treated rats. Before inhalation exposure, ISO-pretreated rats had increased PR and ventricular repolarization time (QT) and heterogeneity (Tp-Te). Relative to clean air, PM2.5 further prolonged PR-interval and decreased systolic BP during inhalation exposure; increased tidal volume, expiratory time, heart rate variability (HRV) parameters of parasympathetic tone and atrioventricular block arrhythmias over the hours post-exposure; increased pulmonary neutrophils, macrophages and total antioxidant status one day post-exposure; and decreased pulmonary glutathione peroxidase 8 weeks after exposure, with all effects occurring exclusively in ISO-pretreated rats but not saline-pretreated rats. Ultimately, our findings indicate that cardiomyopathy confers susceptibility to the oxidative, inflammatory, ventilatory, autonomic and arrhythmogenic effects of acute PM2.5 inhalation. PMID:25600220

  6. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia, and pulmonary inflammation in heart failure-prone rats

    PubMed Central

    Carll, Alex P.; Haykal-Coates, Najwa; Winsett, Darrell W.; Hazari, Mehdi S.; Ledbetter, Allen D.; Richards, Judy H.; Cascio, Wayne E.; Costa, Daniel L.; Farraj, Aimen K.

    2016-01-01

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiologic events precipitating these outcomes remain poorly understood but may involve inflammation, oxidative stress, arrhythmia, and autonomic nervous system imbalance. Cardiomyopathy results from cardiac injury, is the leading cause of heart failure, and can be induced in heart failure-prone rats through sub-chronic infusion of isoproterenol (ISO). To test whether cardiomyopathy confers susceptibility to inhaled PM2.5 and can elucidate potential mechanisms, we investigated the cardiophysiologic, ventilatory, inflammatory, and oxidative effects of a single nose-only inhalation of a metal-rich PM2.5 (580 μg/m3, 4h) in ISO-pretreated (35 days * 1.0 mg/kg/day sc) rats. During the 5 days post-treatment, ISO-treated rats had decreased HR and BP and increased pre-ejection period (PEP, an inverse correlate of contractility) relative to saline-treated rats. Before inhalation exposure, ISO-pretreated rats had increased PR and ventricular repolarization time (QT) and heterogeneity (Tp-Te). Relative to clean air, PM2.5 further prolonged PR-interval and decreased systolic BP during inhalation exposure; increased tidal volume, expiratory time, heart rate variability (HRV) parameters of parasympathetic tone, and atrioventricular block arrhythmias over the hours post-exposure; increased pulmonary neutrophils, macrophages, and total antioxidant status one day post-exposure; and decreased pulmonary glutathione peroxidase 8 weeks after exposure, with all effects occurring exclusively in ISO-pretreated rats but not saline-pretreated rats. Ultimately, our findings indicate that cardiomyopathy confers susceptibility to the oxidative, inflammatory, ventilatory, autonomic, and arrhythmogenic effects of acute PM2.5 inhalation. PMID:25600220

  7. Ischemic colitis induced by the newly reformulated multicomponent weight-loss supplement Hydroxycut®

    PubMed Central

    Sherid, Muhammed; Samo, Salih; Sulaiman, Samian; Gaziano, Joseph H

    2013-01-01

    Ischemic colitis accounts for 6%-18% of causes of acute lower gastrointestinal bleeding. It is more often multifactorial and more common in elderly. Drugs are considered important causative agents of this disease with different mechanisms. In this paper, we describe a 37-year-old otherwise healthy female presented with sudden onset diffuse abdominal pain and bloody stool. Radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her only suspected factor was hydroxycut which she had been taking for a period of 1 mo prior to her presentation. Her condition improved uneventfully after cessation of hydroxycut, bowel rest, intravenous hydration, and antibiotics. This is a first case of ischemic colitis with clear relationship with hydroxycut use (Naranjo score of 7). Our case demonstrates the importance of questioning patients regarding the usage of dietary supplements; especially since many patients consider them safe and do not disclose their use voluntarily to their physicians. Hydroxycut has to be considered as a potential trigger for otherwise unexplained ischemic colitis. PMID:23596542

  8. Takotsubo Cardiomyopathy: A New Perspective in Asthma

    PubMed Central

    Marmoush, Fady Y.; Barbour, Mohamad F.; Noonan, Thomas E.; Al-Qadi, Mazen O.

    2015-01-01

    Takotsubo cardiomyopathy (TCM) is an entity of reversible cardiomyopathy known for its association with physical or emotional stress and may mimic myocardial infarction. We report an exceedingly rare case of albuterol-induced TCM with moderate asthma exacerbation. An interesting association that may help in understanding the etiology of TCM in the asthmatic population. Although the prognosis of TCM is excellent, it is crucial to recognize beta agonists as a potential stressor. PMID:26246918

  9. Tako-tsubo cardiomyopathy induced by emotional stress leading to severe mitral regurgitation, cardiogenic shock and cardiopulmonary arrest.

    PubMed

    Yaghoubi, Ali Reza; Ansarin, Khalil; Hashemzadeh, Shahriar; Azhough, Ramin; Faraji, Smaeil; Bozorgi, Farshid

    2009-07-10

    Tako-Tsubo cardiomyopathy (TTC) which is usually precipitated by profound emotional and physical stress has been widely reported in the past. In this case we report a young female patient who developed sudden dyspnea and palpitation after an profound stress (fierce argument).The patient had characteristic feature of progressive pulmonary edema. Her symptom worsened gradually leading to cardiopulmonary arrest in a few hours from the onset. After resuscitation an immediately performed echocardiography showed a severe mitral regurgitation due to rupture of antromedial papillary muscle. Left ventricular function showed akinetic mid-to-distal portion of the left ventricular chamber and hyperkinetic in basal segment. Inotrop infusion and aortic balloon pump placement was done because of unstable homodynamics. Semi-elective surgical valve replacement was performed. One year after the acute event the patient remained asymptomatic. Clinicians should recognize that Tako-Tsubo cardiomyopathy is one etiology of acute pulmonary edema with normal coronary artery finding. PMID:18657330

  10. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways

    PubMed Central

    Zhang, Yang; Wang, Jing-Hao; Zhang, Yi-Yuan; Wang, Ying-Zhe; Wang, Jin; Zhao, Yue; Jin, Xue-Xin; Xue, Gen-Long; Li, Peng-Hui; Sun, Yi-Lin; Huang, Qi-He; Song, Xiao-Tong; Zhang, Zhi-Ren; Gao, Xu; Yang, Bao-Feng; Du, Zhi-Min; Pan, Zhen-Wei

    2016-01-01

    Interleukin 6 (IL-6) has been shown to be an important regulator of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-6 in the development of diabetic cardiomyopathy and the underlying mechanisms. Cardiac function of IL-6 knockout mice was significantly improved and interstitial fibrosis was apparently alleviated in comparison with wildtype (WT) diabetic mice induced by streptozotocin (STZ). Treatment with IL-6 significantly promoted the proliferation and collagen production of cultured cardiac fibroblasts (CFs). High glucose treatment increased collagen production, which were mitigated in CFs from IL-6 KO mice. Moreover, IL-6 knockout alleviated the up-regulation of TGFβ1 in diabetic hearts of mice and cultured CFs treated with high glucose or IL-6. Furthermore, the expression of miR-29 reduced upon IL-6 treatment, while increased in IL-6 KO hearts. Overexpression of miR-29 blocked the pro-fibrotic effects of IL-6 on cultured CFs. In summary, deletion of IL-6 is able to mitigate myocardial fibrosis and improve cardiac function of diabetic mice. The mechanism involves the regulation of IL-6 on TGFβ1 and miR-29 pathway. This study indicates the therapeutic potential of IL-6 suppression on diabetic cardiomyopathy disease associated with fibrosis. PMID:26972749

  11. Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model.

    PubMed

    Yu, Haitao; Zhen, Juan; Yang, Yang; Gu, Jinning; Wu, Suisheng; Liu, Quan

    2016-04-01

    Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress-induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)-I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase-12. Treatment with ginsenoside Rg1 (10-20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase-12 protein expression in a dose-dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress-induced apoptosis in diabetic rats. PMID:26869403

  12. Photodynamic impact induces ischemic tolerance in models in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Demyanenko, Svetlana; Sharifulina, Svetlana; Berezhnaya, Elena; Kovaleva, Vera; Neginskaya, Maria; Zhukovskaya, Ludmila

    2016-04-01

    Ischemic tolerance determines resistance to lethal ischemia gained by a prior sublethal stimulus (i.e., preconditioning). We reproduced this effect in two variants. In vitro the preliminary short (5 s) photodynamic treatment (PDT) (photosensitizer Photosens, 10 nM, 30 min preincubation; laser: 670 nm, 100 mW/cm2) significantly reduced the necrosis of neurons and glial cells in the isolated crayfish stretch receptor, which was caused by following 30-min PDT by 66% and 46%, respectively. In vivo PDT of the rat cerebral cortex with hydrophilic photosensitizer Rose Bengal (i.v. administration, laser irradiation: 532 nm, 60 mW/cm2, 3 mm beam diameter, 30 min) caused occlusion of small brain vessels and local photothrombotic infarct (PTI). It is a model of ischemic stroke. Cerebral tissue edema and global necrosis of neurons and glial cells occurred in the infarction core, which was surrounded by a 1.5 mm transition zone, penumbra. The maximal pericellular edema, hypo- and hyperchromia of neurons were observed in penumbra 24 h after PTI. The repeated laser irradiation of the contralateral cerebral cortex also caused PTI but lesser as compared with single PDT. Preliminary unilateral PTI provided ischemic tolerance: at 14 day after second exposure the PTI volume significantly decreased by 24% than in the case of a single exposure. Sensorimotor deficits in PDT-treated rats was registered using the behavioral tests. The preliminary PTI caused the preconditioning effect.

  13. Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats.

    PubMed

    Jeddi, Sajad; Zaman, Jalal; Zadeh-Vakili, Azita; Zarkesh, Maryam; Ghasemi, Asghar

    2016-04-15

    Cardioprotection by ischemic postconditioning (IPost) is negated in hypothyroidism; the underlying mechanisms however are unknown. This study aimed at determining whether changes in Bax, Bcl-2, eNOS, and iNOS gene expressions are involved in the negating effects of IPost against ischemia-reperfusion (IR) injury in hypothyroidism. The hearts from control and hypothyroid rats were perfused in Langendorff apparatus and exposed to 30 min ischemia, followed by 120 min reperfusion and IPost. In a subgroup of hypothyroid rats, ischemia duration was extended to 40 min. Hemodynamic parameters, infarct size, and gene expressions were measured. Compared to controls, hypothyroid rats with 30 min ischemia had higher recovery of post-ischemic LVDP and ± dp/dt, confirmed by decreased CK and LDH levels (187 ± 16 vs. 485 ± 41 and 191 ± 9 vs. 702 ± 48 U/L, respectively; p<0.05), decreased infarct size (6.7 ± 1.1 vs. 46.1 ± 1.7%; p<0.05), and a reduced DNA laddering pattern. Recovery of post-ischemic LVDP and ± dp/dt decreased and infarct size increased following extension of ischemia period in hypothyroid rats. IPost increased eNOS and Bcl-2 expression by 3.2-fold and 3.7-fold and decreased Bax and iNOS expression by 79% and 38%, respectively; it also reduced IR-induced DNA laddering pattern in controls, whereas no change was observed in hypothyroid rats, regardless of the ischemia period. In conclusion, hearts from hypothyroid rats were resistant to IR injury, partly due to the lower expression of iNOS and subsequent reduction in apoptosis after IR. In hypothyroid rats, IPost was not associated with further reduction in iNOS expression and failed to provide additional cardioprotection against ischemia. PMID:26774797

  14. A Combination of Remote Ischemic Perconditioning and Cerebral Ischemic Postconditioning Inhibits Autophagy to Attenuate Plasma HMGB1 and Induce Neuroprotection Against Stroke in Rat.

    PubMed

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-04-01

    Remote ischemic perconditioning (RIPerC) and ischemic postconditioning (IPOC) are well-acknowledged neuroprotective procedures during ischemic injury. The present study established a combined RIPerC and IPOC (RIPerC + IPOC) model in rats and studied how it would regulate the autophagy process and affect HMGB1 levels in a rat model of middle cerebral artery occlusion (MCAO). Rats with MCAO were treated with RIPerC by fastening and release of the left hind limb to achieve 4 cycles of 5 min remote ischemia reperfusion, 40 min prior to cerebral reperfusion, and then treated with IPOC by exposing the cerebral middle artery to 3 cycles of 30 s reperfusion/30 s occlusion at the onset of cerebral reperfusion. Infarction volumes, neurological deficits, and pathological changes were assessed 24 h after ischemia. The autophagy activator rapamycin (RAP) and the autophagy inhibitor 3-methyladenine (3-MA) were administrated for further mechanism. The expression and location of HMGB1 and the autophagy-related proteins like LC3, Beclin1, and P62 as well as plasma HMGB1 levels were measured. Our results suggested that RIPerC + IPOC attenuated plasma HMGB1 levels to intensify its neuroprotective effect against cerebral ischemic reperfusion injury via inhibiting the autophagy process. PMID:26852332

  15. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice

    PubMed Central

    Jung, Yeon Suk; Park, Jung Hwa; Kim, Hyunha; Kim, So Young; Hwang, Ji Young; Hong, Ki Whan; Bae, Sun Sik; Choi, Byung Tae; Lee, Sae-Won; Shin, Hwa Kyoung

    2016-01-01

    Aim: Increasing evidence suggests that probucol, a lipid-lowering agent with anti-oxidant activities, may be useful for the treatment of ischemic stroke with hyperlipidemia via reduction in cholesterol and neuroinflammation. In this study we examined whether probucol could protect against brain ischemic injury via anti-neuroinflammatory action in normal and hyperlipidemic mice. Methods: Primary mouse microglia and murine BV2 microglia were exposed to lipopolysaccharide (LPS) for 3 h, and the release NO, PGE2, IL-1β and IL-6, as well as the changes in NF-κB, MAPK and AP-1 signaling pathways were assessed. ApoE KO mice were fed a high-fat diet containing 0.004%, 0.02%, 0.1% (wt/wt) probucol for 10 weeks, whereas normal C57BL/6J mice received probucol (3, 10, 30 mg·kg-1·d-1, po) for 4 d. Then all the mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). The neurological deficits were scored 24 h after the surgery, and then brains were removed for measuring the cerebral infarct size and the production of pro-inflammatory mediators. Results: In LPS-treated BV2 cells and primary microglial cells, pretreatment with probucol (1, 5, 10 μmol/L) dose-dependently inhibited the release of NO, PGE2, IL-1β and IL-6, which occurred at the transcription levels. Furthermore, the inhibitory actions of probucol were associated with the downregulation of the NF-κB, MAPK and AP-1 signaling pathways. In the normal mice with MCAO, pre-administration of probucol dose-dependently decreased the infarct volume and improved neurological function. These effects were accompanied by the decreased production of pro-inflammatory mediators (iNOS, COX-2, IL-1, IL-6). In ApoE KO mice fed a high-fat diet, pre-administration of 0.1% probucol significantly reduced the infarct volume, improved the neurological deficits following MCAO, and decreased the total- and LDL-cholesterol levels. Conclusion: Probucol inhibits LPS-induced microglia activation and

  16. Intramyocardial VEGF-B167 Gene Delivery Delays the Progression Towards Congestive Failure in Dogs With Pacing-Induced Dilated Cardiomyopathy

    PubMed Central

    Pepe, Martino; Mamdani, Mohammed; Zentilin, Lorena; Csiszar, Anna; Qanud, Khaled; Zacchigna, Serena; Ungvari, Zoltan; Puligadda, Uday; Moimas, Silvia; Xu, Xiaobin; Edwards, John G.; Hintze, Thomas H.; Giacca, Mauro; Recchia, Fabio A.

    2016-01-01

    Rationale Vascular endothelial growth factor (VEGF)-B selectively binds VEGF receptor (VEGFR)-1, a receptor that does not mediate angiogenesis, and is emerging as a major cytoprotective factor. Objective To test the hypothesis that VEGF-B exerts non–angiogenesis-related cardioprotective effects in nonischemic dilated cardiomyopathy. Methods and Results AAV-9–carried VEGF-B167 cDNA (1012 genome copies) was injected into the myocardium of chronically instrumented dogs developing tachypacing-induced dilated cardiomyopathy. After 4 weeks of pacing, green fluorescent protein–transduced dogs (AAV-control, n=8) were in overt congestive heart failure, whereas the VEGF-B–transduced (AAV-VEGF-B, n=8) were still in a well-compensated state, with physiological arterial PO2. Left ventricular (LV) end-diastolic pressure in AAV-VEGF-B and AAV-control was, respectively, 15.0±1.5 versus 26.7±1.8 mm Hg and LV regional fractional shortening was 9.4±1.6% versus 3.0±0.6% (all P<0.05). VEGF-B prevented LV wall thinning but did not induce cardiac hypertrophy and did not affect the density of α-smooth muscle actin–positive microvessels, whereas it normalized TUNEL-positive cardiomyocytes and caspase-9 and -3 activation. Consistently, activated Akt, a major negative regulator of apoptosis, was superphysiological in AAV-VEGF-B, whereas the proapoptotic intracellular mediators glycogen synthase kinase (GSK)-3β and FoxO3a (Akt targets) were activated in AAV-control, but not in AAV-VEGF-B. Cardiac VEGFR-1 expression was reduced 4-fold in all paced dogs, suggesting that exogenous VEGF-B167 exerted a compensatory receptor stimulation. The cytoprotective effects of VEGF-B167 were further elucidated in cultured rat neonatal cardiomyocytes exposed to 10−8 mol/L angiotensin II: VEGF-B167 prevented oxidative stress, loss of mitochondrial membrane potential, and, consequently, apoptosis. Conclusions We determined a novel, angiogenesis-unrelated cardioprotective effect of VEGF-B167 in

  17. Inhibition of glutamate carboxypeptidase II (NAALADase) protects against dynorphin A-induced ischemic spinal cord injury in rats.

    PubMed

    Long, Joseph B; Yourick, Debra L; Slusher, Barbara S; Robinson, Michael B; Meyerhoff, James L

    2005-01-31

    Glutamate carboxypeptidase (GCP) II (EC 3.4.17.21), which is also known as N-acetylated-alpha-linked acidic dipeptidase (NAALADase), hydrolyses the endogenous acidic dipeptide N-acetylaspartylglutamate (NAAG), yielding N-acetyl-aspartate and glutamate. Inhibition of this enzyme by 2-(phosphonomethyl) pentanedioic acid (2-PMPA) has been shown to protect against ischemic injury to the brain and hypoxic and metabolic injury to neuronal cells in culture, presumably by increasing and decreasing the extracellular concentrations of NAAG and glutamate, respectively. Since both NAAG and GCP II are found in especially high concentrations in the spinal cord, injuries to the spinal cord involving pathophysiological elevations in extracellular glutamate might be particularly responsive to GCP II inhibition. Lumbar subarachnoid injections of dynorphin A in rats cause ischemic spinal cord injury, elevated extracellular glutamate and a persistent hindlimb paralysis that is mediated through excitatory amino acid receptors. We therefore used this injury model to evaluate the protective effects of 2-PMPA. When coadministered with dynorphin A, 2-PMPA significantly attenuated the dynorphin A-induced elevations in cerebrospinal fluid glutamate levels and by 24 h postinjection caused significant dose-dependent improvements in motor scores that were associated with marked histopathological improvements. These results indicate that 2-PMPA provides effective protection against excitotoxic spinal cord injury. PMID:15680261

  18. [Usefullness of Beta-blocker for Hemodynamic Changes Induced by Uterotonic Drug in a Patient with Hypertrophic Obstructive Cardiomyopathy Undergoing Elective Cesarean Section].

    PubMed

    Tsukano, Yuri; Sugita, Michiko; Ikuta, Yoshihiro; Yamamoto, Tatsuo

    2015-06-01

    Combined spinal-epidural anesthesia (CSEA) was given to a 27-year-old woman with hypertrophic obstructive cardiomyopathy (HOCM) for a selective cesarean section. After the injection of uterotonic drug via uterine muscle and a vein after delivery, the patient developed dyspnea, tachycardia, ST-change on elecrocardiogram and hypotension. It is important in HOCM patients to control heart rate and left ventricular contractile force. We started to infuse beta-blocker (landiolol, 10 μg x kg(-1) x min(-1)) and improved these symptoms of the patient. This case demonstrates that CSEA is safe for HOCM patients and beta-blocker is effective to improve hemodynamic changes induced by uterotonic drug in these patients. PMID:26437557

  19. Computational identification of conserved transcription factor binding sites upstream of genes induced in rat brain by transient focal ischemic stroke.

    PubMed

    Pulliam, John V K; Xu, Zhenfeng; Ford, Gregory D; Liu, Cuimei; Li, Yonggang; Stovall, Kyndra C; Cannon, Virginetta S; Tewolde, Teclemichael; Moreno, Carlos S; Ford, Byron D

    2013-02-01

    Microarray analysis has been used to understand how gene regulation plays a critical role in neuronal injury, survival and repair following ischemic stroke. To identify the transcriptional regulatory elements responsible for ischemia-induced gene expression, we examined gene expression profiles of rat brains following focal ischemia and performed computational analysis of consensus transcription factor binding sites (TFBS) in the genes of the dataset. In this study, rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO) stroke and gene transcription in brain tissues following ischemia/reperfusion was examined using Affymetrix GeneChip technology. The CONserved transcription FACtor binding site (CONFAC) software package was used to identify over-represented TFBS in the upstream promoter regions of ischemia-induced genes compared to control datasets. CONFAC identified 12 TFBS that were statistically over-represented from our dataset of ischemia-induced genes, including three members of the Ets-1 family of transcription factors (TFs). Microarray results showed that mRNA for Ets-1 was increased following tMCAO but not pMCAO. Immunohistochemical analysis of Ets-1 protein in rat brains following MCAO showed that Ets-1 was highly expressed in neurons in the brain of sham control animals. Ets-1 protein expression was virtually abolished in injured neurons of the ischemic brain but was unchanged in peri-infarct brain areas. These data indicate that TFs, including Ets-1, may influence neuronal injury following ischemia. These findings could provide important insights into the mechanisms that lead to brain injury and could provide avenues for the development of novel therapies. PMID:23246490

  20. Roles of NAD+, PARP-1, and Sirtuins in Cell Death, Ischemic Brain Injury, and Synchrotron Radiation X-Ray-Induced Tissue Injury

    PubMed Central

    2013-01-01

    NAD+ plays crucial roles in a variety of biological processes including energy metabolism, aging, and calcium homeostasis. Multiple studies have also shown that NAD+ administration can profoundly decrease oxidative cell death and ischemic brain injury. A number of recent studies have further indicated that NAD+ administration can decrease ischemic brain damage, traumatic brain damage and synchrotron radiation X-ray-induced tissue injury by such mechanisms as inhibiting inflammation, decreasing autophagy, and reducing DNA damage. Our latest study that applies nano-particles as a NAD+ carrier has also provided first direct evidence demonstrating a key role of NAD+ depletion in oxidative stress-induced ATP depletion. Poly(ADP-ribose) polymerase-1 (PARP-1) and sirtuins are key NAD+-consuming enzymes that mediate multiple biological processes. Recent studies have provided new information regarding PARP-1 and sirtuins in cell death, ischemic brain damage and synchrotron radiation X-ray-induced tissue damage. These findings have collectively supported the hypothesis that NAD+ metabolism, PARP-1 and sirtuins play fundamental roles in oxidative stress-induced cell death, ischemic brain injury, and radiation injury. The findings have also supported “the Central Regulatory Network Hypothesis”, which proposes that a fundamental network that consists of ATP, NAD+ and Ca2+ as its key components is the essential network regulating various biological processes. PMID:24386592

  1. HSP70.1 AND -70.3 ARE REQUIRED FOR LATE-PHASE PROTECTION INDUCED BY ISCHEMIC PRECONDITIONING OF MOUSE HEARTS

    EPA Science Inventory

    Heat-Shock Proteins 70.1 and 70.3 Are Required for Late-phase Protection
    Induced by Ischemic Preconditioning of the Mouse Heart
    Craig R. Hampton 1 , Akira Shimamoto 1 , Christine L. Rothnie 1 , Jeaneatte Griscavage-Ennis 1 ,
    Albert Chong 1 , David J. Dix 2 , Edward D. Ve...

  2. Apoptosis in Anthracycline Cardiomyopathy

    PubMed Central

    Shi, Jianjian; Abdelwahid, Eltyeb; Wei, Lei

    2011-01-01

    Apoptosis is a tightly regulated physiologic process of programmed cell death that occurs in both normal and pathologic tissues. Numerous in vitro or in vivo studies have indicated that cardiomyocyte death through apoptosis and necrosis is a primary contributor to the progression of anthracycline-induced cardiomyopathy. There are now several pieces of evidence to suggest that activation of intrinsic and extrinsic apoptotic pathways contribute to anthracycline-induced apoptosis in the heart. Novel strategies were developed to address a wide variety of cardiotoxic mechanisms and apoptotic pathways by which anthracycline influences cardiac structure and function. Anthracycline-induced apoptosis provides a very valid representation of cardiotoxicity in the heart, an argument which has implications for the most appropriate animal models of damaged heart plus diverse pharmacological effects. In this review we describe various aspects of the current understanding of apoptotic cell death triggered by anthracycline. Differences in the sensitivity to anthracycline-induced apoptosis between young and adult hearts are also discussed. PMID:22212952

  3. Oenanthe Javanica Extract Protects Against Experimentally Induced Ischemic Neuronal Damage via its Antioxidant Effects

    PubMed Central

    Park, Joon Ha; Cho, Jeong Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Yoo, Ki-Yeon; Hong, SeongKweon; Kang, Il Jun; Won, Moo-Ho; Kim, Jong-Dai

    2015-01-01

    Background: Water dropwort (Oenanthe javanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity. In this study, we firstly examined the neuroprotective effect of Oenanthe javanica extract (OJE) in the hippocampal cornus ammonis 1 region (CA1 region) of the gerbil subjected to transient cerebral ischemia. Methods: Gerbils were established by the occlusion of common carotid arteries for 5 min. The neuroprotective effect of OJE was estimated by cresyl violet staining. In addition, 4 antioxidants (copper, zinc superoxide dismutase [SOD], manganese SOD, catalase, and glutathione peroxidase) immunoreactivities were investigated by immunohistochemistry. Results: Pyramidal neurons in the CA1 region showed neuronal death at 5 days postischemia; at this point in time, all antioxidants immunoreactivities disappeared in CA1 pyramidal neurons and showed in many nonpyramidal cells. Treatment with 200 mg/kg, not 100 mg/kg, OJE protected CA1 pyramidal neurons from ischemic damage. In addition, 200 mg/kg OJE treatment increased or maintained antioxidants immunoreactivities. Especially, among the antioxidants, glutathione peroxidase immunoreactivity was effectively increased in the CA1 pyramidal neurons of the OJE-treated sham-operated and ischemia-operated groups. Conclusion: Our present results indicate that treatment with OJE can protect neurons from transient ischemic damage and that the neuroprotective effect may be closely associated with increased or maintained intracellular antioxidant enzymes by OJE. PMID:26521793

  4. Modulation of ischemic-induced damage to cerebral adenylate cyclase in gerbils by calcium channel blockers.

    PubMed

    Christie-Pope, B C; Palmer, G C

    1986-12-01

    It has been previously established that prolonged bilateral carotid occlusion followed by recirculation produces damage to the synaptic enzyme adenylate cyclase in the frontal cortex of the gerbil. Since calcium entrance into the brain may account in part for the deleterious consequences of stroke, the present study examined whether pretreatment with calcium channel blockers would modify the effects of 60 min of bilateral ischemia plus 40 min of reflow on various parameters of cortical adenylate cyclase activation. In this context activation of cerebral homogenates by norepinephrine with or without 5'-guanylyl imidodiphosphate was preserved by pretreatment of ischemic gerbils with verapamil but worsened by flunarizine. In contrast, in particulate fractions (treated with EGTA to reduce metallic ion levels) the damage to the Mn2+-sensitive catalytic site of adenylate cyclase was prevented only by flunarizine. Pretreatment with the two calcium channel blockers resulted in an elevated basal activity of the enzyme, thereby reducing the response in the homogenate preparation to forskolin. Gerbils pretreated with verapamil tended to have an increased ability for survival resulting from the ischemic episode. Under in vitro conditions the enzyme preparations were not markedly influenced by either drug. PMID:3508245

  5. Remote ischemic precondition prevents radial artery endothelial dysfunction induced by ischemia and reperfusion based on a cyclooxygenase-2-dependent mechanism

    PubMed Central

    Liu, Zhen-Bing; Yang, Wen-Xia; Fu, Xiang-Hua; Zhao, Lin-Feng; Gao, Jun-Ling

    2015-01-01

    Ischemic preconditioning (IPC) and remote ischemic precondition (RIPC) are resistance to ischemia-reperfusion (IR) injury. They have common protective mechanism. Cyclooxygenase (COX)-2 participate in the mechanism of IPC. So, the purpose of this study was to determine whether RIPC protects endothelial function of radial artery in human against IR and whether COX-2 involves in this effect. Endothelial IR injury was induced by arm ischemia (20 min) and reperfusion. Flow-mediated dilation (FMD) of the radial artery was measured before and after IR. RIPC (three 5-min cycles of ischemia of the contralateral arm) was applied immediately and 24 h before IR. All volunteers received the COX-2 inhibitor celecoxib (200 mg orally twice daily) for 5 days. On day 6, all subjects experienced the same studies as described. FMD was reduced by IR without administration of RIPC (P<0.0001). RIPC prevent this impairment of FMD immediately (P=NS) and at 24 h (P=NS). Nevertheless, the COX-2 inhibiter abolished protective effect of RIPC at 24 h (P=NS), but not immediately (P=0.001). After administration of the COX-2 inhibiter, post-IR FMD after RIPC performed immediately had significant increase than after RIPC performed at 24 h (P=0.001) and without administration of RIPC (P=0.003). The COX-2 inhibiter made post-IR FMD evidently decrease after RIPC performed at 24 h (P=0.002). RIPC prevents radial artery endothelial dysfunction induced by IR. This protective effect of RIPC in the late phase is mediated by a COX-2-dependent mechanism. PMID:26885023

  6. Leptin ameliorates ischemic necrosis of the femoral head in rats with obesity induced by a high-fat diet

    PubMed Central

    Zhou, Lu; Jang, Kyu Yun; Moon, Young Jae; Wagle, Sajeev; Kim, Kyoung Min; Lee, Kwang Bok; Park, Byung-Hyun; Kim, Jung Ryul

    2015-01-01

    Obesity is a risk factor for ischemic necrosis of the femoral head (INFH). The purpose of this study was to determine if leptin treatment of INFH stimulates new bone formation to preserve femoral head shape in rats with diet-induced obesity. Rats were fed a high-fat diet (HFD) or normal chow diet (NCD) for 16 weeks to induce progressive development of obesity. Avascular necrosis of the femoral head (AVN) was surgically induced. Adenovirus-mediated introduction of the leptin gene was by intravenous injection 2 days before surgery-induced AVN. At 6 weeks post-surgery, radiologic and histomorphometric assessments were performed. Leptin signaling in tissues was examined by Western blot. Osteogenic markers were analyzed by real-time RT-PCR. Radiographs showed better preservation of femoral head architecture in the HFD-AVN-Leptin group than the HFD-AVN and HFD-AVN-LacZ groups. Histology and immunohistochemistry revealed the HFD-AVN-Leptin group had significantly increased osteoblastic proliferation and vascularity in infarcted femoral heads compared with the HFD-AVN and HFD-AVN-LacZ groups. Intravenous injection of leptin enhanced serum VEGF levels and activated HIF-1α pathways. Runx 2 and its target genes were significantly upregulated in the HFD-AVN-Leptin group. These results indicate that leptin resistance is important in INFH pathogenesis. Leptin therapy could be a new strategy for INFH. PMID:25797953

  7. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy

    SciTech Connect

    Cannon, R.O. 3d.; Dilsizian, V.; O'Gara, P.T.; Udelson, J.E.; Schenke, W.H.; Quyyumi, A.; Fananapazir, L.; Bonow, R.O. )

    1991-05-01

    Exercise-induced abnormalities during thallium-201 scintigraphy that normalize at rest frequently occur in patients with hypertrophic cardiomyopathy. However, it is not known whether these abnormalities are indicative of myocardial ischemia. Fifty patients with hypertrophic cardiomyopathy underwent exercise {sup 201}Tl scintigraphy and, during the same week, measurement of myocardial lactate metabolism and hemodynamics during pacing stress. Thirty-seven patients (74%) had one or more {sup 201}Tl abnormalities that completely normalized after 3 hours of rest; 26 had regional myocardial {sup 201}Tl defects, and 26 had apparent left ventricular cavity dilatation with exercise, with 15 having coexistence of these abnormal findings. Of the 37 patients with reversible {sup 201}Tl abnormalities, 27 (73%) had metabolic evidence of myocardial ischemia during rapid atrial pacing compared with four of 13 patients (31%) with normal {sup 201}Tl scans (p less than 0.01). Eleven patients had apparent cavity dilatation as their only {sup 201}Tl abnormality; their mean postpacing left ventricular end-diastolic pressure was significantly higher than that of the 13 patients with normal {sup 201}Tl studies (33 +/- 5 versus 21 +/- 10 mm Hg, p less than 0.001). There was no correlation between the angiographic presence of systolic septal or epicardial coronary arterial compression and the presence or distribution of {sup 201}Tl abnormalities. Patients with ischemic ST segment responses to exercise had an 80% prevalence rate of reversible {sup 201}Tl abnormalities and a 70% prevalence rate of pacing-induced ischemia. However, 69% of patients with nonischemic ST segment responses had reversible {sup 201}Tl abnormalities, and 55% had pacing-induced ischemia. Reversible {sup 201}Tl abnormalities during exercise stress are markers of myocardial ischemia in hypertrophic cardiomyopathy and most likely identify relatively underperfused myocardium.

  8. Remote ischemic perconditioning attenuates ischemia/reperfusion-induced downregulation of AQP2 in rat kidney.

    PubMed

    Kristensen, Marie Louise V; Kierulf-Lassen, Casper; Nielsen, Per Mose; Krag, Søren; Birn, Henrik; Nejsum, Lene N; Nørregaard, Rikke

    2016-07-01

    Renal ischemia/reperfusion (I/R) can lead to impaired urine concentration ability and increased fractional excretion of sodium (FeNa). Local ischemic preconditioning improves renal water and sodium handling after I/R injury. Here, we investigate whether remote ischemic perconditioning (rIPeC) prevents dysregulation of renal water and salt handling in response to I/R injury and mechanisms that may be involved. Rats were subjected to right nephrectomy and randomized into a sham group or an I/R group. In the I/R group, rats were subjected to 37 min of renal ischemia and 3 days of reperfusion. rIPeC was applied to the abdominal aorta. Blood and urine were collected on day 3 postoperatively for clearance studies. The expression of aquaporins (AQPs) and the sodium transporter Na-K-ATPase were analyzed using immunoblotting and immunohistochemistry. I/R injury resulted in polyuria, increased FeNa, and decreased urine osmolality compared to sham rats. rIPeC attenuated the increase in FeNa and the decrease in urine osmolality. Expression of AQP1, AQP2, phosphorylated AQP2 (pAQP2), and Na-K-ATPase was downregulated in I/R rats. rIPeC attenuated the reductions in AQP2 and pAQP2 expression. Immunohistochemistry revealed decreased labeling of Na-K-ATPase in the outer medulla in I/R kidneys compared to kidneys from sham and I/R + rIPeC rats. After renal ischemia, the expression of Na-K-ATPase was substantially reduced in the outer medullary thick ascending limb. In conclusion, our data suggest that rIPeC might prevent dysregulation of renal water and salt handling via regulation of AQP2 expression and phosphorylation as well as via regulation of Na-K-ATPase expression in I/R rat kidneys. PMID:27405971

  9. In Situ Biospectroscopic Investigation of Rapid Ischemic and Postmortem Induced Biochemical Alterations in the Rat Brain

    PubMed Central

    2015-01-01

    Rapid advances in imaging technologies have pushed novel spectroscopic modalities such as Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) at the sulfur K-edge to the forefront of direct in situ investigation of brain biochemistry. However, few studies have examined the extent to which sample preparation artifacts confound results. Previous investigations using traditional analyses, such as tissue dissection, homogenization, and biochemical assay, conducted extensive research to identify biochemical alterations that occur ex vivo during sample preparation. In particular, altered metabolism and oxidative stress may be caused by animal death. These processes were a concern for studies using biochemical assays, and protocols were developed to minimize their occurrence. In this investigation, a similar approach was taken to identify the biochemical alterations that are detectable by two in situ spectroscopic methods (FTIR, XAS) that occur as a consequence of ischemic conditions created during humane animal killing. FTIR and XAS are well suited to study markers of altered metabolism such as lactate and creatine (FTIR) and markers of oxidative stress such as aggregated proteins (FTIR) and altered thiol redox (XAS). The results are in accordance with previous investigations using biochemical assays and demonstrate that the time between animal death and tissue dissection results in ischemic conditions that alter brain metabolism and initiate oxidative stress. Therefore, future in situ biospectroscopic investigations utilizing FTIR and XAS must take into consideration that brain tissue dissected from a healthy animal does not truly reflect the in vivo condition, but rather reflects a state of mild ischemia. If studies require the levels of metabolites (lactate, creatine) and markers of oxidative stress (thiol redox) to be preserved as close as possible to the in vivo condition, then rapid freezing of brain tissue via decapitation into

  10. Non-invasive evaluation of arrhythmic risk in dilated cardiomyopathy: From imaging to electrocardiographic measures

    PubMed Central

    Iacoviello, Massimo; Monitillo, Francesco

    2014-01-01

    Malignant ventricular arrhythmias are a major adverse event and worsen the prognosis of patients affected by ischemic and non-ischemic dilated cardiomyopathy. The main parameter currently used to stratify arrhythmic risk and guide decision making towards the implantation of a cardioverter defibrillator is the evaluation of the left ventricular ejection fraction. However, this strategy is characterized by several limitations and consequently additional parameters have been suggested in order to improve arrhythmic risk stratification. The aim of this review is to critically revise the prognostic significance of non-invasive diagnostic tools in order to better stratify the arrhythmic risk prognosis of dilated cardiomyopathy patients. PMID:25068017

  11. Nutrition in Pediatric Cardiomyopathy

    PubMed Central

    Miller, Tracie L.; Neri, Daniela; Extein, Jason; Somarriba, Gabriel; Strickman-Stein, Nancy

    2007-01-01

    Pediatric cardiomyopathies are heterogeneous groups of serious disorders of the heart muscle and are responsible for significant morbidity and mortality among children who have the disease. While enormous improvements have been made in the treatment and survival of children with congenital heart disease, parallel strides have not been made in the outcomes for cardiomyopathies. Thus, ancillary therapies, such as nutrition and nutritional interventions, that may not cure but may potentially improve cardiac function and quality of life, are imperative to consider in children with all types of cardiomyopathy. Growth failure is one of the most significant clinical problems of children with cardiomyopathy with nearly one-third of children with this disorder manifesting some degree of growth failure during the course of their illness. Optimal intake of macronutrients can help improve cardiac function. In addition, several specific nutrients have been shown to correct myocardial abnormalities that often occur with cardiomyopathy and heart failure. In particular, antioxidants that can protect against free radical damage that often occurs in heart failure and nutrients that augment myocardial energy production are important therapies that have been explored more in adults with cardiomyopathy than in the pediatric population. Future research directions should pay particular attention to the effect of overall nutrition and specific nutritional therapies on clinical outcomes and quality of life in children with pediatric cardiomyopathy. PMID:18159216

  12. Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury

    PubMed Central

    Wang, Kun; Kong, Xiangang

    2016-01-01

    This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related K+ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1. PMID:27469140

  13. Cardiac-Specific Over-Expression of Epidermal Growth Factor Receptor 2 (ErbB2) Induces Pro-Survival Pathways and Hypertrophic Cardiomyopathy in Mice

    PubMed Central

    Guo, Xin; Belmonte, Frances; Kang, Byunghak; Bedja, Djahida; Pin, Scott; Tsuchiya, Noriko; Gabrielson, Kathleen

    2012-01-01

    Background Emerging evidence shows that ErbB2 signaling has a critical role in cardiomyocyte physiology, based mainly on findings that blocking ErbB2 for cancer therapy is toxic to cardiac cells. However, consequences of high levels of ErbB2 activity in the heart have not been previously explored. Methodology/Principal Findings We investigated consequences of cardiac-restricted over-expression of ErbB2 in two novel lines of transgenic mice. Both lines develop striking concentric cardiac hypertrophy, without heart failure or decreased life span. ErbB2 transgenic mice display electrocardiographic characteristics similar to those found in patients with Hypertrophic Cardiomyopathy, with susceptibility to adrenergic-induced arrhythmias. The hypertrophic hearts, which are 2–3 times larger than those of control littermates, express increased atrial natriuretic peptide and β-myosin heavy chain mRNA, consistent with a hypertrophic phenotype. Cardiomyocytes in these hearts are significantly larger than wild type cardiomyocytes, with enlarged nuclei and distinctive myocardial disarray. Interestingly, the over-expression of ErbB2 induces a concurrent up-regulation of multiple proteins associated with this signaling pathway, including EGFR, ErbB3, ErbB4, PI3K subunits p110 and p85, bcl-2 and multiple protective heat shock proteins. Additionally, ErbB2 up-regulation leads to an anti-apoptotic shift in the ratio of bcl-xS/xL in the heart. Finally, ErbB2 over-expression results in increased activation of the translation machinery involving S6, 4E-BP1 and eIF4E. The dependence of this hypertrophic phenotype on ErbB family signaling is confirmed by reduction in heart mass and cardiomyocyte size, and inactivation of pro-hypertrophic signaling in transgenic animals treated with the ErbB1/2 inhibitor, lapatinib. Conclusions/Significance These studies are the first to demonstrate that increased ErbB2 over-expression in the heart can activate protective signaling pathways and induce a

  14. Rapidly Progressing Chagas Cardiomyopathy.

    PubMed

    Hollowed, John; McCullough, Matthew; Sanchez, Daniel; Traina, Mahmoud; Hernandez, Salvador; Murillo, Efrain

    2016-04-01

    Chagas disease, caused by the parasiteTrypanosoma cruzi, can cause a potentially life-threatening cardiomyopathy in approximately 10-40% of afflicted individuals. The decline in cardiac function characteristically progresses over the course of many years. We report a case of Chagas disease in which the patient experienced an atypical rapid deterioration to severe cardiomyopathy over the course of 16 months. This case argues the need for increased routine surveillance for patients with confirmedT. cruziinfection, who are determined to be at high-risk for worsening cardiomyopathy. PMID:26856912

  15. Protein kinase RNA- like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)- mediated endoplasmic reticulum stress- induced apoptosis in diabetic cardiomyopathy

    PubMed Central

    2013-01-01

    Background Endoplasmic reticulum (ER) stress is considered one of the mechanisms contributing to reactive oxygen species (ROS)- mediated cell apoptosis. In diabetic cardiomyopathy (DCM), cell apoptosis is generally accepted as the etiological factor and closely related to cardiac ROS generation. ER stress is proposed the link between ROS and cell apoptosis; however, the signaling pathways and their roles in participating ER stress- induced apoptosis in DCM are still unclear. Methods In this study, we investigated the signaling transductions in ROS- dependent ER stress- induced cardiomocyte apoptosis in animal model of DCM. Moreover, in order to clarify the roles of IRE1 (inositol - requiring enzyme-1), PERK (protein kinase RNA (PKR)- like ER kinase) and ATF6 (activating transcription factor-6) in conducting apoptotic signal in ROS- dependent ER stress- induced cardiomocyte apoptosis, we further investigated apoptosis in high- glucose incubated cardiomyocytes with IRE1, ATF6 and PERK- knocked down respectively. Results we demonstrated that the ER stress sensors, referred as PERK, IRE1 and ATF6, were activated in ROS- mediated ER stress- induced cell apoptosis in rat model of DCM which was characterized by cardiac pump and electrical dysfunctions. The deletion of PERK in myocytes exhibited stronger protective effect against apoptosis induced by high- glucose incubation than deletion of ATF6 or IRE in the same myocytes. By subcellular fractionation, rather than ATF6 and IRE1, in primary cardiomyocytes, PERK was found a component of MAMs (mitochondria-associated endoplasmic reticulum membranes) which was the functional and physical contact site between ER and mitochondria. Conclusions ROS- stimulated activation of PERK signaling pathway takes the major responsibility rather than IRE1 or ATF6 signaling pathways in ROS- medicated ER stress- induced myocyte apoptosis in DCM. PMID:24180212

  16. Clinical and Genetic Determinants of Cardiomyopathy Risk among Hematopoietic Cell Transplantation Survivors.

    PubMed

    Leger, Kasey J; Cushing-Haugen, Kara; Hansen, John A; Fan, Wenhong; Leisenring, Wendy M; Martin, Paul J; Zhao, Lue Ping; Chow, Eric J

    2016-06-01

    Cardiomyopathy has been recognized as a complication after hematopoietic cell transplantation (HCT). Using a nested case-cohort design, we examined the relationships between demographic, therapeutic, and selected cardiovascular disease risk factors among ≥1-year HCT survivors who developed cardiomyopathy before (n = 43) or after (n = 89) 1 year from HCT as compared to a randomly selected subcohort of survivors without cardiomyopathy (n = 444). Genomic data were available for 79 cases and 267 noncases. Clinical and genetic covariates were examined for association with the risk of early or late cardiomyopathy. Clinical risk factors associated with both early- and late-onset cardiomyopathy included anthracycline exposure ≥250 mg/m(2) and pre-existing hypertension. Among late-onset cardiomyopathy cases, the development of diabetes and ischemic heart disease further increased risk. We replicated several previously reported genetic associations among early-onset cardiomyopathy cases, including rs1786814 in CELF4, rs2232228 in HAS3, and rs17863783 in UGT1A6. None of these markers were associated with risk of late-onset cardiomyopathy. A combination of demographic, treatment, and clinical covariates predicted early-onset cardiomyopathy with reasonable accuracy (area under the curve [AUC], .76; 95% confidence interval [CI], .68 to .83), but prediction of late cardiomyopathy was poor (AUC, .59; 95% CI .53 to .67). The addition of genetic polymorphisms with marginal associations (odds ratios ≥1.3) did not enhance prediction for either early- or late-onset cardiomyopathy. Conventional cardiovascular risk factors influence the risk of both early- and late-onset cardiomyopathy in HCT survivors. Although certain genetic markers may influence the risk of early-onset disease, further work is required to validate previously reported findings and to determine how genetic information should be incorporated into clinically useful risk prediction models. PMID:26968791

  17. Cerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion.

    PubMed

    Kirisattayakul, Woranan; Wattanathorn, Jintanaporn; Tong-Un, Terdthai; Muchimapura, Supaporn; Wannanon, Panakaporn; Jittiwat, Jinatta

    2013-01-01

    The protection against ischemic stroke is still required due to the limitation of therapeutic efficacy. Based on the role of oxidative stress in stroke pathophysiology, we determined whether Moringa oleifera, a plant possessing potent antioxidant activity, protected against brain damage and oxidative stress in animal model of focal stroke. M. oleifera leaves extract at doses of 100, 200 and 400 mg·kg(-1) was orally given to male Wistar rats (300-350 g) once daily at a period of 2 weeks before the occlusion of right middle cerebral artery (Rt.MCAO) and 3 weeks after Rt.MCAO. The determinations of neurological score and temperature sensation were performed every 7 days throughout the study period, while the determinations of brain infarction volume, MDA level, and the activities of SOD, CAT, and GSH-Px were performed 24 hr after Rt.MCAO. The results showed that all doses of extract decreased infarction volume in both cortex and subcortex. The protective effect of medium and low doses of extract in all areas occurred mainly via the decreased oxidative stress. The protective effect of the high dose extract in striatum and hippocampus occurred via the same mechanism, whereas other mechanisms might play a crucial role in cortex. The detailed mechanism required further exploration. PMID:24367723

  18. Cerebroprotective Effect of Moringa oleifera against Focal Ischemic Stroke Induced by Middle Cerebral Artery Occlusion

    PubMed Central

    Wattanathorn, Jintanaporn; Tong-Un, Terdthai; Muchimapura, Supaporn; Wannanon, Panakaporn; Jittiwat, Jinatta

    2013-01-01

    The protection against ischemic stroke is still required due to the limitation of therapeutic efficacy. Based on the role of oxidative stress in stroke pathophysiology, we determined whether Moringa oleifera, a plant possessing potent antioxidant activity, protected against brain damage and oxidative stress in animal model of focal stroke. M. oleifera leaves extract at doses of 100, 200 and 400 mg·kg−1 was orally given to male Wistar rats (300–350 g) once daily at a period of 2 weeks before the occlusion of right middle cerebral artery (Rt.MCAO) and 3 weeks after Rt.MCAO. The determinations of neurological score and temperature sensation were performed every 7 days throughout the study period, while the determinations of brain infarction volume, MDA level, and the activities of SOD, CAT, and GSH-Px were performed 24 hr after Rt.MCAO. The results showed that all doses of extract decreased infarction volume in both cortex and subcortex. The protective effect of medium and low doses of extract in all areas occurred mainly via the decreased oxidative stress. The protective effect of the high dose extract in striatum and hippocampus occurred via the same mechanism, whereas other mechanisms might play a crucial role in cortex. The detailed mechanism required further exploration. PMID:24367723

  19. A One-Two Punch: Hydralazine-Induced Liver Injury in a Recovering Ischemic Hepatitis.

    PubMed

    Alansari, Ahmed; Quiel, Luis; Boma, Noella

    2016-01-01

    A 77-year-old woman presented to the emergency department with a 2-day history of nausea and vomiting. Her medical history included diabetes mellitus, hypertension, atrial fibrillation, dilated cardiomyopathy, and coronary artery disease. Her home medications included aspirin, clopidogrel, warfarin, digoxin, metoprolol, losartan, simvastatin, isosorbide dinitrate, furosemide, and spironolactone. Initial physical examination showed blood pressure of 170/80 mm Hg with a heart rate of 69 beats per minute, otherwise unremarkable. Initial laboratory workup was significant for INR of 3.6, with slightly elevated troponin I and creatinine of 0.06 ng/mL and 1.4 mg/dL, respectively. The patient was admitted to the medicine floor. However, a few hours later, her atrial fibrillation went into rapid ventricular response, associated with hypotension. Cardiac enzymes began to trend up along with worsening of her renal function tests and hepatic enzymes. Her INR remained supratherapeutic despite holding coumadin and giving vitamin K. The patient was transferred to the medical intensive care unit for closer monitoring. During day 1 of the medical intensive care unit stay, losartan, simvastatin, and diuretics were held, whereas aspirin, clopidogrel, and isosorbide dinitrate were continued. In the following 2 days, there was worsening of tissue perfusion, and laboratory workup showed AST 514 IU/L, ALT 391 IU/L, INR >9, creatinine 3.8 mg/dL, and troponin I 0.19 ng/mL; therefore, digoxin was also held. Once the patient achieved hemodynamic stability, she was started on hydralazine. On day 4, renal function, cardiac, and hepatic enzymes improved significantly. However, 24 hours later, transaminases began to trend up again reaching a maximum of AST and ALT of 359 and 525 IU/L, respectively. Other possible causes were ruled out because her viral hepatitis markers, antihistone antibody, antinuclear antibody, and anti-double-stranded DNA were all negative. After thorough review of all

  20. Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion.

    PubMed

    Yang, Mingzhu; Orgah, John; Zhu, Jie; Fan, Guanwei; Han, Jihong; Wang, Xiaoying; Zhang, Boli; Zhu, Yan

    2016-07-01

    Ischemic stroke is associated with cardiac myocyte vulnerability through some unknown mechanisms. Arginine vasopressin (AVP) may exert considerable function in the relationship of brain damage and heart failure. Danhong injection (DHI) can protect both stroke and heart failure patients with good efficacy in clinics. The aim of this study is to investigate the mechanism of DHI in heart and brain co-protection effects to determine whether AVP plays key role in this course. In the present study, we found that both the supernatant from oxygen-glucose deprivation (OGD) and reperfused primary rat neuronal cells (PRNCs) and AVP treatment caused significant reduction in cell viability and mitochondrial activity in primary rat cardiac myocytes (RCMs). Besides, DHI had the same protective effects with conivaptan, a dual vasopressin V1A and V2 receptor antagonist, in reducing the RCM damage induced by overdose AVP. DHI significantly decreased the injury of both PRNCs and RCMs. Meanwhile, the AVP level was elevated dramatically in OGD and reperfusion PRNCs, and DHI was able to decrease the AVP expression in the injured PRNCs. Therefore, our present results suggested that OGD and reperfusion PRNCs might induce myocyte injury by elevating the AVP expression in PRNCs. The ability of DHI to reinstate AVP level may be one of the mechanisms of its brain and heart co-protection effects. PMID:27107944

  1. How Is Cardiomyopathy Treated?

    MedlinePlus

    ... arrest Stopping the disease from getting worse Heart-Healthy Lifestyle Changes Your doctor may suggest lifestyle changes to manage a condition that’s causing your cardiomyopathy including: Heart-healthy eating Aiming for a healthy weight Managing stress ...

  2. Sex differences in cardiomyopathies.

    PubMed

    Meyer, Sven; van der Meer, Peter; van Tintelen, J Peter; van den Berg, Maarten P

    2014-03-01

    Cardiomyopathies are a heterogeneous group of heart muscle diseases with a variety of specific phenotypes. According to the contemporary European Society of Cardiology classification, they are classified into hypertrophic (HCM), dilated (DCM), arrhythmogenic right ventricular (ARVC), restrictive (RCM), and unclassified cardiomyopathies. Each class is aetiologically further categorized into inherited (familial) and non-inherited (non-familial) forms. There is substantial evidence that biological sex is a strong modulator of the clinical manifestation of these cardiomyopathies, and sex-specific characteristics are detectable in all classes. For the clinician, it is important to know the sex-specific aspects of clinical disease expression and the potential modes of inheritance or the hereditary influences underlying the development of cardiomyopathies, since these may aid in diagnosing such diseases in both sexes. PMID:24464619

  3. Hypothermia-induced ischemic tolerance is associated with Drp1 inhibition in cerebral ischemia-reperfusion injury of mice.

    PubMed

    Tang, Yingying; Liu, Xiaojie; Zhao, Jie; Tan, Xueying; Liu, Bing; Zhang, Gaofeng; Sun, Lixin; Han, Dengyang; Chen, Huailong; Wang, Mingshan

    2016-09-01

    Excessive mitochondrial fission activation has been implicated in cerebral ischemia-reperfusion (IR) injury. Hypothermia is effective in preventing cerebral ischemic damage. However, effects of hypothermia on ischemia-induced mitochondrial fission activation is not well known. Therefore, the aim of this study was to investigate whether hypothermia protect the brain by inhibiting mitochondrial fission-related proteins activation following cerebral IR injury. Adult male C57BL/6 mice were subjected to transient forebrain ischemia induced by 15min of bilateral common carotid artery occlusion (BCCAO). Mice were divided into three groups (n=48 each): Hypothermia (HT) group, with mild hypothermia (32-34°C) for 4h; Normothermia (NT) group, similarly as HT group except for cooling; Sham group, with vessels exposed but without occlusion or cooling. Hematoxylin and eosin (HE), Nissl staining, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and behavioral testing (n=6 each) demonstrated that hypothermia significantly decreased ischemia-induced neuronal injury. The expressions of Dynamin related protein 1 (Drp1) and Cytochrome C (Cyto C) (n=6 each) in mice hippocampus were measured at 3, 6, 24, and 72h of reperfusion. IR injury significantly increased expressions of total Drp1, phosphorylated Drp1 (P-Drp1 S616) and Cyto C under normothermia. However, mild hypothermia inhibited Drp1 activation and Cyto C cytosolic release, preserved neural cells integrity and reduced neuronal necrosis and apoptosis. These findings indicated that mild hypothermia-induced neuroprotective effects against ischemia-reperfusion injury is associated with suppressing mitochondrial fission-related proteins activation and apoptosis execution. PMID:27235868

  4. Correlation of simultaneous differential gene expression in the blood and heart with known mechanisms of adriamycin-induced cardiomyopathy in the rat.

    PubMed

    Brown, H Roger; Ni, Hong; Benavides, Gina; Yoon, Lawrence; Hyder, Karim; Giridhar, Jaisri; Gardner, Guy; Tyler, Ronald D; Morgan, Kevin T

    2002-01-01

    As the genomes of mammalian species become sequenced and gene functions are ascribed, the use of differential gene expression (DGE) to evaluate organ function will become common in the experimental evaluation of new drug therapies. The ability to translate this technology into useful information for human exposures depends on tissue sampling that is impractical or generally not possible in man. The possibility that the DGE of nucleated cells, reticulocytes, or platelets in blood may present the necessary link with target organ toxicity provides an opportunity to correlate preclinical with clinical outcomes. Adriamycin is highly effective alone and more frequently in combination with other chemotherapeutic agents in the treatment of a variety of susceptible malignancies. Adriamycin-induced cardiomyopathy was examined as an endpoint to measure the utility of DOE on whole blood as a predictor of cardiac toxicity. Statistically significant gene changes were observed between relevant blood and cardiac gene profiles that corroborated the accepted mechanisms of toxicity (oxidative stress, effects on carnitine transport, DNA intercalation). There were, however, clear indications that other target organs (bone marrow and intestinal tract) were affected. The divergent expression of some genes between the blood and the heart on day 7 may also indicate the timing and mechanism of development of the cardiomyopathy and confirm current therapeutic approaches for its prevention. The data demonstrate that whole blood gene expression particularly in relation to oxidative stress, in conjunction with standard hematology and clinical chemistry, may be useful in monitoring and predicting cardiac damage secondary to adriamycin administration. Appendices A & B, referenced in this paper, are not printed in this issue of Toxicologic Pathology. They are available as downloadable text files at http://taylorandfrancis.metapress.com/openurl.asp?genre=journal&issn=0192-6233. To access them

  5. Simvastatin Induces Regression of Cardiac Hypertrophy and Fibrosis and Improves Cardiac Function in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy

    PubMed Central

    Patel, Rajnikant; Nagueh, Sherif F.; Tsybouleva, Natalie; Abdellatif, Maha; Lutucuta, Silvia; Kopelen, Helen A.; Quinones, Miguel A.; Zoghbi, William A.; Entman, Mark L.; Roberts, Robert; Marian, A.J.

    2009-01-01

    Background Hypertrophic cardiomyopathy is a genetic disease characterized by cardiac hypertrophy, myocyte disarray, interstitial fibrosis, and left ventricular (LV) dysfunction. We have proposed that hypertrophy and fibrosis, the major determinants of mortality and morbidity, are potentially reversible. We tested this hypothesis in β-myosin heavy chain–Q403 transgenic rabbits. Methods and Results We randomized 24 β-myosin heavy chain–Q403 rabbits to treatment with either a placebo or simvastatin (5 mg · kg−1 · d−1) for 12 weeks and included 12 nontransgenic controls. We performed 2D and Doppler echocardiography and tissue Doppler imaging before and after treatment. Demographic data were similar among the groups. Baseline mean LV mass and interventricular septal thickness in nontransgenic, placebo, and simvastatin groups were 3.9±0.7, 6.2±2.0, and 7.5±2.1 g (P<0.001) and 2.2±0.2, 3.1±0.5, and 3.3±0.5 mm (P=0.002), respectively. Simvastatin reduced LV mass by 37%, interventricular septal thickness by 21%, and posterior wall thickness by 13%. Doppler indices of LV filling pressure were improved. Collagen volume fraction was reduced by 44% (P<0.001). Disarray was unchanged. Levels of activated extracellular signal-regulated kinase (ERK) 1/2 were increased in the placebo group and were less than normal in the simvastatin group. Levels of activated and total p38, Jun N-terminal kinase, p70S6 kinase, Ras, Rac, and RhoA and the membrane association of Ras, RhoA, and Rac1 were unchanged. Conclusions Simvastatin induced the regression of hypertrophy and fibrosis, improved cardiac function, and reduced ERK1/2 activity in the β-myosin heavy chain–Q403 rabbits. These findings highlight the need for clinical trials to determine the effects of simvastatin on cardiac hypertrophy, fibrosis, and dysfunction in humans with hypertrophic cardiomyopathy and heart failure. PMID:11457751

  6. [Hypertrophic cardiomyopathy. Arrhythmia in hypertrophic cardiomyopathy].

    PubMed

    Colín Lizalde, Luis de Jesús

    2003-01-01

    Hypertrophic cardiomyopathy is a relatively common genetic disorder with heterogeneity in mutations, forms of presentation, prognosis and treatment strategies. Hypertrophic cardiomyopathy is recognized as the most common cause of sudden cardiac death that occurs in young people, including athletes. The clinical diagnosis is complemented with the ecocardiographic study, in which an abnormal myocardial hypertrophy of the septum can be observed in the absence of a cardiac or systemic disease (arterial systemic hypertension, aortic stenosis). The annual sudden mortality rate is 1% and, in selected populations, it ranges between 3 and 6%. The therapeutic strategies depend on the different subsets of patients according to the morbidity and mortality, sudden cardiac death, obstructive symptoms, heart failure or atrial fibrillation and stroke. High risk patients for sudden death may effectively be treated with the automatic implantable cardioverter-defibrillator. PMID:12966640

  7. Increased gene expression of catecholamine-synthesizing enzymes in adrenal glands contributes to high circulating catecholamines in pigs with tachycardia-induced cardiomyopathy.

    PubMed

    Tomaszek, A; Kiczak, L; Bania, J; Paslawska, U; Zacharski, M; Janiszewski, A; Noszczyk-Nowak, A; Dziegiel, P; Kuropka, P; Ponikowski, P; Jankowska, E A

    2015-04-01

    High levels of circulating catecholamines have been established as fundamental pathophysiological elements of heart failure (HF). However, it is unclear whether the increased gene expression of catecholamine-synthesis enzymes in the adrenal glands contributes to these hormone abnormalities in large animal HF models. We analyzed the mRNA levels of catecholamine-synthesizing enzymes: tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AAAD), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in adrenal glands of 18 pigs with chronic systolic non-ischaemic HF (tachycardia-induced cardiomyopathy due to right ventricle pacing) and 6 sham-operated controls. Pigs with severe HF demonstrated an increased expression of TH and DBH (but neither AAAD nor PNMT) as compared to animals with milder HF and controls (P<0.05 in all cases). The increased adrenal mRNA expression of TH and DBH was accompanied by a reduced left ventricle ejection fraction (LVEF) (P<0.001) and an elevated plasma B-type natriuretic peptide (BNP) (P<0.01), the other indices reflecting HF severity. There was a positive relationship between the increased adrenal mRNA expression of TH and DBH, and the high levels of circulating adrenaline and noradrenaline (all P<0.05). The association with noradrenaline remained significant also when adjusted for LVEF and plasma BNP, suggesting a significant contribution of adrenals to the circulating pool of catecholamines in subjects with systolic HF. PMID:25903953

  8. Antenatal hypoxia induces epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype in the developing heart.

    PubMed

    Xiong, Fuxia; Lin, Thant; Song, Minwoo; Ma, Qingyi; Martinez, Shannalee R; Lv, Juanxiu; MataGreenwood, Eugenia; Xiao, Daliao; Xu, Zhice; Zhang, Lubo

    2016-02-01

    Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspring. Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in a significant decrease of GR exon 14, 15, 16, and 17 transcripts, leading to down-regulation of GR mRNA and protein in the fetal heart. Functional cAMP-response elements (CREs) at -4408 and -3896 and Sp1 binding sites at -3425 and -3034 were identified at GR untranslated exon 1 promoters. Hypoxia significantly increased CpG methylation at the CREs and Sp1 binding sites and decreased transcription factor binding to GR exon 1 promoter, accounting for the repression of the GR gene in the developing heart. Of importance, treatment of newborn pups with 5-aza-2'-deoxycytidine reversed hypoxia-induced promoter methylation, restored GR expression and prevented hypoxia-mediated increase in ischemia and reperfusion injury of the heart in offspring. The findings demonstrate a novel mechanism of epigenetic repression of the GR gene in fetal stress-mediated programming of ischemic-sensitive phenotype in the heart. PMID:26779948

  9. Hydrogen Sulfide Stimulates Ischemic Vascular Remodeling Through Nitric Oxide Synthase and Nitrite Reduction Activity Regulating Hypoxia‐Inducible Factor‐1α and Vascular Endothelial Growth Factor–Dependent Angiogenesis

    PubMed Central

    Bir, Shyamal C.; Kolluru, Gopi K.; McCarthy, Paul; Shen, Xinggui; Pardue, Sibile; Pattillo, Christopher B.; Kevil, Christopher G.

    2012-01-01

    Background Hydrogen sulfide (H2S) therapy is recognized as a modulator of vascular function during tissue ischemia with the notion of potential interactions of nitric oxide (NO) metabolism. However, little is known about specific biochemical mechanisms or the importance of H2S activation of NO metabolism during ischemic tissue vascular remodeling. The goal of this study was to determine the effect of H2S on NO metabolism during chronic tissue ischemia and subsequent effects on ischemic vascular remodeling responses. Methods and Results The unilateral, permanent femoral artery ligation model of hind‐limb ischemia was performed in C57BL/6J wild‐type and endothelial NO synthase–knockout mice to evaluate exogenous H2S effects on NO bioavailability and ischemic revascularization. We found that H2S selectively restored chronic ischemic tissue function and viability by enhancing NO production involving both endothelial NO synthase and nitrite reduction mechanisms. Importantly, H2S increased ischemic tissue xanthine oxidase activity, hind‐limb blood flow, and angiogenesis, which were blunted by the xanthine oxidase inhibitor febuxostat. H2S treatment increased ischemic tissue and endothelial cell hypoxia‐inducible factor‐1α expression and activity and vascular endothelial growth factor protein expression and function in a NO‐dependent manner that was required for ischemic vascular remodeling. Conclusions These data demonstrate that H2S differentially regulates NO metabolism during chronic tissue ischemia, highlighting novel biochemical pathways to increase NO bioavailability for ischemic vascular remodeling. PMID:23316304

  10. Cardiomyopathy and Cerebrovascular Accident Associated with Anabolic-Androgenic Steroid Use.

    ERIC Educational Resources Information Center

    Mochizuki, Ronald M.; Richter, Kenneth J.

    1988-01-01

    A case report is presented of a 32 year-old male bodybuilder who sustained an ischemic cerebrovascular accident and showed signs of cardiomyopathy. Although no cause was found, the man had been taking steroids for 16 years. Harmful effects of steroid use are discussed. (IAH)

  11. Flavonoids from Chinese Viscum coloratum produce cytoprotective effects against ischemic myocardial injuries: inhibitory effect of flavonoids on PAF-induced Ca2+ overload.

    PubMed

    Chu, Wenfeng; Qiao, Guofen; Bai, Yunlong; Pan, Zhenwei; Li, Guoyu; Piao, Xianmei; Wu, Ling; Lu, Yanjie; Yang, Baofeng

    2008-01-01

    Viscum coloratum has been used in the indigenous system of medicine for the treatment of various diseases such as myocardial ischemia and arrhythmia. Platelet-activating factor (PAF) is an important player in cardiovascular diseases. The aim of this study was to investigate the protective effects of Viscum coloratum flavonoids (VCF) against ischemic myocardial injuries in vivo and to further investigate its regulatory effect on PAF. Studies were performed in a rat model of myocardial infarction and in isolated myocytes. It was found that VCF relieved myocardial injuries during ischemia. PAF (10(-11) m) significantly increased the intracellular free Ca2+ concentration ([Ca2+]i) and VCF inhibited the changes induced by PAF in single cardiac myocytes. The results suggest that VCF can improve cardiac function and that VCF reduces ischemic myocardial injuries via blocking the signaling pathway of PAF. Therefore, PAF blockers may be candidate drugs for preventing cardiac injuries during ischemia/reperfusion, and subsequently improving cardiac function. PMID:17724771

  12. Dystrophin-Deficient Cardiomyopathy.

    PubMed

    Kamdar, Forum; Garry, Daniel J

    2016-05-31

    Dystrophinopathies are a group of distinct neuromuscular diseases that result from mutations in the structural cytoskeletal Dystrophin gene. Dystrophinopathies include Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), X-linked dilated cardiomyopathy, as well as DMD and BMD female carriers. The primary presenting symptom in most dystrophinopathies is skeletal muscle weakness. However, cardiac muscle is also a subtype of striated muscle and is similarly affected in many of the muscular dystrophies. Cardiomyopathies associated with dystrophinopathies are an increasingly recognized manifestation of these neuromuscular disorders and contribute significantly to their morbidity and mortality. Recent studies suggest that these patient populations would benefit from cardiovascular therapies, annual cardiovascular imaging studies, and close follow-up with cardiovascular specialists. Moreover, patients with DMD and BMD who develop end-stage heart failure may benefit from the use of advanced therapies. This review focuses on the pathophysiology, cardiac involvement, and treatment of cardiomyopathy in the dystrophic patient. PMID:27230049

  13. Alcoholic cardiomyopathy: Pathophysiologic insights

    PubMed Central

    Piano, Mariann R.; Phillips, Shane A.

    2014-01-01

    Alcoholic cardiomyopathy is a specific heart muscle disease found in individuals with a history of long-term heavy alcohol consumption. Alcoholic cardiomyopathy is associated with a number of adverse histological, cellular, and structural changes within the myocardium. Several mechanisms are implicated in mediating the adverse effects of ethanol, including the generation of oxidative stress, apoptotic cell death, impaired mitochondrial bioenergetics/stress, derangements in fatty acid metabolism and transport, and accelerated protein catabolism. In this review, we discuss the evidence for such mechanisms and present the potential importance of drinking patterns, genetic susceptibility, nutritional factors, race, and sex. The purpose of this review is to provide a mechanistic paradigm for future research in the area of alcoholic cardiomyopathy. PMID:24671642

  14. A Pharmacogenetic Discovery: Cystamine Protects Against Haloperidol-Induced Toxicity and Ischemic Brain Injury.

    PubMed

    Zhang, Haili; Zheng, Ming; Wu, Manhong; Xu, Dan; Nishimura, Toshihiko; Nishimura, Yuki; Giffard, Rona; Xiong, Xiaoxing; Xu, Li Jun; Clark, J David; Sahbaie, Peyman; Dill, David L; Peltz, Gary

    2016-05-01

    Haloperidol is an effective antipsychotic agent, but it causes Parkinsonian-like extrapyramidal symptoms in the majority of treated subjects. To address this treatment-limiting toxicity, we analyzed a murine genetic model of haloperidol-induced toxicity (HIT). Analysis of a panel of consomic strains indicated that a genetic factor on chromosome 10 had a significant effect on susceptibility to HIT. We analyzed a whole-genome SNP database to identify allelic variants that were uniquely present on chromosome 10 in the strain that was previously shown to exhibit the highest level of susceptibility to HIT. This analysis implicated allelic variation within pantetheinase genes (Vnn1 and Vnn3), which we propose impaired the biosynthesis of cysteamine, could affect susceptibility to HIT. We demonstrate that administration of cystamine, which is rapidly metabolized to cysteamine, could completely prevent HIT in the murine model. Many of the haloperidol-induced gene expression changes in the striatum of the susceptible strain were reversed by cystamine coadministration. Since cystamine administration has previously been shown to have other neuroprotective actions, we investigated whether cystamine administration could have a broader neuroprotective effect. Cystamine administration caused a 23% reduction in infarct volume after experimentally induced cerebral ischemia. Characterization of this novel pharmacogenetic factor for HIT has identified a new approach for preventing the treatment-limiting toxicity of an antipsychotic agent, which could also be used to reduce the extent of brain damage after stroke. PMID:26993135

  15. Characterization of the pattern of ischemic stroke induced by artificial particle embolization in the rat brain.

    PubMed

    Tsai, Ming-Jun; Tsai, Yi-Hung; Kuo, Yu-Min

    2011-09-01

    Embolism is responsible for half of cerebral infarctions, yet few animal models were developed due to the unpredictability of the embolus-induced infarcts. We manufactured artificial embolic particles by blending chitin and poly(D,L-Lactide-co-glycolide) (chitin/PLGA) for their good biocompatibility and rapid hydration expansion property. We subdivided the chitin/PLGA microparticles into 10 size groups (from 38-45 μm to 255-350 μm) and injected them through the external carotid artery toward the bifurcation of the common carotid artery in the rat. Reduced blood flow of the ipsilateral hemisphere was evident immediately after the injection of particles. The spherical appearance of the particle was critical in occluding the cerebral vessels. Particle(212-250 μm) produced the greatest diffuse infarction in the ipsilateral hemisphere, including the cortex, hippocampus, basal ganglion, thalamus, midbrain and cerebellum. Particle(75-90 μm) induced single or sparse isolated infarcts mainly located in the subcortical region, resembling lacunar stroke observed in humans. Particle(38-45 μm) frequently crossed to the contralateral hemisphere and induced diffuse infarctions in both hemispheres. The cortex infarct volumes were positively correlated to neurologic score and seizure incidence. In conclusion, we have established embolic stroke animal models, including a novel model that mainly expresses lacunar infarction, by intravenous injection of chitin/PLGA microparticles. PMID:21665272

  16. Heart antibodies in cardiomyopathies.

    PubMed Central

    Trueman, T; Thompson, R A; Cummins, P; Littler, W A

    1981-01-01

    The reported frequency of circulating heart reactive antibodies in cardiomyopathies has varied and their significance is unknown. In this study such antibodies were sought in patients with primary congestive and hypertrophic cardiomyopathies and other heart diseases. Standard "single sandwich" and the more sensitive "double sandwich" indirect immunofluorescence techniques failed to disclose a significant difference between any cardiomyopathic group and controls in repeated experiments. With both techniques results were subject to considerable method-specific artefacts and observer variation. No published work associating heart antibodies detected by immunofluorescence methods with cariomyopathies adequately takes these into account. PMID:7028058

  17. Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells.

    PubMed

    Li, Shujing; Wang, Xianyun; Li, Jing; Zhang, Jun; Zhang, Fan; Hu, Jie; Qi, Yixin; Yan, Baoyong; Li, Quanhai

    2016-01-01

    Ischemic diseases are a group of diseases, including ischemic cerebrovascular disease, ischemic cardiomyopathy (ICM), and diabetic foot as well as other diseases which are becoming a leading cause of morbidity and mortality in the whole world. Mesenchymal stem cells (MSCs) have been used to treat a variety of ischemic diseases in animal models and clinical trials. Lots of recent publications demonstrated that MSCs therapy was safe and relieved symptoms in patients of ischemic disease. However, many factors could influence therapeutic efficacy including route of delivery, MSCs' survival and residential rate in vivo, timing of transplantation, particular microenvironment, and patient's clinical condition. In this review, the current status, therapeutic potential, and the detailed factors of MSCs-based therapeutics for ischemic cerebrovascular disease, ICM, and diabetic foot are presented and discussed. We think that MSCs transplantation would constitute an ideal option for patients with ischemic diseases. PMID:27293445

  18. Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells

    PubMed Central

    Li, Shujing; Wang, Xianyun; Li, Jing; Zhang, Jun; Zhang, Fan; Hu, Jie; Qi, Yixin; Yan, Baoyong; Li, Quanhai

    2016-01-01

    Ischemic diseases are a group of diseases, including ischemic cerebrovascular disease, ischemic cardiomyopathy (ICM), and diabetic foot as well as other diseases which are becoming a leading cause of morbidity and mortality in the whole world. Mesenchymal stem cells (MSCs) have been used to treat a variety of ischemic diseases in animal models and clinical trials. Lots of recent publications demonstrated that MSCs therapy was safe and relieved symptoms in patients of ischemic disease. However, many factors could influence therapeutic efficacy including route of delivery, MSCs' survival and residential rate in vivo, timing of transplantation, particular microenvironment, and patient's clinical condition. In this review, the current status, therapeutic potential, and the detailed factors of MSCs-based therapeutics for ischemic cerebrovascular disease, ICM, and diabetic foot are presented and discussed. We think that MSCs transplantation would constitute an ideal option for patients with ischemic diseases. PMID:27293445

  19. Ischemic Colitis

    PubMed Central

    FitzGerald, James F.; Hernandez III, Luis O.

    2015-01-01

    Most clinicians associate ischemic colitis with elderly patients who have underlying cardiovascular comorbidities. While the majority of cases probably occur in this population, the disease can present in younger patients as a result of different risk factors, making the diagnosis challenging. While a majority of patients respond to medical management, surgery is required in approximately 20% of the cases and is associated with high morbidity and mortality. PMID:26034405

  20. The indirect NMDAR inhibitor flupirtine induces sustained post-ischemic recovery, neuroprotection and angioneurogenesis.

    PubMed

    Jaeger, Hanna M; Pehlke, Jens R; Kaltwasser, Britta; Kilic, Ertugrul; Bähr, Mathias; Hermann, Dirk M; Doeppner, Thorsten R

    2015-06-10

    N-methyl-D-aspartate receptor (NMDAR) activation induces excitotoxicity, contributing to post-stroke brain injury. Hitherto, NMDAR deactivation failed in clinical trials due to insufficient pre-clinical study designs and drug toxicity. Flupirtine is an indirect NMDAR antagonist being used as analgesic in patients. Taking into account its tolerability profile, we evaluated effects of flupirtine on post-stroke tissue survival, neurological recovery and brain remodeling.Mice were exposed to stroke and intraperitoneally treated with saline (control) or flupirtine at various doses (1-10 mg/kg) and time-points (0-12 hours). Tissue survival and cell signaling were studied on day 2, whereas neurological recovery and tissue remodeling were analyzed until day 84.Flupirtine induced sustained neuroprotection, when delivered up to 9 hours. The latter yielded enhanced neurological recovery that persisted over three months and which was accompanied by enhanced angioneurogenesis. On the molecular level, inhibition of calpain activation was noted, which was associated with increased signal-transducer-and-activator-of-transcription-6 (STAT6) abundance, reduced N-terminal-Jun-kinase and NF-κB activation, as well as reduced proteasomal activity. Consequently, blood-brain-barrier integrity was stabilized, oxidative stress was reduced and brain leukocyte infiltration was diminished.In view of its excellent tolerability, considering its sustained effects on neurological recovery, brain tissue survival and remodeling, flupirtine is an attractive candidate for stroke therapy. PMID:26050199

  1. The indirect NMDAR inhibitor flupirtine induces sustained post-ischemic recovery, neuroprotection and angioneurogenesis

    PubMed Central

    Jaeger, Hanna M.; Pehlke, Jens R.; Kaltwasser, Britta; Kilic, Ertugrul; Bähr, Mathias; Hermann, Dirk M.; Doeppner, Thorsten R.

    2015-01-01

    N-methyl-D-aspartate receptor (NMDAR) activation induces excitotoxicity, contributing to post-stroke brain injury. Hitherto, NMDAR deactivation failed in clinical trials due to insufficient pre-clinical study designs and drug toxicity. Flupirtine is an indirect NMDAR antagonist being used as analgesic in patients. Taking into account its tolerability profile, we evaluated effects of flupirtine on post-stroke tissue survival, neurological recovery and brain remodeling. Mice were exposed to stroke and intraperitoneally treated with saline (control) or flupirtine at various doses (1-10 mg/kg) and time-points (0-12 hours). Tissue survival and cell signaling were studied on day 2, whereas neurological recovery and tissue remodeling were analyzed until day 84. Flupirtine induced sustained neuroprotection, when delivered up to 9 hours. The latter yielded enhanced neurological recovery that persisted over three months and which was accompanied by enhanced angioneurogenesis. On the molecular level, inhibition of calpain activation was noted, which was associated with increased signal-transducer-and-activator-of-transcription-6 (STAT6) abundance, reduced N-terminal-Jun-kinase and NF-κB activation, as well as reduced proteasomal activity. Consequently, blood-brain-barrier integrity was stabilized, oxidative stress was reduced and brain leukocyte infiltration was diminished. In view of its excellent tolerability, considering its sustained effects on neurological recovery, brain tissue survival and remodeling, flupirtine is an attractive candidate for stroke therapy. PMID:26050199

  2. [Lipoprotein lipase and diabetic cardiomyopathy].

    PubMed

    Liu, Xiang-Yu; Yin, Wei-Dong; Tang, Chao-Ke

    2014-02-01

    Lipoprotein lipase (LPL) hydrolyzes plasma triglyceride-rich lipoproteins into free fatty acids (FFA) to provide energy for cardiac tissue. During diabetes, cardiac energy supply is insufficient due to defected utilization of glucose. As a compensation of cardiac energy supply, FFAs are released through the hydrolysis of very low density lipoprotein (VLDL) and chylomicrons (CM) due to activation of LPL activity. In diabetic patients, activated LPL activity and elevated FFAs result in the intracellular accumulation of reactive oxygen species and lipids in myocardium and potentially induce the diabetic cardiomyopathy (DCM). The present review summarizes the regulatory mechanisms of myocardial LPL and the pathogenesis of DCM induced by LPL and provides novel therapeutic targets and pathways for DCM. PMID:24873138

  3. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    SciTech Connect

    Kikuchi, Kiyoshi; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi; Tancharoen, Salunya; Morimoto, Yoko; Matsuda, Fumiyo; Oyama, Yoko; Takenouchi, Kazunori; Miura, Naoki; Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro; and others

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  4. Effect of atropine and gammahydroxybutyrate on ischemically induced changes in the level of radioactivity in (/sup 3/H)inositol phosphates in gerbil brain in vivo

    SciTech Connect

    Wikiel, H.; Halat, G.; Strosznajder, J.

    1988-05-01

    Brain ischemia in gerbils was induced by ligation of both common carotid arteries for 1 min or 10 min. Sham-operated animals served as controls. Intracerebral injection of (3H)inositol into gerbil brain 16 hr before ischemic insult resulted in equilibration of the label between inositol lipids and water-soluble inositol phosphate. A short ischemic period (1 min) resulted in a statistically significant increase in the radioactivity of inositol triphosphate (IP3) and inositol monophosphate (IP), by about 48% and 79%, respectively, with little change in that of the intermediate inositol biphosphate (IP2), which increased by about 16%. When the ischemic period was prolonged (10 min), an increase in the radioactivity of inositol monophosphate exclusively, by about 84%, was observed. The level of radioactivity in inositol phosphates IP2 and IP3 decreased by about 50%, probably as a consequence of phosphatase activation by the ischemic insult. The agonist of the cholinergic receptor, carbachol, injected intracerebrally (40 micrograms per animal) increased accumulation of radioactivity in all inositol phosphates. The level of radioactivity in IP3, IP2, and IP was elevated by about 40, 23, and 147%, respectively. The muscarinic cholinergic antagonist, atropine, injected intraperitoneally in doses of 100 mg/kg body wt. depressed phosphoinositide metabolism in control animals. The level of radioactivity in water-soluble inositol metabolites in the brain of animals pretreated with atropine was evidently about 32% lower than in untreated animals. Pretreatment with atropine decreased the radioactivity of all inositol phosphates in the brain of animals subjected to 1-min ischemia and the radioactivity of IP in the case of 10-min brain ischemia.

  5. Cardiomyopathy Following Latrodectus Envenomation

    PubMed Central

    Levine, Michael; Canning, Josh; Chase, Robyn; Ruha, Anne-Michelle

    2010-01-01

    Latrodectus envenomations are common throughout the United States and the world. While many envenomations can result in catecholamine release with resultant hypertension and tachycardia, myocarditis is very rare. We describe a case of a 22-year-old male who sustained a Latrodectus envenomation complicated by cardiomyopathy. PMID:21293781

  6. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice

    PubMed Central

    Verma, Rajkumar; Venna, Venugopal R.; Liu, Fudong; Chauhan, Anjali; Koellhoffer, Edward; Patel, Anita; Ricker, Austin; Maas, Kendra; Graf, Joerg; McCullough, Louise D.

    2016-01-01

    Aging is an important risk factor for post-stroke infection, which accounts for a large proportion of stroke-associated mortality. Despite this, studies evaluating post-stroke infection rates in aged animal models are limited. In addition, few studies have assessed gut microbes as a potential source of infection following stroke. Therefore we investigated the effects of age and the role of bacterial translocation from the gut in post-stroke infection in young (8-12 weeks) and aged (18-20 months) C57Bl/6 male mice following transient middle cerebral artery occlusion (MCAO) or sham surgery. Gut permeability was examined and peripheral organs were assessed for the presence of gut-derived bacteria following stroke. Furthermore, sickness parameters and components of innate and adaptive immunity were examined. We found that while stroke induced gut permeability and bacterial translocation in both young and aged mice, only young mice were able to resolve infection. Bacterial species seeding peripheral organs also differed between young (Escherichia) and aged (Enterobacter) mice. Consequently, aged mice developed a septic response marked by persistent and exacerbated hypothermia, weight loss, and immune dysfunction compared to young mice following stroke. PMID:27115295

  7. Intrinsic washout rates of thallium-201 in normal and ischemic myocardium after dipyridamole-induced vasodilation

    SciTech Connect

    Beller, G.A.; Holzgrefe, H.H.; Watson, D.D.

    1985-02-01

    Infusion of dipyridamole has been suggested as an alternative to exercise stress for myocardial perfusion imaging for detection of ischemia, but the mechanism and significance of thallium-201 (/sup 201/Tl) redistribution after administration of dipyridamole are uncertain. If disparate intrinsic cellular efflux rates of /sup 201/Tl from normal and relatively underperfused myocardium in response to dipyridamole-induced vasodilation were observed, this could explain delayed /sup 201/Tl redistribution. We investigated the effect of an intravenous infusion of 0.15 mg/kg dipyridamole on the intrinsic myocardial washout rate of /sup 201/Tl as measured with a gamma-detector probe after intracoronary injection (50 muCi) of the radionuclide in open-chested anesthetized dogs. In six normal dogs the t 1/2 for intrinsic /sup 201/Tl washout from the myocardium was 89 +/- 11 min (SE) at control conditions and became more rapid at 59 +/- 10 min (p . .0001) after dipyridamole. This corresponded to a significant increase in microsphere-determined epicardial (0.95 +/- 0.11 to 2.23 +/- 0.46 ml/min/g; p . .01) and endocardial (0.86 +/- 0.10 to 1.53 +/- 0.27; p . .029) flows. In 12 dogs with a critical coronary stenosis, the /sup 201/Tl intrinsic washout rate slowed from 70 +/- 5 to 104 +/- 6 min (p . .0001) after production of the stenosis and slowed even further to 169 +/- 21 min (p . .003) after dipyridamole.

  8. Hypophosphorylation of ribosomal protein S6 is a molecular mechanism underlying ischemic tolerance induced by either hibernation or preconditioning.

    PubMed

    Miyake, Shin-ichi; Wakita, Hideaki; Bernstock, Joshua D; Castri, Paola; Ruetzler, Christl; Miyake, Junko; Lee, Yang-Ja; Hallenbeck, John M

    2015-12-01

    Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions in blood flow and oxygen delivery to the brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down-regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. Mammalian hibernation provides a valuable model of tolerance to ischemic stress. Herein, we demonstrate that marked reductions in the phosphorylation of ribosomal protein S6 (rpS6), extracellular signal-regulated kinase family of mitogen-activated protein (MAP) kinase p44/42 (p44/42MAPK) and ribosomal protein S6 kinase (S6K) occur within the brains of both hibernating squirrels and rats, which have undergone an ischemic

  9. L-glutamine supplementation prevents the development of experimental diabetic cardiomyopathy in streptozotocin-nicotinamide induced diabetic rats.

    PubMed

    Badole, Sachin L; Jangam, Ganesh B; Chaudhari, Swapnil M; Ghule, Arvindkumar E; Zanwar, Anand A

    2014-01-01

    The objective of the present investigation was to evaluate the effect of L-glutamine on cardiac myopathy in streptozotocin-nicotinamide induced diabetic rats. Diabetes was induced in overnight fasted Sprague Dawely rats by using intraperitonial injection of streptozotocin (55 mg/kg). Nicotinamide (100 mg/kg, i.p.) was administered 20 min before administration of streptozotocin. Experimental rats were divided into Group I: non-diabetic control (distilled water; 10 ml/kg, p.o.), II: diabetic control (distilled water, 10 ml/kg, p.o.), III: L-glutamine (500 mg/kg, p.o.) and IV: L-glutamine (1000 mg/kg, p.o.). All groups were diabetic except group I. The plasma glucose level, body weight, electrocardiographic abnormalities, hemodynamic changes and left ventricular contractile function, biological markers of cardiotoxicity, antioxidant markers were determined after 4 months after STZ with nicotinamide injection. Histopathological changes of heart tissue were carried out by using H and E stain. L-glutamine treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters and histological changes in STZ induced diabetic rats. Results from the present investigation demonstrated that L-glutamine has seemed a cardioprotective activity. PMID:24651718

  10. Putative role of ischemic postconditioning in a rat model of limb ischemia and reperfusion: involvement of hypoxia-inducible factor-1α expression

    PubMed Central

    Wang, T.; Zhou, Y.T.; Chen, X.N.; Zhu, A.X.

    2014-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle. In the present study, we tested the hypothesis that ischemic postconditioning is effective for salvaging ischemic skeletal muscle resulting from limb ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α. Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group IPO). Each group was divided into subgroups (n=6) according to reperfusion time: immediate (0 h, T0), 1 h (T1), 3 h (T3), 6 h (T6), 12 h (T12), and 24 h (T24). In the IPO group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were carried out before reperfusion. At all reperfusion times (T0-T24), serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) concentrations, were measured in rats after they were killed. Histological and immunohistochemical methods were used to assess the skeletal muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all significantly increased compared to group S, and HIF-1α expression was up-regulated (P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and IL-6 concentrations were significantly decreased, IL-10 concentration was increased, HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological changes were reduced compared to group IR. The present study suggests that ischemic postconditioning can reduce skeletal muscle damage caused by limb ischemia-reperfusion and that its mechanisms may be related to the involvement of HlF-1α in the limb ischemia-reperfusion injury-triggered inflammatory response. PMID:25075575

  11. New method of posterior scallop augmentation for ischemic mitral regurgitation.

    PubMed

    Aoki, Masakazu; Ito, Toshiaki

    2015-03-01

    We report a new method of posterior middle scallop (P2) augmentation for ischemic mitral regurgitation to achieve deep coaptation. First, P2 was divided straight at the center and partially detached from the annulus in a reverse T shape. A narrow pentagon-shaped section of pericardium was sutured to the divided P2 and annular defect. The tip of the pentagon was attached directly to the papillary muscle, thus creating a very large P2 scallop. A standard-sized ring was placed. We adopted this technique in 2 patients with advanced ischemic cardiomyopathy, and no mitral regurgitation was observed during a 1-year follow-up. PMID:25742844

  12. Inverted Takotsubo cardiomyopathy after attempted suicidal hanging--two cases.

    PubMed

    Sengupta, Shantanu; Mungulmare, Kunda; Wadaskar, Nitin; Pande, Abhishek

    2016-04-01

    We report two cases of "Inverted Takotsubo cardiomyopathy" following attempted suicidal hanging. Both the patients presented with heart failure and had desaturation 8-12h after the suicidal attempt. Electrocardiography (ECG) showed ischemic changes. On echocardiography, the left ventricle (LV) showed ballooning and hypokinesia of the basal segments with apical sparing. Both patients underwent coronary angiograms considering the possibility of acute coronary syndrome. However, their coronary angiograms were normal. After 3-4 days of hospitalization, both recovered; their ECG had reversed and the LV contractility was normal on echocardiography. PMID:27056654

  13. DIGE proteome analysis reveals suitability of ischemic cardiac in vitro model for studying cellular response to acute ischemia and regeneration.

    PubMed

    Haas, Sina; Jahnke, Heinz-Georg; Moerbt, Nora; von Bergen, Martin; Aharinejad, Seyedhossein; Andrukhova, Olena; Robitzki, Andrea A

    2012-01-01

    Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy.With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research. PMID:22384053

  14. DIGE Proteome Analysis Reveals Suitability of Ischemic Cardiac In Vitro Model for Studying Cellular Response to Acute Ischemia and Regeneration

    PubMed Central

    Haas, Sina; Jahnke, Heinz-Georg; Moerbt, Nora; von Bergen, Martin; Aharinejad, Seyedhossein; Andrukhova, Olena; Robitzki, Andrea A.

    2012-01-01

    Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy. With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research. PMID:22384053

  15. Takotsubo cardiomyopathy following lightning strike.

    PubMed

    Dundon, B K; Puri, R; Leong, D P; Worthley, M I

    2008-07-01

    Lightning strike is the most common environmental cause of sudden cardiac death, but may also be associated with a myriad of injuries to various organ systems. Direct myocardial injury may be manifest as electrocardiographic alterations or elevation in cardiac-specific isoenzymes; however, significant electrical cardiac trauma appears uncommon. A case is presented of severe acute cardiomyopathy in a "Takotsubo" distribution causing cardiogenic shock following lightning strike in a previously healthy 37-year-old woman. Although rarely identified in this context, Takotsubo cardiomyopathy (also known as "transient left ventricular apical ballooning syndrome") is characterised by transient cardiac dysfunction, electrocardiographic changes that may mimic acute myocardial infarction and minimal release of cardiac-specific enzymes in the absence of obstructive coronary artery disease. The condition is associated with a substantial female bias (up to 90% of cases) in reported series, and despite occasionally dramatic presentations recovery of left ventricular function is almost universal over days to weeks. In rare instances, however, the syndrome has been associated with more catastrophic complications such as papillary muscle or cardiac free wall rupture, necessitating emergency surgical intervention to preserve life. In clinical practice, non-lethal lightning strike-induced cardiac injury is frequently associated with small elevations of cardiac isoenzymes without overt clinical sequelae; however, the incidence of silent myocardial mechanical dysfunction remains unknown. Cases such as the one presented highlight the potential for serious, albeit usually transient, cardiac sequelae from lightning strike injury and remind us that our mothers' advice to remain indoors during thunderstorms is probably worth heeding. PMID:18573973

  16. Takotsubo cardiomyopathy following lightning strike.

    PubMed

    Dundon, Benjamin K; Puri, Rishi; Leong, Darryl P; Worthley, Matthew Ian

    2009-01-01

    Lightning strike is the most common environmental cause of sudden cardiac death, but it may also be associated with a myriad of injuries to various organ systems. Direct myocardial injury may be manifest as electrocardiographic alterations or elevation in cardiac-specific isoenzymes; however, significant electrical cardiac trauma appears uncommon. A case is presented of severe acute cardiomyopathy in a "Takotsubo" distribution causing cardiogenic shock following lightning strike in a previously healthy 37-year-old woman. Although rarely identified in this context, Takotsubo cardiomyopathy (also known as "transient left ventricular apical ballooning syndrome") is characterised by transient cardiac dysfunction, electrocardiographic changes that may mimic acute myocardial infarction and minimal release of cardiac-specific enzymes in the absence of obstructive coronary artery disease. The condition is associated with a substantial female bias (up to 90% of cases) in reported series, and despite occasionally dramatic presentations recovery of left ventricular function is almost universal over days to weeks. In rare instances, however, the syndrome has been associated with more catastrophic complications such as papillary muscle or cardiac free wall rupture, necessitating emergency surgical intervention to preserve life. In clinical practice, non-lethal lightning strike-induced cardiac injury is frequently associated with small elevations of cardiac isoenzymes without overt clinical sequelae; however, the incidence of silent myocardial mechanical dysfunction remains unknown. Cases such as the one presented highlight the potential for serious, albeit usually transient, cardiac sequelae from lightning strike injury and remind us that our mothers' advice to remain indoors during thunderstorms is probably worth heeding. PMID:21686980

  17. Alcoholic cardiomyopathy : The result of dosage and individual predisposition.

    PubMed

    Maisch, B

    2016-09-01

    The individual amount of alcohol consumed acutely or chronically decides on harm or benefit to a person's health. Available data suggest that one to two drinks in men and one drink in women will benefit the cardiovascular system over time, one drink being 17.6 ml 100 % alcohol. Moderate drinking can reduce the incidence and mortality of coronary artery disease, heart failure, diabetes, ischemic and hemorrhagic stroke. More than this amount can lead to alcoholic cardiomyopathy, which is defined as alcohol toxicity to the heart muscle itself by ethanol and its metabolites. Historical examples of interest are the Munich beer heart and the Tübingen wine heart. Associated with chronic alcohol abuse but having different etiologies are beriberi heart disease (vitamin B1 deficiency) and cardiac cirrhosis as hyperdynamic cardiomyopathies, arsenic poising in the Manchester beer epidemic, and cobalt intoxication in Quebec beer drinker's disease. Chronic heavy alcohol abuse will also increase blood pressure and cause a downregulation of the immune system that could lead to increased susceptibility to infections, which in turn could add to the development of heart failure. Myocardial tissue analysis resembles idiopathic cardiomyopathy or chronic myocarditis. In the diagnostic work-up of alcoholic cardiomyopathy, the confirmation of alcohol abuse by carbohydrate deficient transferrin (CDT) and increased liver enzymes, and the involvement of the heart by markers of heart failure (e.g., NT-proBNP) and of necrosis (e.g., troponins or CKMb) is mandatory. Treatment of alcoholic cardiomyopathy consists of alcohol abstinence and heart failure medication. PMID:27582365

  18. Ischemic preconditioning protects against ischemic brain injury.

    PubMed

    Ma, Xiao-Meng; Liu, Mei; Liu, Ying-Ying; Ma, Li-Li; Jiang, Ying; Chen, Xiao-Hong

    2016-05-01

    In this study, we hypothesized that an increase in integrin αvβ3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3 and vascular endothelial growth factor levels in the brain following ischemia. PMID:27335560

  19. Ischemic preconditioning protects against ischemic brain injury

    PubMed Central

    Ma, Xiao-meng; Liu, Mei; Liu, Ying-ying; Ma, Li-li; Jiang, Ying; Chen, Xiao-hong

    2016-01-01

    In this study, we hypothesized that an increase in integrin αvβ3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3 and vascular endothelial growth factor levels in the brain following ischemia. PMID:27335560

  20. Evaluation of the usefulness of skin blood flow measurements by laser speckle flowgraphy in pressure-induced ischemic wounds in rats.

    PubMed

    Nakagami, Gojiro; Sari, Yunita; Nagase, Takashi; Iizaka, Shinji; Ohta, Yasunori; Sanada, Hiromi

    2010-03-01

    Assessment of blood circulation in pressure ulcers can be beneficial for predicting the severity of tissue damage and making the prognosis. Here, we evaluated the usefulness of laser speckle flowgraphy (LSFG) for assessing skin blood flow in pressure-induced ischemic wounds in rats in comparison with skin temperature measurements by thermography, which is commonly used in clinical settings. The blood flow was assessed in 3 groups (control, 1 kg loading, and 10 kg loading for 3 hours), before, immediately after, and on days 1, 2, and 3 after loading. The 10 kg loading induced more severe tissue damage but did not show any distinguishable gross manifestations immediately after releasing the indenter. LSFG detected a significantly reduced blood flow velocity after 10 kg loading compared with 1 kg loading, whereas thermography did not. These results indicate the usefulness of LSFG measurements for assessing tissue circulation in an early phase after tissue damage onset. PMID:20179489

  1. MicroRNA Dysregulation in Diabetic Ischemic Heart Failure Patients

    PubMed Central

    Greco, Simona; Fasanaro, Pasquale; Castelvecchio, Serenella; D’Alessandra, Yuri; Arcelli, Diego; Di Donato, Marisa; Malavazos, Alexis; Capogrossi, Maurizio C.; Menicanti, Lorenzo; Martelli, Fabio

    2012-01-01

    Increased morbidity and mortality associated with ischemic heart failure (HF) in type 2 diabetic patients requires a deeper understanding of the underpinning pathogenetic mechanisms. Given the implication of microRNAs (miRNAs) in HF, we investigated their regulation and potential role. miRNA expression profiles were measured in left ventricle biopsies from 10 diabetic HF (D-HF) and 19 nondiabetic HF (ND-HF) patients affected by non–end stage dilated ischemic cardiomyopathy. The HF groups were compared with each other and with 16 matched nondiabetic, non-HF control subjects. A total of 17 miRNAs were modulated in D-HF and/or ND-HF patients when compared with control subjects. miR-216a, strongly increased in both D-HF and ND-HF patients, negatively correlated with left ventricular ejection fraction. Six miRNAs were differently expressed when comparing D-HF and ND-HF patients: miR-34b, miR-34c, miR-199b, miR-210, miR-650, and miR-223. Bioinformatic analysis of their modulated targets showed the enrichment of cardiac dysfunctions and HF categories. Moreover, the hypoxia-inducible factor pathway was activated in the noninfarcted, vital myocardium of D-HF compared with ND-HF patients, indicating a dysregulation of the hypoxia response mechanisms. Accordingly, miR-199a, miR-199b, and miR-210 were modulated by hypoxia and high glucose in cardiomyocytes and endothelial cells cultured in vitro. In conclusion, these findings show a dysregulation of miRNAs in HF, shedding light on the specific disease mechanisms differentiating diabetic patients. PMID:22427379

  2. Ablation of Ventricular Tachycardia in Patients with Ischemic Cardiomyopathy.

    PubMed

    Garabelli, Paul; Stavrakis, Stavros; Po, Sunny S

    2016-03-01

    Ventricular tachycardias (VTs) occurring after prior myocardial infarction are usually caused by reentrant circuits formed by surviving myocardial bundles. Although part of the reentrant circuits may be located in the midmyocardium or epicardium, most of the VTs can be safely and successfully ablated by endocardial ablation targeting the late potentials/local abnormal ventricular activation, which are surrogates for the surviving myocardial bundles. A combination of activation, substrate, pace, and entrainment mapping, as well as the use of contact force catheters, further improves ablation success and safety. PMID:26920180

  3. Hypertrophic Cardiomyopathy: A Review

    PubMed Central

    Houston, Brian A; Stevens, Gerin R

    2014-01-01

    Hypertrophic cardiomyopathy (HCM) is a global disease with cases reported in all continents, affecting people of both genders and of various racial and ethnic origins. Widely accepted as a monogenic disease caused by a mutation in 1 of 13 or more sarcomeric genes, HCM can present catastrophically with sudden cardiac death (SCD) or ventricular arrhythmias or insidiously with symptoms of heart failure. Given the velocity of progress in both the fields of heart failure and HCM, we present a review of the approach to patients with HCM, with particular attention to those with HCM and the clinical syndrome of heart failure. PMID:25657602

  4. A Chemokine Receptor, CXCR4, Which Is Regulated by Hypoxia-Inducible Factor 2α, Is Crucial for Functional Endothelial Progenitor Cells Migration to Ischemic Tissue and Wound Repair

    PubMed Central

    Tu, Tran Cam; Nagano, Masumi; Yamashita, Toshiharu; Hamada, Hiromi; Ohneda, Kinuko; Kimura, Kenichi

    2016-01-01

    Endothelial progenitor cells (EPCs) have the ability to form new blood vessels and protect ischemic tissues from damage. We previously reported that EPCs with low activity of aldehyde dehydrogenase (Alde-Low EPCs) possess the greater ability to treat ischemic tissues compared with Alde-High EPCs. The expression level of the hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, was found to be greater in Alde-Low EPCs than in Alde-High EPCs. However, the precise role of the HIF factors in the regulation of EPC activity remains obscure. In this study, we demonstrate a critical role of HIF-2α and its target gene CXCR4 for controlling the migratory activity of EPC to ischemic tissue. We found that coculture of Alde-High EPCs with microvesicles derived from Alde-Low EPCs improved their ability to repair an ischemic skin flap, and the expression of CXCR4 and its ligand SDF1 was significantly increased following the coculture. In Alde-Low EPCs, the expression of CXCR4 was suppressed by short hairpin RNA (shRNA)-mediated HIF-2α, but not HIF-1α downregulation. Chromatin immunoprecipitation assays showed that HIF-2α, but not HIF-1α, binds to the promoter region of CXCR4 gene. The CXCR4 shRNA treatment in Alde-Low EPCs almost completely abrogated their migratory activity to ischemic tissues, whereas the reduction of vascular endothelial growth factor (VEGF) showed much less effect. The CXCR4 overexpression in Alde-High EPCs resulted in a partial, but significant improvement in their repairing ability in an ischemic skin flap. Collectively, these findings indicate that the CXCR4/SDF-1 axis, which is specifically regulated by HIF-2α, plays a crucial role in the regulation of EPC migration to ischemic tissues. PMID:26620723

  5. A Chemokine Receptor, CXCR4, Which Is Regulated by Hypoxia-Inducible Factor 2α, Is Crucial for Functional Endothelial Progenitor Cells Migration to Ischemic Tissue and Wound Repair.

    PubMed

    Tu, Tran Cam; Nagano, Masumi; Yamashita, Toshiharu; Hamada, Hiromi; Ohneda, Kinuko; Kimura, Kenichi; Ohneda, Osamu

    2016-02-01

    Endothelial progenitor cells (EPCs) have the ability to form new blood vessels and protect ischemic tissues from damage. We previously reported that EPCs with low activity of aldehyde dehydrogenase (Alde-Low EPCs) possess the greater ability to treat ischemic tissues compared with Alde-High EPCs. The expression level of the hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, was found to be greater in Alde-Low EPCs than in Alde-High EPCs. However, the precise role of the HIF factors in the regulation of EPC activity remains obscure. In this study, we demonstrate a critical role of HIF-2α and its target gene CXCR4 for controlling the migratory activity of EPC to ischemic tissue. We found that coculture of Alde-High EPCs with microvesicles derived from Alde-Low EPCs improved their ability to repair an ischemic skin flap, and the expression of CXCR4 and its ligand SDF1 was significantly increased following the coculture. In Alde-Low EPCs, the expression of CXCR4 was suppressed by short hairpin RNA (shRNA)-mediated HIF-2α, but not HIF-1α downregulation. Chromatin immunoprecipitation assays showed that HIF-2α, but not HIF-1α, binds to the promoter region of CXCR4 gene. The CXCR4 shRNA treatment in Alde-Low EPCs almost completely abrogated their migratory activity to ischemic tissues, whereas the reduction of vascular endothelial growth factor (VEGF) showed much less effect. The CXCR4 overexpression in Alde-High EPCs resulted in a partial, but significant improvement in their repairing ability in an ischemic skin flap. Collectively, these findings indicate that the CXCR4/SDF-1 axis, which is specifically regulated by HIF-2α, plays a crucial role in the regulation of EPC migration to ischemic tissues. PMID:26620723

  6. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy.

    PubMed

    Ali, Muhammad; Mehmood, Azra; Anjum, Muhammad Sohail; Tarrar, Moazzam Nazir; Khan, Shaheen N; Riazuddin, Sheikh

    2015-12-01

    Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia

  7. Cardiorespiratory and cardiovascular interactions in cardiomyopathy patients using joint symbolic dynamic analysis.

    PubMed

    Giraldo, Beatriz F; Rodriguez, Javier; Caminal, Pere; Bayes-Genis, Antonio; Voss, Andreas

    2015-01-01

    Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyopathy patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyopathies were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopathies, obtaining an accuracy of 85.7%. PMID:26736261

  8. Genetics of inherited cardiomyopathy

    PubMed Central

    Jacoby, Daniel; McKenna, William J.

    2012-01-01

    During the past two decades, numerous disease-causing genes for different cardiomyopathies have been identified. These discoveries have led to better understanding of disease pathogenesis and initial steps in the application of mutation analysis in the evaluation of affected individuals and their family members. As knowledge of the genetic abnormalities, and insight into cellular and organ biology has grown, so has appreciation of the level of complexity of interaction between genotype and phenotype across disease states. What were initially thought to be one-to-one gene-disease correlates have turned out to display important relational plasticity dependent in large part on the genetic and environmental backgrounds into which the genes of interest express. The current state of knowledge with regard to genetics of cardiomyopathy represents a starting point to address the biology of disease, but is not yet developed sufficiently to supplant clinically based classification systems or, in most cases, to guide therapy to any significant extent. Future work will of necessity be directed towards elucidation of the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype–phenotype relationship with the ultimate goal of furthering our ability to identify, diagnose, risk stratify, and treat this group of disorders which cause heart failure and sudden death in the young. PMID:21810862

  9. Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology.

    PubMed

    Bakeer, Nihal; James, Jeanne; Roy, Swarnava; Wansapura, Janaka; Shanmukhappa, Shiva Kumar; Lorenz, John N; Osinska, Hanna; Backer, Kurt; Huby, Anne-Cecile; Shrestha, Archana; Niss, Omar; Fleck, Robert; Quinn, Charles T; Taylor, Michael D; Purevjav, Enkhsaikhan; Aronow, Bruce J; Towbin, Jeffrey A; Malik, Punam

    2016-08-30

    Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA. PMID:27503873

  10. Ischemic Strokes (Clots)

    MedlinePlus

    ... Quiz 5 Things to Know About Stroke Ischemic Strokes (Clots) Updated:Jul 12,2016 Ischemic stroke accounts ... strokes. Read more about silent strokes . TIA and Stroke: Medical Emergencies When someone has shown symptoms of ...

  11. Preconditioning with recombinant high-mobility group box 1 induces ischemic tolerance in a rat model of focal cerebral ischemia-reperfusion.

    PubMed

    Wang, Chen; Liu, Xiao-Xi; Huang, Kai-Bin; Yin, Su-Bing; Wei, Jing-Jing; Hu, Ya-Fang; Gu, Yong; Zheng, Guo-Qing

    2016-05-01

    Preconditioning with ligands of toll-like receptors (TLRs) is a powerful neuroprotective approach whereby a low dose of stimulus confers significant protection against subsequent substantial brain damage by reprogramming the ischemia-activated TLRs signaling. Herein, we aim to explore whether preconditioning with recombinant high-mobility group box 1 (rHMGB1), one of the TLRs ligands, decreases cerebral ischemia-reperfusion injury (IRI). Rats were intracerebroventricularly pretreated with rHMGB1, 1 or 3 days before induction of middle cerebral artery occlusion. Results showed that preconditioning with rHMGB1 1 day, but not 3 days, prior to ischemia dramatically reduced neurological deficits, infarct size, brain swelling, cell apoptosis, and blood-brain barrier permeability. Interleukin-1R-associated kinase-M (IRAK-M), a critical negative regulator of TLRs signaling, was robustly increased in response to brain IRI and was further elevated by rHMGB1 pretreatment, indicating its role associated with the rHMGB1 preconditioning-mediated ischemic tolerance. In vitro and in vivo assays indicated that the induced IRAK-M expression was localized in microglia. In addition, TLR4 specific inhibitor TAK-242 abolished the neuroprotective effects and the induction of IRAK-M offered by rHMGB1 preconditioning. Collectively, our study demonstrates that rHMGB1 preconditioning is neuroprotective during cerebral IRI, which is associated with activated TLR4/IRAK-M signaling in microglia. We found that high-mobility group box 1 (HMGB1) pretreatment conditioned the brain against subsequent ischemia-reperfusion injury. We propose the following mechanism for HMGB1 preconditioning-mediated ischemic tolerance: through toll-like receptor TLR4, HMGB1 preconditioning magnifies the up-regulation of interleukin-1R-associated kinase-M (IRAK-M) induced by ischemia-reperfusion in microglia, resulting in the decreased phosphorylation of IRAK-1. These findings are helpful in understanding the

  12. Microglia in ischemic brain injury

    PubMed Central

    Weinstein, Jonathan R; Koerner, Ines P; Möller, Thomas

    2010-01-01

    Microglia are resident CNS immune cells that are active sensors in healthy brain and versatile effectors under pathological conditions. Cerebral ischemia induces a robust neuroinflammatory response that includes marked changes in the gene-expression profile and phenotype of a variety of endogenous CNS cell types (astrocytes, neurons and microglia), as well as an influx of leukocytic cells (neutrophils, macrophages and T-cells) from the periphery. Many molecules and conditions can trigger a transformation of surveying microglia to microglia of an alerted or reactive state. Here we review recent developments in the literature that relate to microglial activation in the experimental setting of in vitro and in vivo ischemia. We also present new data from our own laboratory demonstrating the direct effects of in vitro ischemic conditions on the microglial phenotype and genomic profile. In particular, we focus on the role of specific molecular signaling systems, such as hypoxia inducible factor-1 and Toll-like receptor-4, in regulating the microglial response in this setting. We then review histological and novel radiological data that confirm a key role for microglial activation in the setting of ischemic stroke in humans. We also discuss recent progress in the pharmacologic and molecular targeting of microglia in acute ischemic stroke. Finally, we explore how recent studies on ischemic preconditioning have increased interest in pre-emptively targeting microglial activation in order to reduce stroke severity. PMID:20401171

  13. Calcium Ions in Inherited Cardiomyopathies.

    PubMed

    Deftereos, Spyridon; Papoutsidakis, Nikolaos; Giannopoulos, Georgios; Angelidis, Christos; Raisakis, Konstantinos; Bouras, Georgios; Davlouros, Periklis; Panagopoulou, Vasiliki; Goudevenos, John; Cleman, Michael W; Lekakis, John

    2016-01-01

    Inherited cardiomyopathies are a known cause of heart failure, although the pathways and mechanisms leading from mutation to the heart failure phenotype have not been elucidated. There is strong evidence that this transition is mediated, at least in part, by abnormal intracellular Ca(2+) handling, a key ion in ventricular excitation, contraction and relaxation. Studies in human myocytes, animal models and in vitro reconstituted contractile protein complexes have shown consistent correlations between Ca(2+) sensitivity and cardiomyopathy phenotype, irrespective of the causal mutation. In this review we present the available data about the connection between mutations linked to familial hypertrophic (HCM), dilated (DCM) and restrictive (RCM) cardiomyopathy, right ventricular arrhythmogenic cardiomyopathy/dysplasia (ARVC/D) as well as left ventricular non-compaction and the increase or decrease in Ca(2+) sensitivity, together with the results of attempts to reverse the manifestation of heart failure by manipulating Ca(2+) homeostasis. PMID:26411603

  14. Molecular etiology of idiopathic cardiomyopathy

    PubMed Central

    Arimura, T; Hayashi, T; Kimura, A

    2007-01-01

    Summary Idiopathic cardiomyopathy (ICM) is a primary cardiac disorder associated with abnormalities of ventricular wall thickness, size of ventricular cavity, contraction, relaxation, conduction and rhythm. Over the past two decades, molecular genetic analyses have revealed that mutations in the various genes cause ICM and such information concerning the genetic basis of ICM enables us to speculate the pathogenesis of this heterogeous cardiac disease. This review focuses on the molecular pathogenesis, i.e., genetic abnormalities and functional alterations due to the mutations especially in sarcomere/cytoskeletal components, in three characteristic features of ICM, hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) and restrictive cardiomyopathy (RCM). Understanding the functional abnormalities of the sarcomere/cytoskeletal components, in ICM, has unraveled the function of these components not only as a contractile unit but also as a pivot for transduction of biochemical signals. PMID:18646564

  15. Takotsubo cardiomyopathy after a dancing session: a case report

    PubMed Central

    2011-01-01

    Introduction Stress-induced (Takotsubo) cardiomyopathy is a rare form of cardiomyopathy which presents in a manner similar to that of acute coronary syndrome. This sometimes leads to unnecessary thrombolysis therapy. The pathogenesis of this disease is still poorly understood. We believe that reporting all cases of Takotsubo cardiomyopathy will contribute to a better understanding of this disease. Here, we report a patient who, in the absence of any recent stressful events in her life, developed the disease after a session of dancing. Case presentation A 69-year-old Caucasian woman presented with features suggestive of acute coronary syndrome shortly after a session of dancing. Echocardiography and a coronary angiogram showed typical features of Takotsubo cardiomyopathy and our patient was treated accordingly. Eight weeks later, her condition resolved completely and the results of echocardiography were totally normal. Conclusions Takotsubo cardiomyopathy, though transient, is a rare and serious condition. Although it is commonly precipitated by stressful life events, these are not necessarily present. Our patient was enjoying one of her hobbies (that is, dancing) when she developed the disease. This case has particular interest in medicine, especially for the specialties of cardiology and emergency medicine. We hope that it will add more information to the literature about this rare condition. PMID:22040382

  16. Takotsubo Cardiomyopathy Coexisting with Acute Pericarditis and Myocardial Bridge

    PubMed Central

    Sezavar, Seyed Hashem; Riahi Beni, Hassan; Ghanavati, Reza; Hajahmadi, Marjan

    2016-01-01

    Takotsubo cardiomyopathy (TCM) is a stress-induced cardiomyopathy that occurs primarily in postmenopausal women. It mimics clinical picture of acute coronary syndrome with nonobstructive coronary arteries and a characteristic transient left (or bi-) ventricular apical ballooning at angiography. The exact pathogenesis of TCM is not well recognized. Hereby we present an unusual case of TCM that presents with signs and symptoms of acute pericarditis and was also found to have a coexisting coronary muscle bridge on coronary angiography. We discuss the impact of these associations in better understanding of the pathogenesis of TCM. PMID:27437150

  17. [Left ventricular hypertrophy in the cat - "when hypertrophic cardiomyopathy is not hypertrophic cardiomyopathy"].

    PubMed

    Glaus, T; Wess, G

    2010-07-01

    According to WHO classification hypertrophic cardiomyopathy (HCM) is a primary genetic cardiomyopathy. Echocardiographically HCM is characterized by symmetric, asymmetric or focal left ventricular hypertrophy (LVH) without recognizable underlying physical cause. However, echocardiographically HCM in cats may not be distinguishable from other causes of a thick appearing left ventricle. Hypovolemia can look like a hypertrophied ventricle but is basically only pseudohypertrophic. Well recognized and logical physical causes of LVH include systemic hypertension and outflow obstruction. LVH similar to HCM may also be found in feline hyperthyroidism. The context of the disease helps to differentiate these physical / physiological causes of LVH. Difficult to distinguish from HCM, particularly when based on a snapshot of a single echocardiographic exam, are myocarditis and induced HCM>. Only the clinical and echocardiographic course allow a reasonably confident etiological diagnosis and the differentiation between HCM and secondary LVH. PMID:20582898

  18. Transient Reverse Takotsubo Cardiomyopathy Following a Spider Bite in Greece

    PubMed Central

    Alexakis, Lykourgos-Christos; Arapi, Sophia; Stefanou, Ioannis; Gargalianos, Panagiotis; Astriti, Myrto

    2015-01-01

    Abstract Black widow spider is endemic in the Mediterranean area and although envenomations are rare, may occasionally lead to death. We present a case of a 64-year-old female developing a rare variant of takotsubo, stress-induced, cardiomyopathy after a spider bite. This resulted in acute heart failure within 24 hours of the bite. With medical treatment and supportive care, the patient's clinical condition improved. Reverse takotsubo cardiomyopathy was diagnosed by echocardiography, which was transient. Clinical and echocardiographic findings have been completely resolved on follow-up 46 days later. Reverse takotsubo cardiomyopathy has not been yet described following a spider bite. Doctors in the emergency department of endemic countries should be familiar with this potential complication. PMID:25654384

  19. Autonomic Findings in Takotsubo Cardiomyopathy.

    PubMed

    Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio; Martinez, Jose; Katz, Stuart D; Tully, Lisa; Reynolds, Harmony R

    2016-01-15

    Takotsubo cardiomyopathy (TC) often occurs after emotional or physical stress. Norepinephrine levels are unusually high in the acute phase, suggesting a hyperadrenergic mechanism. Comparatively little is known about parasympathetic function in patients with TC. We sought to characterize autonomic function at rest and in response to physical and emotional stimuli in 10 women with a confirmed history of TC and 10 age-matched healthy women. Sympathetic and parasympathetic activity was assessed at rest and during baroreflex stimulation (Valsalva maneuver and tilt testing), cognitive stimulation (Stroop test), and emotional stimulation (event recall, patients). Ambulatory blood pressure monitoring and measurement of brachial artery flow-mediated vasodilation were also performed. TC women (tested an average of 37 months after the event) had excessive pressor responses to cognitive stress (Stroop test: p <0.001 vs baseline and p = 0.03 vs controls) and emotional arousal (recall of TC event: p = 0.03 vs baseline). Pressor responses to hemodynamic stimuli were also amplified (Valsalva overshoot: p <0.05) and prolonged (duration: p <0.01) in the TC women compared with controls. Plasma catecholamine levels did not differ between TC women and controls. Indexes of parasympathetic (vagal) modulation of heart rate induced by respiration and cardiovagal baroreflex gain were significantly decreased in the TC women versus controls. In conclusion, even long after the initial episode, women with previous episode of TC have excessive sympathetic responsiveness and reduced parasympathetic modulation of heart rate. Impaired baroreflex control may therefore play a role in TC. PMID:26743349

  20. TORSADES DE POINTES ASSOCIATED WITH TAKOTSUBO CARDIOMYOPATHY IN AN ANOREXIA NERVOSA PATIENT DURING EMERGENCE FROM GENERAL ANESTHESIA.

    PubMed

    Kawano, Hiroaki; Kinoshita, Michiko; Kondo, Akio; Yamada, Yasuhito; Inoue, Masaya

    2016-06-01

    Takotsubo cardiomyopathy, also known as stress-induced cardiomyopathy, is a disease in which the patient exhibits transient, reversible left ventricular dysfunction that is triggered by physical or emotional stress. Prolongation of QT interval, a risk factor for arrhythmia and sudden death, has been reported to be prevalent among patients with Takotsubo cardiomyopathy and is also observed in those with severe anorexia nervosa. In this report, we describe the rare case of a 30-year-old female patient with anorexia nervosa who developed Torsades de Pointes associated with Takotsubo cardiomyopathy during emergence from general anesthesia for emergency exploratory laparotomy. PMID:27487642

  1. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats

    PubMed Central

    Paredes, Sergio D.; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A.F.

    2015-01-01

    Abstract Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription–polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury. PMID:26594596

  2. The point mutation UCH-L1 C152A protects primary neurons against cyclopentenone prostaglandin-induced cytotoxicity: implications for post-ischemic neuronal injury

    PubMed Central

    Liu, H; Li, W; Rose, M E; Hickey, R W; Chen, J; Uechi, G T; Balasubramani, M; Day, B W; Patel, K V; Graham, S H

    2015-01-01

    Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), are reactive prostaglandin metabolites exerting a variety of biological effects. CyPGs are produced in ischemic brain and disrupt the ubiquitin-proteasome system (UPS). Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain-specific deubiquitinating enzyme that has been linked to neurodegenerative diseases. Using tandem mass spectrometry (MS) analyses, we found that the C152 site of UCH-L1 is adducted by CyPGs. Mutation of C152 to alanine (C152A) inhibited CyPG modification and conserved recombinant UCH-L1 protein hydrolase activity after 15dPGJ2 treatment. A knock-in (KI) mouse expressing the UCH-L1 C152A mutation was constructed with the bacterial artificial chromosome (BAC) technique. Brain expression and distribution of UCH-L1 in the KI mouse was similar to that of wild type (WT) as determined by western blotting. Primary cortical neurons derived from KI mice were resistant to 15dPGJ2 cytotoxicity compared with neurons from WT mice as detected by the WST-1 cell viability assay and caspase-3 and poly ADP ribose polymerase (PARP) cleavage. This protective effect was accompanied with significantly less ubiquitinated protein accumulation and aggregation as well as less UCH-L1 aggregation in C152A KI primary neurons after 15dPGJ2 treatment. Additionally, 15dPGJ2-induced axonal injury was also significantly attenuated in KI neurons as compared with WT. Taken together, these studies indicate that UCH-L1 function is important in hypoxic neuronal death, and the C152 site of UCH-L1 has a significant role in neuronal survival after hypoxic/ischemic injury. PMID:26539913

  3. Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia.

    PubMed

    Kim, Dong Won; Lee, Jae-Chul; Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Seo, Jeong Yeol; Cho, Jun Hwi; Kang, Il Jun; Hong, Seongkweon; Kim, Young-Myeong; Won, Moo-Ho; Kim, In Hye

    2015-09-01

    Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia. PMID:26290267

  4. Myocardial Recovery in Peripartum Cardiomyopathy: Prospective Comparison with Recent Onset Cardiomyopathy in Men and Non-Peripartum Women

    PubMed Central

    Cooper, Leslie T.; Mather, Paul J.; Alexis, Jeffrey D.; Pauly, Daniel F.; Torre-Amione, Guillermo; Wittstein, Ilan S.; Dec, G. William; Zucker, Mark; Narula, Jagat; Kip, Kevin; McNamara, Dennis M.

    2011-01-01

    Background Whether myocardial recovery occurs more frequently in peripartum cardiomyopathy (PPCM), than in recent onset cardiomyopathies in men and non-peripartum women has not been prospectively evaluated. This was examined through an analysis of outcomes in the Intervention in Myocarditis and Acute Cardiomyopathy 2 (IMAC2) registry. Methods and Results IMAC 2 enrolled 373 subjects with recent onset non-ischemic dilated cardiomyopathy. LVEF was assessed at entry and six months, and subjects followed for up to 4 years. Myocardial recovery was compared between men (group1), non-peripartum women (group 2) and subjects with PPCM (group 3). The cohort included 230 subjects in group 1, 104 in group 2, and 39 in group 3. The mean LVEF at baseline in groups 1, 2, and 3 was 0.23±0.08, 0.24±0.08, and 0.27±0.07 (p=0.04), and at six months was 0.39±0.12, 0.42±0.11, and 0.45±0.14 (p=0.007). Subjects in group 3 had a much greater likelihood of achieving an LVEF >0.50 at 6 months than groups 1 or 2 (19 %, 34%, and 48% respectively, p=0.002). Conclusions Prospective evaluation confirms myocardial recovery is greatest in women with PPCM, poorest in men, and intermediate in non-peripartum women. On contemporary therapy, nearly half of women with PPCM normalize cardiac function by six months. PMID:22196838

  5. Antisense modulation of both exonic and intronic splicing motifs induces skipping of a DMD pseudo-exon responsible for x-linked dilated cardiomyopathy.

    PubMed

    Rimessi, Paola; Fabris, Marina; Bovolenta, Matteo; Bassi, Elena; Falzarano, Sofia; Gualandi, Francesca; Rapezzi, Claudio; Coccolo, Fabio; Perrone, Daniela; Medici, Alessandro; Ferlini, Alessandra

    2010-09-01

    Antisense-mediated exon skipping has proven to be efficacious for subsets of Duchenne muscular dystrophy mutations. This approach is based on targeting specific splicing motifs that interfere with the spliceosome assembly by steric hindrance. Proper exon recognition by the splicing machinery is thought to depend on exonic splicing enhancer sequences, often characterized by purine-rich stretches, representing potential targets for antisense-mediated exon skipping. We identified and functionally characterized two purine-rich regions located within dystrophin intron 11 and involved in splicing regulation of a pseudo-exon. A functional role for these sequences was suggested by a pure intronic DMD deletion causing X-linked dilated cardiomyopathy through the prevalent cardiac incorporation of the aberrant pseudo-exon, marked as Alu-exon, into the dystrophin transcript. The first splicing sequence is contained within the pseudo-exon, whereas the second is localized within its 3' intron. We demonstrated that the two sequences actually behave as splicing enhancers in cell-free splicing assays because their deletion strongly interferes with the pseudo-exon inclusion. Cell-free results were then confirmed in myogenic cells derived from the patient with X-linked dilated cardiomyopathy, by targeting the identified motifs with antisense molecules and obtaining a reduction in dystrophin pseudo-exon recognition. The splicing motifs identified could represent target sequences for a personalized molecular therapy in this particular DMD mutation. Our results demonstrated for the first time the role of intronic splicing sequences in antisense modulation with implications in exon skipping-mediated therapeutic approaches. PMID:20486769

  6. Myocardial ischemic protection in natural mammalian hibernation

    PubMed Central

    Yan, Lin; Kudej, Raymond K.; Vatner, Dorothy E.

    2015-01-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation. PMID:25613166

  7. Myocardial ischemic protection in natural mammalian hibernation.

    PubMed

    Yan, Lin; Kudej, Raymond K; Vatner, Dorothy E; Vatner, Stephen F

    2015-03-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation. PMID:25613166

  8. Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats.

    PubMed

    Fang, Lili; Li, Xue; Zhong, Yinbo; Yu, Jing; Yu, Lina; Dai, Haibin; Yan, Min

    2015-10-01

    Cerebral microvascular endothelial cells (ECs) are crucial for brain vascular repair and maintenance, but their physiological function may be impaired during ischemic stroke and diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, could exacerbate ischemia-induced EC injury and dysfunction. We investigated the protective effect of autophagy on cultured human brain microvascular endothelial cells (HBMEC) that underwent MGO treatment. A further study was conducted to explore the underlying mechanisms of the protective effect. Autophagic activity was assessed by evaluating protein levels, using western blot. 3-methyladenine (3-MA), bafilomycin A1, ammonium chloride (AC), Beclin 1 siRNA, and chloroquine (CQ) were used to cause autophagy inhibition. Alarmar blue assay and lactate dehydrogenase release assay were used to evaluate cell viability. Streptozotocin was administered to induce type I diabetes in rats and post-permanent middle cerebral artery occlusion was performed to elicit cerebral ischemia. Blood-brain barrier permeability was also assessed. Our study found that MGO reduced HBMEC cell viability in a concentration- and time-dependent manner, and triggered the responsive autophagy activation. Autophagy inhibitors bafilomycin A1, AC, 3-MA, and BECN1 siRNA exacerbated MGO-induced HBMEC injury. FAK phosphorylation inhibitor PF573228 inhibited MGO-triggered autophagy and enhanced lactate dehydrogenase release. Meanwhile, similar autophagy activation in brain vascular ECs was observed during permanent middle cerebral artery occlusion-induced cerebral ischemia in diabetic rats, while chloroquine-induced autophagy inhibition enhanced blood-brain barrier permeability. Taken together, our study indicates that autophagy triggered by MGO defends HBMEC against injuries. PMID:26251121

  9. Genetics Home Reference: familial dilated cardiomyopathy

    MedlinePlus

    ... Related Dilated Cardiomyopathy Genetic Testing Registry (1 link) Primary dilated cardiomyopathy ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific articles on PubMed (1 link) PubMed OMIM (36 links) ...

  10. Genetics Home Reference: familial restrictive cardiomyopathy

    MedlinePlus

    ... CARDIOMYOPATHY, FAMILIAL RESTRICTIVE, 3 Sources for This Page Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi ... Sebire N, Ashworth M, Deanfield JE, McKenna WJ, Elliott PM. Idiopathic restrictive cardiomyopathy in children is caused ...

  11. Comparison of bone scan and radiograph sensitivity in the detection of steroid-induced ischemic necrosis of bone

    SciTech Connect

    Conklin, J.J.; Alderson, P.O.; Zizic, T.M.; Hungerford, D.S.; Densereaux, J.Y.; Gober, A.; Wagner, H.N.

    1983-04-01

    A prospective study of bone scanning for detection of ischemic necrosis of bone (INB) was performed in 36 patients (97% female, age range 16-36 yrs.) with systemic lupus erythematosis (SLE). Since the hips, knees, and shoulders are usually affected by INB in patients with SLE, 300 K converging collimator images of these joints were obtained on film and in digital format 2 to 3 hours after the injection of 20 mCi (740 MBq) of Tc-99m methylene diphosphonate. All patients underwent radiography of the joints, and 10 had intraosseous pressure determinations in the marrow space of affected joints (n . 31) for independent assessment of INB. Scans showed abnormally increased joint activity in 28 of the 36 patients. A total of 97 joints showed abnormalities, 19% in the hips, 34% in the knees, and 47% in the shoulders. Twenty-four of 27 joints with elevated bone marrow pressure (BMP) had abnormal scans (sensitivity . 89%), and scans were abnormal in 2 of 4 joints with normal pressures (specificity . 50%). The positive predictive value of the scans compared with BMP measurements was 92% (24/26). Eleven of 27 joints with abnormal BMP had abnormal radiographs, a sensitivity of 41%.

  12. Comparison of bone scan and radiograph sensitivity in the detection of steroid-induced ischemic necrosis of bone

    SciTech Connect

    Conklin, J.J.; Alderson, P.O.; Zizic, T.M.; Hungerford, D.S.; Densereaux, J.Y.; Gober, A.; Wagner, H.N.

    1983-04-01

    A prospective study of bone scanning for detection of ischemic necrosis of bone (INB) was performed in 36 patients (97% female, age range 16-36 yrs.) with systemic lupus erythematosis (SLE). Since the hips, knees, and shoulders are usually affected by INB in patients with SLE, 300 K converging collimator images of these joints were obtained on film and in digital format 2 to 3 hours after the injection of 20 mCi (740 MBq) of Tc-99m methylene diphosphonate. All patients underwent radiography of the joints, and 10 had intraosseous pressure determinations in the marrow space of affected joints (n=31) for independent assessment of INB. Scans showed abnormally increased joint activity in 28 of the 36 patients. A total of 97 joints showed abnormalities, 19% in the hips, 34% in the knees, and 47% in the shoulders. Twenty-four of 27 joints with elevated bone marrow pressure (BMP) had abnormal scans (sensitivity = 89%), and scans were abnormal in 2 of 4 joints with normal pressures (specificity = 50%). The positive predicitive value of the scans compared with BMP measurements was 92% (24/26). Eleven of 27 joints with abnormal BMP had abnormal radiographs, a sensitivity of 41%.

  13. Diffusion Tensor Imaging of White Matter Injury Caused by Prematurity-Induced Hypoxic-Ischemic Brain Damage.

    PubMed

    Zhang, Fuyong; Liu, Chunli; Qian, Linlin; Hou, Haifeng; Guo, Zhengyi

    2016-01-01

    BACKGROUND This investigation aimed to evaluate changes in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of white matter injury (WMI) in preterm neonates with hypoxic-ischemic encephalopathy (HIE) using diffusion tension imaging (DTI). MATERIAL AND METHODS Thirty-eight neonates less than 37 weeks of gestation with leukoencephalopathy (as observation group) and 38 full-term infants with no leukoencephalopathy (as control group) were selected from the Neonatal Care Center in Taian Central Hospital from January 2012 to December 2013. A DTI scan was obtained within 1 week after birth. RESULTS In the observation group, on both sides the ADC values in regions of interest (ROI) of white matter, lesions were greater and FA values were lower than in the control group. ADC and FA values in genu and splenum of corpus callosum were statistically different between the mild and severe injury groups (p<0.05). CONCLUSIONS This study demonstrates that DTI provides sensitive detection and early diagnosis of WMI in brains of premature infants with HIE. PMID:27338673

  14. Diffusion Tensor Imaging of White Matter Injury Caused by Prematurity-Induced Hypoxic-Ischemic Brain Damage

    PubMed Central

    Zhang, Fuyong; Liu, Chunli; Qian, Linlin; Hou, Haifeng; Guo, Zhengyi

    2016-01-01

    Background This investigation aimed to evaluate changes in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of white matter injury (WMI) in preterm neonates with hypoxic-ischemic encephalopathy (HIE) using diffusion tension imaging (DTI). Material/Methods Thirty-eight neonates less than 37 weeks of gestation with leukoencephalopathy (as observation group) and 38 full-term infants with no leukoencephalopathy (as control group) were selected from the Neonatal Care Center in Taian Central Hospital from January 2012 to December 2013. A DTI scan was obtained within 1 week after birth. Results In the observation group, on both sides the ADC values in regions of interest (ROI) of white matter, lesions were greater and FA values were lower than in the control group. ADC and FA values in genu and splenum of corpus callosum were statistically different between the mild and severe injury groups (p<0.05). Conclusions This study demonstrates that DTI provides sensitive detection and early diagnosis of WMI in brains of premature infants with HIE. PMID:27338673

  15. [Thallium-201 myocardial perfusion imaging during adenosine-induced coronary vasodilation in patients with ischemic heart disease].

    PubMed

    Takeishi, Y; Chiba, J; Abe, S; Ikeda, K; Tonooka, I; Komatani, A; Takahashi, K; Nakagawa, Y; Shiraishi, T; Tomoike, H

    1992-09-01

    201Tl myocardial perfusion imaging during adenosine infusion was performed in consecutive 55 patients with suspected coronary artery disease. Adenosine was infused intravenously at a rate of 0.14 mg/kg/min for 6 minutes and a dose of 111 MBq of 201Tl was administered in a separate vein at the end of third minute of infusion. Myocardial SPECT imaging was begun 5 minutes and 3 hours after the end of adenosine infusion. For evaluating the presence of perfusion defects, 2 short axis images at the basal and apical levels and a vertical long axis image at the mid left ventricle were used. The regions with decreased 201Tl uptake were assessed semi-quantitatively. Adenosine infusion caused a slight reduction in systolic blood pressure and an increase in heart rate. The rate pressure products increased slightly (9314 +/- 2377 vs. 10360 +/- 2148, p < 0.001). Chest pain (24%) and headache (13%) were the frequent side effects. The second-degree atrioventricular block was developed in 11 of 55 (20%) patients. All symptoms and hemodynamic changes were well tolerated and disappeared within 1 or 2 minutes after discontinuing adenosine infusion. The sensitivity and specificity for the detection of patients with coronary artery disease were 100% (31/31) and 88% (7/8), respectively. 201Tl myocardial imaging during adenosine infusion was considered to be safe and useful for evaluating the patients with ischemic heart disease. PMID:1453559

  16. Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats.

    PubMed

    Li, Zhen; Fang, Fang; Wang, Yuanyin; Wang, Liecheng

    2016-01-01

    Ischemic stroke is a primary cause of mortality and disability in the aged population. Resveratrol (Res), a natural polyphenol enriched in plants, presents diverse biological activities, e.g., antiinflammatory and anti-oxidation effects. Here, we evaluated whether Res pretreatment influenced focal cerebral ischemia-induced cognitive impairment, and we explored the underlying mechanisms in rats. The results showed that a single administration of Res (30mg/kg, i.p.) at 1 or 4h, but not at 24h before focal cerebral ischemia exerted significant neuroprotective effects, including a reduction in hippocampal CA1 neuronal death and spatial cognition deficits caused by ischemia. The neuroprotective effects of Res were suppressed by pretreatment with MK801, an NMDA receptor blocker, or U0126, an extracellular signal regulated kinase 1/2 (ERK1/2) kinase inhibitor. A western blot analysis revealed that Res treatment at 1h before ischemia significantly increased ERK1/2 phosphorylation and cyclic-AMP response element binding protein (CREB) phosphorylation in the CA1 region of the hippocampus, which can be prevented with U0126 pretreatment. The results showed that the NMDA receptor-mediated ERK-CREB signaling pathway might participates in Res-induced neuroprotection in rats with focal cerebral ischemia. PMID:27143440

  17. Peripartum cardiomyopathy and dilated cardiomyopathy: different at heart

    PubMed Central

    Bollen, Ilse A. E.; Van Deel, Elza D.; Kuster, Diederik W. D.; Van Der Velden, Jolanda

    2015-01-01

    Peripartum cardiomyopathy (PPCM) is a severe cardiac disease occurring in the last month of pregnancy or in the first 5 months after delivery and shows many similar clinical characteristics as dilated cardiomyopathy (DCM) such as ventricle dilation and systolic dysfunction. While PPCM was believed to be DCM triggered by pregnancy, more and more studies show important differences between these diseases. While it is likely they share part of their pathogenesis such as increased oxidative stress and an impaired microvasculature, discrepancies seen in disease progression and outcome indicate there must be differences in pathogenesis as well. In this review, we compared studies in DCM and PPCM to search for overlapping and deviating disease etiology, pathogenesis and outcome in order to understand why these cardiomyopathies share similar clinical features but have different underlying pathologies. PMID:25642195

  18. Autoimmune Myocarditis, Valvulitis, and Cardiomyopathy

    PubMed Central

    Myers, Jennifer M.; Cunningham, Madeleine W.; Fairweather, DeLisa; Huber, Sally A.

    2013-01-01

    Cardiac myosin-induced autoimmune myocarditis (EAM) is a model of inflammatory heart disease initiated by CD4+ T cells (Smith and Allen 1991; Li, Heuser et al. 2004). It is a paradigm of the immune-mediated cardiac damage believed to play a role in the pathogenesis of a subset of postinfectious human cardiomyopathies (Rose, Herskowitz et al. 1993). Myocarditis is induced in susceptible mice by immunization with purified cardiac myosin (Neu, Rose et al. 1987) or specific peptides derived from cardiac myosin (Donermeyer, Beisel et al. 1995; Pummerer, Luze et al. 1996) (see Basic Protocol 1), or by adoptive transfer of myosin-reactive T cells (Smith and Allen 1991) (see Alternate Protocol). Myocarditis has been induced in Lewis rats by immunization with purified rat or porcine cardiac myosin (Kodama, Matsumoto et al. 1990; Li, Heuser et al. 2004) (see Basic Protocol 2) or S2-16 peptide (Li, Heuser et al. 2004), or by adoptive transfer of T cells stimulated by specific peptides derived from cardiac myosin (Wegmann, Zhao et al. 1994). Myocarditis begins 12 to 14 days after the first immunization, and is maximal after 21 days. Other animal models commonly used to study myocarditis development include the pathogen-induced models in which disease is initiated by viral infection. The first murine model of acute viral myocarditis causes sudden death via viral damage to cardiomyocytes (Huber, Gauntt et al. 1998; Horwitz, La Cava et al. 2000; Fong 2003; Fuse, Chan et al. 2005; Fairweather and Rose 2007; Cihakova and Rose 2008) whereas the second model is based on inoculation with heart-passaged coxsackievirus B3 (CVB3) that includes damaged heart proteins (Fairweather, Frisancho-Kiss et al. 2004; Fairweather D 2004; Fairweather and Rose 2007; Cihakova and Rose 2008) In addition to the protocols used to induce EAM in mice and rats, support protocols are included for preparing purified cardiac myosin using mouse or rat heart tissue (see Support Protocol 1), preparing purified

  19. Cardiomyopathies in children

    PubMed Central

    2013-01-01

    Cardiomyopathy (CMP) is a heterogeneous disease caused by a functional abnormality of the cardiac muscle. CMP is of 2 major types, dilated and hypertrophic, and is further classified as either primary or secondary. Secondary CMP is caused by extrinsic factors, including infection, ischemia, hypertension, and metabolic disorders. Primary CMP is diagnosed when the extrinsic factors of secondary CMP are absent. Furthermore, the World Health Organization, American Heart Association, and European Cardiology Association have different systems for clinically classifying primary CMP. Primary CMP is rare and associated with a family history of the disease, implying that genetic factors might affect its incidence. In addition, the incidence of CMP varies widely according to patient ethnicity. Genetic testing plays an important role in the care of patients with CMP and their families because it confirms diagnosis, determines the appropriate care for the patient, and possibly affects patient prognosis. The diagnosis and genetic identification of CMP in patients' families allow the possibility to identify novel genes that may lead to new treatments. This review focuses on the epidemiology, pathophysiology, diagnosis, and treatment of CMP, with the aim of providing pediatricians with insights that may be helpful in the early identification and management of idiopathic CMP in children. PMID:23482511

  20. Pathogenesis of Arrhythmogenic Cardiomyopathy.

    PubMed

    Asimaki, Angeliki; Kleber, Andre G; Saffitz, Jeffrey E

    2015-11-01

    Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease. It is characterized by frequent ventricular arrhythmias and increased risk of sudden cardiac death typically arising as an early manifestation before the onset of significant myocardial remodelling. Myocardial degeneration, often confined to the right ventricular free wall, with replacement by fibrofatty scar tissue, develops in many patients. ACM is a familial disease but genetic penetrance can be low and disease expression is highly variable. Inflammation might promote disease progression. It also appears that exercise increases disease penetrance and accelerates its development. More than 60% of probands harbour mutations in genes that encode desmosomal proteins, which has raised the possibility that defective cell-cell adhesion might play a role in disease pathogenesis. Recent advances have implicated changes in the canonical wingless-type mouse mammary tumour virus integration site (Wnt)/β-catenin and Hippo signalling pathways and defects in forwarding trafficking of ion channels and other proteins to the intercalated disk in cardiac myocytes. In this review we summarize the current understanding of the pathogenesis of ACM and highlight future research directions. PMID:26199027

  1. Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy.

    PubMed

    Wu, Hsiang-En; Baumgardt, Shelley L; Fang, Juan; Paterson, Mark; Liu, Yanan; Du, Jianhai; Shi, Yang; Qiao, Shigang; Bosnjak, Zeljko J; Warltier, David C; Kersten, Judy R; Ge, Zhi-Dong

    2016-01-01

    Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca(2+) handling proteins, intracellular [Ca(2+)]i, and sarcoplasmic reticulum Ca(2+) content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy. PMID:27295516

  2. Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy

    PubMed Central

    Wu, Hsiang-En; Baumgardt, Shelley L.; Fang, Juan; Paterson, Mark; Liu, Yanan; Du, Jianhai; Shi, Yang; Qiao, Shigang; Bosnjak, Zeljko J.; Warltier, David C.; Kersten, Judy R.; Ge, Zhi-Dong

    2016-01-01

    Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca2+ handling proteins, intracellular [Ca2+]i, and sarcoplasmic reticulum Ca2+ content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy. PMID:27295516

  3. Resveratrol and ischemic preconditioning in the brain.

    PubMed

    Raval, Ami P; Lin, Hung Wen; Dave, Kunjan R; Defazio, R Anthony; Della Morte, David; Kim, Eun Joo; Perez-Pinzon, Miguel A

    2008-01-01

    Cardiovascular pathologies in the French are not prevalent despite high dietary saturated fat consumption. This is commonly referred to as the "French Paradox" attributing its anti-lipidemic effects to moderate consumption of red wine. Resveratrol, a phytoalexin found in red wine, is currently the focus of intense research both in the cardiovascular system and the brain. Current research suggests resveratrol may enhance prognosis of neurological disorders such as, Parkinson's, Huntington's, Alzheimer's diseases and stroke. The beneficial effects of resveratrol include: antioxidation, free radical scavenger, and modulation of neuronal energy homeostasis and glutamatergic receptors/ion channels. Resveratrol directly increases sirtuin 1 (SIRT1) activity, a NAD(+) (oxidized form of nicotinamide adenine dinucleotide)-dependent histone deacetylase related to increased lifespan in various species similar to calorie restriction. We recently demonstrated that brief resveratrol pretreatment conferred neuroprotection against cerebral ischemia via SIRT1 activation. This neuroprotective effect produced by resveratrol was similar to ischemic preconditioning-induced neuroprotection, which protects against lethal ischemic insults in the brain and other organ systems. Inhibition of SIRT1 abolished ischemic preconditioning-induced neuroprotection in CA1 region of the hippocampus. Since resveratrol and ischemic preconditioning-induced neuroprotection require activation of SIRT1, this common signaling pathway may provide targeted therapeutic treatment modalities as it relates to stroke and other brain pathologies. In this review, we will examine common signaling pathways, cellular targets of resveratrol, and ischemic preconditioning-induced neuroprotection as it relates to the brain. PMID:18537630

  4. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    PubMed Central

    Zhang, Bei; He, Qiang; Li, Ying-ying; Li, Ce; Bai, Yu-long; Hu, Yong-shan; Zhang, Feng

    2015-01-01

    Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT) involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ‘learned non-use’ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model) group, a CIMT + model (CIMT) group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi. PMID:26889190

  5. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats.

    PubMed

    Zhang, Bei; He, Qiang; Li, Ying-Ying; Li, Ce; Bai, Yu-Long; Hu, Yong-Shan; Zhang, Feng

    2015-12-01

    Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT) involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of 'learned non-use' and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model) group, a CIMT + model (CIMT) group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi. PMID:26889190

  6. Peroxisomal Biogenesis in Ischemic Brain

    PubMed Central

    Young, Jennifer M.; Nelson, Jonathan W.; Cheng, Jian; Zhang, Wenri; Mader, Sarah; Davis, Catherine M.; Morrison, Richard S.

    2015-01-01

    Abstract Aims: Peroxisomes are highly adaptable and dynamic organelles, adjusting their size, number, and enzyme composition to changing environmental and metabolic demands. We determined whether peroxisomes respond to ischemia, and whether peroxisomal biogenesis is an adaptive response to cerebral ischemia. Results: Focal cerebral ischemia induced peroxisomal biogenesis in peri-infarct neurons, which was associated with a corresponding increase in peroxisomal antioxidant enzyme catalase. Peroxisomal biogenesis was also observed in primary cultured cortical neurons subjected to ischemic insult induced by oxygen-glucose deprivation (OGD). A catalase inhibitor increased OGD-induced neuronal death. Moreover, preventing peroxisomal proliferation by knocking down dynamin-related protein 1 (Drp1) exacerbated neuronal death induced by OGD, whereas enhancing peroxisomal biogenesis pharmacologically using a peroxisome proliferator-activated receptor-alpha agonist protected against neuronal death induced by OGD. Innovation: This is the first documentation of ischemia-induced peroxisomal biogenesis in mammalian brain using a combined in vivo and in vitro approach, electron microscopy, high-resolution laser-scanning confocal microscopy, and super-resolution structured illumination microscopy. Conclusion: Our findings suggest that neurons respond to ischemic injury by increasing peroxisome biogenesis, which serves a protective function, likely mediated by enhanced antioxidant capacity of neurons. Antioxid. Redox Signal. 22, 109–120. PMID:25226217

  7. Cardiomyopathy, familial dilated

    PubMed Central

    Taylor, Matthew RG; Carniel, Elisa; Mestroni, Luisa

    2006-01-01

    Dilated cardiomyopathy (DCM) is a heart muscle disease characterized by ventricular dilatation and impaired systolic function. Patients with DCM suffer from heart failure, arrhythmia, and are at risk of premature death. DCM has a prevalence of one case out of 2500 individuals with an incidence of 7/100,000/year (but may be under diagnosed). In many cases the disease is inherited and is termed familial DCM (FDC). FDC may account for 20–48% of DCM. FDC is principally caused by genetic mutations in FDC genes that encode for cytoskeletal and sarcomeric proteins in the cardiac myocyte. Family history analysis is an important tool for identifying families affected by FDC. Standard criteria for evaluating FDC families have been published and the use of such criteria is increasing. Clinical genetic testing has been developed for some FDC genes and will be increasingly utilized for evaluating FDC families. Through the use of family screening by pedigree analysis and/or genetic testing, it is possible to identify patients at earlier, or even presymptomatic stages of their disease. This presents an opportunity to invoke lifestyle changes and to provide pharmacological therapy earlier in the course of disease. Genetic counseling is used to identify additional asymptomatic family members who are at risk of developing symptoms, allowing for regular screening of these individuals. The management of FDC focuses on limiting the progression of heart failure and controlling arrhythmia, and is based on currently accepted treatment guidelines for DCM. It includes general measures (salt and fluid restriction, treatment of hypertension, limitation of alcohol intake, control of body weight, moderate exercise) and pharmacotherapy. Cardiac resynchronization, implantable cardioverter defibrillators and left ventricular assist devices have progressively expanding usage. Patients with severe heart failure, severe reduction of the functional capacity and depressed left ventricular ejection

  8. Normalization of left ventricular function following cardiac resynchronization therapy: left bundle branch block as a potential etiology of dilated cardiomyopathy.

    PubMed

    Fujii, Banyo; Takami, Mistuaki

    2008-06-01

    Patients with chronic heart failure (HF) not infrequently present conduction disturbances, which are most commonly exhibited as a left bundle branch block (LBBB). LBBB is associated with intraventricular conduction delay, paradoxical septal motion, and hemodynamic deterioration, indicating an impairment of left ventricular (LV) function. However, there is controversy as to whether dilated cardiomyopathy leading to HF could develop just as a result of conduction disturbances without apparent pre-existing heart disease. We report here 2 cases of patients with non-ischemic dilated cardiomyopathy and LBBB who had complete reversal of their LV dysfunction and enlargement after cardiac resynchronization therapy, which corrects the LV activation sequence. These cases might support the idea that conduction disturbances themselves can be a principal etiology in the development of dilated cardiomyopathy. PMID:18503236

  9. Experimental models of inherited cardiomyopathy and its therapeutics

    PubMed Central

    Nonaka, Miki; Morimoto, Sachio

    2014-01-01

    Cardiomyopathy is a disease of myocardium categorized into three major forms, hypertrophic (HCM), dilated (DCM) and restrictive cardiomyopathy (RCM), which has recently been demonstrated to be a monogenic disease due to mutations in various proteins expressed in cardiomyocytes. Mutations in HCM and RCM typically increase the myofilament sensitivity to cytoplasmic Ca2+, leading to systolic hyperfunction and diastolic dysfunction. In contrast, mutations in DCM typically decrease the myofilament sensitivity to cytoplasmic Ca2+ and/or force generation/transmission, leading to systolic dysfunction. Creation of genetically-manipulated transgenic and knock-in animals expressing mutant proteins exogenously and endogenously, respectively, in their hearts provides valuable animal models to discover the molecular and cellular mechanisms for pathogenesis and promising therapeutic strategy in vivo. Recently, cardiomyocytes have been differentiated from patient’s induced pluripotent stem cells as a model of inherited cardiomyopathies in vitro. In this review, we provide overview of experimental models of cardiomyopathies with a focus on revealed molecular and cellular pathogenic mechanisms and potential therapeutics. PMID:25548614

  10. Electroacupuncture Pretreatment Attenuates Cerebral Ischemic Injury via Notch Pathway-Mediated Up-Regulation of Hypoxia Inducible Factor-1α in Rats.

    PubMed

    Zhao, Yu; Deng, Bin; Li, Yichong; Zhou, Lihua; Yang, Lei; Gou, Xingchun; Wang, Qiang; Chen, Guozhong; Xu, Hao; Xu, Lixian

    2015-11-01

    We have reported electroacupuncture (EA) pretreatment induced the tolerance against focal cerebral ischemia through activation of canonical Notch pathway. However, the underlying mechanisms have not been fully understood. Evidences suggest that up-regulation of hypoxia inducible factor-1α (HIF-1α) contributes to neuroprotection against ischemia which could interact with Notch signaling pathway in this process. Therefore, the current study is to test that up-regulation of HIF-1α associated with Notch pathway contributes to the neuroprotection of EA pretreatment. Sprague-Dawley rats were treated with EA at the acupoint "Baihui (GV 20)" 30 min per day for successive 5 days before MCAO. HIF-1α levels were measured before and after reperfusion. Then, HIF-1α antagonist 2ME2 and γ-secretase inhibitor MW167 were used. Neurologic deficit scores, infarction volumes, neuronal apoptosis, and Bcl2/Bax were evaluated. HIF-1α and Notch1 intracellular domain (NICD) were assessed. The results showed EA pretreatment enhanced the neuronal expression of HIF-1α, reduced infarct volume, improved neurological outcome, inhibited neuronal apoptosis, up-regulated expression of Bcl-2, and down-regulated expression of Bax after reperfusion in the penumbra, while the beneficial effects were attenuated by 2ME2. Furthermore, intraventricular injection with MW167 efficiently suppressed both up-regulation of NICD and HIF-1α after reperfusion. However, administration with 2ME2 could only decrease the expression of HIF-1α in the penumbra. In conclusion, EA pretreatment exerts neuroprotection against ischemic injury through Notch pathway-mediated up-regulation of HIF-1α. PMID:25976178

  11. Current Treatment of Dilated Cardiomyopathy

    PubMed Central

    Massin, Edward K.

    1991-01-01

    Within the last decade, the treatment for patients with dilated cardiomyopathy has changed. Clinical management of these patients is aimed at controlling congestive heart failure, treating arrhythmias, preventing pulmonary and systemic emboli, and managing chest pain. The goals of treatment for patients with dilated cardiomyopathy are to make the patient feel better and live longer. To achieve this, we direct treatment to improving left ventricular function and cardiac output and controlling arrhythmias and thromboemboli. Basic treatment begins with inotropic therapy, preload reduction, and afterload reduction. For patients with symptomatic disease, we recommend diuretics, digoxin, and converting enzyme inhibitors for first-line therapy. Patients with arrhythmias may be treated by the addition of amiodarone, a pacemaker, or an automatic implantable cardioverter-defibrillator; and most such patients need to be anticoagulated. All patients need close follow-up for possible drug toxicity associated with their regimens. Heart transplantation can be considered for patients refractory to medical treatment. Although the incidence of dilated cardiomyopathy continues to increase, we are learning better ways to treat it. In the future, new drugs with fewer side effects should be available to treat, and perhaps impede, the development of dilated cardiomyopathy. (Texas Heart Institute Journal 1991;18:41-9) PMID:15227507

  12. P2×7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: autoantibody levels, heart functionality and cytokine expression

    PubMed Central

    Martinez, Camila Guerra; Zamith-Miranda, Daniel; da Silva, Marcia Gracindo; Ribeiro, Karla Consort; Brandão, Izaíra Trincani; Silva, Celio Lopes; Diaz, Bruno Lourenço; Bellio, Maria; Persechini, Pedro Muanis; Kurtenbach, Eleonora

    2015-01-01

    Autoantibodies against the M2 receptors (M2AChR) have been associated with Dilated Cardiomyopathy (DCM). In the heart, P2×7 receptors influence electrical conduction, coronary circulation and response to ischemia. They can also trigger pro-inflammatory responses and the development of neurological, cardiac and renal disorders. Here, P2×7−/− mice displayed an increased heart rate and ST segment depression, but similar exercise performance when compared to wild type (WT) animals. After immunization with plasmid containing M2AChR cDNA sequence, WT mice produced anti-M2AChR antibodies, while P2×7−/− mice showed an attenuated production. Despite this, WT and P2×7−/− showed left ventricle cavity enlargement and decreased exercise tolerance. Transfer of serum from M2AChR WT immunized mice to näive recipients led to an alteration in heart shape. P2×7−/− mice displayed a significant increase in the frequency of spleen regulatory T cells population, which is mainly composed by the FoxP3+CD25− subset. M2AChR WT immunized mice showed an increase in IL-1β, IFNγ and IL-17 levels in the heart, while P2×7−/− group produced lower amounts of IL-1β and IL-17 and higher amounts of IFNγ. These results pointed to previously unnoticed roles of P2×7 in cardiovascular and immune systems, and underscored the participation of IL-17 and IFNγ in the progress of autoimmune DCM. PMID:26592184

  13. Septic cardiomyopathy in rat LPS-induced endotoxemia: relative contribution of cellular diastolic Ca(2+) removal pathways, myofibrillar biomechanics properties and action of the cardiotonic drug levosimendan.

    PubMed

    Wagner, S; Schürmann, S; Hein, S; Schüttler, J; Friedrich, O

    2015-09-01

    Cardiac dysfunction is a common complication in sepsis and is characterized by forward pump failure. Hallmarks of septic cardiomyopathy are decreased myofibrillar contractility and reduced Ca(2+) sensitivity but it is still not clear whether reduced pump efficiency is predominantly a diastolic impairment. Moreover, a comprehensive picture of upstream Ca(2+) handling mechanisms and downstream myosin biomechanical parameters is still missing. Ca(2+)-sensitizing agents in sepsis may be promising but mechanistic insights for drugs like levosimendan are scarce. Here, we used an endotoxemic LPS rat model to study mechanisms of sepsis on in vivo hemodynamics, multicellular myofibrillar Ca(2+) sensitivity, in vitro cellular Ca(2+) homeostasis and subcellular actomyosin interaction with intracardiac catheters, force transducers, confocal Fluo-4 Ca(2+) recordings in paced cardiomyocytes, and in vitro motility assay, respectively. Left ventricular ejection fraction and myofibrillar Ca(2+) sensitivity were depressed in LPS animals but restored by levosimendan. Diastolic Ca(2+) transient kinetics was slowed down by LPS but ameliorated by levosimendan. Selectively blocking intracellular and sarcolemmal Ca(2+) extrusion pathways revealed minor contribution of sarcoplasmic reticulum Ca(2+) ATPase (SERCA) to Ca(2+) transient diastole in LPS-evoked sepsis but rather depressed Na(+)/Ca(2+) exchanger and plasmalemmal Ca(2+) ATPase. This was mostly compensated by levosimendan. Actin sliding velocities were depressed in myosin heart extracts from LPS rats. We conclude that endotoxemia specifically impairs sarcolemmal diastolic Ca(2+) extrusion pathways resulting in intracellular diastolic Ca(2+) overload. Levosimendan, apart from stabilizing Ca(2+)-troponin C complexes, potently improves cellular Ca(2+) extrusion in the septic heart. PMID:26243667

  14. Pre-ischemic exercise alleviates oxidative damage following ischemic stroke in rats.

    PubMed

    Feng, Rui; Zhang, Min; Wang, Xiao; Li, Wen-Bin; Ren, Shi-Qing; Zhang, Feng

    2014-10-01

    Physical exercise has been proved to be neuroprotective in clinical trials and animal experiments. However, the exact mechanism underlying this neuroprotective effect remains unclear. The aim of the present study was to explore whether pre-ischemic treadmill training could act as a form of ischemic preconditioning in a rat following ischemic stroke by reducing oxidative damage. Fifty-four rats were randomly divided into three groups (n=18 per group): Sham surgery, middle cerebral artery occlusion (MCAO) without exercise and MCAO with exercise. Subsequent to treadmill training, ischemic stroke was induced by occluding the MCA for 1.5 h, followed by reperfusion. Six rats in each group were evaluated for neurological deficits and then sacrificed by decapitation to calculate the infarct volume. The remaining rats in each group were sacrificed to detect the level of superoxide dismutase (SOD) activity (n=6) and malondialdehyde (MDA) concentration (n=6). The results indicated that pre-ischemic exercise training reduced brain infarct volume and neurological deficits, increased SOD activity and decreased the concentration of MDA following ischemic stroke. In conclusion, treadmill exercise training prior to MCAO/reperfusion increased the antioxidant ability and decreased the oxidative damage in the brain subsequent to ischemic stroke. PMID:25187848

  15. Cardiomyocyte Regeneration in the mdx Mouse Model of Nonischemic Cardiomyopathy

    PubMed Central

    Laval, Steven; Owens, William Andrew

    2015-01-01

    Endogenous regeneration has been demonstrated in the mammalian heart after ischemic injury. However, approximately one-third of cases of heart failure are secondary to nonischemic heart disease and cardiac regeneration in these cases remains relatively unexplored. We, therefore, aimed at quantifying the rate of new cardiomyocyte formation at different stages of nonischemic cardiomyopathy. Six-, 12-, 29-, and 44-week-old mdx mice received a 7 day pulse of BrdU. Quantification of isolated cardiomyocyte nuclei was undertaken using cytometric analysis to exclude nondiploid nuclei. Between 6–7 and 12–13 weeks, there was a statistically significant increase in the number of BrdU-labeled nuclei in the mdx hearts compared with wild-type controls. This difference was lost by the 29–30 week time point, and a significant decrease in cardiomyocyte generation was observed in both the control and mdx hearts by 44–45 weeks. Immunohistochemical analysis demonstrated BrdU-labeled nuclei exclusively in mononucleated cardiomyocytes. This study demonstrates cardiomyocyte regeneration in a nonischemic model of mammalian cardiomyopathy, controlling for changes in nuclear ploidy, which is lost with age, and confirms a decrease in baseline rates of cardiomyocyte regeneration with aging. While not attempting to address the cellular source of regeneration, it confirms the potential utility of innate regeneration as a therapeutic target. PMID:25749191

  16. Non-Selective Cannabinoid Receptor Antagonists, Hinokiresinols Reduce Infiltration of Microglia/Macrophages into Ischemic Brain Lesions in Rat via Modulating 2-Arachidonolyglycerol-Induced Migration and Mitochondrial Activity

    PubMed Central

    Anthony Jalin, Angela M. A.; Rajasekaran, Maheswari; Prather, Paul L.; Kwon, Jin Sun; Gajulapati, Veeraswamy; Choi, Yongseok; Kim, Chunsook; Pahk, Kisoo; Ju, Chung; Kim, Won-Ki

    2015-01-01

    Growing evidence suggests that therapeutic strategies to modulate the post-ischemic inflammatory responses are promising approaches to improve stroke outcome. Although the endocannabinoid system has been emerged as an endogenous therapeutic target to regulate inflammation after stroke insult, the downstream mechanisms and their potentials for therapeutic intervention remain controversial. Here we identified trans- and cis-hinokiresinols as novel non-selective antagonists for two G-protein-coupled cannabinoid receptors, cannabinoid receptor type 1 and type 2. The Electric Cell-substrate Impedance Sensing and Boyden chamber migration assays using primary microglial cultures revealed that both hinokiresinols significantly inhibited an endocannabinoid, 2-arachidonoylglycerol-induced migration. Hinokiresinols modulated 2-arachidonoylglycerol-induced mitochondrial bioenergetics in microglia as evidenced by inhibition of ATP turnover and reduction in respiratory capacity, thereby resulting in impaired migration activity. In rats subjected to transient middle cerebral artery occlusion (1.5-h) followed by 24-h reperfusion, post-ischemic treatment with hinokiresinols (2 and 7-h after the onset of ischemia, 10 mg/kg) significantly reduced cerebral infarct and infiltration of ED1-positive microglial/macrophage cells into cerebral ischemic lesions in vivo. Co-administration of exogenous 2-AG (1 mg/kg, i.v., single dose at 2 h after starting MCAO) abolished the protective effect of trans-hinokiresionol. These results suggest that hinokiresinols may serve as stroke treatment by targeting the endocannabinoid system. Alteration of mitochondrial bioenergetics and consequent inhibition of inflammatory cells migration may be a novel mechanism underlying anti-ischemic effects conferred by cannabinoid receptor antagonists. PMID:26517721

  17. Neuroprotective effect of endogenous cannabinoids on ischemic brain injury induced by the excess microglia-mediated inflammation

    PubMed Central

    Guo, Shuyun; Liu, Yanwu; Ma, Rui; Li, Jun; Su, Binxiao

    2016-01-01

    Increasing evidence has demonstrated the role of endogenous cannabinoids system (ECS) on protecting brain injury caused by ischemia (IMI). Papers reported that microglia-mediated inflammation has become one of the most pivotal mechanisms for IMI. This study was aimed to investigate the potential roles of ECS on neuron protection under microglia-mediated inflammation. Inflammatory cytokines level both in vitro (BV-2 cells) and in vivo (brain tissue from constructed IMI model and brain-isolated microglia) was detected. ECS levels were detected, and its effects on inflammations was also analyzed. Influence of microglia-mediated inflammation on neuron injury was analyzed. Moreover, the effects of ECS on protecting neuron injury were also analyzed. Our results showed that the levels of inflammatory cytokines including TNFα and IL-1β were higher while IKBα was lower in IMI model brain tissue, brain-isolated microglia and BV-2 cells compared to the control. Inflammation was activated in microglia, as well as the activation of ECS characterized by the increasing level of AEA and 2-AG. Furthermore, the activated microglia-mediated self-inflammation performed harmful influence on neurons via suppressing cell viability and inducing apoptosis. Moreover, ECS functioned as a protector on neuron injury though promoting cell proliferation and suppressing cell apoptosis which were caused by the activated BV-2 cells (LPS induced for 3 h). Our data suggested that ECS may play certain neuroprotective effects on microglia-mediated inflammations-induced IMI through anti-inflammatory function. PMID:27398146

  18. Effects of autologous bone marrow stem cell transplantation on beta-adrenoceptor density and electrical activation pattern in a rabbit model of non-ischemic heart failure

    PubMed Central

    Dhein, Stefan; Garbade, Jens; Rouabah, Djazia; Abraham, Getu; Ungemach, Fritz-Rupert; Schneider, Katja; Ullmann, Cris; Aupperle, Heike; Gummert, Jan Fritz; Mohr, Friedrich-Wilhelm

    2006-01-01

    Background Since only little is known on stem cell therapy in non-ischemic heart failure we wanted to know whether a long-term improvement of cardiac function in non-ischemic heart failure can be achieved by stem cell transplantation. Methods White male New Zealand rabbits were treated with doxorubicine (3 mg/kg/week; 6 weeks) to induce dilative non-ischemic cardiomyopathy. Thereafter, we obtained autologous bone marrow stem cells (BMSC) and injected 1.5–2.0 Mio cells in 1 ml medium by infiltrating the myocardium via a left anterolateral thoracotomy in comparison to sham-operated rabbits. 4 weeks later intracardiac contractility was determined in-vivo using a Millar catheter. Thereafter, the heart was excised and processed for radioligand binding assays to detect β1- and β2-adrenoceptor density. In addition, catecholamine plasma levels were determined via HPLC. In a subgroup we investigated cardiac electrophysiology by use of 256 channel mapping. Results In doxorubicine-treated animals β-adrenoceptor density was significantly down-regulated in left ventricle and septum, but not in right ventricle, thereby indicating a typical left ventricular heart failure. Sham-operated rabbits exhibited the same down-regulation. In contrast, BMSC transplantation led to significantly less β-adrenoceptor down-regulation in septum and left ventricle. Cardiac contractility was significantly decreased in heart failure and sham-operated rabbits, but was significantly higher in BMSC-transplanted hearts. Norepinephrine and epinephrine plasma levels were enhanced in heart failure and sham-operated animals, while these were not different from normal in BMSC-transplanted animals. Electrophysiological mapping revealed unaltered electrophysiology and did not show signs of arrhythmogeneity. Conclusion BMSC transplantation improves sympathoadrenal dysregualtion in non-ischemic heart failure. PMID:16800896

  19. New less invasive ventricular reconstruction technique in the treatment of ischemic heart failure.

    PubMed

    Faria, Rita; Melica, Bruno; Pires-Morais, Gustavo; Rodrigues, Alberto; Ribeiro, José; Guerra, Miguel; Gama, Vasco; Vouga, Luís

    2014-01-01

    Ischemic cardiomyopathy is the leading cause of heart failure. In patients with left ventricular (LV) dilatation, low ejection fraction, and transmural scar in an anteroseptal distribution, surgical ventricular reconstruction (SVR) is a treatment option. We describe our first experience with the Less Invasive Ventricular Enhancement (LIVE) technique using the Revivent™ system (Bioventrix Inc., San Ramon, CA), in the treatment of a large anteroapical aneurysm. PMID:25124657

  20. Genetics Home Reference: dilated cardiomyopathy with ataxia syndrome

    MedlinePlus

    ... dilated cardiomyopathy with ataxia syndrome dilated cardiomyopathy with ataxia syndrome Enable Javascript to view the expand/collapse ... Open All Close All Description Dilated cardiomyopathy with ataxia (DCMA) syndrome is an inherited condition characterized by ...

  1. Divergent Mitochondrial Biogenesis Responses in Human Cardiomyopathy

    PubMed Central

    Ahuja, Preeti; Wanagat, Jonathan; Wang, Zhihua; Wang, Yibin; Liem, David A.; Ping, Peipei; Antoshechkin, Igor A.; Margulies, Kenneth B.; MacLellan, W. Robb

    2014-01-01

    Background Mitochondria are key players in the development and progression of heart failure (HF). Mitochondrial (mt) dysfunction leads to diminished energy production and increased cell death contributing to the progression of left ventricular (LV) failure. The fundamental mechanisms that underlie mt dysfunction in HF have not been fully elucidated. Methods and Results To characterize mt morphology, biogenesis and genomic integrity in human HF, we investigated LV tissue from non-failing (NF) hearts and end-stage ischemic (ICM) or dilated (DCM) cardiomyopathic hearts. Although mt dysfunction was present in both types of cardiomyopathy, mt were smaller and increased in number in DCM compared to ICM or NF hearts. Mt volume density and mtDNA copy number was increased by ~2-fold (P<0.001) in DCM hearts in comparison to ICM hearts. These changes were accompanied by an increase in the expression of mtDNA-encoded genes in DCM versus no change in ICM. mtDNA repair and antioxidant genes were reduced in failing hearts suggestive of a defective repair and protection system, which may account for the 4.1-fold increase in mtDNA deletion mutations in DCM (P<0.05 vs NF hearts, P<0.05 vs ICM). Conclusions In DCM, mt dysfunction is associated with mtDNA damage and deletions, which could be a consequence of mutating stress coupled with a PGC-1α-dependent stimulus for mt biogenesis. However, this maladaptive compensatory response contributes to additional oxidative damage. Thus, our findings support further investigations into novel mechanisms and therapeutic strategies for mt dysfunction in DCM. PMID:23589024

  2. Sustained left ventricular diastolic dysfunction after exercise in patients with dilated cardiomyopathy

    PubMed Central

    Morikawa, M; Sato, H; Sato, H; Koretsune, Y; Ohnishi, Y; Kurotobi, T; Kuzuya, T; Hori, M

    1998-01-01

    Objective—To investigate the recovery process of exercise induced diastolic dysfunction in heart failure, using Doppler echocardiographic techniques.
Design and patients—Transmitral flow velocity profiles and standard non-invasive haemodynamic indices were obtained serially over seven days after symptom limited bicycle exercise tests in 18 patients with dilated cardiomyopathy and eight normal subjects. In three patients with cardiomyopathy we also measured the pulmonary capillary wedge pressure for 24 hours after exercise.
Results—The intensity of exercise, as assessed by respiratory gas analysis, was lower in patients with dilated cardiomyopathy than in normal subjects. Despite the higher exercise level, all haemodynamic variables returned to baseline within one hour after exercise in normal subjects. In contrast, patients with dilated cardiomyopathy showed a sustained decrease in the peak early diastolic filling velocity and a sustained increase in the deceleration time of early filling for 24 hours or more after exercise. Because other haemodynamic variables recovered within one hour after exercise even in patients with dilated cardiomyopathy, the postexercise changes in ventricular filling were not explained by changes in loading conditions.
Conclusions—Exercise induced diastolic left ventricular dysfunction of the failing heart persists for 24 hours or more after exercise. The efficacy of exercise training on a daily basis in dilated cardiomyopathy requires further evaluation.

 Keywords: exercise;  chronic heart failure;  mitral flow velocity;  diastolic stunning PMID:9875086

  3. Upregulated Hsp27 expression in the cardioprotection induced by acute stress and oxytocin in ischemic reperfused hearts of the rat.

    PubMed

    Moghimian, Maryam; Faghihi, Mahdieh; Karimian, Seyed Morteza; Imani, AliReza; Mobasheri, Maryam Beigom

    2014-12-31

    In view of the cardioprotective effect of oxytocin (OT) released in response to stress, the aim of this study was to evaluate the role of heat shock proteins Hsps 70, 27 and 20 in stress-induced cardioprotection in isolated, perfused rat hearts. Rats were divided in two main groups: unstressed and stressed rats, and all of them were subjected to i.c.v. infusion of vehicle or drugs: unstressed rats [control: vehicle, OT (100 ng/5 μl), atosiban (ATO; 4.3 μg/5 μl) as OT antagonist, ATO+OT], and stressed rats [St: stress, OT+St, ATO+St]. After anesthesia, hearts were isolated and subjected to 30 min regional ischemia and 60 min subsequent reperfusion (IR). Acute stress protocol included swimming for 10 min before anesthesia. Malondialdehyde in coronary effluent was measured and the expression of Hsp 70, 27 and 20 was measured in myocardium using real-time reverse transcriptase polymerase chain reaction (RT-PCR). The malondialdehyde levels, which decreased in the St and OT groups, increased by the administration of atosiban as an OT antagonist. The expression of Hsp27 increased 4 to 5 folds by stress induction and i.c.v. infusion of OT. Central administration of atosiban prior to both stress and OT decreased Hsp27 mRNA levels. These findings suggest that endogenous OT may participate in stress-induced cardioprotection via Hsp27 over-expression as an early response. PMID:25575521

  4. Stress cardiomyopathy: yet another type of neurocardiogenic injury: 'stress cardiomyopathy'.

    PubMed

    Wybraniec, Maciej; Mizia-Stec, Katarzyna; Krzych, Lukasz

    2014-01-01

    Tako-tsubo syndrome pertains to rare acquired cardiomyopathies, characterized by left ventricular dyskinesia and symptomatology typical for acute myocardial infarction (AMI). Despite its low incidence and relatively benign course, stress cardiomyopathy should be thoroughly differentiated from AMI. The importance of tako-tsubo consists of the fact that its manifestation initially resembles AMI. Despite seemingly low incidence of tako-tsubo, acute coronary syndromes globally constitute a major epidemiological issue and both clinical entities should be accurately differentiated. Many patients present with only mild troponin release, certain extent of regional wall motion abnormalities (RWMA) and absence of hemodynamically significant coronary artery stenosis. In such instances, a careful interview aimed at preceding emotional or physical traumatic event should be undertaken. The subsequent verification of the diagnosis is based upon prompt recovery of contractile function. Although precise diagnostic criteria were formulated, symptomatology of tako-tsubo might be clinically misleading due to the possibility of concomitant coronary vasospasm, atypical pattern of RWMA and presence of non-significant coronary disease. For this reason, its exact rate might be underestimated. Stress cardiomyopathy reflects merely a single aspect of a much wider range of neurocardiogenic injury, which encompasses cardiac dysfunction associated with subarachnoid hemorrhage, intracranial hypertension and cerebral ischemia. Both psychological and physical insult to central nervous system may trigger a disastrous response of sympathetic nervous system, eventually leading to end-organ catecholamine-mediated damage. This review sought to delineate the phenomenon of tako-tsubo cardiomyopathy and deliver evidence for common pathophysiology of the broad spectrum of neurocardiogenic injury. PMID:24462197

  5. Identification of the Syrian hamster cardiomyopathy gene.

    PubMed

    Nigro, V; Okazaki, Y; Belsito, A; Piluso, G; Matsuda, Y; Politano, L; Nigro, G; Ventura, C; Abbondanza, C; Molinari, A M; Acampora, D; Nishimura, M; Hayashizaki, Y; Puca, G A

    1997-04-01

    The BIO14.6 hamster is a widely used model for autosomal recessive cardiomyopathy. These animals die prematurely from progressive myocardial necrosis and heart failure. The primary genetic defect leading to the cardiomyopathy is still unknown. Recently, a genetic linkage map localized the cardiomyopathy locus on hamster chromosome 9qa2.1-b1, excluding several candidate genes. We now demonstrate that the cardiomyopathy results from a mutation in the delta-sarcoglycan gene that maps to the disease locus. This mutation was completely coincident with the disease in backcross and F2 pedigrees. This constitutes the first animal model identified for human sarcoglycan disorders. PMID:9097966

  6. Mitochondrial Haplogroups Modify the Risk of Developing Hypertrophic Cardiomyopathy in a Danish Population

    PubMed Central

    Hagen, Christian M.; Aidt, Frederik H.; Hedley, Paula L.; Jensen, Morten K.; Havndrup, Ole; Kanters, Jørgen K.; Moolman-Smook, Johanna C.; Larsen, Severin O.; Bundgaard, Henning; Christiansen, Michael

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in genes coding for proteins involved in sarcomere function. The disease is associated with mitochondrial dysfunction. Evolutionarily developed variation in mitochondrial DNA (mtDNA), defining mtDNA haplogroups and haplogroup clusters, is associated with functional differences in mitochondrial function and susceptibility to various diseases, including ischemic cardiomyopathy. We hypothesized that mtDNA haplogroups, in particular H, J and K, might modify disease susceptibility to HCM. Mitochondrial DNA, isolated from blood, was sequenced and haplogroups identified in 91 probands with HCM. The association with HCM was ascertained using two Danish control populations. Haplogroup H was more prevalent in HCM patients, 60% versus 46% (p = 0.006) and 41% (p = 0.003), in the two control populations. Haplogroup J was less prevalent, 3% vs. 12.4% (p = 0.017) and 9.1%, (p = 0.06). Likewise, the UK haplogroup cluster was less prevalent in HCM, 11% vs. 22.1% (p = 0.02) and 22.8% (p = 0.04). These results indicate that haplogroup H constitutes a susceptibility factor and that haplogroup J and haplogroup cluster UK are protective factors in the development of HCM. Thus, constitutive differences in mitochondrial function may influence the occurrence and clinical presentation of HCM. This could explain some of the phenotypic variability in HCM. The fact that haplogroup H and J are also modifying factors in ischemic cardiomyopathy suggests that mtDNA haplotypes may be of significance in determining whether a physiological hypertrophy develops into myopathy. mtDNA haplotypes may have the potential of becoming significant biomarkers in cardiomyopathy. PMID:23940792

  7. Primary Carnitine Deficiency and Cardiomyopathy

    PubMed Central

    Fu, Lijun; Huang, Meirong

    2013-01-01

    Carnitine is essential for the transfer of long-chain fatty acids from the cytosol into mitochondria for subsequent β-oxidation. A lack of carnitine results in impaired energy production from long-chain fatty acids, especially during periods of fasting or stress. Primary carnitine deficiency (PCD) is an autosomal recessive disorder of mitochondrial β-oxidation resulting from defective carnitine transport and is one of the rare treatable etiologies of metabolic cardiomyopathies. Patients affected with the disease may present with acute metabolic decompensation during infancy or with severe cardiomyopathy in childhood. Early recognition of the disease and treatment with L-carnitine may be life-saving. In this review article, the pathophysiology, clinical presentation, diagnosis, treatment and prognosis of PCD are discussed, with a focus on cardiac involvements. PMID:24385988

  8. Atomoxetine-related Takotsubo Cardiomyopathy.

    PubMed

    Naguy, Ahmed; Al-Mutairi, Haya; Al-Tajali, Ali

    2016-05-01

    Many psychotropic medications target norepinephrine receptors, which can have serious cardiovascular implications, especially in the context of overdoses, polypharmacy, and high-risk populations. This article presents the case of a patient with adult attention-deficit/hyperactivity disorder who developed takotsubo cardiomyopathy subsequent to pharmacokinetic and pharmacodynamic interactions between atomoxetine, a selective norepinephrine reuptake inhibitor, and fluoxetine. Clinicians should be mindful of the potential for cardiovascular adverse effects when prescribing agents that target noradrenergic receptors. PMID:27123802

  9. The Impact of Remote Ischemic Pre-Conditioning on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography and Angioplasty: A Double-Blind Randomized Clinical Trial

    PubMed Central

    Gholoobi, Arash; Sajjadi, Seyyed Masoud; Shabestari, Mahmoud Mohammadzadeh; Eshraghi, Ali; Shamloo, Alireza Sepehri

    2015-01-01

    Background and objective Contrast-induced nephropathy (CIN) is an acute major complication following intravascular administration of iodinated contrast agents; however, the best approach for preventing CIN is not clear. Remote ischemic pre-conditioning (RIPC) is a new, non-pharmacological method that has been considered for the prevention of CIN following coronary angiography. This study assessed the effects of RIPC with four brief episodes of upper limb ischemia and reperfusion in the prevention of contrast-induced nephropathy (CIN) after coronary angiography and/or angioplasty. Methods In this double-blind randomized clinical trial, we enrolled 51 patients with chronic stable angina and non-ST elevation acute coronary syndrome (NSTE.ACS), and they underwent coronary angiography and/or angioplasty. Standard fluid therapy with normal saline was prescribed for all patients before and after the procedure. The patients were divided into two groups, i.e., a study group of patients who had undergone RIPC intervention and a control group of patients who had not undergone RIPC. One hour before the procedure, a sphygmomanometer cuff was placed around one arm and inflated up to 50 mmHg above the systolic pressure for five minutes; then, the cuff was deflated for another five minutes, and this cycle was repeated four times. The patients’ serum creatinine levels were measured at baseline and 48 hours after the procedure, and the incidence of CIN was calculated. Results Twenty-one males and 30 females were studied in two groups, i.e., an RIPC intervention group (n = 25) and a control group (n = 26) that were homogenous considering baseline characteristics. No significant difference was observed in the mean level of serum creatinine between the two groups at a post-intervention time of 48 hours (RICP: 1.74 ± 0.70 mg/dL vs. Control: 1.75 ± 0.87 mg/dL; P = 0.64). However, a lower incidence rate of CIN was observed 48 hours after the administration of the contrast medium in

  10. Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury

    PubMed Central

    Mohanty, Ipseeta; Arya, Dharamvir Singh; Gupta, Suresh Kumar

    2006-01-01

    Background In the present investigation, the effect of Curcuma longa (Cl) and Ocimum sanctum (Os) on myocardial apoptosis and cardiac function was studied in an ischemia and reperfusion (I-R) model of myocardial injury. Methods Wistar albino rats were divided into four groups and orally fed saline once daily (sham, control IR) or Cl (100 mg/kg; Cl-IR) or Os (75 mg/kg; Os-IR) respectively for 1 month. On the 31st day, in the rats of the control IR, Cl-IR and Os-IR groups LAD occlusion was undertaken for 45 min, and reperfusion was allowed for 1 h. The hemodynamic parameters{mean arterial pressure (MAP), heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular peak positive (+) LVdP/dt (rate of pressure development) and negative (-) LVdP/dt (rate of pressure decline)} were monitored at pre-set points throughout the experimental duration and subsequently, the animals were sacrificed for immunohistopathological (Bax, Bcl-2 protein expression & TUNEL positivity) and histopathological studies. Results Chronic treatment with Cl significantly reduced TUNEL positivity (p < 0.05), Bax protein (p < 0.001) and upregulated Bcl-2 (p < 0.001) expression in comparison to control IR group. In addition, Cl demonstrated mitigating effects on several myocardial injury induced hemodynamic {(+)LVdP/dt, (-) LVdP/dt & LVEDP} and histopathological perturbations. Chronic Os treatment resulted in modest modulation of the hemodynamic alterations (MAP, LVEDP) but failed to demonstrate any significant antiapoptotic effects and prevent the histopathological alterations as compared to control IR group. Conclusion In the present study, significant cardioprotection and functional recovery demonstrated by Cl may be attributed to its anti-apoptotic property. In contrast to Os, Cl may attenuate cell death due to apoptosis and prevent the impairment of cardiac performance. PMID:16504000

  11. Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion

    PubMed Central

    Cao, Zhijuan; Balasubramanian, Adithya

    2013-01-01

    Traditional methods of therapeutic hypothermia show promise for neuroprotection against cerebral ischemia-reperfusion (I/R), however, with limitations. We examined effectiveness and specificity of pharmacological hypothermia (PH) by transient receptor potential vanilloid 1 (TRPV1) channel agonism in the treatment of focal cerebral I/R. Core temperature (Tcore) was measured after subcutaneous infusion of TRPV1 agonist dihydrocapsaicin (DHC) in conscious C57BL/6 WT and TRPV1 knockout (KO) mice. Acute measurements of heart rate (HR), mean arterial pressure (MAP), and cerebral perfusion were measured before and after DHC treatment. Focal cerebral I/R (1 h ischemia + 24 h reperfusion) was induced by distal middle cerebral artery occlusion. Hypothermia (>8 h) was initiated 90 min after start of reperfusion by DHC infusion (osmotic pump). Neurofunction (behavioral testing) and infarct volume (TTC staining) were measured at 24 h. DHC (1.25 mg/kg) produced a stable drop in Tcore (33°C) in naive and I/R mouse models but not in TRPV1 KO mice. DHC (1.25 mg/kg) had no measurable effect on HR and cerebral perfusion but produced a slight transient drop in MAP (<6 mmHg). In stroke mice, DHC infusion produced hypothermia, decreased infarct volume by 87%, and improved neurofunctional score. The hypothermic and neuroprotective effects of DHC were absent in TRPV1 KO mice or mice maintained normothermic with heat support. PH via TRPV1 agonist appears to be a well-tolerated and effective method for promoting mild hypothermia in the conscious mouse. Furthermore, TRPV1 agonism produces effective hypothermia in I/R mice and significantly improves outcome when initiated 90 min after start of reperfusion. PMID:24305062

  12. Flow Augmentation in Acute Ischemic Stroke.

    PubMed

    Yadollahikhales, Golnaz; Borhani-Haghighi, Afshin; Torabi-Nami, Mohammad; Edgell, Randall; Cruz-Flores, Salvador

    2016-01-01

    There is an urgent need for additional therapeutic options for acute ischemic stroke considering the major pitfalls of the options available. Herein, we briefly review the role of cerebral blood flow, collaterals, vasoreactivity, and reperfusion injury in acute ischemic stroke. Then, we reviewed pharmacological and interventional measures such as volume expansion and induced hypertension, intra-aortic balloon counterpulsation, partial aortic occlusion, extracranial-intracranial carotid bypass surgery, sphenopalatine ganglion stimulation, and transcranial laser therapy with regard to their effects on flow augmentation and neuroprotection. PMID:25475112

  13. Skeletal muscle involvement in cardiomyopathies.

    PubMed

    Limongelli, Giuseppe; D'Alessandro, Raffaella; Maddaloni, Valeria; Rea, Alessandra; Sarkozy, Anna; McKenna, William J

    2013-12-01

    The link between heart and skeletal muscle disorders is based on similar molecular, anatomical and clinical features, which are shared by the 'primary' cardiomyopathies and 'primary' neuromuscular disorders. There are, however, some peculiarities that are typical of cardiac and skeletal muscle disorders. Skeletal muscle weakness presenting at any age may indicate a primary neuromuscular disorder (associated with creatine kinase elevation as in dystrophinopathies), a mitochondrial disease (particularly if encephalopathy, ocular myopathy, retinitis, neurosensorineural deafness, lactic acidosis are present), a storage disorder (progressive exercise intolerance, cognitive impairment and retinitis pigmentosa, as in Danon disease), or metabolic disorders (hypoglycaemia, metabolic acidosis, hyperammonaemia or other specific biochemical abnormalities). In such patients, skeletal muscle weakness usually precedes the cardiomyopathy and dominates the clinical picture. Nevertheless, skeletal involvement may be subtle, and the first clinical manifestation of a neuromuscular disorder may be the occurrence of heart failure, conduction disorders or ventricular arrhythmias due to cardiomyopathy. ECG and echocardiogram, and eventually, a more detailed cardiovascular evaluation may be required to identify early cardiac involvement. Paediatric and adult cardiologists should be proactive in screening for neuromuscular and related disorders to enable diagnosis in probands and evaluation of families with a focus on the identification of those at risk of cardiac arrhythmia and emboli who may require specific prophylactic treatments, for example, pacemaker, implantable cardioverter-defibrillator and anticoagulation. PMID:24149064

  14. [Cirrhotic cardiomyopathy: a specific entity].

    PubMed

    Brondex, A; Arlès, F; Lipovac, A-S; Richecoeur, M; Bronstein, J-A

    2012-04-01

    Cirrhosis is a frequent and severe condition, which is the late stage of numerous chronic liver diseases. It is associated with major hemodynamic alterations characteristic of hyperdynamic circulation and with a series of structural, functional, electrophysiological and biological heart abnormalities termed cirrhotic cardiomyopathy. The pathogenesis of this syndrome is multifactorial. It is usually clinically latent or mild, likely because the peripheral vasodilatation significantly reduces the left ventricle afterload. However, sudden changes of hemodynamic state (vascular filling, surgical or transjugular intrahepatic porto-systemic shunts, peritoneo-venous shunts and orthotopic liver transplantation) or myocardial contractility (introduction of beta-blocker therapy) can unmask its presence, and sometimes convert latent to overt heart failure. Cirrhotic cardiomyopathy may also contribute to the pathogenesis of hepatorenal syndrome. This entity has been described recently, and its diagnostic criteria are still under debate. To date, current management recommendations are empirical, nonspecific measures. Recognition of cirrhotic cardiomyopathy depends on a high level of awareness for the presence of this syndrome, particularly in patients with advanced cirrhosis who undergo significant surgical, pharmacological or physiological stresses. PMID:22115174

  15. Troponins, intrinsic disorder, and cardiomyopathy.

    PubMed

    Na, Insung; Kong, Min J; Straight, Shelby; Pinto, Jose R; Uversky, Vladimir N

    2016-08-01

    Cardiac troponin is a dynamic complex of troponin C, troponin I, and troponin T (TnC, TnI, and TnT, respectively) found in the myocyte thin filament where it plays an essential role in cardiac muscle contraction. Mutations in troponin subunits are found in inherited cardiomyopathies, such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). The highly dynamic nature of human cardiac troponin and presence of numerous flexible linkers in its subunits suggest that understanding of structural and functional properties of this important complex can benefit from the consideration of the protein intrinsic disorder phenomenon. We show here that mutations causing decrease in the disorder score in TnI and TnT are significantly more abundant in HCM and DCM than mutations leading to the increase in the disorder score. Identification and annotation of intrinsically disordered regions in each of the troponin subunits conducted in this study can help in better understanding of the roles of intrinsic disorder in regulation of interactomes and posttranslational modifications of these proteins. These observations suggest that disease-causing mutations leading to a decrease in the local flexibility of troponins can trigger a whole plethora of functional changes in the heart. PMID:27074551

  16. Cardiomyopathies and the Armed Forces.

    PubMed

    Holdsworth, D A; Cox, A T; Boos, C; Hardman, R; Sharma, S

    2015-09-01

    Cardiomyopathies are a group of heterogeneous myocardial diseases that are frequently inherited and are a recognised cause of premature sudden cardiac death in young individuals. Incomplete expressions of disease and the overlap with the physiological cardiac manifestations of regular intensive exercise create diagnostic challenges in young athletes and military recruits. Early identification is important because sudden death in the absence of prodromal symptoms is a common presentation, and there are several therapeutic strategies to minimise this risk. This paper examines the classification and clinical features of cardiomyopathies with specific reference to a military population and provides a detailed account of the optimum strategy for diagnosis, indications for specialist referral and specific guidance on the occupational significance of cardiomyopathy. A 27-year-old Lance Corporal Signaller presents to his Regimental medical officer (RMO) after feeling 'light-headed' following an 8 mile unloaded run. While waiting to see the RMO, the medical sergeant records a 12-lead ECG. The ECG is reviewed by the RMO immediately prior to the consultation and shows voltage criteria for left ventricular (LV) hypertrophy and inverted T-waves in II, III, aVF and V1-V3 (Figure 1). This Lance Corporal is a unit physical training instructor and engages in >10 h of aerobic exercise per week. He is a non-smoker and does not have any significant medical history. PMID:26246349

  17. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    PubMed Central

    2011-01-01

    We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies. PMID:21247486

  18. [Experimental model of ocular ischemic diseases].

    PubMed

    Kiseleva, T N; Chudin, A V

    2014-01-01

    The review presents the most common methods of modeling of retinal ischemia in vitro (chemical ischemia with iodoacetic acid, incubation of the retinal pigment epithelium cells with oligomycin, deprivation of oxygen and glucose) and in vivo (a model with increased intraocular pressure, cerebral artery occlusion, chronic ligation of the carotid arteries, photocoagulation of the retinal vessels, occlusion of the central retinal artery, endothelin-1 administration). Modeling ischemic injury in rats is the most frequently used method in studies, because the blood supply of their eyes is similar to blood flow in the human eyes. Each method has its own advantages and disadvantages. Application of methods depends on the purpose of the experimental study. Currently model of ocular ischemic disease can be obtained easily by injecting vasoconstrictive drug endothelin-1. It is the most widely used method of high intraocular pressure induced ocular ischemic damage similar to glaucoma, occlusion of central retinal artery or ophthalmic artery in human. The development of experimental models of ocular ischemic diseases and detailed investigation of mechanisms of impairment of microcirculation are useful for improve the efficiency of diagnostic and treatment of ischemic diseases of retina and optic nerve. PMID:25971134

  19. Transient stress cardiomyopathies in the elderly: Clinical & Pathophysiologic considerations

    PubMed Central

    Chen, Michael A

    2012-01-01

    Transient stress-induced cardiomyopathies have been increasingly recognized and while rare, they tend to affect elderly women more than other demographic groups. One type, often called tako-tsubo cardiomyopathy (TTC), is typically triggered by significant emotional or physical stress and is associated with chest pain, electrocardiogram (ECG) changes and abnormal cardiac enzymes. Significant left ventricular regional wall motion abnormalities usually include an akinetic “ballooning” apex with normal or hyperdynamic function of the base. A second type, often called neurogenic stunned myocardium, typically associated with subarachnoid hemorrhage, also usually presents with ECG changes and positive enzymes, but the typical wall motion abnormalities seen include normal basal and apical left ventricular contraction with akinesis of the mid-cavity in a circumferential fashion. The pathophysiology, clinical care and typical courses, are reviewed. PMID:22783322

  20. Cardiomyopathy in becker muscular dystrophy: Overview.

    PubMed

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-06-26

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed. PMID:27354892

  1. Arrhythmogenic right ventricular cardiomyopathy in a weimaraner

    PubMed Central

    Eason, Bryan D.; Leach, Stacey B.; Kuroki, Keiichi

    2015-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) was diagnosed postmortem in a weimaraner dog. Syncope, ventricular arrhythmias, and sudden death in this patient combined with the histopathological fatty tissue infiltration affecting the right ventricular myocardium are consistent with previous reports of ARVC in non-boxer dogs. Arrhythmogenic right ventricular cardiomyopathy has not been previously reported in weimaraners. PMID:26483577

  2. Cardiomyopathy in becker muscular dystrophy: Overview

    PubMed Central

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-01-01

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed. PMID:27354892

  3. Long-Term Outcomes for Different Forms of Stress Cardiomyopathy After Surgical Treatment for Subarachnoid Hemorrhage

    PubMed Central

    Bihorac, Azra; Ozrazgat-Baslanti, Tezcan; Mahanna, Elizabeth; Malik, Seemab; White, Peggy; Sorensen, Matthew; Fahy, Brenda G.; Petersen, John W

    2016-01-01

    Background Stress-induced cardiomyopathy (SCM) after subarachnoid hemorrhage (SAH) includes predominant apical or basal regional left ventricular dysfunction (RLVD) with concomitant changes in electrocardiogram or increase in cardiac enzymes. We hypothesized that difference in outcome is associated with the type of RLVD after SAH. Methods We studied a single-center retrospective cohort of SAH patients hospitalized between 2000 and 2010 with follow-up until 2013. We classified patients who had an echocardiogram for clinically indicated reasons according to the predominate location of RLVD as classic SCM-apical form and variant SCM-basal form. A Cox proportional hazard model and logistic regression were used to estimate risk for death and hospital complications associated with different RLVD, after adjustment for propensity to undergo echocardiography given clinical characteristics on admission. Results Among 715 SAH patients 28% (200/715) had an echocardiogram for clinical evidence of cardiac dysfunction during hospitalization, the most common being acute LV dysfunction, suspected acute ischemic event, changes in electrocardiogram and cardiac enzymes and arrhythmia. SCM was present in 59 patients (8% of all cohort and 30% of patients with echocardiogram, respectively) with similar distribution of SCM-basal (25/59) and SCM-Apical forms (34/59). SAH patients who had an echocardiogram for clinically indicated reasons had a significantly decreased risk-adjusted long-term survival compared to those without an echocardiogram, regardless of the presence of RLVD. SCM-basal was associated with cardiac complications (OR 6.1, 99% CI 1.8–20.2) and severe sepsis (OR 5.3 99% CI 1.6–17.2). Conclusions SAH patients with echocardiogram for a clinically indicated reason have a decreased long-term survival, regardless of the presence of RLVD. The association between severe sepsis and SCM-basal warrants future studies to determine their potential synergistic effect on LV systolic

  4. Stem Cell Therapy for Pediatric Dilated Cardiomyopathy

    PubMed Central

    Selem, Sarah M.; Kaushal, Sunjay; Hare, Joshua M.

    2014-01-01

    Dilated cardiomyopathy is a serious and life-threatening disorder in children. It is the most common form of pediatric cardiomyopathy. Therapy for this condition has varied little over the last several decades and mortality continues to be high. Currently, children with dilated cardiomyopathy are treated with pharmacological agents and mechanical support, but most require heart transplantation and survival rates are not optimal. The lack of common treatment guidelines and inadequate survival rates after transplantation necessitates more therapeutic clinical trials. Stem cell and cell-based therapies offer an innovative approach to restore cardiac structure and function towards normal, possibly reducing the need for aggressive therapies and cardiac transplantation. Mesenchymal stem cells and cardiac stem cells may be the most promising cell types for treating children with dilated cardiomyopathy. The medical community must begin a systematic investigation of the benefits of current and novel treatments such as stem cell therapies for treating pediatric dilated cardiomyopathy. PMID:23666883

  5. Cushing's Disease Presented by Reversible Dilated Cardiomyopathy.

    PubMed

    Aydoğan, Berna İmge; Gerede, Demet Menekşe; Canpolat, Asena Gökçay; Erdoğan, Murat Faik

    2015-01-01

    Introduction. Dilated cardiomyopathy is rarely reported among CS patients especially without hypertension and left ventricular hypertrophy. Materials and Methods. We hereby report a Cushing's syndrome case presenting with dilated cardiomyopathy. Results. A 48-year-old female patient was admitted to our clinic with severe proximal myopathy and dilated cardiomyopathy without ventricular hypertrophy. Cushing's disease was diagnosed and magnetic-resonance imaging of the pituitary gland revealed a microadenoma. Under diuretic and ketoconazole treatments, she underwent a successful transnasal/transsphenoidal adenomectomy procedure. Full recovery of symptoms and echocardiographic features was achieved after six months of surgery. Conclusion. Cushing's syndrome must be kept in mind as a reversible cause of dilated cardiomyopathy. Recovery of cardiomyopathy is achieved with successful surgery. PMID:26649206

  6. Cushing's Disease Presented by Reversible Dilated Cardiomyopathy

    PubMed Central

    Aydoğan, Berna İmge; Gerede, Demet Menekşe; Canpolat, Asena Gökçay; Erdoğan, Murat Faik

    2015-01-01

    Introduction. Dilated cardiomyopathy is rarely reported among CS patients especially without hypertension and left ventricular hypertrophy. Materials and Methods. We hereby report a Cushing's syndrome case presenting with dilated cardiomyopathy. Results. A 48-year-old female patient was admitted to our clinic with severe proximal myopathy and dilated cardiomyopathy without ventricular hypertrophy. Cushing's disease was diagnosed and magnetic-resonance imaging of the pituitary gland revealed a microadenoma. Under diuretic and ketoconazole treatments, she underwent a successful transnasal/transsphenoidal adenomectomy procedure. Full recovery of symptoms and echocardiographic features was achieved after six months of surgery. Conclusion. Cushing's syndrome must be kept in mind as a reversible cause of dilated cardiomyopathy. Recovery of cardiomyopathy is achieved with successful surgery. PMID:26649206

  7. Takotsubo Cardiomyopathy Associated with Severe Hypothyroidism in an Elderly Female.

    PubMed

    Brenes-Salazar, Jorge A

    2016-01-01

    Takotsubo cardiomyopathy, also known as stress cardiomyopathy, is a syndrome that affects predominantly postmenopausal women. Despite multiple described mechanisms, intense, neuroadrenergic myocardial stimulation appears to be the main trigger. Hyperthyroidism, but rarely hypothyroidism, has been described in association with Takotsubo cardiomyopathy. Herein, we present a case of stress cardiomyopathy in the setting of symptomatic hypothyroidism. PMID:27512537

  8. The Pediatric Cardiomyopathy Registry: 1995–2007

    PubMed Central

    Wilkinson, James D.; Sleeper, Lynn A.; Alvarez, Jorge A.; Bublik, Natalya; Lipshultz, Steven E.

    2008-01-01

    Cardiomyopathy is a serious disorder of the heart muscle and, although rare, it is potentially devastating in children. Funded by the National Heart Lung and Blood Institute since 1994, the Pediatric Cardiomyopathy Registry (PCMR) was designed to describe the epidemiology and clinical course of selected CMs in patients 18 years old or younger and to promote the development of etiology-specific prevention and treatment strategies. Currently, data from more than 3,000 children with cardiomyopathy have been entered in the PCMR database with annual follow-up continuing until death, heart transplant, or loss-to-follow up. Using PCMR data, the incidence of cardiomyopathy in two large regions of the United States is estimated to be 1.13 cases per 100,000 children. Only 1/3 of children had a known etiology at the time of cardiomyopathy diagnosis. Diagnosis was associated with certain patient characteristics, family history, echocardiographic findings, laboratory testing, and biopsy. Greater incidence was found in boys and infants (<1 yr) for both dilated and hypertrophic cardiomyopathy (DCM, HCM) and black race for only DCM. In DCM, prognosis is worse in older children (>1yr), heart failure (HF) at diagnosis or idiopathic etiology. For HCM, worse prognosis is associated with inborn errors of metabolism or combination of HCM and another cardiomyopathy functional type. The best outcomes were observed in children presenting at age >1 yr with idiopathic HCM. PCMR data have enabled analysis of patients with cardiomyopathy and muscular dystrophy, as well as Noonan Syndrome. Currently, collaborations with the Pediatric Heart Transplant Study group and a newly established Pediatric Cardiomyopathy Biologic Specimen Repository at Texas Children’s Hospital will continue to yield important results. The PCMR is the largest and most complete multi-center prospective data resource regarding the etiology, clinical course and outcomes for children with cardiomyopathy. PMID:19343086

  9. Ischemic Colitis Revealing Polyarteritis Nodosa

    PubMed Central

    Hamzaoui, Amira; Litaiem, Noureddine; Smiti Khanfir, M.; Ayadi, Sofiene; Nfoussi, Haifa; Houman, M. H.

    2013-01-01

    Ischemic colitis is one of the most common intestinal ischemic injuries. It results from impaired perfusion of blood to the bowel and is rarely caused by vasculitis. We report a case of ischemic colitis revealing polyarteritis nodosa (PAN) in a 55-year-old man. Histological examination of the resected colon led to the diagnosis of PAN. PMID:24382967

  10. Imaging Phenotype vs. Genotype in Non-Hypertrophic Heritable Cardiomyopathies: Dilated Cardiomyopathy and Arrhythmogenic Right Ventricular Cardiomyopathy

    PubMed Central

    Raman, Subha V.; Basso, Cristina; Tandri, Harikrishna; Taylor, Matthew R. G.

    2011-01-01

    Advances in cardiovascular imaging increasingly afford unique insights into heritable myocardial disease. As clinical presentation of genetic cardiomyopathies may range from nonspecific symptoms to sudden cardiac death, accurate diagnosis has implications for individual patients as well as related family members. The initial consideration of genetic cardiomyopathy may occur in the imaging laboratory, where one must recognize the patient with arrhythmogenic right ventricular cardiomyopathy (ARVC) among the many with ventricular arrhythmia referred to define myocardial substrate. Accurate diagnosis of the patient presenting with dyspnea and palpitations whose first-degree relatives have lamin A/C cardiomyopathy may warrant genetic testing1, 2 plus imaging of diastolic function and myocardial fibrosis3. As advances in cardiac imaging afford detection of subclinical structural and functional changes, the imaging specialist must be attuned to signatures of specific genetic disorders. With increased availability of both advanced imaging as well as genotyping techniques, this review seeks to provide cardiovascular imaging specialists and clinicians with the contemporary information needed for more precise diagnosis and treatment of heritable myocardial disease. A companion paper in this series covers imaging phenotype and genotype considerations in hypertrophic cardiomyopathy (HCM). This review details clinical features, imaging phenotype and current genetic understanding for two of the most common non-HCM conditions that prompt myocardial imaging - dilated cardiomyopathy (DCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC). While all modalities are considered herein, considerable focus is given to CMR with its unique capabilities for myocardial tissue characterization. PMID:21081743

  11. Cerebral Ischemic Preconditioning: the Road So Far….

    PubMed

    Thushara Vijayakumar, N; Sangwan, Amit; Sharma, Bhargy; Majid, Arshad; Rajanikant, G K

    2016-05-01

    Cerebral preconditioning constitutes the brain's adaptation to lethal ischemia when first exposed to mild doses of a subtoxic stressor. The phenomenon of preconditioning has been largely studied in the heart, and data from in vivo and in vitro models from past 2-3 decades have provided sufficient evidence that similar machinery exists in the brain as well. Since preconditioning results in a transient protective phenotype labeled as ischemic tolerance, it can open many doors in the medical warfare against stroke, a debilitating cerebrovascular disorder that kills or cripples thousands of people worldwide every year. Preconditioning can be induced by a variety of stimuli from hypoxia to pharmacological anesthetics, and each, in turn, induces tolerance by activating a multitude of proteins, enzymes, receptors, transcription factors, and other biomolecules eventually leading to genomic reprogramming. The intracellular signaling pathways and molecular cascades behind preconditioning are extensively being investigated, and several first-rate papers have come out in the last few years centered on the topic of cerebral ischemic tolerance. However, translating the experimental knowledge into the clinical scaffold still evades practicality and faces several challenges. Of the various preconditioning strategies, remote ischemic preconditioning and pharmacological preconditioning appears to be more clinically relevant for the management of ischemic stroke. In this review, we discuss current developments in the field of cerebral preconditioning and then examine the potential of various preconditioning agents to confer neuroprotection in the brain. PMID:26081149

  12. Ischemic tolerance: the mechanisms of neuroprotective strategy.

    PubMed

    Lehotský, Jan; Burda, Jozef; Danielisová, Viera; Gottlieb, Miroslav; Kaplán, Peter; Saniová, Beata

    2009-12-01

    The phenomenon of ischemic tolerance perfectly describes this quote "What does not kill you makes you stronger." Ischemic pre- or postconditioning is actually the strongest known procedure to prevent or reverse neurodegeneration. It works specifically in sensitive vulnerable neuronal populations, which are represented by pyramidal neurons in the hippocampal CA1 region. However, tolerance is effective in other brain cell populations as well. Although, its nomenclature is "ischemic" tolerance, the tolerant phenotype can also be induced by other stimuli that lead to delayed neuronal death (intoxication). Moreover, the recent data have proven that this phenomenon is not limited to application of sublethal stimuli before the lethal stress but reversed arrangement of events, sublethal stress after lethal insult, is rather equally effective. A very important term is called "cross conditioning." Cross conditioning is the capability of one stressor to induce tolerance against another. So, since pre- or post-conditioners can be used plenty of harmful stimuli, hypo- or hyperthermia and some physiological compounds, such as norepinephrine, bradykinin. Delayed neuronal death is the slow development of postischemic neurodegeneration. This allows an opportunity for a great therapeutic window of 2-3 days to reverse the cellular death process. Moreover, it seems that the mechanisms of ischemic tolerance-delayed postconditioning could be used not only after ischemia but also in some other processes leading to apoptosis. PMID:19943353

  13. Adrenergic Inhibition with Dexmedetomidine to Treat Stress Cardiomyopathy during Alcohol Withdrawal: A Case Report and Literature Review

    PubMed Central

    Harris, Zachary M.; Alonso, Alvaro; Kennedy, Thomas P.

    2016-01-01

    Stress (Takotsubo) cardiomyopathy is a form of reversible left ventricular dysfunction with a heightened risk of ventricular arrhythmia thought to be caused by high circulating catecholamines. We report a case of stress cardiomyopathy that developed during severe alcohol withdrawal successfully treated with dexmedetomidine. The case involves a 53-year-old man with a significant history of alcohol abuse who presented to a teaching hospital with new-onset seizures. His symptoms of acute alcohol withdrawal were initially treated with benzodiazepines, but the patient later developed hypotension, and stress cardiomyopathy was suspected based on ECG and echocardiographic findings. Adjunctive treatment with the alpha-2-adrenergic agonist, dexmedetomidine, was initiated to curtail excessive sympathetic outflow of the withdrawal syndrome, thereby targeting the presumed pathophysiology of the cardiomyopathy. Significant clinical improvement was observed within one day of initiation of dexmedetomidine. These findings are consistent with other reports suggesting that sympathetic dysregulation during alcohol withdrawal produces ideal pathobiology for stress cardiomyopathy and leads to ventricular arrhythmogenicity. Stress cardiomyopathy should be recognized as a complication of alcohol withdrawal that significantly increases cardiac-related mortality. By helping to correct autonomic dysregulation of the withdrawal syndrome, dexmedetomidine may be useful in the treatment of stress-induced cardiomyopathy. PMID:27006838

  14. Evaluation of the anti-ischemic effects of D-ribose during dobutamine stress echocardiography: a pilot study

    PubMed Central

    Sawada, Stephen G; Lewis, Stephen; Kovacs, Roxanne; Khouri, Samer; Gradus-Pizlo, Irmina; St Cyr, John A; Feigenbaum, Harvey

    2009-01-01

    D-Ribose, a pentose sugar, has shown to improve myocardial high-energy phosphate stores depleted by ischemia. This study investigated the ability of D-Ribose with low dose dobutamine to improve the contractile response of viable myocardium to dobutamine and to assess the efficacy of D-ribose in reducing stress-induced ischemia. Twenty-six patients with ischemic cardiomyopathy completed a two-day, randomized, double blind crossover trial comparing the effects of D-Ribose and placebo on regional wall motion. On the first study day, either D-Ribose or placebo was infused for 4.5 hours. Low (5 and 10 μ/kg/min) and subsequently, high (up to 50 μ/kg/min) dose dobutamine echocardiography was then performed. On the second study day, patients crossed over to the alternative article for a similar 4.5 hours infusion time period and underwent a similar evaluation. The wall motion response during low dose dobutamine was the same with D-Ribose and placebo in 77% of segments (203/263, Kappa = 0.37). In segments with discordant responses, more segments improved with D-Ribose than with placebo (41 vs. 19 segments, p = 0.006). With high dose dobutamine infusion, the wall motion response (ischemia vs. no ischemia) was the same with D-Ribose and placebo in 83% of interpretable segments (301/363, kappa = 0.244). In segments with discordant responses, there were more ischemic segments with placebo compared to D-Ribose (36 vs. 26, p = 0.253). Nineteen patients developed ischemia during the dobutamine and placebo infusion and 13 patients had ischemia during dobutamine and D-ribose infusion (p = 0.109). D-Ribose improved contractile responses to dobutamine in viable myocardium with resting dysfunction but had no significant effect in reducing the frequency of stress-induced wall motion abnormalities. PMID:19200398

  15. Methylene Blue for Acute Septic Cardiomyopathy in a Burned Patient.

    PubMed

    Schlesinger, Joseph J; Burger, Christina F

    2016-01-01

    The objective of this case summary was to describe the use of methylene blue (MB) in a burned patient with acute septic cardiomyopathy. A 60-year-old Caucasian man was admitted to the Burn Intensive Care Unit with 45% TBSA burns after a house explosion. During the course of his care, he experienced hypotension that was refractory to fluid therapy and vasoactive medications. Echocardiography and right heart catheterization showed new acute systolic dysfunction with concurrent elevated systemic vascular resistance (SVR). High-dose inotropic agents did not improve cardiac function, and septic shock rendered him a poor candidate for mechanical intra-aortic balloon pump support. MB was administered to sensitize the myocardium to catecholamines and improve contractility with the goal of weaning the other vasoactive medications and diuresing for afterload reduction when hemodynamic stability was achieved. MB has been described in critical care medicine predominately for vasoplegia after cardiopulmonary bypass and vasodilatory septic shock., Our patient had acute septic cardiomyopathy that was refractory to standard pharmacologic approaches to inotropy with concurrent elevated SVR. Hypothesizing the differential temporal effect of inducible nitric oxide synthase on the vasculature and myocardium, we administered MB to improve contractility and support the impending vasodilatory effects of distributive shock. Although MB is not a new drug, the application for septic cardiomyopathy with a supranormal SVR is a unique application. Because of the risk profile associated with MB, we recommend drug monitoring utilizing serial echocardiography and/or right heart catheterization. PMID:25798807

  16. Takotsubo Cardiomyopathy in the Setting of Tension Pneumothorax

    PubMed Central

    Gale, Michael; Loarte, Pablo; Mirrer, Brooks; Mallet, Thierry; Salciccioli, Louis; Petrie, Alison; Cohen, Ronny

    2015-01-01

    Background. Takotsubo cardiomyopathy is defined as a transient left ventricular dysfunction, usually accompanied by electrocardiographic changes. The literature documents only two other cases of Takotsubo cardiomyopathy in the latter setting. Methods. A 78-year-old female presented to the ED with severe shortness of breath, hypertension, and tachycardia. On physical exam, heart sounds (S1 and S2) were regular and wheezing was noticed bilaterally. We found laboratory results with a WBC of 20.0 (103/μL), troponin of 16.52 ng/mL, CK-mb of 70.6%, and BNP of 177 pg/mL. The patient was intubated for acute hypoxemic respiratory failure. A chest X-ray revealed a large left-sided tension pneumothorax. Initial echocardiogram showed apical ballooning with a LVEF of 10–15%. A cardiac angiography revealed normal coronary arteries with no coronary disease. After supportive treatment, the patient's condition improved with a subsequent echocardiogram showing a LVEF of 60%. Conclusion. The patient was found to have Takotsubo cardiomyopathy in the setting of a tension pneumothorax. The exact mechanisms of ventricular dysfunction have not been clarified. However, multivessel coronary spasm or catecholamine cardiotoxicity has been suggested to have a causative role. We suggest that, in our patient, left ventricular dysfunction was induced by the latter mechanism related to the stress associated with acute pneumothorax. PMID:26366307

  17. Takotsubo Cardiomyopathy in the Setting of Tension Pneumothorax.

    PubMed

    Gale, Michael; Loarte, Pablo; Mirrer, Brooks; Mallet, Thierry; Salciccioli, Louis; Petrie, Alison; Cohen, Ronny

    2015-01-01

    Background. Takotsubo cardiomyopathy is defined as a transient left ventricular dysfunction, usually accompanied by electrocardiographic changes. The literature documents only two other cases of Takotsubo cardiomyopathy in the latter setting. Methods. A 78-year-old female presented to the ED with severe shortness of breath, hypertension, and tachycardia. On physical exam, heart sounds (S1 and S2) were regular and wheezing was noticed bilaterally. We found laboratory results with a WBC of 20.0 (103/μL), troponin of 16.52 ng/mL, CK-mb of 70.6%, and BNP of 177 pg/mL. The patient was intubated for acute hypoxemic respiratory failure. A chest X-ray revealed a large left-sided tension pneumothorax. Initial echocardiogram showed apical ballooning with a LVEF of 10-15%. A cardiac angiography revealed normal coronary arteries with no coronary disease. After supportive treatment, the patient's condition improved with a subsequent echocardiogram showing a LVEF of 60%. Conclusion. The patient was found to have Takotsubo cardiomyopathy in the setting of a tension pneumothorax. The exact mechanisms of ventricular dysfunction have not been clarified. However, multivessel coronary spasm or catecholamine cardiotoxicity has been suggested to have a causative role. We suggest that, in our patient, left ventricular dysfunction was induced by the latter mechanism related to the stress associated with acute pneumothorax. PMID:26366307

  18. Update on Myocarditis and Inflammatory Cardiomyopathy: Reemergence of Endomyocardial Biopsy.

    PubMed

    Dominguez, Fernando; Kühl, Uwe; Pieske, Burkert; Garcia-Pavia, Pablo; Tschöpe, Carsten

    2016-02-01

    Myocarditis is defined as an inflammatory disease of the heart muscle and is an important cause of acute heart failure, sudden death, and dilated cardiomyopathy. Viruses account for most cases of myocarditis or inflammatory cardiomyopathy, which could induce an immune response causing inflammation even when the pathogen has been cleared. Other etiologic agents responsible for myocarditis include drugs, toxic substances, or autoimmune conditions. In the last few years, advances in noninvasive techniques such as cardiac magnetic resonance have been very useful in supporting diagnosis of myocarditis, but toxic, infectious-inflammatory, infiltrative, or autoimmune processes occur at a cellular level and only endomyocardial biopsy can establish the nature of the etiological agent. Furthermore, after the generalization of immunohistochemical and viral genome detection techniques, endomyocardial biopsy provides a definitive etiological diagnosis that can lead to specific treatments such as antiviral or immunosuppressive therapy. Endomyocardial biopsy is not commonly performed for the diagnosis of myocarditis due to safety reasons, but both right- and left endomyocardial biopsies have very low complication rates when performed by experienced operators. This document provides a state-of-the-art review of myocarditis and inflammatory cardiomyopathy, with special focus on the role of endomyocardial biopsy to establish specific treatments. PMID:26795929

  19. Trace elements in diabetic cardiomyopathy: An electrophysiological overview

    PubMed Central

    Ozturk, Nihal; Olgar, Yusuf; Ozdemir, Semir

    2013-01-01

    There is a growing body of evidence that Diabetes Mellitus leads to a specific cardiomyopathy apart from vascular disease and bring about high morbidity and mortality throughout the world. Recent clinical and experimental studies have extensively demonstrated that this cardiomyopathy causes impaired cardiac performance manifested by early diastolic and late systolic dysfunction. This impaired cardiac performance most probably have emerged upon the expression and activity of regulatory proteins such as Na+/Ca2+ exchanger, sarcoplasmic reticulum Ca2+-ATPase, ryanodine receptor and phospholamban. Over years many therapeutic strategies have been recommended for treatment of diabetic cardiomyopathy. Lately, inorganic elements have been suggested to have anti-diabetic effects due to their suggested ability to regulate glucose homeostasis, reduce oxidative stress or suppress phosphatases. Recent findings have shown that trace elements exert many biological effects including insulin-mimetic or antioxidant activity and in this manner they have been recommended as potential candidates for treatment of diabetes-induced cardiac complications, an effect based on their modes of action. Some of these trace elements are known to play an essential role as component of enzymes and thus modulate the organ function in physiological and pathological conditions. Besides, they can also manipulate redox state of the channels via antioxidant properties and thus contribute to the regulation of [Ca2+]i homeostasis and cardiac ion channels. On account of little information about some trace elements, we discussed the effect of vanadium, selenium, zinc and tungstate on diabetic heart complications. PMID:23961319

  20. Trypanosoma cruzi P21: a potential novel target for chagasic cardiomyopathy therapy

    PubMed Central

    Teixeira, Thaise Lara; Machado, Fabrício Castro; Alves da Silva, Aline; Teixeira, Samuel Cota; Borges, Bruna Cristina; dos Santos, Marlus Alves; Martins, Flávia Alves; Brígido, Paula Cristina; Rodrigues, Adele Aud; Notário, Ana Flávia Oliveira; Ferreira, Bruno Antônio; Servato, João Paulo Silva; Deconte, Simone Ramos; Lopes, Daiana Silva; Ávila, Veridiana Melo Rodrigues; Araújo, Fernanda de Assis; Tomiosso, Tatiana Carla; Silva, Marcelo José Barbosa; da Silva, Claudio Vieira

    2015-01-01

    Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%–30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy. PMID:26574156

  1. Two pediatric cases of variant neurogenic stress cardiomyopathy after intracranial hemorrhage.

    PubMed

    Wittekind, Samuel G; Yanay, Ofer; Johnson, Erin M; Gibbons, Edward F

    2014-10-01

    Takotsubo cardiomyopathy, also known as stress-induced cardiomyopathy, is an acquired form of left ventricular systolic dysfunction seen in the setting of physiologic stress and the absence of coronary artery disease. It is thought to be caused by excessive sympathetic stimulation. It is well described in the adult literature associated with subarachnoid hemorrhage where it is known as neurogenic stress cardiomyopathy (NSC), but few such pediatric cases have been reported. We describe our experience with 2 children (13- and 10-year-old girls) who presented with spontaneous intracranial hemorrhage followed by pulmonary edema and shock. Echocardiography revealed similar patterns of left ventricular wall motion abnormalities consistent with NSC, inverted Takotsubo variant. One child progressed to death, whereas the other made a remarkable recovery, including significant improvement in cardiac function over the course of 1 week. We argue that at least 1 of these cases represents true stress-induced cardiomyopathy. This report will alert pediatricians to this transient cardiomyopathy that is likely underdiagnosed in pediatric intensive care. We also highlight the challenges of managing both shock and elevated intracranial pressure in the setting of NSC. PMID:25201800

  2. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  3. Inherited cardiomyopathies--Novel therapies.

    PubMed

    Leviner, Dror B; Hochhauser, Edith; Arad, Michael

    2015-11-01

    Cardiomyopathies arising due to a single gene defect represent various pathways that evoke adverse remodeling and cardiac dysfunction. While the gene therapy approach is slowly evolving and has not yet reached clinical "prime time" and gene correction approaches are applicable at the bench but not at the bedside, major advances are being made with molecular and drug therapies. This review summarizes the contemporary drugs introduced or being tested to help manage these unique disorders bearing a major impact on the quality of life and survival of the affected individuals. The restoration of the RNA reading frame facilitates the expression of partly functional protein to salvage or alleviate the disease phenotype. Chaperones are used to prevent the degradation of abnormal but still functional proteins, while other molecules are given for pathogen silencing, to prevent aggregation or to enhance clearance of protein deposits. The absence of protein may be managed by viral gene delivery or protein therapy. Enzyme replacement therapy is already a clinical reality for a series of metabolic diseases. The progress in molecular biology, based on the knowledge of the gene defect, helps generate small molecules and pharmaceuticals targeting the key events occurring in the malfunctioning element of the sick organ. Cumulatively, these tools augment the existing armamentarium of phenotype oriented symptomatic and evidence-based therapies for patients with inherited cardiomyopathies. PMID:26297672

  4. [Takotsubo cardiomyopathy: origin and variants].

    PubMed

    Aronov, D M

    2008-01-01

    This literature review is devoted to the " tako-tsubo " cardiomyopathy - rare type of cardiomyopathy characterized by transient myocardial stunning. In acute phase the disease resembles myocardial infarction. However no involvement of coronary arteries is found at angiography. Echocardiography and ventriculography reveal a- or - hypokinesia of various parts of the left ventricle. Classic (initial) variant of the disease is associated with concomitant apical akinesia and hyperkinesis of basal segments. The heart acquires a distinctive configuration with ballooning apex which resembles device used to trap octopus. The author refers to described by him 11 cases of myocardial damage with infarct-like clinic without changes of coronary arteries in healthy men younger than 35 years (D.M.Aronow, 1968, 1974). These cases occurred during severe physical stress and had in their basis hypercatecholaminemia which led to reversible myocardial damage of the myocardium which corresponded to modern concept of myocardial stunning. During exercise tests these patients had 3 times greater increase of urinal epinephrine excretion compared with 61 patients of the same age with atherosclerotic heart disease. PMID:18991836

  5. Pre-ischemic treadmill training for prevention of ischemic brain injury via regulation of glutamate and its transporter GLT-1.

    PubMed

    Yang, Xiaojiao; He, Zhijie; Zhang, Qi; Wu, Yi; Hu, Yongshan; Wang, Xiaolou; Li, Mingfen; Wu, Zhiyuan; Guo, Zhenzhen; Guo, Jingchun; Jia, Jie

    2012-01-01

    Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid was collected using the microdialysis sampling method, and the concentration of glutamate was determined every 40 min from the beginning of ischemia to 4 h after reperfusion with high-performance liquid chromatography (HPLC)-fluorescence detection. At 3, 12, 24, and 48 h after ischemia, the expression of the glutamate transporter-1 (GLT-1) protein in brain tissues was determined by Western blot respectively. The effect of pre-ischemic treadmill training on glutamate concentration and GLT-1 expression after cerebral ischemia in rats along with changes in neurobehavioral score and cerebral infarct volume after 24 h ischemia yields critical information necessary to understand the protection mechanism exhibited by pre-ischemic treadmill training. The results demonstrated that pre-ischemic treadmill training up-regulates GLT-1 expression, decreases extracellular glutamate concentration, reduces cerebral infarct volume, and improves neurobehavioral score. Pre-ischemic treadmill training is likely to induce neuroprotection after cerebral ischemia by regulating GLT-1 expression, which results in re-uptake of excessive glutamate. PMID:22949807

  6. Prooxidant Mechanisms in Iron Overload Cardiomyopathy

    PubMed Central

    Cheng, Ching-Feng; Lian, Wei-Shiung

    2013-01-01

    Iron overload cardiomyopathy (IOC), defined as the presence of systolic or diastolic cardiac dysfunction secondary to increased deposition of iron, is emerging as an important cause of heart failure due to the increased incidence of this disorder seen in thalassemic patients and in patients of primary hemochromatosis. At present, although palliative treatment by regular iron chelation was recommended; whereas IOC is still the major cause for mortality in patient with chronic heart failure induced by iron-overloading. Because iron is a prooxidant and the associated mechanism seen in iron-overload heart is still unclear; therefore, we intend to delineate the multiple signaling pathways involved in IOC. These pathways may include organelles such as calcium channels, mitochondria; paracrine effects from both macrophages and fibroblast, and novel mediators such as thromboxane A2 and adiponectin; with increased oxidative stress and inflammation found commonly in these signaling pathways. With further understanding on these complex and inter-related molecular mechanisms, we can propose potential therapeutic strategies to ameliorate the cardiac toxicity induced by iron-overloading. PMID:24350287

  7. Prooxidant mechanisms in iron overload cardiomyopathy.

    PubMed

    Cheng, Ching-Feng; Lian, Wei-Shiung

    2013-01-01

    Iron overload cardiomyopathy (IOC), defined as the presence of systolic or diastolic cardiac dysfunction secondary to increased deposition of iron, is emerging as an important cause of heart failure due to the increased incidence of this disorder seen in thalassemic patients and in patients of primary hemochromatosis. At present, although palliative treatment by regular iron chelation was recommended; whereas IOC is still the major cause for mortality in patient with chronic heart failure induced by iron-overloading. Because iron is a prooxidant and the associated mechanism seen in iron-overload heart is still unclear; therefore, we intend to delineate the multiple signaling pathways involved in IOC. These pathways may include organelles such as calcium channels, mitochondria; paracrine effects from both macrophages and fibroblast, and novel mediators such as thromboxane A2 and adiponectin; with increased oxidative stress and inflammation found commonly in these signaling pathways. With further understanding on these complex and inter-related molecular mechanisms, we can propose potential therapeutic strategies to ameliorate the cardiac toxicity induced by iron-overloading. PMID:24350287

  8. Protective effects of remote ischemic preconditioning in rat hindlimb on ischemia- reperfusion injury★

    PubMed Central

    Zhang, Ying; Liu, Xiangrong; Yan, Feng; Min, Lianqiu; Ji, Xunming; Luo, Yumin

    2012-01-01

    Three cycles of remote ischemic pre-conditioning induced by temporarily occluding the bilateral femoral arteries (10 minutes) prior to 10 minutes of reperfusion were given once a day for 3 days before the animal received middle artery occlusion and reperfusion surgery. The results showed that brain infarct volume was significantly reduced after remote ischemic pre-conditioning. Scores in the forelimb placing test and the postural reflex test were significantly lower in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. Thus, neurological function was better in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. These results indicate that remote ischemic pre-conditioning in rat hindlimb exerts protective effects in ischemia-reperfusion injury. PMID:25745448

  9. Remote ischemic preconditioning improves post resuscitation cerebral function via overexpressing neuroglobin after cardiac arrest in rats.

    PubMed

    Fan, Ran; Yu, Tao; Lin, Jia-Li; Ren, Guang-Dong; Li, Yi; Liao, Xiao-Xing; Huang, Zi-Tong; Jiang, Chong-Hui

    2016-10-01

    In this study, we investigated the effects of remote ischemic preconditioning on post resuscitation cerebral function in a rat model of cardiac arrest and resuscitation. The animals were randomized into six groups: 1) sham operation, 2) lateral ventricle injection and sham operation, 3) cardiac arrest induced by ventricular fibrillation, 4) lateral ventricle injection and cardiac arrest, 5) remote ischemic preconditioning initiated 90min before induction of ventricular fibrillation, and 6) lateral ventricle injection and remote ischemic preconditioning before cardiac arrest. Reagent of Lateral ventricle injection is neuroglobin antisense oligodeoxynucleotides which initiated 24h before sham operation, cardiac arrest or remote ischemic preconditioning. Remote ischemic preconditioning was induced by four cycles of 5min of limb ischemia, followed by 5min of reperfusion. Ventricular fibrillation was induced by current and lasted for 6min. Defibrillation was attempted after 6min of cardiopulmonary resuscitation. The animals were then monitored for 2h and observed for an additionally maximum 70h. Post resuscitation cerebral function was evaluated by neurologic deficit score at 72h after return of spontaneous circulation. Results showed that remote ischemic preconditioning increased neurologic deficit scores. To investigate the neuroprotective effects of remote ischemic preconditioning, we observed neuronal injury at 48 and 72h after return of spontaneous circulation and found that remote ischemic preconditioning significantly decreased the occurrence of neuronal apoptosis and necrosis. To further comprehend mechanism of neuroprotection induced by remote ischemic preconditioning, we found expression of neuroglobin at 24h after return of spontaneous circulation was enhanced. Furthermore, administration of neuroglobin antisense oligodeoxynucleotides before induction of remote ischemic preconditioning showed that the level of neuroglobin was decreased then partly abrogated

  10. Role of thioredoxin-1 in ischemic preconditioning, postconditioning and aged ischemic hearts.

    PubMed

    D'Annunzio, Veronica; Perez, Virginia; Boveris, Alberto; Gelpi, Ricardo J; Poderoso, Juan J

    2016-07-01

    Thioredoxin is one of the most important cellular antioxidant systems known to date, and is responsible of maintaining the reduced state of the intracellular space. Trx-1 is a small cytosolic protein whose transcription is induced by stress. Therefore it is possible that this antioxidant plays a protective role against the oxidative stress caused by an increase of reactive oxygen species concentration, as occurs during the reperfusion after an ischemic episode. However, in addition to its antioxidant properties, it is able to activate other cytoplasmic and nuclear mediators that confer cardioprotection. It is remarkable that Trx-1 also participates in myocardial protection mechanisms such as ischemic preconditioning and postconditioning, activating proteins related to cellular survival. In this sense, it has been shown that Trx-1 inhibition abolished the preconditioning cardioprotective effect, evidenced through apoptosis and infarct size. Furthermore, ischemic postconditioning preserves Trx-1 content at reperfusion, after ischemia. However, comorbidities such as aging can modify this powerful cellular defense leading to decrease cardioprotection. Even ischemic preconditioning and postconditioning protocols performed in aged animal models failed to decrease infarct size. Therefore, the lack of success of antioxidants therapies to treat ischemic heart disease could be solved, at least in part, avoiding the damage of Trx system. PMID:26987940

  11. Evolving Approaches to Genetic Evaluation of Specific Cardiomyopathies.

    PubMed

    Teo, Loon Yee Louis; Moran, Rocio T; Tang, W H Wilson

    2015-12-01

    The understanding of the genetic basis of cardiomyopathy has expanded significantly over the past 2 decades. The increasing availability, shortening diagnostic time, and lowering costs of genetic testing have provided researchers and physicians with the opportunity to identify the underlying genetic determinants for thousands of genetic disorders, including inherited cardiomyopathies, in effort to improve patient morbidities and mortality. As such, genetic testing has advanced from basic scientific research to clinical application and has been incorporated as part of patient evaluations for suspected inherited cardiomyopathies. Genetic evaluation framework of inherited cardiomyopathies typically encompasses careful evaluation of family history, genetic counseling, clinical screening of family members, and if appropriate, molecular genetic testing. This review summarizes the genetics, current guideline recommendations, and evidence supporting the genetic evaluation framework of five hereditary forms of cardiomyopathy: dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), restrictive cardiomyopathy (RCM), and left ventricular noncompaction (LVNC). PMID:26472190

  12. Importance of genetic evaluation and testing in pediatric cardiomyopathy.

    PubMed

    Tariq, Muhammad; Ware, Stephanie M

    2014-11-26

    Pediatric cardiomyopathies are clinically heterogeneous heart muscle disorders that are responsible for significant morbidity and mortality. Phenotypes include hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, left ventricular noncompaction and arrhythmogenic right ventricular cardiomyopathy. There is substantial evidence for a genetic contribution to pediatric cardiomyopathy. To date, more than 100 genes have been implicated in cardiomyopathy, but comprehensive genetic diagnosis has been problematic because of the large number of genes, the private nature of mutations, and difficulties in interpreting novel rare variants. This review will focus on current knowledge on the genetic etiologies of pediatric cardiomyopathy and their diagnostic relevance in clinical settings. Recent developments in sequencing technologies are greatly impacting the pace of gene discovery and clinical diagnosis. Understanding the genetic basis for pediatric cardiomyopathy and establishing genotype-phenotype correlations may help delineate the molecular and cellular events necessary to identify potential novel therapeutic targets for heart muscle dysfunction in children. PMID:25429328

  13. Hyperglycemia Increases Susceptibility to Ischemic Necrosis

    PubMed Central

    Lévigne, D.; Tobalem, M.; Modarressi, A.; Pittet-Cuénod, B.

    2013-01-01

    Diabetic patients are at risk for spontaneous foot ulcers, chronic wounds, infections, and tissue necrosis. Current theories suggest that the development and progression of diabetic foot ulcers are mainly caused by arteriosclerosis and peripheral neuropathy. Tissue necrosis plays a primordial role in the progression of diabetic foot ulcers but the underlying mechanisms are poorly understood. The aim of the present study was to investigate the effects of hyperglycemia per se on the susceptibility of ischemic tissue to necrosis, using a critical ischemic hind limb animal model. We inflicted the same degree of ischemia in both euglycemic and streptozotocin-induced hyperglycemic rats by resecting the external iliac, the femoral, and the saphenous arteries. Postoperative laser Doppler flowmetry of the ischemic feet showed the same degree of reduction in skin perfusion in both hyperglycemic and euglycemic animals. Nevertheless, we found a significantly higher rate of limb necrosis in hyperglycemic rats compared to euglycemic rats (71% versus 29%, resp.). In this study, we revealed that hyperglycemia per se increases the susceptibility to limb necrosis in ischemic conditions. Our results may help to better understand the physiopathology of progressive diabetic wounds and underline the importance of strict glycemic control in patients with critical limb ischemia. PMID:23509730

  14. Gene Therapy For Ischemic Heart Disease

    PubMed Central

    Lavu, Madhav; Gundewar, Susheel; Lefer, David J.

    2010-01-01

    Current pharmacologic therapy for ischemic heart disease suffers multiple limitations such as compliance issues and side effects of medications. Revascularization procedures often end with need for repeat procedures. Patients remain symptomatic despite maximal medical therapy. Gene therapy offers an attractive alternative to current pharmacologic therapies and may be beneficial in refractory disease. Gene therapy with isoforms of growth factors such as VEGF, FGF and HGF induces angiogenesis, decreases apoptosis and leads to protection in the ischemic heart. Stem cell therapy augmented with gene therapy used for myogenesis has proven to be beneficial in numerous animal models of myocardial ischemia. Gene therapy coding for antioxidants, eNOS, HSP, mitogen-activated protein kinase and numerous other anti apoptotic proteins have demonstrated significant cardioprotection in animal models. Clinical trials have demonstrated safety in humans apart from symptomatic and objective improvements in cardiac function. Current research efforts are aimed at refining various gene transfection techniques and regulation of gene expression in vivo in the heart and circulation to improve clinical outcomes in patients that suffer from ischemic heart disease. In this review article we will attempt to summarize the current state of both preclinical and clinical studies of gene therapy to combat myocardial ischemic disease. PMID:20600100

  15. Functional Contrast-Enhanced CT For Evaluation of Acute Ischemic Stroke Does Not Increase the Risk of Contrast-Induced Nephropathy

    PubMed Central

    Lima, F.O.; Lev, M.H.; Levy, R.A.; Silva, G.S.; Ebril, M.; de Camargo, É.C.; Pomerantz, S.; Singhal, A.B.; Greer, D.M.; Ay, H.; González, R. Gilberto; Koroshetz, W.J.; Smith, W.S.; Furie, K.L.

    2010-01-01

    BACKGROUND AND PURPOSE Concerns have recently grown regarding the safety of iodinated contrast agents used for CTA and CTP imaging. We tested whether the incidence of AN, defined by a ≥25% increase in the post–contrast scan creatinine level, was higher among patients with ischemic stroke who underwent a functional contrast-enhanced CT protocol compared with those who had no iodinated contrast administration. MATERIALS AND METHODS The contrast-exposed group consisted of 575 patients with acute ischemic stroke who underwent CTA (n = 313), CTA/CTP (n = 224), or CTA/CTP followed by conventional angiography (n = 38) within 24 hours of stroke onset and were consecutively enrolled in a prospective cohort study. The nonexposed group consisted of 343 patients with ischemic stroke, consecutively admitted to the same institution, who did not receive iodinated contrast material. Patients were stratified by baseline eGFR. In the primary analysis, the Fisher exact test was used to compare the incidence of AN between the contrast-exposed and the nonexposed patients at 24, 48, and 72 hours and on a cumulative basis. A secondary analysis compared the incidence of AN in patients who underwent conventional angiography following CTA/CTP versus patients who underwent CTA/CTP only. RESULTS The incidence of AN was 5% in the exposed and 10% in the nonexposed group (P = .003). Patients who underwent conventional angiography after contrast CT were at no greater risk of AN than patients who underwent CTA/CTP alone (26 patients, 5%; and 2 patients, 5%, respectively; P = .7). CONCLUSIONS Administration of a contrast-enhanced CT protocol involving CTA/CTP and conventional angiography in selected patients does not appear to increase the incidence of CIN. PMID:20044502

  16. Recurrent Takotsubo Cardiomyopathy Related to Recurrent Thyrotoxicosis

    PubMed Central

    Patel, Keval; Griffing, George T.; Hauptman, Paul J.

    2016-01-01

    Takotsubo cardiomyopathy, or transient left ventricular apical ballooning syndrome, is characterized by acute left ventricular dysfunction caused by transient wall-motion abnormalities of the left ventricular apex and mid ventricle in the absence of obstructive coronary artery disease. Recurrent episodes are rare but have been reported, and several cases of takotsubo cardiomyopathy have been described in the presence of hyperthyroidism. We report the case of a 55-year-old woman who had recurrent takotsubo cardiomyopathy, documented by repeat coronary angiography and evaluations of left ventricular function, in the presence of recurrent hyperthyroidism related to Graves disease. After both episodes, the patient's left ventricular function returned to normal when her thyroid function normalized. These findings suggest a possible role of thyroid-hormone excess in the pathophysiology of some patients who have takotsubo cardiomyopathy. PMID:27127432

  17. Recurrent Takotsubo Cardiomyopathy Related to Recurrent Thyrotoxicosis.

    PubMed

    Patel, Keval; Griffing, George T; Hauptman, Paul J; Stolker, Joshua M

    2016-04-01

    Takotsubo cardiomyopathy, or transient left ventricular apical ballooning syndrome, is characterized by acute left ventricular dysfunction caused by transient wall-motion abnormalities of the left ventricular apex and mid ventricle in the absence of obstructive coronary artery disease. Recurrent episodes are rare but have been reported, and several cases of takotsubo cardiomyopathy have been described in the presence of hyperthyroidism. We report the case of a 55-year-old woman who had recurrent takotsubo cardiomyopathy, documented by repeat coronary angiography and evaluations of left ventricular function, in the presence of recurrent hyperthyroidism related to Graves disease. After both episodes, the patient's left ventricular function returned to normal when her thyroid function normalized. These findings suggest a possible role of thyroid-hormone excess in the pathophysiology of some patients who have takotsubo cardiomyopathy. PMID:27127432

  18. Left Ventricular Noncompaction: A Distinct Genetic Cardiomyopathy?

    PubMed

    Arbustini, Eloisa; Favalli, Valentina; Narula, Nupoor; Serio, Alessandra; Grasso, Maurizia

    2016-08-30

    Left ventricular noncompaction (LVNC) describes a ventricular wall anatomy characterized by prominent left ventricular (LV) trabeculae, a thin compacted layer, and deep intertrabecular recesses. Individual variability is extreme, and trabeculae represent a sort of individual "cardioprinting." By itself, the diagnosis of LVNC does not coincide with that of a "cardiomyopathy" because it can be observed in healthy subjects with normal LV size and function, and it can be acquired and is reversible. Rarely, LVNC is intrinsically part of a cardiomyopathy; the paradigmatic examples are infantile tafazzinopathies. When associated with LV dilation and dysfunction, hypertrophy, or congenital heart disease, the genetic cause may overlap. The prevalence of LVNC in healthy athletes, its possible reversibility, and increasing diagnosis in healthy subjects suggests cautious use of the term LVNC cardiomyopathy, which describes the morphology but not the functional profile of the cardiomyopathy. PMID:27561770

  19. Genetics Home Reference: familial hypertrophic cardiomyopathy

    MedlinePlus

    ... cardiomyopathy is a heart condition characterized by thickening (hypertrophy) of the heart (cardiac) muscle . Thickening usually occurs ... also lead to symptoms of the condition. Cardiac hypertrophy often begins in adolescence or young adulthood, although ...

  20. Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes

    PubMed Central

    Eschenhagen, Thomas; Mummery, Christine; Knollmann, Bjorn C.

    2015-01-01

    One of the obstacles to a better understanding of the pathogenesis of human cardiomyopathies has been poor availability of heart-tissue samples at early stages of disease development. This has possibly changed by the advent of patient-derived induced pluripotent stem cell (hiPSC) from which cardiomyocytes can be derived in vitro. The main promise of hiPSC technology is that by capturing the effects of thousands of individual gene variants, the phenotype of differentiated derivatives of these cells will provide more information on a particular disease than simple genotyping. This article summarizes what is known about the ‘human cardiomyopathy or heart failure phenotype in vitro’, which constitutes the reference for modelling sarcomeric cardiomyopathies in hiPSC-derived cardiomyocytes. The current techniques for hiPSC generation and cardiac myocyte differentiation are briefly reviewed and the few published reports of hiPSC models of sarcomeric cardiomyopathies described. A discussion of promises and challenges of hiPSC-modelling of sarcomeric cardiomyopathies and individualized approaches is followed by a number of questions that, in the view of the authors, need to be answered before the true potential of this technology can be evaluated. PMID:25618410

  1. Usefulness of sugammadex in a patient with Becker muscular dystrophy and dilated cardiomyopathy.

    PubMed

    Shimauchi, Tsukasa; Yamaura, Ken; Sugibe, Sayaka; Hoka, Sumio

    2014-09-01

    A 54-year-old patient with Becker muscular dystrophy and dilated cardiomyopathy underwent laparoscopic cholecystectomy under total intravenous anesthesia. Muscle relaxation was induced by rocuronium (0.4 mg/kg body weight) under train-of-four (TOF) ratio monitoring. The TOF ratio was 0 at intubation, and 0.2 at the end of surgery. Residual muscle relaxant activity was successfully reversed by sugammadex (2 mg/kg body weight) without any hemodynamic adverse effects (TOF ratio 1.0 at extubation). The clinical and hemodynamic findings suggest that sugammadex can be safely used in patients with Becker muscular dystrophy and dilated cardiomyopathy. PMID:25199695

  2. [Alcohol consumption in women and the elderly : When does it induce heart failure?].

    PubMed

    Pankuweit, S

    2016-09-01

    The association between alcohol consumption and the etiology and prognosis of cardiovascular diseases has been the focus of attention and also the subject of controversial discussions for many years. This is particularly true for heart failure, which can be induced by coronary artery disease (CAD), arterial hypertension, atrial and ventricular arrhythmias and cardiomyopathies. Acute effects of high doses of alcohol can lead to impairment of the cardiac contraction strength with rhythm disturbances (holiday heart syndrome), transient ischemic attacks and in rare cases to sudden cardiac death. The chronic effects of high alcohol consumption include in particular, ventricular dysfunction, chronic rhythm disturbances, alcoholic cardiomyopathy and CAD. In contrast, light to moderate consumption of alcohol is associated with a reduced risk of CAD and ischemic stroke; however, even moderate alcohol drinking is associated with a greater risk for atrial fibrillation. The unfavorable effects of alcohol occur at much lower levels of acute or chronic consumption in women than in men. In the elderly just as in young people, a moderate alcohol consumption is associated with a lower risk of heart failure. PMID:27491766

  3. Mechanical aberrations in hypetrophic cardiomyopathy: emerging concepts

    PubMed Central

    Ntelios, Dimitrios; Tzimagiorgis, Georgios; Efthimiadis, Georgios K.; Karvounis, Haralambos

    2015-01-01

    Hypertrophic cardiomyopathy is the most common monogenic disorder in cardiology. Despite important advances in understanding disease pathogenesis, it is not clear how flaws in individual sarcomere components are responsible for the observed phenotype. The aim of this article is to provide a brief interpretative analysis of some currently proposed pathophysiological mechanisms of hypertrophic cardiomyopathy, with a special emphasis on alterations in the cardiac mechanical properties. PMID:26347658

  4. Stimulant-related Takotsubo cardiomyopathy.

    PubMed

    Butterfield, Mike; Riguzzi, Christine; Frenkel, Oron; Nagdev, Arun

    2015-03-01

    Takotsubo cardiomyopathy (TC) is a rare but increasingly recognized mimic of acute coronary syndrome. Patients present with angina,ST-segment changes on electrocardiogram (both elevations and depressions),and rapid rises in cardiac biomarkers. Many kinds of stressful events have been associated with TC, but only a handful of drug-related cases have previously been reported. We describe the case of a 58-year-old woman who developed TC 2 days after crack cocaine use, a diagnosis first suggested as bedside echocardiography in the emergency department.Recognition of the classic echocardiographic appearance of TC—apical hypokinesis causing “ballooning” of the left ventricle during systole—may greatly assist providers in the early identification of this condition. PMID:25308824

  5. GENETIC CAUSES OF DILATED CARDIOMYOPATHY

    PubMed Central

    Mestroni, Luisa; Brun, Francesca; Spezzacatene, Anita; Sinagra, Gianfranco; Taylor, Matthew RG

    2014-01-01

    Dilated cardiomyopathy is a disease of the myocardium characterized by left ventricular dilatation and/or dysfunction, affecting both adult and pediatric populations. Almost half of cases are genetically determined with an autosomal pattern of inheritance. Up to 40 genes have been identified affecting proteins of a wide variety of cellular structures such as the sarcomere, the nuclear envelope, the cytoskeleton, the sarcolemma and the intercellular junction. Novel gene mutations have been recently identified thanks to advances in next-generation sequencing technologies. Genetic screening is an essential tool for early diagnosis, risk assessment, prognostic stratification and, possibly, adoption of primary preventive measures in affected patients and their asymptomatic relatives. The purpose of this article is to review the genetic basis of DCM, the known genotype-phenotype correlations, the role of current genetic sequencing techniques in the discovery of novel pathogenic gene mutations and new therapeutic perspectives. PMID:25584016

  6. Subaortic membrane mimicking hypertrophic cardiomyopathy.

    PubMed

    Anderson, Mark Joseph; Arruda-Olson, Adelaide; Gersh, Bernard; Geske, Jeffrey

    2015-01-01

    A 34-year-old man was referred for progressive angina and exertional dyspnoea refractory to medical therapy, with a presumptive diagnosis of hypertrophic cardiomyopathy (HCM). Transthoracic echocardiography (TTE) revealed asymmetric septal hypertrophy without systolic anterior motion of the mitral valve leaflet and with no dynamic left ventricular outflow tract (LVOT) obstruction. However, the LVOT velocity was elevated at rest as well as with provocation, without the characteristic late peaking obstruction seen in HCM. Focused TTE to evaluate for suspected fixed obstruction demonstrated a subaortic membrane 2.2 cm below the aortic valve. Coronary CT angiography confirmed the presence of the subaortic membrane and was negative for concomitant coronary artery disease. Surgical resection of the subaortic membrane and septal myectomy resulted in significant symptomatic relief and lower LVOT velocities on postoperative TTE. This case reminds the clinician to carefully evaluate for alternative causes of LVOT obstruction, especially subaortic membrane, as a cause of symptoms mimicking HCM. PMID:26538250

  7. Transient reverse takotsubo cardiomyopathy following a spider bite in Greece: a case report.

    PubMed

    Alexakis, Lykourgos-Christos; Arapi, Sophia; Stefanou, Ioannis; Gargalianos, Panagiotis; Astriti, Myrto

    2015-02-01

    Black widow spider is endemic in the Mediterranean area and although envenomations are rare, may occasionally lead to death. We present a case of a 64-year-old female developing a rare variant of takotsubo, stress-induced, cardiomyopathy after a spider bite. This resulted in acute heart failure within 24  hours of the bite. With medical treatment and supportive care, the patient's clinical condition improved. Reverse takotsubo cardiomyopathy was diagnosed by echocardiography, which was transient. Clinical and echocardiographic findings have been completely resolved on follow-up 46 days later. Reverse takotsubo cardiomyopathy has not been yet described following a spider bite. Doctors in the emergency department of endemic countries should be familiar with this potential complication. PMID:25654384

  8. Your heart on a chip: iPSC-based modeling of Barth-syndrome-associated cardiomyopathy.

    PubMed

    Zweigerdt, Robert; Gruh, Ina; Martin, Ulrich

    2014-07-01

    Disease-specific induced pluripotent stem cells (iPSCs) are invaluable tools for studying genetic disorders in a dish. A recent paper by Wang et al. (2014) powerfully combines analysis of human iPSCs with genome editing and tissue engineering, in conjunction with biochemical and physiological assays, to provide insights into Barth-syndrome-associated cardiomyopathy. PMID:24996164

  9. Adenosine and Ischemic Preconditioning

    PubMed Central

    Liang, Bruce T.; Swierkosz, Tomasz A.; Herrmann, Howard C.; Kimmel, Stephen; Jacobson, Kenneth A.

    2012-01-01

    Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders. PMID:10607860

  10. Takotsubo Cardiomyopathy Occurring in the Postoperative Period.

    PubMed

    Deniz, Süleyman; Bakal, Ömer; İnangil, Gökhan; Şen, Hüseyin; Özkan, Sezai

    2015-02-01

    Takotsubo cardiomyopathy simulates acute myocardial infarction, and it is characterised by reversible left ventricular failure. A case of Takotsubo cardiomyopathy diagnosed after emergency angiography performed in a patient with evidence of acute myocardial infarction in the postoperative period will be described in this report. Transurethral resection of a bladder tumour (TUR-BT) was performed in a 92-year-old male patient by the urology clinic. The patient was transferred to the post-anaesthesia care unit after the operation. An echocardiography was performed because of the sudden onset of dyspnoea, tachycardia (140-150 beats per minute, rhythm-atrial fibrillation) and ST-segment elevation on electrocardiography (ECG) at the first postoperative hour, and midapical dyskinesia was detected at the patient. An immediate angiography was performed due to suspicion of acute coronary syndrome. Patent coronary arteries and temporary aneurysmatic dilatation of the apex of the heart were revealed by angiography. As a result of these findings, the patient was diagnosed with Takotsubo cardiomyopathy by the cardiology service. The patient was discharged uneventfully following 10 days in the intensive care unit. Aneurysm of the apex of the left ventricle and normal anatomy of the coronary arteries in the angiography have diagnostic value for Takotsubo cardiomyopathy. Diuretics (furosemide) and beta-blockers (metoprolol) are commonly used for the treatment of Takotsubo cardiomyopathy. Even though Takotsubo cardiomyopathy is a rare and benign disease, it should be kept in mind in patients suspected for acute myocardial infarction in the postoperative period. PMID:27366464

  11. Sorbitol accumulation in heart: Implication for diabetic cardiomyopathy

    SciTech Connect

    Nakada, Tustomu; Kwee, I.L. )

    1989-01-01

    Sorbitol levels in heart were determined in streptozotocin-induced diabetic rats. Significantly higher levels were found in hearts of diabetic rats compared to normal rats. The findings are compatible with either significantly higher de novo synthesis of sorbitol in heart than is generally believed or uptake of circulating sorbitol by heart as previously indicated by nuclear magnetic resonance (NMR) in vivo metabolic imaging. Sorbitol accumulation in heart tissue may play a role in the pathogenesis of diabetic cardiomyopathy as has been implicated in cataract formation.

  12. Current therapeutic concepts in peripartum cardiomyopathy.

    PubMed

    Krejci, Jan; Poloczkova, Hana; Nemec, Petr

    2015-01-01

    Peripartum cardiomyopathy (PPCM) is a relatively rare disease characterized by systolic heart failure occuring towards the end of pregnancy or during the months following birth. It is most often seen in women of African descent, and its incidence seems to be slightly increasing in recent years. Other etiologies of heart failure should be excluded to determine the diagnosis of PPCM. The clinical picture corresponds to systolic heart failure. The rapid onset of the symptoms in relation to pregnancy is striking. The essential diagnostic procedures such as echocardiography, cardiac magnetic resonance imaging and endomyocardial biopsy may be beneficial in certain situations. The etiology of the disease remains unclear. Speculated causes include myocarditis, autoimmune disorders, cardiotropic virus infection, and abnormal responses to hemodynamic and hormonal changes during pregnancy. Particular attention is currently given to the concept of increased oxidative stress inducing production of proapoptotic, angiostatic and proinflammatory mediators. Recovery of left ventricular systolic function occurs in about half of the cases. Mortality has been decreasing in recent years, especially in the United States, but is still between 10-15% in less developed countries where therapeutic possibilities are limited. In addition to standard heart failure therapy, specific treatments (pentoxyfilline, bromocriptine, immunomodulatory therapy) have been tested. Mechanical circulatory support is sometimes needed. Heart transplantation is the therapeutic option for the most severe heart failure and is used in about 10% of the cases. Recurrence in subsequent pregnancy is common and therefore, another pregnancy is not recommended in many cases. PMID:25483952

  13. Ischemic tissue injury.

    PubMed Central

    Jennings, R. B.; Ganote, C. E.; Reimer, K. A.

    1975-01-01

    The subendocardial to subepicardial gradient in the severity of ischemia following acute coronary occlusion is described. The effects of mild, moderate, and severe ischemia on cell structure and function are compared in summary form, and special attention is given to the effects of severe ischemia on myocardial cells. The characteristics of reversible and irreversible ischemic injury are defined in biologic terms. The failure of cell volume regulation in cells which have entered an irreversible state of ischemic injury is demonstrated by the use of free-hand slices in vitro. Irreversibility is associated with structural defects in the plasma membrane and is reflected in an increased slice inulin-diffusible space, increased slice H2O and Na+ content, and failure of the tissue to maintain the high K+ and Mg2+ levels characteristic of normal left ventricular myocardium. Defective cell membrane function is an early feature of irreversible ischemic injury and may be a primary event in the genesis of the irreversible state. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1180331

  14. Nitrosative Stress Induces Peroxiredoxin 1 Ubiquitination During Ischemic Insult via E6AP Activation in Endothelial Cells Both In Vitro and In Vivo

    PubMed Central

    Tao, Rong-Rong; Wang, Huan; Hong, Ling-Juan; Huang, Ji-Yun; Lu, Ying-Mei; Liao, Mei-Hua; Ye, Wei-Feng; Lu, Nan-Nan; Zhu, Dan-Yan; Huang, Qian; Fukunaga, Kohji; Lou, Yi-Jia; Shoji, Ikuo; Wilcox, Christopher Stuart; Lai, En-Yin

    2014-01-01

    Abstract Aims: Although there is accumulating evidence that increased formation of reactive nitrogen species in cerebral vasculature contributes to the progression of ischemic damage, but the underlying molecular mechanisms remain elusive. Peroxiredoxin 1 (Prx1) can initiate the antioxidant response by scavenging free radicals. Therefore, we tested the hypothesis that Prx1 regulates the susceptibility to nitrosative stress damage during cerebral ischemia in vitro and in vivo. Results: Proteomic analysis in endothelial cells revealed that Prx1 was upregulated after stress-related oxygen–glucose deprivation (OGD). Although peroxynitrite upregulated Prx1 rapidly, this was followed by its polyubiquitination within 6 h after OGD mediated by the E3 ubiquitin ligase E6-associated protein (E6AP). OGD colocalized E6AP with nitrotyrosine in endothelial cells. To assess translational relevance in vivo, mice were studied after middle cerebral artery occlusion (MCAO). This was accompanied by Prx1 ubiquitination and degradation by the activation of E6AP. Furthermore, brain delivery of a lentiviral vector encoding Prx1 in mice inhibited blood–brain barrier leakage and neuronal damage significantly following MCAO. Innovation and Conclusions: Nitrosative stress during ischemic insult activates E6AP E3 ubiquitin ligase that ubiquitinates Prx1 and subsequently worsens cerebral damage. Thus, targeting the Prx1 antioxidant defense pathway may represent a novel treatment strategy for neurovascular protection in stroke. Antioxid. Redox Signal. 21, 1–16. PMID:24295341

  15. Evaluation of transesophageal echocardiography in detecting cardiac sources of emboli in ischemic stroke patients

    PubMed Central

    Toodeji, Mohammad Amin; Izadi, Sadegh; Shariat, Abdolhamid; Nikoo, Mohamad Hosin

    2015-01-01

    Background: Embolus is one of the causes of ischemic stroke that can be due to cardiac sources such as valvular heart diseases and atrial fibrillation and atheroma of the aorta. Transesophageal echocardiography (TEE) is superior in identifying potential cardiac sources of emboli. Due to insufficient data on TEE findings in ischemic stroke in Iran, the present study was done to evaluate TEE in detecting cardiac sources of emboli. The main aim of this study was to describe the cardiogenic sources of emboli using TEE in the ischemic stroke patients. Methods: This is a cross-sectional study conducted during a 13-month period from January 2012 to February 2013 in Shiraz Nemazee teaching hospital. Patients admitted with stroke diagnosis were included; but hemorrhagic stroke cases were excluded. 229 patients with ischemic stroke diagnosis were included and underwent TEE. Results: Causes of cardiac emboli were detected in 65 cases (40.7%) and categorized to high-risk (29.7%) and potential risk (11%). High risk cardiac sources included atrial fibrillation (8.7%), mitral valve disease (MS or MI) 11 cases (4.75%), aortic valve disease (AS or AI) 8 (3.5%), prosthetic valve 3 (1.35%), dilated cardiomyopathy 45 (19.65%) and congestive heart failure with ejection fraction < 30% in 8 cases (3.5%). Potential cardiac sources of emboli comprised 7 cases (3.05%) of septal aneurysm, 4 (1.75%) left ventricular hypokinesia, 13 (5.7%) mitral annular calcification and 9 cases (3.95%) complex atheroma in the ascending aorta or proximal arch. Conclusion: Our study showed that high risk cardiac sources of emboli can be detected using TEE in a considerable percentage of ischemic stroke patients. The most common high risk cardiac etiologies were dilated cardiomyopathy and valvular heart diseases. PMID:26793628

  16. The Migraine-Ischemic Stroke Relation in Young Adults

    PubMed Central

    Pezzini, Alessandro; Del Zotto, Elisabetta; Giossi, Alessia; Volonghi, Irene; Costa, Paolo; Dalla Volta, Giorgio; Padovani, Alessandro

    2011-01-01

    In spite of the strong epidemiologic evidence linking migraine and ischemic stroke in young adults, the mechanisms explaining this association remain poorly understood. The observation that stroke occurs more frequently during the interictal phase of migraine prompts to speculation that an indirect relation between the two diseases might exist. In this regard, four major issues might be considered which may be summarized as follows: (1) the migraine-ischemic stroke relation is influenced by specific risk factors such as patent foramen ovale or endothelial dysfunction and more frequent in particular conditions like spontaneous cervical artery dissection; (2) migraine is associated with an increased prevalence of cardiovascular risk factors; (3) the link is caused by migraine-specific drugs; (4) migraine and ischemic vascular events are linked via a genetic component. In the present paper, we will review epidemiological studies, discuss potential mechanisms of migraine-induced stroke and comorbid ischemic stroke, and pose new research questions. PMID:21197470

  17. Contemporary Outcome in Patients With Idiopathic Dilated Cardiomyopathy.

    PubMed

    Broch, Kaspar; Murbræch, Klaus; Andreassen, Arne Kristian; Hopp, Einar; Aakhus, Svend; Gullestad, Lars

    2015-09-15

    Outcome is better in patients with idiopathic dilated cardiomyopathy (IDC) than in ischemic heart failure (HF), but morbidity and mortality are nevertheless presumed to be substantial. Most data on the prognosis in IDC stem from research performed before the widespread use of current evidence-based treatment, including implantable devices. We report outcome data from a cohort of patients with IDC treated according to current HF guidelines and compare our results with previous figures: 102 consecutive patients referred to our tertiary care hospital with idiopathic IDC and a left ventricular ejection fraction <40% were included in a prospective cohort study. After extensive baseline work-up, follow-up was performed after 6 and 13 months. Vital status and heart transplantation were recorded. Over the first year of follow-up, the patients were on optimal pharmacological treatment, and 24 patients received implantable devices. Left ventricular ejection fraction increased from 26 ± 10% to 41 ± 11%, peak oxygen consumption increased from 19.5 ± 7.1 to 23.4 ± 7.8 ml/kg/min, and functional class improved substantially (all p values <0.001). After a median follow-up of 3.6 years, 4 patients were dead, and heart transplantation had been performed in 9 patients. According to our literature search, survival in patients with IDC has improved substantially over the last decades. In conclusion, patients with IDC have a better outcome than previously reported when treated according to current guidelines. PMID:26233575

  18. The use of radiofrequency catheter ablation to cure dilated cardiomyopathy.

    PubMed

    Schmidt, S B; Lobban, J H; Reddy, S; Hoelper, M; Palmer, D L

    1997-01-01

    Incessant supraventricular tachycardia can cause a dilated cardiomyopathy. This article discusses the case of a 55-year-old woman whose cardiomyopathy was reversed when she underwent successful radiofrequency catheter ablation of a unifocal atrial tachycardia. PMID:9197188

  19. Immune mechanisms in cerebral ischemic tolerance

    PubMed Central

    Garcia-Bonilla, Lidia; Benakis, Corinne; Moore, Jamie; Iadecola, Costantino; Anrather, Josef

    2014-01-01

    Stressor-induced tolerance is a central mechanism in the response of bacteria, plants, and animals to potentially harmful environmental challenges. This response is characterized by immediate changes in cellular metabolism and by the delayed transcriptional activation or inhibition of genetic programs that are not generally stressor specific (cross-tolerance). These programs are aimed at countering the deleterious effects of the stressor. While induction of this response (preconditioning) can be established at the cellular level, activation of systemic networks is essential for the protection to occur throughout the organs of the body. This is best signified by the phenomenon of remote ischemic preconditioning, whereby application of ischemic stress to one tissue or organ induces ischemic tolerance (IT) in remote organs through humoral, cellular and neural signaling. The immune system is an essential component in cerebral IT acting simultaneously both as mediator and target. This dichotomy is based on the fact that activation of inflammatory pathways is necessary to establish IT and that IT can be, in part, attributed to a subdued immune activation after index ischemia. Here we describe the components of the immune system required for induction of IT and review the mechanisms by which a reprogrammed immune response contributes to the neuroprotection observed after preconditioning. Learning how local and systemic immune factors participate in endogenous neuroprotection could lead to the development of new stroke therapies. PMID:24624056

  20. Dilated cardiomyopathy associated with chronic overuse of an adrenaline inhaler

    PubMed Central

    Stewart, M J; Fraser, D M; Boon, N

    1992-01-01

    Endogenous catecholamines in excess are known to cause dilated cardiomyopathy. A patient presented with dilated cardiomyopathy after many years of overusing an adrenaline inhaler. Pathological features and a considerable improvement in myocardial function after withdrawal implicated the exogenous catecholamine excess in the pathogenesis of the cardiomyopathy. PMID:1389744

  1. Remote ischemic conditioning: a clinical trial's update.

    PubMed

    Candilio, Luciano; Hausenloy, Derek J; Yellon, Derek M

    2011-01-01

    Coronary artery disease (CAD) is the leading cause of death and disability worldwide, and early and successful restoration of myocardial reperfusion following an ischemic event is the most effective strategy to reduce final infarct size and improve clinical outcome. This process can, however, induce further myocardial damage, namely acute myocardial ischemia-reperfusion injury (IRI) and worsen clinical outcome. Therefore, novel therapeutic strategies are required to protect the myocardium against IRI in patients with CAD. In this regard, the endogenous cardioprotective phenomenon of "ischemic conditioning," in which the heart is put into a protected state by subjecting it to one or more brief nonlethal episodes of ischemia and reperfusion, has the potential to attenuate myocardial injury during acute IRI. Intriguingly, the heart can be protected in this manner by applying the "ischemic conditioning" stimulus to an organ or tissue remote from the heart (termed remote ischemic conditioning or RIC). Furthermore, the discovery that RIC can be noninvasively applied using a blood pressure cuff on the upper arm to induce brief episodes of nonlethal ischemia and reperfusion in the forearm has greatly facilitated the translation of RIC into the clinical arena. Several recently published proof-of-concept clinical studies have reported encouraging results with RIC, and large multicenter randomized clinical trials are now underway to investigate whether this simple noninvasive and virtually cost-free intervention has the potential to improve clinical outcomes in patients with CAD. In this review article, we provide an update of recently published and ongoing clinical trials in the field of RIC. PMID:21821533

  2. Stress cardiomyopathy: Is it limited to Takotsubo syndrome? Problems of definition.

    PubMed

    Sarapultsev, Petr A; Sarapultsev, Alexey P

    2016-10-15

    In 2006, Takotsubo syndrome (TTC) was described as a distinct type of stress-induced cardiomyopathy (stress cardiomyopathy). However, when thinking about Takotsubo cardiomyopathy from the viewpoints of the AHA and ESC classifications, 2 possible problems may arise. The first potential problem is that a forecast of disease outcome is lacking in the ESC classification, whereas the AHA only states that 'outcome is favorable with appropriate medical therapy'. However, based on the literature data, one can make a general conclusion that occurrence of myocardial lesions in TTC (i.e., myocardial fibrosis and contraction-band necrosis) causes the same effects as in other diseases with similar levels of myocardial damage and should not be considered to have a lesser impact on mortality. To summarise, TTC can cause not only severe complications such as pulmonary oedema, cardiogenic shock, and dangerous ventricular arrhythmias, but also damage to the myocardium, which can result in the development of potentially fatal conditions even after the disappearance of LV apical ballooning. The second potential problem arises from the definition of TTC as a stress cardiomyopathy in the AHA classification. In fact, the main factors leading to TTC are stress and microvascular anginas, since, as has been already discussed, coronary spasm can cause myocardium stunning, resulting in persistent apical ballooning. Thus, based on this review, 3 distinct types of stress cardiomyopathies exist (variant angina, microvascular angina, and TTC), with poor prognosis. Adding these diseases to the classification of cardiomyopathies will facilitate diagnosis and preventive prolonged treatment, which should include intensive anti-stress therapy. PMID:27424315

  3. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  4. Cardiomyopathy in captive African hedgehogs (Atelerix albiventris).

    PubMed

    Raymond, J T; Garner, M M

    2000-09-01

    From 1994 to 1999, 16 captive African hedgehogs (Atelerix albiventris), from among 42 necropsy cases, were diagnosed with cardiomyopathy. The incidence of cardiomyopathy in this study population was 38%. Fourteen of 16 hedgehogs with cardiomyopathy were males and all hedgehogs were adult (>1 year old). Nine hedgehogs exhibited 1 or more of the following clinical signs before death: heart murmur, lethargy, icterus, moist rales, anorexia, dyspnea, dehydration, and weight loss. The remaining 7 hedgehogs died without premonitory clinical signs. Gross findings were cardiomegaly (6 cases), hepatomegaly (5 cases), pulmonary edema (5 cases), pulmonary congestion (4 cases), hydrothorax (3 cases), pulmonary infarct (1 case), renal infarcts (1 case), ascites (1 case), and 5 cases showed no changes. Histologic lesions were found mainly within the left ventricular myocardium and consisted primarily of myodegeneration, myonecrosis, atrophy, hypertrophy, and disarray of myofibers. All hedgehogs with cardiomyopathy had myocardial fibrosis, myocardial edema, or both. Other common histopathologic findings were acute and chronic passive congestion of the lungs, acute passive congestion of the liver, renal tubular necrosis, vascular thrombosis, splenic extramedullary hematopoiesis, and hepatic lipidosis. This is the first report of cardiomyopathy in African hedgehogs. PMID:11021439

  5. Diabetic Cardiomyopathy; Summary of 41 Years

    PubMed Central

    Canpolat, Ugur; Aydogdu, Sinan; Abboud, Hanna Emily

    2015-01-01

    Patients with diabetes have an increased risk for development of cardiomyopathy, even in the absence of well known risk factors like coronary artery disease and hypertension. Diabetic cardiomyopathy was first recognized approximately four decades ago. To date, several pathophysiological mechanisms thought to be responsible for this new entity have also been recognized. In the presence of hyperglycemia, non-enzymatic glycosylation of several proteins, reactive oxygen species formation, and fibrosis lead to impairment of cardiac contractile functions. Impaired calcium handling, increased fatty acid oxidation, and increased neurohormonal activation also contribute to this process. Demonstration of left ventricular hypertrophy, early diastolic and late systolic dysfunction by sensitive techniques, help us to diagnose diabetic cardiomyopathy. Traditional treatment of heart failure is beneficial in diabetic cardiomyopathy, but specific strategies for prevention or treatment of cardiac dysfunction in diabetic patients has not been clarified yet. In this review we will discuss clinical and experimental studies focused on pathophysiology of diabetic cardiomyopathy, and summarize diagnostic and therapeutic approaches developed towards this entity. PMID:26240579

  6. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy

    PubMed Central

    Jia, Guanghong; DeMarco, Vincent G.; Sowers, James R.

    2016-01-01

    Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin-resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin–angiotensin–aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies. PMID:26678809

  7. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy.

    PubMed

    Jia, Guanghong; DeMarco, Vincent G; Sowers, James R

    2016-03-01

    Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin- resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin-angiotensin-aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies. PMID:26678809

  8. Inherited cardiomyopathies caused by troponin mutations

    PubMed Central

    Lu, Qun-Wei; Wu, Xiao-Yan; Morimoto, Sachio

    2013-01-01

    Genetic investigations of cardiomyopathy in the recent two decades have revealed a large number of mutations in the genes encoding sarcomeric proteins as a cause of inherited hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), or restrictive cardiomyopathy (RCM). Most functional analyses of the effects of mutations on cardiac muscle contraction have revealed significant changes in the Ca2+-regulatory mechanism, in which cardiac troponin (cTn) plays important structural and functional roles as a key regulatory protein. Over a hundred mutations have been identified in all three subunits of cTn, i.e., cardiac troponins T, I, and C. Recent studies on cTn mutations have provided plenty of evidence that HCM- and RCM-linked mutations increase cardiac myofilament Ca2+ sensitivity, while DCM-linked mutations decrease it. This review focuses on the functional consequences of mutations found in cTn in terms of cardiac myofilament Ca2+ sensitivity, ATPase activity, force generation, and cardiac troponin I phosphorylation, to understand potential molecular and cellular pathogenic mechanisms of the three types of inherited cardiomyopathy. PMID:23610579

  9. Comparison of ventricular emptying with and without a pressure gradient in patients with hypertrophic cardiomyopathy.

    PubMed Central

    Siegel, R J; Criley, J M

    1985-01-01

    Thirty three patients with hypertrophic cardiomyopathy were studied to determine whether the presence of an intraventricular pressure gradient impaired left ventricular emptying. Patients with resting gradients had a higher mean left ventricular ejection fraction (92 (6.4)%) than patients without a resting or inducible pressure gradient (75.5 (9)%). The rate and degree of emptying increased when gradients greater than 85 mm Hg were induced in two patients with insignificant mitral regurgitation. If the induced gradients had been the result of obstruction a decrease in the rate or degree of ventricular emptying would be expected. Higher ejection fractions in patients with intracavitary pressure gradients as well as enhanced rate and degree of left ventricular emptying with induced gradients are inconsistent with outflow obstruction. These findings support the concept that cavity obliteration is responsible for the pressure gradient in these patients with hypertrophic cardiomyopathy. Images PMID:4038604

  10. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    PubMed Central

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  11. Metabolic Dysfunction in Diabetic Cardiomyopathy

    PubMed Central

    Isfort, Michael; Stevens, Sarah C.W.; Schaffer, Stephen; Jong, Chian Ju; Wold, Loren E.

    2013-01-01

    Diabetic cardiomyopathy (DCM) is defined as cardiac disease independent of vascular complications during diabetes. The number of new cases of DCM is rising at epidemic rates in proportion to newly diagnosed cases of diabetes mellitus (DM) throughout the world. DCM is a heart failure syndrome found in diabetic patients that is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction, occurring in the absence of hypertension and coronary artery disease. DCM and other diabetic complications are caused in part by elevations in blood glucose and lipids, characteristic of DM. Although there are pathological consequences to hyperglycemia and hyperlipidemia, the combination of the two metabolic abnormalities potentiates the severity of diabetic complications. A natural competition exists between glucose and fatty acid metabolism in the heart that is regulated by allosteric and feedback control and transcriptional modulation of key limiting enzymes. Inhibition of these glycolytic enzymes not only controls flux of substrate through the glycolytic pathway, but also leads to the diversion of glycolytic intermediate substrate through pathological pathways, which mediate the onset of diabetic complications. The present review describes the limiting steps involved in the development of these pathological pathways and the factors involved in the regulation of these limiting steps. Additionally, therapeutic options with demonstrated or postulated effects on DCM are described. PMID:23443849

  12. Electrocardiographic predictors of peripartum cardiomyopathy

    PubMed Central

    Karaye, Kamilu M; Karaye, Kamilu M; Lindmark, Krister; Henein, Michael Y; Lindmark, Krister; Henein, Michael Y

    2016-01-01

    Summary Objective To identify potential electrocardiographic predictors of peripartum cardiomyopathy (PPCM). Methods: This was a case–control study carried out in three hospitals in Kano, Nigeria. Logistic regression models and a risk score were developed to determine electrocardiographic predictors of PPCM. Results: A total of 54 PPCM and 77 controls were consecutively recruited after satisfying the inclusion criteria. After controlling for confounding variables, a rise in heart rate of one beat/minute increased the risk of PPCM by 6.4% (p = 0.001), while the presence of ST–T-wave changes increased the odds of PPCM 12.06-fold (p < 0.001). In the patients, QRS duration modestly correlated (r = 0.4; p < 0.003) with left ventricular dimensions and end-systolic volume index, and was responsible for 19.9% of the variability of the latter (R2 = 0.199; p = 0.003). A risk score of ≥ 2, developed by scoring 1 for each of the three ECG disturbances (tachycardia, ST–T-wave abnormalities and QRS duration), had a sensitivity of 85.2%, specificity of 64.9%, negative predictive value of 86.2% and area under the curve of 83.8% (p < 0.0001) for potentially predicting PPCM. Conclusion In postpartum women, using the risk score could help to streamline the diagnosis of PPCM with significant accuracy, prior to confirmatory investigations PMID:27213852

  13. Imaging acute ischemic stroke.

    PubMed

    González, R Gilberto; Schwamm, Lee H

    2016-01-01

    Acute ischemic stroke is common and often treatable, but treatment requires reliable information on the state of the brain that may be provided by modern neuroimaging. Critical information includes: the presence of hemorrhage; the site of arterial occlusion; the size of the early infarct "core"; and the size of underperfused, potentially threatened brain parenchyma, commonly referred to as the "penumbra." In this chapter we review the major determinants of outcomes in ischemic stroke patients, and the clinical value of various advanced computed tomography and magnetic resonance imaging methods that may provide key physiologic information in these patients. The focus is on major strokes due to occlusions of large arteries of the anterior circulation, the most common cause of a severe stroke syndrome. The current evidence-based approach to imaging the acute stroke patient at the Massachusetts General Hospital is presented, which is applicable for all stroke types. We conclude with new information on time and stroke evolution that imaging has revealed, and how it may open the possibilities of treating many more patients. PMID:27432672

  14. Systemic chemokine levels, coronary heart disease, and ischemic stroke events

    PubMed Central

    Canouï-Poitrine, F.; Luc, G.; Mallat, Z.; Machez, E.; Bingham, A.; Ferrieres, J.; Ruidavets, J.-B.; Montaye, M.; Yarnell, J.; Haas, B.; Arveiler, D.; Morange, P.; Kee, F.; Evans, A.; Amouyel, P.; Ducimetiere, P.

    2011-01-01

    Objectives: To quantify the association between systemic levels of the chemokine regulated on activation normal T-cell expressed and secreted (RANTES/CCL5), interferon-γ-inducible protein-10 (IP-10/CXCL10), monocyte chemoattractant protein-1 (MCP-1/CCL2), and eotaxin-1 (CCL11) with future coronary heart disease (CHD) and ischemic stroke events and to assess their usefulness for CHD and ischemic stroke risk prediction in the PRIME Study. Methods: After 10 years of follow-up of 9,771 men, 2 nested case-control studies were built including 621 first CHD events and 1,242 matched controls and 95 first ischemic stroke events and 190 matched controls. Standardized hazard ratios (HRs) for each log-transformed chemokine were estimated by conditional logistic regression. Results: None of the 4 chemokines were independent predictors of CHD, either with respect to stable angina or to acute coronary syndrome. Conversely, RANTES (HR = 1.70; 95% confidence interval [CI] 1.05–2.74), IP-10 (HR = 1.53; 95% CI 1.06–2.20), and eotaxin-1 (HR = 1.59; 95% CI 1.02–2.46), but not MCP-1 (HR = 0.99; 95% CI 0.68–1.46), were associated with ischemic stroke independently of traditional cardiovascular risk factors, hs-CRP, and fibrinogen. When the first 3 chemokines were included in the same multivariate model, RANTES and IP-10 remained predictive of ischemic stroke. Their addition to a traditional risk factor model predicting ischemic stroke substantially improved the C-statistic from 0.6756 to 0.7425 (p = 0.004). Conclusions: In asymptomatic men, higher systemic levels of RANTES and IP-10 are independent predictors of ischemic stroke but not of CHD events. RANTES and IP-10 may improve the accuracy of ischemic stroke risk prediction over traditional risk factors. PMID:21849651

  15. A surprising cause of reversible dilated cardiomyopathy

    PubMed Central

    Vlot, Mariska; de Jong, Margriet; de Ronde, Pim; Tukkie, Raymond

    2014-01-01

    This case report describes two cases of dilated cardiomyopathy due to hypocalcaemia as a result of hypoparathyroidism. Patient A suffered from dilated cardiomyopathy due to secondary hypoparathyroidism as a result of previous neck surgery. Patient B suffered from dilated cardiomyopathy with congestive heart failure due to primary hypoparathyroidism. Hypoparathyroidism can exist for years before being recognised, especially after neck surgery. Besides standard treatment of heart failure, restoration of serum calcium levels with calcium and vitamin D supplementation can lead to rapid improvement of cardiac function and should be continued lifelong. Both patients were responding very well to heart failure therapy and calcium supplementation as ejection fraction improved after restoration of plasma calcium levels. This case report emphasises that hypocalcaemia should be in the differential diagnosis of heart failure. PMID:24879729

  16. The Role of CMR in Cardiomyopathies

    PubMed Central

    Kramer, Christopher M.

    2015-01-01

    Cardiac magnetic resonance imaging (CMR) has made major inroads in the new millenium in the diagnosis and assessment of prognosis for patients with cardiomyopathies. Imaging of left and right ventricular structure and function and tissue characterization with late gadolinium enhancement (LGE) as well as T1 and T2 mapping enable accurate diagnosis of the underlying etiology. In the setting of coronary artery disease, either transmurality of LGE or contractile reserve in response to dobutamine can assess the likelihood of recovery of function after revascularization. The presence of scar reduces the likelihood of response to medical therapy and to cardiac resynchronization therapy in heart failure. The presence and extent of LGE relate to overall cardiovascular outcome in cardiomyopathies. An emerging major role for CMR in cardiomyopathies is to identify myocardial scar for diagnostic and prognostic purposes. PMID:26033902

  17. Myocardial gallium-67 imaging in dilated cardiomyopathy

    PubMed Central

    O'Connell, John B.; Henkin, Robert E.

    1985-01-01

    The use of gallium-67, an isotope that is avid for areas of inflammation in patients with dilated cardiomyopathy, is described and compared with endomyocardial biopsy in 68 consecutive patients with dilated cardiomyopathy. Myocarditis was diagnosed in 8% on biopsy and the likelihood of a positive biopsy when the gallium scan was positive for inflammation, rose to 36%. It is concluded that gallium scanning is a useful adjunct to biopsy in detecting myocarditis in patients with dilated cardiomyopathy and in following patients with evidence of myocarditis on biopsy. Disadvantages of gallium-67 imaging include the radiation dose accumulated with multiple scans and 72h delay from initial injection of the isotope to imaging. It is suggested that definitive conclusions regarding the technique should await the results of a large multicentre trial evaluating gallium in comparison with endomyocardial biopsy in the diagnosis of myocarditis. ImagesFigure 1Figure 2

  18. Biomarkers for ischemic preconditioning: finding the responders

    PubMed Central

    Koch, Sebastian; Della-Morte, David; Dave, Kunjan R; Sacco, Ralph L; Perez-Pinzon, Miguel A

    2014-01-01

    Ischemic preconditioning is emerging as an innovative and novel cytoprotective strategy to counter ischemic vascular disease. At the root of the preconditioning response is the upregulation of endogenous defense systems to achieve ischemic tolerance. Identifying suitable biomarkers to show that a preconditioning response has been induced remains a translational research priority. Preconditioning leads to a widespread genomic and proteonomic response with important effects on hemostatic, endothelial, and inflammatory systems. The present article summarizes the relevant preclinical studies defining the mechanisms of preconditioning, reviews how the human preconditioning response has been investigated, and which of these bioresponses could serve as a suitable biomarker. Human preconditioning studies have investigated the effects of preconditioning on coagulation, endothelial factors, and inflammatory mediators as well as on genetic expression and tissue blood flow imaging. A biomarker for preconditioning would significantly contribute to define the optimal preconditioning stimulus and the extent to which such a response can be elicited in humans and greatly aid in dose selection in the design of phase II trials. Given the manifold biologic effects of preconditioning a panel of multiple serum biomarkers or genomic assessments of upstream regulators may most accurately reflect the full spectrum of a preconditioning response. PMID:24643082

  19. Takotsubo cardiomyopathy: can hearts really break?

    PubMed

    Farris, Cindy; McEnroe-Petitte, Denise; Kanayama, Tiffanie

    2014-01-01

    Takotsubo cardiomyopathy (TCM), or broken-heart syndrome, is a form of cardiomyopathy (CM) that is significantly different from other common types. This form of CM occurs spontaneously and can be easily reversed. TCM is seen primarily in postmenopausal women with a recent stressful event. Patients with TCM often present with symptoms suggestive of a myocardial infarction. Home health-care and hospice clinicians interact frequently with caregivers and other family members who are living under stressful circumstances. It is important that home care clinicians be familiar with TCM and understand the relationship that may exist between stress, stressful events, triggers, and TCM. PMID:24978575

  20. Primary cardiac lymphoma mimicking infiltrative cardiomyopathy.

    PubMed

    Lee, Ga Yeon; Kim, Won Seog; Ko, Young-Hyeh; Choi, Jin-Oh; Jeon, Eun-Seok

    2013-05-01

    Primary cardiac lymphoma is a rare malignancy which has been described as thickened myocardium due to the infiltration of atypical lymphocytes and accompanying intracardiac masses. Here, we report a case of a primary cardiac lymphoma without demonstrable intracardiac masses, mimicking infiltrative cardiomyopathy. A 40-year-old male presented with exertional dyspnoea and was diagnosed as having restrictive cardiomyopathy with severely decreased LV systolic function. Endomyocardial biopsy was performed and the diagnosis of primary cardiac lymphoma was confirmed. After appropriate chemotherapy, he recovered his systolic function fully. PMID:23248217

  1. Celiac disease with pulmonary haemosiderosis and cardiomyopathy.

    PubMed

    Işikay, Sedat; Yilmaz, Kutluhan; Kilinç, Metin

    2012-01-01

    Celiac disease or pulmonary haemosiderosis can be associated with several distinguished conditions. Pulmonary haemosiderosis is a rare, severe and fatal disease characterised by recurrent episodes of alveolar haemorrhage, haemoptysis and anaemia. Association of pulmonary haemosiderosis and celiac disease is extremely rare. We describe a case of celiac disease presented with dilated cardiomyopathy and pulmonary haemosiderosis without gastrointestinal symptoms of celiac disease. In addition, vitamin A deficiency was detected. This case suggests that celiac disease should be considered in patients with cardiomyopathy and/or pulmonary haemosiderosis regardless of the intestinal symptoms of celiac disease. PMID:23169927

  2. Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling.

    PubMed

    Huang, Chia-Wei; Huang, Chao-Ching; Chen, Yuh-Ling; Fan, Shih-Chen; Hsueh, Yuan-Yu; Ho, Chien-Jung; Wu, Chia-Ching

    2015-01-01

    Neonatal hypoxic-ischemic (HI) brain injuries disrupt the integrity of neurovascular structure and lead to lifelong neurological deficit. The devastating damage can be ameliorated by preserving the endothelial network, but the source for therapeutic cells is limited. We aim to evaluate the beneficial effect of mechanical shear stress in the differentiation of endothelial lineage cells (ELCs) from adipose-derived stem cells (ASCs) and the possible intracellular signals to protect HI injury using cell-based therapy in the neonatal rats. The ASCs expressed early endothelial markers after biochemical stimulation of endothelial growth medium. The ELCs with full endothelial characteristics were accomplished after a subsequential shear stress application for 24 hours. When comparing the therapeutic potential of ASCs and ELCs, the ELCs treatment significantly reduced the infarction area and preserved neurovascular architecture in HI injured brain. The transplanted ELCs can migrate and engraft into the brain tissue, especially in vessels, where they promoted the angiogenesis. The activation of Akt by neuropilin 1 (NRP1) and vascular endothelial growth factor receptor 2 (VEGFR2) was important for ELC migration and following in vivo therapeutic outcomes. Therefore, the current study demonstrated importance of mechanical factor in stem cell differentiation and showed promising protection of brain from HI injury using ELCs treatment. PMID:26509169

  3. Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling

    PubMed Central

    Huang, Chia-Wei; Huang, Chao-Ching; Chen, Yuh-Ling; Fan, Shih-Chen; Hsueh, Yuan-Yu; Ho, Chien-Jung; Wu, Chia-Ching

    2015-01-01

    Neonatal hypoxic-ischemic (HI) brain injuries disrupt the integrity of neurovascular structure and lead to lifelong neurological deficit. The devastating damage can be ameliorated by preserving the endothelial network, but the source for therapeutic cells is limited. We aim to evaluate the beneficial effect of mechanical shear stress in the differentiation of endothelial lineage cells (ELCs) from adipose-derived stem cells (ASCs) and the possible intracellular signals to protect HI injury using cell-based therapy in the neonatal rats. The ASCs expressed early endothelial markers after biochemical stimulation of endothelial growth medium. The ELCs with full endothelial characteristics were accomplished after a subsequential shear stress application for 24 hours. When comparing the therapeutic potential of ASCs and ELCs, the ELCs treatment significantly reduced the infarction area and preserved neurovascular architecture in HI injured brain. The transplanted ELCs can migrate and engraft into the brain tissue, especially in vessels, where they promoted the angiogenesis. The activation of Akt by neuropilin 1 (NRP1) and vascular endothelial growth factor receptor 2 (VEGFR2) was important for ELC migration and following in vivo therapeutic outcomes. Therefore, the current study demonstrated importance of mechanical factor in stem cell differentiation and showed promising protection of brain from HI injury using ELCs treatment. PMID:26509169

  4. Arrhythmogenic Noncompaction Cardiomyopathy: Is There an Echocardiographic Phenotypic Overlap of Two Distinct Cardiomyopathies?

    PubMed Central

    Aras, Dursun; Cay, Serkan; Ozcan, Firat; Baser, Kazım; Dogan, Umuttan; Unlu, Murat; Demirkan, Burcu; Tufekcioglu, Omac; Topaloglu, Serkan

    2015-01-01

    The clinical diagnosis of right ventricular (RV) cardiomyopathies is often challenging. It is difficult to differentiate the isolated left ventricular (LV) noncompaction cardiomyopathy (NC) from biventricular NC or from coexisting arrhythmogenic ventricular cardiomyopathy (AC). There are currently few established morphologic criteria for the diagnosis other than RV dilation and presence of excessive regional trabeculation. The gross and microscopic changes suggest pathological similarities between, or coexistence of, RV-NC and AC. Therefore, the term arrhythmogenic right ventricular cardiomyopathy is somewhat misleading as isolated LV or biventricular involvement may be present and thus a broader term such as AC should be preferred. We describe an unusual case of AC associated with a NC in a 27-year-old man who had a history of permanent pacemaker 7 years ago due to second-degree atrioventricular block. PMID:26448828

  5. Experimental Therapies in Hypertrophic Cardiomyopathy

    PubMed Central

    Marian, Ali J.

    2010-01-01

    The quintessential clinical diagnostic phenotype of human hypertrophic cardiomyopathy (HCM) is primary cardiac hypertrophy. Cardiac hypertrophy is also a major determinant of mortality and morbidity including the risk of sudden cardiac death (SCD) in patients with HCM. Reversal and attenuation of cardiac hypertrophy and its accompanying fibrosis is expected to improve morbidity as well as decrease the risk of SCD in patients with HCM. The conventionally used pharmacological agents in treatment of patients with HCM have not been shown to reverse or attenuate established cardiac hypertrophy and fibrosis. An effective treatment of HCM has to target the molecular mechanisms that are involved in the pathogenesis of the phenotype. Mechanistic studies suggest that cardiac hypertrophy in HCM is secondary to activation of various hypertrophic signaling molecules and, hence, is potentially reversible. The hypothesis is supported by the results of genetic and pharmacological interventions in animal models. The results have shown potential beneficial effects of angiotensin II receptor blocker losartan, mineralocorticoid receptor blocker spironolactone, 3-hydroxy-3-methyglutaryl-coenzyme A reductase inhibitors simvastatin and atorvastatin, and most recently, N-acetylcysteine (NAC) on reversal or prevention of hypertrophy and fibrosis in HCM. The most promising results have been obtained with NAC, which through multiple thiol-responsive mechanisms completely reversed established cardiac hypertrophy and fibrosis in three independent studies. Pilot studies with losartan and statins in humans have established the feasibility of such studies. The results in animal models have firmly established the reversibility of established cardiac hypertrophy and fibrosis in HCM and have set the stage for advancing the findings in the animal models to human patients with HCM through conducting large-scale efficacy studies. PMID:20560006

  6. Acute Ischemic Stroke Intervention.

    PubMed

    Khandelwal, Priyank; Yavagal, Dileep R; Sacco, Ralph L

    2016-06-01

    Acute ischemic stroke (AIS) is the leading cause of disability worldwide and among the leading causes of mortality. Although intravenous tissue plasminogen activator (IV-rtPA) was approved nearly 2 decades ago for treatment of AIS, only a minority of patients receive it due to a narrow time window for administration and several contraindications to its use. Endovascular approaches to recanalization in AIS developed in the 1980s, and recently, 5 major randomized trials showed an overwhelming superior benefit of combining endovascular mechanical thrombectomy with IV-rtPA over IV-rtPA alone. In this paper, we discuss the evolution of catheter-based treatment from first-generation thrombectomy devices to the game-changing stent retrievers, results from recent trials, and the evolving stroke systems of care to provide timely access to acute stroke intervention to patients in the United States. PMID:27256835

  7. Remote Ischemic Conditioning

    PubMed Central

    Heusch, Gerd; Bøtker, Hans Erik; Przyklenk, Karin; Redington, Andrew; Yellon, Derek

    2014-01-01

    In remote ischemic conditioning (RIC) brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1α, microRNA-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible and inexpensive. PMID:25593060

  8. [Cerebrolysin for acute ischemic stroke].

    PubMed

    iganshina, L E; Abakumova, T R

    2013-01-01

    The review discusses existing evidence of benefits and risks of cerebrolysin--a mixture of low-molecular-weight peptides and amino acids derived from pigs' brain tissue with proposed neuroprotective and neurotrophic properties, for acute ischemic stroke. The review presents results of systematic search and analysis of randomised clinical trials comparing cerebrolysin with placebo in patients with acute ischemic stroke. Only one trial was selected as meeting quality criteria. No difference in death and adverse events between cerebrolysin and placebo was established. The authors conclude about insufficiency of evidence to evaluate the effect of cerebrolysin on survival and dependency in people with acute ischemic stroke. PMID:23805635

  9. Pathological features of hypertrophic obstructive cardiomyopathy

    PubMed Central

    Davies, M. J.; Pomerance, Ariela; Teare, R. D.

    1974-01-01

    The macroscopic features of hypertrophic obstructive cardiomyopathy are variable. The most easily recognized picture is of disproportionate and asymmetrical left ventricular hypertrophy with a small ventricular volume. Symmetrical ventricular hypertrophy also occurs and dilatation of the ventricular cavity may lead to a configuration more usually associated with congestive cardiomyopathy. Papillary muscle involvement leads to a bullet shape, often retained even when the ventricle dilates. Eighteen of the hearts showed a distinctive band of fibrous thickening below the aortic valve. This was a mirror image of the free edge of the anterior mitral cusp, had the microscopic features of an endocardial friction lesion, and was clearly the morphological expression of the systolic contact between cusp and septum seen on cineangiography. This band is characteristic of hypertrophic obstructive cardiomyopathy; it was more common in older patients and is of particular diagnostic value in cases with symmetrical hypertrophy, including those with dilated ventricular cavities. Sudden death was the commonest presentation in the younger cases but in several cases over 60 years at death hypertrophic obstructive cardiomyopathy was an incidental necropsy finding. Images PMID:4472994

  10. Insights into the hereditability of canine cardiomyopathy.

    PubMed

    Meurs, K M

    1998-11-01

    There is evidence for a genetic etiology of dilated cardiomyopathy in at least two breeds, the Doberman pinscher and the Boxer dog. Significant effort toward determining a genetic etiology in these breeds will depend on careful characterization of the disease, determination of criteria for diagnosing asymptomatic affected individuals, determination of a pattern of inheritance, and, eventually, molecular evaluation of the specific gene. PMID:10098247

  11. Hypertrophic Cardiomyopathy in Athletes: Catching a Killer.

    ERIC Educational Resources Information Center

    Maron, Barry J.

    1993-01-01

    A leading cause of sudden death among young athletes, hypertrophic cardiomyopathy (HCM) does not always present cardiac signs and symptoms. Echocardiography offers the most effective means for diagnosis. Some patients require pharmaceutical or surgical intervention. Patients with HCM should not engage in organized competitive sports or…

  12. Biventricular Takotsubo Cardiomyopathy Associated with Epilepsy

    PubMed Central

    Koo, Namho; Yoon, Byung Woo; Song, Yonggeon; Lee, Chang Kyun; Lee, Tae Yeon

    2015-01-01

    We describe a case of Takotsubo cardiomyopathy in an elderly woman after status epilepticus. In an emergency echocardiography, not only left ventricular apical ballooning but also right ventricular apical hypokinesia was observed. After a medical management, the patient's condition was improved and a follow-up echocardiography showed substantial recovery of left and right ventricular apical ballooning. PMID:26755936

  13. Quality-of-Life Outcomes in Surgical Treatment of Ischemic Heart Failure Quality-of-Life Outcomes With Coronary Artery Bypass Graft Surgery in Ischemic Left Ventricular Dysfunction

    PubMed Central

    Mark, Daniel B.; Knight, J. David; Velazquez, Eric J.; Wasilewski, Jaroslaw; Howlett, Jonathan G.; Smith, Peter K.; Spertus, John A.; Rajda, Miroslaw; Yadav, Rakesh; Hamman, Baron L.; Malinowski, Marcin; Naik, Ajay; Rankin, Gena; Harding, Tina M.; Drew, Laura A.; Desvigne-Nickens, Patrice; Anstrom, Kevin J.

    2014-01-01

    Background: The STICH (Surgical Treatment for Ischemic Heart Failure) trial compared a strategy of routine coronary artery bypass grafting (CABG) with guideline-based medical therapy for patients with ischemic left ventricular dysfunction. Objective: To describe treatment-related quality-of-life (QOL) outcomes, a major prespecified secondary end point in the STICH trial. Design: Randomized trial. (ClinicalTrials.gov: NCT00023595) Setting: 99 clinical sites in 22 countries. Patients: 1212 patients with a left ventricular ejection fraction of 0.35 or less and coronary artery disease. Intervention: Random assignment to medical therapy alone (602 patients) or medical therapy plus CABG (610 patients). Measurements: A battery of QOL instruments at baseline (98.9% complete) and 4, 12, 24, and 36 months after randomization (collection rates were 80% to 89% of those eligible). The principal prespecified QOL measure was the Kansas City Cardiomyopathy Questionnaire, which assesses the effect of heart failure on patients’ symptoms, physical function, social limitations, and QOL. Results: The Kansas City Cardiomyopathy Questionnaire overall summary score was consistently higher (more favorable) in the CABG group than in the medical therapy group by 4.4 points (95% CI, 1.8 to 7.0 points) at 4 months, 5.8 points (CI, 3.1 to 8.6 points) at 12 months, 4.1 points (CI, 1.2 to 7.1 points) at 24 months, and 3.2 points (CI, 0.2 to 6.3 points) at 36 months. Sensitivity analyses to account for the effect of mortality on follow-up QOL measurement were consistent with the primary findings. Limitation: Therapy was not masked. Conclusion: In this cohort of symptomatic high-risk patients with ischemic left ventricular dysfunction and multivessel coronary artery disease, CABG plus medical therapy produced clinically important improvements in several health status domains compared with medical therapy alone over 36 months. Primary Funding Source: National Heart, Lung, and Blood Institute. PMID

  14. Ischemic ulcers - self-care

    MedlinePlus

    ... restrict blood flow. Certain lifestyle changes can help prevent ischemic ulcers. If you have a wound, taking these steps can improve blood flow and aid healing. Quit smoking. Smoking can lead to clogged arteries. ...

  15. Aortic biomechanics in hypertrophic cardiomyopathy

    PubMed Central

    Badran, Hala Mahfouz; Soltan, Ghada; Faheem, Nagla; Elnoamany, Mohamed Fahmy; Tawfik, Mohamed; Yacoub, Magdi

    2015-01-01

    Background: Ventricular-vascular coupling is an important phenomenon in many cardiovascular diseases. The association between aortic mechanical dysfunction and left ventricular (LV) dysfunction is well characterized in many disease entities, but no data are available on how these changes are related in hypertrophic cardiomyopathy (HCM). Aim of the work: This study examined whether HCM alone is associated with an impaired aortic mechanical function in patients without cardiovascular risk factors and the relation of these changes, if any, to LV deformation and cardiac phenotype. Methods: 141 patients with HCM were recruited and compared to 66 age- and sex-matched healthy subjects as control group. Pulse pressure, aortic strain, stiffness and distensibility were calculated from the aortic diameters measured by M-mode echocardiography and blood pressure obtained by sphygmomanometer. Aortic wall systolic and diastolic velocities were measured using pulsed wave Doppler tissue imaging (DTI). Cardiac assessment included geometric parameters and myocardial deformation (strain and strain rate) and mechanical dyssynchrony. Results: The pulsatile change in the aortic diameter, distensibility and aortic wall systolic velocity (AWS') were significantly decreased and aortic stiffness index was increased in HCM compared to control (P < .001) In HCM AWS' was inversely correlated to age(r = − .32, P < .0001), MWT (r = − .22, P < .008), LVMI (r = − .20, P < .02), E/Ea (r = − .16, P < .03) LVOT gradient (r = − 19, P < .02) and severity of mitral regurg (r = − .18, P < .03) but not to the concealed LV deformation abnormalities or mechanical dyssynchrony. On multivariate analysis, the key determinant of aortic stiffness was LV mass index and LVOT obstruction while the role LV dysfunction in aortic stiffness is not evident in this population. Conclusion: HCM is associated with abnormal aortic mechanical properties. The severity of cardiac

  16. Infective endocarditis in hypertrophic cardiomyopathy

    PubMed Central

    Dominguez, Fernando; Ramos, Antonio; Bouza, Emilio; Muñoz, Patricia; Valerio, Maricela C.; Fariñas, M. Carmen; de Berrazueta, José Ramón; Zarauza, Jesús; Pericás Pulido, Juan Manuel; Paré, Juan Carlos; de Alarcón, Arístides; Sousa, Dolores; Rodriguez Bailón, Isabel; Montejo-Baranda, Miguel; Noureddine, Mariam; García Vázquez, Elisa; Garcia-Pavia, Pablo

    2016-01-01

    Abstract Infective endocarditis (IE) complicating hypertrophic cardiomyopathy (HCM) is a poorly known entity. Although current guidelines do not recommend IE antibiotic prophylaxis (IEAP) in HCM, controversy remains. This study sought to describe the clinical course of a large series of IE HCM and to compare IE in HCM patients with IE patients with and without an indication for IEAP. Data from the GAMES IE registry involving 27 Spanish hospitals were analyzed. From January 2008 to December 2013, 2000 consecutive IE patients were prospectively included in the registry. Eleven IE HCM additional cases from before 2008 were also studied. Clinical, microbiological, and echocardiographic characteristics were analyzed in IE HCM patients (n = 34) and in IE HCM reported in literature (n = 84). Patients with nondevice IE (n = 1807) were classified into 3 groups: group 1, HCM with native-valve IE (n = 26); group 2, patients with IEAP indication (n = 696); group 3, patients with no IEAP indication (n = 1085). IE episode and 1-year follow-up data were gathered. One-year mortality in IE HCM was 42% in our study and 22% in the literature. IE was more frequent, although not exclusive, in obstructive HCM (59% and 74%, respectively). Group 1 exhibited more IE predisposing factors than groups 2 and 3 (62% vs 40% vs 50%, P < 0.01), and more previous dental procedures (23% vs 6% vs 8%, P < 0.01). Furthermore, Group 1 experienced a higher incidence of Streptococcus infections than Group 2 (39% vs 22%, P < 0.01) and similar to Group 3 (39% vs 30%, P = 0.34). Overall mortality was similar among groups (42% vs 36% vs 35%, P = 0.64). IE occurs in HCM patients with and without obstruction. Mortality of IE HCM is high but similar to patients with and without IEAP indication. Predisposing factors, previous dental procedures, and streptococcal infection are higher in IE HCM, suggesting that HCM patients could benefit from IEAP. PMID:27368014

  17. REMOTE ISCHEMIC CONDITIONING INFLUENCES MITOCHONDRIAL DYNAMICS

    PubMed Central

    Cellier, Laura; Tamareille, Sophie; Kalakech, Hussein; Guillou, Sophie; Lenaers, Guy; Prunier, Fabrice; Mirebeau-Prunier, Delphine

    2016-01-01

    ABSTRACT Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy to protect the heart against ischemia-reperfusion (I/R) injury. The mechanisms by which remote ischemic conditioning (RIC) is protective are to date unknown, yet a well-accepted theory holds that the mitochondria play a central role. Mitochondria are dynamic organelles that undergo fusion and fission. Interventions that decrease mitochondrial fission or increase mitochondrial fusion have been associated with reduced I/R injury. However, whether RIPC influences mitochondrial dynamics or not has yet to be ascertained. We sought to determine the role played by mitochondrial dynamics in RIPC-induced cardioprotection. Male adult rats exposed in vivo to myocardial I/R were assigned to one of two groups, either undergoing 40 min of myocardial ischemia followed by 120 min of reperfusion (MI group) or four 5-min cycles of limb ischemia interspersed by 5 min of limb reperfusion, immediately prior to myocardial ischemia and 120 min of reperfusion (MI+RIPC group). After reperfusion, infarct size was assessed and myocardial tissue was analyzed by Western blot and electron microscopy. RIPC induced smaller infarct size (−28%), increased mitochondrial fusion protein OPA1, and preserved mitochondrial morphology. These findings suggest that mitochondrial dynamics play a role in the mechanisms of RIPC-induced cardioprotection. PMID:26555744

  18. To anticoagulate or not to anticoagulate patients with cardiomyopathy.

    PubMed

    Graham, S P

    2001-11-01

    The current published literature does not indicate whether the long-term effect of anticoagulant or antiplatelet therapy contributes to mortality reduction in patients with LV dysfunction. Evaluating patients for personal risk for emboli or for ischemic coronary artery events may influence the choice of therapies. As more is learned about the mechanisms of drug effects in different populations, physicians may be better able to direct appropriate therapies. Until that time, one must weigh the risks and benefits of each drug alone and in combination. In NYHA class IV patients, the risk for thrombosis owing to spontaneous clotting increases as does the adverse potential of warfarin and the adverse effects of inhibiting prostaglandin mediated vasodilation by aspirin. In NYHA class I and II patients, the quality of life and convenience of multidrug therapy is weighed against the devastating effect of a major stroke. In less symptomatic patients, the long-term risk for acute coronary events may be higher than previously identified. This would suggest that all patients with depressed LV function should be on some type of antiplatelet or anticoagulant therapy. The current WATCH study will provide much needed information about the outcome differences between these agents. Conclusions based on available data include the following: Heart failure is increasing in incidence and prevalence. Atherosclerotic disease is an important causative factor for the development of heart failure or may be a comorbid condition in these patients. There is a measurable rate of stroke in patients with heart failure, although the cause of death in large studies is more often owing to sudden death or progressive heart failure. Sudden death may be from new ischemic events, asystole, or from ventricular tachyarrhythmias. In patients with heart failure, not all strokes are cardioembolic in origin. The benefits and risks of warfarin may be increased as the EF worsens or heart failure functional class

  19. Incidence and predictors of ischemic stroke during hospitalization for congestive heart failure.

    PubMed

    Hamatani, Yasuhiro; Iguchi, Moritake; Nakamura, Michikazu; Ohtani, Ryo; Yamashita, Yugo; Takagi, Daisuke; Unoki, Takashi; Ishii, Mitsuru; Masunaga, Nobutoyo; Ogawa, Hisashi; Hamatani, Mio; Abe, Mitsuru; Akao, Masaharu

    2016-07-01

    Heart failure (HF) increases the risk of ischemic stroke. Data regarding the incidence and predictors of ischemic stroke during hospitalization for HF are limited. The study population of this retrospective cohort study consisted of patients with congestive HF, consecutively admitted to our center from October 2010 to April 2014. We excluded patients complicated with acute myocardial infarction, infective endocarditis, and takotsubo cardiomyopathy. We also excluded those with dialysis or mechanical circulatory support. We investigated the incidence of ischemic stroke during hospitalization for HF. Thereafter, we divided the patients without oral anticoagulants at admission into two groups: patients with ischemic stroke and those without it, and explored the predictors of ischemic stroke. A total of 558 patients (287 without atrial fibrillation (AF), 271 with AF) were enrolled. The mean age was 76.8 ± 12.3 years, and 244 patients (44 %) were female. The mean left-ventricular ejection fraction was 47.4 %. Oral anticoagulants were prescribed in 147 patients (8 without AF, 139 with AF). During hospitalization (median length 18 days), symptomatic ischemic stroke (excluding catheter-related) occurred in 15 patients (2.7 % of the total, 8 without AF, 7 with AF). Predictors significantly associated with increased risk of ischemic stroke in patients without oral anticoagulants were as follows; short-term increases in blood urea nitrogen after admission (at day 3; odds ratio (per 1 md/dl): 1.06, 95 % confidence interval (CI) 1.01-1.11, p = 0.02, and at day 7; odds ratio: 1.03, 95 % CI 1.00-1.07, p = 0.03,