Science.gov

Sample records for ischemic preconditioning ip

  1. Biomarkers for ischemic preconditioning: finding the responders

    PubMed Central

    Koch, Sebastian; Della-Morte, David; Dave, Kunjan R; Sacco, Ralph L; Perez-Pinzon, Miguel A

    2014-01-01

    Ischemic preconditioning is emerging as an innovative and novel cytoprotective strategy to counter ischemic vascular disease. At the root of the preconditioning response is the upregulation of endogenous defense systems to achieve ischemic tolerance. Identifying suitable biomarkers to show that a preconditioning response has been induced remains a translational research priority. Preconditioning leads to a widespread genomic and proteonomic response with important effects on hemostatic, endothelial, and inflammatory systems. The present article summarizes the relevant preclinical studies defining the mechanisms of preconditioning, reviews how the human preconditioning response has been investigated, and which of these bioresponses could serve as a suitable biomarker. Human preconditioning studies have investigated the effects of preconditioning on coagulation, endothelial factors, and inflammatory mediators as well as on genetic expression and tissue blood flow imaging. A biomarker for preconditioning would significantly contribute to define the optimal preconditioning stimulus and the extent to which such a response can be elicited in humans and greatly aid in dose selection in the design of phase II trials. Given the manifold biologic effects of preconditioning a panel of multiple serum biomarkers or genomic assessments of upstream regulators may most accurately reflect the full spectrum of a preconditioning response. PMID:24643082

  2. Cerebral Ischemic Preconditioning: the Road So Far….

    PubMed

    N, Thushara Vijayakumar; Sangwan, Amit; Sharma, Bhargy; Majid, Arshad; Gk, Rajanikant

    2016-05-01

    Cerebral preconditioning constitutes the brain's adaptation to lethal ischemia when first exposed to mild doses of a subtoxic stressor. The phenomenon of preconditioning has been largely studied in the heart, and data from in vivo and in vitro models from past 2-3 decades have provided sufficient evidence that similar machinery exists in the brain as well. Since preconditioning results in a transient protective phenotype labeled as ischemic tolerance, it can open many doors in the medical warfare against stroke, a debilitating cerebrovascular disorder that kills or cripples thousands of people worldwide every year. Preconditioning can be induced by a variety of stimuli from hypoxia to pharmacological anesthetics, and each, in turn, induces tolerance by activating a multitude of proteins, enzymes, receptors, transcription factors, and other biomolecules eventually leading to genomic reprogramming. The intracellular signaling pathways and molecular cascades behind preconditioning are extensively being investigated, and several first-rate papers have come out in the last few years centered on the topic of cerebral ischemic tolerance. However, translating the experimental knowledge into the clinical scaffold still evades practicality and faces several challenges. Of the various preconditioning strategies, remote ischemic preconditioning and pharmacological preconditioning appears to be more clinically relevant for the management of ischemic stroke. In this review, we discuss current developments in the field of cerebral preconditioning and then examine the potential of various preconditioning agents to confer neuroprotection in the brain. PMID:26081149

  3. Remote Ischemic Limb Preconditioning After Subarachnoid Hemorrhage

    PubMed Central

    Koch, Sebastian; Katsnelson, Michael; Dong, Chuanhui; Perez-Pinzon, Miguel

    2011-01-01

    Background and Purpose Making a limb transiently ischemic has been shown to induce ischemic tolerance in a distant organ. This phenomenon is known as remote ischemic limb preconditioning. We conducted a Phase IB study of remote ischemic limb preconditioning to determine the safety and feasibility of increasing durations of limb ischemia in patients with subarachnoid hemorrhage. Methods Patients with aneurysmal subarachnoid hemorrhage underwent limb preconditioning every 24 to 48 hours for 14 days. Limb preconditioning consisted of 3 5-minute inflations of a blood pressure cuff to 200 mm Hg around a limb followed by 5 minutes of reperfusion. In the lead-in phase, we preconditioned the upper extremities, but this proved impractical and we began preconditioning the leg in a similar manner. Ischemia times were then escalated to 7.5 and 10 minutes. After each session, a visual analog scale was obtained and the extremity examined for neurovascular complications. Results A total of 33 patients completed the study. Mean age was 53±12 years and mean Hunt Hess score was 2.4±0.9. In the lead-in phase, an average of 7.7±2.4 preconditioning sessions was completed with mean visual analog scale 3.6±3.4. In the dose escalation phase, an average of 8.6±2.1 preconditioning sessions was done with mean visual analog scale 1.8±2.2 and 2.5±2.9 for the 7.5- and 10-minute cohorts, respectively. No session was prematurely terminated due to subject discomfort. No objective signs of neurovascular injury were observed. Conclusions We found limb preconditioning to be safe and well tolerated, even at ischemia times of 10 minutes, in critically ill patients with subarachnoid hemorrhage. PMID:21415404

  4. Resveratrol and ischemic preconditioning in the brain.

    PubMed

    Raval, Ami P; Lin, Hung Wen; Dave, Kunjan R; Defazio, R Anthony; Della Morte, David; Kim, Eun Joo; Perez-Pinzon, Miguel A

    2008-01-01

    Cardiovascular pathologies in the French are not prevalent despite high dietary saturated fat consumption. This is commonly referred to as the "French Paradox" attributing its anti-lipidemic effects to moderate consumption of red wine. Resveratrol, a phytoalexin found in red wine, is currently the focus of intense research both in the cardiovascular system and the brain. Current research suggests resveratrol may enhance prognosis of neurological disorders such as, Parkinson's, Huntington's, Alzheimer's diseases and stroke. The beneficial effects of resveratrol include: antioxidation, free radical scavenger, and modulation of neuronal energy homeostasis and glutamatergic receptors/ion channels. Resveratrol directly increases sirtuin 1 (SIRT1) activity, a NAD(+) (oxidized form of nicotinamide adenine dinucleotide)-dependent histone deacetylase related to increased lifespan in various species similar to calorie restriction. We recently demonstrated that brief resveratrol pretreatment conferred neuroprotection against cerebral ischemia via SIRT1 activation. This neuroprotective effect produced by resveratrol was similar to ischemic preconditioning-induced neuroprotection, which protects against lethal ischemic insults in the brain and other organ systems. Inhibition of SIRT1 abolished ischemic preconditioning-induced neuroprotection in CA1 region of the hippocampus. Since resveratrol and ischemic preconditioning-induced neuroprotection require activation of SIRT1, this common signaling pathway may provide targeted therapeutic treatment modalities as it relates to stroke and other brain pathologies. In this review, we will examine common signaling pathways, cellular targets of resveratrol, and ischemic preconditioning-induced neuroprotection as it relates to the brain. PMID:18537630

  5. An electrocardiographic sign of ischemic preconditioning.

    PubMed

    Meijs, Loek P B; Galeotti, Loriano; Pueyo, Esther P; Romero, Daniel; Jennings, Robert B; Ringborn, Michael; Warren, Stafford G; Wagner, Galen S; Strauss, David G

    2014-07-01

    Ischemic preconditioning is a form of intrinsic cardioprotection where an episode of sublethal ischemia protects against subsequent episodes of ischemia. Identifying a clinical biomarker of preconditioning could have important clinical implications, and prior work has focused on the electrocardiographic ST segment. However, the electrophysiology biomarker of preconditioning is increased action potential duration (APD) shortening with subsequent ischemic episodes, and APD shortening should primarily alter the T wave, not the ST segment. We translated findings from simulations to canine to patient models of preconditioning to test the hypothesis that the combination of increased [delta (Δ)] T wave amplitude with decreased ST segment elevation characterizes preconditioning. In simulations, decreased APD caused increased T wave amplitude with minimal ST segment elevation. In contrast, decreased action potential amplitude increased ST segment elevation significantly. In a canine model of preconditioning (9 mongrel dogs undergoing 4 ischemia-reperfusion episodes), ST segment amplitude increased more than T wave amplitude during the first ischemic episode [ΔT/ΔST slope = 0.81, 95% confidence interval (CI) 0.46-1.15]; however, during subsequent ischemic episodes the T wave increased significantly more than the ST segment (ΔT/ΔST slope = 2.43, CI 2.07-2.80) (P < 0.001 for interaction of occlusions 2 vs. 1). A similar result was observed in patients (9 patients undergoing 2 consecutive prolonged occlusions during elective percutaneous coronary intervention), with an increase in slope of ΔT/ΔST of 0.13 (CI -0.15 to 0.42) in the first occlusion to 1.02 (CI 0.31-1.73) in the second occlusion (P = 0.02). This integrated analysis of the T wave and ST segment goes beyond the standard approach to only analyze ST elevation, and detects cellular electrophysiology changes of preconditioning. PMID:24778173

  6. The neuroprotective mechanism of brain ischemic preconditioning

    PubMed Central

    Liu, Xiao-qian; Sheng, Rui; Qin, Zheng-hong

    2009-01-01

    Brain ischemia is one of the most common causes of death and the leading cause of adult disability in the world. Brain ischemic preconditioning (BIP) refers to a transient, sublethal ischemia which results in tolerance to later, otherwise lethal, cerebral ischemia. Many attempts have been made to understand the molecular and cellular mechanisms underlying the neuroprotection offered by ischemic preconditioning. Many studies have shown that neuroprotective mechanisms may involve a series of molecular regulatory pathways including activation of the N-methyl-D-aspartate (NMDA) and adenosine receptors; activation of intracellular signaling pathways such as mitogen activated protein kinases (MAPK) and other protein kinases; upregulation of Bcl-2 and heat shock proteins (HSPs); and activation of the ubiquitin-proteasome pathway and the autophagic-lysosomal pathway. A better understanding of the processes that lead to cell death after stroke as well as of the endogenous neuroprotective mechanisms by which BIP protects against brain ischemic insults could help to develop new therapeutic strategies for this devastating neurological disease. The purpose of the present review is to summarize the neuroprotective mechanisms of BIP and to discuss the possibility of mimicking ischemic preconditioning as a new strategy for preventive treatment of ischemia. PMID:19617892

  7. Intestinal ischemic preconditioning reduces liver ischemia reperfusion injury in rats

    PubMed Central

    XUE, TONG-MIN; TAO, LI-DE; ZHANG, JIE; ZHANG, PEI-JIAN; LIU, XIA; CHEN, GUO-FENG; ZHU, YI-JIA

    2016-01-01

    The aim of the current study was to investigate whether intestinal ischemic preconditioning (IP) reduces damage to the liver during hepatic ischemia reperfusion (IR). Sprague Dawley rats were used to model liver IR injury, and were divided into the sham operation group (SO), IR group and IP group. The results indicated that IR significantly increased Bax, caspase 3 and NF-κBp65 expression levels, with reduced expression of Bcl-2 compared with the IP group. Compared with the IR group, the levels of AST, ALT, MPO, MDA, TNF-α and IL-1 were significantly reduced in the IP group. Immunohistochemistry for Bcl-2 and Bax indicated that Bcl-2 expression in the IP group was significantly increased compared with the IR group. In addition, IP reduced Bax expression compared with the IR group. The average liver injury was worsened in the IR group and improved in the IP group, as indicated by the morphological evaluation of liver tissues. The present study suggested that IP may alleviates apoptosis, reduce the release of pro-inflammatory cytokines, ameloriate reductions in liver function and reduce liver tissue injury. To conclude, IP provided protection against hepatic IR injury. PMID:26821057

  8. Cardioprotection acquired through exercise: the role of ischemic preconditioning.

    PubMed

    Marongiu, Elisabetta; Crisafulli, Antonio

    2014-11-01

    A great bulk of evidence supports the concept that regular exercise training can reduce the incidence of coronary events and increase survival chances after myocardial infarction. These exercise-induced beneficial effects on the myocardium are reached by means of the reduction of several risk factors relating to cardiovascular disease, such as high cholesterol, hypertension, obesity etc. Furthermore, it has been demonstrated that exercise can reproduce the "ischemic preconditioning" (IP), which refers to the capacity of short periods of ischemia to render the myocardium more resistant to subsequent ischemic insult and to limit infarct size during prolonged ischemia. However, IP is a complex phenomenon which, along with infarct size reduction, can also provide protection against arrhythmia and myocardial stunning due to ischemia-reperfusion. Several clues demonstrate that preconditioning may be directly induced by exercise, thus inducing a protective phenotype at the heart level without the necessity of causing ischemia. Exercise appears to act as a physiological stress that induces beneficial myocardial adaptive responses at cellular level. The purpose of the present paper is to review the latest data on the role played by exercise in triggering myocardial preconditioning. PMID:24720421

  9. Cardioprotection Acquired Through Exercise: The Role of Ischemic Preconditioning

    PubMed Central

    Marongiu, Elisabetta; Crisafulli, Antonio

    2014-01-01

    A great bulk of evidence supports the concept that regular exercise training can reduce the incidence of coronary events and increase survival chances after myocardial infarction. These exercise-induced beneficial effects on the myocardium are reached by means of the reduction of several risk factors relating to cardiovascular disease, such as high cholesterol, hypertension, obesity etc. Furthermore, it has been demonstrated that exercise can reproduce the “ischemic preconditioning” (IP), which refers to the capacity of short periods of ischemia to render the myocardium more resistant to subsequent ischemic insult and to limit infarct size during prolonged ischemia. However, IP is a complex phenomenon which, along with infarct size reduction, can also provide protection against arrhythmia and myocardial stunning due to ischemia-reperfusion. Several clues demonstrate that preconditioning may be directly induced by exercise, thus inducing a protective phenotype at the heart level without the necessity of causing ischemia. Exercise appears to act as a physiological stress that induces beneficial myocardial adaptive responses at cellular level. The purpose of the present paper is to review the latest data on the role played by exercise in triggering myocardial preconditioning. PMID:24720421

  10. Ischemic preconditioning reduces hemodynamic response during metaboreflex activation.

    PubMed

    Mulliri, Gabriele; Sainas, Gianmarco; Magnani, Sara; Palazzolo, Girolamo; Milia, Nicola; Orrù, Andrea; Roberto, Silvana; Marongiu, Elisabetta; Milia, Raffaele; Crisafulli, Antonio

    2016-05-01

    Ischemic preconditioning (IP) has been shown to improve exercise performance and to delay fatigue. However, the precise mechanisms through which IP operates remain elusive. It has been hypothesized that IP lowers the sensation of fatigue by reducing the discharge of group III and IV nerve endings, which also regulate hemodynamics during the metaboreflex. We hypothesized that IP reduces the blood pressure response during the metaboreflex. Fourteen healthy males (age between 25 and 48 yr) participated in this study. They underwent the following randomly assigned protocol: postexercise muscle ischemia (PEMI) test, during which the metaboreflex was elicited after dynamic handgrip; control exercise recovery session (CER) test; and PEMI after IP (IP-PEMI) test. IP was obtained by occluding forearm circulation for three cycles of 5 min spaced by 5 min of reperfusion. Hemodynamics were evaluated by echocardiography and impedance cardiography. The main results were that after IP the mean arterial pressure response was reduced compared with the PEMI test (means ± SD +3.37 ± 6.41 vs. +9.16 ± 7.09 mmHg, respectively). This was the consequence of an impaired venous return that impaired the stroke volume during the IP-PEMI more than during the PEMI test (-1.43 ± 15.35 vs. +10.28 ± 10.479 ml, respectively). It was concluded that during the metaboreflex, IP affects hemodynamics mainly because it impairs the capacity to augment venous return and to recruit the cardiac preload reserve. It was hypothesized that this is the consequence of an increased nitric oxide production, which reduces the possibility to constrict venous capacity vessels. PMID:26936782

  11. ISCHEMIC PRECONDITIONING PREVENTS PROTEIN AGGREGATION AFTER TRANSIENT CEREBRAL ISCHEMIA

    PubMed Central

    Liu, C.; Chen, S.; Kamme, F.; Hu, B.R.

    2012-01-01

    Transient cerebral ischemia leads to protein aggregation mainly in neurons destined to undergo delayed neuronal death after ischemia. This study utilized a rat transient cerebral ischemia model to investigate whether ischemic preconditioning is able to alleviate neuronal protein aggregation, thereby protecting neurons from ischemic neuronal damage. Ischemic preconditioning was introduced by a sublethal 3 min period of ischemia followed by 48 h of recovery. Brains from rats with either ischemic preconditioning or sham-surgery were then subjected to a subsequent 7 min period of ischemia followed by 30 min, 4, 24, 48 and 72 h of reperfusion. Protein aggregation and neuronal death were studied by electron and confocal microscopy, as well as by biochemical analyses. Seven minutes of cerebral ischemia alone induced severe protein aggregation after 4 h of reperfusion mainly in CA1 neurons destined to undergo delayed neuronal death (which took place after 72 h of reperfusion). Ischemic preconditioning reduced significantly protein aggregation and virtually eliminated neuronal death in CA1 neurons. Biochemical analyses revealed that ischemic preconditioning decreased accumulation of ubiquitin-conjugated proteins (ubi-proteins) and reduced free ubiquitin depletion after brain ischemia. Furthermore, ischemic preconditioning also reduced redistribution of heat shock cognate protein 70 and Hdj1 from cytosolic fraction to protein aggregate-containing fraction after brain ischemia. These results suggest that ischemic preconditioning decreases protein aggregation after brain ischemia. PMID:15939539

  12. Local and remote ischemic preconditioning protect against intestinal ischemic/reperfusion injury after supraceliac aortic clamping

    PubMed Central

    Erling, Nilon; de Souza Montero, Edna Frasson; Sannomiya, Paulina; Poli-de-Figueiredo (in memoriam), Luiz Francisco

    2013-01-01

    OBJECTIVES: This study tests the hypothesis that local or remote ischemic preconditioning may protect the intestinal mucosa against ischemia and reperfusion injuries resulting from temporary supraceliac aortic clamping. METHODS: Twenty-eight Wistar rats were divided into four groups: the sham surgery group, the supraceliac aortic occlusion group, the local ischemic preconditioning prior to supraceliac aortic occlusion group, and the remote ischemic preconditioning prior to supraceliac aortic occlusion group. Tissue samples from the small bowel were used for quantitative morphometric analysis of mucosal injury, and blood samples were collected for laboratory analyses. RESULTS: Supraceliac aortic occlusion decreased intestinal mucosal length by reducing villous height and elevated serum lactic dehydrogenase and lactate levels. Both local and remote ischemic preconditioning mitigated these histopathological and laboratory changes. CONCLUSIONS: Both local and remote ischemic preconditioning protect intestinal mucosa against ischemia and reperfusion injury following supraceliac aortic clamping. PMID:24473514

  13. Heat shock proteins, end effectors of myocardium ischemic preconditioning?

    PubMed Central

    Guisasola, María Concepcion; Desco, Maria del Mar; Gonzalez, Fernanda Silvana; Asensio, Fernando; Dulin, Elena; Suarez, Antonio; Garcia Barreno, Pedro

    2006-01-01

    The purpose of this study was to investigate (1) whether ischemia-reperfusion increased the content of heat shock protein 72 (Hsp72) transcripts and (2) whether myocardial content of Hsp72 is increased by ischemic preconditioning so that they can be considered as end effectors of preconditioning. Twelve male minipigs (8 protocol, 4 sham) were used, with the following ischemic preconditioning protocol: 3 ischemia and reperfusion 5-minute alternative cycles and last reperfusion cycle of 3 hours. Initial and final transmural biopsies (both in healthy and ischemic areas) were taken in all animals. Heat shock protein 72 messenger ribonucleic acid (mRNA) expression was measured by a semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method using complementary DNA normalized against the housekeeping gene cyclophilin. The identification of heat shock protein 72 was performed by immunoblot. In our “classic” preconditioning model, we found no changes in mRNA hsp72 levels or heat shock protein 72 content in the myocardium after 3 hours of reperfusion. Our experimental model is valid and the experimental techniques are appropriate, but the induction of heat shock proteins 72 as end effectors of cardioprotection in ischemic preconditioning does not occur in the first hours after ischemia, but probably at least 24 hours after it, in the so-called “second protection window.” PMID:17009598

  14. Tandem action of exercise training and food restriction completely preserves ischemic preconditioning in the aging heart.

    PubMed

    Abete, P; Testa, G; Galizia, G; Mazzella, F; Della Morte, D; de Santis, D; Calabrese, C; Cacciatore, F; Gargiulo, G; Ferrara, N; Rengo, G; Sica, V; Napoli, C; Rengo, F

    2005-01-01

    Ischemic preconditioning (IP) has been proposed as an endogenous form of protection against ischemia reperfusion injury. IP, however, does not prevent post-ischemic dysfunction in the aging heart but may be partially corrected by exercise training and food restriction. We investigated the role of exercise training combined with food restriction on restoring IP in the aging heart. Effects of IP against ischemia-reperfusion injury in isolated hearts from adult (A, 6 months old), sedentary 'ad libitum' fed (SL), trained ad libitum fed (TL), sedentary food-restricted (SR), trained- and food-restricted senescent rats (TR) (24 months old) were investigated. Norepinephrine release in coronary effluent was determined by high performance liquid cromatography. IP significantly improved final recovery of percent developed pressure in hearts from A (p<0.01) but not in those from SL (p=NS) vs unconditioned controls. Developed pressure recovery was partial in hearts from TL and SR (64.3 and 67.3%, respectively; p<0.05 vs controls) but it was total in those from TR (82.3%, p=NS vs A; p<0.05 vs hearts from TL and SR). Similarly, IP determined a similar increase of norepinephrine release in A (p<0.001) and in TR (p<0.001, p=NS vs adult). IP was abolished by depletion of myocardial norepinephrine stores by reserpine in all groups. Thus, IP reduces post-ischemic dysfunction in A but not in SL. Moreover, IP was preserved partially in TR and SR and totally in TR. Complete IP maybe due to full restoration of norepinephrine release in response to IP stimulus. PMID:15664731

  15. Role of Trimetazidine in Ischemic Preconditioning in Patients With Symptomatic Coronary Artery Disease

    PubMed Central

    Costa, Leandro M.A.; Rezende, Paulo C.; Garcia, Rosa M.R.; Uchida, Augusto H.; Seguro, Luis Fernando B.C.; Scudeler, Thiago L.; Bocchi, Edimar A.; Krieger, Jose E.; Hueb, Whady; Ramires, José Antonio F.; Filho, Roberto Kalil

    2015-01-01

    Abstract Ischemic preconditioning (IP) is a powerful cardioprotective cellular mechanism that has been related to the “warm-up phenomenon” or “walk-through” angina, and has been documented through the use of sequential exercise tests (ETs). It is known that several drugs, for example, cromokalim, pinacidil, adenosine, and nicorandil, can interfere with the cellular pathways of IP. The purpose of this article is to report the effect of the anti-ischemic agent trimetazidine (TMZ) on IP in symptomatic coronary artery disease (CAD) patients. We conducted a prospective study evaluating IP by the analysis of ischemic parameters in 2 sequential ETs. In phase I, without TMZ, patients underwent ET1 and ET2 with a 30-minute interval between them. In phase II, after 1 week of TMZ 35 mg twice daily, all patients underwent 2 consecutive ETs (ET3 and ET4). IP was considered present when the time to 1.0-mm segment ST on electrocardiogram deviation (T-1.0 mm) and rate pressure product (RPP) were greater in the second of 2 tests. The improvement in T-1.0 mm and RPP were compared in the 2 phases: without TMZ and after 1-week TMZ to assess the action of such drug in myocardial protective mechanisms. ETs were analyzed by 2 independent cardiologists. From 135 CAD patients screened, 96 met inclusion criteria and 62 completed the study protocol. Forty patients manifested IP by demonstrating an improvement in T-1.0 mm in ET2 compared with ET1, without the use of any drugs (phase I). In phase II, after 1-week TMZ, 26 patients (65%) did not show any incremental result in ischemic parameters in ET4 compared with ET3. Furthermore, of these patients, 8 (20%) had IP blockage. In this study, TMZ did not add any benefit to IP in patients with stable symptomatic CAD. PMID:26287407

  16. Role of Trimetazidine in Ischemic Preconditioning in Patients With Symptomatic Coronary Artery Disease.

    PubMed

    Costa, Leandro M A; Rezende, Paulo C; Garcia, Rosa M R; Uchida, Augusto H; Seguro, Luis Fernando B C; Scudeler, Thiago L; Bocchi, Edimar A; Krieger, Jose E; Hueb, Whady; Ramires, José Antonio F; Filho, Roberto Kalil

    2015-08-01

    Ischemic preconditioning (IP) is a powerful cardioprotective cellular mechanism that has been related to the "warm-up phenomenon" or "walk-through" angina, and has been documented through the use of sequential exercise tests (ETs). It is known that several drugs, for example, cromokalim, pinacidil, adenosine, and nicorandil, can interfere with the cellular pathways of IP. The purpose of this article is to report the effect of the anti-ischemic agent trimetazidine (TMZ) on IP in symptomatic coronary artery disease (CAD) patients.We conducted a prospective study evaluating IP by the analysis of ischemic parameters in 2 sequential ETs. In phase I, without TMZ, patients underwent ET1 and ET2 with a 30-minute interval between them. In phase II, after 1 week of TMZ 35 mg twice daily, all patients underwent 2 consecutive ETs (ET3 and ET4). IP was considered present when the time to 1.0-mm segment ST on electrocardiogram deviation (T-1.0 mm) and rate pressure product (RPP) were greater in the second of 2 tests. The improvement in T-1.0 mm and RPP were compared in the 2 phases: without TMZ and after 1-week TMZ to assess the action of such drug in myocardial protective mechanisms. ETs were analyzed by 2 independent cardiologists.From 135 CAD patients screened, 96 met inclusion criteria and 62 completed the study protocol. Forty patients manifested IP by demonstrating an improvement in T-1.0 mm in ET2 compared with ET1, without the use of any drugs (phase I). In phase II, after 1-week TMZ, 26 patients (65%) did not show any incremental result in ischemic parameters in ET4 compared with ET3. Furthermore, of these patients, 8 (20%) had IP blockage.In this study, TMZ did not add any benefit to IP in patients with stable symptomatic CAD. PMID:26287407

  17. Ischemic Preconditioning protects hepatocytes from ischemia-reperfusion injury via TGR5-mediated anti-apoptosis.

    PubMed

    Zhuang, Lin; Fan, Ye; Lu, Ling; Ding, Wenbin; Ni, Chuangye; Wang, Xuehao; Zhang, Feng; Rao, Jianhua

    2016-05-13

    Ischemic preconditioning (IP) has been shown to protect hepatic tissue from liver ischemia-reperfusion injury (IRI). TGR5, as a new-type bile acid receptor, has been shown protective roles in several liver diseases. However, the relationship between TGR5 and IP is still unknown. This study investigated effects of IP on TGR5 as well as the roles of TGR5 on hepatic tissue lesions and apoptosis in liver IRI. We showed that TGR5 was significantly upregulated in liver tissues after IP. To further analyzed effects of the TGR5 on liver IRI, wild type and TGR5 knockout mice were used to establish the liver IRI model. IP effectively alleviated liver IRI, but TGR5 deficiency significantly neutralized IP-related liver protection, as evidenced by serum alanine aminotransferase levels, histological liver damage, hepatocellular apoptosis and cytokines expressions. In addition, molecules related to apoptosis were detected by Western Blot, which showed that activation of TGR5 by IP increased expression of Bcl-2, and inhibited expressions of IRAK4 and cleaved caspase-3, but TGR5 deficiency abolished IP-induced expressions of anti-apoptosis molecule. In vitro, effects of TGR5 on hepatocytes were further analyzed by TGR5 agonist (INT-777) and hypoxia/reoxygenation (H/R), which displayed that INT-777 markedly attenuated H/R-induced hepatocellular apoptosis. In conclusion, our study indicates that IP alleviates hepatocellular apoptosis, and reduces liver IRI through TGR5-mediated anti-apoptosis functions. PMID:27045083

  18. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    SciTech Connect

    Li, Zhao; Jin, Zhu-Qiu

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in normal mouse heart. IPC preserves the integrity of TJ structure and function that are vulnerable to IR injury.

  19. Muscle ischemic preconditioning does not improve performance during self-paced exercise.

    PubMed

    Tocco, F; Marongiu, E; Ghiani, G; Sanna, I; Palazzolo, G; Olla, S; Pusceddu, M; Sanna, P; Corona, F; Concu, A; Crisafulli, A

    2015-01-01

    Muscle ischemic preconditioning (IP) has been found to improve exercise performance in laboratory tests. This investigation aims at verifying whether performance is improved by IP during self-paced exercise (SPE) in the field. 11 well-trained male runners performed 3 randomly assigned 5 000 m self-paced running tests on an outdoor track. One was the reference (RT) test, while the others were performed following muscle IP (IPT) and a control sham test (ST). Average speeds were measured during each test. Mean values in oxygen uptake (VO2), aerobic energy cost (AEC) during race and post-race blood lactate (BLa) were gathered. Data showed that none of the studied variables were affected by IPT or ST with respect to the RT test. Average speeds were 4.63±0.31, 4.62±0.31 and 4.60±0.25 m·s(-1) for the RT, the ST and the IPT tests, respectively. Moreover, there was no difference among tests in speed reached during each lap. VO2 was 3.5±0.69, 3.74±0.85 and 3.62±1.19 l·min(-1). AEC was 1.04±0.15, 1.08±0.1 and 1.09±0.15 kcal·kg(-1)·km(-1). Finally, post-race BLa levels reached 12.85±3.54, 11.88±4.74 and 12.82±3.6 mmol·l(-1). These findings indicate that performance during SPE is not ameliorated by ischemic preconditioning, thereby indicating that IP is not suitable as an ergogenic aid. PMID:25264861

  20. Ischemic Preconditioning and Placebo Intervention Improves Resistance Exercise Performance.

    PubMed

    Marocolo, Moacir; Willardson, Jeffrey M; Marocolo, Isabela C; Ribeiro da Mota, Gustavo; Simão, Roberto; Maior, Alex S

    2016-05-01

    Marocolo, M, Willardson, JM, Marocolo, IC, da Mota, GR, Simão, R, and Maior, AS. Ischemic preconditioning and PLACEBO intervention improves resistance exercise performance. J Strength Cond Res 30(5): 1462-1469, 2016-This study evaluated the effect of ischemic preconditioning (IPC) on resistance exercise performance in the lower limbs. Thirteen men participated in a randomized crossover design that involved 3 separate sessions (IPC, PLACEBO, and control). A 12-repetition maximum (12RM) load for the leg extension exercise was assessed through test and retest sessions before the first experimental session. The IPC session consisted of 4 cycles of 5 minutes of occlusion at 220 mm Hg of pressure alternated with 5 minutes of reperfusion at 0 mm Hg for a total of 40 minutes. The PLACEBO session consisted of 4 cycles of 5 minutes of cuff administration at 20 mm Hg of pressure alternated with 5 minutes of pseudo-reperfusion at 0 mm Hg for a total of 40 minutes. The occlusion and reperfusion phases were conducted alternately between the thighs, with subjects remaining seated. No ischemic pressure was applied during the control (CON) session and subjects sat passively for 40 minutes. Eight minutes after IPC, PLACEBO, or CON, subjects performed 3 repetition maximum sets of the leg extension (2-minute rest between sets) with the predetermined 12RM load. Four minutes after the third set for each condition, blood lactate was assessed. The results showed that for the first set, the number of repetitions significantly increased for both the IPC (13.08 ± 2.11; p = 0.0036) and PLACEBO (13.15 ± 0.88; p = 0.0016) conditions, but not for the CON (11.88 ± 1.07; p > 0.99) condition. In addition, the IPC and PLACEBO conditions resulted insignificantly greater repetitions vs. the CON condition on the first set (p = 0.015; p = 0.007) and second set (p = 0.011; p = 0.019), but not on the third set (p = 0.68; p > 0.99). No difference (p = 0.465) was found in the fatigue index and lactate concentration between conditions. These results indicate that IPC and PLACEBO IPC may have small beneficial effects on repetition performance over a CON condition. Owing to potential for greater discomfort associated with the IPC condition, it is suggested that ischemic preconditioning might be practiced gradually to assess tolerance and potential enhancements to exercise performance. PMID:26466134

  1. Liver ischemia contributes to early islet failure following intraportal transplantation: benefits of liver ischemic-preconditioning.

    PubMed

    Yin, D; Ding, J W; Shen, J; Ma, L; Hara, M; Chong, A S

    2006-01-01

    Early graft failure following intraportal islet transplantation (IPIT) represents a major obstacle for successful islet transplantation. Here, we examined the role of islet emboli in the induction of early graft failure and utilized a strategy of ischemic-preconditioning (IP) to prevent early islet destruction in a model of syngeneic IPIT in STZ-induced diabetic mice. Numerous focal areas of liver necrosis associated with the islet emboli were observed within 24 h post-IPIT. Pro-inflammatory cytokines, IL-1beta and IL-6, were significantly increased 3 h after IPIT, while TNF-alpha was elevated for up to 5 days post-IPIT. Caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive cells were observed in the transplanted islets trapped in areas of necrotic liver at 3 h and 1 day post-IPIT. Hyperglycemia was corrected immediately following IPIT of 200 islets, but recurrence of hyperglycemia was observed within 14 days associated with a poor response to glucose challenge. IP, a procedure of pre-exposure of the liver to transient ischemia and reperfusion, protected the liver from embolism-induced ischemic injury and prevented early islet graft failure. These data suggest that islet embolism in the portal vein is a major cause of functional loss following IPIT that can be prevented by liver IP. PMID:16433757

  2. Remote preconditioning and cardiac surgery: regrouping after Remote Ischemic Preconditioning for Heart Surgery (RIPHeart) and Effect of Remote Ischemic Preconditioning on Clinical Outcomes in Patients Undergoing Coronary Artery Bypass Surgery (ERICCA).

    PubMed

    Cheung, Cherry X; Healy, Donagh A; Walsh, Stewart R

    2016-03-01

    Remote ischaemic preconditioning (RIPC) is an attractive cardioprotective strategy. Although results from animal studies and phase II study on humans are convincing, it cannot have a role in clinical practice until benefits in clinical outcomes are proven in phase III study. Two phase III studies were recently published [Remote Ischemic Preconditioning for Heart Surgery (RIPHeart) and Effect of Remote Ischemic Preconditioning on Clinical Outcomes in Patients Undergoing Coronary Artery Bypass Surgery (ERICCA)] and this article discusses their design, results and implications. PMID:27076969

  3. Ameliorative Effect of Recombinant Human Erythropoietin and Ischemic Preconditioning on Renal Ischemia Reperfusion Injury in Rats

    PubMed Central

    Elshiekh, Mohammed; Kadkhodaee, Mehri; Seifi, Behjat; Ranjbaran, Mina; Ahghari, Parisa

    2015-01-01

    Background: Ischemia-reperfusion (IR) injury is one of the most common causes of renal dysfunction. There is increasing evidence about the role of the reactive oxygen species (ROS) in these injuries and endogenous antioxidants seem to have an important role in decreasing the renal tissue injury. Objectives: The aim of this study was to compare the effect of recombinant human erythropoietin (EPO) and ischemic preconditioning (IPC) on renal IR injury. Materials and Methods: Twenty four male Wistar rats were allocated into four experimental groups: sham-operated, IR, EPO + IR, and IPC + IR. Rats were underwent 50 minutes bilateral ischemia followed by 24 hours reperfusion. Erythropoietin (5000 IU/kg, i.p) was administered 30 minutes before onset of ischemia. Ischemic preconditioning was performed by three cycles of 3 minutes ischemia followed by 3 minutes reperfusion. Plasma concentrations of urea and creatinine were measured. Kidney samples were taken for reactive oxidative species (ROS) measurement including superoxide dismutase (SOD) activity, glutathione (GSH) contents, and malondialdehyde (MDA) levels. Results: Compared to the sham group, IR led to renal dysfunction as evidenced by significantly higher plasma urea and creatinine. Treatment with EPO or IPC decreased urea, creatinine, and renal MDA levels and increased SOD activity and GSH contents in the kidney. Conclusions: Pretreatment with EPO and application of IPC significantly ameliorated the renal injury induced by bilateral renal IR. However, both treatments attenuated renal dysfunction and oxidative stress in kidney tissues. There were no significant differences between pretreatment with EPO or application of IPC. PMID:26866008

  4. Remote Ischemic Preconditioning (RIPC) Modifies Plasma Proteome in Humans

    PubMed Central

    Hepponstall, Michele; Ignjatovic, Vera; Binos, Steve; Monagle, Paul; Jones, Bryn; Cheung, Michael H. H.; d’Udekem, Yves; Konstantinov, Igor E.

    2012-01-01

    Remote Ischemic Preconditioning (RIPC) induced by brief episodes of ischemia of the limb protects against multi-organ damage by ischemia-reperfusion (IR). Although it has been demonstrated that RIPC affects gene expression, the proteomic response to RIPC has not been determined. This study aimed to examine RIPC induced changes in the plasma proteome. Five healthy adult volunteers had 4 cycles of 5 min ischemia alternating with 5 min reperfusion of the forearm. Blood samples were taken from the ipsilateral arm prior to first ischaemia, immediately after each episode of ischemia as well as, at 15 min and 24 h after the last episode of ischemia. Plasma samples from five individuals were analysed using two complementary techniques. Individual samples were analysed using 2Dimensional Difference in gel electrophoresis (2D DIGE) and mass spectrometry (MS). Pooled samples for each of the time-points underwent trypsin digestion and peptides generated were analysed in triplicate using Liquid Chromatography and MS (LC-MS). Six proteins changed in response to RIPC using 2D DIGE analysis, while 48 proteins were found to be differentially regulated using LC-MS. The proteins of interest were involved in acute phase response signalling, and physiological molecular and cellular functions. The RIPC stimulus modifies the plasma protein content in blood taken from the ischemic arm in a cumulative fashion and evokes a proteomic response in peripheral blood. PMID:23139772

  5. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection

    PubMed Central

    2010-01-01

    Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells. PMID:20298534

  6. Peripheral Vascular Disease as Remote Ischemic Preconditioning for Acute Stroke

    PubMed Central

    Connolly, Mark; Bilgin-Freiert, Arzu; Ellingson, Benjamin; Dusick, Joshua R.; Liebeskind, David; Saver, Jeff; Gonzalez, Nestor R.

    2013-01-01

    Obectives Remote ischemic preconditioning (RIPC) is a powerful endogenous mechanism whereby a brief period of ischemia is capable of protecting remote tissues from subsequent ischemic insult. While this phenomenon has been extensively studied in the heart and brain in animal models, little work has been done to explore the effects of RIPC in human patients with acute cerebral ischemia. This study investigates whether chronic peripheral hypoperfusion, in the form of pre-existing arterial peripheral vascular disease (PVD) that has not been surgically treated, is capable of inducing neuroprotective effects for acute ischemic stroke. Methods Individuals with PVD who had not undergone prior surgical treatment were identified from a registry of stroke patients. A control group within the same database was identified by matching patient’s demographics and risk factors. The two groups were compared in terms of outcome by NIH Stroke Scale (NIHSS), modified Rankin Scale (mRS), mortality, and volume of infarcted tissue at presentation and at discharge. Results The matching algorithm identified 26 pairs of PVD-control patients (9 pairs were female and 17 pairs were male). Age range was 20 to 93 years (mean 73). The PVD group was found to have significantly lower NIHSS scores at admission (NIHSS ≤ 4: PVD 47.1%, Control 4.35%, p < 0.003), significantly more favorable outcomes at discharge (mRS ≤ 2: PVD 30.8%, Control 3.84%, p < 0.012), and a significantly lower mortality rate (PVD 26.9%, Control 57.7% p=0.024). Mean acute stroke volume at admission and at discharge were significantly lower for the PVD group (Admission: PVD 39.6mL, Control 148.3mL, p < 0.005 and Discharge: PVD 111.7mL, Control 275mL, p < 0.001). Conclusion Chronic limb hypoperfusion induced by PVD can potentially produce a neuroprotective effect in acute ischemic stroke. This effect resembles the neuroprotection induced by RIPC in preclinical models. PMID:23958050

  7. Inducible nitric oxide synthase inhibitors abolished histological protection by late ischemic preconditioning in rat retina.

    PubMed

    Sakamoto, Kenji; Yonoki, Yuzuru; Kubota, Yuko; Kuwagata, Mayumi; Saito, Maki; Nakahara, Tsutomu; Ishii, Kunio

    2006-03-01

    Brief ischemia was reported to protect retinal cells against injury induced by subsequent ischemia-reperfusion with de novo protein synthesis, and this phenomenon is known as late ischemic preconditioning. The aims of the present study were to determine whether nitric oxide synthase (NOS) was involved in the mechanism of late ischemic preconditioning in rat retina using pharmacological tools. Under anesthesia with pentobarbital sodium, male Sprague-Dawley rats were subjected to 60 min of retinal ischemia by raising intraocular pressure to 130 mm Hg. Ischemic preconditioning was achieved by applying 5 min of ischemia 24 hrs before 60 min of ischemia. Retinal sections sliced into 5 microm thick were examined 7 days after ischemia. Additional groups of rats received NG-nitro-L-arginine and NG-monomethyl-L-arginin, non-selective NO synthase inhibitors, 7-nitroindazole, a neuronal NOS inhibitor, and aminoguanidine and L-N6-(1-iminoethyl) lysine, inducible NO synthase (iNOS) inhibitors before preconditioning, and were subjected to 60 min of ischemia. In the non-preconditioned group, cell loss in the ganglion cell layer and thinning of the inner plexiform and inner nuclear layer were observed 7 days after 60 min of ischemia. Ischemic preconditioning for 5 min completely protected against the histological damage induced by 60 min of ischemia applied 24 hrs thereafter. Treatment of rats with aminoguanidine and L-N6-(1-iminoethyl) lysine, but not NG-nitro-L-arginine, NG-monomethyl-L-arginine or 7-nitroindazole, wiped off the protective effect of ischemic preconditioning. The inhibitory effect of aminoguanidine was abolished by L-arginine, but not D-arginine. The results in the present study suggest that NO synthesized by iNOS is involved in the histological protection by late ischemic preconditioning in rat retina. PMID:16198335

  8. The P2X4 receptor is required for neuroprotection via ischemic preconditioning

    PubMed Central

    Ozaki, Tomohiko; Muramatsu, Rieko; Sasai, Miwa; Yamamoto, Masahiro; Kubota, Yoshiaki; Fujinaka, Toshiyuki; Yoshimine, Toshiki; Yamashita, Toshihide

    2016-01-01

    Ischemic preconditioning (IPC), a procedure consisting of transient ischemia and subsequent reperfusion, provides ischemic tolerance against prolonged ischemia in the brain. Although the blood flow changes mediated by IPC are primarily perceived by vascular endothelial cells, the role of these cells in ischemic tolerance has not been fully clarified. In this study, we found that the P2X4 receptor, which is abundantly expressed in vascular endothelial cells, is required for ischemic tolerance following middle artery occlusion (MCAO) in mice. Mechanistically, the P2X4 receptor was stimulated by fluid shear stress, which mimics reperfusion, thus promoting the increased expression of osteopontin, a neuroprotective molecule. Furthermore, we found that the intracerebroventricular administration of osteopontin was sufficient to exert a neuroprotective effect mediated by preconditioning-stimulated P2X4 receptor activation. These results demonstrate a novel mechanism whereby vascular endothelial cells are involved in ischemic tolerance. PMID:27173846

  9. Protective Effect of Ischemic Preconditioning on Cold Preservation and Reperfusion Injury Associated With Rat Intestinal Transplantation

    PubMed Central

    Sola, Anna; De Oca, Javier; Gonzlez, Rosario; Prats, Neus; Rosell-Catafau, Joan; Gelp, Emilio; Jaurrieta, Eduardo; Hotter, Georgina

    2001-01-01

    Objective To define the protective effect of ischemic preconditioning on cold ischemia and reperfusion injury associated with intestinal transplantation, and the role of nitric oxide in this process. Summary Background Data Ischemia/reperfusion injury continues to be a significant obstacle in small bowel transplantation. Preconditioning is a mechanism that protects against this injury. Methods To study the capacity of preconditioning to prevent cold ischemia-associated injury and the inflammatory response associated with intestinal transplantation, the authors studied a control group of animals, cold ischemia groups with or without previous preconditioning and with or without previous administration of L-NAME or NONOS, and intestinal transplantation groups with or without previous preconditioning and with or without previous administration of L-NAME or NONOS. Results Histologic findings and the release of lactate dehydrogenase into the preservation solution showed that preconditioning protects against cold ischemic preservation-associated injury. Preconditioning also prevented the inflammatory response associated with intestinal transplantation, measured by the above parameters and by neutrophil recruitment in the intestine. Inhibition of nitric oxide eliminates the protective effect. Conclusions Preconditioning protects the intestinal grafts from cold preservation and reperfusion injury in the rat intestinal transplantation model. Nitric oxide is involved in this protection. PMID:11420489

  10. Ischemic preconditioning affects long-term cell fate through DNA damage-related molecular signaling and altered proliferation.

    PubMed

    Kapoor, Sorabh; Berishvili, Ekaterine; Bandi, Sriram; Gupta, Sanjeev

    2014-10-01

    Despite the potential of ischemic preconditioning for organ protection, long-term effects in terms of molecular processes and cell fates are ill defined. We determined consequences of hepatic ischemic preconditioning in rats, including cell transplantation assays. Ischemic preconditioning induced persistent alterations; for example, after 5 days liver histology was normal, but γ-glutamyl transpeptidase expression was observed, with altered antioxidant enzyme content, lipid peroxidation, and oxidative DNA adducts. Nonetheless, ischemic preconditioning partially protected from toxic liver injury. Similarly, primary hepatocytes from donor livers preconditioned with ischemia exhibited undesirably altered antioxidant enzyme content and lipid peroxidation, but better withstood insults. However, donor hepatocytes from livers preconditioned with ischemia did not engraft better than hepatocytes from control livers. Moreover, proliferation of hepatocytes from donor livers preconditioned with ischemia decreased under liver repopulation conditions. Hepatocytes from donor livers preconditioned with ischemia showed oxidative DNA damage with expression of genes involved in MAPK signaling that impose G1/S and G2/M checkpoint restrictions, including p38 MAPK-regulated or ERK-1/2-regulated cell-cycle genes such as FOS, MAPK8, MYC, various cyclins, CDKN2A, CDKN2B, TP53, and RB1. Thus, although ischemic preconditioning allowed hepatocytes to better withstand secondary insults, accompanying DNA damage and molecular events simultaneously impaired their proliferation capacity over the long term. Mitigation of ischemic preconditioning-induced DNA damage and deleterious molecular perturbations holds promise for advancing clinical applications. PMID:25128377

  11. Ischemic Preconditioning Affects Long-Term Cell Fate through DNA DamageRelated Molecular Signaling and Altered Proliferation

    PubMed Central

    Kapoor, Sorabh; Berishvili, Ekaterine; Bandi, Sriram; Gupta, Sanjeev

    2015-01-01

    Despite the potential of ischemic preconditioning for organ protection, long-term effects in terms of molecular processes and cell fates are ill defined. We determined consequences of hepatic ischemic preconditioning in rats, including cell transplantation assays. Ischemic preconditioning induced persistent alterations; for example, after 5 days liver histology was normal, but ?-glutamyl transpeptidase expression was observed, with altered antioxidant enzyme content, lipid peroxidation, and oxidative DNA adducts. Nonetheless, ischemic preconditioning partially protected from toxic liver injury. Similarly, primary hepatocytes from donor livers preconditioned with ischemia exhibited undesirably altered antioxidant enzyme content and lipid peroxidation, but better withstood insults. However, donor hepatocytes from livers preconditioned with ischemia did not engraft better than hepatocytes from control livers. Moreover, proliferation of hepatocytes from donor livers preconditioned with ischemia decreased under liver repopulation conditions. Hepatocytes from donor livers preconditioned with ischemia showed oxidative DNA damage with expression of genes involved in MAPK signaling that impose G1/S and G2/M checkpoint restrictions, including p38 MAPKregulated or ERK-1/2regulated cell-cycle genes such as FOS, MAPK8, MYC, various cyclins, CDKN2A, CDKN2B, TP53, and RB1. Thus, although ischemic preconditioning allowed hepatocytes to better withstand secondary insults, accompanying DNA damage and molecular events simultaneously impaired their proliferation capacity over the long term. Mitigation of ischemic preconditioninginduced DNA damage and deleterious molecular perturbations holds promise for advancing clinical applications. PMID:25128377

  12. Resistance of the myocardium to ischemia and the efficacy of ischemic preconditioning in experimental diabetes mellitus.

    PubMed

    Galagudza, M M; Nekrasova, M K; Syrenskii, A V; Nifontov, E M

    2007-06-01

    Data on the influences of diabetes mellitus on the severity of ischemic damage to the myocardium are contradictory. We report here experiments using a model based on in vivo myocardial infarcts resulting from coronary occlusion to study the resistance of the myocardium in rats with alloxan-induced insulin-dependent diabetes mellitus to prolonged ischemia, along with studies of the infarct-limiting efficacy of ischemic preconditioning. The results showed that after diabetes mellitus for six weeks, the relative size of infarcts was significantly less than in controls (39.8 +/- 8.8 and 62.3 +/- 6.6% of the size of the anatomical risk zone respectively, p < 0.01). In addition, animals with diabetes mellitus developed ischemic ventricular tachyarrhythmia significantly less often than controls. A single episode of ischemic preconditioning in animals with diabetes mellitus had a less marked infarct-limiting effect than the same procedure in controls. Thus, these data support the existence of an endogenous cardioprotective phenotype (metabolic preconditioning) in experimental diabetes. On the other hand, the efficacy of ischemic preconditioning was sharply decreased in diabetes. PMID:17505800

  13. Effects of ischemic preconditioning in a pig model of large-for-size liver transplantation

    PubMed Central

    Leal, Antonio José Gonçalves; Tannuri, Ana Cristina Aoun; Belon, Alessandro Rodrigo; Guimarães, Raimundo Renato Nunes; Coelho, Maria Cecília Mendonça; de Oliveira Gonçalves, Josiane; Serafini, Suellen; de Melo, Evandro Sobroza; Tannuri, Uenis

    2015-01-01

    OBJECTIVE: In most cases of pediatric liver transplantation, the clinical scenario of large-for-size transplants can lead to hepatic dysfunction and a decreased blood supply to the liver graft. The objective of the present experimental investigation was to evaluate the effects of ischemic preconditioning on this clinical entity. METHODS: Eighteen pigs were divided into three groups and underwent liver transplantation: a control group, in which the weights of the donors were similar to those of the recipients, a large-for-size group, and a large-for-size + ischemic preconditioning group. Blood samples were collected from the recipients to evaluate the pH and the sodium, potassium, aspartate aminotransferase and alanine aminotransferase levels. In addition, hepatic tissue was sampled from the recipients for histological evaluation, immunohistochemical analyses to detect hepatocyte apoptosis and proliferation and molecular analyses to evaluate the gene expression of Bax (pro-apoptotic), Bcl-XL (anti-apoptotic), c-Fos and c-Jun (immediate-early genes), ischemia-reperfusion-related inflammatory cytokines (IL-1, TNF-alpha and IL-6, which is also a stimulator of hepatocyte regeneration), intracellular adhesion molecule, endothelial nitric oxide synthase (a mediator of the protective effect of ischemic preconditioning) and TGF-beta (a pro-fibrogenic cytokine). RESULTS: All animals developed acidosis. At 1 hour and 3 hours after reperfusion, the animals in the large-for-size and large-for-size + ischemic preconditioning groups had decreased serum levels of Na and increased serum levels of K and aspartate aminotransferase compared with the control group. The molecular analysis revealed higher expression of the Bax, TNF-alpha, I-CAM and TGF-beta genes in the large-for-size group compared with the control and large-for-size + ischemic preconditioning groups. Ischemic preconditioning was responsible for an increase in c-Fos, IL-1, IL-6 and e-NOS gene expression. CONCLUSION: Ischemia-reperfusion injury in this model of large-for-size liver transplantation could be partially attenuated by ischemic preconditioning. PMID:25789522

  14. Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury.

    PubMed

    Sun, Hong-Shuo; Xu, Baofeng; Chen, Wenliang; Xiao, Aijiao; Turlova, Ekaterina; Alibraham, Ammar; Barszczyk, Andrew; Bae, Christine Y J; Quan, Yi; Liu, Baosong; Pei, Lin; Sun, Christopher L F; Deurloo, Marielle; Feng, Zhong-Ping

    2015-01-01

    Neonatal hypoxic-ischemic brain injury and its related illness hypoxic-ischemic encephalopathy (HIE) are major causes of nervous system damage and neurological morbidity in children. Hypoxic preconditioning (HPC) is known to be neuroprotective in cerebral ischemic brain injury. K(ATP) channels are involved in ischemic preconditioning in the heart; however the involvement of neuronal K(ATP) channels in HPC in the brain has not been fully investigated. In this study, we investigated the role of HPC in hypoxia-ischemia (HI)-induced brain injury in postnatal seven-day-old (P7) CD1 mouse pups. Specifically, TTC (2,3,5-triphenyltetrazolium chloride) staining was used to assess the infarct volume, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling) to detect apoptotic cells, Western blots to evaluate protein level, and patch-clamp recordings to measure K(ATP) channel current activities. Behavioral tests were performed to assess the functional recovery after hypoxic-ischemic insults. We found that hypoxic preconditioning reduced infarct volume, decreased the number of TUNEL-positive cells, and improved neurobehavioral functional recovery in neonatal mice following hypoxic-ischemic insults. Pre-treatment with a K(ATP) channel blocker, tolbutamide, inhibited hypoxic preconditioning-induced neuroprotection and augmented neurodegeneration following hypoxic-ischemic injury. Pre-treatment with a K(ATP) channel opener, diazoxide, reduced infarct volume and mimicked hypoxic preconditioning-induced neuroprotection. Hypoxic preconditioning induced upregulation of the protein level of the Kir6.2 isoform and enhanced current activities of K(ATP) channels. Hypoxic preconditioning restored the HI-reduced PKC and pAkt levels, and reduced caspase-3 level, while tolbutamide inhibited the effects of hypoxic preconditioning. We conclude that K(ATP) channels are involved in hypoxic preconditioning-induced neuroprotection in neonatal hypoxic-ischemic brain injury. K(ATP) channel openers may therefore have therapeutic effects in neonatal hypoxic-ischemic brain injury. PMID:25448006

  15. Angiotensin II and ischemic preconditioning synergize to improve mitochondrial function while showing additive effects on ventricular post-ischemic recovery

    PubMed Central

    Nuñez, Rebeca E.; Castro, Miriam; Javadov, Sabzali; Escobales, Nelson

    2014-01-01

    Recent studies indicate that the cardioprotective effects of ischemic preconditioning (IPC) against sustained ischemia/reperfusion (IR) can be replicated by angiotensin II (Ang II). However, it is not clear whether IPC and Ang II-induced preconditioning (APC) act through similar mechanisms or synergize to enhance cardioprotection. In this study, Langendorff-perfused rat hearts were subjected to IPC, APC or their combination (IPC/APC) followed by IR. IPC and less potently APC, significantly increased the percent recovery of the left ventricular developed-pressure, the first derivative of developed pressure and the rate pressure product compared to control. Furthermore, the post-ischemic recovery of the heart was significantly higher for IPC/APC compared to IPC or APC. The improvements in cardiac function by IPC, APC and IPC/APC were associated with similar reductions in LDH release and infarct size. However, a significant improvement in mitochondrial respiration was observed with IPC/APC. The post-ischemic recovery observed with APC and IPC/APC was inhibited by treatment with losartan, an Ang II type-1 receptor blocker, during the preconditioning phase but not by chelerythrine, a pan-PKC inhibitor. Both drugs, however, abolished the enhanced mitochondrial respiration by IPC/APC. Altogether, these results indicate that APC and IPC interact through mechanisms that enhance cardioprotection by affecting cardiac function and mitochondrial respiration. PMID:24705171

  16. Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats

    PubMed Central

    Ji, Yuan-Yuan; Wang, Zhi-Dong; Wang, Shu-Feng; Wang, Bao-Tai; Yang, Zheng-An; Zhou, Xiao-Rong; Lei, Ni-Na; Yue, Wei-Na

    2015-01-01

    AIM: To evaluate preventative effects of ischemic preconditioning (IP) in a rat model of intestinal injury induced by ischemia-reperfusion (IR). METHODS: Male Sprague-Dawley rats (250-300 g) were fasted for 24 h with free access to water prior to the operation. Eighteen rats were randomly divided into three experimental groups: S group (n = 6), rats were subjected to isolation of the superior mesenteric artery (SMA) for 40 min, then the abdomen was closed; IR group (n = 6), rats were subjected to clamping the SMA 40 min, and the abdomen was closed followed by a 4-h reperfusion; IP group (n = 6) rats underwent three cycles of 5 min ischemia and 5 min reperfusion, then clamping of the SMA for 40 min, then the abdomen was closed and a 4-h reperfusion followed. All animals were euthanized by barbiturate overdose (150 mg/kg pentobarbital sodium, i.v.) for tissue collection, and the SMA was isolated via median abdominal incision. Intestinal histologic injury was observed. Malondialdehyde (MDA), myeloperoxidase (MPO) and tumor necrosis factor (TNF)-α concentrations in intestinal tissue were measured. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression, as well as nuclear factor (NF)-κB activity and expression in intestinal tissue were also determined. RESULTS: Compared with the IR group, IP reduced IR-induced histologic injury of the intestine in rats (2.00 ± 0.71 vs 3.60 ± 0.84, P < 0.05). IP significantly inhibited the increase in MDA content (5.6 ± 0.15 μmol/L vs 6.84 ± 0.18 μmol/L, P < 0.01), MPO activity (0.13 ± 0.01 U/L vs 0.24 ± 0.01 U/L, P < 0.01), and TNF-α levels (7.79 ± 2.35 pg/mL vs 10.87 ± 2.48 pg/mL, P < 0.05) in the intestinal tissue of rats. IP also markedly ameliorated the increase in ICAM-1 (204.67 ± 53.27 vs 353.33 ± 45.19, P < 0.05) and VCAM-1 (256.67 ± 58.59 vs 377.33 ± 41.42, P < 0.05) protein expression in the intestinal tissues. Additionally, IP remarkably decreased NF-κB activity (0.48 ± 0.16 vs 0.76 ± 0.22, P < 0.05) and protein expression (320.23 ± 38.16 vs 520.76 ± 40.53, P < 0.01) in rat intestinal tissue. CONCLUSION: IP may protect against IR-induced intestinal injury by attenuation of the neutrophil-endothelial adhesion cascade via reducing ICAM-1 and VCAM-1 expression and TNF-α-induced NF-κB signaling pathway activity. PMID:26185379

  17. Influence of ischemic preconditioning on intracellular sodium, pH, and cellular energy status in isolated perfused heart.

    PubMed

    Babsky, Andriy; Hekmatyar, Shahryar; Wehrli, Suzanne; Doliba, Nicolai; Osbakken, Mary; Bansal, Navin

    2002-07-01

    The possible relationships between intracellular Na(+) (Na(i)(+)), bioenergetic status and intracellular pH (pH(i)) in the mechanism for ischemic preconditioning were studied using (23)Na and (31)P magnetic resonance spectroscopy in isolated Langendorff perfused rat heart. The ischemic preconditioning (three 5-min ischemic episodes followed by two 5-min and one 10-min period of reperfusion) prior to prolonged ischemia (20 min stop-flow) resulted in a decrease in ischemic acidosis and faster and complete recovery of cardiac function (ventricular developed pressure and heart rate) after 30 min of reperfusion. The response of Na(i) during ischemia in the preconditioned hearts was characterized by an increase in Na(i)(+) at the end of preconditioning and an accelerated decrease during the first few minutes of reperfusion. During post-ischemic reperfusion, bioenergetic parameters (PCr/P(i) and betaATP/P(i) ratios) were partly recovered without any significant difference between control and preconditioned hearts. The reduced acidosis during prolonged ischemia and the accelerated decrease in Na(i)(+) during reperfusion in the preconditioned hearts suggest activation of Na(+)/H(+) exchanger and other ion transport systems during preconditioning, which may protect the heart from intracellular acidosis during prolonged ischemia, and result in better recovery of mechanical function (LVDP and heart rate) during post-ischemic reperfusion. PMID:12094017

  18. Remote ischemic preconditioning for kidney protection: GSK3β-centric insights into the mechanism of action.

    PubMed

    Liu, Zhangsuo; Gong, Rujun

    2015-11-01

    Preventing acute kidney injury (AKI) in high-risk patients following medical interventions is a paramount challenge for clinical practice. Recent data from animal experiments and clinical trials indicate that remote ischemic preconditioning, represented by limb ischemic preconditioning, confers a protective action on the kidney. Ischemic preconditioning is effective in reducing the risk for AKI following cardiovascular interventions and the use of iodinated radiocontrast media. Nevertheless, the underlying mechanisms for this protective effect are elusive. A protective signal is conveyed from the remote site undergoing ischemic preconditioning, such as the limb, to target organs, such as the kidney, by multiple potential communication pathways, which may involve humoral, neuronal, and systemic mechanisms. Diverse transmitting pathways trigger a variety of signaling cascades, including the reperfusion injury salvage kinase and survivor activating factor enhancement pathways, all of which converge on glycogen synthase kinase 3β (GSK3β). Inhibition of GSK3β subsequent to ischemic preconditioning reinforces the Nrf2-mediated antioxidant defense, diminishes the nuclear factor-κB-dependent proinflammatory response, and exerts prosurvival effects ensuing from the desensitized mitochondria permeability transition. Thus, therapeutic targeting of GSK3β by ischemic preconditioning or by pharmacologic preconditioning with existing US Food and Drug Administration-approved drugs having GSK3β-inhibitory activities might represent a pragmatic and cost-effective adjuvant strategy for kidney protection and prophylaxis against AKI. PMID:26271146

  19. Renal Ischemia/Reperfusion Injury in Diabetic Rats: The Role of Local Ischemic Preconditioning.

    PubMed

    Ozbilgin, Sule; Ozkardesler, Sevda; Akan, Mert; Boztas, Nilay; Ozbilgin, Mucahit; Ergur, Bekir Ugur; Derici, Serhan; Guneli, Mehmet Ensari; Meseri, Reci

    2016-01-01

    Background. The aim of this study was to evaluate the effects of local ischemic preconditioning using biochemical markers and histopathologically in the diabetic rat renal IR injury model. Methods. DM was induced using streptozotocin. Rats were divided into four groups: Group I, nondiabetic sham group (n = 7), Group II, diabetic sham group (n = 6), Group III, diabetic IR group (diabetic IR group, n = 6), and Group IV, diabetic IR + local ischemic preconditioning group (diabetic IR + LIPC group, n = 6). Ischemic renal injury was induced by clamping the bilateral renal artery for 45 min. 4 h following ischemia, clearance protocols were applied to assess biochemical markers and histopathologically in rat kidneys. Results. The histomorphologic total cell injury scores of the nondiabetic sham group were significantly lower than diabetic sham, diabetic IR, and diabetic IR + LIPC groups. Diabetic IR group scores were not significantly different than the diabetic sham group. But diabetic IR + LIPC group scores were significantly higher than the diabetic sham and diabetic IR groups. Conclusion. Local ischemic preconditioning does not reduce the risk of renal injury induced by ischemia/reperfusion in diabetic rat model. PMID:26925416

  20. Renal Ischemia/Reperfusion Injury in Diabetic Rats: The Role of Local Ischemic Preconditioning

    PubMed Central

    Ozbilgin, Sule; Ozkardesler, Sevda; Akan, Mert; Boztas, Nilay; Ozbilgin, Mucahit; Ergur, Bekir Ugur; Derici, Serhan; Guneli, Mehmet Ensari; Meseri, Reci

    2016-01-01

    Background. The aim of this study was to evaluate the effects of local ischemic preconditioning using biochemical markers and histopathologically in the diabetic rat renal IR injury model. Methods. DM was induced using streptozotocin. Rats were divided into four groups: Group I, nondiabetic sham group (n = 7), Group II, diabetic sham group (n = 6), Group III, diabetic IR group (diabetic IR group, n = 6), and Group IV, diabetic IR + local ischemic preconditioning group (diabetic IR + LIPC group, n = 6). Ischemic renal injury was induced by clamping the bilateral renal artery for 45 min. 4 h following ischemia, clearance protocols were applied to assess biochemical markers and histopathologically in rat kidneys. Results. The histomorphologic total cell injury scores of the nondiabetic sham group were significantly lower than diabetic sham, diabetic IR, and diabetic IR + LIPC groups. Diabetic IR group scores were not significantly different than the diabetic sham group. But diabetic IR + LIPC group scores were significantly higher than the diabetic sham and diabetic IR groups. Conclusion. Local ischemic preconditioning does not reduce the risk of renal injury induced by ischemia/reperfusion in diabetic rat model. PMID:26925416

  1. Involvement of GSK-3β in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart.

    PubMed

    Yadav, Harlokesh Narayan; Singh, Manjeet; Sharma, P L

    2010-10-01

    Ischemic preconditioning (IPC) produces cardioprotection by phosphorylation of glycogen synthase kinase-3β (GSK-3β) that inhibits the opening of mitochondrial permeability transition pore (MPTP). The activity of glycogen GSK-3β is elevated during diabetes mellitus (DM). This study investigated the role of GSK-3β in attenuation of cardioprotective effect of IPC in diabetic rat. DM was induced by single administration of streptozotocin (STZ, 50 mg/kg, i.p.). Isolated perfused heart was subjected to 30 min of ischemia followed by 120 min of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was analyzed in coronary effluent. IPC significantly decreased myocardial infarct size and release of LDH and CK-MB from normal rat heart. The cardioprotective effect of IPC was significantly attenuated in diabetic rat. Four episodes of preconditioning by either of GSK-3β inhibitors, lithium chloride (LiCl, 20 mM), indirubin-3 monooxime (1 μM), and SB216763 (3 μM) significantly reduced the LDH and CK-MB release and decreased infarct size in diabetic rat heart. Perfusion of atractyloside, an opener of MPTP, significantly attenuated, the cardioprotective effect of IPC in normal rat heart, and of GSK-3β inhibitor induced preconditioning in the DM rat heart. Our results suggest that preconditioning with GSK-3β inhibitors in diabetic rat heart may provide a more consistent cardioprotection, as compared to IPC. Also, the mechanism of diabetes mellitus-induced attenuation of cardioprotective effect of IPC involves activation of GSK-3β, due to impaired protective upstream signaling pathways and opening of MPTP during reperfusion. PMID:20512612

  2. Ischemic preconditioning and infarct mass: the effect of hypercholesterolemia and endothelial dysfunction.

    PubMed

    Jung, O; Jung, W; Malinski, T; Wiemer, G; Schoelkens, B A; Linz, W

    2000-02-01

    In an experimental model of atherosclerosis we investigated whether rabbits fed an atherogenic diet (0.25% cholesterol, 3% coconut oil) develop endothelial dysfunction accompanied with increased infarct mass compared to normal fed rabbits and, whether hypercholesterolemia would interfere with the beneficial outcome of ischemic preconditioning observed in normal rabbits. After four weeks on either a normal or an atherogenic diet, New Zealand White rabbits (n=7 in each group) were subjected to 30 min of myocardial ischemia by occlusion of a branch of the left anterior descending coronary artery (LAD) followed by 2 hours of reperfusion (infarct studies). For ischemic preconditioning experiments, LAD was additionally occluded twice for 5 min followed by 10 min reperfusion before the long-lasting (30 min) ischemia. Infarct mass was evaluated by triphenyl-tetrazolium staining. Besides the assessment of aortic endothelium-dependent function and NO-release, aortic and cardiac vessels were inspected for atherosclerotic lesions. Total cholesterol serum levels in rabbits on an atherogenic diet were significantly higher (15.3+/-2.7 mmol/L) than those on a standard diet (0.65+/-0.08 mmol/L). The aortas and heart vessels were without any histological evidence of atherosclerosis, whereas endothelial dysfunction and significantly reduced calcium-ionophore stimulated endothelial NO-release were found in isolated aortic rings of hypercholesterolemic animals. Rabbits on a standard diet showed an infarct mass (related to the area at risk) of 41+/-33%, which was reduced to 21+/-2% by ischemic preconditioning (49% decrease, p<0.05). In rabbits on an atherogenic diet, infarct mass was significantly increased to 63+/-3% (52% increase versus standard diet). Interestingly, hypercholesterolemia did not affect the beneficial influence of ischemic preconditioning; infarct mass (21+/-3%, p<0.05 vs hypercholesterolemia) was similar to rabbits on a standard diet with ischemic preconditioning. Our results show that experimental hypercholesterolemia increases infarct mass in nonpreconditioned hearts but it does not interfere with the reduction of infarct mass elicited by preconditioning. This may suggest that NO produced by the endothelium is not a prime factor in the cardioprotective mechanism of preconditioning. PMID:10744357

  3. Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures.

    PubMed

    Xu, Guang-Ping; Dave, Kunjan R; Vivero, Richard; Schmidt-Kastner, Rainald; Sick, Thomas J; Pérez-Pinzón, Miguel A

    2002-10-18

    The main goals of the current study were to assess: (a) whether a sublethal ischemic insult could protect the CA1 subregion of the hippocampus in organotypic slices against a lethal ischemic insult; and (b) whether this protection is long lasting as determined with an accurate immunohistochemical neuronal marker, NeuN. Hippocampal slice cultures were grown for 12-14 days in vitro. Slices were exposed either to oxygen/glucose deprivation (OGD) for 45 min (ischemia), or OGD for 15 min (ischemic preconditioning), 48 h prior to 45 min OGD, or were untreated (sham). Cell death was estimated by propidium iodide fluorescence 1 day after OGD and by NeuN immunohistochemistry 7 days after OGD. Image analysis was employed to measure the relative optical density of the NeuN-signal in all groups. After ischemia, damaged neurons were shrunken or lost and NeuN immunoreactivity was reduced. Relative optical density of NeuN (ROD [NeuN]) was 0.193+/-0.015 in control (sham) (n=9). In slices that underwent ischemia, ROD [NeuN] declined to 0.108+/-0.018 (n=5) in CA1 (*P<0.05 ROD [NeuN] in preconditioned slice cultures was 0.190+/-0.037 (76% higher than the ischemia group). Similar results were found after measuring PI fluorescence. In the CA1 sub-region, PI fluorescence was about 13, 47 and 17% in the sham, ischemic and IPC groups, respectively. We suggest that the immunohistochemical approach validates the dye uptake method used in slice cultures and yields quantitative data specific for neurons. We also conclude that the organotypic hippocampal slice model is useful for studying delayed ischemic preconditioning that is maintained for hours or days after the preconditioning event. PMID:12376175

  4. Progressive Evaluation of Apoptosis, Proliferation, and Angiogenesis in Fresh Rat Ovarian Autografts Under Remote Ischemic Preconditioning.

    PubMed

    Damous, Luciana Lamarão; Silva, Sônia Maria da; Carbonel, Adriana Aparecida Ferraz; Simões, Manuel de Jesus; Baracat, Edmund Chada; Montero, Edna Frasson de Souza

    2016-06-01

    This study evaluated the remote ischemic preconditioning (R-IPC) early and late repercussion on fresh ovarian transplants, aiming to assess a probable protective effect in ovarian follicular pool. Sixty Wistar EPM-1 rats were used, divided in 2 study groups: ovarian transplantation (Tx) and Tx + R-IPC, submitted to ovary transplant with or without R-IPC, respectively. These groups were subdivided according to the date for euthanasia: 4th, 7th, 14th, 21st, and 30th days of the postoperatory period. Morphology, morphometry, neoangiogenesis (vascular endothelial growth factor [VEGF]), proliferative activity (Ki-67), and apoptosis (cleaved caspase-3) were evaluated. Remote ischemic preconditioning was performed in the common iliac artery. Fresh autologous ovarian tissue was implanted integrally in the retroperitoneum. All animals showed resumption of estrous phase after ovary transplantation. Remote ischemic preconditioning attenuated the lesions progressively from the 7th day, with greater number of the immature follicles (14 days, P < .05), but didn't affect mature follicles and corpora lutea (P > .05). Immunohistochemical analyzes, taken as a whole, show that R-IPC benefic effect is more evident in the later periods of evaluation, when a greater proliferative activity (14, 21, and 30 days, P < .05) and lesser cell apoptotic activity (21 and 30 days, P < .05). The VEGF expression was similar in all times (P > .05). Remote ischemic preconditioning could have a benefic effect in the progressive evaluation of freshly grafted ovarian, especially on the latest phases of the posttransplant period. The 14th day was a landmark in the recuperation of the graft. Further investigations are necessary to determine the role of R-IPC in this scenario and its effect in frozen-thawed ovarian tissue. PMID:26674322

  5. Protective effects of ischemic preconditioning and application of lipoic acid prior to 90 min of hepatic ischemia in a rat model

    PubMed Central

    Duenschede, Friedrich; Erbes, Kirsten; Riegler, Nina; Ewald, Patrick; Kircher, Achim; Westermann, Stefanie; Schad, Arno; Miesmer, Imke; Albrecht-Schöck, Simon; Gockel, Ines; Kiemer, Alexandra K; Junginger, Theodor

    2007-01-01

    AIM: To compare different preconditioning strategies to protect the liver from ischemia/reperfusion injury focusing on the expression of pro- and anti-apoptotic proteins. Interventions comprised different modes of ischemic preconditioning (IP) as well as pharmacologic pretreatment by α-lipoic acid (LA). METHODS: Several groups of rats were compared: sham operated animals, non-pretreated animals (nt), animals receiving IP (10 min of ischemia by clamping of the portal triad and 10 min of reperfusion) prior to sustained ischemia, animals receiving selective ischemic preconditioning (IPsel, 10 min of ischemia by selective clamping of the ischemic lobe and 10 min of reperfusion) prior to sustained ichemia, and animals receiving 500 μmol α-LA injected i.v. 15 min prior to the induction of 90 min of selective ischemia. RESULTS: Cellular damage was decreased only in the LA group. TUNEL-positive hepatocytes as well as necrotic hepatocyte injury were also decreased only by LA (19 ± 2 vs 10 ± 1, P < 0.05 and 29 ± 5 vs 12 ± 1, P < 0.05). Whereas caspase 3- activities in liver tissue were unchanged, caspase 9- activity in liver tissue was decreased only by LA pretreatment (3.1 ± 0.3 vs 1.8 ± 0.2, P < 0.05). Survival rate as the endpoint of liver function was increased after IP and LA pretreatment but not after IPsel. Levels of lipid peroxidation (LPO) in liver tissue were decreased in the IP as well as in the LA group compared to the nt group. Determination of pro- and anti-apoptotic proteins showed a shift towards anti-apoptotic proteins by LA. In contrast, both our IP strategies failed to influence apototic cell death. CONCLUSION: IP, consisting of 10 min of ischemia and 10 min of reperfusion, protects only partly against ischemia/reperfusion injury of the liver prior to 90 min of selective ischemia. IPsel did not influence ischemic tolerance of the liver. LA improved tolerance to ischemia, possibly by downregulation of pro-apoptotic Bax. PMID:17659728

  6. Remote ischemic preconditioning for prevention of high-altitude diseases: fact or fiction?

    PubMed

    Berger, Marc Moritz; Macholz, Franziska; Mairbäurl, Heimo; Bärtsch, Peter

    2015-11-15

    Preconditioning refers to exposure to brief episodes of potentially adverse stimuli and protects against injury during subsequent exposures. This was first described in the heart, where episodes of ischemia/reperfusion render the myocardium resistant to subsequent ischemic injury, which is likely caused by reactive oxygen species (ROS) and proinflammatory processes. Protection of the heart was also found when preconditioning was performed in an organ different from the target, which is called remote ischemic preconditioning (RIPC). The mechanisms causing protection seem to include stimulation of nitric oxide (NO) synthase, increase in antioxidant enzymes, and downregulation of proinflammatory cytokines. These pathways are also thought to play a role in high-altitude diseases: high-altitude pulmonary edema (HAPE) is associated with decreased bioavailability of NO and increased generation of ROS, whereas mechanisms causing acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) seem to involve cytotoxic effects by ROS and inflammation. Based on these apparent similarities between ischemic damage and AMS, HACE, and HAPE, it is reasonable to assume that RIPC might be protective and improve altitude tolerance. In studies addressing high-altitude/hypoxia tolerance, RIPC has been shown to decrease pulmonary arterial systolic pressure in normobaric hypoxia (13% O2) and at high altitude (4,342 m). Our own results indicate that RIPC transiently decreases the severity of AMS at 12% O2. Thus preliminary studies show some benefit, but clearly, further experiments to establish the efficacy and potential mechanism of RIPC are needed. PMID:26089545

  7. Acute bioenergetic intervention or pharmacological preconditioning protects neuron against ischemic injury

    PubMed Central

    Liu, Shimin; Zhen, Gehua; Li, Rung-chi; Dor, Sylvain

    2013-01-01

    Although acute ischemic stroke has high mortality and morbidity rate but yet still has very limited treatment. In this study we have tested the concept of neuron protection by acute bioenergetic intervention or by pharmacological preconditioning with natural antioxidants. Adenosine triphosphate (ATP), pentobarbital, and suramin were encapsulated in pH-sensitive liposomes and used as bioenergy stabilizer. We induced ATP depletion model by incubating cells with media added with ATP-depleting agents for 2 hours. Treatment with bioenergy stabilizer started 10-min post inducing of ATP-depletion. The acute treatment with bioenergy stabilizer significantly increased cell viability in neuro-2a cells. In searching for a pharmacological preconditioning candidate for reducing ischemic injury, we tested cocoa-derived flavanols using bilateral common carotid artery occlusion (BCCAO). We pretreated mice with cocoa-derived flavanols (75 mg/kg) or water orally for 7 days and subjected mice for 12 minutes BCCAO. At 7 days post-ischemia, the number of surviving hippocampal CA1 neurons was significantly higher in the treated mice than in the water-treated controls. The protection from cocoa-derived flavanols was found associated with increased total antioxidant capacity in the brain. Our results indicate that for reducing acute ischemic injury bioenergetic intervention using advanced drug delivery tools is conceptually feasible, and for reducing reperfusion related secondary injury pharmacological preconditioning may provide significant protection. PMID:24285991

  8. Exercise Training Preserves Ischemic Preconditioning in Aged Rat Hearts by Restoring the Myocardial Polyamine Pool

    PubMed Central

    Wang, Weiwei; Zhang, Hao; Xue, Guo; Zhang, Weihua; Wang, Lina; Lu, Fanghao; Li, Hongzhu; Bai, Shuzhi; Lin, Yan; Lou, Yu; Xu, Changqing; Zhao, Yajun

    2014-01-01

    Background. Ischemic preconditioning (IPC) strongly protects against myocardial ischemia reperfusion (IR) injury. However, IPC protection is ineffective in aged hearts. Exercise training reduces the incidence of age-related cardiovascular disease and upregulates the ornithine decarboxylase (ODC)/polyamine pathway. The aim of this study was to investigate whether exercise can reestablish IPC protection in aged hearts and whether IPC protection is linked to restoration of the cardiac polyamine pool. Methods. Rats aging 3 or 18 months perform treadmill exercises with or without gradient respectively for 6 weeks. Isolated hearts and isolated cardiomyocytes were exposed to an IR and IPC protocol. Results. IPC induced an increase in myocardial polyamines by regulating ODC and spermidine/spermine acetyltransferase (SSAT) in young rat hearts, but IPC did not affect polyamine metabolism in aged hearts. Exercise training inhibited the loss of preconditioning protection and restored the polyamine pool by activating ODC and inhibiting SSAT in aged hearts. An ODC inhibitor, α-difluoromethylornithine, abolished the recovery of preconditioning protection mediated by exercise. Moreover, polyamines improved age-associated mitochondrial dysfunction in vitro. Conclusion. Exercise appears to restore preconditioning protection in aged rat hearts, possibly due to an increase in intracellular polyamines and an improvement in mitochondrial function in response to a preconditioning stimulus. PMID:25404991

  9. A Prospective Randomized Study in 100 Consecutive Patients Undergoing Major Liver Resection With Versus Without Ischemic Preconditioning

    PubMed Central

    Clavien, Pierre-Alain; Selzner, Markus; Rüdiger, Hannes A.; Graf, Rolf; Kadry, Zakiyah; Rousson, Valentin; Jochum, Wolfram

    2003-01-01

    Objective: To evaluate the protective effects of ischemic preconditioning in a prospective randomized study involving a large population of unselected patients and to identify factors affecting the protective effects. Summary Background Data: Ischemic preconditioning is an effective protective strategy in several animal models. Protection has also been suggested in a small series of patients undergoing a hemihepatectomy with 30 minutes of inflow occlusion. Whether preconditioning confers protection in other types of liver resection and longer periods of ischemia is unknown. Therefore, we conducted a prospective randomized study to evaluate the impact of ischemic preconditioning in liver surgery. Methods: A total of 100 unselected patients undergoing major liver resection (> bisegmentectomy) under inflow occlusion for at least 30 minutes were randomized during surgery to either receive or not receive an ischemic preconditioning protocol (10 minutes of ischemia followed by 10 minutes of reperfusion). Univariate and multivariate analyses were performed to identify independent factors affecting the protective effects of ischemic preconditioning. ATP contents in liver were measured as a possible mechanism of protection. Results: Both groups (n = 50 in each) were comparable regarding age, gender, duration of inflow occlusion, and resected liver volumes. Postoperative serum transaminase levels were significantly lower in preconditioned than in control patients (median peak AST 364 U/L vs. 520 U/L, P = 0.028; ALT 406 vs. 519 U/L, P = 0.049). Regression multivariate analysis revealed an increased benefit of ischemic preconditioning in younger patients, in patients with longer duration of inflow occlusion (up to 60 minutes), and in cases of lower resected liver volume (<50%). Patients with steatosis were also particularly protected by ischemic preconditioning. ATP content in liver tissue was preserved by ischemic preconditioning in young but not older patients. Conclusions: This study establishes ischemic preconditioning as a protective strategy against hepatic ischemia in humans. The strategy is particularly effective in young patients requiring a prolonged period of inflow occlusion, and in the presence of steatosis, and is possibly related to preservation of ATP content in liver tissue. Other strategies are needed in older patients. PMID:14631221

  10. Effects of sevoflurane preconditioning and postconditioning on rat myocardial stunning in ischemic reperfusion injury*

    PubMed Central

    Dai, An-lu; Fan, Li-hua; Zhang, Feng-jiang; Yang, Mei-juan; Yu, Jing; Wang, Jun-kuan; Fang, Tao; Chen, Gang; Yu, Li-na; Yan, Min

    2010-01-01

    Ischemic preconditioning and postconditioning distinctly attenuate ventricular arrhythmia after ischemia without affecting the severity of myocardial stunning. Therefore, we report the effects of sevoflurane preconditioning and postconditioning on stunned myocardium in isolated rat hearts. Isolated rat hearts were underwent 20 min of global ischemia and 40 min of reperfusion. After an equilibration period (20 min), the hearts in the preconditioning group were exposed to sevoflurane for 5 min and next washout for 5 min before ischemia. Hearts in the sevoflurane postconditioning group underwent equilibration and ischemia, followed immediately by sevoflurane exposure for the first 5 min of reperfusion. The control group received no treatment before and after ischemia. Left ventricular pressure, heart rate, coronary flow, electrocardiogram, and tissue histology were measured as variables of ventricular function and cellular injury, respectively. There was no significant difference in the duration of reperfusion ventricular arrhythmias between control and sevoflurane preconditioning group (P=0.195). The duration of reperfusion ventricular arrhythmias in the sevoflurane postconditioning group was significantly shorter than that in the other two groups (P<0.05). ±(dP/dt)max in the sevoflurane preconditioning group at 5, 10, 15, 20, and 30 min after reperfusion was significantly higher than that in the control group (P<0.05), and there were no significant differences at 40 min after reperfusion among the three groups (P>0.05). As expected, for a 20-min general ischemia, infarct size in heart slices determined by 2,3,5-triphenyltetrazolium chloride staining among the groups was not obvious. Sevoflurane postconditioning reduces reperfusion arrhythmias without affecting the severity of myocardial stunning. In contrast, sevoflurane preconditioning has no beneficial effects on reperfusion arrhythmias, but it is in favor of improving ventricular function and recovering myocardial stunning. Sevoflurane preconditioning and postconditioning may be useful for correcting the stunned myocardium. PMID:20349523

  11. [Phytoadaptogens-induced phenomenon similar to ischemic preconditioning].

    PubMed

    Arbuzov, A G; Maslov, L N; Burkova, V N; Krylatov, A V; Konkovskaia, Iu N; Safronov, S M

    2009-04-01

    The course administration (16 mg/kg per os for 5 days) of extracts of Panax ginseng or Rhodiola rosea induced a decrease in the infarction size/the area at risk (IS AAR) ratio during a 45-min local ischemia and a 2-hr reperfusion in artificially ventilated chloralose-anaesthetized rats. Single administration of ginseng or Rhodiola 24 h before ischemia did not affect the IS/AAR ratio. Chronic administration of Extracts of Eleutherococcus senticosus, Leuzea carthamoides and Aralia mandshurica had no effect on the IS/AAR ratio. Pretreatment with extract ofAralia mandshurica prevented appearance of ventricular arrhythmias during first 10 min coronary artery occlusion. Pretreatment with extract of Rhodiola rosea decreased the incidence of ventricular fibrillation during ischemia. Single administration of extracts of Panax ginseng or Rhodiola rosea in a dose of 16 mg/kg had no effect on the IS/AAR ratio. The authors conclude that extracts of ginseng or Rhodiola exhibit a powerful cardioprotective effect. Extract of Aralia exhibit a strong antiarrhythmic effect. Extracts of ginseng and Rhodiola do not mimic phenomena of ischemia preconditioning. PMID:19505042

  12. Endoplasmic reticulum stress-dependent activation of ATF3 mediates the late phase of ischemic preconditioning

    PubMed Central

    Brooks, Alan C.; Singh, Mahavir; Guo, Yiru; McCracken, James; Xuan, Yu-Ting; Srivastava, Sanjay; Bolli, Roberto; Bhatnagar, Aruni

    2015-01-01

    Aims Ischemic preconditioning (PC) is an adaptive response to transient myocardial ischemia that protects the heart from subsequent ischemia/reperfusion (I/R) injury. However, the mechanisms underlying its cardioprotective effects remain unclear. Methods and results Myocardium of adult male C57/BL6 mice, preconditioned by 6 cycles of 4 minutes coronary occlusion and reperfusion, showed nuclear translocation of ATF3, and ATF6 and PERK phosphorylation 30 min after PC. The abundance of ER proteins, ATF3 and ATF4 was increased 24 h after PC; however, there was no evidence of IRE-1 activation in WT or ER-stress activated indicator (ERAI) mice expressing XBP-1-Venus fusion protein. PC-induced nuclear translocation of ATF3 was attenuated in transgenic mice with cardiac-restricted overexpression of inducible ATF6. Ischemic PC increased the abundance of inducible nitric oxide synthase, cyclooxygenase-2, heme oxygenase-1 and aldose reductase to levels similar between WT and ATF3-null hearts; however, the increase in IL-6 and ICAM-1 was exaggerated in ATF3-null hearts. Genetic deletion of ATF3 did not increase infarct size in non-preconditioned hearts but abolished the cardioprotective effects of PC. Larger infarct size in preconditioned ATF3-null hearts was associated with greater neutrophil infiltration in the myocardium, but no ATF3-dependent changes in the total or relative abundance of inflammatory monocytes were observed. Conclusion Ischemic PC activates the unfolded protein response (UPR) and the activation of ATF3 by ER stress is essential for the cardioprotective effects of late PC. PMID:25151953

  13. Endoplasmic reticulum stress-dependent activation of ATF3 mediates the late phase of ischemic preconditioning.

    PubMed

    Brooks, Alan C; Guo, Yiru; Singh, Mahavir; McCracken, James; Xuan, Yu-Ting; Srivastava, Sanjay; Bolli, Roberto; Bhatnagar, Aruni

    2014-11-01

    Ischemic preconditioning (PC) is an adaptive response to transient myocardial ischemia that protects the heart from subsequent ischemia/reperfusion (I/R) injury. However, the mechanisms underlying its cardioprotective effects remain unclear. Myocardium of adult male C57/BL6 mice, preconditioned by 6 cycles of 4 minute coronary occlusion and reperfusion, showed nuclear translocation of ATF3 and ATF6 and PERK phosphorylation 30 min after PC. The abundance of ER proteins, ATF3 and ATF4 was increased 24h after PC; however, there was no evidence of IRE-1 activation in WT or ER-stress activated indicator (ERAI) mice expressing XBP-1-Venus fusion protein. PC-induced nuclear translocation of ATF3 was attenuated in transgenic mice with cardiac-restricted overexpression of inducible ATF6. Ischemic PC increased the abundance of inducible nitric oxide synthase, cyclooxygenase-2, heme oxygenase-1 and aldose reductase to levels similar between WT and ATF3-null hearts; however, the increase in IL-6 and ICAM-1 was exaggerated in ATF3-null hearts. Genetic deletion of ATF3 did not increase infarct size in non-preconditioned hearts but abolished the cardioprotective effects of PC. Larger infarct size in preconditioned ATF3-null hearts was associated with greater neutrophil infiltration in the myocardium, but no ATF3-dependent changes in the total or relative abundance of inflammatory monocytes were observed. Ischemic PC activates the unfolded protein response (UPR) and the activation of ATF3 by ER stress is essential for the cardioprotective effects of late PC. PMID:25151953

  14. Role of Endogenous Opioid System in Ischemic-Induced Late Preconditioning

    PubMed Central

    Fraessdorf, Jan; Hollmann, Markus W.; Hanschmann, Iris; Heinen, André; Weber, Nina C.; Preckel, Benedikt; Huhn, Ragnar

    2015-01-01

    Background Opioid receptors (OR) are involved in myocardial late preconditioning (LPC) induced by morphine and δ1-opioid receptor (δ1-OR) agonists. The role of OR in ischemic-induced LPC is unknown. We investigated whether 1) OR are involved in the trigger and/or mediation phase of LPC and 2) a time course effect on the expression of different opioid receptors and their endogenous ligands exists. Methods Male Wistar rats were randomly allocated to four groups (each group n = 8). Awake animals were ischemic preconditioned by a 5 minutes coronary occlusion. 24 hours later, anesthetized animals underwent 25 minutes coronary occlusion followed by 2 hours of reperfusion. The role of OR was investigated by treatment with intraperitoneal naloxone (Nal) 10 minutes prior to LPC (Nal-LPC; trigger phase) or 10 min prior to sustained ischemia (LPC-Nal; mediation phase). Results LPC reduced infarct size from 61±10% in controls to 25±9% (P<0.001). Naloxone during trigger or mediation phase completely abolished LPC-induced cardioprotection (59±9% and 62±9%; P<0.001 vs. LPC). 8, 12 and 24 hours after the ischemic stimulus, expression of δ-OR in the heart was increased, whereas μ-opioid receptor (μ-OR) and κ-opioid receptor (κ-OR) were not. Plasma concentrations of β-endorphin and leu-enkephalin but not dynorphin were increased by LPC. Conclusion Ischemic LPC is triggererd and mediated by OR. Expression of δ-OR and plasma levels of endogenous opioid peptides are increased after ischemic LPC. PMID:26226627

  15. Myocardial protection by ischemic preconditioning: the influence of the composition of myocardial phospholipids.

    PubMed

    al Makdessi, S; Brändle, M; Ehrt, M; Sweidan, H; Jacob, R

    1995-04-12

    It was the aim of this study to investigate (1) whether preconditioning modifies the fatty acid (FA) composition of myocardial phospholipids (PL), (2) whether a previous modification of membrane PL composition by the administration of coconut oil or fish oil influences the preconditioning, and (3) to compare the protective effects of preconditioning to those of dietary fish oil. To this end, three groups of rats were given during 10 weeks either a standard diet, or a standard diet + 10% coconut oil, or a standard diet + 10% fish oil. The preconditioning was performed in situ in the anesthetized open-chest rats by 2 cycles of 3 min left anterior descending coronary artery occlusion and 10 min reperfusion. It was followed by a 40 min ischemia and a 60 min reperfusion. ECG was recorded and used for the continuous count of the salves of extrasystoles, ventricular flutter and fibrillation. These rhythm disturbances were subsequently added and evaluated as total arrhythmias. The FA of tissue PL were analyzed in a sample of the ischemic zone the size of which was determined by means of malachite green. Coconut oil diet (rich in saturated FA) modified slightly the myocardial PL by increasing oleic acid and decreasing linoleic acid and resulted in the highest incidence of arrhythmias. Fish oil diet had the opposite effect in modifying drastically the PLFA (replacement of the n-6 FA by the n-3 FA) and minimizing significantly the arrhythmias in comparison with the standard diet group.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7659079

  16. Subcellular mechanisms of adaptation in the diabetic myocardium: Relevance to ischemic preconditioning in the nondiseased heart

    PubMed Central

    Ravingerová, T; Adameová, A; Matejíková, J; Kelly, T; Nemčeková, M; Kucharská, J; Pecháňová, O; Lazou, A

    2010-01-01

    Although hyperglycemia is one factor that determines the outcome of myocardial ischemic insult, it is still not clear whether it is causally related to decreased ischemic tolerance in diabetic patients. In contrast to clinical and epidemiological studies demonstrating a higher risk of cardiovascular disorders in diabetic patients, experimental data are not unequivocal and suggest that, aside from higher myocardial vulnerability, diabetes mellitus may be associated with the triggering of adaptive processes leading to paradoxically lower susceptibility to ischemia. It has been proposed that this phenomenon shares some molecular pathways with short-term preconditioning and other forms of endogenous protection against ischemia/reperfusion injury in the nondiseased heart. The present article reviews some controversial findings of enhanced resistance to ischemia in the diabetic heart that stem from experimental studies in different models of myocardial ischemia/reperfusion injury. Specifically, it addresses the issue of potential mechanisms of increased resistance to ischemia in an experimental model of streptozotocin-induced diabetes, particularly with respect to the role of reactive oxygen species, hyperglycemia as one of the stress factors, and cell-signalling mechanisms mediated by ‘prosurvival’ cascades of protein kinases in relation to the mechanisms of classical ischemic preconditioning. Finally, mechanisms involved in the suppression of protection in the diabetic myocardium including the effect of concomitant pathology, such as hypercholesterolemia, are discussed. PMID:21264077

  17. Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy

    PubMed Central

    Zhang, Xuebin; Huang, Huiling; Wang, Jin; Wang, Yajing; Tong, Xiaoguang; Wang, Jinhuan; Wu, Jialing

    2015-01-01

    The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy. PMID:26325184

  18. Effect of local and remote ischemic preconditioning on endothelial function in young people and healthy or hypertensive elderly people.

    PubMed

    Moro, L; Pedone, C; Mondì, A; Nunziata, E; Antonelli Incalzi, R

    2011-12-01

    To verify whether age affects remote preconditioning, we compared healthy young people (mean age = 28.0 years, SD: 7.2), healthy elderly people (age = 69.2 years, SD: 5.0), and hypertensive elderly people (group 3, age = 72.8 years, SD: 3.9). Each group included 10 participants. The flow-mediated-dilation (FMD) was measured after local (same arm) and remote (leg) ischemic preconditioning. Healthy elderly people had the greatest increase of FMD after ischemic preconditioning compared to baseline (173% after local and 181% after remote preconditioning) and young participants the smallest increase (77% after local and 69% after remote preconditioning) while hypertensive elderly had an intermediate increase (P for comparison across groups: 0.347 for local and 0.064 for remote preconditioning). However, absolute values of FMD after preconditioning were much lower in elderly hypertensive than in healthy young adults. Remote preconditioning increases endothelial reactivity in healthy and hypertensive elderly. The potential clinical relevance of this finding deserves consideration. PMID:21945497

  19. Involvement of adenosine and standardization of aqueous extract of garlic (Allium sativum Linn.) on cardioprotective and cardiodepressant properties in ischemic preconditioning and myocardial ischemia-reperfusion induced cardiac injury

    PubMed Central

    Sharma, Ashish Kumar; Munajjam, Arshee; Vaishnav, Bhawna; Sharma, Richa; Sharma, Ashok; Kishore, Kunal; Sharma, Akash; Sharma, Divya; Kumari, Rita; Tiwari, Ashish; Singh, Santosh Kumar; Gaur, Samir; Jatav, Vijay Singh; Srinivasan, Barthu Parthi; Agarwal, Shyam Sunder

    2012-01-01

    The present study investigated the effect of garlic (Allium sativum Linn.) aqueous extracts on ischemic preconditioning and ischemia-reperfusion induced cardiac injury, as well as adenosine involvement in ischemic preconditioning and garlic extract induced cardioprotection. A model of ischemia-reperfusion injury was established using Langendorff apparatus. Aqueous extract of garlic dose was standardized (0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.07%, 0.05%, 0.03%, 0.01%), and the 0.05% dose was found to be the most effective. Higher doses (more than 0.05%) were highly toxic, causing arrhythmia and cardiodepression, whereas the lower doses were ineffective. Garlic exaggerated the cardioprotective effect of ischemic preconditioning. The cardioprotective effect of ischemic preconditioning and garlic cardioprotection was significantly attenuated by theophylline (1,000 µmol/L) and 8-SPT (10 mg/kg, i.p.) and expressed by increased myocardial infarct size, increased LDH level, and reduced nitrite and adenosine levels. These findings suggest that adenosine is involved in the pharmacological and molecular mechanism of garlic induced cardioprotection and mediated by the modulation of nitric oxide. PMID:23554727

  20. Role of nitric oxide in the mechanism of preclamping and remote ischemic preconditioning of adipocutaneous flaps in a rat model.

    PubMed

    Küntscher, Markus V; Juran, Sebastian; Altmann, Jens; Menke, Henrik; Gebhard, Martha Maria; Germann, Günter

    2003-01-01

    The purpose of this study was to determine whether nitric oxide (NO) plays a role in the mechanism of acute ischemic preconditioning (IP). Fifty-eight male Wistar rats were divided into seven experimental groups. An extended epigastric flap was raised in one of the control groups (C, n = 8), and a 3-hr flap ischemia was induced. Another group served as a non-ischemic control (CO, n = 8). The animals of group S (n = 9) received 500 nmol/kg of Spermine/Nitric Oxide Complex (Sper/NO) intravenously 30 min prior to ischemia. The group N+P (L-NAME + preclamping, n = 8) received 10 mg/kg Nomega-Nitro-L-Arginine Methyl Ester (L-NAME) intravenously before preclamping of the flap pedicle (10-min cycle length, 30-min reperfusion). Ten mg/kg L-NAME were administered in group N+T (L-NAME + tourniquet, n = 9) before ischemia of the right hindlimb was induced using a tourniquet for 10 min after flap elevation. Flap ischemia was induced after 30 min of limb reperfusion. A similar protocol was used in the groups N+P+S (L-NAME + preclamping+Sper/NO, n = 8) and N+T+S (L-NAME + tourniquet + Sper/NO, n = 8). In both groups Sper/NO was administered 30 min prior to flap ischemia, additionally to the protocol of the groups N+P and N+T. Mean flap necrosis area was assessed on the fifth postoperative day using a planimetry software. Average flap necrosis area was 67 +/- 16 percent in the control group C, 28 +/- 13.3 percent in the non-ischemic controls (CO), 10 +/- 5.9 percent in group S, 77.5 +/- 10.2 percent in group N+P, 76 +/- 6.9 percent in group N+T, 71.5 +/- 9.4 percent in group N+P+S, and 78 +/- 9.9 percent in group N+T+S. The animals of group S and CO demonstrated a significantly lower area of flap necrosis than all other groups ( p < 0.001). No significant difference could be shown between the groups C, N+P, N+T, N+P+S and N+T+S. Group S showed a significantly lower flap necrosis area than group CO ( p < 0.01). The data showed, that NO plays an important role in the mechanism of IP since the administration of an NO-donor previous to ischemia simulates the effect of IP, while the unspecific blocking of NO synthesis by L-NAME eliminates the protective effect of flap preconditioning by preclamping as well as by remote IP. Exogenous NO application is insufficient to provide protection once the endogenous NO synthesis is blocked. PMID:12582969

  1. miR-15b Suppression of Bcl-2 Contributes to Cerebral Ischemic Injury and is Reversed by Sevoflurane Preconditioning

    PubMed Central

    Shi, Hong; Sun, Bao-liang; Zhang, Jia; Lu, Shiduo; Zhang, Pengyue; Wang, Hailian; Yu, Qiong; Stetler, R Anne; Vosler, Peter S.; Chen, Jun; Gao, Yanqin

    2014-01-01

    Ischemic neuroprotection afforded by sevoflurane preconditioning has been previously demonstrated, yet the underlying mechanism is poorly understood and likely affects a wide range of cellular activities. Several individual microRNAs have been implicated in both the pathogenesis of cerebral ischemia and cellular survival, and are capable of affecting a range of target mRNA. Conceivably, sevoflurane preconditioning may lead to alterations in ischemia-induced microRNA expression that may subsequently exert neuroprotective effects. We first examined the microRNA expression profile following transient cerebral ischemia in rats and the impact of sevoflurane preconditioning. Microarray analysis revealed that 3 microRNAs were up-regulated (>2.0 fold) and 9 were down-regulated (< 0.5 fold) following middle cerebral artery occlusion (MCAO) compared to sham controls. In particular, miR-15b was expressed at significantly high levels after MCAO. Preconditioning with sevoflurane significantly attenuated the upregulation of miR-15b at 72h after reperfusion. Bcl-2, an anti-apoptotic gene involved in the pathogenesis of cerebral ischemia, has been identified as a direct target of miR-15b. Consistent with the observed downregulation of miR-15b in sevoflurane-preconditioned brain, post-ischemic Bcl-2 expression was significantly increased by sevoflurane preconditioning. We identified the 3’-UTR of Bcl-2 as the target for miR-15b. Molecular inhibition of miR-15b was capable of mimicking the neuroprotective effect of sevoflurane preconditioning, suggesting that the suppression of miR-15b due to sevoflurane contributes to its ischemic neuroprotection. Thus, sevoflurane preconditioning may exert its anti-apoptotic effects by reducing the elevated expression of miR-15b following ischemic injury, allowing its target proteins, including Bcl-2, to be translated and expressed at the protein level. PMID:23469855

  2. Effects of IP3R2 Receptor Deletion in the Ischemic Mouse Retina.

    PubMed

    Wagner, Lysann; Pannicke, Thomas; Frommherz, Ina; Sauer, Katja; Chen, Ju; Grosche, Antje

    2016-04-01

    Glial cells in the diseased nervous system undergo a process known as reactive gliosis. Gliosis of retinal Müller glial cells is characterized by an upregulation of glial fibrillary acidic protein and frequently by a reduction of inward K(+) current amplitudes. Purinergic signaling is assumed to be involved in gliotic processes. As previously shown, lack of the nucleotide receptor P2Y1 leads to an altered regulation of K(+) currents in Müller cells of the ischemic retina. Here, we asked first whether this effect is mediated by the IP3 receptor subtype 2 (IP3R2) known as the major downstream signaling target of P2Y1 in Müller cells. The second question was whether lack of IP3R2 affects neuronal survival in the control and ischemic retina. Ischemia was induced in wild type and IP3R2-deficient (IP 3 R2 (-/-)) mice by transient elevation of the intraocular pressure. Immunostaining and TUNEL labelling were used to quantify neuronal cell loss. The downregulation of inward K(+) currents in Müller cells from ischemic IP 3 R2 (-/-) retinae was less strong than in wild type animals. The reduction of the number of cells in the ganglion cell layer and of calretinin- and calbindin-positive cells 7 days after ischemia was similar in wild type and IP 3 R2 (-/-) mice. However, IP3R2 deficiency led to an increased number of TUNEL-positive cells in the outer nuclear layer at 1 day and to an enhanced postischemic loss of photoreceptors 7 days after ischemia. This implies that IP3R2 is involved in some but not all aspects of signaling in Müller cells after an ischemic insult. PMID:26446037

  3. Global and Ocular Hypothermic Preconditioning Protect the Rat Retina from Ischemic Damage

    PubMed Central

    Salido, Ezequiel M.; Dorfman, Damián; Bordone, Melina; Chianelli, Mónica; González Fleitas, María Florencia; Rosenstein, Ruth E.

    2013-01-01

    Retinal ischemia could provoke blindness. At present, there is no effective treatment against retinal ischemic damage. Strong evidence supports that glutamate is implicated in retinal ischemic damage. We investigated whether a brief period of global or ocular hypothermia applied 24 h before ischemia (i.e. hypothermic preconditioning, HPC) protects the retina from ischemia/reperfusion damage, and the involvement of glutamate in the retinal protection induced by HPC. For this purpose, ischemia was induced by increasing intraocular pressure to 120 mm Hg for 40 min. One day before ischemia, animals were submitted to global or ocular hypothermia (33°C and 32°C for 20 min, respectively) and fourteen days after ischemia, animals were subjected to electroretinography and histological analysis. Global or ocular HPC afforded significant functional (electroretinographic) protection in eyes exposed to ischemia/reperfusion injury. A marked alteration of the retinal structure and a decrease in retinal ganglion cell number were observed in ischemic retinas, whereas global or ocular HPC significantly preserved retinal structure and ganglion cell count. Three days after ischemia, a significant decrease in retinal glutamate uptake and glutamine synthetase activity was observed, whereas ocular HPC prevented the effect of ischemia on these parameters. The intravitreal injection of supraphysiological levels of glutamate induced alterations in retinal function and histology which were significantly prevented by ocular HPC. These results support that global or ocular HPC significantly protected retinal function and histology from ischemia/reperfusion injury, probably through a glutamate-dependent mechanism. PMID:23626711

  4. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  5. Demonstration of an early and a late phase of ischemic preconditioning in mice.

    PubMed

    Guo, Y; Wu, W J; Qiu, Y; Tang, X L; Yang, Z; Bolli, R

    1998-10-01

    It is unknown whether ischemic preconditioning (PC; either early or late) occurs in the mouse. The goal of this study was to answer this question and to develop a reliable and physiologically relevant murine model of both early and late ischemic PC. A total of 201 mice were used. In nonpreconditioned open-chest animals subjected to 30 min of coronary occlusion followed by 24 h of reperfusion, infarct size (tetrazolium staining) averaged 52% of the region at risk. When the 30-min occlusion was performed 10 min after a PC protocol consisting of six cycles of 4-min occlusion and 4-min reperfusion, infarct size was reduced by 75%, indicating an early PC effect. When the 30-min occlusion was performed 24 h after the same PC protocol, infarct size was reduced by 48%, indicating a late PC effect. In mice in which the 30-min occlusion was followed by 4 h of reperfusion, infarct size was similar to that observed after 24 h of reperfusion, indicating that a 4-h reperfusion interval is sufficient to detect the final extent of cell death in this model. Fundamental physiological variables (body temperature, arterial oxygenation, acid-base balance, heart rate, and arterial pressure) were measured and found to be within normal limits. Taken together, these results demonstrate that, in the mouse, a robust infarct-sparing effect occurs during both the early and the late phases of ischemic PC, although the early phase is more powerful. This murine model is physiologically relevant, provides reliable measurements, and should be useful for elucidating the cellular mechanisms of ischemic PC in genetically engineered animals. PMID:9746488

  6. Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning

    PubMed Central

    Tsutsumi, Yasuo M.; Horikawa, Yousuke T.; Jennings, Michelle M.; Kidd, Michael W.; Niesman, Ingrid R.; Yokoyama, Utako; Head, Brian P.; Hagiwara, Yasuko; Ishikawa, Yoshihiro; Miyanohara, Atsushi; Patel, Piyush M.; Insel, Paul A.; Patel, Hemal H.; Roth, David M.

    2009-01-01

    Background Caveolae, lipid-rich microdomains of the sarcolemma, localize and enrich cardiac protective signaling molecules. Caveolin-3 (Cav-3), the dominant isoform in cardiac myocytes, is a determinant of caveolae formation. We hypothesized that cardiac myocyte-specific overexpression of Cav-3 would enhance the formation of caveolae and augment cardiac protection in vivo. Methods and Results Ischemic preconditioning (IPC) in vivo increased formation of caveolae. Adenovirus for Cav-3 increased caveolar formation and phosphorylation of survival kinases in cardiac myocytes. A transgenic (TG) mouse with cardiac myocyte-specific overexpression of Cav-3 (Cav-3 OE) showed enhanced formation of caveolae on the sarcolemma. Cav-3 OE mice subjected to ischemia/reperfusion injury had a significantly reduced infarct size relative to TGneg mice. Endogenous cardiac protection in Cav-3 OE mice was similar to wild-type mice undergoing IPC; no increased protection was observed in preconditioned Cav-3 OE mice. Cav-3 knockout mice did not show endogenous protection and showed no protection in response to IPC. Cav-3 OE mouse hearts had increased basal Akt and GSK3β phosphorylation comparable to wild-type mice exposed to IPC. Wortmannin, a PI3K inhibitor, attenuated basal phosphorylation of Akt and GSK3β and blocked cardiac protection in Cav-3 OE mice. Cav-3 OE mice had improved functional recovery and reduced apoptosis at 24 h of reperfusion. Conclusion Expression of caveolin-3 is both necessary and sufficient for cardiac protection, a conclusion that unites long-standing ultrastructural and molecular observations in the ischemic heart. The current results indicate that increased expression of caveolins, apparently via actions that depend on PI3K, has the potential to protect hearts exposed to ischemia-reperfusion injury. PMID:18936328

  7. CBF changes associated with focal ischemic preconditioning in the spontaneously hypertensive rat.

    PubMed

    Zhao, Liang; Nowak, Thaddeus S

    2006-09-01

    Experimental stroke models exhibit robust protection after prior preconditioning (PC) insults. This study comprehensively examined cerebral blood flow (CBF) responses to permanent middle cerebral artery (MCA) occlusion in spontaneously hypertensive rats preconditioned by noninjurious transient focal ischemia, using [(14)C]iodoantipyrine autoradiography at varied occlusion intervals. Preconditioning was produced by 10-min occlusion of the MCA and ipsilateral common carotid artery under halothane anesthesia. These vessels were permanently coagulated 24 h later in naïve, PC, and sham-operated rats. Infarct volumes were determined from hematoxylin-eosin-stained frozen sections after 1 or 3 days. Edema-corrected infarct volume was reduced from 127+/-21 in naïve rats to 101+/-31 and 52+/-28 mm(3) in sham and PC groups, respectively, at 1 day, with similar results at 3 days. All animals exhibited a consistent CBF threshold for infarction (approximately 30 mL/100 g/min). Tissue volumes below this threshold were identical in naïve and PC groups after 15-min occlusion. However, by 3 h the volume of ischemic cortex decreased in the PC group but remained unchanged in naïve rats, predicting final infarct volumes. Cerebral blood flow recovery was confirmed in brains of individual rats evaluated by repeated laser Doppler perfusion imaging during the same 3-h interval. Modest sham protection correlated with better-maintained global perfusion, detectable also in the contralateral cortex, apparently reflecting the PC effects of prior anesthesia. These results establish that timely reperfusion of penumbra, achieved by synergistic mechanisms, is a primary determinant of PC-induced protection in experimental stroke. PMID:16407854

  8. Remote ischemic preconditioning to reduce contrast-induced nephropathy: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Despite the increasing use of pre- and posthydration protocols and low-osmolar instead of high-osmolar iodine-containing contrast media, the incidence of contrast-induced nephropathy (CIN) is still significant. There is evidence that contrast media cause ischemia-reperfusion injury of the medulla. Remote ischemic preconditioning (RIPC) is a non-invasive, safe, and low-cost method to reduce ischemia-reperfusion injury. Methods The RIPCIN study is a multicenter, single-blinded, randomized controlled trial in which 76 patients at risk of CIN will receive standard hydration combined with RIPC or hydration with sham preconditioning. RIPC will be applied by four cycles of 5 min ischemia and 5 min reperfusion of the forearm by inflating a blood pressure cuff at 50 mmHg above the actual systolic pressure. The primary outcome measure will be the change in serum creatinine from baseline to 48 to 72 h after contrast administration. Discussion A recent pilot study reported that RIPC reduced the incidence of CIN after coronary angioplasty. The unusual high incidence of CIN in this study is of concern and limits its generalizability. Therefore, we propose a randomized controlled trial to study whether RIPC reduces contrast-induced kidney injury in patients at risk for CIN according to the Dutch guidelines. Trial registration Current Controlled Trials ISRCTN76496973 PMID:24721127

  9. Exploring the Human Plasma Proteome for Humoral Mediators of Remote Ischemic Preconditioning - A Word of Caution

    PubMed Central

    Helgeland, Erik; Breivik, Lars Ertesvåg; Vaudel, Marc; Svendsen, Øyvind Sverre; Garberg, Hilde; Nordrehaug, Jan Erik; Berven, Frode Steingrimsen; Jonassen, Anne Kristine

    2014-01-01

    Despite major advances in early revascularization techniques, cardiovascular diseases are still the leading cause of death worldwide, and myocardial infarctions contribute heavily to this. Over the past decades, it has become apparent that reperfusion of blood to a previously ischemic area of the heart causes damage in and of itself, and that this ischemia reperfusion induced injury can be reduced by up to 50% by mechanical manipulation of the blood flow to the heart. The recent discovery of remote ischemic preconditioning (RIPC) provides a non-invasive approach of inducing this cardioprotection at a distance. Finding its endogenous mediators and their operative mode is an important step toward increasing the ischemic tolerance. The release of humoral factor(s) upon RIPC was recently demonstrated and several candidate proteins were published as possible mediators of the cardioprotection. Before clinical applicability, these potential biomarkers and their efficiency must be validated, a task made challenging by the large heterogeneity in reported data and results. Here, in an attempt to reproduce and provide more experimental data on these mediators, we conducted an unbiased in-depth analysis of the human plasma proteome before and after RIPC. From the 68 protein markers reported in the literature, only 28 could be mapped to manually reviewed (Swiss-Prot) protein sequences. 23 of them were monitored in our untargeted experiment. However, their significant regulation could not be reproducibly estimated. In fact, among the 394 plasma proteins we accurately quantified, no significant regulation could be confidently and reproducibly assessed. This indicates that it is difficult to both monitor and reproduce published data from experiments exploring for RIPC induced plasma proteomic regulations, and suggests that further work should be directed towards small humoral factors. To simplify this task, we made our proteomic dataset available via ProteomeXchange, where scientists can mine for novel potential targets. PMID:25333471

  10. Cardioprotection by PI3K-mediated signaling is required for anti-arrhythmia and myocardial repair in response to ischemic preconditioning in infarcted pig hearts.

    PubMed

    Su, Feng; Zhao, Lan; Zhang, Shaoheng; Wang, Jiahong; Chen, Nannan; Gong, Qunlin; Tang, Jinhui; Wang, Hao; Yao, Jianhua; Wang, Qin; Zhong, Ming; Yan, Jian

    2015-08-01

    Although the phosphatidyl-inositol-3-kinase (PI3K)/Akt pathway is essential for conferring cardioprotection in response to ischemic preconditioning (IP), the role of PI3K/Akt signaling in the infarcted heart for mediating the anti-arrhythmic effects in response to IP remains unclear. We explored the involvement of PI3K/Akt in the IP-like effect of connexin 43 and proangiogenic factors with particular regard to its role in protecting against ischemia-induced arrhythmia, heart failure, and myocardial remodeling. Groups of pigs were administered phosphate-buffered saline (PBS) or LY294002 solution. Before induction of myocardial infarction (MI), pigs were grouped according to whether or not they underwent IP. Next, all animals underwent MI induction by ligation of the left anterior descending (LAD) coronary artery. Myocardial tissues from the pig hearts at 7 days after MI were used to assess myocardium myeloperoxidase and reaction oxygen species, infarct size, collagen content, blood vascular density, expression of Akt, connexin 43, and proangiogenic growth factors, using spectrophotometer, histology, immunohistochemistry, real-time RT-PCR, and western blot. At 7 days after MI, IP significantly reduced animal mortality and malignant ventricular arrhythmia, myocardial inflammation, infarct size, and collagen content, and improved cardiac function and remodeling; use of the PI3K inhibitor LY294002 diminished these effects. In parallel with a decline in Akt expression and phosphorylation by MI, LY294002 injection resulted in significant suppression of connexin 43 and proangiogenic factor expression, and a reduction of angiogenesis and collateral circulation. These findings demonstrate that the cardioprotective effects of IP on antiventricular arrhythmia and myocardial repair occur through upregulation of PI3K/Akt-mediated connexin 43 and growth factor signaling. PMID:26006021

  11. Effect of ischemic and pharmacological preconditioning of lower limb muscle tissue on tissue oxygenation measured by near-infrared spectroscopy – a pilot study

    PubMed Central

    2014-01-01

    Background Ischemic or volatile anesthetic preconditioning is defined as tissue protection from impending ischemic cell damage by repetitive short periods of tissue exposure to ischemia or volatile anesthetics. Objective of this study was to elucidate, if ischemic preconditioning and pharmacological preconditioning with sevoflurane have effects on muscle tissue oxygen saturation in patients undergoing surgical revascularization of the lower limb. Methods In this prospective randomized pilot study ischemic and pharmacological (sevoflurane) preconditioning was performed in 40 patients with lower limb arterial occlusive disease undergoing surgical revascularization. Sevoflurane preconditioning was performed in one group (N = 20) by repetitive application of sevoflurane for six minutes interspersed by six minutes of washout. Thereafter, ischemic preconditioning was performed in all patients (N = 40) by repetitive clamping of the femoral artery for six minutes interspersed by six minutes of reperfusion. The effect of both procedures on leg muscle tissue oxygen saturation (rSO2) was measured by near-infrared spectroscopy during both procedures and during surgery and reperfusion (INVOS® 5100C Oxymeter with Small Adult SomaSensor® SAFB-SM, Somanetics, Troy, Michigan, USA). Results Repetitive clamping and reperfusion of the femoral artery resulted in significant cyclic decrease and increase of muscle rSO2 (p < 0.0001). Pharmacological preconditioning with sevoflurane resulted in a faster and higher increase of rSO2 during postoperative reperfusion (Maximal 111% baseline ± 20 versus 103% baseline ± 14, p = 0.008) consistent with an additional effect of pharmacological preconditioning on leg perfusion. Conclusions Ischemic preconditioning of lower limb muscle tissue and pharmacological preconditioning with sevoflurane have an effect on tissue oxygenation in patients with lower limb occlusive arterial disease. Trial registration The trial has been registrated at http://www.ClinicalTrial.gov, Trial Number: NCT02038062 at 14 January 2014. PMID:25132803

  12. Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10

    PubMed Central

    2014-01-01

    Background Stroke is accompanied by a distinguished inflammatory reaction that is initiated by the infiltration of immunocytes, expression of cytokines, and other inflammatory mediators. As natural killer cells (NK cells) are a type of cytotoxic lymphocyte critical to the innate immune system, we investigated the mechanism of NK cells-induced brain injuries after cerebral ischemia and the chemotactic effect of IP-10 simultaneously. Methods NK cells infiltration, interferon-gamma (IFN-γ) and IP-10 expression were detected by immunohistochemistry, immunofluorescence, PCR and flow cytometry in human and C57/BL6 wild type mouse ischemic brain tissues. The ischemia area was detected via 2,3,5-triphenyltetrazolium chloride staining. CXCR3 mean fluorescence intensity of isolated NK cells was measured by flow cytometry. The neuronal injury made by NK cells was examined via apoptosis experiment. The chemotactic of IP-10 was detected by migration and permeability assays. Results In human ischemic brain tissue, infiltrations of NK cells were observed and reached a peak at 2 to 5 days. In a permanent middle cerebral artery occlusion (pMCAO) model, infiltration of NK cells into the ischemic infarct region reached their highest levels 12 hours after ischemia. IFN-γ-positive NK cells and levels of the chemokine IP-10 were also detected within the ischemic region, from 6 hours up to 4 days after pMCAO was performed, and IFN-γ levels decreased after NK cells depletion in vivo. Co-culture experiments of neural cells with NK cells also showed that neural necrosis was induced via IFN-γ. In parallel experiments with IP-10, the presence of CXCR3 indicates that NK cells were affected by IP-10 via CXCR3, and the effect was dose-dependent. After IP-10 depletion in vivo, NK cells decreased. In migration assays and permeability experiments, disintegration of the blood–brain barrier (BBB) was observed following the addition of NK cells. Moreover, in the presence of IP-10 this injury was aggravated. Conclusions All findings support the hypothesis that NK cells participate in cerebral ischemia and promote neural cells necrosis via IFN-γ. Moreover, IP-10 intensifies injury to the BBB by NK cells via CXCR3. PMID:24742325

  13. Hypophosphorylation of ribosomal protein S6 is a molecular mechanism underlying ischemic tolerance induced by either hibernation or preconditioning.

    PubMed

    Miyake, Shin-ichi; Wakita, Hideaki; Bernstock, Joshua D; Castri, Paola; Ruetzler, Christl; Miyake, Junko; Lee, Yang-Ja; Hallenbeck, John M

    2015-12-01

    Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions in blood flow and oxygen delivery to the brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down-regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. Mammalian hibernation provides a valuable model of tolerance to ischemic stress. Herein, we demonstrate that marked reductions in the phosphorylation of ribosomal protein S6 (rpS6), extracellular signal-regulated kinase family of mitogen-activated protein (MAP) kinase p44/42 (p44/42MAPK) and ribosomal protein S6 kinase (S6K) occur within the brains of both hibernating squirrels and rats, which have undergone an ischemic preconditioning paradigm. We therefore propose that the down-regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning, via a suppression of protein synthesis and/or energy consumption. PMID:26375300

  14. Ischemic Preconditioning Increases the Tolerance of Fatty Liver to Hepatic Ischemia-Reperfusion Injury in the Rat

    PubMed Central

    Serafín, Anna; Roselló-Catafau, Joan; Prats, Neus; Xaus, Carme; Gelpí, Emilio; Peralta, Carmen

    2002-01-01

    Hepatic steatosis is a major risk factor in ischemia-reperfusion. The present study evaluates whether preconditioning, demonstrated to be effective in normal livers, could also confer protection in the presence of steatosis and investigates the potential underlying protective mechanisms. Fatty rats had increased hepatic injury and decreased survival after 60 minutes of ischemia compared with lean rats. Fatty livers showed a degree of neutrophil accumulation and microcirculatory alterations similar to that of normal livers. However, in presence of steatosis, an increased lipid peroxidation that could be reduced with glutathione-ester pretreatment was observed after hepatic reperfusion. Ischemic preconditioning reduced hepatic injury and increased animal survival. Both in normal and fatty livers, this endogenous protective mechanism was found to control lipid peroxidation, hepatic microcirculation failure, and neutrophil accumulation, reducing the subsequent hepatic injury. These beneficial effects could be mediated by nitric oxide, because the inhibition of nitric oxide synthesis and nitric oxide donor pretreatment abolished and simulated, respectively, the benefits of preconditioning. Thus, ischemic preconditioning could be an effective surgical strategy to reduce the hepatic ischemia-reperfusion injury in normal and fatty livers under normothermic conditions, including hepatic resections, and liver transplantation. PMID:12163383

  15. Limb Ischemic Preconditioning Protects Endothelium from Oxidative Stress by Enhancing Nrf2 Translocation and Upregulating Expression of Antioxidases

    PubMed Central

    Chen, Min; Zhang, Mingsheng; Zhang, Xuanping; Li, Jie; Wang, Yan; Fan, Yanying; Shi, Ruizan

    2015-01-01

    Remote ischemic preconditioning is often performed by limb ischemic preconditioning (LIPC), which has been demonstrated to be beneficial to various cells, including endothelial cells. The mechanisms underlying the protection have not been well clarified. The present study was designed to observe the effects of sera derived from rats after LIPC on human umbilical vein endothelial cells (HUVECs) injured by hydrogen peroxide (H2O2) -induced oxidative stress and explore the involvement of redox state in the protection. Incubation with 1 mM H2O2 for 2 h induced a significant reduction in HUVECs viability with increased production of malondialdehyde (MDA) and reactive oxygen species (ROS). Preincubation with early preconditioning serum (EPS) or delayed preconditioning serum (DPS) derived from rats subjected to LIPC alleviated these changes. Both EPS and DPS increased the nuclear translocation of transcription factor nuclear factor E2-related factor 2 (Nrf2) and the expression of antioxidases. The protective effects of EPS and DPS were blocked neither by MEK/ERK inhibitors U0126 nor by PI3K/Akt inhibitors LY294002. In conclusion, the present study provides the evidence that LIPC protects the HUVECs from H2O2-induced injury by, at least partially, enhancement of Nrf2 translocation and upregulation of antioxidases via signaling pathways independent of MEK/ERK and PI3K/Akt. PMID:26029932

  16. Impact of ischemic preconditioning on ischemia-reperfusion injury of the rat sciatic nerve

    PubMed Central

    Dong, Shuanghai; Cao, Yun; Li, Haoqing; Tian, Jiwei; Yi, Chengqing; Sang, Weilin

    2015-01-01

    The aim of this study was to assess the preventive effects of ischemic preconditioning (IPC) on ischemia-reperfusion (IR) injury in the sciatic nerve of the rat hind limb. This study included two experiments. For Experiment 1, 40 Sprague-Dawley (SD) rats were randomly divided into 4 equal groups that received different IPC treatments prior to IR. Serum concentrations of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) were assessed following reperfusion. Furthermore, we tested the electrophysiological response and ultrastructural changes in the ipsilateral sciatic nerve after IR. After determining the best IPC protocol for protection, we performed a second experiment with 30 SD rats randomly divided into 3 equal groups. Each group underwent 1, 2, or 3 IPC cycles before prolonged ischemia and reperfusion. The same analyses as in Experiment 1 were performed. In Experiment 1, the AST, LDH, and MDA concentrations were decreased in all IPC groups compared with the control group. Concentration of these enzymes showed decreases with increasing IPC cycle number in Experiment 2; however, the difference between 2 and 3 cycles of IPC did not reach significance. Conversely, SOD activity increased in the rapid and delayed groups, and with increasing cycles of IPC. The electrophysiological test showed a decrease in amplitude and increase in conduction velocity with increasing IPC cycles. Moreover, ultrastructural damage decreased with increasing IPC cycles. IPC protected against IR injury in the peripheral nerves. This effect was positively correlated with the number of IPC cycles. PMID:26629140

  17. Are the Beneficial Effects of Ischemic Preconditioning on Performance Partly a Placebo Effect?

    PubMed

    Marocolo, M; da Mota, G R; Pelegrini, V; Appell Coriolano, H J

    2015-09-01

    The acute effect of ischemic preconditioning (IPC) on the maximal performance in the 100-m freestyle event was studied in recreational swimmers. 15 swimmers (21.03.2?years) participated in a random crossover model on 3 different days (control [CON], IPC or SHAM), separated by 3-5 days. IPC consisted of 4 cycles of 5-min occlusion (220?mmHg)/5-min reperfusion in each arm, and the SHAM protocol was similar to IPC but with only 20?mmHg during the occlusion phase. The subjects were informed that both maneuvers (IPC and SHAM) would improve their performance. After IPC, CON or SHAM, the volunteers performed a maximal 100-m time trial. IPC improved performance (p=0.036) compared to CON. SHAM performance was only better than CON (p=0.059) as a tendency but did not differ from IPC performance. The individual response of the subjects to the different maneuvers was very heterogeneous. We conclude that IPC may improve performance in recreational swimmers, but this improvement could mainly be a placebo effect. PMID:26058479

  18. Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning.

    PubMed

    Pradillo, Jesús M; Fernández-López, David; García-Yébenes, Isaac; Sobrado, Mónica; Hurtado, Olivia; Moro, María A; Lizasoain, Ignacio

    2009-04-01

    It has been demonstrated that a short ischemic event (ischemic preconditioning, IPC) results in a subsequent resistance to severe ischemia (ischemic tolerance, IT). We have recently demonstrated the role of innate immunity and in particular of toll-like receptor (TLR) 4 in brain ischemia. Several evidences suggest that TLR4 might also be involved in IT. Therefore, we have now used an in vivo model of IPC to investigate whether TLR4 is involved in IT. A 6-min temporary bilateral common carotid arteries occlusion was used for focal IPC and it was performed on TLR4-deficient mice (C57BL/10ScNJ) and animals that express TLR4 normally (C57BL/10ScSn). To assess the ability of IPC to induce IT, permanent middle cerebral artery occlusion was performed 48 h after IPC. Stroke outcome was evaluated by determination of infarct volume and assessment of neurological scores. IPC caused neuroprotection as shown by a reduction in infarct volume and better outcome in mice expressing TLR4 normally. TLR4-deficient mice showed less IPC-induced neuroprotection than wild-type animals. Western blot analysis of tumor necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) showed an up-regulation in the expression of these proteins in both substrains of mice measured 18, 24 and 48 h after IPC, being higher in mice with TLR4. Similarly, nuclear factor-kappa B (NF-kappaB) activation was observed 18, 24 and 48 h after IPC, being more intense in TLR4-expressing mice. These data demonstrate that TLR4 signalling is involved in brain tolerance as shown by the difference in the percentage of neuroprotection produced by IPC between ScSn and ScNJ (60% vs. 18%). The higher expression of TNF-alpha, iNOS and cyclooxygenase-2 and NF-kappaB activation in mice expressing TLR4 is likely to participate in this endogenous neuroprotective effect. PMID:19200341

  19. CpG preconditioning regulates miRNA expression that modulates genomic reprogramming associated with neuroprotection against ischemic injury

    PubMed Central

    Vartanian, Keri B; Mitchell, Hugh D; Stevens, Susan L; Conrad, Valerie K; McDermott, Jason E; Stenzel-Poore, Mary P

    2015-01-01

    Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene responses produced by CpG preconditioning is unknown. We evaluated brain miRNA expression in response to CpG preconditioning before and after stroke using microarray. Importantly, we have data from previous gene microarrays under the same conditions, which allowed integration of miRNA and gene expression data to specifically identify regulated miRNA gene targets. CpG preconditioning did not significantly alter miRNA expression before stroke, indicating that miRNA regulation is not critical for the initiation of preconditioning-induced neuroprotection. However, after stroke, differentially regulated miRNAs between CpG- and saline-treated animals associated with the upregulation of several neuroprotective genes, implicating these miRNAs in genomic reprogramming that increases neuroprotection. Statistical analysis revealed that the miRNA targets were enriched in the gene population regulated in the setting of stroke, implying that miRNAs likely orchestrate this gene expression. These data suggest that miRNAs regulate endogenous responses to stroke and that manipulation of these miRNAs may have the potential to acutely activate novel neuroprotective processes that reduce damage. PMID:25388675

  20. Effects of remote ischemic preconditioning in high-risk patients undergoing cardiac surgery (Remote IMPACT): a randomized controlled trial

    PubMed Central

    Walsh, Michael; Whitlock, Richard; Garg, Amit X.; Légaré, Jean-François; Duncan, Andra E.; Zimmerman, Robert; Miller, Scott; Fremes, Stephen; Kieser, Teresa; Karthikeyan, Ganesan; Chan, Matthew; Ho, Anthony; Nasr, Vivian; Vincent, Jessica; Ali, Imtiaz; Lavi, Ronit; Sessler, Daniel I.; Kramer, Robert; Gardner, Jeff; Syed, Summer; VanHelder, Tomas; Guyatt, Gordon; Rao-Melacini, Purnima; Thabane, Lehana; Devereaux, P.J.

    2016-01-01

    Background: Remote ischemic preconditioning is a simple therapy that may reduce cardiac and kidney injury. We undertook a randomized controlled trial to evaluate the effect of this therapy on markers of heart and kidney injury after cardiac surgery. Methods: Patients at high risk of death within 30 days after cardiac surgery were randomly assigned to undergo remote ischemic preconditioning or a sham procedure after induction of anesthesia. The preconditioning therapy was three 5-minute cycles of thigh ischemia, with 5 minutes of reperfusion between cycles. The sham procedure was identical except that ischemia was not induced. The primary outcome was peak creatine kinase–myocardial band (CK-MB) within 24 hours after surgery (expressed as multiples of the upper limit of normal, with log transformation). The secondary outcome was change in creatinine level within 4 days after surgery (expressed as log-transformed micromoles per litre). Patient-important outcomes were assessed up to 6 months after randomization. Results: We randomly assigned 128 patients to remote ischemic preconditioning and 130 to the sham therapy. There were no significant differences in postoperative CK-MB (absolute mean difference 0.15, 95% confidence interval [CI] −0.07 to 0.36) or creatinine (absolute mean difference 0.06, 95% CI −0.10 to 0.23). Other outcomes did not differ significantly for remote ischemic preconditioning relative to the sham therapy: for myocardial infarction, relative risk (RR) 1.35 (95% CI 0.85 to 2.17); for acute kidney injury, RR 1.10 (95% CI 0.68 to 1.78); for stroke, RR 1.02 (95% CI 0.34 to 3.07); and for death, RR 1.47 (95% CI 0.65 to 3.31). Interpretation: Remote ischemic precnditioning did not reduce myocardial or kidney injury during cardiac surgery. This type of therapy is unlikely to substantially improve patient-important outcomes in cardiac surgery. Trial registration: ClinicalTrials.gov, no. NCT01071265. PMID:26668200

  1. Unique Transcriptional Profile of Sustained Ligand-Activated Preconditioning in Pre- and Post-Ischemic Myocardium

    PubMed Central

    Ashton, Kevin J.; Tupicoff, Amanda; Williams-Pritchard, Grant; Kiessling, Can J.; See Hoe, Louise E.; Headrick, John P.; Peart, Jason N.

    2013-01-01

    Background Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR) agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation to identify molecular effects of SLP in pre- and post-ischemic myocardium. Methodology/Principal Findings Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days. Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to 25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts from SLP mice (≥1.3-fold change, FDR≤5%). Induced genes encoded sarcomeric/contractile proteins (Myh7, Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3, Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-ischemia), which may influence later infarction/remodeling. This included up-regulated determinants of cellular resistance to oxidant (Mgst3,Gstm1,Gstm2) and other forms of stress (Xirp1,Ankrd1,Clu), and repression of stress-response genes (Hspa1a,Hspd1,Hsp90aa,Hsph1,Serpinh1) and Txnip. Conclusions Protection via SLP is associated with transcriptional repression of inflammation/immunity, up-regulation of sarcomeric elements and natriuretic peptides, and modulation of cell stress, growth and development, while conventional protective molecules are unaltered. PMID:23991079

  2. Protective effect of ischemic preconditioning on the jejunal graft mucosa injury during cold preservation.

    PubMed

    Jonecova, Zuzana; Toth, Stefan; Maretta, Milan; Ciccocioppo, Rachele; Varga, Jan; Rodrigo, Luis; Kruzliak, Peter

    2015-10-01

    Protection of intestinal graft mucosa during cold preservation is still an unmet need in clinical practice, thus affecting the success of transplantation. The present study investigates the ability of two ischemic preconditioning (IPC) procedures to limit cold preservation injury. Three groups of Sprague-Dawley rats were recruited (n=11 each) as follows: the short IPC (SIPC) performed through 4 cycles of mesenteric ischemia of 4 min each followed by 10 min of reperfusion, the long IPC (LIPC) obtained by 2 ischemic cycles of 12 min each followed by 10 min of reperfusion, and the control group (C) without IPC. Grafts were then stored in cold histidine-tryptophan-ketoglutarate solution and samples were taken at 0, 3, 6 and 9 h lasting preservation. Both IPC groups showed an advanced degree of preservation with delayed development of graft mucosa damage, mainly in the crypt region. At the beginning of preservation, the graft mucosa in both IPC groups showed lower degree of mucosal injury index (MII) by 50% in comparison with C group. Specifically, a significant improvement of MII was observed after 3h of preservation in the LIPC group (p<0.05) in comparison with untreated C grafts. Significant atrophy of the intestinal mucosa in C group was found after 3h of preservation (p<0.01), in SIPC group the progress of atrophy was delayed to 6 h (p<0.001), and in LIPC group only moderate decrease in that was found. A parallel increase of laminin expression with the MII rate after 6 and 9h of preservation in comparison with the level at time 0 was observed in all grafts (p<0.001 and p<0.01, respectively). In both IPC groups the apoptotic cell (AC) rate was significantly reduced at the beginning of cold preservation (p<0.05 both). Moreover, in both the SIPC and C groups, the progressive increase in MII rate connected with AC rate decrease was due to a predominance of necrosis. By contrast in the LIPC group, after an increase of nearly 50% in the AC rate at the 3rd hour, its level remained fairly constant during the further 6 h of preservation, thus probably preventing necrosis and improving graft viability. PMID:26123930

  3. Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning.

    PubMed

    Kalakech, Hussein; Tamareille, Sophie; Pons, Sandrine; Godin-Ribuot, Diane; Carmeliet, Peter; Furber, Alain; Martin, Valérie; Berdeaux, Alain; Ghaleh, Bijan; Prunier, Fabrice

    2013-12-01

    Remote ischemic preconditioning (RIPC) has emerged as a feasible and attractive therapeutic procedure for heart protection against ischemia/reperfusion (I/R) injury. However, its molecular mechanisms remain poorly understood. Hypoxia inducible factor-1α (HIF-1α) is a transcription factor that plays a key role in the cellular adaptation to hypoxia and ischemia. This study's aim was to test whether RIPC-induced cardioprotection requires HIF-1α upregulation to be effective. In the first study, wild-type mice and mice heterozygous for HIF1a (gene encoding the HIF-1α protein) were subjected to RIPC immediately before myocardial infarction (MI). RIPC resulted in a robust HIF-1α activation in the limb and acute cardioprotection in wild-type mice. RIPC-induced cardioprotection was preserved in heterozygous mice, despite the low HIF-1α expression in their limbs. In the second study, the role of HIF-1α in RIPC was evaluated using cadmium (Cd), a pharmacological HIF-1α inhibitor. Rats were subjected to MI (MI group) or to RIPC immediately prior to MI (R-MI group). Cd was injected 18 0min before RIPC (Cd-R-MI group). RIPC induced robust HIF-1α activation in rat limbs and significantly reduced infarct size (IS). Despite Cd's inhibition of HIF-1α activation, RIPC-induced cardioprotection was preserved in the Cd-R-MI group. RIPC applied immediately prior to MI increased HIF-1α expression and attenuated IS in rats and wild-type mice. However, RIPC-induced cardioprotection was preserved in partially HIF1a-deficient mice and in rats pretreated with Cd. When considered together, these results suggest that HIF-1α upregulation is unnecessary in acute RIPC. PMID:24140799

  4. Ischemic preconditioning attenuates mitochondrial localization of PTEN induced by ischemia-reperfusion

    PubMed Central

    Zu, Lingyun; Zheng, Xiaoxu; Wang, Bing; Parajuli, Nirmal; Steenbergen, Charles; Becker, Lewis C.

    2011-01-01

    Although the induction of myocyte apoptosis by ischemia-reperfusion (I/R) is attenuated by ischemic preconditioning (IPC), the underlying mechanism is not fully understood. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) promotes apoptosis through Akt-dependent and -independent mechanisms. We tested the hypothesis that IPC attenuates the mitochondrial localization of PTEN in the myocardium induced by I/R. Isolated hearts from wild-type mice were exposed to IPC or normal perfusion followed by 30 min of ischemia and reperfusion. IPC attenuated myocardial infarct size and apoptosis after I/R. Heart fractionation showed that mitochondrial PTEN and Bax protein levels and the physical association between them were increased by 30 min of I/R and that IPC attenuated all of these effects of I/R. Muscle-specific PTEN knockout decreased mitochondrial Bax protein levels in the reperfused myocardium and increased cell survival. To determine whether PTEN relocalization to mitochondria was influenced by I/R-induced production of ROS, hearts were perfused with N-acetylcysteine (NAC) to scavenge ROS or H2O2 to mimic I/R-induced ROS. Mitochondrial PTEN protein levels were decreased by NAC and increased by H2O2. PTEN protein overexpression was generated in mouse hearts by adenoviral gene transfer. PTEN overexpression increased mitochondrial PTEN and Bax protein levels and ROS production, whereas muscle-specific PTEN knockout produced the opposite effects. In conclusion, myocardial I/R causes PTEN localization to the mitochondria, related to the generation of ROS; IPC attenuates the mitochondrial localization of PTEN after I/R, potentially inhibiting the translocation of Bax to the mitochondria and resulting in improved cell viability. PMID:21421815

  5. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease

    PubMed Central

    Liang, Y.; Li, Y.P.; He, F.; Liu, X.Q.; Zhang, J.Y.

    2015-01-01

    Remote ischemic preconditioning (RIPre) can prevent myocardial injury. The purpose of this study was to assess the beneficial effects of long-term regular RIPre on human arteries. Forty patients scheduled for coronary artery bypass graft (CABG) surgery were assigned randomly to a RIPre group (n=20) or coronary heart disease (CHD) group (n=20). Twenty patients scheduled for mastectomy were enrolled as a control group. RIPre was achieved by occluding arterial blood flow 5 min with a mercury sphygmomanometer followed by a 5-min reperfusion period, and this was repeated 4 times. The RIPre procedure was repeated 3 times a day for 20 days. In all patients, arterial fragments discarded during surgery were collected to evaluate endothelial function by flow-mediated dilation (FMD), CD34+ monocyte count, and endothelial nitric oxide synthase (eNOS expression). Phosphorylation levels of STAT-3 and Akt were also assayed to explore the underlying mechanisms. Compared with the CHD group, long-term regular RIPre significantly improved FMD after 20 days (8.5±2.4 vs 4.9±4.2%, P<0.05) and significantly reduced troponin after CABG surgery (0.72±0.31 and 1.64±0.19, P<0.05). RIPre activated STAT-3 and increased CD34+ endothelial progenitor cell counts found in arteries. Long-term, regular RIPre improved endothelial function in patients with CHD, possibly due to STAT-3 activation, and this may have led to an increase in endothelial progenitor cells. PMID:25923462

  6. Effect of Remote Ischemic Preconditioning on Platelet Activation Induced by Coronary Procedures.

    PubMed

    Lanza, Gaetano Antonio; Stazi, Alessandra; Villano, Angelo; Torrini, Flavia; Milo, Maria; Laurito, Marianna; Flego, Davide; Aurigemma, Cristina; Liuzzo, Giovanna; Crea, Filippo

    2016-02-01

    In this study, we aim to assess whether remote ischemic preconditioning (RIPC) reduces platelet activation during coronary angiography (CA) and/or percutaneous coronary interventions. We studied 30 patients who underwent CA because of a suspect of stable angina. Patients were randomized to RIPC (3 short episodes of forearm ischemia) or sham RIPC (controls) before the procedure. Blood samples were collected at baseline, at the end of the procedure, and 24 hours later. Monocyte-platelet aggregate (MPA) formation and platelet CD41 in the MPA gate and CD41 and CD62 expression in the platelet gate were assessed by flow cytometry, in the absence and in the presence of adenosine diphosphate (ADP) stimulation. A significant increase in platelet activation occurred during the invasive procedure in controls, which persisted at 24 hours. However, compared with controls, RIPC group showed no or a lower increase in platelet variables, including MPA formation (p <0.0001) and CD41 (p = 0.002) in the MPA gate and CD41 (p <0.0001) and CD62 (p = 0.002) in the platelet gate. ADP increased platelet activation at baseline, but did not further increase platelet reactivity during the invasive procedure in either groups. Percutaneous coronary interventions, performed in 10 patients (6 in the RIPC group and 4 in controls), did not have any further significant effect on platelet activation and reactivity compared with CA alone. In conclusion, RIPC reduces platelet activation occurring during CA. In contrast, no effects were observed on platelet response to ADP stimulation, probably related to the administration of an ADP antagonist in all patients. PMID:26739396

  7. Effect of pioglitazone on the abrogated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart

    PubMed Central

    Mittal, Dhiraj; Taliyan, Rajeev; Sharma, P. L.; Yadav, Harlokesh Narayan

    2016-01-01

    Objectives: The signaling pathways upstream of glycogen synthase kinase-3β (GSK-3β) get reduced during ischemic preconditioning (IPC) in hyperlipidemic rat heart. Pioglitazone, an insulin sensitizer, exerts cardioprotection through GSK-3β. The objective of the study is to investigate the role of pioglitazone on the attenuated cardioprotective effect of IPC in hyperlipidemic rat heart. Materials and Methods: The rats were administered high-fat diet for 8 weeks to induce experimental hyperlipidemia (HL). After mounting on a Langendorff apparatus, isolated perfused hearts were given four cycles of IPC; each consists of 5 min of both ischemia and reperfusion followed by 30 min of ischemia and 120 min of reperfusion. Insulin (50 mU/ml) was perfused alone and in combination with pioglitazone (2 μM), while in other groups, this combination was repeated with wortmannin (100 nM), a selective PI3K inhibitor and rapamycin (1 nM), a selective mammalian target of rapamycin (mTOR) inhibitor, separately, and in combination. Myocardial injury was assessed by measuring infarct size and the levels of creatinine kinase-myocardial band (CK-MB) and lactate dehydrogenase (LDH) in the coronary effluent. Results: IPC significantly decreased the infarct size and levels of LDH and CK-MB in normal but not in HL rat heart. Perfusion of insulin along with pioglitazone significantly reduced the infarct size and release of CK-MB and LDH in IPC-treated HL rat hearts. Perfusion of wortmannin or rapamycin alone significantly and in combination almost completely abolished the pioglitazone-induced restored cardioprotection (P < 0.05). Conclusion: Cardioprotective effect of IPC gets lost in hyperlipidemic rat heart. The results suggest that perfusion of pioglitazone restored the cardioprotective effect of IPC in hyperlipidemic rat heart, an effect that may be via PI3K and mTOR. PMID:26997724

  8. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease.

    PubMed

    Liang, Y; Li, Y P; He, F; Liu, X Q; Zhang, J Y

    2015-06-01

    Remote ischemic preconditioning (RIPre) can prevent myocardial injury. The purpose of this study was to assess the beneficial effects of long-term regular RIPre on human arteries. Forty patients scheduled for coronary artery bypass graft (CABG) surgery were assigned randomly to a RIPre group (n=20) or coronary heart disease (CHD) group (n=20). Twenty patients scheduled for mastectomy were enrolled as a control group. RIPre was achieved by occluding arterial blood flow 5 min with a mercury sphygmomanometer followed by a 5-min reperfusion period, and this was repeated 4 times. The RIPre procedure was repeated 3 times a day for 20 days. In all patients, arterial fragments discarded during surgery were collected to evaluate endothelial function by flow-mediated dilation (FMD), CD34(+) monocyte count, and endothelial nitric oxide synthase (eNOS expression). Phosphorylation levels of STAT-3 and Akt were also assayed to explore the underlying mechanisms. Compared with the CHD group, long-term regular RIPre significantly improved FMD after 20 days (8.5±2.4 vs 4.9±4.2%, P<0.05) and significantly reduced troponin after CABG surgery (0.72±0.31 and 1.64±0.19, P<0.05). RIPre activated STAT-3 and increased CD34(+) endothelial progenitor cell counts found in arteries. Long-term, regular RIPre improved endothelial function in patients with CHD, possibly due to STAT-3 activation, and this may have led to an increase in endothelial progenitor cells. PMID:25923462

  9. Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway

    PubMed Central

    Ran, Qiang-qiang; Chen, Huai-long; Liu, Yan-li; Yu, Hai-xia; Shi, Fei; Wang, Ming-shan

    2015-01-01

    Electroacupuncture has therapeutic effects on ischemic brain injury, but its mechanism is still poorly understood. In this study, mice were stimulated by electroacupuncture at the Baihui (GV20) acupoint for 30 minutes at 1 mA and 2/15 Hz for 5 consecutive days. A cerebral ischemia model was established by ligating the bilateral common carotid artery for 15 minutes. At 72 hours after injury, neuronal injury in the mouse hippocampus had lessened, and the number of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-positive cells reduced after electroacupuncture treatment. Moreover, expression of adenosine monophosphate-activated protein kinase α (AMPKα) and phosphorylated AMPKα was up-regulated. Intraperitoneal injection of the AMPK antagonist, compound C, suppressed this phenomenon. Our findings suggest that electroacupuncture preconditioning alleviates ischemic brain injury via AMPK activation. PMID:26330828

  10. Additive Effect on Survival of Anaesthetic Cardiac Protection and Remote Ischemic Preconditioning in Cardiac Surgery: A Bayesian Network Meta-Analysis of Randomized Trials

    PubMed Central

    Zangrillo, Alberto; Musu, Mario; Greco, Teresa; Di Prima, Ambra Licia; Matteazzi, Andrea; Testa, Valentina; Nardelli, Pasquale; Febres, Daniela; Monaco, Fabrizio; Calabrò, Maria Grazia; Ma, Jun; Finco, Gabriele; Landoni, Giovanni

    2015-01-01

    Introduction Cardioprotective properties of volatile agents and of remote ischemic preconditioning have survival effects in patients undergoing cardiac surgery. We performed a Bayesian network meta-analysis to confirm the beneficial effects of these strategies on survival in cardiac surgery, to evaluate which is the best strategy and if these strategies have additive or competitive effects. Methods Pertinent studies were independently searched in BioMedCentral, MEDLINE/PubMed, Embase, and the Cochrane Central Register (updated November 2013). A Bayesian network meta-analysis was performed. Four groups of patients were compared: total intravenous anesthesia (with or without remote ischemic preconditioning) and an anesthesia plan including volatile agents (with or without remote ischemic preconditioning). Mortality was the main investigated outcome. Results We identified 55 randomized trials published between 1991 and 2013 and including 6,921 patients undergoing cardiac surgery. The use of volatile agents (posterior mean of odds ratio = 0.50, 95% CrI 0.28–0.91) and the combination of volatile agents with remote preconditioning (posterior mean of odds ratio = 0.15, 95% CrI 0.04–0.55) were associated with a reduction in mortality when compared to total intravenous anesthesia. Posterior distribution of the probability of each treatment to be the best one, showed that the association of volatile anesthetic and remote ischemic preconditioning is the best treatment to improve short- and long-term survival after cardiac surgery, suggesting an additive effect of these two strategies. Conclusions In patients undergoing cardiac surgery, the use of volatile anesthetics and the combination of volatile agents with remote preconditioning reduce mortality when compared to TIVA and have additive effects. It is necessary to confirm these results with large, multicenter, randomized, double-blinded trials comparing these different strategies in cardiac and non-cardiac surgery, to establish which volatile agent is more protective than the others and how to best apply remote ischemic preconditioning. PMID:26231003

  11. Remote ischemic preconditioning delays the onset of acute mountain sickness in normobaric hypoxia

    PubMed Central

    Berger, Marc M; Köhne, Hannah; Hotz, Lorenz; Hammer, Moritz; Schommer, Kai; Bärtsch, Peter; Mairbäurl, Heimo

    2015-01-01

    Acute mountain sickness (AMS) is a neurological disorder occurring when ascending too fast, too high. Remote ischemic preconditioning (RIPC) is a noninvasive intervention protecting remote organs from subsequent hypoxic damage. We hypothesized that RIPC protects against AMS and that this effect is related to reduced oxidative stress. Fourteen subjects were exposed to 18 hours of normoxia (21% oxygen) and 18 h of normobaric hypoxia (12% oxygen, equivalent to 4500 m) on different days in a blinded, randomized order. RIPC consisted of four cycles of lower limb ischemia (5 min) and 5 min of reperfusion, and was performed immediately before the study room was entered. A control group was exposed to hypoxia (12% oxygen, n = 14) without RIPC. AMS was evaluated by the Lake Louise score (LLS) and the AMS-C score of the Environmental Symptom Questionnaire. Plasma concentrations of ascorbate radicals, oxidized sulfhydryl (SH) groups, and electron paramagnetic resonance (EPR) signal intensity were measured as biomarkers of oxidative stress. RIPC reduced AMS scores (LLS: 1.9 ± 0.4 vs. 3.2 ± 0.5; AMS-C score: 0.4 ± 0.1 vs. 0.8 ± 0.2), ascorbate radicals (27 ± 7 vs. 65 ± 18 nmol/L), oxidized SH groups (3.9 ± 1.4 vs. 14.3 ± 4.6 μmol/L), and EPR signal intensity (0.6 ± 0.2 vs. 1.5 ± 0.4 × 106) after 5 h in hypoxia (all P < 0.05). After 18 hours in hypoxia there was no difference in AMS and oxidative stress between RIPC and control. AMS and plasma markers of oxidative stress did not correlate. This study demonstrates that RIPC transiently reduces symptoms of AMS and that this effect is not associated with reduced plasma levels of reactive oxygen species. PMID:25742960

  12. Impact of ischemic preconditioning on functional sympatholysis during handgrip exercise in humans

    PubMed Central

    Horiuchi, Masahiro; Endo, Junko; Thijssen, Dick H J

    2015-01-01

    Repeated bouts of ischemia followed by reperfusion, known as ischemic preconditioning (IPC), is found to improve exercise performance. As redistribution of blood from the inactive areas to active skeletal muscles during exercise (i.e., functional sympatholysis) is important for exercise performance, we examined the hypothesis that IPC improves functional sympatholysis in healthy, young humans. In a randomized study, 15 healthy young men performed a 10-min resting period, dynamic handgrip exercise at 10% maximal voluntary contraction (MVC), and 25% MVC. This protocol was preceded by IPC (IPC; 4 × 5-min 220-mmHg unilateral occlusion) or a sham intervention (CON; 4 × 5-min 20-mmHg unilateral occlusion). Near-infrared spectroscopy was used to assess changes in oxygenated hemoglobin and myoglobin in skeletal muscle (HbO2 + MbO2) in response to sympathetic activation (via cold pressor test (CPT)) at baseline and during handgrip exercise (at 10% and 25%). In resting conditions, HbO2 + MbO2 significantly decreased during CPT (−11.0 ± 1.0%), which was significantly larger during the IPC-trial (−13.8 ± 1.2%, P = 0.006). During handgrip exercise at 10% MVC, changes in HbO2 + MbO2 in response to the CPT were blunted after IPC (−8.8 ± 1.5%) and CON (−8.3 ± 0.4%, P = 0.593). During handgrip exercise at 25% MVC, HbO2 + MbO2 in response to the CPT increased (2.0 ± 0.4%), whereas this response was significantly larger when preceded by IPC (4.2 ± 0.6%, P = 0.027). Collectively, these results indicate that IPC-induced different vascular changes at rest and during moderate exercise in response to sympathetic activation. This suggests that, in healthy volunteers, exposure to IPC may alter tissue oxygenation during sympathetic stimulation at rest and during exercise. PMID:25713329

  13. Extracellular Adenosine Formation by Ecto-5’-Nucleotidase (CD73) Is No Essential Trigger for Early Phase Ischemic Preconditioning

    PubMed Central

    2015-01-01

    Background Adenosine is a powerful trigger for ischemic preconditioning (IPC). Myocardial ischemia induces intracellular and extracellular ATP degradation to adenosine, which then activates adenosine receptors and elicits cardioprotection. Conventionally extracellular adenosine formation by ecto-5’-nucleotidase (CD73) during ischemia was thought to be negligible compared to the massive intracellular production, but controversial reports in the past demand further evaluation. In this study we evaluated the relevance of ecto-5’-nucleotidase (CD73) for infarct size reduction by ischemic preconditioning in in vitro and in vivo mouse models of myocardial infarction, comparing CD73-/- and wild type (WT) mice. Methods and Results 3x5 minutes of IPC induced equal cardioprotection in isolated saline perfused hearts of wild type (WT) and CD73-/- mice, reducing control infarct sizes after 20 minutes of ischemia and 90 minutes of reperfusion from 46 ± 6.3% (WT) and 56.1 ± 7.6% (CD73-/-) to 26.8 ± 4.7% (WT) and 25.6 ± 4.7% (CD73-/-). Coronary venous adenosine levels measured after IPC stimuli by high-pressure liquid chromatography showed no differences between WT and CD73-/- hearts. Pharmacological preconditioning of WT hearts with adenosine, given at the measured venous concentration, was evenly cardioprotective as conventional IPC. In vivo, 4x5 minutes of IPC reduced control infarct sizes of 45.3 ± 8.9% (WT) and 40.5 ± 8% (CD73-/-) to 26.3 ± 8% (WT) and 22.6 ± 6.6% (CD73-/-) respectively, eliciting again equal cardioprotection. The extent of IPC-induced cardioprotection in male and female mice was identical. Conclusion The infarct size limiting effects of IPC in the mouse heart in vitro and in vivo are not significantly affected by genetic inactivation of CD73. The ecto-5’-nucleotidase derived extracellular formation of adenosine does not contribute substantially to adenosine’s well known cardioprotective effect in early phase ischemic preconditioning. PMID:26261991

  14. Angiotensin II and ischemic preconditioning synergize to improve mitochondrial function while showing additive effects on ventricular postischemic recovery.

    PubMed

    Nuñez, Rebeca E; Castro, Miriam; Javadov, Sabzali; Escobales, Nelson

    2014-08-01

    Recent studies indicate that the cardioprotective effects of ischemic preconditioning (IPC) against sustained ischemia/reperfusion can be replicated by angiotensin II (Ang II). However, it is not clear whether IPC and Ang II-induced preconditioning (APC) act through similar mechanisms or synergize to enhance cardioprotection. In this study, Langendorff-perfused rat hearts were subjected to IPC, APC, or their combination (IPC/APC) followed by ischemia/reperfusion. IPC, and less potently APC, significantly increased the percent recoveries of the left ventricular developed pressure, the first derivative of developed pressure, and the rate pressure product compared with control. Furthermore, the postischemic recovery of the heart was significantly higher for IPC/APC compared with IPC or APC. The improvements in cardiac function by IPC, APC, and IPC/APC were associated with similar reductions in lactate dehydrogenase release and infarct size. However, a significant improvement in mitochondrial respiration was observed with IPC/APC. The postischemic recovery observed with APC and IPC/APC was inhibited by treatment with losartan, an Ang II type-1 receptor blocker, during the preconditioning phase but not by chelerythrine, a pan-PKC inhibitor. Both drugs, however, abolished the enhanced mitochondrial respiration by IPC/APC. Altogether, these results indicate that APC and IPC interact through mechanisms that enhance cardioprotection by affecting cardiac function and mitochondrial respiration. PMID:24705171

  15. The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection.

    PubMed

    Johnsen, Jacob; Pryds, Kasper; Salman, Rasha; Løfgren, Bo; Kristiansen, Steen Buus; Bøtker, Hans Erik

    2016-03-01

    Remote ischemic preconditioning (rIPC), induced by cycles of transient limb ischemia and reperfusion (IR), is cardioprotective. The optimal rIPC-algorithm is not established. We investigated the effect of cycle numbers and ischemia duration within each rIPC-cycle and the influence of effector organ mass on the efficacy of cardioprotection. Furthermore, the duration of the early phase of protection by rIPC was investigated. Using a tourniquet tightened at the inguinal level, we subjected C57Bl/6NTac mice to intermittent hind-limb ischemia and reperfusion. The rIPC-protocols consisted of (I) two, four, six or eight cycles, (II) 2, 5 or 10 min of ischemia in each cycle, (III) single or two hind-limb occlusions and (IV) 0.5, 1.5, 2.0 or 2.5 h intervals from rIPC to index cardiac ischemia. All rIPC algorithms were followed by 5 min of reperfusion. The hearts were subsequently exposed to 25 min of global ischemia and 60 min of reperfusion in an ex vivo Langendorff model. Cardioprotection was evaluated by infarct size and post-ischemic hemodynamic recovery. Four to six rIPC cycles yielded significant cardioprotection with no further protection by eight cycles. Ischemic cycles lasting 2 min offered the same protection as cycles of 5 min ischemia, whereas prolonged cycles lasting 10 min abrogated protection. One and two hind-limb preconditioning were equally protective. In our mouse model, the duration of protection by rIPC was 1.5 h. These findings indicate that the number and duration of cycles rather than the tissue mass exposed to rIPC determines the efficacy of rIPC. PMID:26768477

  16. Ischemic preconditioning protects hippocampal pyramidal neurons from transient ischemic injury via the attenuation of oxidative damage through upregulating heme oxygenase-1.

    PubMed

    Lee, Jae-Chul; Kim, In Hye; Park, Joon Ha; Ahn, Ji Hyeon; Cho, Jeong-Hwi; Cho, Geum-Sil; Tae, Hyun-Jin; Chen, Bai Hui; Yan, Bing Chun; Yoo, Ki-Yeon; Choi, Jung Hoon; Lee, Choong Hyun; Hwang, In Koo; Cho, Jun Hwi; Kwon, Young-Guen; Kim, Young-Myeong; Won, Moo-Ho

    2015-02-01

    Ischemic preconditioning (IPC) provides neuroprotection against subsequent severe ischemic injury by activating specific mechanisms. In this study, we tested the hypothesis that IPC attenuates postischemic neuronal death via heme oxygenase-1 (HO-1). Animals used in this study were randomly assigned to 4 groups; sham-operated group, ischemia-operated group, IPC plus (+) sham-operated group and IPC+ischemia-operated group. IPC was induced by subjecting gerbils to 2min of ischemia followed by 1 day of recovery. A significant loss of neurons was observed in pyramidal neurons of the hippocampal CA1 region (CA1) in the ischemia-operated groups at 5 days postischemia. In the IPC+ischemia-operated groups, CA1 pyramidal neurons were well protected. The level of HO-1 protein and its activity increased significantly in the CA1 of the IPC+sham-operated group, and the level and activity was maintained in all the time after ischemia-reperfusion compared with the ischemia-operated groups. HO-1 immunoreactivity was induced in the CA1 pyramidal neurons in both IPC+sham-operated- and IPC+ischemia-operated groups. We also found that levels or immunoreactivities of superoxide anion, 8-hydroxy-2'-deoxyguanosine and 4-hydroxy-2-nonenal were significantly decreased in the CA1 of both IPC+sham-operated- and IPC+ischemia-operated groups. Whereas, treatment with zinc protoporphyrin IX (a HO-1 inhibitor) into the IPC+ischemia-operated groups did not preserve the IPC-mediated increase of HO-1 and lost beneficial effects of IPC by inhibiting ischemia-induced DNA damage and lipid peroxidation. In brief, IPC protects CA1 pyramidal neurons from ischemic injury by upregulating HO-1, and we suggest that the enhancement of HO-1 expression by IPC may be a legitimate strategy for a therapeutic intervention of cerebral ischemic damage. PMID:25483558

  17. HSP70.1 AND -70.3 ARE REQUIRED FOR LATE-PHASE PROTECTION INDUCED BY ISCHEMIC PRECONDITIONING OF MOUSE HEARTS

    EPA Science Inventory

    Heat-Shock Proteins 70.1 and 70.3 Are Required for Late-phase Protection
    Induced by Ischemic Preconditioning of the Mouse Heart
    Craig R. Hampton 1 , Akira Shimamoto 1 , Christine L. Rothnie 1 , Jeaneatte Griscavage-Ennis 1 ,
    Albert Chong 1 , David J. Dix 2 , Edward D. Ve...

  18. Renoprotective Mechanism of Remote Ischemic Preconditioning Based on Transcriptomic Analysis in a Porcine Renal Ischemia Reperfusion Injury Model

    PubMed Central

    Kim, Sook Young; Cho, Young In; Lee, Kwang Suk; Kim, Kwang Hyun; Yang, Seung Choul; Han, Woong Kyu

    2015-01-01

    Ischemic preconditioning (IPC) is a well-known phenomenon in which tissues are exposed to a brief period of ischemia prior to a longer ischemic event. This technique produces tissue tolerance to ischemia reperfusion injury (IRI). Currently, IPC’s mechanism of action is poorly understood. Using a porcine single kidney model, we performed remote IPC with renal IRI and evaluated the IPC mechanism of action. Following left nephrectomy, 15 female Yorkshire pigs were divided into three groups: no IPC and 90 minutes of warm ischemia (control), remote IPC immediately followed by 90 minutes of warm ischemia (rIPCe), and remote IPC with 90 minutes of warm ischemia performed 24 hours later (rIPCl). Differential gene expression analysis was performed using a porcine-specific microarray. The microarray analysis of porcine renal tissues identified 1,053 differentially expressed probes in preconditioned pigs. Among these, 179 genes had altered expression in both the rIPCe and rIPCl groups. The genes were largely related to oxidation reduction, apoptosis, and inflammatory response. In the rIPCl group, an additional 848 genes had altered expression levels. These genes were primarily related to immune response and inflammation, including those coding for cytokines and cytokine receptors and those that play roles in the complement system and coagulation cascade. In the complement system, the membrane attack complex was determined to be sublytic, because it colocalized with phosphorylated extracellular signal-regulated kinase. Furthermore, alpha 2 macroglobulin, tissue plasminogen activator, uterine plasmin trypsin inhibitor, and arginase-1 mRNA levels were elevated in the rIPCl group. These findings indicate that remote IPC produces renoprotective effects through multiple mechanisms, and these effects develop over a long timeframe rather than immediately following IPC. PMID:26489007

  19. Remote ischemic precondition prevents radial artery endothelial dysfunction induced by ischemia and reperfusion based on a cyclooxygenase-2-dependent mechanism

    PubMed Central

    Liu, Zhen-Bing; Yang, Wen-Xia; Fu, Xiang-Hua; Zhao, Lin-Feng; Gao, Jun-Ling

    2015-01-01

    Ischemic preconditioning (IPC) and remote ischemic precondition (RIPC) are resistance to ischemia-reperfusion (IR) injury. They have common protective mechanism. Cyclooxygenase (COX)-2 participate in the mechanism of IPC. So, the purpose of this study was to determine whether RIPC protects endothelial function of radial artery in human against IR and whether COX-2 involves in this effect. Endothelial IR injury was induced by arm ischemia (20 min) and reperfusion. Flow-mediated dilation (FMD) of the radial artery was measured before and after IR. RIPC (three 5-min cycles of ischemia of the contralateral arm) was applied immediately and 24 h before IR. All volunteers received the COX-2 inhibitor celecoxib (200 mg orally twice daily) for 5 days. On day 6, all subjects experienced the same studies as described. FMD was reduced by IR without administration of RIPC (P<0.0001). RIPC prevent this impairment of FMD immediately (P=NS) and at 24 h (P=NS). Nevertheless, the COX-2 inhibiter abolished protective effect of RIPC at 24 h (P=NS), but not immediately (P=0.001). After administration of the COX-2 inhibiter, post-IR FMD after RIPC performed immediately had significant increase than after RIPC performed at 24 h (P=0.001) and without administration of RIPC (P=0.003). The COX-2 inhibiter made post-IR FMD evidently decrease after RIPC performed at 24 h (P=0.002). RIPC prevents radial artery endothelial dysfunction induced by IR. This protective effect of RIPC in the late phase is mediated by a COX-2-dependent mechanism. PMID:26885023

  20. AdVEGF-All6A+ Preconditioning of Murine Ischemic Skin Flaps Is Comparable to Surgical Delay

    PubMed Central

    Gersch, Robert P.; Fourman, Mitchell S.; Phillips, Brett T.; Nasser, Ahmed; McClain, Steve A.; Khan, Sami U.; Dagum, Alexander B.

    2015-01-01

    Background: Surgical flap delay is commonly used in preconditioning reconstructive flaps to prevent necrosis. However, staged procedures are not ideal. Pharmacologic up-regulation of angiogenic and arteriogenic factors before flap elevation poses a nonsurgical approach to improve flap survival. Methods: Male Sprague Dawley rats were divided into control (n = 16), surgical delay (Delay), AdNull, AdEgr-1, and AdVEGF (n ≥ 9/group) groups. Delay rats had a 9 cm × 3 cm cranial based pedicle skin flap incised 10 days prior to elevation. Adenoviral groups received 28 intradermal injections (109 pu/animal total) throughout the distal two thirds of the flap 1 week prior to elevation. At postoperative day (POD) 0 flaps were elevated and silicone sheeting was placed between flap and wound bed. Perfusion analysis in arbitrary perfusion units of the ischemic middle third of the flap using laser Doppler imaging was conducted preoperatively and on POD 0, 3, and 7. Clinical and histopathologic assessments of the skin flaps were performed on POD 7. Results: AdVEGF (50.8 ± 10.9 APU) and AdEgr-1 (39.3 ± 10.6 APU) perfusion levels were significantly higher than controls (16.5 ± 4.2 APU) on POD 7. Delay models were equivalent to controls (25.9 ± 6.8 APU). AdVEGF and Delay animals showed significantly more viable surface area on POD 7 (14.4 ± 1.3 cm2, P < 0.01 and 12.4 ± 1.2 cm2, P < 0.05, respectively) compared with Controls (8.7 ± 0.7 cm2). Conclusions: AdVEGF preconditioning resulted in flap survival comparable to surgical delay. Adenoviral preconditioning maintained perfusion levels postoperatively while surgical delay did not. PMID:26495207

  1. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C2H2 zinc finger protein

    PubMed Central

    Han, D.; Zhang, C.; Fan, W.J.; Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S.

    2014-01-01

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C2H2 motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element. PMID:25493376

  2. Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation.

    PubMed

    Nadtochiy, Sergiy M; Urciuoli, William; Zhang, Jimmy; Schafer, Xenia; Munger, Joshua; Brookes, Paul S

    2015-11-01

    Ischemic preconditioning (IPC) protects tissues such as the heart from prolonged ischemia-reperfusion (IR) injury. We previously showed that the lysine deacetylase SIRT1 is required for acute IPC, and has numerous metabolic targets. While it is known that metabolism is altered during IPC, the underlying metabolic regulatory mechanisms are unknown, including the relative importance of SIRT1. Thus, we sought to test the hypothesis that some of the metabolic adaptations that occur in IPC may require SIRT1 as a regulatory mediator. Using both ex-vivo-perfused and in-vivo mouse hearts, LC-MS/MS based metabolomics and (13)C-labeled substrate tracing, we found that acute IPC altered several metabolic pathways including: (i) stimulation of glycolysis, (ii) increased synthesis of glycogen and several amino acids, (iii) increased reduced glutathione levels, (iv) elevation in the oncometabolite 2-hydroxyglutarate, and (v) inhibition of fatty-acid dependent respiration. The majority (83%) of metabolic alterations induced by IPC were ablated when SIRT1 was acutely inhibited with splitomicin, and a principal component analysis revealed that metabolic changes in response to IPC were fundamentally different in nature when SIRT1 was inhibited. Furthermore, the protective benefit of IPC was abrogated by eliminating glucose from perfusion media while sustaining normal cardiac function by burning fat, thus indicating that glucose dependency is required for acute IPC. Together, these data suggest that SIRT1 signaling is required for rapid cardioprotective metabolic adaptation in acute IPC. PMID:26388263

  3. Effect of Hypoglycemic Agents on Ischemic Preconditioning in Patients With Type 2 Diabetes and Symptomatic Coronary Artery Disease

    PubMed Central

    Rahmi, Rosa Maria; Uchida, Augusto Hiroshi; Rezende, Paulo Cury; Lima, Eduardo Gomes; Garzillo, Cibele Larrosa; Favarato, Desiderio; Strunz, Celia M.C.; Takiuti, Myrthes; Girardi, Priscyla; Hueb, Whady; Kalil Filho, Roberto; Ramires, José A.F.

    2013-01-01

    OBJECTIVE To assess the effect of two hypoglycemic drugs on ischemic preconditioning (IPC) patients with type 2 diabetes and coronary artery disease (CAD). RESEARCH DESIGN AND METHODS We performed a prospective study of 96 consecutive patients allocated into two groups: 42 to group repaglinide (R) and 54 to group vildagliptin (V). All patients underwent two consecutive exercise tests (ET1 and ET2) in phase 1 without drugs. In phase 2, 1 day after ET1 and -2, 2 mg repaglinide three times daily or 50 mg vildagliptin twice daily was given orally to patients in the respective group for 6 days. On the seventh day, 60 min after 6 mg repaglinide or 100 mg vildagliptin, all patients underwent two consecutive exercise tests (ET3 and ET4). RESULTS In phase 1, IPC was demonstrated by improvement in the time to 1.0 mm ST-segment depression and rate pressure product (RPP). All patients developed ischemia in ET3; however, 83.3% of patients in group R experienced ischemia earlier in ET4, without significant improvement in RPP, indicating the cessation of IPC (P < 0.0001). In group V, only 28% of patients demonstrated IPC cessation, with 72% still having the protective effect (P < 0.0069). CONCLUSIONS Repaglinide eliminated myocardial IPC, probably by its effect on the KATP channel. Vildagliptin did not damage this protective mechanism in a relevant way in patients with type 2 diabetes and CAD, suggesting a good alternative treatment in this population. PMID:23250803

  4. Hypotheses, rationale, design, and methods for evaluation of ischemic preconditioning assessed by sequential exercise tests in diabetic and non-diabetic patients with stable coronary artery disease – a prospective study

    PubMed Central

    2013-01-01

    Background Ischemic preconditioning is a powerful mechanism of myocardial protection and in humans it can be evaluated by sequential exercise tests. Coronary Artery Disease in the presence of diabetes mellitus may be associated with worse outcomes. In addition, some studies have shown that diabetes interferes negatively with the development of ischemic preconditioning. However, it is still unknown whether diabetes may influence the expression of ischemic preconditioning in patients with stable multivessel coronary artery disease. Methods/Design This study will include 140 diabetic and non-diabetic patients with chronic, stable coronary artery disease and preserved left ventricular systolic function. The patients will be submitted to two sequential exercise tests with 30-minutes interval between them. Ischemic parameters will be compared between diabetic and non-diabetic patients. Ischemic preconditioning will be considered present when time to 1.0 mm ST-segment deviation is greater in the second of two sequential exercise tests. Exercise tests will be analyzed by two independent cardiologists. Discussion Ischemic preconditioning was first demonstrated by Murry et al. in dog’s hearts. Its work was reproduced by other authors, clearly demonstrating that brief periods of myocardial ischemia followed by reperfusion triggers cardioprotective mechanisms against subsequent and severe ischemia. On the other hand, the demonstration of ischemic preconditioning in humans requires the presence of clinical symptoms or physiological changes difficult to be measured. One methodology largely accepted are the sequential exercise tests, in which, the improvement in the time to 1.0 mm ST depression in the second of two sequential tests is considered manifestation of ischemic preconditioning. Diabetes is an important and independent determinant of clinical prognosis. It's a major risk factor for coronary artery disease. Furthermore, the association of diabetes with stable coronary artery disease imposes worse prognosis, irrespective of treatment strategy. It’s still not clearly known the mechanisms responsible by these worse outcomes. Impairment in the mechanisms of ischemic preconditioning may be one major cause of this worse prognosis, but, in the clinical setting, this is not known. The present study aims to evaluate how diabetes mellitus interferes with ischemic preconditioning in patients with stable, multivessel coronary artery disease and preserved systolic ventricular function. PMID:24330253

  5. A Sphingosine Kinase Form 2 Knockout Sensitizes Mouse Myocardium to Ischemia/Reoxygenation Injury and Diminishes Responsiveness to Ischemic Preconditioning

    PubMed Central

    Vessey, Donald A.; Li, Luyi; Jin, Zhu-Qiu; Kelley, Michael; Honbo, Norman; Zhang, Jianqing; Karliner, Joel S.

    2011-01-01

    Sphingosine kinase (SphK) exhibits two isoforms, SphK1 and SphK2. Both forms catalyze the synthesis of sphingosine 1-phosphate (S1P), a sphingolipid involved in ischemic preconditioning (IPC). Since the ratio of SphK1?:?SphK2 changes dramatically with aging, it is important to assess the role of SphK2 in IR injury and IPC. Langendorff mouse hearts were subjected to IR (30?min equilibration, 50?min global ischemia, and 40?min reperfusion). IPC consisted of 2?min of ischemia and 2?min of reperfusion for two cycles. At baseline, there were no differences in left ventricular developed pressure (LVDP), ?dP/dtmax, and heart rate between SphK2 null (KO) and wild-type (WT) hearts. In KO hearts, SphK2 activity was undetectable, and SphK1 activity was unchanged compared to WT. Total SphK activity was reduced by 53%. SphK2 KO hearts subjected to IR exhibited significantly more cardiac damage (37 1% infarct size) compared with WT (28 1% infarct size); postischemic recovery of LVDP was lower in KO hearts. IPC exerted cardioprotection in WT hearts. The protective effect of IPC against IR was diminished in KO hearts which had much higher infarction sizes (35 2%) compared to the IPC/IR group in control hearts (12 1%). Western analysis revealed that KO hearts had substantial levels of phosphorylated p38 which could predispose the heart to IR injury. Thus, deletion of the SphK2 gene sensitizes the myocardium to IR injury and diminishes the protective effect of IPC. PMID:21904650

  6. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia.

    PubMed

    Hong, Seongkweon; Ahn, Ji Yun; Cho, Geum-Sil; Kim, In Hye; Cho, Jeong Hwi; Ahn, Ji Hyeon; Park, Joon Ha; Won, Moo-Ho; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Park, Seung Min; Cho, Jun Hwi; Choi, Soo Young; Lee, Jae-Chul

    2015-10-01

    Monocarboxylate transporters (MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning (IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups (sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region (CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia. PMID:26692857

  7. Possible involvement of PKC-delta in the abrogated cardioprotective potential of ischemic preconditioning in hyperhomocysteinemic rat hearts.

    PubMed

    Rohilla, Ankur; Singh, Gurfateh; Singh, Manjeet; Bala kumar, Pitchai

    2010-03-01

    The present study has been designed to investigate the possible role of protein kinase C-delta (PKC-delta) in hyperhomocysteinemia-induced attenuation of cardioprotective potential of ischemic preconditioning (IPC). Rats were administered L-methionine (1.7 g/kg/day, p.o.) for 4 weeks to produce hyperhomocysteinemia. Isolated Langendorff perfused normal and hyperhomocysteinemic rat hearts were subjected to global ischemia for 30 min followed by reperfusion for 120 min. Myocardial infarct size was assessed macroscopically using triphenyltetrazolium chloride (TTC) staining. Coronary effluent was analyzed for lactate dehydrogenase (LDH) and creatine kinase (CK) release to assess the degree of cardiac injury. Moreover, the oxidative stress in heart was assessed by measuring lipid peroxidation and superoxide anion generation. The ischemia-reperfusion (I/R) was noted to produce myocardial injury as assessed in terms of increase in myocardial infarct size, LDH and CK in coronary effluent and oxidative stress in normal and hyperhomocysteinemic rat hearts. In addition, the hyperhomocysteinemic rat hearts showed enhanced I/R-induced myocardial injury with high degree of oxidative stress as compared with normal rat hearts subjected to I/R. Four episodes of IPC (5 min each) afforded cardioprotection against I/R-induced myocardial injury in normal rat hearts as assessed in terms of reduction in myocardial infarct size, LDH, CK and oxidative stress. On the other hand, IPC mediated myocardial protection against I/R-injury was abolished in hyperhomocysteinemic rat hearts. Treatment with rottlerin (10 microM), a selective inhibitor of PKC-delta did not affect the cardioprotective effects of IPC in normal rat hearts; but its treatment significantly restored the cardioprotective potentials of IPC in hyperhomocysteinemic rat hearts. The high degree of oxidative stress produced in hyperhomocysteinemic rat hearts during reperfusion may activate PKC-delta, which may be implicated in the observed paradoxically abrogated cardioprotective potentials of IPC in hyperhomocysteinemic rat hearts. PMID:19914792

  8. Effects of wortmannin on cardioprotection exerted by ischemic preconditioning in rat hearts subjected to ischemia-reperfusion.

    PubMed

    Vélez, Débora Elisabet; Hermann, Romina; Frank, Mariángeles Barreda; Cordero, Victoria Evangelina Mestre; Savino, Enrique Alberto; Varela, Alicia; Marina Prendes, Maria Gabriela

    2016-03-01

    Ischemic preconditioning (IPC) is one of the most powerful interventions to reduce ischemia-reperfusion injury. The aim of the present study was to investigate the involvement of the phosphatidylinositol-3-kinases (PI3Ks) family in cardioprotection exerted by IPC and the relationship between preservation of mitochondrial morphology and ATP synthesis capacity. In this regard, macroautophagy (autophagy) is considered a dynamic process involved in the replacement of aged or defective organelles under physiological conditions. IPC consisted of four 5-min cycles of ischemia-reperfusion followed by sustained ischemia. Wortmannin (W), a PI3K family inhibitor, was added to the perfusion medium to study the involvement of autophagy in the beneficial effects of IPC. In the present study, LC3-II/I expression was significantly increased in the IPC group when compared with the control group. The hearts subjected to IPC showed greater degradation of p62 than control groups, establishing the existence of an autophagic flow. Electron microscopy showed that IPC preserves the structural integrity of mitochondria after ischemia and at the end of reperfusion. Moreover, hearts subjected to IPC exhibited increased mitochondrial ATP synthesis. The beneficial effects of IPC were abolished by W in all trials of this study, abolishing the differences between the IPC and control groups. These results suggest that IPC could partly reduce injury by ischemia-reperfusion (I/R) by decreasing mitochondrial damage and promoting autophagy. Since W is a nonspecific inhibitor of the PI3Ks family, further research is required to confirm participation of PI3K in the response to IPC. PMID:26746207

  9. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test

    PubMed Central

    Kido, Kohei; Suga, Tadashi; Tanaka, Daichi; Honjo, Toyoyuki; Homma, Toshiyuki; Fujita, Satoshi; Hamaoka, Takafumi; Isaka, Tadao

    2015-01-01

    Ischemic preconditioning (IPC) improves maximal exercise performance. However, the potential mechanism(s) underlying the beneficial effects of IPC remain unknown. The dynamics of pulmonary oxygen uptake (VO2) and muscle deoxygenation during exercise is frequently used for assessing O2 supply and extraction. Thus, this study examined the effects of IPC on systemic and local O2 dynamics during the incremental step transitions from low- to moderate- and from moderate- to severe-intensity exercise. Fifteen healthy, male subjects were instructed to perform the work-to-work cycling exercise test, which was preceded by the control (no occlusion) or IPC (3 × 5 min, bilateral leg occlusion at >300 mmHg) treatments. The work-to-work test was performed by gradually increasing the exercise intensity as follows: low intensity at 30 W for 3 min, moderate intensity at 90% of the gas exchange threshold (GET) for 4 min, and severe intensity at 70% of the difference between the GET and VO2 peak until exhaustion. During the exercise test, the breath-by-breath pulmonary VO2 and near-infrared spectroscopy-derived muscle deoxygenation were continuously recorded. Exercise endurance during severe-intensity exercise was significantly enhanced by IPC. There were no significant differences in pulmonary VO2 dynamics between treatments. In contrast, muscle deoxygenation dynamics in the step transition from low- to moderate-intensity was significantly faster in IPC than in CON (27.2 ± 2.9 vs. 19.8 ± 0.9 sec, P < 0.05). The present findings showed that IPC accelerated muscle deoxygenation dynamics in moderate-intensity exercise and enhanced severe-intensity exercise endurance during work-to-work test. The IPC-induced effects may result from mitochondrial activation in skeletal muscle, as indicated by the accelerated O2 extraction. PMID:25952936

  10. Remote Ischemic Preconditioning in Children Undergoing Cardiac Surgery With Cardiopulmonary Bypass: A Single‐Center Double‐Blinded Randomized Trial

    PubMed Central

    McCrindle, Brian W.; Clarizia, Nadia A.; Khaikin, Svetlana; Holtby, Helen M.; Manlhiot, Cedric; Schwartz, Steven M.; Caldarone, Christopher A.; Coles, John G.; Van Arsdell, Glen S.; Scherer, Stephen W.; Redington, Andrew N.

    2014-01-01

    Background Remote ischemic preconditioning (RIPC) harnesses an innate defensive mechanism that protects against inflammatory activation and ischemia‐reperfusion injury, known sequelae of cardiac surgery with cardiopulmonary bypass. We sought to determine the impact of RIPC on clinical outcomes and physiological markers related to ischemia‐reperfusion injury and inflammatory activation after cardiac surgery in children. Methods and Results Overall, 299 children (aged neonate to 17 years) were randomized to receive an RIPC stimulus (inflation of a blood pressure cuff on the left thigh to 15 mm Hg above systolic for four 5‐minute intervals) versus a blinded sham stimulus during induction with a standardized anesthesia protocol. Primary outcome was duration of postoperative hospital stay, with serial clinical and laboratory measurements for the first 48 postoperative hours and clinical follow‐up to discharge. There were no significant baseline differences between RIPC (n=148) and sham (n=151). There were no in‐hospital deaths. No significant difference in length of postoperative hospital stay was noted (sham 5.4 versus RIPC 5.6 days; difference +0.2; adjusted P=0.91), with the 95% confidence interval (−0.7 to +0.9) excluding a prespecified minimal clinically significant differences of 1 or 1.5 days. There were few significant differences in other clinical outcomes or values at time points or trends in physiological markers. Benefit was not observed in specific subgroups when explored through interactions with categories of age, sex, surgery type, Aristotle score, or first versus second half of recruitment. Adverse events were similar (sham 5%, RIPC 6%; P=0.68). Conclusions RIPC is not associated with important improvements in clinical outcomes and physiological markers after cardiac surgery in children. Clinical Trial Registration URL: clinicaltrials.gov. Unique identifier: NCT00650507. PMID:25074698

  11. Transcriptome analysis of renal ischemia/reperfusion injury and its modulation by ischemic pre-conditioning or hemin treatment.

    PubMed

    Correa-Costa, Matheus; Azevedo, Hátylas; Amano, Mariane Tami; Gonçalves, Giselle Martins; Hyane, Meire Ioshie; Cenedeze, Marcos Antonio; Renesto, Paulo Guilherme; Pacheco-Silva, Alvaro; Moreira-Filho, Carlos Alberto; Câmara, Niels Olsen Saraiva

    2012-01-01

    Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism, suggesting a pleiotropic effect for Hemin. These findings improve the biological understanding of how the kidney behaves after IRI. They also illustrate some possible underlying molecular mechanisms involved in kidney protection observed with IPC or Hemin treatment maneuvers. PMID:23166714

  12. Transcriptome Analysis of Renal Ischemia/Reperfusion Injury and Its Modulation by Ischemic Pre-Conditioning or Hemin Treatment

    PubMed Central

    Amano, Mariane Tami; Gonçalves, Giselle Martins; Hyane, Meire Ioshie; Cenedeze, Marcos Antonio; Renesto, Paulo Guilherme; Pacheco-Silva, Alvaro; Moreira-Filho, Carlos Alberto; Câmara, Niels Olsen Saraiva

    2012-01-01

    Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism, suggesting a pleiotropic effect for Hemin. These findings improve the biological understanding of how the kidney behaves after IRI. They also illustrate some possible underlying molecular mechanisms involved in kidney protection observed with IPC or Hemin treatment maneuvers. PMID:23166714

  13. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia

    PubMed Central

    Hong, Seongkweon; Ahn, Ji Yun; Cho, Geum-Sil; Kim, In Hye; Cho, Jeong Hwi; Ahn, Ji Hyeon; Park, Joon Ha; Won, Moo-Ho; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Park, Seung Min; Cho, Jun Hwi; Choi, Soo Young; Lee, Jae-Chul

    2015-01-01

    Monocarboxylate transporters (MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning (IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups (sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region (CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia. PMID:26692857

  14. Response of secretory pathways Ca(2+) ATPase gene expression to hyperhomocysteinemia and/or ischemic preconditioning in rat cerebral cortex and hippocampus.

    PubMed

    Pavlikova, Martina; Kovalska, Maria; Tatarkova, Zuzana; Sivonova-Kmetova, Monika; Kaplan, Peter; Lehotsky, Jan

    2011-01-01

    The study determines whether hyperhomocysteinemia (risk factor of brain ischemia) alone or in combination with ischemic preconditioning (IPC) affects the ischemia-induced changes in gene expression of secretory pathways Ca(2+)-ATPase (SPCA1). Hyperhomocysteinemia was induced by subcutaneous administration of homocysteine (Hcy; 0.45 µmol/g body weight) twice a day at 8 h intervals for 14 days. Rats were preconditioned by 5 min ischemia and 2 days later, 15 min of global forebrain ischemia was induced by four vessel occlusion. We observed that hyperhomocysteinemia significantly decreased the level of SPCA1 mRNA in the cortex. Pre-ischemic challenge was noticeable in both brain areas. In the cortex, pre-ischemia in Hcy group led to the abrupt stimulation of the mRNA expression by 249% within the Hcy ischemic group and by 321% in the Hcy control. Values further exceeded those observed in the naive control. In the hippocampus, the differences between naive and Hcy groups were not observed. IPC initiated elevation of mRNA expression to 159% (p < 0.05) of control with Hcy and to 131% (p < 0.01) of ischemia with Hcy, respectively. Documented response of SPCA gene to IPC in hyperhomocysteinemic group might suggest a correlation of SPCA expression consistent with the role of cross-talks between intracellular Ca(2+) stores including secretory pathways in the tolerance phenomenon. PMID:21869453

  15. Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARgamma target gene involved in neuroprotection.

    PubMed

    Romera, Cristina; Hurtado, Olivia; Mallolas, Judith; Pereira, Marta P; Morales, Jesús R; Romera, Alejandro; Serena, Joaquín; Vivancos, José; Nombela, Florentino; Lorenzo, Pedro; Lizasoain, Ignacio; Moro, Maria A

    2007-07-01

    Excessive levels of extracellular glutamate in the nervous system are excitotoxic and lead to neuronal death. Glutamate transport, mainly by glutamate transporter GLT1/EAAT2, is the only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels in the central nervous system. We recently showed that neuroprotection after experimental ischemic preconditioning (IPC) involves, at least partly, the upregulation of the GLT1/EAAT2 glutamate transporter in astrocytes, but the mechanisms were unknown. Thus, we decided to explore whether activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR) gamma, known for its antidiabetic and antiinflammatory properties, is involved in glutamate transport. First, we found that the PPARgamma antagonist T0070907 inhibits both IPC-induced tolerance and reduction of glutamate release after lethal oxygen-glucose deprivation (OGD) (70.1%+/-3.4% versus 97.7%+/-5.2% of OGD-induced lactate dehydrogenase (LDH) release and 61.8%+/-5.9% versus 85.9%+/-7.9% of OGD-induced glutamate release in IPC and IPC+T0070907 1 mumol/L, respectively, n=6 to 12, P<0.05), as well as IPC-induced astrocytic GLT-1 overexpression. IPC also caused an increase in nuclear PPARgamma transcriptional activity in neurons and astrocytes (122.1%+/-8.1% and 158.6%+/-22.6% of control PPARgamma transcriptional activity, n=6, P<0.05). Second, the PPARgamma agonist rosiglitazone increased both GLT-1/EAAT2 mRNA and protein expression and [(3)H]glutamate uptake, and reduced OGD-induced cell death and glutamate release (76.3%+/-7.9% and 65.5%+/-15.1% of OGD-induced LDH and glutamate release in rosiglitazone 1 mumol/l, respectively, n=6 to 12, P<0.05). Finally, we have identified six putative PPAR response elements (PPREs) in the GLT1/EAAT2 promoter and, consistently, rosiglitazone increased fourfold GLT1/EAAT2 promoter activity. All these data show that the GLT1/EAAT2 glutamate transporter is a target gene of PPARgamma leading to neuroprotection by increasing glutamate uptake. PMID:17213861

  16. Hypoxic Preconditioning with Cobalt of Bone Marrow Mesenchymal Stem Cells Improves Cell Migration and Enhances Therapy for Treatment of Ischemic Acute Kidney Injury

    PubMed Central

    Liu, Hong; Rao, Shengxiang; Cai, Jieru; Liu, Shaopeng; Kriegel, Alison J.; Greene, Andrew S.; Liang, Minyu; Ding, Xiaoqiang

    2013-01-01

    Mesenchymal stem cell (MSC) administration is known to enhance the recovery of the kidney following injury. Here we tested the potential of hypoxic-preconditioned-MSC transplantation to enhance the efficacy of cell therapy on acute kidney injury (AKI) by improving MSC migration to the injured kidney. Cobalt was used as hypoxia mimetic preconditioning (HMP). MSC were subjected to HMP through 24 h culture in 200 µmol/L cobalt. Compared to normoxia cultured MSC (NP-MSC), HMP significantly increased the expression of HIF-1α and CXCR4 in MSC and enhanced the migration of MSC in vitro. This effect was lost when MSC were treated with siRNA targeting HIF-1α or CXCR4 antagonist. SPIO labeled MSC were administered to rats with I/R injury followed immediately by magnetic resonance imaging. Imaging clearly showed that HMP-MSC exhibited greater migration and a longer retention time in the ischemic kidney than NP-MSC. Histological evaluation showed more HMP-MSC in the glomerular capillaries of ischemic kidneys than in the kidneys receiving NP-MSC. Occasional tubules showed iron labeling in the HMP group, while no tubules had iron labeling in NP group, indicating the possibility of tubular transdifferentiation after HMP. These results were also confirmed by fluorescence microscopy study using CM-DiI labeling. The increased recruitment of HMP-MSC was associated with reduced kidney injury and enhanced functional recovery. This effect was also related to the increased paracrine action by HMP-MSC. Thus we suggest that by enhancing MSC migration and prolonging kidney retention, hypoxic preconditioning of MSC may be a useful approach for developing AKI cell therapy. PMID:23671625

  17. Remote ischemic preconditioning mitigates myocardial and neurological dysfunction via K(ATP) channel activation in a rat model of hemorrhagic shock.

    PubMed

    Hu, Xianwen; Yang, Zhengfei; Yang, Min; Qian, Jie; Cahoon, Jena; Xu, Jiefeng; Sun, Shijie; Tang, Wanchun

    2014-09-01

    Severe hemorrhagic shock and resuscitation is a state of global body ischemia and reperfusion that causes myocardial and cerebral dysfunction. We investigated whether remote ischemic preconditioning (RIPC) would reduce myocardial and cerebral ischemia and reperfusion injuries after hemorrhagic shock as the result of the K(ATP) channel activation. Twenty-one male rats were randomized into three groups: RIPC, RIPC with K(ATP) channel blocker, and control. Remote ischemic preconditioning was induced by four cycles of 5 min of limb ischemia followed by reperfusion for 5 min. Hemorrhagic shock was induced by removing 50% of the estimated total blood volume during an interval of 1 h. Thirty minutes after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The animals were monitored for 2 h and observed for an additional 72 h. Myocardial function was measured by echocardiography, and sublingual microcirculation was measured by a sidestream dark-field imaging device at baseline, 1 h after bleeding, 30 min after the completion of bleeding, 30 min after reinfusion, and hourly intervals thereafter. The survival and neurological function were evaluated at 12, 24, 48, and 72 h after reinfusion. At 2 h after reinfusion, ejection fraction and myocardial performance index were significantly better in the RIPC group than in the control group (P < 0.01). The sublingual microvascular flow index and perfused vessel density were significantly greater after reinfusion in the RIPC group than that in the control group (P < 0.01). The duration of survival was significantly longer, and neurological deficit score was significantly better in the RIPC group than the control animals (P < 0.01). Pretreatment with the K(ATP) channel blocker (glibenclamide) completely abolished the myocardial and cerebral protective effects of RIPC. We demonstrate, for the first time, that after severe hemorrhagic shock and resuscitation, RIPC mitigated myocardial and neurological dysfunction with improved survival by activation of the K(ATP) channel. PMID:25122082

  18. Remote limb ischemic preconditioning (rIPC) activates antioxidant and antiapoptotic genes and inhibits proinflammatory cytokine genes in renal ischemia/reperfusion injury.

    PubMed

    Hussein, Abdelaziz M; Harraz, Ahmed M; Awadalla, Amira; Barakat, Nashwa; Khater, Shery; Shokeir, Ahmed A

    2016-01-01

    The mechanisms underlying the renoprotective effect for remote limb ischemic preconditioning (rIPC) against renal ischemia/reperfusion injury need further elucidation. In our work, one hundred and twenty male Sprague Dawley rats were randomized into 3 groups; sham, I/R group (left renal 45 min ischemia) and rIPC (as I/R group with 3 cycles of left femoral ischemic PC just before renal ischemia). Rats were sacrificed at 2 h, 24 h, 48 h and 7 days. Serum creatinine and urea were measured at the baseline and endpoints. Also, histopathological examination and assessment of the expression of inflammatory cytokines e.g. TNF-α, IL-1β and ICAM-1 and antioxidant genes: Nrf2, HO-1 and NQO-1 and anti-apoptotic gene Bcl-2 in left kidney were done by the end of experiment. The results of this study demonstrated that, rIPC caused significant improvement in serum creatinine and BUN levels and in the expression of antioxidant genes and Bcl-2 antiapoptotic gene with significant attenuation of pro-inflammatory cytokines and histopathological damage score at all-time points compared to I/R group (p ≤ 0.05). In conclusion, inhibition of inflammatory cytokine (TNF-α, IL-1β and ICAM-1) formation and activation of antioxidant genes: Nrf2, HO-1 and NQO-1 and anti-apoptotic gene Bcl-2 could be possible underlying mechanisms for the renoprotective effect of rIPC. PMID:26612920

  19. Ischemic preconditioning protects neurons from damage and maintains the immunoreactivity of kynurenic acid in the gerbil hippocampal CA1 region following transient cerebral ischemia

    PubMed Central

    LEE, JAE-CHUL; TAE, HYUN-JIN; CHO, GEUM-SIL; KIM, IN HYE; AHN, JI HYEON; PARK, JOON HA; CHEN, BAI HUI; CHO, JEONG-HWI; SHIN, BICH NA; CHO, JUN HWI; BAE, EUN JOO; PARK, JINSEU; KIM, YOUNG-MYEONG; CHOI, SOO YOUNG; WON, MOO-HO

    2015-01-01

    Pyramidal neurons in region I of hippocampus proper (CA1) are particularly vulnerable to excitotoxic processes following transient forebrain ischemia. Kynurenic acid (KYNA) is a small molecule derived from tryptophan when this amino acid is metabolized through the kynurenine pathway. In the present study, we examined the effects of ischemic preconditioning (IPC) on the immunoreactivity and protein levels of KYNA following 5 min of transient forebrain ischemia in gerbils. The animals were randomly assigned to 4 groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia followed by 1 day of recovery. In the ischemia-operated group, we observed a significant loss of pyramidal neurons in the CA1 stratum pyramidale (SP) at 5 days post-ischemia; however, in the IPC + ischemia-operated group, the pyramidal neurons were well protected. KYNA immunoreactivity in the SP of the ischemia-operated group was significantly altered following ischemia-reperfusion and was very low 5 days following ischemia-reperfusion. In the IPC + ischemia-operated group, however, KYNA immunoreactivity was constitutively detected in the SP of the CA1 region after the ischemic insult. We also found that the alteration pattern of the KYNA protein level in the CA1 region following ischemia was generally similar to the immunohistochemical changes observed. In brief, our findings demonstrated that IPC maintained and even increased KYNA immunoreactivity in the SP of the CA1 region following ischemia-reperfusion. The data from the present study thus indicate that the enhancement of KYNA expression by IPC may be necessary for neuronal survival following transient ischemic injury. PMID:25872573

  20. [MIMICKING ISCHEMIC PRECONDITIONING PHENOMENON THROUGH THE IMPACT ON THE CANNABINOID RECEPTORS: ROLE OF PROTEIN KINASE AND NO-SYNTHASE].

    PubMed

    Lishmanov, Yu B; Maslov, L N; Krylatov, A V; Khaliulin, I G

    2015-08-01

    It was established that CB 1-receptors stimulation mimic preconditioning phenomena. Since the cardioprotective effect of cannabinoid HU-210 is occurred both in the experiments in vivo and in the experiments in vitro there are reasons to believe that the protective effect of HU-210 is me- diated via an activation of cardiac CB1-receptors. It is established that the cardioprotective effect of cannabinoid HU-2 10 is depends upon a stimulation ofprotein kinase C whereas NO-synthase is not involved in protective impact of CB1-receptor stimulation. PMID:26591586

  1. Signaling pathways leading to ischemic mitochondrial neuroprotection

    PubMed Central

    Thompson, John W.; Narayanan, Srinivasan V.; Koronowski, Kevin B.; Morris-Blanco, Kahlilia; Dave, Kunjan R.; Perez-Pinzon, Miguel A.

    2016-01-01

    There is extensive evidence that ischemic/reperfusion mediated mitochondrial dysfunction is a major contributor to ischemic damage. However data also indicates that mild ischemic stress induces mitochondrial dependent activation of ischemic preconditioning. Ischemic preconditioning is a neuroprotective mechanism which is activated upon a brief sub-injurious ischemic exposure and is sufficient to provide protection against a subsequent lethal ischemic insult. Current research demonstrates that mitochondria are not only the inducers of but are also an important target of ischemic preconditioning mediated protection. Numerous proteins and signaling pathways are activated by ischemic preconditioning which protect the mitochondria against ischemic damage. In this review we examine some of the proteins activated by ischemic precondition which counteracts the deleterious effects of ischemia/reperfusion thereby maintaining normal mitochondrial activity and lead to ischemic tolerance. PMID:25262285

  2. Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia.

    PubMed

    Kim, Dong Won; Lee, Jae-Chul; Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Seo, Jeong Yeol; Cho, Jun Hwi; Kang, Il Jun; Hong, Seongkweon; Kim, Young-Myeong; Won, Moo-Ho; Kim, In Hye

    2015-09-01

    Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia. PMID:26290267

  3. Rho-kinase inhibition is involved in the activation of PI3-kinase/Akt during ischemic-preconditioning-induced cardiomyocyte apoptosis

    PubMed Central

    Zhang, Juan; Liu, Xiao-Bo; Cheng, Chao; Xu, Dong-Ling; Lu, Qing-Hua; Ji, Xiao-Ping

    2014-01-01

    We and others have reported that Rho-kinase plays an important role in the pathogenesis of heart ischemia/reperfusion (I/R) injury. Studies also have demonstrated that the activation of Rho-kinase was reversed in ischemic preconditioning (IPC). This study aimed to explain the mechanism of Rho-kinase-mediated cardiomyocyte apoptosis increased in I/R and reversed in IPC. Materials and methods: Studies were performed with female Wistar rats. The I/R rats were created by ligating the left anterior descending branch (LAD) for 30 min and releasing the ligature for 180 min. The IPC rats underwent IPC (two cycles of 5 min ligation of the LAD and 5 min reflow) before I/R. Results: Ischemia followed by reperfusion caused a significant increase in Rho-kinase and a decrease in Akt phosphorylation. Administration of fasudil, an inhibitor of Rho-kinase, decreased myocardial infarction size and cardiomyocyte apoptosis and increased Akt activation. IPC also caused the reduced Rho-kinase activity and cardiomyocyte apoptosis and a significant increase in Akt activity (P<0.05 vs I/R). Conclusion: Rho-kinase inhibition by IPC leads to reduced cardiomyocyte apoptosis may be mediated by activation of PI3-kinase/Akt. PMID:25550920

  4. Effect of remote ischemic preconditioning in the elderly patients with coronary artery disease with diabetes mellitus undergoing elective drug-eluting stent implantation.

    PubMed

    Xu, Xiaohan; Zhou, Yujie; Luo, Shengjie; Zhang, Weijun; Zhao, Yingxin; Yu, Miao; Ma, Qian; Gao, Fei; Shen, Hua; Zhang, Jianwei

    2014-09-01

    There is conflicting evidence regarding the effectiveness of remote ischemic preconditioning (RIPC) in patients undergoing elective percutaneous coronary intervention (PCI). Therefore, we prospectively enrolled elderly patients with coronary heart disease (CHD) with diabetes mellitus (DM) undergoing elective drug-eluting stent (DES) implantation. They were randomized to receive RIPC within 2 hours before PCI (n = 102) or not (controls, n = 98). Baseline clinical characteristics were similar between the 2 groups. Despite a trend toward decline, the median high-sensitivity cardiac troponin I (hscTnI) level (P = .256) and the incidence of myocardial infarction (MI) type 4a (P = .106) in the RIPC group 16 hours after PCI procedure was not significantly different from the control group. The RIPC could attenuate the release of a myocardial biomarker but failed to show a significant effect on hscTnI level or MI type 4a incidence after PCI procedure in elderly patients with CHD having DM undergoing elective DES implantation. PMID:24163121

  5. Transient Limb Ischemia Alters Serum Protein Expression in Healthy Volunteers: Complement C3 and Vitronectin May Be Involved in Organ Protection Induced by Remote Ischemic Preconditioning

    PubMed Central

    Pang, Ting; Zhang, Nan-Rong; Jin, San-Qing; Pan, San-Qiang

    2013-01-01

    The protective mechanism underlying remote ischemic preconditioning (RIPC) is unclear. This study aims to verify whether the protein expression profile in the serum could be altered by RIPC and to detect potential protein mediators. Transient limb ischemia consisting of three cycles of 5-min ischemia followed by 5-min reperfusion was performed on sixty healthy volunteers. Serum samples were collected at 30 min before transient limb ischemia and at 1 hour (h), 3 h, 8 h, 24 h, and 48 h after completion of three cycles. Changes in the serum protein profile were analyzed by two-dimensional gel electrophoresis and proteins were identified by MALDI-TOF/TOF mass spectrometry. Fourteen differentially expressed proteins were identified and, respectively, involved in immune system, lipid binding and metabolism, apoptosis, and blood coagulation. Complement C3, vitronectin, and apolipoprotein A-I were further confirmed by western blotting, and the results showed that their contents decreased significantly after transient limb ischemia. It is concluded that transient limb ischemia alters the serum protein expression profile in human being, and that reduction of serum contents of complement C3 and vitronectin may represent an important part of the mechanism whereby RIPC confers its protection. PMID:24363825

  6. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation

    PubMed Central

    Sun, Meiyan; Deng, Bin; Zhao, Xiaoyong; Gao, Changjun; Yang, Lu; Zhao, Hui; Yu, Daihua; Zhang, Feng; Xu, Lixian; Chen, Lei; Sun, Xude

    2015-01-01

    Excessive microglial activation often contributes to inflammation-mediated neurotoxicity in the ischemic penumbra during the acute stage of ischemic stroke. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation via the NF-κB pathway. Isoflurane preconditioning (IP) can provide neuroprotection and inhibit microglial activation. In this study, we investigated the roles of the TLR4 signalling pathway in IP to exert neuroprotection following ischemic stroke in vivo and in vitro. The results showed that 2% IP alleviated neurological deficits, reduced the infarct volume, attenuated apoptosis and weakened microglial activation in the ischemic penumbra. Furthermore, IP down-regulated the expression of HSP 60, TLR4 and MyD88 and up-regulated inhibitor of IκB-α expression compared with I/R group in vivo. In vitro, 2% IP and a specific inhibitor of TLR4, CLI-095, down-regulated the expression of TLR4, MyD88, IL-1β, TNF-α and Bax, and up-regulated IκB-α and Bcl-2 expression compared with OGD group. Moreover, IP and CLI-095 attenuated microglial activation-induced neuronal apoptosis, and overexpression of the TLR4 gene reversed the neuroprotective effects of IP. In conclusion, IP provided neuroprotection by regulating TLR4 expression directly, alleviating microglial activation and neuroinflammation. Thus, inhibiting the activation of microglial activation via TLR4 may be a new avenue for stroke treatment. PMID:26086415

  7. Ischemic preconditioning maintains the immunoreactivities of glucokinase and glucokinase regulatory protein in neurons of the gerbil hippocampal CA1 region following transient cerebral ischemia.

    PubMed

    Cho, Young Shin; Cho, Jun Hwi; Shin, Bich-Na; Cho, Geum-Sil; Kim, In Hye; Park, Joon Ha; Ahn, Ji Hyeon; Ohk, Taek Geun; Cho, Byung-Ryul; Kim, Young-Myeong; Hong, Seongkweon; Won, Moo-Ho; Lee, Jae-Chul

    2015-10-01

    Glucokinase (GK) is involved in the control of blood glucose homeostasis. In the present study, the effect of ischemic preconditioning (IPC) on the immunoreactivities of GK and its regulatory protein (GKRP) following 5 min of transient cerebral ischemia was investigated in gerbils. The gerbils were randomly assigned to four groups (sham‑operated group, ischemia‑operated group, IPC + sham‑operated group and IPC + ischemia‑operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia, followed by 1 day of recovery. In the ischemia‑operated group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) at 5 days post‑ischemia; however, in the IPC+ischemia‑operated group, the neurons in the SP were well protected. Following immunohistochemical investigation, the immunoreactivities of GK and GKRP in the neurons of the SP were markedly decreased in the CA1, but not the CA2/3, from 2 days post‑ischemia, and were almost undetectable in the SP 5 days post‑ischemia. In the IPC + ischemia‑operated group, the immunoreactivities of GK and GKRP in the SP of the CA1 were similar to those in the sham‑group. In brief, the findings of the present study demonstrated that IPC notably maintained the immunoreactivities of GK and GKRP in the neurons of the SP of CA1 following ischemia‑reperfusion. This indicated that GK and GKRP may be necessary for neuron survival against transient cerebral ischemia. PMID:26134272

  8. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling.

    PubMed

    Whitfield, Nathan L; Kreimier, Edward L; Verdial, Francys C; Skovgaard, Nini; Olson, Kenneth R

    2008-06-01

    Hydrogen sulfide (H(2)S) is rapidly emerging as a biologically significant signaling molecule. Studies published before 2000 report low or undetectable H(2)S (usually as total sulfide) levels in blood or plasma, whereas recent work has reported sulfide concentrations between 10 and 300 microM, suggesting it acts as a circulating signal. In the first series of experiments, we used a recently developed polarographic sensor to measure the baseline level of endogenous H(2)S gas and turnover of exogenous H(2)S gas in real time in blood from numerous animals, including lamprey, trout, mouse, rat, pig, and cow. We found that, contrary to recent reports, H(2)S gas was essentially undetectable (<100 nM total sulfide) in all animals. Furthermore, exogenous sulfide was rapidly removed from blood, plasma, or 5% bovine serum albumin in vitro and from intact trout in vivo. To determine if blood H(2)S could transiently increase, we measured oxygen-dependent H(2)S production by trout hearts in vitro and in vivo. H(2)S has been shown to mediate ischemic preconditioning (IPC) in mammals. IPC is present in trout and, unlike mammals, the trout myocardium obtains its oxygen from relatively hypoxic systemic venous blood. In vitro, myocardial H(2)S production was inversely related to Po(2), whereas we failed to detect H(2)S in ventral aortic blood from either normoxic or hypoxic fish in vivo. These results provide an autocrine or paracrine mechanism for myocardial coupling of hypoxia to H(2)S in IPC, i.e., oxygen sensing, but they fail to provide any evidence that H(2)S signaling is mediated by the circulation. PMID:18417642

  9. Ischemic preconditioning maintains the immunoreactivities of glucokinase and glucokinase regulatory protein in neurons of the gerbil hippocampal CA1 region following transient cerebral ischemia

    PubMed Central

    CHO, YOUNG SHIN; CHO, JUN HWI; SHIN, BICH-NA; CHO, GEUM-SIL; KIM, IN HYE; PARK, JOON HA; AHN, JI HYEON; OHK, TAEK GEUN; CHO, BYUNG-RYUL; KIM, YOUNG-MYEONG; HONG, SEONGKWEON; WON, MOO-HO; LEE, JAE-CHUL

    2015-01-01

    Glucokinase (GK) is involved in the control of blood glucose homeostasis. In the present study, the effect of ischemic preconditioning (IPC) on the immunoreactivities of GK and its regulatory protein (GKRP) following 5 min of transient cerebral ischemia was investigated in gerbils. The gerbils were randomly assigned to four groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia, followed by 1 day of recovery. In the ischemia-operated group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) at 5 days post-ischemia; however, in the IPC+ischemia-operated group, the neurons in the SP were well protected. Following immunohistochemical investigation, the immunoreactivities of GK and GKRP in the neurons of the SP were markedly decreased in the CA1, but not the CA2/3, from 2 days post-ischemia, and were almost undetectable in the SP 5 days post-ischemia. In the IPC + ischemia-operated group, the immunoreactivities of GK and GKRP in the SP of the CA1 were similar to those in the sham-group. In brief, the findings of the present study demonstrated that IPC notably maintained the immunoreactivities of GK and GKRP in the neurons of the SP of CA1 following ischemia-reperfusion. This indicated that GK and GKRP may be necessary for neuron survival against transient cerebral ischemia. PMID:26134272

  10. Hyperthermic preconditioning severely accelerates neuronal damage in the gerbil ischemic hippocampal dentate gyrus via decreasing SODs expressions.

    PubMed

    Kim, Dong Won; Cho, Jeong-Hwi; Cho, Geum-Sil; Kim, In Hye; Park, Joon Ha; Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Hong, Seongkweon; Cho, Jun Hwi; Kim, Young-Myeong; Won, Moo-Ho; Lee, Jae-Chul

    2015-11-15

    It is well known that neurons in the dentate gyrus (DG) of the hippocampus are resistant to short period of ischemia. Hyperthermia is a proven risk factor for cerebral ischemia and can produce more extensive brain damage related with mortality rates. The aim of this study was to examine the effect of hyperthermic conditioning (H) on neuronal death, gliosis and expressions of SODs as anti-oxidative enzymes in the gerbil DG following 5 min-transient cerebral ischemia. The animals were randomly assigned to 4 groups: 1) (N+sham)-group was given sham-operation with normothermia (N); 2) (N+ischemia)-group was given 5 min-transient ischemia with N; 3) (H+sham)-group was given sham-operation with H; and 4) (H+ischemia)-group was given 5 min-transient cerebral ischemia with H. H (39±0.5°C) was induced by subjecting the animals to a heating pad for 30 min before and during the operation. In the (N+ischemia)-groups, a significant neuronal death was observed in the polymorphic layer (PL) from 1 day after ischemia-reperfusion. In the (H+ischemia)-groups, neuronal death was also observed in the PL from 1day post-ischemia; the degree of the neuronal death was severer than that in the (N+ischemia)-groups. In addition, we examined the gliosis of astrocytes and microglia using anti-glial fibrillary acidic protein (GFAP) and anti- ionized calcium-binding adapter molecule 1 (Iba-1). GFAP(+) and Iba-1(+) glial cells were much more activated in the (H+ischemia)-groups than those in the (N+ischemia)-groups. On the other hand, immunoreactivities and levels of SOD1 rather than SOD2 were significantly lower in the (H+ischemia)-groups than those in the (N+ischemia)-groups. In brief, on the basis of our findings, we suggest that cerebral ischemic insult with hyperthermic conditioning brings up severer neuronal damage and gliosis in the polymorphic layer through reducing SOD1 expression rather than SOD2 expression in the DG. PMID:26365286

  11. The Impact of Remote Ischemic Pre-Conditioning on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography and Angioplasty: A Double-Blind Randomized Clinical Trial

    PubMed Central

    Gholoobi, Arash; Sajjadi, Seyyed Masoud; Shabestari, Mahmoud Mohammadzadeh; Eshraghi, Ali; Shamloo, Alireza Sepehri

    2015-01-01

    Background and objective Contrast-induced nephropathy (CIN) is an acute major complication following intravascular administration of iodinated contrast agents; however, the best approach for preventing CIN is not clear. Remote ischemic pre-conditioning (RIPC) is a new, non-pharmacological method that has been considered for the prevention of CIN following coronary angiography. This study assessed the effects of RIPC with four brief episodes of upper limb ischemia and reperfusion in the prevention of contrast-induced nephropathy (CIN) after coronary angiography and/or angioplasty. Methods In this double-blind randomized clinical trial, we enrolled 51 patients with chronic stable angina and non-ST elevation acute coronary syndrome (NSTE.ACS), and they underwent coronary angiography and/or angioplasty. Standard fluid therapy with normal saline was prescribed for all patients before and after the procedure. The patients were divided into two groups, i.e., a study group of patients who had undergone RIPC intervention and a control group of patients who had not undergone RIPC. One hour before the procedure, a sphygmomanometer cuff was placed around one arm and inflated up to 50 mmHg above the systolic pressure for five minutes; then, the cuff was deflated for another five minutes, and this cycle was repeated four times. The patients’ serum creatinine levels were measured at baseline and 48 hours after the procedure, and the incidence of CIN was calculated. Results Twenty-one males and 30 females were studied in two groups, i.e., an RIPC intervention group (n = 25) and a control group (n = 26) that were homogenous considering baseline characteristics. No significant difference was observed in the mean level of serum creatinine between the two groups at a post-intervention time of 48 hours (RICP: 1.74 ± 0.70 mg/dL vs. Control: 1.75 ± 0.87 mg/dL; P = 0.64). However, a lower incidence rate of CIN was observed 48 hours after the administration of the contrast medium in the RIPC group, but it was not statistically significant (RIPC: 23.1% vs. Control: 12.0%; P = 0.30). Conclusion It seems that adequate fluid therapy is still the most effective strategy for preventing CIN and that RIPC might have additional protective effects in very high risk patients, such as those with severe renal insufficiency and heart failure. PMID:26816582

  12. Neuronal Preconditioning by Inhalational Anesthetics

    PubMed Central

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Ischemic preconditioning is an important intrinsic mechanism for neuroprotection. Preconditioning can also be achieved by exposure of neurons to K+ channel–opening drugs that act on adenosine triphosphate–sensitive K+ (KATP) channels. However, these agents do not readily cross the blood–brain barrier. Inhalational anesthetics which easily partition into brain have been shown to precondition various tissues. Here, the authors explore the neuronal preconditioning effect of modern inhalational anesthetics and investigate their effects on KATP channels. Methods Neuronal–glial cocultures were exposed to inhalational anesthetics in a preconditioning paradigm, followed by oxygen–glucose deprivation. Increased cell survival due to preconditioning was quantified with the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction test. Recombinant plasmalemmal KATP channels of the main neuronal type (Kir6.2/SUR1) were expressed in HEK293 cells, and the effects of anesthetics were evaluated in whole cell patch clamp recordings. Results Both sevoflurane and the noble gas xenon preconditioned neurons at clinically used concentrations. The effect of sevoflurane was independent of KATP channel activation, whereas the effect of xenon required the opening of plasmalemmal KATP channels. Recombinant KATP channels were activated by xenon but inhibited by halogenated volatiles. Modulation of mitochondrial K-ATP channels did not affect the activity of KATP channels, thus ruling out an indirect effect of volatiles via mitochondrial channels. Conclusions The preconditioning properties of halogenated volatiles cannot be explained by their effect on KATP channels, whereas xenon preconditioning clearly involves the activation of these channels. Therefore, xenon might mimic the intrinsic mechanism of ischemic preconditioning most closely. This, together with its good safety profile, might suggest xenon as a viable neuroprotective agent in the clinical setting. PMID:19352153

  13. Pharmacological Preconditioning by Adenosine A2a Receptor Stimulation: Features of the Protected Liver Cell Phenotype

    PubMed Central

    Alchera, Elisa; Imarisio, Chiara; Mandili, Giorgia; Merlin, Simone; Chandrashekar, Bangalore R.; Novelli, Francesco; Follenzi, Antonia; Carini, Rita

    2015-01-01

    Ischemic preconditioning (IP) of the liver by a brief interruption of the blood flow protects the damage induced by a subsequent ischemia/reperfusion (I/R) preventing parenchymal and nonparenchymal liver cell damage. The discovery of IP has shown the existence of intrinsic systems of cytoprotection whose activation can stave off the progression of irreversible tissue damage. Deciphering the molecular mediators that underlie the cytoprotective effects of preconditioning can pave the way to important therapeutic possibilities. Pharmacological activation of critical mediators of IP would be expected to emulate or even to intensify its salubrious effects. In vitro and in vivo studies have demonstrated the role of the adenosine A2a receptor (A2aR) as a trigger of liver IP. This review will provide insight into the phenotypic changes that underline the resistance to death of liver cells preconditioned by pharmacological activation of A2aR and their implications to develop innovative strategies against liver IR damage. PMID:26539478

  14. Dynamic Changes in DNA Methylation in Ischemic Tolerance

    PubMed Central

    Meller, Robert; Pearson, Andrea; Simon, Roger P.

    2015-01-01

    Epigenetic mediators of gene expression are hypothesized to regulate transcriptomic responses to preconditioning ischemia and ischemic tolerance. Here, we utilized a methyl-DNA enrichment protocol and sequencing (ChIP-seq) to identify patterns of DNA methylation in an established model of ischemic tolerance in neuronal cultures (oxygen and glucose deprivation: OGD). We observed an overall decrease in global DNA methylation at 4 h following preconditioning ischemia (30 min OGD), harmful ischemia (120 min OGD), and in ischemic tolerant neuronal cultures (30 min OGD, 24 h recovery, 120 min OGD). We detected a smaller cohort of hypermethylated regions following ischemic conditions, which were further analyzed revealing differential chromosomal localization of methylation, and a differential concentration of methylation on genomic regions. Together, these data show that the temporal profiles of DNA methylation with respect to chromatin hyper- and hypo-methylation following various ischemic conditions are highly dynamic, and may reveal novel targets for neuroprotection. PMID:26029158

  15. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart

    PubMed Central

    Lee, Yong-Cheol; Jung, Jiyoon; Park, Sang-Jin

    2016-01-01

    The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs) and adenosine receptors (ADRs) in remifentanil preconditioning (R-Pre) and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP), velocity of contraction (+dP/dtmax), and coronary flow (CF) were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax, and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia). These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk. PMID:26773185

  16. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart.

    PubMed

    Lee, Yong-Cheol; Jung, Jiyoon; Park, Sang-Jin

    2016-01-01

    The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs) and adenosine receptors (ADRs) in remifentanil preconditioning (R-Pre) and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP),velocity of contraction (+dP/dtmax), and coronary flow (CF) were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax,and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia). These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk. PMID:26773185

  17. Differential expression of microRNAs in ischemic heart disease

    PubMed Central

    Song, Minwoo A.; Paradis, Alexandra N.; Gay, Maresha S.; Shin, John; Zhang, Lubo

    2014-01-01

    Recent studies provide evidence that ischemic preconditioning (IP) and ischemia/reperfusion (IR) injury lead to altered expression of microRNAs (miRNAs) that affect the survival and recovery of cardiomyocytes. These endogenous ~22-nucleotide noncoding RNAs negatively regulate gene expression via degradation and translational inhibition of their target mRNAs. miRNAs are involved in differentiation, proliferation, electrical conduction, angiogenesis and apoptosis. These pathways can lead to physiological and pathological adaptations. This review intends to explore several facets of miRNA expression and the underlying mechanisms involved in IR injury, as well as IP as a cardioprotective strategy. In addition, we will investigate miRNA interaction with the renin–angiotensin system and the potential use of miRNAs in developing sensitive biomarkers for cardiovascular disease. PMID:25461956

  18. The Effect of Pre-Condition Cerebella Fastigial Nucleus Electrical Stimulation within and beyond the Time Window of Thrombolytic on Ischemic Stroke in the Rats

    PubMed Central

    Cheng, Pengfei; Bai, Shunjie; Ren, Yifei; Wang, Gong; Chen, Xiuying; Cui, Chun; Zhuang, Yuxiang

    2015-01-01

    Objective To investigate the effect of neurogenic neuroprotection conferred by cerebellar fastigial nucleus stimulation (FNS) and the role of PPARγ- mediated inflammation in a rat model of cerebral ischemia reperfusion. Methods After a continuous 1 hour fastigial nucleus electric stimulation, the male Sprague Dawley (SD) rats were given middle cerebral artery occlusion (MCAO) for 1, 3, 6, 9, 12 and 15 hours undergoing reperfusion with intravenous recombinant tissue plasminogen activator (rt-PA), while the control group received without FNS. After 72h of reperfusion, the neurological deficits, infarct volume and brain edema were evaluated. The brain tissue in ischemic penumbra was determined the myeloperoxidase (MPO) activity by a spectrophotometer and expression of PPARγ was measured by Rt-PCR and Western blotting. Results Our findings showed that FNS group had significantly reduced infarct volume and brain edema, and improved neurological deficits compared with the control group, especially in 6h and 9h reperfusion subgroups(p<0.05). The expression levels of PPARγ increased gradually and the peak may be before and after 9h reperfusion, the 3h, 6h, 9h, 12h and 15h reperfusion subgroups were higher than each control group(p<0.05). The MPO activity of 6h, 12h and 15h reperfusion subgroups were higher than each control group(p<0.05). Conclusions The neuroprotective effects of FNS have been shown to prolong the therapeutic window in cerebral ischemia/reperfusion, which might be related to the PPARγ mediated-inflammation in penumbral region. PMID:26016630

  19. Importance of brain-gut axis in the gastroprotection induced by gastric and remote preconditioning.

    PubMed

    Brzozowski, T; Konturek, P C; Pajdo, R; Kwiecień, S; Sliwowski, Z; Drozdowicz, D; Ptak-Belowska, A; Pawlik, M; Konturek, S J; Pawlik, W W; Hahn, G G

    2004-03-01

    Limitation of the damage to the organs such as heart, liver, intestine, stomach and brain by an earlier brief complete occlusion of their arteries is defined as ischemic preconditioning (IP). No study so for has been undertaken to check whether brain-gut axis is involved in the gastroprotection exhibited by gastric IP or in that induced by repeated brief episodes of ischemia of remote organs such as heart and liver. This study was designed to determine the possible involvement of vagal and sensory afferent nerves, in the mechanism of gastric and remote organ IP on the gastric mucosa in rats exposed to prolonged ischemia-reperfusion with or without functional ablation of sensory nerves by capsaicin or in those with removed vagal innervation by vagotomy. This gastric IP was induced by short ischemia episodes (occlusion of celiac artery 1-5 times for 5 min) applied 30 min before subsequent ischemia followed by 3 h of reperfusion (I/R) and compared with remote IP induced by occlusion of left descending coronary artery or hepatic artery plus portal vein. The area of gastric lesions was determined by planimetry, gastric blood flow (GBF) was measured by H(2)-gas clearance method and mucosal biopsy samples were taken for the assessment of calcitonin gene-related peptide (CGRP) by RIA. Exposure of gastric mucosa to standard 3 h of I/R produced numerous gastric lesions and significant fall in the GBF and mucosal CGRP content. Two 5 min short ischemic episodes by occlusion of coronary or hepatic arteries, significantly reduced gastric damage induced by I/R with the extent similar to that exhibited by two short (5 min) episodes of gastric ischemia. These protective effects of gastric and remote IPs were accompanied by a restoration of the fall in the CGRP content caused by I/R alone. Protection and hyperemia induced by gastric IP were significantly attenuated in capsaicin-denervated or vagotomized animals and completely removed in those exposed to the combination of vagotomy and capsaicin-denervation. The IP-induced protection and hyperemia were restored by the administration of exogenous CGRP to gastric IP in capsaicin-treated animals. Gastroprotective and hyperemic actions of remote IP were markedly diminished in capsaicin-denervated rats and in those subjected to vagotomy. We conclude that brief ischemia in remote organs such as heart and liver protects gastric mucosa against gastric injury induced by I/R as effectively as gastric IP via mechanism involving both vagal and sensory nerves releasing vasodilatatory mediators such as CGRP. PMID:15082876

  20. Is longer sevoflurane preconditioning neuroprotective in permanent focal cerebral ischemia?

    PubMed

    Qiu, Caiwei; Sheng, Bo; Wang, Shurong; Liu, Jin

    2013-08-15

    Sevoflurane preconditioning has neuroprotective effects in the cerebral ischemia/reperfusion model. However, its influence on permanent cerebral ischemia remains unclear. In the present study, the rats were exposed to sevoflurane for 15, 30, 60, and 120 minutes, followed by induction of permanent cerebral ischemia. Results demonstrated that 30- and 60-minute sevoflurane preconditioning significantly reduced the infarct volume at 24 hours after cerebral ischemia, and 60-minute lurane preconditioning additionally reduced the number of TUNEL- and caspase-3-positive cells in the ischemic penumbra. However, 120-minute sevoflurane preconditioning did not show evident neuroprotective effects. Moreover, 60-minute sevoflurane preconditioning significantly attenuated neurological deficits and infarct volume in rats at 4 days after cerebral ischemia. These findings indicated that 60-minute sevoflurane preconditioning can induce the best neuroprotective effects in rats with permanent cerebral ischemia through the inhibition of apoptosis. PMID:25206521

  1. Is longer sevoflurane preconditioning neuroprotective in permanent focal cerebral ischemia?

    PubMed Central

    Qiu, Caiwei; Sheng, Bo; Wang, Shurong; Liu, Jin

    2013-01-01

    Sevoflurane preconditioning has neuroprotective effects in the cerebral ischemia/reperfusion model. However, its influence on permanent cerebral ischemia remains unclear. In the present study, the rats were exposed to sevoflurane for 15, 30, 60, and 120 minutes, followed by induction of permanent cerebral ischemia. Results demonstrated that 30- and 60-minute sevoflurane preconditioning significantly reduced the infarct volume at 24 hours after cerebral ischemia, and 60-minute lurane preconditioning additionally reduced the number of TUNEL- and caspase-3-positive cells in the ischemic penumbra. However, 120-minute sevoflurane preconditioning did not show evident neuroprotective effects. Moreover, 60-minute sevoflurane preconditioning significantly attenuated neurological deficits and infarct volume in rats at 4 days after cerebral ischemia. These findings indicated that 60-minute sevoflurane preconditioning can induce the best neuroprotective effects in rats with permanent cerebral ischemia through the inhibition of apoptosis. PMID:25206521

  2. Cardiac sodium/calcium exchanger preconditioning promotes anti-arrhythmic and cardioprotective effects through mitochondrial calcium-activated potassium channel

    PubMed Central

    Zhang, Jian-Ying; Cheng, Kang; Lai, Dong; Kong, Ling-Heng; Shen, Min; Yi, Fu; Liu, Bing; Wu, Feng; Zhou, Jing-Jun

    2015-01-01

    Background: Reverse-mode of the Na+/Ca2+ exchanger (NCX) stimulation provides cardioprotective effects for the ischemic/reperfused heart during ischemic preconditioning (IP). This study was designed to test the hypothesis that pretreatment with an inhibitor of cardiac delayed-rectifying K+ channel (IKr), E4031, increases reverse-mode of NCX activity, and triggers preconditioning against infarct size (IS) and arrhythmias caused by ischemia/reperfusion injury through mitoKCa channels. Materials and methods: In the isolated perfused rat heart, myocardial ischemia/reperfusion injury was created by occlusion of the left anterior descending coronary artery for 30 min followed by 120 min reperfusion. Two cycles of coronary occlusion for 5 min and reperfusion were performed, or pretreatment with E4031 or sevoflurane (Sevo) before the 30 min occlusion with the reversed-mode of NCX inhibitor (KB-R7943) or not. Results: E4031 or Sevo preconditioning not only markedly decreased IS but also reduced arrhythmias, which was significantly blunted by KB-R7943. Furthermore, these effects of E4031 preconditioning on IS and arrhythmias were abolished by inhibition of the mitoKCa channels. Similarly, pretreatment with NS1619, an opener of the mitoKCa channels, for 10 min before occlusion reduced both the infarct size and arrhythmias caused by ischemia/reperfusion. However, these effects werent affected by blockade of the NCX with KB-R7943. Conclusion: Taken together, these preliminary results conclude that pretreatment with E4031 reduces infarct size and produces anti-arrhythmic effect via stimulating the reverse-mode NCX, and that the mitoKCa channels mediate the protective effects. PMID:26617732

  3. Sensory preconditioning in honeybees.

    PubMed

    Müller, D; Gerber, B; Hellstern, F; Hammer, M; Menzel, R

    2000-04-01

    Sensory preconditioning means that reinforcement of stimulus A after unreinforced exposure to a compound AB also leads to responses to stimulus B. Here, we describe and analyze sensory preconditioning in an insect, the honeybee Apis mellifera. Using two-element odorant compounds in classical conditioning of the proboscis extension reflex, we found (i) that sensory preconditioning is not due to stimulus generalization, (ii) that paired, but not unpaired, presentation of elements supports sensory preconditioning, (iii) that simultaneous, but not sequential, exposure to the elements of the compound supports sensory preconditioning and (iv) that a single presentation of the compound yields maximal sensory preconditioning. The results are discussed with respect to configural and chain-like associative explanations for sensory preconditioning. We suggest an experience-dependent step of compound processing, establishing configural units, as an additional explanation for sensory preconditioning. PMID:10729283

  4. Ryanodine receptors contribute to the induction of ischemic tolerance.

    PubMed

    Nakamura-Maruyama, Emi; Miyamoto, Osamu; Okabe, Naohiko; Himi, Naoyuki; Feng, Lu; Narita, Kazuhiko; Keep, Richard F; Yamamoto, Tohru; Nakamura, Takehiro

    2016-04-01

    Ischemic tolerance (IT) is induced by a variety of insults to the brain (e.g., nonfatal ischemia, heat and hypoxia) and it provides a strong neuroprotective effect. Although the mechanisms are still not fully elucidated, Ca(2+) is regarded as a key mediator of IT. Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores. In brain, neuronal RyRs are thought to play a role in various neuropathological conditions, including ischemia. The purpose of the present study was to investigate the involvement of RyRs in IT. Pretreatment with a RyR antagonist, dantrolene (25mg/kg, i.p), blocked IT in a gerbil global ischemia model, while a RyR agonist, caffeine (100mg/kg, i.p), stimulated the production of IT. In vitro, using rat hippocampal cells, short-term oxygen/glucose deprivation induced preconditioning and RyR antagonists, dantrolene (50 and 100μM) and ryanodine (100 and 200μM) prevented it. RyR protein and mRNA levels were transiently decreased after induction of IT. These results suggest that RyRs are involved in the induction of ischemic tolerance. PMID:26930163

  5. N-Acetylcysteine and Ceftriaxone as Preconditioning Strategies in Focal Brain Ischemia: Influence on Glutamate Transporters Expression.

    PubMed

    Krzyzanowska, Weronika; Pomierny, Bartosz; Budziszewska, Boguslawa; Filip, Malgorzata; Pera, Joanna

    2016-05-01

    Glutamate (Glu) plays a key role in excitotoxicity-related injury in cerebral ischemia. In the brain, Glu homeostasis depends on Glu transporters, including the excitatory amino acid transporters and the cysteine/Glu antiporter (xc-). We hypothesized that drugs acting on Glu transporters, such as ceftriaxone (CEF, 200 mg/kg, i.p.) and N-acetylcysteine (NAC, 150 mg/kg, i.p.), administered repeatedly for 5 days before focal cerebral ischemia in rats and induced by a 90-min middle cerebral artery occlusion (MCAO), may induce brain tolerance to ischemia. We compared the effects of these drugs on brain infarct volume, neurological deficits and the mRNA and protein expression of the Glu transporter-1 (GLT-1) and xc- with the effects of ischemic preconditioning and chemical preconditioning using 3-nitropropionic acid. Administration of CEF and NAC significantly reduced infarct size and neurological deficits caused by a 90-min MCAO. These beneficial effects were accompanied by changes in GLT-1 expression caused by a 90-min MCAO at both the mRNA and protein levels in the frontal cortex, hippocampus, and dorsal striatum. Thus, the results of this study suggest that the regulation of GLT-1 and xc- plays a role in the development of cerebral tolerance to ischemia and that this regulation may be a novel approach in the therapy of brain ischemia. PMID:26861954

  6. Myocardial ischemic protection in natural mammalian hibernation.

    PubMed

    Yan, Lin; Kudej, Raymond K; Vatner, Dorothy E; Vatner, Stephen F

    2015-03-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation. PMID:25613166

  7. Myocardial ischemic protection in natural mammalian hibernation

    PubMed Central

    Yan, Lin; Kudej, Raymond K.; Vatner, Dorothy E.

    2015-01-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation. PMID:25613166

  8. Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning.

    PubMed Central

    Yamashita, N; Nishida, M; Hoshida, S; Kuzuya, T; Hori, M; Taniguchi, N; Kamada, T; Tada, M

    1994-01-01

    Manganese superoxide dismutase (Mn-SOD) is induced in ischemic hearts 24 h after ischemic preconditioning, when tolerance to ischemia is acquired. We examined the relationship between Mn-SOD induction and the protective effect of preconditioning using cultured rat cardiac myocytes. Exposure of cardiac myocytes to brief hypoxia (1 h) decreased creatine kinase release induced by sustained hypoxia (3 h) that follows when the sustained hypoxia was applied 24 h after hypoxic preconditioning (57% of that in cells without preconditioning). The activity and content of Mn-SOD in cardiac myocytes were increased 24 h after hypoxic preconditioning (activity, 170%; content, 139% compared with cells without preconditioning) coincidentally with the acquisition of tolerance to hypoxia. Mn-SOD mRNA was also increased 20-40 min after preconditioning. Antisense oligodeoxyribonucleotides corresponding to the initiation site of Mn-SOD translation inhibited the increases in the Mn-SOD content and activity and abolished the expected decrease in creatine kinase release induced by sustained hypoxia after 24 h of hypoxic preconditioning. Sense oligodeoxyribonucleotides did not abolish either Mn-SOD induction or tolerance to hypoxia. These results suggest that the induction of Mn-SOD in myocytes by preconditioning plays a pivotal role in the acquisition of tolerance to ischemia at a later phase (24 h) of ischemic preconditioning. Images PMID:7989574

  9. Hypoxically preconditioned human peripheral blood mononuclear cells improve blood flow in hindlimb ischemia xenograft model.

    PubMed

    Kudo, Tomoaki; Kubo, Masayuki; Katsura, Shunsaku; Nishimoto, Arata; Ueno, Koji; Samura, Makoto; Fujii, Yasuhiko; Hosoyama, Tohru; Hamano, Kimikazu

    2014-01-01

    Transplantation of peripheral blood mononuclear cells (PBMNCs) is a promising therapeutic approach for the treatment of hindlimb ischemia. However, insufficient angiogenesis in ischemic hindlimb after cell transplantation reduces the importance and practicality of this approach. Previously, we demonstrated using mouse models that hypoxic preconditioning augmented the cellular functions of rodent PBMNCs, such as increased cell adhesion capacity and accelerated neovascularization in ischemic hindlimb. To test the clinical application of this therapeutic strategy in this study, we investigated whether the protocol of hypoxic preconditioning, which was established in a condition of 2% O2 for 24 h, can be made available for human PBMNCs (hPBMNCs). In addition, we grafted preconditioned hPBMNCs in a hindlimb ischemia mouse model. Hypoxic preconditioning enhanced cell adhesion capacity and oxidative stress resistance in hPBMNCs. We also observed an up-regulation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in hPBMNCs by hypoxic preconditioning. Furthermore, preconditioned hPBMNCs significantly recovered limb blood flow in ischemic mice after transplantation. These results indicate that our established preconditioning protocol is available for hPBMNCs to effectively reinforce multiple cellular functions. Taken together with our series of study, we believe that this simple but powerful therapeutic strategy will be helpful in curing patients with severe hindlimb ischemia. PMID:25360221

  10. Ischemic Stroke

    MedlinePlus

    A stroke is a medical emergency. There are two types - ischemic and hemorrhagic. Ischemic stroke is the most common type. It is usually ... are at risk for having a more serious stroke. Symptoms of stroke are Sudden numbness or weakness ...

  11. Silymarin and its constituents in cardiac preconditioning.

    PubMed

    Zholobenko, A; Modriansky, M

    2014-09-01

    Silymarin, a standardised extract of Silybum marianum (milk thistle), comprises mainly of silybin, with dehydrosilybin (DHSB), quercetin, taxifolin, silychristin and a number of other compounds which are known to possess a range of salutary effects. Indeed, there is evidence for their role in reducing tumour growth, preventing liver toxicity, and protecting a number of organs against ischemic damage. The hepatoprotective effects of silymarin, especially in preventing Amanita and alcohol intoxication induced damage to the liver, are a well established fact. Likewise, there is weighty evidence that silymarin possesses antimicrobial and anticancer activities. Additionally, it has emerged that in animal models, silymarin can protect the heart, brain, liver and kidneys against ischemia reperfusion injury, probably by preconditioning. The mechanisms of preconditioning are, in general, well studied, especially in the heart. On the other hand, the mechanism by which silymarin protects the heart from ischemia remains largely unexplored. This review, therefore, focuses on evaluating existing studies on silymarin induced cardioprotection in the context of the established mechanisms of preconditioning. PMID:24879900

  12. Preconditioning Neuroprotection in Global Cerebral Ischemia Involves NMDA Receptor-Mediated ERK-JNK3 Crosstalk

    PubMed Central

    Zhang, Quan-Guang; Wang, Rui-Min; Han, Dong; Yang, Li-Cai; Li, Jie; Brann, Darrell W.

    2009-01-01

    Previous work has demonstrated that ischemic preconditioning neuroprotection is associated with inhibition of JNK pathway activation. The present study was designed to examine the hypothesis that the suppression of JNK3 activation by preconditioning is mediated by NMDA receptors and crosstalk between ERK1/2 and JNK3. Preconditioning (3 min ischemia) 2 days before global cerebral ischemia (8-min) markedly decreased neuronal degeneration in hippocampus CA1, an effect abolished by pretreatment with the NMDA receptor antagonist, MK-801. Furthermore, preconditioning abolished cerebral ischemia-induced JNK3 activation and enhanced ERK1/2 activation, an effect reversed by MK-801. Due to the inverse relationship between ERK1/2 and JNK3 activation following preconditioning, we hypothesized that ERK1/2 may regulate JNK3 activation following preconditioning. In support of this contention, pretreatment with the MEK inhibitor, PD98059 significantly attenuated preconditioning-induced ERK1/2 phosphorylation, and strongly reversed preconditioning down-regulation of JNK3 phosphorylation. This finding suggests that ERK1/2 signaling is responsible for preconditioning-induced down-regulation of JNK3 activation. Western blot analysis and immunohistochemistry further demonstrated that preconditioning, in an NMDA-dependent manner, enhanced activation of the pro-survival factors, p-CREB and Bcl-2, while attenuating activation of putative pro-death factors, p-c-Jun and Fas-L in the hippocampus CA1. As a whole, the study demonstrates that preconditioning attenuation of pro-death JNK3 in the hippocampus CA1 following global cerebral ischemia is mediated by NMDA receptor-Induced crosstalk between ERK1/2 and JNK3. The ERK1/2-mediated reduction of JNK3 activation leads to enhanced prosurvival signaling (P-CREB and Bcl-2 induction) and attenuation of prodeath signaling (p-c-Jun and Fas-L), with subsequent induction of ischemic tolerance. PMID:19373993

  13. Preconditioned Iterative Solver

    Energy Science and Technology Software Center (ESTSC)

    2002-08-01

    AztecOO contains a collection of preconditioned iterative methods for the solution of sparse linear systems of equations. In addition to providing many of the common algebraic preconditioners and basic iterative methods, AztecOO can be easily extended to interact with user-provided preconditioners and matrix operators.

  14. Cyclosporine-A mimicked the ischemic pre- and postconditioning-mediated cardioprotection in hypertensive rats: Role of PKCε.

    PubMed

    González Arbeláez, Luisa Fernanda; Ciocci Pardo, Alejandro; Fantinelli, Juliana Catalina; Mosca, Susana María

    2016-04-01

    Our aim was to assess the action of cyclosporine-A (CsA) against reperfusion injury in spontaneously hypertensive rats (SHR) compared to the effects of ischemic pre- (IP) and postconditioning (IPC), examining the role played by PKCε. Isolated hearts were submitted to the following protocols: IC: 45min global ischemia (GI) and 1h reperfusion (R); IP: a cycle of 5min GI and 10min of R prior to 45min-GI; and IPC: three cycles of 30s-GI/30s-R at the start of R. Other hearts of the IC, IP and IPC groups received CsA (mitochondrial permeability transition pore inhibitor) or chelerythrine (Che, non-selective PKC inhibitor). Infarct size (IS) was assessed. TBARS and reduced glutathione (GSH) content - as parameters of oxidative damage, the expression of P-Akt, P-GSK-3β, P-PKCε and cytochrome c (Cyc) release - as an index of mitochondrial permeability and the response of isolated mitochondria to Ca(2+) were also measured. IS similarly decreased in preconditioned, postconditioned and CsA treated heart showing the highest values in the combinations IP+CsA and IPC+CsA. TBARS decreased and GSH was partially preserved after all interventions. The content of P-Akt, P-GSK-3β and P-PKCε increased in cytosol and decreased in mitochondria after IP and IPC. In CsA treated hearts these enzymes increased in both fractions reaching the highest values. Cyc release was attenuated and the response of mitochondria to Ca(2+) was improved by the interventions. The beneficial effects of IP and IPC were annulled when PKC was inhibited with Che. A PKCε/VDAC association was also detected. These data show that, in SHR, the CsA treatment mimicked and reinforced the cardioprotective action afforded by IP and IPC in which PKCε-mediated attenuation of mitochondrial permeability appears as the main mechanism involved. PMID:26844384

  15. Mesenchymal stem cells preconditioned with trimetazidine promote neovascularization of hearts under hypoxia/reoxygenation injury

    PubMed Central

    Hu, Xiaowu; Yang, Junjie; Wang, Ying; Zhang, You; Ii, Masaaki; Shen, Zhenya; Hui, Jie

    2015-01-01

    Background: Cell-based angiogenesis is a promising treatment for ischemic diseases; however, survival of implanted cells is impaired by the ischemic microenvironment. In this study, mesenchymal stem cells (MSCs) for cell transplantation were preconditioned with trimetazidine (TMZ). We hypothesized that TMZ enhances the survival rate of MSCs under hypoxic stimuli through up-regulation of HIF1-α. Methods and results: Bone marrow-derived rat mesenchymal stem cells were preconditioned with 10 μM TMZ for 6 h. TMZ preconditioning of MSCs remarkably increased cell viability and the expression of HIF1-α and Bcl-2, when cells were under hypoxia/reoxygenation (H/R) stimuli. But the protective effects of TMZ were abolished after knocking down of HIF-1α. Three days after implantation of the cells into the peri-ischemic zone of rat myocardial ischemia-reperfusion (I/R) injury model, survival of the TMZ-preconditioned MSCs was high. Furthermore, capillary density and cardiac function were significantly better in the rats implanted with TMZ-preconditioned MSCs 28 days after cell injection. Conclusions: TMZ preconditioning increased the survival rate of MSCs, through up-regulation of HIF1-α, thus contributing to neovascularization and improved cardiac function of rats subjected to myocardial I/R injury. PMID:26629255

  16. The evolving concept of physiological ischemia training vs. ischemia preconditioning.

    PubMed

    Ni, Jun; Lu, Hongjian; Lu, Xiao; Jiang, Minghui; Peng, Qingyun; Ren, Caili; Xiang, Jie; Mei, Chengyao; Li, Jianan

    2015-11-01

    Ischemic heart diseases are the leading cause of death with increasing numbers of patients worldwide. Despite advances in revascularization techniques, angiogenic therapies remain highly attractive. Physiological ischemia training, which is first proposed in our laboratory, refers to reversible ischemia training of normal skeletal muscles by using a tourniquet or isometric contraction to cause physiologic ischemia for about 4 weeks for the sake of triggering molecular and cellular mechanisms to promote angiogenesis and formation of collateral vessels and protect remote ischemia areas. Physiological ischemia training therapy augments angiogenesis in the ischemic myocardium by inducing differential expression of proteins involved in energy metabolism, cell migration, protein folding, and generation. It upregulates the expressions of vascular endothelial growth factor, and induces angiogenesis, protects the myocardium when infarction occurs by increasing circulating endothelial progenitor cells and enhancing their migration, which is in accordance with physical training in heart disease rehabilitation. These findings may lead to a new approach of therapeutic angiogenesis for patients with ischemic heart diseases. On the basis of the promising results in animal studies, studies were also conducted in patients with coronary artery disease without any adverse effect in vivo, indicating that physiological ischemia training therapy is a safe, effective and non-invasive angiogenic approach for cardiovascular rehabilitation. Preconditioning is considered to be the most protective intervention against myocardial ischemia-reperfusion injury to date. Physiological ischemia training is different from preconditioning. This review summarizes the preclinical and clinical data of physiological ischemia training and its difference from preconditioning. PMID:26664354

  17. EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection.

    PubMed

    Olenchock, Benjamin A; Moslehi, Javid; Baik, Alan H; Davidson, Shawn M; Williams, Jeremy; Gibson, William J; Pierce, Kerry A; Miller, Christine M; Hanse, Eric A; Kelekar, Ameeta; Sullivan, Lucas B; Wagers, Amy J; Clish, Clary B; Vander Heiden, Matthew G; Kaelin, William G

    2016-02-25

    Ischemic preconditioning is the phenomenon whereby brief periods of sublethal ischemia protect against a subsequent, more prolonged, ischemic insult. In remote ischemic preconditioning (RIPC), ischemia to one organ protects others organs at a distance. We created mouse models to ask if inhibition of the alpha-ketoglutarate (αKG)-dependent dioxygenase Egln1, which senses oxygen and regulates the hypoxia-inducible factor (HIF) transcription factor, could suffice to mediate local and remote ischemic preconditioning. Using somatic gene deletion and a pharmacological inhibitor, we found that inhibiting Egln1 systemically or in skeletal muscles protects mice against myocardial ischemia-reperfusion (I/R) injury. Parabiosis experiments confirmed that RIPC in this latter model was mediated by a secreted factor. Egln1 loss causes accumulation of circulating αKG, which drives hepatic production and secretion of kynurenic acid (KYNA) that is necessary and sufficient to mediate cardiac ischemic protection in this setting. PMID:26919427

  18. Interleukin-6 mediates exercise preconditioning against myocardial ischemia reperfusion injury.

    PubMed

    McGinnis, Graham Ripley; Ballmann, Christopher; Peters, Bridget; Nanayakkara, Gayani; Roberts, Michael; Amin, Rajesh; Quindry, John C

    2015-06-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine that protects against cardiac ischemia-reperfusion (I/R) injury following pharmacological and ischemic preconditioning (IPC), but the affiliated role in exercise preconditioning is unknown. Our study purpose was to characterize exercise-induced IL-6 cardiac signaling (aim 1) and evaluate myocardial preconditioning (aim 2). In aim 1, C57 and IL-6(-/-) mice underwent 3 days of treadmill exercise for 60 min/day at 18 m/min. Serum, gastrocnemius, and heart were collected preexercise, immediately postxercise, and 30 and 60 min following the final exercise session and analyzed for indexes of IL-6 signaling. For aim 2, a separate cohort of exercise-preconditioned (C57 EX and IL-6(-/-) EX) and sedentary (C57 SED and IL-6(-/-) SED) mice received surgical I/R injury (30 min I, 120 min R) or a time-matched sham operation. Ischemic and perfused tissues were examined for necrosis, apoptosis, and autophagy. In aim 1, serum IL-6 and IL-6 receptor (IL-6R), gastrocnemius, and myocardial IL-6R were increased following exercise in C57 mice only. Phosphorylated (p) signal transducer and activator of transcription 3 was increased in gastrocnemius and heart in C57 and IL-6(-/-) mice postexercise, whereas myocardial iNOS and cyclooxygenase-2 were unchanged in the exercised myocardium. Exercise protected C57 EX mice against I/R-induced arrhythmias and necrosis, whereas arrhythmia score and infarct outcomes were higher in C57 SED, IL-6(-/-) SED, and IL-6(-/-) EX mice compared with SH. C57 EX mice expressed increased p-p44/42 MAPK (Thr(202)/Tyr(204)) and p-p38 MAPK (Thr(180)/Tyr(182)) compared with IL-6(-/-) EX mice, suggesting pathway involvement in exercise preconditioning. Findings indicate exercise exerts cardioprotection via IL-6 and strongly implicates protective signaling originating from the exercised skeletal muscle. PMID:25820396

  19. Roles of thioredoxin in nitric oxide-dependent preconditioning-induced tolerance against MPTP neurotoxin

    SciTech Connect

    Chiueh, C.C. . E-mail: chiueh@tmu.edu.tw; Andoh, Tsugunobu; Chock, P. Boon

    2005-09-01

    Hormesis, a stress tolerance, can be induced by ischemic preconditioning stress. In addition to preconditioning, it may be induced by other means, such as gas anesthetics. Preconditioning mechanisms, which may be mediated by reprogramming survival genes and proteins, are obscure. A known neurotoxicant, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causes less neurotoxicity in the mice that are preconditioned. Pharmacological evidences suggest that the signaling pathway of {center_dot}NO-cGMP-PKG (protein kinase G) may mediate preconditioning phenomenon. We developed a human SH-SY5Y cell model for investigating {sup {center_dot}}NO-mediated signaling pathway, gene regulation, and protein expression following a sublethal preconditioning stress caused by a brief 2-h serum deprivation. Preconditioned human SH-SY5Y cells are more resistant against severe oxidative stress and apoptosis caused by lethal serum deprivation and 1-mehtyl-4-phenylpyridinium (MPP{sup +}). Both sublethal and lethal oxidative stress caused by serum withdrawal increased neuronal nitric oxide synthase (nNOS/NOS1) expression and {sup {center_dot}}NO levels to a similar extent. In addition to free radical scavengers, inhibition of nNOS, guanylyl cyclase, and PKG blocks hormesis induced by preconditioning. S-nitrosothiols and 6-Br-cGMP produce a cytoprotection mimicking the action of preconditioning tolerance. There are two distinct cGMP-mediated survival pathways: (i) the up-regulation of a redox protein thioredoxin (Trx) for elevating mitochondrial levels of antioxidant protein Mn superoxide dismutase (MnSOD) and antiapoptotic protein Bcl-2, and (ii) the activation of mitochondrial ATP-sensitive potassium channels [K(ATP)]. Preconditioning induction of Trx increased tolerance against MPP{sup +}, which was blocked by Trx mRNA antisense oligonucleotide and Trx reductase inhibitor. It is concluded that Trx plays a pivotal role in {sup {center_dot}}NO-dependent preconditioning hormesis against MPTP/MPP{sup +}.

  20. Cardioprotection by remote ischemic conditioning: Mechanisms and clinical evidences

    PubMed Central

    Aimo, Alberto; Borrelli, Chiara; Giannoni, Alberto; Pastormerlo, Luigi Emilio; Barison, Andrea; Mirizzi, Gianluca; Emdin, Michele; Passino, Claudio

    2015-01-01

    In remote ischemic conditioning (RIC), several cycles of ischemia and reperfusion render distant organ and tissues more resistant to the ischemia-reperfusion injury. The intermittent ischemia can be applied before the ischemic insult in the target site (remote ischemic preconditioning), during the ischemic insult (remote ischemic perconditioning) or at the onset of reperfusion (remote ischemic postconditioning). The mechanisms of RIC have not been completely defined yet; however, these mechanisms must be represented by the release of humoral mediators and/or the activation of a neural reflex. RIC has been discovered in the heart, and has been arising great enthusiasm in the cardiovascular field. Its efficacy has been evaluated in many clinical trials, which provided controversial results. Our incomplete comprehension of the mechanisms underlying the RIC could be impairing the design of clinical trials and the interpretation of their results. In the present review we summarize current knowledge about RIC pathophysiology and the data about its cardioprotective efficacy. PMID:26516416

  1. 78 FR 8032 - Misuse of Internet Protocol (IP) Captioned Telephone Service; Telecommunications Relay Services...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ...In this document, the Commission adopts interim rules prohibiting all referrals for rewards programs (as described in the synopsis below) and any other form of direct or indirect inducements, financial or otherwise, to subscribe to or use, or encourage subscription to or use of, Internet Protocol Captioned Telephone Service (IP CTS); requiring each IP CTS provider, as a precondition to......

  2. PVM and IP multicast

    SciTech Connect

    Dunigan, T.H.; Hall, K.A.

    1996-12-01

    This report describes a 1994 demonstration implementation of PVM that uses IP multicast. PVM`s one-to-many unicast implementation of its pvm{_}mcast() function is replaced with reliable IP multicast. Performance of PVM using IP multicast over local and wide-area networks is measured and compared with the original unicast implementation. Current limitations of IP multicast are noted.

  3. Bradykinin in ischemic conditioning-induced tissue protection: Evidences and possible mechanisms.

    PubMed

    Sharma, Roohani; Randhawa, Puneet Kaur; Singh, Nirmal; Jaggi, Amteshwar Singh

    2015-12-01

    Ischemic conditioning is an intrinsic protective mechanism in which repeated short episodes of reversible ischemia protects the tissue and increases its tolerance against a subsequent longer period of ischemia (index ischemia). Bradykinin is a physiologically and pharmacologically active peptide of the kallikrein-kinin system. Besides the involvement of bradykinin in a variety of physiological and pathological responses such as pain, inflammation and in cardiovascular system as a potent vasodilator, it also acts as an endogenous cytoprotective mediator in the ischemic tissue. Pretreatment with various pharmacological modulators of bradykinin has confirmed the involvement of bradykinin in ischemic conditioning-induced protection. The protective actions of bradykinin in three major paradigms of ischemic conditioning i.e. ischemic preconditioning, ischemic postconditioning and remote ischemic preconditioning involves activation and regulation of various endogenous signaling cascades to render the heart resistant to infarction. In ischemic preconditioning, bradykinin exerts cardioprotective effect via activation of PI3K/Akt/eNOS signaling pathway and regulation of redox state via NO release. The role of bradykinin and its B2 receptors in ischemic-postconditioning induced neuroprotection has been described mainly due to its increased redox signaling cascade and activation of mitochondrial anti-apoptotic pathway. Furthermore, its cardioprotective role during remote ischemic preconditioning has been associated with activation of B2 receptors mediated neurogenic pathway and internalization of B2 receptors along with the formation of signalosomes that activates intracellular cytoprotective transduction pathways. The present review focuses on the potential role of bradykinin in mediating different forms of ischemic conditioning (pre/post/remote)-induced cardioprotection and neuroprotection along with the possible mechanisms. PMID:26499976

  4. Preconditioning Provides Neuroprotection in Models of CNS Disease: Paradigms and Clinical Significance

    PubMed Central

    Stetler, R. Anne; Leak, Rehana K.; Gan, Yu; Li, Peiying; Hu, Xiaoming; Jing, Zheng; Chen, Jun; Zigmond, Michael J.; Gao, Yanqin

    2014-01-01

    Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of “cross-tolerance,” in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning. In a subsequent components of this two-part series, we will discuss the cellular and molecular events that are likely to underlie these phenomena. PMID:24389580

  5. Short-term hypoxic preconditioning improved survival following cardiac arrest and resuscitation in rats.

    PubMed

    Xu, Kui; Lamanna, Joseph C

    2014-01-01

    Cardiac arrest and resuscitation produces delayed mortality and hippocampal neuronal death in rats. Hypoxic preconditioning has been to shown to protect the brain from ischemic insults. We have previously reported that with chronic hypobaric hypoxia, the accumulation of hypoxic-inducible factor-1 alpha (HIF-1?) and its target genes was increased for the first several days of hypoxic exposure, and returned to baseline level by 3 weeks when angiogenesis is completed. In this study, we investigated the effect of short-term (3 days) and long-term (21 days) hypoxic preconditioning on recovery from cardiac arrest and resuscitation in rats. Our data showed that the overall survival rate was considerably improved in the short-term hypoxic preconditioning group compared to the non-preconditioned controls (86 %, 6/7 vs. 54 %, 7/13); however, the survival rate in the long-term hypoxic preconditioning group was decreased. Our data suggest that hypoxic preconditioning provides protection after cardiac arrest and resuscitation more likely through increased accumulation of HIF-1? and its target genes rather than through successful vascular adaptation as a result of hypoxia-induced angiogenesis. PMID:24729248

  6. Orderings for conjugate gradient preconditionings

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  7. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro

    PubMed Central

    Bader, Andreas Matthäus; Klose, Kristin; Bieback, Karen; Korinth, Dirk; Schneider, Maria; Seifert, Martina; Choi, Yeong-Hoon; Kurtz, Andreas; Falk, Volkmar; Stamm, Christof

    2015-01-01

    Hypoxic preconditioning was shown to improve the therapeutic efficacy of bone marrow-derived multipotent mesenchymal stromal cells (MSCs) upon transplantation in ischemic tissue. Given the interest in clinical applications of umbilical cord blood-derived MSCs, we developed a specific hypoxic preconditioning protocol and investigated its anti-apoptotic and pro-angiogenic effects on cord blood MSCs undergoing simulated ischemia in vitro by subjecting them to hypoxia and nutrient deprivation with or without preceding hypoxic preconditioning. Cell number, metabolic activity, surface marker expression, chromosomal stability, apoptosis (caspases-3/7 activity) and necrosis were determined, and phosphorylation, mRNA expression and protein secretion of selected apoptosis and angiogenesis-regulating factors were quantified. Then, human umbilical vein endothelial cells (HUVEC) were subjected to simulated ischemia in co-culture with hypoxically preconditioned or naïve cord blood MSCs, and HUVEC proliferation was measured. Migration, proliferation and nitric oxide production of HUVECs were determined in presence of cord blood MSC-conditioned medium. Cord blood MSCs proved least sensitive to simulated ischemia when they were preconditioned for 24 h, while their basic behavior, immunophenotype and karyotype in culture remained unchanged. Here, “post-ischemic” cell number and metabolic activity were enhanced and caspase-3/7 activity and lactate dehydrogenase release were reduced as compared to non-preconditioned cells. Phosphorylation of AKT and BAD, mRNA expression of BCL-XL, BAG1 and VEGF, and VEGF protein secretion were higher in preconditioned cells. Hypoxically preconditioned cord blood MSCs enhanced HUVEC proliferation and migration, while nitric oxide production remained unchanged. We conclude that hypoxic preconditioning protects cord blood MSCs by activation of anti-apoptotic signaling mechanisms and enhances their angiogenic potential. Hence, hypoxic preconditioning might be a translationally relevant strategy to increase the tolerance of cord blood MSCs to ischemia and improve their therapeutic efficacy in clinical applications. PMID:26380983

  8. Application and Progress of Combined Mesenchymal Stem Cell Transplantation in the Treatment of Ischemic Cardiomyopathy

    PubMed Central

    Hua, Ping; Liu, Jian-Yang; Tao, Jun; Yang, Song-Ran

    2015-01-01

    Treatment of ischemic cardiomyopathy caused by myocardial infarction (MI) using mesenchymal stem cell (MSC) transplantation is a widely researched field, with promising clinical application. However, the low survival rate of transplanted cells has a severe impact on treatment outcome. Currently, research is focused on investigating the strategy of combining genetic engineering, tissue engineering materials, and drug/hypoxia preconditioning to improve ischemic cardiomyopathy treatment outcome using MSC transplantation treatment (MSCTT). This review discusses the application and progress of these techniques. PMID:26295041

  9. LPS-Induced Delayed Preconditioning Is Mediated by Hsp90 and Involves the Heat Shock Response in Mouse Kidney

    PubMed Central

    Kaucsár, Tamás; Bodor, Csaba; Godó, Mária; Szalay, Csaba; Révész, Csaba; Németh, Zalán; Mózes, Miklós; Szénási, Gábor; Rosivall, László; Sőti, Csaba; Hamar, Péter

    2014-01-01

    Introduction We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. Methods Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, ip.) and subsequent lethal (L: 10 mg/kg, ip.) doses of LPS alone or in combination with NB (100 mg/kg, ip.). Controls received saline (C) or NB. Results Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. Conclusion LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning. PMID:24646925

  10. Lipopolysaccharide preconditioning prevents acceleration of kindling epileptogenesis induced by traumatic brain injury.

    PubMed

    Eslami, Mansoureh; Sayyah, Mohammad; Soleimani, Mansoureh; Alizadeh, Leila; Hadjighassem, Mahmoudreza

    2015-12-15

    10-20% of symptomatic epilepsies are post-traumatic. We examined effect of LPS preconditioning on epileptogenesis after controlled cortical impact (CCI). LPS (0.01, 0.1 and 0.5 mg/kg) was injected i.p. to rats 5 days before induction of CCI to parieto-temporal cortex. Kindling started 24h after CCI by i.p. injection of 30 mg/kg of pentylenetetrazole every other day until manifestation of 3 consecutive generalized seizures. CCI injury accelerated the rate of kindled seizures acquisition. LPS (0.1 and 0.5 mg/kg) prevented the acceleration of kindling. LPS preconditioning significantly decreased IL-1β and TNF-α over-expression and the number of damaged neurons in the hippocampus of traumatic rats. PMID:26616884

  11. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning

    PubMed Central

    2012-01-01

    In spite of the current optimal therapy, the mortality of patients with ischemic heart disease (IHD) remains high, particularly in cases with diabetes mellitus (DM) as a co-morbidity. Myocardial infarct size is a major determinant of prognosis in IHD patients, and development of a novel strategy to limit infarction is of great clinical importance. Ischemic preconditioning (PC), postconditioning (PostC) and their mimetic agents have been shown to reduce infarct size in experiments using healthy animals. However, a variety of pharmacological agents have failed to demonstrate infarct size limitation in clinical trials. One of the possible reasons for the discrepancy between the results of animal experiments and clinical trials is that co-morbidities, including DM, modified myocardial responses to ischemia/reperfusion and to cardioprotective agents. Here we summarize observations of the effects of DM on myocardial infarct size and ischemic PC and PostC and discuss perspectives for protection of DM hearts. PMID:22694800

  12. Ischemic Strokes (Clots)

    MedlinePlus

    ... Quiz 5 Things to Know About Stroke Ischemic Strokes (Clots) Updated:Mar 28,2016 Ischemic stroke accounts ... strokes. Read more about silent strokes . TIA and Stroke: Medical Emergencies When someone has shown symptoms of ...

  13. TIA (Transient Ischemic Attack)

    MedlinePlus

    ... Know About Stroke TIA (Transient Ischemic Attack) Updated:Mar 28,2016 Excerpted from “ Why Rush? ”, Stroke Connection January/February 2009 (Science update October 2012) While transient ischemic attack (TIA) ...

  14. Management of Preconditioned Calves and Impacts of Preconditioning.

    PubMed

    Hilton, W Mark

    2015-07-01

    When studying the practice of preconditioning (PC) calves, many factors need to be examined to determine if cow-calf producers should make this investment. Factors such as average daily gain, feed efficiency, available labor, length of the PC period, genetics, and marketing options must be analyzed. The health sales price advantage is an additional benefit in producing and selling PC calves but not the sole determinant of PC's financially feasibility. Studies show that a substantial advantage of PC is the selling of additional pounds at a cost of gain well below the marginal return of producing those additional pounds. PMID:26139187

  15. Dexmedetomidine preconditioning ameliorates kidney ischemia-reperfusion injury

    PubMed Central

    Lempiäinen, Juha; Finckenberg, Piet; Mervaala, Elina E; Storvik, Markus; Kaivola, Juha; Lindstedt, Ken; Levijoki, Jouko; Mervaala, Eero M

    2014-01-01

    Kidney ischemia-reperfusion (I/R) injury is a common cause of acute kidney injury. We tested whether dexmedetomidine (Dex), an alpha2 adrenoceptor (α2-AR) agonist, protects against kidney I/R injury. Sprague–Dawley rats were divided into four groups: (1) Sham-operated group; (2) I/R group (40 min ischemia followed by 24 h reperfusion); (3) I/R group + Dex (1 μg/kg i.v. 60 min before the surgery), (4) I/R group + Dex (10 μg/kg). The effects of Dex postconditiong (Dex 1 or 10 μg/kg i.v. after reperfusion) as well as the effects of peripheral α2-AR agonism with fadolmidine were also examined. Hemodynamic effects were monitored, renal function measured, and acute tubular damage along with monocyte/macrophage infiltration scored. Kidney protein kinase B, toll like receptor 4, light chain 3B, p38 mitogen-activated protein kinase (p38 MAPK), sirtuin 1, adenosine monophosphate kinase (AMPK), and endothelial nitric oxide synthase (eNOS) expressions were measured, and kidney transciptome profiles analyzed. Dex preconditioning, but not postconditioning, attenuated I/R injury-induced renal dysfunction, acute tubular necrosis and inflammatory response. Neither pre- nor postconditioning with fadolmidine protected kidneys. Dex decreased blood pressure more than fadolmidine, ameliorated I/R-induced impairment of autophagy and increased renal p38 and eNOS expressions. Dex downregulated 245 and upregulated 61 genes representing 17 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, in particular, integrin pathway and CD44. Ingenuity analysis revealed inhibition of Rac and nuclear factor (erythroid-derived 2)-like 2 pathways, whereas aryl hydrocarbon receptor (AHR) pathway was activated. Dex preconditioning ameliorates kidney I/R injury and inflammatory response, at least in part, through p38-CD44-pathway and possibly also through ischemic preconditioning. PMID:25505591

  16. The natural olive constituent oleuropein induces nutritional cardioprotection in normal and cholesterol-fed rabbits: comparison with preconditioning.

    PubMed

    Andreadou, Ioanna; Benaki, Dimitra; Efentakis, Panagiotis; Bibli, Sofia-Iris; Milioni, Alkistis-Ioanna; Papachristodoulou, Anastasia; Zoga, Anastasia; Skaltsounis, Alexios-Leandros; Mikros, Emmanuel; Iliodromitis, Efstathios K

    2015-06-01

    Ischemic preconditioning, which is mediated by cell signaling molecules, protects the heart from ischemia-reperfusion injury by limiting the infarct size. Oleuropein, the main polyphenolic constituent of olives, reduced the infarct size in normal and cholesterol-fed rabbits when it was administered at a nutritional dose. The aim of the present study was to compare the effects of oleuropein and preconditioning in terms of the cell signaling and metabolism pathways underlying myocardial protection. Rabbits were randomly divided into six groups: the control group received 5 % dextrose for six weeks, the preconditioning group was subjected to two cycles of preconditioning with 5 min ischemia/10 min reperfusion, the O6 group was treated with oleuropein for six weeks, the Chol group was fed a cholesterol-enriched diet and 5 % dextrose for six weeks, and the CholO6 and CholO3 groups were treated with cholesterol and oleuropein for six and three weeks, respectively; oleuropein was dissolved in 5 % dextrose solution and was administered orally at a dose of 20 mg × kg(-1) × day(-1). All animals were subsequently subjected to 30 min myocardial ischemia followed by 10 min of reperfusion. At that time, myocardial biopsies were taken from the ischemic areas for the assessment of oxidative and nitrosative stress biomarkers (malondialdehyde and nitrotyrosine), and determination of phosphorylation of signaling molecules involved in the mechanism of preconditioning (PI3K, Akt, eNOS, AMPK, STAT3). The tissue extracts NMR metabolic profile was recorded and further analyzed by multivariate statistics. Oxidative biomarkers were significantly reduced in the O6, CholO6, and CholO3 groups compared to the control, preconditioning, and Chol groups. Considering the underlying signaling cascade, the phosphorylation of PI3K, Akt, eNOS, AMPK, and STAT-3 was significantly higher in the preconditioning and all oleuropein-treated groups compared to the control and Chol groups. The NMR-based metabonomic study, performed through the analysis of spectroscopic data, depicted differences in the metabolome of the various groups with significant alterations in purine metabolism. In conclusion, the addition of oleuropein to a normal or hypercholesterolemic diet results in a preconditioning-like intracellular effect, eliminating the deleterious consequences of ischemia and hypercholesterolemia, followed by a decrease of oxidative stress biomarkers. This effect is exerted through inducing preconditioning-involved signaling transduction. Nutritional preconditioning may support the low cardiovascular morbidity and mortality associated with the consumption of olive products. PMID:25473920

  17. Failure and rescue of preconditioning-induced neuroprotection in severe stroke-like insults.

    PubMed

    Tauskela, Joseph S; Aylsworth, Amy; Hewitt, Melissa; Brunette, Eric; Blondeau, Nicolas

    2016-06-01

    Preconditioning is a well established neuroprotective modality. However, the mechanism and relative efficacy of neuroprotection between diverse preconditioners is poorly defined. Cultured neurons were preconditioned by 4-aminopyridine and bicuculline (4-AP/bic), rendering neurons tolerant to normally lethal (sufficient to kill most neurons) oxygen-glucose deprivation (OGD) or a chemical OGD-mimic, ouabain/TBOA, by suppression of extracellular glutamate (glutamateex) elevations. However, subjecting preconditioned neurons to longer-duration supra-lethal insults caused neurotoxic glutamateex elevations, thereby identifying a 'ceiling' to neuroprotection. Neuroprotective 'rescue' of neurons could be obtained by administration of an NMDA receptor antagonist, MK-801, just before glutamateex rose during these supra-lethal insults. Next, we evaluated if these concepts of glutamateex suppression during lethal OGD, and a neuroprotective ceiling requiring MK-801 rescue under supra-lethal OGD, extended to the preconditioning field. In screening a panel of 42 diverse putative preconditioners, neuroprotection against normally lethal OGD was observed in 12 cases, which correlated with glutamateex suppression, both of which could be reversed, either by the inclusion of a glutamate uptake inhibitor (TBOA, to increase glutamateex levels) during OGD or by exposure to supra-lethal OGD. Administrating MK-801 during the latter stages of supra-lethal OGD again rescued neurons, although to varying degrees dependent on the preconditioning agent. Thus, 'stress-testing' against the harshest ischemic-like insults yet tested identifies the most efficacious preconditioners, which dictates how early MK-801 needs to be administered during the insult in order to maintain neuroprotection. Preconditioning delays a neurotoxic rise in glutamateex levels, thereby 'buying time' for acute anti-excitotoxic pharmacologic rescue. PMID:26867506

  18. 40 CFR 80.52 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accordance with the “General vehicle handling requirements” per 40 CFR 86.132-96, up to and including the completion of the hot start exhaust test. (b) The preconditioning procedure prescribed at 40 CFR 86.132-96... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Vehicle preconditioning. 80.52...

  19. 40 CFR 80.52 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with the “General vehicle handling requirements” per 40 CFR 86.132-96, up to and including the completion of the hot start exhaust test. (b) The preconditioning procedure prescribed at 40 CFR 86.132-96... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Vehicle preconditioning. 80.52...

  20. 40 CFR 80.52 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with the “General vehicle handling requirements” per 40 CFR 86.132-96, up to and including the completion of the hot start exhaust test. (b) The preconditioning procedure prescribed at 40 CFR 86.132-96... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Vehicle preconditioning. 80.52...

  1. 40 CFR 1065.518 - Engine preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Engine preconditioning. 1065.518 Section 1065.518 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.518 Engine preconditioning. (a) This section applies...

  2. Adaptation of the heart to ischemia by preconditioning: effects on energy equilibrium, properties of sarcolemmal ATPases and release of cardioprotective proteins.

    PubMed

    Ziegelhöffer, A; Vrbjar, N; Styk, J; Breier, A; Dzurba, A; Ravingerová, T

    Ischemic preconditioning of the heart is referred as a manifest increase in tolerance of the myocardium to otherwise damaging ischemic insult, achieved by one or few consequent initial short exposures to ischemia, each followed by reperfusion of the ischemic area. Several mechanisms such as opening of collateral vessels, the action of catecholamines, inositol phosphates, G-proteins and/or adenosine; inhibition of mitochondrial ATPase, the effects of different endogenous protective substances like heat stress or shock proteins, etc., are believed to cooperate in the mechanism of induction of preconditioning or in maintaining its effect. The present study is an attempt to extend the present knowledge about preconditioning from two aspects: i.) the peculiarities of energy equilibrium in preconditioned myocardium including adaptation of cardiac sarcolemmal ATPases to ischemia and/or hypoxia, and ii) participation of a new endogenous cardioprotective substance in the mechanism of preconditioning. The energy equilibrium in preconditioning is characterized by adaptation of cardiac energy demands to the capacity of energy production and delivery decreased by anaerobiosis and is manifested by constant ratios between ATP, ADP, AMP and the sum of ADN. Principles are proposed that may enable a prediction and mathematical modelling of the balanced energetic state in the preconditioned myocardium. These principles are based on thermodynamics and involve besides others a more economic handling of ATP by sarcolemmal ATPases. The latter enzymes adapt themselves to lowered availability of ATP by decreasing besides their Vmax also their values of Km (increase in the affinity) for ATP and some of them even adjust their activation energy (the anaerobiosis-induced elevation of Ea.t. is missing).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7494541

  3. Dynamic clustering of IP3 receptors by IP3.

    PubMed

    Rahman, Taufiq

    2012-04-01

    The versatility of Ca2+ as an intracellular messenger stems largely from the impressive, but complex, spatiotemporal organization of the Ca2+ signals. For example, the latter when initiated by IP3 (inositol 1,4,5-trisphosphate) in many cells manifest hierarchical recruitment of elementary Ca2+ release events ('blips' and then 'puffs') en route to global regenerative Ca2+ waves as the cellular IP3 concentration rises. The spacing of IP3Rs (IP3 receptors) and their regulation by Ca2+ are key determinants of these spatially organized Ca2+ signals, but neither is adequately understood. IP3Rs have been proposed to be pre-assembled into clusters, but their composition, geometry and whether clustering affects IP3R behaviour are unknown. Using patch-clamp recording from the outer nuclear envelope of DT40 cells expressing rat IP3R1 or IP3R3, we have recently shown that low concentrations of IP3 cause IP3Rs to aggregate rapidly and reversibly into small clusters of approximately four IP3Rs. At resting cytosolic Ca2+ concentrations, clustered IP3Rs open independently, but with lower open probability, shorter open duration and lesser IP3-sensitivity than lone IP3Rs. This inhibitory influence of clustering on IP3R is reversed when the [Ca2+]i (cytosolic free Ca2+ concentration) increases. The gating of clustered IP3Rs exposed to increased [Ca2+]i is coupled: they are more likely to open and close together, and their simultaneous openings are prolonged. Dynamic clustering of IP3Rs by IP3 thus exposes them to local Ca2+ rises and increases their propensity for a CICR (Ca2+-induced Ca2+ rise), thereby facilitating hierarchical recruitment of the elementary events that underlie all IP3-evoked Ca2+ signals. PMID:22435806

  4. Preconditioning strategies to enhance physical performance on the day of competition.

    PubMed

    Kilduff, Liam P; Finn, Charlotte V; Baker, Julien S; Cook, Christian J; West, Daniel J

    2013-11-01

    Sports scientists and strength and conditioning professionals spend the majority of the competition season trying to ensure that their athletes' training and recovery strategies are appropriate to ensure optimal performance on competition day. However, there is an additional window on the day of competition where performance can be acutely enhanced with a number of preconditioning strategies. These strategies include appropriately designed warm-up, passive heat maintenance, postactivation potentiation, remote ischemic preconditioning, and, more recently, prior exercise and hormonal priming. The aim of this review was to explore the potential practical use of these strategies and propose a theoretical timeline outlining how they may be incorporated into athlete's precompetition routine to enhance performance. For the purpose of this review the discussion is confined to strategies that may enhance performance of short-duration, high-intensity sports (eg, sprinting, jumping, throwing). PMID:23689163

  5. Activation of inositol 1,4,5-trisphosphate receptors during preconditioning low-frequency stimulation suppresses subsequent induction of long-term potentiation in hippocampal CA1 neurons.

    PubMed

    Yamazaki, Y; Fujii, S; Goto, J-I; Fujiwara, H; Mikoshiba, K

    2015-12-17

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated during preconditioning low-frequency stimulation (LFS) in the subsequent high-frequency stimulation (HFS)-induced induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential (EPSP) or the population spike (PS) by delivery of HFS (a tetanus of 100 pulses at 100 Hz) to the Schaffer collateral-commissural pathway to CA1 neuron synapses was suppressed when the CA1 synapses were preconditioned by LFS of 1000 pulses at 1 Hz. This effect was inhibited when the preconditioning LFS was applied in the presence of an N-methyl-D-aspartate receptors (NMDARs) antagonist, a metabotropic glutamate receptor (mGluR) antagonist, IP3R antagonist, a calmodulin-dependent kinase II inhibitor or a calcineurin inhibitor. Furthermore, blockade of group I mGluRs immediately before the delivery of HFS blocked the inhibitory effect of the preconditioning LFS on subsequent induction of LTP by HFS. These results suggest that, in hippocampal CA1 neuron synapses, co-activation of NMDARs and IP3Rs during a preconditioning LFS results in both phosphorylation and dephosphorylation events that lead to prolonged activation of group I mGluRs that is responsible for the failure of LTP induction. PMID:26500182

  6. (S)-ZJM-289 preconditioning induces a late phase protection against nervous injury induced by transient cerebral ischemia and oxygen-glucose deprivation.

    PubMed

    Zhang, Chao; Zhang, Zhenzhen; Zhao, Qian; Wang, Xuliang; Ji, Hui; Zhang, Yihua

    2014-07-01

    (S)-ZJM-289, a novel nitric oxide (NO)-releasing derivative of 3-n-butylphthalide, induces the neuroprotection in a rat model of focal cerebral ischemia/reperfusion (I/R). However, much is unknown about the late phase effect in the neuroprotection of (S)-ZJM-289 preconditioning. The purpose of this study is to explore the late phase neuroprotection of (S)-ZJM-289 preconditioning, as well as underlying mechanisms involved. Preconditioning with 40-160 mg/kg, (S)-ZJM-289 significantly reduces brain damage after I/R. (S)-ZJM-289 preconditioning is effective when applied 1-3 days before I/R. Moreover, the degrees of neuroprotection offered by (S)-ZJM-289 preconditioning and ischemic preconditioning are virtually identical. (S)-ZJM-289 preconditioning also protects primary cultured cortical neurons against oxygen-glucose deprivation and recovery-induced cytotoxicity in vitro. (S)-ZJM-289 preconditioning significantly increases the generation of NO, but has no effect on the nitric oxide synthase activities. Additionally, (S)-ZJM-289 preconditioning promotes the dissociation between nuclear-factor-E2-related factor (Nrf2) and kelch-like ECH-associated protein 1, and induces Nrf2 nuclear localization. The neuroprotection of (S)-ZJM-289 preconditioning is blocked by Nrf2-siRNA in vitro. (S)-ZJM-289 preconditioning up-regulates antioxidant enzymes against nervous injury. (S)-ZJM-289 preconditioning significantly activates extracellular regulated protein kinases (ERK) and inhibits c-Jun N-terminal kinases signaling cascade. The neuroprotection is abolished by the ERK inhibitor PD98059 in vitro. Subsequently, (S)-ZJM-289 preconditioning increases the levels of anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and inhibited the translocation of Bcl-2 associated X to the mitochondria, thus attenuating the release of cytochrome c from the mitochondria and the activation of downstream caspase. These results suggest that (S)-ZJM-289 preconditioning exerts the late phase protection against nervous injury induced by transient cerebral ischemia and oxygen-glucose deprivation. PMID:24277159

  7. IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver.

    PubMed

    Liu, Dong; Liu, Xing; Zhou, Ti; Yao, William; Zhao, Jun; Zheng, Zhigang; Jiang, Wei; Wang, Fengsong; Aikhionbare, Felix O; Hill, Donald L; Emmett, Nerimah; Guo, Zhen; Wang, Dongmei; Yao, Xuebiao; Chen, Yong

    2016-04-01

    Endoplasmic reticulum (ER) stress is involved in ischemic preconditioning that protects various organs from ischemia/reperfusion (I/R) injury. We established an in vivo ER stress preconditioning model in which tunicamycin was injected into rats before hepatic I/R. The hepatic I/R injury, demonstrated by serum aminotransferase level and the ultra-structure of the liver, was alleviated by administration of tunicamycin, which induced ER stress in rat liver by activating inositol-requiring enzyme 1 (IRE1) and upregulating 78 kDa glucose-regulated protein (GRP78). The proteomic identification for IRE1 binders revealed interaction and cooperation among receptor for activated C kinase 1 (RACK1), phosphorylated AMPK, and IRE1 under ER stress conditions in a spatiotemporal manner. Furthermore, in vitro ER stress preconditioning was induced by thapsigargin and tunicamycin in L02 and HepG2 cells. Surprisingly, BCL2 was found to be phosphorylated by IRE1 under ER stress conditions to prevent apoptotic process by activation of autophagy. In conclusion, ER stress preconditioning protects against hepatic I/R injury, which is orchestrated by IRE1-RACK1 axis through the activation of BCL2. Our findings provide novel insights into the molecular pathways underlying ER stress preconditioning-elicited cytoprotective effect against hepatic I/R injury. PMID:26711306

  8. Preconditioned characteristic boundary conditions for solution of the preconditioned Euler equations at low Mach number flows

    NASA Astrophysics Data System (ADS)

    Hejranfar, Kazem; Kamali-Moghadam, Ramin

    2012-06-01

    Preconditioned characteristic boundary conditions (BCs) are implemented at artificial boundaries for the solution of the two- and three-dimensional preconditioned Euler equations at low Mach number flows. The preconditioned compatibility equations and the corresponding characteristic variables (or the Riemann invariants) based on the characteristic forms of preconditioned Euler equations are mathematically derived for three preconditioners proposed by Eriksson, Choi and Merkle, and Turkel. A cell-centered finite volume Roe's method is used for the discretization of the preconditioned system of equations on unstructured meshes. The accuracy and performance of the preconditioned characteristic BCs applied at artificial boundaries are evaluated in comparison with the non-preconditioned characteristic BCs and the simplified BCs in computing steady low Mach number flows. The two-dimensional flow over the NACA0012 airfoil and three-dimensional flow over the hemispherical headform are computed and the results are obtained for different conditions and compared with the available numerical and experimental data. The sensitivity of the solution to the size of computational domain and the variation of the angle of attack for each type of BCs is also examined. Indications are that the preconditioned characteristic BCs implemented in the preconditioned system of Euler equations greatly enhance the convergence rate of the solution of low Mach number flows compared to the other two types of BCs.

  9. Histone Acetylation and CREB Binding Protein Are Required for Neuronal Resistance against Ischemic Injury

    PubMed Central

    Yildirim, Ferah; Ji, Shengbo; Kronenberg, Golo; Barco, Angel; Olivares, Roman; Benito, Eva; Dirnagl, Ulrich; Gertz, Karen; Endres, Matthias

    2014-01-01

    Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT) and deacetylase activities (HDAC). Inhibition of HDAC activity provides neuroprotection, indicating that the outcome of cerebral ischemia depends crucially on the acetylation status of histones. In the present study, we characterized the changes in histone acetylation levels in ischemia models of focal cerebral ischemia and identified cAMP-response element binding protein (CREB)–binding protein (CBP) as a crucial factor in the susceptibility of neurons to ischemic stress. Both neuron-specific RNA interference and neurons derived from CBP heterozygous knockout mice showed increased damage after oxygen-glucose deprivation (OGD) in vitro. Furthermore, we demonstrated that ischemic preconditioning by a short (5 min) subthreshold occlusion of the middle cerebral artery (MCA), followed 24 h afterwards by a 30 min occlusion of the MCA, increased histone acetylation levels in vivo. Ischemic preconditioning enhanced CBP recruitment and histone acetylation at the promoter of the neuroprotective gene gelsolin leading to increased gelsolin expression in neurons. Inhibition of CBP's HAT activity attenuated neuronal ischemic preconditioning. Taken together, our findings suggest that the levels of CBP and histone acetylation determine stroke outcome and are crucially associated with the induction of an ischemia-resistant state in neurons. PMID:24748101

  10. Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury.

    PubMed

    Yildirim, Ferah; Ji, Shengbo; Kronenberg, Golo; Barco, Angel; Olivares, Roman; Benito, Eva; Dirnagl, Ulrich; Gertz, Karen; Endres, Matthias; Harms, Christoph; Meisel, Andreas

    2014-01-01

    Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT) and deacetylase activities (HDAC). Inhibition of HDAC activity provides neuroprotection, indicating that the outcome of cerebral ischemia depends crucially on the acetylation status of histones. In the present study, we characterized the changes in histone acetylation levels in ischemia models of focal cerebral ischemia and identified cAMP-response element binding protein (CREB)-binding protein (CBP) as a crucial factor in the susceptibility of neurons to ischemic stress. Both neuron-specific RNA interference and neurons derived from CBP heterozygous knockout mice showed increased damage after oxygen-glucose deprivation (OGD) in vitro. Furthermore, we demonstrated that ischemic preconditioning by a short (5 min) subthreshold occlusion of the middle cerebral artery (MCA), followed 24 h afterwards by a 30 min occlusion of the MCA, increased histone acetylation levels in vivo. Ischemic preconditioning enhanced CBP recruitment and histone acetylation at the promoter of the neuroprotective gene gelsolin leading to increased gelsolin expression in neurons. Inhibition of CBP's HAT activity attenuated neuronal ischemic preconditioning. Taken together, our findings suggest that the levels of CBP and histone acetylation determine stroke outcome and are crucially associated with the induction of an ischemia-resistant state in neurons. PMID:24748101

  11. [Hypoxic-ischemic syndrome

    PubMed

    Procianoy, R S; Silveira, R C

    2001-07-01

    OBJECTIVE: To review the literature on the hypoxic-ischemic syndrome, emphasizing its physiopathology, clinical manifestations, and treatment. SOURCES: Electronic search in the Medline and LILACS databases, with selection of the most relevant articles. SUMMARY OF THE FINDINGS: The hypoxic-ischemic syndrome is a multisystem disease with generalized manifestations. The physiopathology is based on hypoxic-ischemic brain injury and reperfusion with cellular injury caused by failure of ATP production secondary to ischemia, and overproduction of oxidative substances caused by reperfusion. Neurological, cardiovascular, respiratory, metabolic, gastrointestinal, renal, and hematological manifestations are frequent. Multisystem clinical management is complex; the neuroprotective approach is still experimental; and the prognosis is not good for those patients with severe hypoxic-ischemic encephalopathy. CONCLUSIONS: The management of the hypoxic-ischemic syndrome is a great challenge to pediatricians., since treatment requires multisystem intervention. PMID:14676894

  12. REMOTE ISCHEMIC CONDITIONING INFLUENCES MITOCHONDRIAL DYNAMICS.

    PubMed

    Cellier, Laura; Tamareille, Sophie; Kalakech, Hussein; Guillou, Sophie; Lenaers, Guy; Prunier, Fabrice; Mirebeau-Prunier, Delphine

    2016-02-01

    Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy to protect the heart against ischemia-reperfusion (I/R) injury. The mechanisms by which remote ischemic conditioning (RIC) is protective are to date unknown, yet a well-accepted theory holds that the mitochondria play a central role. Mitochondria are dynamic organelles that undergo fusion and fission. Interventions that decrease mitochondrial fission or increase mitochondrial fusion have been associated with reduced I/R injury. However, whether RIPC influences mitochondrial dynamics or not has yet to be ascertained.We sought to determine the role played by mitochondrial dynamics in RIPC-induced cardioprotection. Male adult rats exposed in vivo to myocardial I/R were assigned to one of two groups, either undergoing 40 min of myocardial ischemia followed by 120 min of reperfusion (MI group) or four 5-min cycles of limb ischemia interspersed by 5 min of limb reperfusion, immediately prior to myocardial ischemia and 120 min of reperfusion (MI+RIPC group). After reperfusion, infarct size was assessed and myocardial tissue was analyzed by Western blot and electron microscopy. RIPC induced smaller infarct size (-28%), increased mitochondrial fusion protein OPA1, and preserved mitochondrial morphology. These findings suggest that mitochondrial dynamics play a role in the mechanisms of RIPC-induced cardioprotection. PMID:26555744

  13. CANOPEN Controller IP Core

    NASA Astrophysics Data System (ADS)

    Caramia, Maurizio; Montagna, Mario; Furano, Gianluca; Winton, Alistair

    2010-08-01

    This paper will describe the activities performed by Thales Alenia Space Italia supported by the European Space Agency in the definition of a CAN bus interface to be used on Exomars. The final goal of this activity is the development of an IP core, to be used in a slave node, able to manage both the CAN bus Data Link and Application Layer totally in hardware. The activity has been focused on the needs of the EXOMARS mission where devices with different computational performances are all managed by the onboard computer through the CAN bus.

  14. Role of MicroRNAs in innate neuroprotection mechanisms due to preconditioning of the brain

    PubMed Central

    Jimenez-Mateos, Eva M.

    2015-01-01

    Insults to the brain that are sub-threshold for damage activate endogenous protective pathways, which can temporarily protect the brain against a subsequent harmful episode. This mechanism has been named as tolerance and its protective effects have been shown in experimental models of ischemia and epilepsy. The preconditioning-stimulus can be a short period of ischemia or mild seizures induced by low doses of convulsant drugs. Gene-array profiling has shown that both ischemic and epileptic tolerance feature large-scale gene down-regulation but the mechanism are unknown. MicroRNAs are a class of small non-coding RNAs of ~20–22 nucleotides length which regulate gene expression at a post-transcriptional level via mRNA degradation or inhibition of protein translation. MicroRNAs have been shown to be regulated after non-harmful and harmful stimuli in the brain and to contribute to neuroprotective mechanisms. This review focuses on the role of microRNAs in the development of tolerance following ischemic or epileptic preconditioning. PMID:25954143

  15. Mitochondrial Mechanisms in Cerebral Vascular Control: Shared Signaling Pathways with Preconditioning

    PubMed Central

    Busija, David W.; Katakam, Prasad V.

    2014-01-01

    Mitochondrial initiated events protect the neurovascular unit against lethal stresses via a process called preconditioning which independently promotes changes in cerebrovascular tone through shared signaling pathways. Activation of the adenosine triphosphate (ATP)-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels) is a specific and dependable way to induce protection of neurons, astroglia, and cerebral vascular endothelium. Through the opening of mitoKATP channels, mitochondrial depolarization leads to activation of protein kinases and transient increases in cytosolic calcium (Ca2+) levels that activate terminal mechanisms that protect the neurovascular unit against lethal stress. Release of reactive oxygen species (ROS) from mitochondria have similar protective effects. Signaling elements of the preconditioning pathways also are involved in the regulation of vascular tone. Activation of mitoKATP channels in cerebral arteries causes vasodilation, with cell-specific contributions from endothelium, vascular smooth muscle (VSM), and nerves. Pre-existing chronic conditions, such as insulin resistance (IR) and/or diabetes, prevent preconditioning and impair relaxation to mitochondrial centered responses in cerebral arteries. Surprisingly, mitochondrial activation after anoxic or ischemic stress appears to protect cerebral vascular endothelium and promotes the restoration of blood flow; therefore, mitochondria may represent an important, but underutilized target in attenuating vascular dysfunction and brain injury in stroke patients. PMID:24862206

  16. IP-10 in autoimmune thyroiditis.

    PubMed

    Ruffilli, I; Ferrari, S M; Colaci, M; Ferri, C; Fallahi, P; Antonelli, A

    2014-08-01

    The interferon-γ-inducible protein 10 (IP-10) was initially identified as a chemokine that is induced by interferon (IFN)-γ. IP-10 exerts its function through binding to chemokine (C-X-C motif) receptor 3 (CXCR3). IP-10 and its receptor, CXCR3, appear to contribute to the pathogenesis of many autoimmune diseases, organ specific (such as type 1 diabetes, Graves' disease and ophthalmopathy), or systemic (such as systemic lupus erythematosus, mixed cryoglobulinemia, Sjogren syndrome, or systemic sclerosis). The secretion of IP-10 by (CD)4+, CD8+, and natural killer is dependent on IFN-γ. Under the influence of IFN-γ, IP-10 is secreted by thyrocytes. Determination of high level of IP-10 in peripheral fluids is therefore a marker of a T helper 1 orientated immune response. High levels of circulating IP-10, have been shown in patients with autoimmune thyroiditis (AT). Among patients with AT, IP-10 levels were significantly higher in those with a hypoechoic ultrasonographic pattern, which is a sign of a more severe lympho-monocytic infiltration, and in those with hypothyroidism. For these reasons, it has been postulated that IP-10 could be a marker of a stronger and more aggressive inflammatory response in the thyroid, subsequently leading to thyroid destruction and hypothyroidism. Further studies are needed to investigate whether IP-10 is a novel therapeutic target in AT. PMID:24977661

  17. Transient Ischemic Attack

    MedlinePlus

    A transient ischemic attack (TIA) is a stroke that comes and goes quickly. It happens when the blood supply to part of the brain stops briefly. ... surgery. NIH: National Institute of Neurological Disorders and Stroke

  18. Lubiprostone induced ischemic colitis

    PubMed Central

    Sherid, Muhammed; Sifuentes, Humberto; Samo, Salih; Deepak, Parakkal; Sridhar, Subbaramiah

    2013-01-01

    Ischemic colitis accounts for 6%-18% of the causes of acute lower gastrointestinal bleeding. It is often multifactorial and more commonly encountered in the elderly. Several medications have been implicated in the development of colonic ischemia. We report a case of a 54-year old woman who presented with a two-hour history of nausea, vomiting, abdominal pain, and bloody stool. The patient had recently used lubiprostone with close temporal relationship between the increase in the dose and her symptoms of rectal bleeding. The radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her condition improved without any serious complications after the cessation of lubiprostone. This is the first reported case of ischemic colitis with a clear relationship with lubiprostone (Naranjo score of 10). Clinical vigilance for ischemic colitis is recommended for patients receiving lubiprostone who are presenting with abdominal pain and rectal bleeding. PMID:23345954

  19. Preconditioning with levosimendan before implantation of left ventricular assist devices.

    PubMed

    Theiss, Hans D; Grabmaier, Ulrich; Kreissl, Nicole; Hagl, Christian; Steinbeck, Gerhard; Sodian, Ralf; Franz, Wolfgang-M; Kaczmarek, Ingo

    2014-03-01

    In this retrospective study, we investigated the impact of preconditioning of the right ventricle with the calcium sensitizer levosimendan immediately before left ventricular assist device (LVAD) implantation on outcome and survival. Nine consecutive LVAD patients (seven suffering from dilative cardiomyopathy and two from ischemic cardiomyopathy) with echocardiographic and invasive evidence of right heart insufficiency received levosimendan with 0.1 μg/kg body weight/min for 24 h before implantation of the assist device (seven HeartWare and two Jarvik 2000). Administration of levosimendan was safe and had not to be discontinued in any patient. We observed no relevant side effects. Twelve-month survival after implantation of the LVAD was 89% representing a superior outcome compared with the fifth INTERMACS registry data with 75% survival. Two temporary extracorporeal membrane-oxygenation implantations were necessary due to intraoperative right ventricular dysfunction. Only one patient died 5 weeks after LVAD implantation of multiorgan failure, five patients were successfully transplanted, and three patients underwent LVAD implantation for destination therapy. Levosimendan might improve clinical outcome and survival when used as pretreatment in patients with right heart insufficiency prior to LVAD implantation. However, we recommend a larger controlled trial in the future to confirm our preliminary results. PMID:24147881

  20. Preconditioning the Helmholtz Equation for Rigid Ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1998-01-01

    An innovative hyperbolic preconditioning technique is developed for the numerical solution of the Helmholtz equation which governs acoustic propagation in ducts. Two pseudo-time parameters are used to produce an explicit iterative finite difference scheme. This scheme eliminates the large matrix storage requirements normally associated with numerical solutions to the Helmholtz equation. The solution procedure is very fast when compared to other transient and steady methods. Optimization and an error analysis of the preconditioning factors are present. For validation, the method is applied to sound propagation in a 2D semi-infinite hard wall duct.

  1. Pharmacological Preconditioning of Mesenchymal Stem Cells with Trimetazidine (1-[2,3,4-Trimethoxybenzyl]piperazine) Protects Hypoxic Cells against Oxidative Stress and Enhances Recovery of Myocardial Function in Infarcted Heart through Bcl-2 Expression

    PubMed Central

    Wisel, Sheik; Khan, Mahmood; Kuppusamy, M. Lakshmi; Mohan, I. Krishna; Chacko, Simi M.; Rivera, Brian K.; Sun, Benjamin C.; Hideg, Kálmán; Kuppusamy, Periannan

    2009-01-01

    Stem cell transplantation is a possible therapeutic option to repair ischemic damage to the heart. However, it is faced with a number of challenges including the survival of the transplanted cells in the ischemic region. The present study was designed to use stem cells preconditioned with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine; TMZ), a widely used anti-ischemic drug for treating angina in cardiac patients, to increase the rate of their survival after transplantation. Bone marrow-derived rat mesenchymal stem cells (MSCs) were subjected to a simulated host tissue environment by culturing them under hypoxia (2% O2) and using hydrogen peroxide (H2O2) to induce oxidative stress. MSCs were preconditioned with 10 μM TMZ for 6 h followed by treatment with 100 μM H2O2 for 1 h and characterized for their cellular viability and metabolic activity. The preconditioned cells showed a significant protection against H2O2-induced loss of cellular viability, membrane damage, and oxygen metabolism accompanied by a significant increase in HIF-1α, survivin, phosphorylated Akt (pAkt), and Bcl-2 protein levels and Bcl-2 gene expression. The therapeutic efficacy of the TMZ-preconditioned MSCs was evaluated in an in vivo rat model of myocardial infarction induced by permanent ligation of left anterior descending coronary artery. A significant increase in the recovery of myocardial function and up-regulation of pAkt and Bcl-2 levels were observed in hearts transplanted with TMZ-preconditioned cells. This study clearly demonstrated the potential benefits of pharmacological preconditioning of MSCs with TMZ for stem cell therapy for repairing myocardial ischemic damage. PMID:19218529

  2. Combination of hyperhomocysteinemia and ischemic tolerance in experimental model of global ischemia in rats.

    PubMed

    Kovalska, M; Kovalska, L; Tothova, B; Mahmood, S; Adamkov, M; Lehotsky, J

    2015-12-01

    Epidemiological studies show positive relationship between mild-to-moderate hyperhomocysteinemia (hHcy) and the risk of cerebrovascular diseases. The study determines whether hyperhomocysteinemia (risk factor of brain ischemia) alone or in combination with the ischemic preconditioning (IPC) affects the ischemia-induced neurodegenerative changes and imbalance in MAPK/p-ERK1/2 and MAPK/p-p38 expression in the rat brains. hHcy was induced by subcutaneous administration of homocysteine (0.45 μmol/g body weight) twice a day at 8 h intervals for 14 days. Rats were preconditioned by 5 min ischemia and 2 days later, 15 min of global forebrain ischemia was induced by four vessel occlusion. We observed that hHcy alone significantly increased neurodegeneration by Fluoro-Jade C and TUNEL possitive cells in hippocampus as well as in cortex. We found elevated level of MAPK/p-ERK and decreased level of MAPK/p-p38 after pre-ischemic challenge by Western blot and fluorescent immunohistochemistry. In conclusion, preconditioning even if combined with hHcy could preserve the neuronal tissue from lethal ischemic effect. This study provides evidence for the interplay and tight integration between ERK and p38 MAPKs signalling mechanisms in response to the hHcy and also if in association with brain ischemia/IPC challenge in the rat brain. PMID:26769838

  3. Chemical Conditioning as an Approach to Ischemic Stroke Tolerance: Mitochondria as the Target

    PubMed Central

    Jin, Zhen; Wu, Jinzi; Yan, Liang-Jun

    2016-01-01

    It is well established that the brain can be prepared to resist or tolerate ischemic stroke injury, and mitochondrion is a major target for this tolerance. The preparation of ischemic stroke tolerance can be achieved by three major approaches: ischemic conditioning, hypoxic conditioning and chemical conditioning. In each conditioning approach, there are often two strategies that can be used to achieve the conditioning effects, namely preconditioning (Pre-C) and postconditioning (Post-C). In this review, we focus on chemical conditioning of mitochondrial proteins as targets for neuroprotection against ischemic stroke injury. Mitochondrial targets covered include complexes I, II, IV, the ATP-sensitive potassium channel (mitoKATP), adenine dinucleotide translocase (ANT) and the mitochondrial permeability transition pore (mPTP). While numerous mitochondrial proteins have not been evaluated in the context of chemical conditioning and ischemic stroke tolerance, the paradigms and approaches reviewed in this article should provide general guidelines on testing those mitochondrial components that have not been investigated. A deep understanding of mitochondria as the target of chemical conditioning for ischemic stroke tolerance should provide valuable insights into strategies for fighting ischemic stroke, a leading cause of death in the world. PMID:27005615

  4. Possible role of thromboxane A2 in remote hind limb preconditioning-induced cardioprotection.

    PubMed

    Sharma, Roohani; Randhawa, Puneet Kaur; Singh, Nirmal; Jaggi, Amteshwar Singh

    2016-01-01

    Remote hind limb preconditioning (RIPC) is a protective strategy in which short episodes of ischemia and reperfusion in a remote organ (hind limb) protects the target organ (heart) against sustained ischemic reperfusion injury. The present study was designed to investigate the possible role of thromboxane A2 in RIPC-induced cardioprotection in rats. Remote hind limb preconditioning was performed by four episodes of 5 min of inflation and 5 min of deflation of pressure cuff. Occlusion of the hind limb with blood pressure cuff is most feasible, non-invasive, clinically relevant, and safe method for inducing RIPC. Isolated rat hearts were perfused on Langendorff apparatus and were subjected to global ischemia for 30 min followed by 120-min reperfusion. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were measured in coronary effluent to assess the degree of myocardial injury. The extent of myocardial infarct size along with the functional parameters including left ventricular developed pressure (LVDP), dp/dtmax, and dp/dtmin were also measured. Ozagrel (thromboxane synthase inhibitor) and seratrodast (thromboxane A2 receptor antagonist) were employed as pharmacological modulators of thromboxane A2. Remote hind limb preconditioning significantly attenuated ischemia/reperfusion-induced myocardial injury and produced cardioprotective effects. However, administration of ozagrel and seratrodast completely abolished the cardioprotective effects of RIPC suggesting the key role of thromboxane A2 in RIPC-induced cardioprotection. It may be concluded that brief episodes of preconditioning ischemia and reperfusion activates the thromboxane synthase enzyme that produces thromboxane A2, which may elicit cardioprotection either involving humoral or neurogenic pathway. PMID:26531833

  5. Acceleration of TDP43 and FUS/TLS protein expressions in the preconditioned hippocampus following repeated transient ischemia.

    PubMed

    Sun, Miao; Yamashita, Toru; Shang, Jingwei; Liu, Ning; Deguchi, Kentaro; Liu, Wentao; Ikeda, Yoshio; Feng, Juan; Abe, Koji

    2014-01-01

    The 43-kDa transactivation response DNA binding protein (TDP43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), heat shock protein 70 (HSP70), and β-amyloid (Aβ) are induced and involved in cerebral ischemia, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD), but their relationships in ischemic tolerance have never been examined, although they could be involved in endogenous neuroprotection under ischemic preconditioning. In the present study, Mongolian gerbils were subjected to one or three incidents of basically nonlethal 2-min transient common carotid arteries occlusion (tCCAO). Hippocampal CA1 neurons were lost only in the 2-min three times group at 3 and 7 days, which then gradually recovered from 1 to 6 months. Inductions of TDP43 and FUS/TLS were accelerated from 3 months to 7 days or from 7 days to 1 day, respectively, after 2-min three times ischemia compared with once. The cytoplasmic stainings of TDP43 and FUS/TLS showed a further acceleration of the peaks from 1 months to 3 days or from 1 months to 7 days, respectively, after 2-min three times ischemia compared with once. In contrast, HSP70 was induced only at 7 days after 2-min tCCAO for three times, with no expression for Aβ. These data show that ischemic preconditioning offers a way to induce endogenous neuroprotection and neurogenesis in gerbils, with TDP43, FUS/TLS, and HSP70 involved in this function. PMID:24265138

  6. Revealing Preconditions for Trustful Collaboration in CSCL

    ERIC Educational Resources Information Center

    Gerdes, Anne

    2010-01-01

    This paper analyses preconditions for trust in virtual learning environments. The concept of trust is discussed with reference to cases reporting trust in cyberspace and through a philosophical clarification holding that trust in the form of self-surrender is a common characteristic of all human co-existence. In virtual learning environments,…

  7. Preconditioning and tolerance against cerebral ischaemia

    PubMed Central

    Dirnagl, Ulrich; Becker, Kyra; Meisel, Andreas

    2009-01-01

    Neuroprotection and brain repair in patients after acute brain damage are still major unfulfilled medical needs. Pharmacological treatments are either ineffective or confounded by adverse effects. Consequently, endogenous mechanisms by which the brain protects itself against noxious stimuli and recovers from damage are being studied. Research on preconditioning, also known as induced tolerance, over the past decade has resulted in various promising strategies for the treatment of patients with acute brain injury. Several of these strategies are being tested in randomised clinical trials. Additionally, research into preconditioning has led to the idea of prophylactically inducing protection in patients such as those undergoing brain surgery and those with transient ischaemic attack or subarachnoid haemorrhage who are at high risk of brain injury in the near future. In this Review, we focus on the clinical issues relating to preconditioning and tolerance in the brain; specifically, we discuss the clinical situations that might benefit from such procedures. We also discuss whether preconditioning and tolerance occur naturally in the brain and assess the most promising candidate strategies that are being investigated. PMID:19296922

  8. Revealing Preconditions for Trustful Collaboration in CSCL

    ERIC Educational Resources Information Center

    Gerdes, Anne

    2010-01-01

    This paper analyses preconditions for trust in virtual learning environments. The concept of trust is discussed with reference to cases reporting trust in cyberspace and through a philosophical clarification holding that trust in the form of self-surrender is a common characteristic of all human co-existence. In virtual learning environments,

  9. Identification of a major IP5 kinase in Cryptococcus neoformans confirms that PP-IP5/IP7, not IP6, is essential for virulence.

    PubMed

    Li, Cecilia; Lev, Sophie; Saiardi, Adolfo; Desmarini, Desmarini; Sorrell, Tania C; Djordjevic, Julianne T

    2016-01-01

    Fungal inositol polyphosphate (IP) kinases catalyse phosphorylation of IP3 to inositol pyrophosphate, PP-IP5/IP7, which is essential for virulence of Cryptococcus neoformans. Cryptococcal Kcs1 converts IP6 to PP-IP5/IP7, but the kinase converting IP5 to IP6 is unknown. Deletion of a putative IP5 kinase-encoding gene (IPK1) alone (ipk1Δ), and in combination with KCS1 (ipk1Δkcs1Δ), profoundly reduced virulence in mice. However, deletion of KCS1 and IPK1 had a greater impact on virulence attenuation than that of IPK1 alone. ipk1Δkcs1Δ and kcs1Δ lung burdens were also lower than those of ipk1Δ. Unlike ipk1Δ, ipk1Δkcs1Δ and kcs1Δ failed to disseminate to the brain. IP profiling confirmed Ipk1 as the major IP5 kinase in C. neoformans: ipk1Δ produced no IP6 or PP-IP5/IP7 and, in contrast to ipk1Δkcs1Δ, accumulated IP5 and its pyrophosphorylated PP-IP4 derivative. Kcs1 is therefore a dual specificity (IP5 and IP6) kinase producing PP-IP4 and PP-IP5/IP7. All mutants were similarly attenuated in virulence phenotypes including laccase, urease and growth under oxidative/nitrosative stress. Alternative carbon source utilisation was also reduced significantly in all mutants except ipk1Δ, suggesting that PP-IP4 partially compensates for absent PP-IP5/IP7 in ipk1Δ grown under this condition. In conclusion, PP-IP5/IP7, not IP6, is essential for fungal virulence. PMID:27033523

  10. Identification of a major IP5 kinase in Cryptococcus neoformans confirms that PP-IP5/IP7, not IP6, is essential for virulence

    PubMed Central

    Li, Cecilia; Lev, Sophie; Saiardi, Adolfo; Desmarini, Desmarini; Sorrell, Tania C.; Djordjevic, Julianne T.

    2016-01-01

    Fungal inositol polyphosphate (IP) kinases catalyse phosphorylation of IP3 to inositol pyrophosphate, PP-IP5/IP7, which is essential for virulence of Cryptococcus neoformans. Cryptococcal Kcs1 converts IP6 to PP-IP5/IP7, but the kinase converting IP5 to IP6 is unknown. Deletion of a putative IP5 kinase-encoding gene (IPK1) alone (ipk1Δ), and in combination with KCS1 (ipk1Δkcs1Δ), profoundly reduced virulence in mice. However, deletion of KCS1 and IPK1 had a greater impact on virulence attenuation than that of IPK1 alone. ipk1Δkcs1Δ and kcs1Δ lung burdens were also lower than those of ipk1Δ. Unlike ipk1Δ, ipk1Δkcs1Δ and kcs1Δ failed to disseminate to the brain. IP profiling confirmed Ipk1 as the major IP5 kinase in C. neoformans: ipk1Δ produced no IP6 or PP-IP5/IP7 and, in contrast to ipk1Δkcs1Δ, accumulated IP5 and its pyrophosphorylated PP-IP4 derivative. Kcs1 is therefore a dual specificity (IP5 and IP6) kinase producing PP-IP4 and PP-IP5/IP7. All mutants were similarly attenuated in virulence phenotypes including laccase, urease and growth under oxidative/nitrosative stress. Alternative carbon source utilisation was also reduced significantly in all mutants except ipk1Δ, suggesting that PP-IP4 partially compensates for absent PP-IP5/IP7 in ipk1Δ grown under this condition. In conclusion, PP-IP5/IP7, not IP6, is essential for fungal virulence. PMID:27033523

  11. DAB2IP in cancer

    PubMed Central

    Hsieh, Jer-Tsong; Gong, Jianping; Xie, Daxing

    2016-01-01

    DOC-2/DAB2 is a member of the disable gene family that features tumor-inhibiting activity. The DOC-2/DAB2 interactive protein, DAB2IP, is a new member of the Ras GTPase-activating protein family. It interacts directly with DAB2 and has distinct cellular functions such as modulating different signal cascades associated with cell proliferation, survival, apoptosis and metastasis. Recently, DAB2IP has been found significantly down regulated in multiple types of cancer. The aberrant alteration of DAB2IP in cancer is caused by a variety of mechanisms, including the aberrant promoter methylation, histone deacetylation, and others. Reduced expression of DAB2IP in neoplasm may indicate a poor prognosis of many malignant cancers. Moreover, DAB2IP stands for a promising direction for developing targeted therapies due to its capacity to inhibit tumor cell growth in vitro and in vivo. Here, we summarize the present understanding of the tumor suppressive role of DAB2IP in cancer progression; the mechanisms underlying the dysregulation of DAB2IP; the gene functional mechanism and the prospects of DAB2IP in the future cancer research. PMID:26658103

  12. Condition Number Estimation of Preconditioned Matrices

    PubMed Central

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331

  13. Ischemic ulcers - self-care

    MedlinePlus

    ... ischemic wounds. Other conditions that can cause ischemic wounds include: Diabetes Diseases that cause inflammation, such as lupus High blood pressure Kidney failure Lymphedema, which causes fluid to build up in the legs Smoking

  14. Management of Ischemic Colitis

    PubMed Central

    Washington, Christopher; Carmichael, Joseph C.

    2012-01-01

    Ischemic colitis is a commonly misunderstood clinical condition. Although the colon is the most common region of ischemia in the gastrointestinal tract, many surgeons have difficulty with diagnosis and treatment of ischemic colitis. The process can occur from either occlusive vascular disease or nonocclusive disease, and can be gangrenous or nongangrenous. Differentiating gangrenous from nongangrenous disease can be a difficult clinical challenge as both sets of patients generally present with abdominal pain and bloody diarrhea. Although the majority of patients have transient ischemia with nongangrenous colitis that can be successfully managed nonoperatively, prompt recognition and surgical intervention is critical in patients with gangrenous colitis. In this article, the diagnosis and treatment of ischemic colitis is reviewed with emphasis on a systematic, evidence-based approach to management. PMID:24294125

  15. Mitochondrial Dihydrolipoamide Dehydrogenase Is Upregulated in Response to Intermittent Hypoxic Preconditioning

    PubMed Central

    Li, Rongrong; Luo, Xiaoting; Wu, Jinzi; Thangthaeng, Nopporn; Jung, Marianna E.; Jing, Siqun; Li, Linya; Ellis, Dorette Z.; Liu, Li; Ding, Zhengnian; Forster, Michael J.; Yan, Liang-Jun

    2015-01-01

    Intermittent hypoxia preconditioning (IHP) has been shown to protect neurons against ischemic stroke injury. Studying how proteins respond to IHP may identify targets that can help fight stroke. The objective of the present study was to investigate whether mitochondrial dihydrolipoamide dehydrogenase (DLDH) would respond to IHP and if so, whether such a response could be linked to neuroprotection in ischemic stroke injury. To do this, we subjected male rats to IHP for 20 days and measured the content and activity of DLDH as well as the three α-keto acid dehydrogenase complexes that contain DLDH. We also measured mitochondrial electron transport chain enzyme activities. Results show that DLDH content was indeed upregulated by IHP and this upregulation did not alter the activities of the three α-keto acid dehydrogenase complexes. Results also show that the activities of the five mitochondrial complexes (I-V) were not altered either by IHP. To investigate whether IHP-induced DLDH upregulation is linked to neuroprotection against ischemic stroke injury, we subjected both DLDH deficient mouse and DLDH transgenic mouse to stroke surgery followed by measurement of brain infarction volume. Results indicate that while mouse deficient in DLDH had exacerbated brain injury after stroke, mouse overexpressing human DLDH also showed increased brain injury after stroke. Therefore, the physiological significance of IHP-induced DLDH upregulation remains to be further investigated. PMID:26078703

  16. Mitochondrial Dihydrolipoamide Dehydrogenase is Upregulated in Response to Intermittent Hypoxic Preconditioning.

    PubMed

    Li, Rongrong; Luo, Xiaoting; Wu, Jinzi; Thangthaeng, Nopporn; Jung, Marianna E; Jing, Siqun; Li, Linya; Ellis, Dorette Z; Liu, Li; Ding, Zhengnian; Forster, Michael J; Yan, Liang-Jun

    2015-01-01

    Intermittent hypoxia preconditioning (IHP) has been shown to protect neurons against ischemic stroke injury. Studying how proteins respond to IHP may identify targets that can help fight stroke. The objective of the present study was to investigate whether mitochondrial dihydrolipoamide dehydrogenase (DLDH) would respond to IHP and if so, whether such a response could be linked to neuroprotection in ischemic stroke injury. To do this, we subjected male rats to IHP for 20 days and measured the content and activity of DLDH as well as the three α-keto acid dehydrogenase complexes that contain DLDH. We also measured mitochondrial electron transport chain enzyme activities. Results show that DLDH content was indeed upregulated by IHP and this upregulation did not alter the activities of the three α-keto acid dehydrogenase complexes. Results also show that the activities of the five mitochondrial complexes (I-V) were not altered either by IHP. To investigate whether IHP-induced DLDH upregulation is linked to neuroprotection against ischemic stroke injury, we subjected both DLDH deficient mouse and DLDH transgenic mouse to stroke surgery followed by measurement of brain infarction volume. Results indicate that while mouse deficient in DLDH had exacerbated brain injury after stroke, mouse overexpressing human DLDH also showed increased brain injury after stroke. Therefore, the physiological significance of IHP-induced DLDH upregulation remains to be further investigated. PMID:26078703

  17. Ozone-Oxidative Preconditioning Prevents Doxorubicin-induced Cardiotoxicity in Sprague-Dawley Rats

    PubMed Central

    Delgado-Roche, Livan; Hernández-Matos, Yanet; Medina, Emilio A.; Morejón, Dalia Á.; González, Maité R.; Martínez-Sánchez, Gregorio

    2014-01-01

    Objectives: Induced dilated cardiomyopathy is the main limitation of the anti-cancer drug doxorubicin, which causes oxidative stress and cardiomyocyte death. As ozone therapy can activate the antioxidant systems, this study aimed to investigate the therapeutic efficacy of ozone-oxidative preconditioning against doxorubicin-induced cardiotoxicity. Methods: The study was carried out from September 2013 to January 2014. Sprague-Dawley rats were randomly distributed in the following treatment groups: Group 1 were treated with 2 mg/kg intraperitoneal (i.p.) of doxorubicin twice a week for 50 days; Group 2 were treated with 0.3 mg of ozone/oxygen mixture at 50 μg/mL of ozone per 6 mL of oxygen by rectal insufflation and then treated with doxorubicin; Group 3 were treated as Group 2 but only with the oxygen, and Group 4 were treated with oxygen first, and then with sodium chloride i.p. as the control group. Results: The results showed that ozone therapy preserved left ventricle morphology which was accompanied by a reduction of serum pro-brain natriuretic peptide levels. The cardioprotective effects of ozone-oxidative preconditioning were associated with a significant increase (P <0.05) of antioxidant enzymes activities and a reduction of lipid and protein oxidation (P <0.05). Conclusion: Ozone-oxidative preconditioning prevents doxorubicin-induced dilated cardiomyopathy through an increase of antioxidant enzymes and a reduction of oxidised macromolecules. This establishes the background for future studies to determine if ozone therapy can be used as a complementary treatment for attenuating doxorubicin-induced cardiotoxicity in cancer patients. PMID:25097769

  18. Imaging in ChIPS

    NASA Astrophysics Data System (ADS)

    Miller, J.; Burke, D.; Evans, I.; Evans, J. D.; McLaughlin, W.

    2011-07-01

    The Chandra Interactive Plotting System (ChIPS) included in CIAO now allows users to incorporate and manipulate images in their plots. ChIPS uses the Visualization Toolkit (VTK) as a back end to provide basic imaging support, which includes displaying images in pseudo color or RGBA true color, adjusting the translucency of images, and several ways to threshold images. Users also have the ability to enhance them with annotations and place curves and contours directly onto the image. ChIPS imaging support provides a mechanism to adjust the image display resolution as necessary to provide high quality publication ready output. Beyond basic imaging, ChIPS includes the ability to recognize and incorporate WCS metadata into plots. ChIPS accurately calculates the intersections of world coordinate grids and plot axes, ensuring that these elements distort correctly with a tangent plane projection. Multiple image overlays are handled by reprojecting the overlaid images onto the reference image's coordinate system. New zooming and panning functions, and existing limits commands, use the WCS information from the image overlays to update the axes to reflect the new field of view being displayed. Although ChIPS already provides a number of user interactive commands, additional interactive capabilities are being considered for future releases. Enhanced interactive interfaces alongside the ability to script ChIPS in Python provide a more capable and user-friendly system.

  19. A Hybrid Parallel Preconditioning Algorithm For CFD

    NASA Technical Reports Server (NTRS)

    Barth,Timothy J.; Tang, Wei-Pai; Kwak, Dochan (Technical Monitor)

    1995-01-01

    A new hybrid preconditioning algorithm will be presented which combines the favorable attributes of incomplete lower-upper (ILU) factorization with the favorable attributes of the approximate inverse method recently advocated by numerous researchers. The quality of the preconditioner is adjustable and can be increased at the cost of additional computation while at the same time the storage required is roughly constant and approximately equal to the storage required for the original matrix. In addition, the preconditioning algorithm suggests an efficient and natural parallel implementation with reduced communication. Sample calculations will be presented for the numerical solution of multi-dimensional advection-diffusion equations. The matrix solver has also been embedded into a Newton algorithm for solving the nonlinear Euler and Navier-Stokes equations governing compressible flow. The full paper will show numerous examples in CFD to demonstrate the efficiency and robustness of the method.

  20. Preconditioning Stem Cells for In Vivo Delivery

    PubMed Central

    Sart, Sbastien; Ma, Teng

    2014-01-01

    Abstract Stem cells have emerged as promising tools for the treatment of incurable neural and heart diseases and tissue damage. However, the survival of transplanted stem cells is reported to be low, reducing their therapeutic effects. The major causes of poor survival of stem cells in vivo are linked to anoikis, potential immune rejection, and oxidative damage mediating apoptosis. This review investigates novel methods and potential molecular mechanisms for stem cell preconditioning in vitro to increase their retention after transplantation in damaged tissues. Microenvironmental preconditioning (e.g., hypoxia, heat shock, and exposure to oxidative stress), aggregate formation, and hydrogel encapsulation have been revealed as promising strategies to reduce cell apoptosis in vivo while maintaining biological functions of the cells. Moreover, this review seeks to identify methods of optimizing cell dose preparation to enhance stem cell survival and therapeutic function after transplantation. PMID:25126478

  1. Proof of concept: pharmacological preconditioning with a Toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke

    PubMed Central

    Bahjat, Frances Rena; Williams-Karnesky, Rebecca L; Kohama, Steven G; West, G Alexander; Doyle, Kristian P; Spector, Maxwell D; Hobbs, Theodore R; Stenzel-Poore, Mary P

    2011-01-01

    Cerebral ischemic injury is a significant portion of the burden of disease in developed countries; rates of mortality are high and the costs associated with morbidity are enormous. Recent therapeutic approaches have aimed at mitigating the extent of damage and/or promoting repair once injury has occurred. Often, patients at high risk of ischemic injury can be identified in advance and targeted for antecedent neuroprotective therapy. Agents that stimulate the innate pattern recognition receptor, Toll-like receptor 9, have been shown to induce tolerance (precondition) to ischemic brain injury in a mouse model of stroke. Here, we demonstrate for the first time that pharmacological preconditioning against cerebrovascular ischemic injury is also possible in a nonhuman primate model of stroke in the rhesus macaque. The model of stroke used is a minimally invasive transient vascular occlusion, resulting in brain damage that is primarily localized to the cortex and as such, represents a model with substantial clinical relevance. Finally, K-type (also referred to as B-type) cytosine-guanine-rich DNA oligonucleotides, the class of agents employed in this study, are currently in use in human clinical trials, underscoring the feasibility of this treatment in patients at risk of cerebral ischemia. PMID:21285967

  2. M-step preconditioned conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Adams, L.

    1983-01-01

    Preconditioned conjugate gradient methods for solving sparse symmetric and positive finite systems of linear equations are described. Necessary and sufficient conditions are given for when these preconditioners can be used and an analysis of their effectiveness is given. Efficient computer implementations of these methods are discussed and results on the CYBER 203 and the Finite Element Machine under construction at NASA Langley Research Center are included.

  3. The macrophage mediates the renoprotective effects of endotoxin preconditioning.

    PubMed

    Hato, Takashi; Winfree, Seth; Kalakeche, Rabih; Dube, Shataakshi; Kumar, Rakesh; Yoshimoto, Momoko; Plotkin, Zoya; Dagher, Pierre C

    2015-06-01

    Preconditioning is a preventative approach, whereby minimized insults generate protection against subsequent larger exposures to the same or even different insults. In immune cells, endotoxin preconditioning downregulates the inflammatory response and yet, preserves the ability to contain infections. However, the protective mechanisms of preconditioning at the tissue level in organs such as the kidney remain poorly understood. Here, we show that endotoxin preconditioning confers renal epithelial protection in various models of sepsis in vivo. We also tested the hypothesis that this protection results from direct interactions between the preconditioning dose of endotoxin and the renal tubules. This hypothesis is on the basis of our previous findings that endotoxin toxicity to nonpreconditioned renal tubules was direct and independent of immune cells. Notably, we found that tubular protection after preconditioning has an absolute requirement for CD14-expressing myeloid cells and particularly, macrophages. Additionally, an intact macrophage CD14-TRIF signaling pathway was essential for tubular protection. The preconditioned state was characterized by increased macrophage number and trafficking within the kidney as well as clustering of macrophages around S1 proximal tubules. These macrophages exhibited increased M2 polarization and upregulation of redox and iron-handling molecules. In renal tubules, preconditioning prevented peroxisomal damage and abolished oxidative stress and injury to S2 and S3 tubules. In summary, these data suggest that macrophages are essential mediators of endotoxin preconditioning and required for renal tissue protection. Preconditioning is, therefore, an attractive model to investigate novel protective pathways for the prevention and treatment of sepsis. PMID:25398784

  4. On polynomial preconditioning for indefinite Hermitian matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1989-01-01

    The minimal residual method is studied combined with polynomial preconditioning for solving large linear systems (Ax = b) with indefinite Hermitian coefficient matrices (A). The standard approach for choosing the polynomial preconditioners leads to preconditioned systems which are positive definite. Here, a different strategy is studied which leaves the preconditioned coefficient matrix indefinite. More precisely, the polynomial preconditioner is designed to cluster the positive, resp. negative eigenvalues of A around 1, resp. around some negative constant. In particular, it is shown that such indefinite polynomial preconditioners can be obtained as the optimal solutions of a certain two parameter family of Chebyshev approximation problems. Some basic results are established for these approximation problems and a Remez type algorithm is sketched for their numerical solution. The problem of selecting the parameters such that the resulting indefinite polynomial preconditioners speeds up the convergence of minimal residual method optimally is also addressed. An approach is proposed based on the concept of asymptotic convergence factors. Finally, some numerical examples of indefinite polynomial preconditioners are given.

  5. Hypoxic-Ischemic Neonatal Encephalopathy: Animal Experiments for Neuroprotective Therapies

    PubMed Central

    Ikenoue, Tsuyomu

    2013-01-01

    Hypoxic-ischemic neonatal encephalopathy and ensuing brain damage is still an important problem in modern perinatal medicine. In this paper, we would like to share some of the results of our recent studies on neuroprotective therapies in animal experiments, as well as some literature reviews. From the basic animal studies, we have now obtained some possible candidates for therapeutic measures against hypoxic-ischemic neonatal encephalopathy. For example, they are hypothermia, rehabilitation, free radical scavenger, neurotrophic factors and growth factors, steroid, calcium channel blocker, vagal stimulation, some anti apoptotic agents, pre- and post conditioning, antioxidants, cell therapy with stem cells, modulators of K(+)-ATP channels, and so on. Whether combination of these therapies may be more beneficial than any single therapy needs to be clarified. Hypoxia-ischemia is a complicated condition, in which the cause, severity, and time-course are different in each case. Likewise, each fetus has its own inherent potentials such as adaptation, preconditioning-tolerance, and intolerance. Therefore, further extensive studies are required to establish an individualized strategy for neuroprotection against perinatal hypoxic-ischemic insult. PMID:23533962

  6. The Protective Effect of Remote Renal Preconditioning Against Hippocampal Ischemia Reperfusion Injury: Role of KATP Channels.

    PubMed

    Mehrjerdi, Fatemeh Zare; Aboutaleb, Nahid; Pazoki-Toroudi, Hamidreza; Soleimani, Mansoureh; Ajami, Marjan; Khaksari, Mehdi; Safari, Fatemeh; Habibey, Rouhollah

    2015-12-01

    Remote ischemic preconditioning (RIPC), which consists of several brief ischemia/reperfusion applied at the remote site of lethal ischemia reperfusion, can, through activating different mechanisms, increase the ability of the body's endogenous protection against prolonged ischemia/reperfusion. Recent studies have shown that RIPC has neuroprotective effects, but its mechanisms are not well elucidated. The present study aimed to determine whether activation of KATP channels in remote renal preconditioning decreases hippocampus damage induced by global cerebral ischemia. RIPC was induced by ischemia of the left renal artery (IPC); 24 h later, global cerebral ischemia reperfusion (IR) was induced by common carotid arteries occlusion. 5hydroxydecanoate (5HD) and glibenclamide (Gli) were injected before of IPC. The levels of malondialdehyde (MDA) and catalase (CAT) activity were assessed in hippocampus. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) was assessed to detect apoptotic cells in hippocampus. RIPC inhibited apoptosis by decreasing positive TUNEL cells (P < 0.05). KATP channels blocking with 5HD and Gli markedly increased apoptosis in hippocampal cells in RIPC group (P < 0.001). RIPC decreased MDA level and increased CAT activity in ischemic hippocampus (P < 0.01). Also, 5HD and Gli inhibited the effect of RIPC on MDA level and CAT activity (P < 0.05). The present study shows that RIPC can effectively attenuate programmed cell death, increase activity of CAT, and reduce MDA levels. Blocking of KATP channels inhibited the protective effects of RIPC. PMID:26254913

  7. Matrix preconditioning: a robust operation for optical linear algebra processors.

    PubMed

    Ghosh, A; Paparao, P

    1987-07-15

    Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system. PMID:20489953

  8. Approximate polynomial preconditioning applied to biharmonic equations on vector supercomputers

    NASA Technical Reports Server (NTRS)

    Wong, Yau Shu; Jiang, Hong

    1987-01-01

    Applying a finite difference approximation to a biharmonic equation results in a very ill-conditioned system of equations. This paper examines the conjugate gradient method used in conjunction with the generalized and approximate polynomial preconditionings for solving such linear systems. An approximate polynomial preconditioning is introduced, and is shown to be more efficient than the generalized polynomial preconditionings. This new technique provides a simple but effective preconditioning polynomial, which is based on another coefficient matrix rather than the original matrix operator as commonly used.

  9. Preconditioning and the limit to the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.; Fiterman, A.; Vanleer, B.

    1993-01-01

    The use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations are considered. The relation between them for both the continuous problem and the finite difference approximation is also considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Hence, the steady state of the preconditioned system is the same as the steady state of the original system. For finite difference methods the preconditioning can change and improve the steady state solutions. An application to flow around an airfoil is presented.

  10. Running TCP/IP over ATM Networks.

    ERIC Educational Resources Information Center

    Witt, Michael

    1995-01-01

    Discusses Internet protocol (IP) and subnets and describes how IP may operate over asynchronous transfer mode (ATM). Topics include TCP (transmission control protocol), ATM cells and adaptation layers, a basic architectural model for IP over ATM, address resolution, mapping IP to a subnet technology, and connection management strategy. (LRW)

  11. Effects of morphine and sufentanil preconditioning against myocardial ischemic-reperfusion injury in rabbits

    PubMed Central

    Wang, Xiu-Hong; Zeng, Jian-Feng; Lin, Chao; Chen, Shi-Biao

    2015-01-01

    Objective: This study aims to explore the treatment method of myocardial ischemia-reperfusion injury. Methods: Myocardial Ischemia-reperfusion rabbit model was established in this study. They were divided into four groups: sham operation (S) group, IRI control (I/R) group and IRI with morphine (MF) group and sufentanil (SF). Myocardial infarct size was compared with HE staining method. TUNEL assay was used to detect cell apoptosis. Results: Myocardial infarct size of control group and morphine and sufetanil group was 36.0±3.6, 23.0±1.2 and 27.1±2.3, respectively. There were significant differences between them (P < 0.01). Apoptotic index of I/R, MF and SF groups was 26.9±2.2, 12.5±2.3, 15.8±2.0, with statistical significance (P < 0.05). The concentration of CK-MB in serum: there were no significant differences of CK-MB between each group at baseline. The concentration of CK-MB after reperfusion were higher than that of baseline, except for group S (P < 0.05); Compared with group S, after reperfusion, the CK-MB of other three groups were higher (P < 0.05); The concentration of CK-MB in group MF and SF were lower than group I/R (P < 0.05); In contrast to group MF, the concentration of CK-MB after reperfusion was higher in group SF (P < 0.05). Conclusion: Morphine and sufentanil can specifically protect the myocardial function. PMID:26629064

  12. iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis

    PubMed Central

    Kito, Tetsutaro; Shibata, Rei; Ishii, Masakazu; Suzuki, Hirohiko; Himeno, Tatsuhito; Kataoka, Yoshiyuki; Yamamura, Yumiko; Yamamoto, Takashi; Nishio, Naomi; Ito, Sachiko; Numaguchi, Yasushi; Tanigawa, Tohru; Yamashita, Jun K.; Ouchi, Noriyuki; Honda, Hiroyuki; Isobe, Kenichi; Murohara, Toyoaki

    2013-01-01

    Angiogenic cell therapy represents a novel strategy for ischemic diseases, but some patients show poor responses. We investigated the therapeutic potential of an induced pluripotent stem (iPS) cell sheet created by a novel magnetite tissue engineering technology (Mag-TE) for reparative angiogenesis. Mouse iPS cell-derived Flk-1+ cells were incubated with magnetic nanoparticle-containing liposomes (MCLs). MCL-labeled Flk-1+ cells were mixed with diluted extracellular matrix (ECM) precursor and a magnet was placed on the reverse side. Magnetized Flk-1+ cells formed multi-layered cell sheets according to magnetic force. Implantation of the Flk-1+ cell sheet accelerated revascularization of ischemic hindlimbs relative to the contralateral limbs in nude mice as measured by laser Doppler blood flow and capillary density analyses. The Flk-1+ cell sheet also increased the expressions of VEGF and bFGF in ischemic tissue. iPS cell-derived Flk-1+ cell sheets created by this novel Mag-TE method represent a promising new modality for therapeutic angiogenesis. PMID:23475393

  13. H(curl) Auxiliary Mesh Preconditioning

    SciTech Connect

    Kolev, T V; Pasciak, J E; Vassilevski, P S

    2006-08-31

    This paper analyzes a two-level preconditioning scheme for H(curl) bilinear forms. The scheme utilizes an auxiliary problem on a related mesh that is more amenable for constructing optimal order multigrid methods. More specifically, we analyze the case when the auxiliary mesh only approximately covers the original domain. The latter assumption is important since it allows for easy construction of nested multilevel spaces on regular auxiliary meshes. Numerical experiments in both two and three space dimensions illustrate the optimal performance of the method.

  14. Domain-decomposed preconditionings for transport operators

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Gropp, William D.; Keyes, David E.

    1991-01-01

    The performance was tested of five different interface preconditionings for domain decomposed convection diffusion problems, including a novel one known as the spectral probe, while varying mesh parameters, Reynolds number, ratio of subdomain diffusion coefficients, and domain aspect ratio. The preconditioners are representative of the range of practically computable possibilities that have appeared in the domain decomposition literature for the treatment of nonoverlapping subdomains. It is shown that through a large number of numerical examples that no single preconditioner can be considered uniformly superior or uniformly inferior to the rest, but that knowledge of particulars, including the shape and strength of the convection, is important in selecting among them in a given problem.

  15. The multigrid preconditioned conjugate gradient method

    NASA Technical Reports Server (NTRS)

    Tatebe, Osamu

    1993-01-01

    A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

  16. Protein Redox Modification as a Cellular Defense Mechanism against Tissue Ischemic Injury

    PubMed Central

    Yan, Liang-Jun

    2014-01-01

    Protein oxidative or redox modifications induced by reactive oxygen species (ROS) or reactive nitrogen species (RNS) not only can impair protein function, but also can regulate and expand protein function under a variety of stressful conditions. Protein oxidative modifications can generally be classified into two categories: irreversible oxidation and reversible oxidation. While irreversible oxidation usually leads to protein aggregation and degradation, reversible oxidation that usually occurs on protein cysteine residues can often serve as an “on and off” switch that regulates protein function and redox signaling pathways upon stress challenges. In the context of ischemic tolerance, including preconditioning and postconditioning, increasing evidence has indicated that reversible cysteine redox modifications such as S-sulfonation, S-nitrosylation, S-glutathionylation, and disulfide bond formation can serve as a cellular defense mechanism against tissue ischemic injury. In this review, I highlight evidence of cysteine redox modifications as protective measures in ischemic injury, demonstrating that protein redox modifications can serve as a therapeutic target for attenuating tissue ischemic injury. Prospectively, more oxidatively modified proteins will need to be identified that can play protective roles in tissue ischemic injury, in particular, when the oxidative modifications of such identified proteins can be enhanced by pharmacological agents or drugs that are available or to be developed. PMID:24883175

  17. Protection of the ischemic myocardium during the reperfusion: between hope and reality

    PubMed Central

    Bopassa, Jean Chrisostome

    2012-01-01

    The heart is an organ that requires an important energy input to ensure its contractile function. Myocardial ischemia happens when there is a deficiency of blood flow that is responsible for the passage from an aerobic to anaerobic metabolism. Myocardial ischemia results from an imbalance between inputs and the needs of nutrient and oxygen to the myocardium. The restoration of myocardial perfusion called reperfusion is a way to save the ischemic myocardium. However, although reperfusion is beneficial for the survival of the ischemic myocardium, it also induces a deleterious effect in addition to that of ischemic stress. Three decade ago, while several studies, strived to elucidate the protective effect of preconditioning, a phenomenon performed before ischemia and having a powerful protective effects against ischemia/reperfusion injury, very few have believed in the possibility of protecting the myocardium after ischemia (during reperfusion). Actually, both ischemic and pharmacological postconditioning as well as controlled reperfusion methods to protect the ischemic heart have proved effective in the reduction of damage related to ischemia/reperfusion. The possibility of protecting the myocardium during reperfusion opens a new area in the research against damage caused by ischemia/reperfusion because these methods are easily transferable in a clinic setting. PMID:22937492

  18. 40 CFR 1066.407 - Vehicle preparation and preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Prepare the vehicle for testing as described in 40 CFR 86.131. (b) If testing will include measurement of refueling emissions, perform the vehicle preconditioning steps as described in 40 CFR 86.153. Otherwise, perform the vehicle preconditioning steps as described in 40 CFR 86.132....

  19. A preconditioned formulation of the Cauchy-Riemann equations

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    A preconditioning of the Cauchy-Riemann equations which results in a second-order system is described. This system is shown to have a unique solution if the boundary conditions are chosen carefully. This choice of boundary condition enables the solution of the first-order system to be retrieved. A numerical solution of the preconditioned equations is obtained by the multigrid method.

  20. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Vehicle preconditioning. 86.532-78... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The...

  1. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Vehicle preconditioning. 86.532-78... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The...

  2. 40 CFR 86.1232-96 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Vehicle preconditioning. 86.1232-96... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Evaporative... Methanol-Fueled Heavy-Duty Vehicles § 86.1232-96 Vehicle preconditioning. (a) Fuel tank cap(s) of...

  3. 40 CFR 86.1232-96 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Vehicle preconditioning. 86.1232-96... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Evaporative... Methanol-Fueled Heavy-Duty Vehicles § 86.1232-96 Vehicle preconditioning. (a) Fuel tank cap(s) of...

  4. 40 CFR 86.532-78 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preconditioning. 86.532-78... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.532-78 Vehicle preconditioning. (a) The...

  5. 40 CFR 1066.407 - Vehicle preparation and preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Prepare the vehicle for testing as described in 40 CFR 86.131. (b) If testing will include measurement of refueling emissions, perform the vehicle preconditioning steps as described in 40 CFR 86.153. Otherwise, perform the vehicle preconditioning steps as described in 40 CFR 86.132....

  6. [STRESS AND INFARCT LIMITING EFFECTS OF EARLY HYPOXIC PRECONDITIONING].

    PubMed

    Lishmanov, Yu B; Maslov, L N; Sementsov, A S; Naryzhnaya, N V; Tsibulnikov, S Yu

    2015-09-01

    It was established that early hypoxic preconditioning is an adaptive state different from eustress and distress. Hypoxic preconditioning has the cross effects, increasing the tolerance of the heart to ischemia-reperfusion and providing antiulcerogenic effect during immobilization stress. PMID:26672158

  7. Continuously Connected With Mobile IP

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.

  8. Oxidative stress and ischemic injuries in heat stroke.

    PubMed

    Chang, Chen-Kuei; Chang, Ching-Ping; Liu, Shyun-Yeu; Lin, Mao-Tsun

    2007-01-01

    When rats were exposed to high environmental temperature (e.g., 42 or 43 degrees C), hyperthermia, hypotension, and cerebral ischemia and damage occurred during heat stroke were associated with increased production of free radicals (specifically hydroxyl radicals and superoxide anions), higher lipid peroxidation, lower enzymatic antioxidant defenses, and higher enzymatic pro-oxidants in the brain of heat stroke-affected rats. Pretreatment with conventional hydroxyl radical scavengers (e.g., mannitol or alpha-tocopherol) prevented increased production of hydroxyl radicals, increased levels of lipid peroxidation, and ischemic neuronal damage in different brain structures attenuated with heat stroke and increased subsequent survival time. Heat shock preconditioning (a mild sublethal heat exposure for 15min) or regular, daily exercise for at least 3 weeks, in addition to inducing overproduction of heat shock protein 72 in multiple organs including brain, significantly attenuated the heat stroke-induced hyperthermia, hypotension, cerebral ischemia and damage, and overproduction of hydroxyl radicals and lipid peroxidation. The precise function of heat shock protein 72 are unknown, but there is considerable evidence that these proteins are essential for survival at both normal and elevated temperatures. They also play a critical role in the development of thermotolerance and protection from oxidative damage associated with cerebral ischemia and energy depletion during heat stroke. In addition, Shengmai San or magnolol (Chinese herbal medicines) or hypervolemic hemodilution (produced by intravenous infusion of 10% human albumin) is effective for prevention and repair of ischemic and oxidative damage in the brain during heat stroke. Thus, it appears that heat shock protein 72 preconditioning induced by prior heat shock or regular exercise training, as well as pretreatment with Shengmai San or magnolol is able to prevent the oxidative damage during heat stroke. On the other hand, hypervolemic hemodilution, Shengmai San, or magnolol is able to treat the oxidative damage after heat stroke onset. PMID:17645935

  9. Preconditioning cortical lesions reduce the incidence of peri-infarct depolarizations during focal ischemia in the Spontaneously Hypertensive Rat: interaction with prior anesthesia and the impact of hyperglycemia.

    PubMed

    Zhao, Liang; Nowak, Thaddeus S

    2015-07-01

    The relationship between peri-infarct depolarizations (PIDs) and infarction was investigated in a model of preconditioning by cortical freeze lesions (cryogenic lesions, CL) in the Spontaneously Hypertensive Rat. Small (< 5 mm(3)) lesions produced 24 hours before permanent focal ischemia were protective, without impacting baseline cerebral blood flow (CBF) and metabolism. Prior CL reduced infarct volume, associated with improved penumbral CBF as previously showed for ischemic preconditioning. The brief initial procedure avoided sham effects on infarct volume after subsequent occlusion under brief anesthesia. However, under prolonged isoflurane anesthesia for perfusion monitoring both sham and CL rats showed reduced PID incidence relative to naive animals. This anesthesia effect could be eliminated by using α-chloralose during perfusion imaging. As an additional methodological concern, blood glucose was frequently elevated at the time of the second surgery, reflecting buprenorphine-induced pica and other undefined mechanisms. Even modest hyperglycemia (>10 mmol/L) reduced PID incidence. In normoglycemic animals CL preconditioning reduced PID number by 50%, demonstrating associated effects on PID incidence, penumbral perfusion, and infarct progression. Hyperglycemia suppressed PIDs without affecting the relationship between CBF and infarction. This suggests that the primary effect of preconditioning is to improve penumbral perfusion, which in turn impacts PID incidence and infarct size. PMID:25757750

  10. Hypoxic preconditioning: effect, mechanism and clinical implication (Part 1).

    PubMed

    Lu, Guo-wei; Shao, Guo

    2014-11-01

    Hypoxic preconditioning (HPC) refers to exposure of organisms, systems, organs, tissues or cells to moderate hypoxia/ischemia that is able to result in a resistance to subsequent severe hypoxia/ischemia in tissues and cells. The effects exerted by HPC are well documented. The original local in situ (LiHPC) is now broadened to remote ectopic organs-tissues (ReHPC) and extended crossly to cross pluripotential HPC(CpHPC) induced by a variety of stresses other than hypoxia/ischemia, including cancer, for example. We developed a unique animal model of repetitive autohypoxia in adult mice, and studied systematically on the effects and mechanisms of HPC on the model in our laboratory since the early 1960s. The tolerances to hypoxia and protection from injury increased significantly in this model. The adult mice behave like hypoxia-intolerant mammalian newborns and hypoxia-tolerant adult animals during their exposure to repetitive autohypoxia. The overall energy supply and demand decreased, the microorganization of the brain maintained and the spacial learning and memory ability improved but not impaired, the detrimental neurochemicals such as free radicals down-regulated and the beneficial neurochemicals such as adenosine(ADO) and antihypoxic gene(s)/factor(s) (AHGs/AHFs) up-regulated. Accordingly, we hypothesize that mechanisms for the tolerance/protective effects of HPC are fundamentally depending on energy saving and brain plasticity in particular. It is thought that these two major mechanisms are triggered by exposure to hypoxia/ischemia via oxygen sensing-transduction pathways and HIF-1 initiation cascades. We suggest that HPC is an intrinsic mechanism developed in biological evolution and is a novel potential strategy for fighting against hypoxia-ischemia and other stresses. Motivation of endogenous antihypoxic potential, activation of oxygen sensing--signal transduction systems and supplement of exogenous antihypoxic substances as well as development of HPC appliances and HPC medicines such as AHFs are encouraged based on our basic research on HPC. HPC may result in therapeutic augmentation of the endogenous cytoprotection in hypoxic-ischemic or suffering from other diseases' patients. Evolutionary consideration of HPC and clinical implications of HPC are both discussed to guide future research. The product of AHF is expected to be one of the most effective first aid medicines to rescue patients in critical condition. HPC is beginning to be used in surgery and is expected to be developed into a feasible adaptive medicine in the near future. PMID:26016357

  11. A fast, preconditioned conjugate gradient Toeplitz solver

    NASA Technical Reports Server (NTRS)

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  12. The preconditioning of major sudden stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Bancalá, S.; Krüger, K.; Giorgetta, M.

    2012-02-01

    The preconditioning of major sudden stratospheric warmings (SSWs) is investigated with two long time series using reanalysis (ERA-40) and model (MAECHAM5/MPI-OM) data. Applying planetary wave analysis, we distinguish between wavenumber-1 and wavenumber-2 major SSWs based on the wave activity of zonal wavenumbers 1 and 2 during the prewarming phase. For this analysis an objective criterion to identify and classify the preconditioning of major SSWs is developed. Major SSWs are found to occur with a frequency of six and seven events per decade in the reanalysis and in the model, respectively, thus highlighting the ability of MAECHAM5/MPI-OM to simulate the frequency of major SSWs realistically. However, from these events only one quarter are wavenumber-2 major warmings, representing a low (˜0.25) wavenumber-2 to wavenumber-1 major SSW ratio. Composite analyses for both data sets reveal that the two warming types have different dynamics; while wavenumber-1 major warmings are preceded only by an enhanced activity of the zonal wavenumber-1, wavenumber-2 events are either characterized by only the amplification of zonal wavenumber-2 or by both zonal wavenumber-1 and zonal wavenumber-2, albeit at different time intervals. The role of tropospheric blocking events influencing these two categories of major SSWs is evaluated in the next step. Here, the composite analyses of both reanalysis and model data reveal that blocking events in the Euro-Atlantic sector mostly lead to the development of wavenumber-1 major warmings. The blocking-wavenumber-2 major warming connection can only be statistical reliable analyzed with the model time series, demonstrating that blocking events in the Pacific region mostly precede wavenumber-2 major SSWs.

  13. OSI and TCP/IP

    NASA Technical Reports Server (NTRS)

    Randolph, Lynwood P.

    1994-01-01

    The Open Systems Interconnection Transmission Control Protocol/Internet Protocol (OSI TCP/IP) and the Government Open Systems Interconnection Profile (GOSIP) are compared and described in terms of Federal internetworking. The organization and functions of the Federal Internetworking Requirements Panel (FIRP) are discussed and the panel's conclusions and recommendations with respect to the standards and implementation of the National Information Infrastructure (NII) are presented.

  14. Making the case for IPS supported employment.

    PubMed

    Bond, Gary R; Drake, Robert E

    2014-01-01

    Individual Placement and Support (IPS) is an evidence-based practice for helping people with severe mental illness (SMI) gain competitive employment, yet those who could benefit often find it difficult to obtain IPS services. We summarize the evidence supporting the effectiveness of IPS and the benefits of working, discuss the barriers to implementing IPS in the U.S., and suggest policy changes that could expand its access. PMID:23161326

  15. Combinatorial Treatment with Apelin-13 Enhances the Therapeutic Efficacy of a Preconditioned Cell-Based Therapy for Peripheral Ischemia

    PubMed Central

    Samura, Makoto; Morikage, Noriyasu; Suehiro, Kotaro; Tanaka, Yuya; Nakamura, Tamami; Nishimoto, Arata; Ueno, Koji; Hosoyama, Tohru; Hamano, Kimikazu

    2016-01-01

    Hypoxic pretreatment of peripheral blood mononuclear cells (PBMNCs) enhances therapeutic angiogenesis in ischemic tissues after cell transplantation. However, newly formed vessels generated using this approach are immature and insufficient for promoting functional recovery from severe ischemia. In this study, we examined whether apelin-13, a regulator of vessel maturation, could be an effective promoter of therapeutic angiogenesis, following severe limb ischemia. Combinatorial treatment of hypoxic preconditioned PBMNCs with apelin-13 resulted in increased blood perfusion and vascular reactivity in ischemic mouse hindlimbs compared with a monotherapy comprising each factor. Apelin-13 upregulated expression of PDGF-BB and TGF-β1 in hypoxic PBMNCs, as well as that of PDGFR-β in vascular smooth muscle cells (VSMCs). Proliferation and migration of VSMCs treated with apelin-13 was accelerated in the presence of PDGF-BB. Interestingly, expression of an apelin receptor, APJ, in PBMNC was increased under hypoxia but not under normoxia. In addition, an in vitro angiogenesis assay using a co-culture model comprising mouse thoracic aorta, hypoxic PBMNCs, and apelin-13 demonstrated that combinatorial treatment recruited mural cells to sprouted vessel outgrowths from the aortic ring, thereby promoting neovessel maturation. Thus, combinatorial injection of hypoxic PBMNCs and apelin-13 could be an effective therapeutic strategy for patients with severe ischemic diseases. PMID:26763337

  16. Combinatorial Treatment with Apelin-13 Enhances the Therapeutic Efficacy of a Preconditioned Cell-Based Therapy for Peripheral Ischemia.

    PubMed

    Samura, Makoto; Morikage, Noriyasu; Suehiro, Kotaro; Tanaka, Yuya; Nakamura, Tamami; Nishimoto, Arata; Ueno, Koji; Hosoyama, Tohru; Hamano, Kimikazu

    2016-01-01

    Hypoxic pretreatment of peripheral blood mononuclear cells (PBMNCs) enhances therapeutic angiogenesis in ischemic tissues after cell transplantation. However, newly formed vessels generated using this approach are immature and insufficient for promoting functional recovery from severe ischemia. In this study, we examined whether apelin-13, a regulator of vessel maturation, could be an effective promoter of therapeutic angiogenesis, following severe limb ischemia. Combinatorial treatment of hypoxic preconditioned PBMNCs with apelin-13 resulted in increased blood perfusion and vascular reactivity in ischemic mouse hindlimbs compared with a monotherapy comprising each factor. Apelin-13 upregulated expression of PDGF-BB and TGF-β1 in hypoxic PBMNCs, as well as that of PDGFR-β in vascular smooth muscle cells (VSMCs). Proliferation and migration of VSMCs treated with apelin-13 was accelerated in the presence of PDGF-BB. Interestingly, expression of an apelin receptor, APJ, in PBMNC was increased under hypoxia but not under normoxia. In addition, an in vitro angiogenesis assay using a co-culture model comprising mouse thoracic aorta, hypoxic PBMNCs, and apelin-13 demonstrated that combinatorial treatment recruited mural cells to sprouted vessel outgrowths from the aortic ring, thereby promoting neovessel maturation. Thus, combinatorial injection of hypoxic PBMNCs and apelin-13 could be an effective therapeutic strategy for patients with severe ischemic diseases. PMID:26763337

  17. The Spacelab IPS Star Simulator

    NASA Astrophysics Data System (ADS)

    Wessling, Francis C., III

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the-loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 deg each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is two to eight visual magnitudes. The star size is less than 100 arcsec. The minimum star movement is less than 5 arcsec and the relative position accuracy is approximately 40 arcsec. The purpose of this paper is to describe the IPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  18. The Spacelab IPS Star Simulator

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III

    1993-01-01

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the-loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 deg each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is two to eight visual magnitudes. The star size is less than 100 arcsec. The minimum star movement is less than 5 arcsec and the relative position accuracy is approximately 40 arcsec. The purpose of this paper is to describe the IPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  19. Hyperbaric oxygen preconditioning protects rats against CNS oxygen toxicity.

    PubMed

    Arieli, Yehuda; Kotler, Doron; Eynan, Mirit; Hochman, Ayala

    2014-06-15

    We examined the hypothesis that repeated exposure to non-convulsive hyperbaric oxygen (HBO) as preconditioning provides protection against central nervous system oxygen toxicity (CNS-OT). Four groups of rats were used in the study. Rats in the control and the negative control (Ctl-) groups were kept in normobaric air. Two groups of rats were preconditioned to non-convulsive HBO at 202 kPa for 1h once every other day for a total of three sessions. Twenty-four hours after preconditioning, one of the preconditioned groups and the control rats were exposed to convulsive HBO at 608 kPa, and latency to CNS-OT was measured. Ctl- rats and the second preconditioned group (PrC-) were not subjected to convulsive HBO exposure. Tissues harvested from the hippocampus and frontal cortex were evaluated for enzymatic activity and nitrotyrosine levels. In the group exposed to convulsive oxygen at 608 kPa, latency to CNS-OT increased from 12.8 to 22.4 min following preconditioning. A significant decrease in the activity of glutathione reductase and glucose-6-phosphate dehydrogenase, and a significant increase in glutathione peroxidase activity, was observed in the hippocampus of preconditioned rats. Nitrotyrosine levels were significantly lower in the preconditioned animals, the highest level being observed in the control rats. In the cortex of the preconditioned rats, a significant increase was observed in glutathione S-transferase and glutathione peroxidase activity. Repeated exposure to non-convulsive HBO provides protection against CNS-OT. The protective mechanism involves alterations in the enzymatic activity of the antioxidant system and lower levels of peroxynitrite, mainly in the hippocampus. PMID:24675062

  20. Hypoxic preconditioning alleviates ethanol neurotoxicity: the involvement of autophagy.

    PubMed

    Wang, Haiping; Bower, Kimberly A; Frank, Jacqueline A; Xu, Mei; Luo, Jia

    2013-11-01

    Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. A sublethal preconditioning has been proposed as a neuroprotective strategy against several central nervous system neurodegenerative diseases. We have recently demonstrated that autophagy is a protective response to alleviate ethanol toxicity. A modest hypoxic preconditioning (1 % oxygen) did not cause neurotoxicity but induced autophagy (Tzeng et al. Free Radic Biol Med 49: 839-846, 2010). We, therefore, hypothesize that the modest hypoxic preconditioning may offer a protection against ethanol-induced neurotoxicity. We showed here that the modest hypoxic preconditioning (1 % oxygen) for 8 h significantly alleviated ethanol-induced death of SH-SY5Y neuroblastoma cells. Under the normoxia condition, cell viability in ethanol-exposed cultures (316 mg/dl for 48 h) was 49 ± 6 % of untreated controls; however, with hypoxic preconditioning, cell viability in the ethanol-exposed group increased to 78 ± 7 % of the controls (p < 0.05; n = 3). Bafilomycin A1, an inhibitor of autophagosome and lysosome fusion, blocked hypoxic preconditioning-mediated protection. Similarly, inhibition of autophagic initiation by wortmannin also eliminated hypoxic preconditioning-mediated protection. In contrast, activation of autophagy by rapamycin further enhanced neuroprotection caused by hypoxic preconditioning. Taken together, the results confirm that autophagy is a protective response against ethanol neurotoxicity and the modest hypoxic preconditioning can offer neuroprotection by activating autophagic pathways. PMID:23568540

  1. Remote Ischemic Conditioning

    PubMed Central

    Heusch, Gerd; Bøtker, Hans Erik; Przyklenk, Karin; Redington, Andrew; Yellon, Derek

    2014-01-01

    In remote ischemic conditioning (RIC) brief, reversible episodes of ischemia with reperfusion in one vascular bed, tissue or organ confer a global protective phenotype and render remote tissues and organs resistant to ischemia/reperfusion injury. The peripheral stimulus can be chemical, mechanical or electrical and involves activation of peripheral sensory nerves. The signal transfer to the heart or other organs is through neuronal and humoral communications. Protection can be transferred, even across species, with plasma-derived dialysate and involves nitric oxide, stromal derived factor-1α, microRNA-144, but also other, not yet identified factors. Intracardiac signal transduction involves: adenosine, bradykinin, cytokines, and chemokines, which activate specific receptors; intracellular kinases; and mitochondrial function. RIC by repeated brief inflation/deflation of a blood pressure cuff protects against endothelial dysfunction and myocardial injury in percutaneous coronary interventions, coronary artery bypass grafting and reperfused acute myocardial infarction. RIC is safe and effective, noninvasive, easily feasible and inexpensive. PMID:25593060

  2. VoIP in a Campus Environment

    ERIC Educational Resources Information Center

    Young, Dan

    2005-01-01

    Internet Protocol (IP) Telephony, or voice-over IP (VoIP), has proved to be a wise decision for many organizations. This technology crosses the boundaries of public and private networks, enterprise and residential markets, voice and data technologies, as well as local and long-distance services. The convergence of voice and data into a single,…

  3. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    SciTech Connect

    Hong, Kyung-Soo; Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan ; Park, Jun-Ik; Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won; Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan ; Dao, Trong Tuan; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee; Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia-exposed or hypoxic preconditioned cells. ► SIRT1 deacetylates c-Myc and β-catenin ► HIF-1α is up-regulated by down-regulation of c-Myc and β-catenin expression. ► Polyphenolic SIRT1 activators mimics hypoxic preconditioning.

  4. Effect of atropine and gammahydroxybutyrate on ischemically induced changes in the level of radioactivity in (/sup 3/H)inositol phosphates in gerbil brain in vivo

    SciTech Connect

    Wikiel, H.; Halat, G.; Strosznajder, J.

    1988-05-01

    Brain ischemia in gerbils was induced by ligation of both common carotid arteries for 1 min or 10 min. Sham-operated animals served as controls. Intracerebral injection of (3H)inositol into gerbil brain 16 hr before ischemic insult resulted in equilibration of the label between inositol lipids and water-soluble inositol phosphate. A short ischemic period (1 min) resulted in a statistically significant increase in the radioactivity of inositol triphosphate (IP3) and inositol monophosphate (IP), by about 48% and 79%, respectively, with little change in that of the intermediate inositol biphosphate (IP2), which increased by about 16%. When the ischemic period was prolonged (10 min), an increase in the radioactivity of inositol monophosphate exclusively, by about 84%, was observed. The level of radioactivity in inositol phosphates IP2 and IP3 decreased by about 50%, probably as a consequence of phosphatase activation by the ischemic insult. The agonist of the cholinergic receptor, carbachol, injected intracerebrally (40 micrograms per animal) increased accumulation of radioactivity in all inositol phosphates. The level of radioactivity in IP3, IP2, and IP was elevated by about 40, 23, and 147%, respectively. The muscarinic cholinergic antagonist, atropine, injected intraperitoneally in doses of 100 mg/kg body wt. depressed phosphoinositide metabolism in control animals. The level of radioactivity in water-soluble inositol metabolites in the brain of animals pretreated with atropine was evidently about 32% lower than in untreated animals. Pretreatment with atropine decreased the radioactivity of all inositol phosphates in the brain of animals subjected to 1-min ischemia and the radioactivity of IP in the case of 10-min brain ischemia.

  5. Preconditioned Minimal Residual Methods for Chebyshev Spectral Caluclations

    NASA Technical Reports Server (NTRS)

    Canuto, C.; Quarteroni, A.

    1983-01-01

    The problem of preconditioning the pseudospectral Chebyshev approximation of an elliptic operator is considered. The numerical sensitiveness to variations of the coefficients of the operator are investigated for two classes of preconditioning matrices: one arising from finite differences, the other from finite elements. The preconditioned system is solved by a conjugate gradient type method, and by a DuFort-Frankel method with dynamical parameters. The methods are compared on some test problems with the Richardson method and with the minimal residual Richardson method.

  6. Reactive oxygen species are not a required trigger for exercise-induced late preconditioning in the rat heart

    PubMed Central

    Taylor, Ryan P.

    2012-01-01

    Reactive oxygen species (ROS) have been reported to play a primary role in triggering the cardioprotective adaptations by some preconditioning procedures, but whether they are required for exercise-induced preconditioning is unclear. Thus in this study we used the free radical scavenger N-(2-mercaptopropionyl)glycine (MPG) to test the hypothesis that ROS is the trigger for exercise-induced preconditioning of the heart against ischemia-reperfusion injury. Male F344 rats were assigned to four groups: sedentary (SED, n = 7), SED/MPG (100 mg/kg ip daily for 2 days, n = 12), exercised on a treadmill for 2 days at 20 m/min, 6° grade, for 60 min (RUN, n = 7), and RUN/MPG with 100 mg/kg MPG injected 15 min before exercise (n = 10). Preliminary experiments verified that MPG administration maintained myocardial redox status during the exercise bout. Twenty-four hours postexercise or MPG treatment isolated perfused working hearts were subjected to global ischemia for 22.5 min followed by reperfusion for 30 min. Recovery of myocardial external work (percentage of preischemic systolic pressure times cardiac output) for SED (50.4 ± 4.5) and SED/RUN (54.7 ± 6.6) was similar and improved in both exercise groups (P < 0.05) to 77.9 ± 3.0 in RUN and 76.7 ± 4.5 in RUN/MPG. A 2 × 2 ANOVA also revealed that exercise decreased lactate dehydrogenase release from the heart during reperfusion (marker of cell damage) without MPG effects or interactions. Expression of the cytoprotective protein inducible heat shock protein 70 increased by similar amounts in the left ventricles of RUN and RUN/MPG compared with sedentary groups (P < 0.05). We conclude that ROS are not a necessary trigger for exercise-induced preconditioning in rats. PMID:22955056

  7. The Mitochondria-Targeted Antioxidants and Remote Kidney Preconditioning Ameliorate Brain Damage through Kidney-to-Brain Cross-Talk

    PubMed Central

    Silachev, Denis N.; Isaev, Nikolay K.; Pevzner, Irina B.; Zorova, Ljubava D.; Stelmashook, Elena V.; Novikova, Svetlana V.; Plotnikov, Egor Y.; Skulachev, Vladimir P.; Zorov, Dmitry B.

    2012-01-01

    Background Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. Methodology/Principal Findings We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced phosphorylation of GSK-3β in neuronal cells. Conclusion The results indicate that renal preconditioning and SkQR1-induced brain protection may be mediated through the release of EPO from the kidney. PMID:23272118

  8. Mobile-ip Aeronautical Network Simulation Study

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  9. IP Profiling via Service Cluster Membership Vectors

    SciTech Connect

    Bartoletti, A

    2009-02-23

    This study investigates the feasibility of establishing and maintaining a system of compact IP behavioral profiles as a robust means of computer anomaly definition and detection. These profiles are based upon the degree to which a system's (IP's) network traffic is distributed among stable characteristic clusters derived of the aggregate session traffic generated by each of the major network services. In short, an IP's profile represents its degree of membership in these derived service clusters. The goal is to quantify and rank behaviors that are outside of the statistical norm for the services in question, or present significant deviation from profile for individual client IPs. Herein, we establish stable clusters for accessible features of common session traffic, migrate these clusters over time, define IP behavior profiles with respect to these clusters, migrate individual IP profiles over time, and demonstrate the detection of IP behavioral changes in terms of deviation from profile.

  10. 40 CFR 1066.816 - Vehicle preconditioning for FTP testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Exhaust Emission Test Procedures for Motor Vehicles... measurement as described in 40 CFR 86.132. ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Vehicle preconditioning for...

  11. Remote ischaemic preconditioning for coronary artery bypass grafting

    PubMed Central

    Benstoem, Carina; Stoppe, Christian; Liakopoulos, Oliver J; Meybohm, Patrick; Clayton, Tim C; Yellon, Derek M; Hausenloy, Derek J; Goetzenich, Andreas

    2015-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the benefits and harms of remote ischaemic preconditioning in patients undergoing coronary artery bypass grafting, with or without valve surgery.

  12. Progress in Parallel Schur Complement Preconditioning for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We consider preconditioning methods for nonself-adjoint advective-diffusive systems based on a non-overlapping Schur complement procedure for arbitrary triangulated domains. The ultimate goal of this research is to develop scalable preconditioning algorithms for fluid flow discretizations on parallel computing architectures. In our implementation of the Schur complement preconditioning technique, the triangulation is first partitioned into a number of subdomains using the METIS multi-level k-way partitioning code. This partitioning induces a natural 2X2 partitioning of the p.d.e. discretization matrix. By considering various inverse approximations of the 2X2 system, we have developed a family of robust preconditioning techniques. A computer code based on these ideas has been developed and tested on the IBM SP2 and the SGI Power Challenge array using MPI message passing protocol. A number of example CFD calculations will be presented to illustrate and assess various Schur complement approximations.

  13. Preconditioning methods for improved convergence rates in iterative reconstructions

    SciTech Connect

    Clinthorne, N.H.; Chiao, Pingchun; Rogers, W.L. . Div. of Nuclear Medicine); Pan, T.S. . Dept. of Nuclear Medicine); Stamos, J.A. . Dept. of Nuclear Engineering)

    1993-03-01

    Because of the characteristics of the tomographic inversion problem, iterative reconstruction techniques often suffer from poor convergence rates--especially at high spatial frequencies. By using preconditioning methods, the convergence properties of most iterative methods can be greatly enhanced without changing their ultimate solution. To increase reconstruction speed, the authors have applied spatially-invariant preconditioning filters that can be designed using the tomographic system response and implemented using 2-D frequency-domain filtering techniques. In a sample application, the authors performed reconstructions from noiseless, simulated projection data, using preconditioned and conventional steepest-descent algorithms. The preconditioned methods demonstrated residuals that were up to a factor of 30 lower than the unassisted algorithms at the same iteration. Applications of these methods to regularized reconstructions from projection data containing Poisson noise showed similar, although not as dramatic, behavior.

  14. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols.

    PubMed

    Hong, Kyung-Soo; Park, Jun-Ik; Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won; Dao, Trong Tuan; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. PMID:22245592

  15. Conventional protein kinase Cβ-mediated phosphorylation inhibits collapsin response-mediated protein 2 proteolysis and alleviates ischemic injury in cultured cortical neurons and ischemic stroke-induced mice.

    PubMed

    Yang, Xuan; Zhang, Xinxin; Li, Yun; Han, Song; Howells, David W; Li, Shujuan; Li, Junfa

    2016-05-01

    We previously reported that conventional protein kinase C (cPKC)β participated in hypoxic preconditioning-induced neuroprotection against cerebral ischemic injury, and collapsin response-mediated protein 2 (CRMP2) was identified as a cPKCβ interacting protein. In this study, we explored the regulation of CRMP2 phosphorylation and proteolysis by cPKCβ, and their role in ischemic injury of oxygen-glucose deprivation (OGD)-treated cortical neurons and brains of mice with middle cerebral artery occlusion-induced ischemic stroke. The results demonstrated that cPKCβ-mediated CRMP2 phosphorylation via the cPKCβ-selective activator 12-deoxyphorbol 13-phenylacetate 20-acetate (DOPPA) and inhibition of calpain-mediated CRMP2 proteolysis by calpeptin and a fusing peptide containing TAT peptide and the calpain cleavage site of CRMP2 (TAT-CRMP2) protected neurons against OGD-induced cell death through inhibiting CRMP2 proteolysis in cultured cortical neurons. The OGD-induced nuclear translocation of the CRMP2 breakdown product was inhibited by DOPPA, calpeptin, and TAT-CRMP2 in cortical neurons. In addition, both cPKCβ activation and CRMP2 proteolysis inhibition by hypoxic preconditioning and intracerebroventricular injections of DOPPA, calpeptin, and TAT-CRMP2 improved the neurological deficit in addition to reducing the infarct volume and proportions of cells with pyknotic nuclei in the peri-infact region of mice with ischemic stroke. These results suggested that cPKCβ modulates CRMP2 phosphorylation and proteolysis, and cPKCβ activation alleviates ischemic injury in the cultured cortical neurons and brains of mice with ischemic stroke through inhibiting CRMP2 proteolysis by phosphorylation. Focal cerebral ischemia induces a large flux of Ca(2+) to activate calpain which cleaves collapsin response mediator (CRMP) 2 into breakdown product (BDP). Inhibition of CRMP2 cleavage by calpeptin and TAT-CRMP2 alleviates ischemic injury. Conventional protein kinase C (cPKC)β-mediated phosphorylation could inhibit CRMP2 proteolysis and alleviate ischemic injury in cultured cortical neurons and ischemic stroke-induced mice. PMID:26788931

  16. Quantification of neurovascular protection following repetitive hypoxic preconditioning and transient middle cerebral artery occlusion in mice.

    PubMed

    Poinsatte, Katherine; Selvaraj, Uma Maheswari; Ortega, Sterling B; Plautz, Erik J; Kong, Xiangmei; Gidday, Jeffrey M; Stowe, Ann M

    2015-01-01

    Experimental animal models of stroke are invaluable tools for understanding stroke pathology and developing more effective treatment strategies. A 2 week protocol for repetitive hypoxic preconditioning (RHP) induces long-term protection against central nervous system (CNS) injury in a mouse model of focal ischemic stroke. RHP consists of 9 stochastic exposures to hypoxia that vary in both duration (2 or 4 hr) and intensity (8% and 11% O2). RHP reduces infarct volumes, blood-brain barrier (BBB) disruption, and the post-stroke inflammatory response for weeks following the last exposure to hypoxia, suggesting a long-term induction of an endogenous CNS-protective phenotype. The methodology for the dual quantification of infarct volume and BBB disruption is effective in assessing neurovascular protection in mice with RHP or other putative neuroprotectants. Adult male Swiss Webster mice were preconditioned by RHP or duration-equivalent exposures to 21% O2 (i.e. room air). A 60 min transient middle cerebral artery occlusion (tMCAo) was induced 2 weeks following the last hypoxic exposure. Both the occlusion and reperfusion were confirmed by transcranial laser Doppler flowmetry. Twenty-two hr after reperfusion, Evans Blue (EB) was intravenously administered through a tail vein injection. 2 hr later, animals were sacrificed by isoflurane overdose and brain sections were stained with 2,3,5- triphenyltetrazolium chloride (TTC). Infarcts volumes were then quantified. Next, EB was extracted from the tissue over 48 hr to determine BBB disruption after tMCAo. In summary, RHP is a simple protocol that can be replicated, with minimal cost, to induce long-term endogenous neurovascular protection from stroke injury in mice, with the translational potential for other CNS-based and systemic pro-inflammatory disease states. PMID:25993394

  17. Rational modulation of the innate immune system for neuroprotection in ischemic stroke

    PubMed Central

    Amantea, Diana; Micieli, Giuseppe; Tassorelli, Cristina; Cuartero, María I.; Ballesteros, Iván; Certo, Michelangelo; Moro, María A.; Lizasoain, Ignacio; Bagetta, Giacinto

    2015-01-01

    The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction. PMID:25972779

  18. Rational modulation of the innate immune system for neuroprotection in ischemic stroke.

    PubMed

    Amantea, Diana; Micieli, Giuseppe; Tassorelli, Cristina; Cuartero, María I; Ballesteros, Iván; Certo, Michelangelo; Moro, María A; Lizasoain, Ignacio; Bagetta, Giacinto

    2015-01-01

    The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood-brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction. PMID:25972779

  19. A Weakest Precondition Approach to Robustness

    NASA Astrophysics Data System (ADS)

    Balliu, Musard; Mastroeni, Isabella

    With the increasing complexity of information management computer systems, security becomes a real concern. E-government, web-based financial transactions or military and health care information systems are only a few examples where large amount of information can reside on different hosts distributed worldwide. It is clear that any disclosure or corruption of confidential information in these contexts can result fatal. Information flow controls constitute an appealing and promising technology to protect both data confidentiality and data integrity. The certification of the security degree of a program that runs in untrusted environments still remains an open problem in the area of language-based security. Robustness asserts that an active attacker, who can modify program code in some fixed points (holes), is unable to disclose more private information than a passive attacker, who merely observes unclassified data. In this paper, we extend a method recently proposed for checking declassified non-interference in presence of passive attackers only, in order to check robustness by means of weakest precondition semantics. In particular, this semantics simulates the kind of analysis that can be performed by an attacker, i.e., from public output towards private input. The choice of semantics allows us to distinguish between different attacks models and to characterize the security of applications in different scenarios.

  20. Responsive corneosurfametry following in vivo skin preconditioning.

    PubMed

    Uhoda, E; Goffin, V; Pierard, G E

    2003-12-01

    Skin is subjected to many environmental threats, some of which altering the structure and function of the stratum corneum. Among them, surfactants are recognized factors that may influence irritant contact dermatitis. The present study was conducted to compare the variations in skin capacitance and corneosurfametry (CSM) reactivity before and after skin exposure to repeated subclinical injuries by 2 hand dishwashing liquids. A forearm immersion test was performed on 30 healthy volunteers. 2 daily soak sessions were performed for 5 days. At inclusion and the day following the last soak session, skin capacitance was measured and cyanoacrylate skin-surface strippings were harvested. The latter specimens were used for the ex vivo microwave CSM. Both types of assessments clearly differentiated the 2 hand dishwashing liquids. The forearm immersion test allowed the discriminant sensitivity of CSM to increase. Intact skin capacitance did not predict CSM data. By contrast, a significant correlation was found between the post-test conductance and the corresponding CSM data. In conclusion, a forearm immersion test under realistic conditions can discriminate the irritation potential between surfactant-based products by measuring skin conductance and performing CSM. In vivo skin preconditioning by surfactants increases CSM sensitivity to the same surfactants. PMID:15025702

  1. The Spacelab IPS Star Simulator

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C., III

    1993-01-01

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 degrees each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is 2 to 8 visual magnitudes. The star size is less than 100 arc seconds. The minimum star movement is less than 5 arc seconds and the relative position accuracy is approximately 40 arc seconds. The purpose of this paper is to describe the LPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  2. Applying a gaming approach to IP strategy.

    PubMed

    Gasnier, Arnaud; Vandamme, Luc

    2010-02-01

    Adopting an appropriate IP strategy is an important but complex area, particularly in the pharmaceutical and biotechnology sectors, in which aspects such as regulatory submissions, high competitive activity, and public health and safety information requirements limit the amount of information that can be protected effectively through secrecy. As a result, and considering the existing time limits for patent protection, decisions on how to approach IP in these sectors must be made with knowledge of the options and consequences of IP positioning. Because of the specialized nature of IP, it is necessary to impart knowledge regarding the options and impact of IP to decision-makers, whether at the level of inventors, marketers or strategic business managers. This feature review provides some insight on IP strategy, with a focus on the use of a new 'gaming' approach for transferring the skills and understanding needed to make informed IP-related decisions; the game Patentopolis is discussed as an example of such an approach. Patentopolis involves interactive activities with IP-related business decisions, including the exploitation and enforcement of IP rights, and can be used to gain knowledge on the impact of adopting different IP strategies. PMID:20127561

  3. Differential monocular vs. binocular pupil responses from melanopsin-based photoreception in patients with anterior ischemic optic neuropathy.

    PubMed

    Tsika, Chrysanthi; Crippa, Sylvain V; Kawasaki, Aki

    2015-01-01

    We examined the effect of anterior ischemic optic neuropathy (AION) on the activity of intrinsically photosensitive retinal ganglion cells (ipRGCs) using the pupil as proxy. Eighteen patients with AION (10 unilateral, 8 bilateral) and 29 age-matched control subjects underwent chromatic pupillometry. Red and blue light stimuli increasing in 0.5 log steps were presented to each eye independently under conditions of dark and light adaptation. The recorded pupil contraction was plotted against stimulus intensity to generate scotopic and photopic response curves for assessment of synaptically-mediated ipRGC activity. Bright blue light stimuli presented monocularly and binocularly were used for melanopsin activation. The post-stimulus pupil size (PSPS) at the 6th second following stimulus offset was the marker of intrinsic ipRGC activity. Finally, questionnaires were administered to assess the influence of ipRGCs on sleep. The pupil response and PSPS to all monocularly-presented light stimuli were impaired in AION eyes, indicating ipRGC dysfunction. To binocular light stimulation, the PSPS of AION patients was similar to that of controls. There was no difference in the sleep habits of the two groups. Thus after ischemic injury to one or both optic nerves, the summated intrinsic ipRGC activity is preserved when both eyes receive adequate light exposure. PMID:26074032

  4. Analysis of Handoff Mechanisms in Mobile IP

    NASA Astrophysics Data System (ADS)

    Jayaraj, Maria Nadine Simonel; Issac, Biju; Haldar, Manas Kumar

    2011-06-01

    One of the most important challenges in mobile Internet Protocol (IP) is to provide service for a mobile node to maintain its connectivity to network when it moves from one domain to another. IP is responsible for routing packets across network. The first major version of IP is the Internet Protocol version 4 (IPv4). It is one of the dominant protocols relevant to wireless network. Later a newer version of IP called the IPv6 was proposed. Mobile IPv6 is mainly introduced for the purpose of mobility. Mobility management enables network to locate roaming nodes in order to deliver packets and maintain connections with them when moving into new domains. Handoff occurs when a mobile node moves from one network to another. It is a key factor of mobility because a mobile node can trigger several handoffs during a session. This paper briefly explains on mobile IP and its handoff issues, along with the drawbacks of mobile IP.

  5. Sevoflurane Preconditioning Reduces Intestinal Ischemia-Reperfusion Injury: Role of Protein Kinase C and Mitochondrial ATP-Sensitive Potassium Channel

    PubMed Central

    Shen, Zhiwen; Miao, Liping; Zhang, Kun; Wang, Fei; Li, Yujuan

    2015-01-01

    Ischemic preconditioning (IPC) has been considered to be a potential therapy to reduce ischemia-reperfusion injury (IRI) since the 1980s. Our previous study indicated that sevoflurane preconditioning (SPC) also reduced intestinal IRI in rats. However, whether the protective effect of SPC is similar to IPC and the mechanisms of SPC are unclear. Thus, we compared the efficacy of SPC and IPC against intestinal IRI and the role of protein kinase C (PKC) and mitochondrial ATP-sensitive potassium channel (mKATP) in SPC. A rat model of intestinal IRI was used in this study. The superior mesenteric artery (SMA) was clamped for 60 min followed by 120 min of reperfusion. Rats with IPC underwent three cycles of SMA occlusion for 5 min and reperfusion for 5 min before intestinal ischemia. Rats with SPC inhaled sevoflurane at 0.5 minimum alveolar concentration (MAC) for 30 min before the intestinal ischemic insult. Additionally, the PKC inhibitor Chelerythrine (CHE) or mKATP inhibitor 5-Hydroxydecanoic (5-HD) was injected intraperitoneally before sevoflurane inhalation. Both SPC and IPC ameliorated intestinal IRI-induced histopathological changes, decreased Chiu’s scores, reduced terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the epithelium, and inhibited the expression of malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α). These protective effects of SPC were similar to those of IPC. Pretreatment with PKC or mKATP inhibitor abolished SPC—induced protective effects by increasing Chiu’s scores, down-regulated the expression of Bcl-2 and activated caspase-3. Our results suggest that pretreatment with 0.5 MAC sevoflurane is as effective as IPC against intestinal IRI. The activation of PKC and mKATP may be involved in the protective mechanisms of SPC. PMID:26505750

  6. Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia

    PubMed Central

    2014-01-01

    Background Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates. Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. Results We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. Conclusions This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic mechanisms are likely to play a role in preconditioning-induced neuroprotection. PMID:24885038

  7. Piperidine derivatives as nonprostanoid IP receptor agonists.

    PubMed

    Hayashi, Ryoji; Sakagami, Hideki; Koiwa, Masakazu; Ito, Hiroaki; Miyamoto, Mitsuko; Isogaya, Masafumi

    2016-05-01

    The discovery of a new class of nonprostanoid prostaglandin I2 receptor (IP receptor) agonists is reported. Among them, the unique piperidine derivative 31b (2-((1-(2-(N-(4-tolyl)benzamido)ethyl)piperidin-4-yl)oxy)acetic acid) was a good IP receptor agonist and was 50-fold more selective for the human IP receptor than for other human prostanoid receptors. This compound showed good pharmacokinetic properties in dog. PMID:26996371

  8. Hypoxic Preconditioning Results in Increased Motility and Improved Therapeutic Potential of Human Mesenchymal Stem Cells

    PubMed Central

    Rosová, Ivana; Dao, Mo; Capoccia, Ben; Link, Daniel; Nolta, Jan A.

    2010-01-01

    Mesenchymal stem cells (MSC) are adult multipotent cells found in bone marrow, adipose tissue, and other adult tissues. MSC have been shown to improve regeneration of injured tissues in vivo, but the mechanisms remain unclear. Typically, MSC are cultured under ambient, or normoxic, conditions (21% oxygen). However, the physiological niches for MSC in the bone marrow and other sites have much lower oxygen tension. When used as a therapeutic tool to repair tissue injuries, MSC cultured in standard conditions must adapt from 21% oxygen in culture to less than 1% oxygen in the ischemic tissue. We therefore examined the effects of preculturing human bone marrow-derived MSC in hypoxic conditions (1%–3% oxygen) to elucidate the best conditions that enhance their tissue regenerative potential. We demonstrated that MSC cultured in hypoxia activate the Akt signaling pathway while maintaining their viability and cell cycle rates. We also showed that MSC cultured in hypoxia induced expression of cMet, the major receptor for hepatocyte growth factor (HGF), and enhanced cMet signaling. MSC cultured in hypoxic conditions increased their migration rates. Since migration and HGF responsiveness are thought to be key mediators of MSC recruitment and/or activation in vivo, we next examined the tissue regenerative potential of MSC cultured under hypoxic conditions, using a murine hind limb ischemia model. We showed that local expression of HGF is increased in ischemic muscle in this model. Intra-arterial injection of MSC cultured in either normoxic or hypoxic conditions 24 hours after surgical induction of hind limb ischemia enhanced revascularization compared with saline controls. However, restoration of blood flow was observed significantly earlier in mice that had been injected with hypoxic preconditioned MSC. Collectively, these data suggest that preculturing MSC under hypoxic conditions prior to transplantation improves their tissue regenerative potential. PMID:18511601

  9. Structure of mouse IP-10, a chemokine

    SciTech Connect

    Jabeen, Talat; Leonard, Philip; Jamaluddin, Haryati; Acharya, K. Ravi

    2008-06-01

    The structure of mouse IP-10 shows a novel tetrameric association. Interferon-γ-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated β-sheet of ∼90 Å in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two β-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.

  10. IP3 Receptors: Toward Understanding Their Activation

    PubMed Central

    Taylor, Colin W.; Tovey, Stephen C.

    2010-01-01

    Inositol 1,4,5-trisphosphate receptors (IP3R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca2+ release from intracellular stores. Their regulation by Ca2+ allows them also to propagate cytosolic Ca2+ signals regeneratively. This brief review addresses the structural basis of IP3R activation by IP3 and Ca2+. IP3 initiates IP3R activation by promoting Ca2+ binding to a stimulatory Ca2+-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP3 with opposite sides of the clam-like IP3-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP3R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP3R. PMID:20980441

  11. Wireless and mobility issues in IP telephony

    NASA Astrophysics Data System (ADS)

    Sengodan, Senthil; Koodli, Rajeev; Rajahalme, Jarno

    1999-11-01

    IP telephony has seen a tremendous surge in interest in the last couple of years. Several equipment vendors, application developers and service provides are entering into this emerging market. Regional as well as international standardization organizations have been involved in developing standards in the area, while several other forums have been actively promoting the industry as a whole. However, until recently, mobility and wireless issues have not been considered in detail with the scope of IP telephony, and the focus has been on fixed IP telephony systems. In this paper, we discuss some of the issues that need to be considered when mobility and wireless transport is introduced within IP telephony.

  12. Ischemic penumbra in acute stroke: Demonstration by PET with fluorine-18 fluoromisonidazole

    SciTech Connect

    Yeh, S.H.; Liu, R.S.; Hu, H.H.

    1994-05-01

    Ischemic penumbra (IP) in acute stroke has gained clinical interest since tissue functions may be recovered if perfusion can be reestablished. However, such therapeutic intervention is {open_quotes}blind{close_quotes} since clinical examination can not distinguish IP from developing infarction. In vivo demonstration of IP may have significance for stroke patient management. This study was a preliminary evaluation of detecting IP in vivo by F-18 fluoromisonidazole ([F-18]-FMISO), a hypoxic imaging agent. Static PET imaging was performed after IV injection of 370 MBq of [F-18]-FMISO at 20 and 120 min. Tomograms were reconstructed and evaluated visually in correlation with CT or MR scans. In acute stroke, patients (pts) were called back for the second PET study one month after the initial study. CT was used for confirming infarction. In 6 pts with acute cerebral infarction, three of them had intense [F-18]-FMISO retention in the penumbra surrounding the central, eclipse-like zone of absent radio-activity (infarction) at 2 hr in the acute state, and the penumbra disappeared in association with increased area of infarction on CT in one case in the chronic state. In five pts with chronic infarction, all had no penumbra of [F-18]-FMISO retention. In summary, our preliminary results demonstrate the feasibility of using [F-18]-FMISO PET to detect ischemic penumbra in vivo.

  13. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Pettet, Garry K J; Luo, Yan; Lim, Ta; Akimov, Stanislav; Sanders, Robert D; Franks, Nicholas P; Maze, Mervyn

    2006-02-01

    Xenon attenuates on-going neuronal injury in both in vitro and in vivo models of hypoxic-ischaemic injury when administered during and after the insult. In the present study, we sought to investigate whether the neuroprotective efficacy of xenon can be observed when administered before an insult, referred to as 'preconditioning'. In a neuronal-glial cell coculture, preexposure to xenon for 2 h caused a concentration-dependent reduction of lactate dehydrogenase release from cells deprived of oxygen and glucose 24 h later; xenon's preconditioning effect was abolished by cycloheximide, a protein synthesis inhibitor. Preconditioning with xenon decreased propidium iodide staining in a hippocampal slice culture model subjected to oxygen and glucose deprivation. In an in vivo model of neonatal asphyxia involving hypoxic-ischaemic injury to 7-day-old rats, preconditioning with xenon reduced infarction size when assessed 7 days after injury. Furthermore, a sustained improvement in neurologic function was also evident 30 days after injury. Phosphorylated cAMP (cyclic adenosine 3',5'-monophosphate)-response element binding protein (pCREB) was increased by xenon exposure. Also, the prosurvival proteins Bcl-2 and brain-derived neurotrophic factor were upregulated by xenon treatment. These studies provide evidence for xenon's preconditioning effect, which might be caused by a pCREB-regulated synthesis of proteins that promote survival against neuronal injury. PMID:16034370

  14. Incomplete domain decomposition preconditioning for coarse mesh neutron diffusion problems

    SciTech Connect

    Joo, H.G.; Downar, T.J.

    1995-12-31

    Incomplete domain decomposition preconditioning for parallel implementation of the conjugate gradient-like methods is applied to solve the two-group, three-dimensional, coarse mesh finite differenced neutron diffusion equation on the PARAGON XP/S-10 parallel computer. The linear system resulting from implicit time differencing of the time-dependent neutron diffusion equation is solved by the preconditioned biconjugate gradient squared method without employing the fission source iteration. An efficient domain decomposition preconditioning scheme is constructed by taking advantage of strong diagonal dominance of the coarse mesh finite difference formulation. Simplifications are made in the incomplete LU factorization process to construct a preconditioner for a three dimensional subdomain and the coupling between subdomains is approximated by incorporating only the effect of the non-leakage terms of neighboring subdomains. The method is applied to quarter core and full core fixed source problems which are created from the IAEA three-dimensional benchmark problem. Results show that on a single processor the computation time for the preconditioned biconjugate gradient method is comparable to other conventional iteration methods such as Line-SOR and the cyclic Chebyshev semi-iterative method. The effectiveness of the incomplete domain decomposition preconditioning on a multi-processor is evidenced by the small increase in the number of iterations as the number of subdomains increases. Speedups up to 32.1 are achievable with 64 processing elements for a 34{times}34{times}36 full core three-dimensional problem.

  15. Ischemic proctosigmoiditis due to retroperitoneal hematoma

    PubMed Central

    Roepstorff, Soeren; Oehlenschläger, Jacob

    2016-01-01

    Gastrointestinal ischemia is caused by ischemic colitis in 50–60% of cases and is associated with high morbidity and mortality among patients. Ischemic proctosigmoiditis is a very rare disorder with only few cases reported. Due to collateral blood supply the rectum is only affected in 2–5% of all cases of ischemic colitis. We report a rare case of ischemic proctosigmoiditis caused by a retroperitoneal hematoma due to a pelvic fracture. PMID:26892890

  16. Gastrointestinal complications after ischemic stroke.

    PubMed

    Camara-Lemarroy, Carlos R; Ibarra-Yruegas, Beatriz E; Gongora-Rivera, Fernando

    2014-11-15

    Ischemic stroke is an important cause of morbidity and mortality, and currently the leading cause of adult disability in developed countries. Stroke is associated with various non-neurological medical complications, including infections and thrombosis. Gastrointestinal complications after stroke are also common, with over half of all stroke patients presenting with dysphagia, constipation, fecal incontinence or gastrointestinal bleeding. These complications are associated with increased hospital length of stay, the development of further complications and even increased mortality. In this article we review the epidemiology, pathophysiology, diagnosis, management and prevention of the most common gastrointestinal complications associated with ischemic stroke. PMID:25214444

  17. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning

    PubMed Central

    Kalogeris, Theodore; Bao, Yimin; Korthuis, Ronald J.

    2014-01-01

    Reductions in the blood supply produce considerable injury if the duration of ischemia is prolonged. Paradoxically, restoration of perfusion to ischemic organs can exacerbate tissue damage and extend the size of an evolving infarct. Being highly metabolic organs, the heart and brain are particularly vulnerable to the deleterious effects of ischemia/reperfusion (I/R). While the pathogenetic mechanisms contributing to I/R-induced tissue injury and infarction are multifactorial, the relative importance of each contributing factor remains unclear. However, an emerging body of evidence indicates that the generation of reactive oxygen species (ROS) by mitochondria plays a critical role in damaging cellular components and initiating cell death. In this review, we summarize our current understanding of the mechanisms whereby mitochondrial ROS generation occurs in I/R and contributes to myocardial infarction and stroke. In addition, mitochondrial ROS have been shown to participate in preconditioning by several pharmacologic agents that target potassium channels (e.g., ATP-sensitive potassium (mKATP) channels or large conductance, calcium-activated potassium (mBKCa) channels) to activate cell survival programs that render tissues and organs more resistant to the deleterious effects of I/R. Finally, we review novel therapeutic approaches that selectively target mROS production to reduce postischemic tissue injury, which may prove efficacious in limiting myocardial dysfunction and infarction and abrogating neurocognitive deficits and neuronal cell death in stroke. PMID:24944913

  18. Approaches for Resolving Dynamic IP Addressing.

    ERIC Educational Resources Information Center

    Foo, Schubert; Hui, Siu Cheung; Yip, See Wai; He, Yulan

    1997-01-01

    A problem with dynamic Internet protocol (IP) addressing arises when the Internet connection is through an Internet provider since the IP address is allocated only at connection time. This article examines a number of online and offline methods for resolving the problem. Suggests dynamic domain name system (DNS) and directory service look-up are…

  19. VoIP to the Rescue

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    Voice over Internet Protocol (VoIP) is everywhere. The technology lets users make and receive phone calls over the Internet, transporting voice traffic alongside data traffic such as instant messages (IMs) and e-mail. While the number of consumer customers using VoIP increases every week, the technology is finding its way into K-12 education as…

  20. Liquid hydrogen turbopump rapid start program. [thermal preconditioning using coatings

    NASA Technical Reports Server (NTRS)

    Wong, G. S.

    1973-01-01

    This program was to analyze, test, and evaluate methods of achieving rapid-start of a liquid hydrogen feed system (inlet duct and turbopump) using a minimum of thermal preconditioning time and propellant. The program was divided into four tasks. Task 1 includes analytical studies of the testing conducted in the other three tasks. Task 2 describes the results from laboratory testing of coating samples and the successful adherence of a KX-635 coating to the internal surfaces of the feed system tested in Task 4. Task 3 presents results of testing an uncoated feed system. Tank pressure was varied to determine the effect of flowrate on preconditioning. The discharge volume and the discharge pressure which initiates opening of the discharge valve were varied to determine the effect on deadhead (no through-flow) start transients. Task 4 describes results of testing a similar, internally coated feed system and illustrates the savings in preconditioning time and propellant resulting from the coatings.

  1. Operator-Based Preconditioning of Stiff Hyperbolic Systems

    SciTech Connect

    Reynolds, Daniel R.; Samtaney, Ravi; Woodward, Carol S.

    2009-02-09

    We introduce an operator-based scheme for preconditioning stiff components encoun- tered in implicit methods for hyperbolic systems of partial differential equations posed on regular grids. The method is based on a directional splitting of the implicit operator, followed by a char- acteristic decomposition of the resulting directional parts. This approach allows for solution to any number of characteristic components, from the entire system to only the fastest, stiffness-inducing waves. We apply the preconditioning method to stiff hyperbolic systems arising in magnetohydro- dynamics and gas dynamics. We then present numerical results showing that this preconditioning scheme works well on problems where the underlying stiffness results from the interaction of fast transient waves with slowly-evolving dynamics, scales well to large problem sizes and numbers of processors, and allows for additional customization based on the specific problems under study.

  2. Is red blood cell a mediator of remote ischaemic preconditioning?

    PubMed

    Gopalakrishnan, Maya; Saurabh, Suman

    2014-12-01

    Remote ischaemic preconditioning is emerging as a promising clinical technique which can afford immediate protection against coronary ischaemia. The mechanisms which mediate the signal transduction from remote organ to the heart are still unclear. The role of ATP sensitive potassium channels in ischaemic preconditioning has been established. It is known that the red blood cell (RBC) acts as a mediator of local autoregulation in adjusting oxygen supply to demand by sensing hypoxia and releasing ATP locally to achieve vasodilatation in the adjacent vascular beds. Our hypothesis links these two known mechanisms. Remote ischaemic preconditioning and local RBC autoregulation might share a common mechanism using the ATP sensitive potassium channels. Therefore, we hypothesize that the signal transduction by RBC might be partly responsible for this protection against ischaemia. PMID:25468784

  3. On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland W.

    1992-01-01

    The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.

  4. Let's Talk about Ischemic Stroke

    MedlinePlus

    ... Tools & Resources Stroke More Let's Talk About Ischemic Stroke Updated:Dec 9,2015 The majority of strokes occur when blood vessels to the brain become ... cuts off blood flow to brain cells. A stroke caused by lack of blood reaching part of ...

  5. Genetic susceptibility to ischemic stroke

    PubMed Central

    Meschia, James F.; Worrall, Bradford B.; Rich, Stephen S.

    2014-01-01

    Clinicians who treat patients with stroke need to be aware of several single-gene disorders that have ischemic stroke as a major feature, including sickle cell disease, Fabry disease, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and retinal vasculopathy with cerebral leukodystrophy. The reported genome-wide association studies of ischemic stroke and several related phenotypes (for example, ischemic white matter disease) have shown that no single common genetic variant imparts major risk. Larger studies with samples numbering in the thousands are ongoing to identify common variants with smaller effects on risk. Pharmacogenomic studies have uncovered genetic determinants of response to warfarin, statins and clopidogrel. Despite increasing knowledge of stroke genetics, incorporating this new knowledge into clinical practice remains a challenge. The goals of this article are to review common single-gene disorders relevant to ischemic stroke, summarize the status of candidate gene and genome-wide studies aimed at discovering genetic stroke risk factors, and to briefly discuss pharmacogenomics related to stroke treatment. PMID:21629240

  6. Optimal bounds for solving tridiagonal systems with preconditioning

    SciTech Connect

    Zellini, P. )

    1988-10-01

    Let (1) Tx=f be a linear tridiagonal system system of n equations in the unknown x/sub 1/, ..., x/sub n/. It is proved that 3n-2 (nonscalar) multiplications/divisions are necessary to solve (1) in a straight-line program excluding divisions by elements of f. This bound is optimal if the cost of preconditioning of T is not counted. Analogous results are obtained in case (i) T is bidiagonal and (ii) T and f are both centrosymmetric. The existence of parallel algorithms to solve (1) with preconditioning and with minimal multiplicative redundancy is also discussed.

  7. Fourier analysis of finite element preconditioned collocation schemes

    NASA Technical Reports Server (NTRS)

    Deville, Michel O.; Mund, Ernest H.

    1990-01-01

    The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.

  8. Choice of Variables and Preconditioning for Time Dependent Problems

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Vatsa, Verr N.

    2003-01-01

    We consider the use of low speed preconditioning for time dependent problems. These are solved using a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables, to solve the system. We show the effect of these choices on both the convergence to a steady state and the accuracy of the numerical solutions for low Mach number steady state and time dependent flows.

  9. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  10. The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons.

    PubMed

    Dutta, Somhrita; Rutkai, Ibolya; Katakam, Prasad V G; Busija, David W

    2015-09-01

    We examined the role of the mechanistic target of rapamycin (mTOR) pathway in delayed diazoxide (DZ)-induced preconditioning of cultured rat primary cortical neurons. Neurons were treated for 3 days with 500 μM DZ or feeding medium and then exposed to 3 h of continuous normoxia in Dulbecco's modified eagle medium with glucose or with 3 h of oxygen-glucose deprivation (OGD) followed by normoxia and feeding medium. The OGD decreased viability by 50%, depolarized mitochondria, and reduced mitochondrial respiration, whereas DZ treatment improved viability and mitochondrial respiration, and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Neuroprotection by DZ was associated with increased phosphorylation of protein kinase B (Akt), mTOR, and the major mTOR downstream substrate, S6 Kinase (S6K). The mTOR inhibitors rapamycin and Torin-1, as well as S6K-targeted siRNA abolished the protective effects of DZ. The effects of DZ on mitochondrial membrane potential and reactive oxygen species production were not affected by rapamycin. Preconditioning with DZ also changed mitochondrial and non-mitochondrial oxygen consumption rates. We conclude that in addition to reducing reactive oxygen species (ROS) production and mitochondrial membrane depolarization, DZ protects against OGD by activation of the Akt-mTOR-S6K pathway and by changes in mitochondrial respiration. Ischemic strokes have limited therapeutic options. Diazoxide (DZ) preconditioning can reduce neuronal damage. Using oxygen-glucose deprivation (OGD), we studied Akt/mTOR/S6K signaling and mitochondrial respiration in neuronal preconditioning. We found DZ protects neurons against OGD via the Akt/mTOR/S6K pathway and alters the mitochondrial and non-mitochondrial oxygen consumption rate. This suggests that the Akt/mTOR/S6k pathway and mitochondria are novel stroke targets. PMID:26016889

  11. Uniform communications software using TCP/IP

    SciTech Connect

    Bernett, M.; Oleynik, G. )

    1989-10-01

    Data acquisition applications at Fermilab require a reliable, distributed communication system for downloading, diagnostics, control, and data distribution. TCP/IP over Ethernet was chosen because of its uniform user interface and commercial availability for a number of processors and operating systems. This paper describes the authors software and hardware support for TCP/IP on VAX/VMS, VME/rhoSOS, FASTBUS/rhoSOS, and Unix systems. It includes plans to provide a portable, hardware independent implementation of TCP/IP based on Berkeley BSD software.

  12. Uniform communications software using TCP/IP

    SciTech Connect

    Bernett, M.; Oleynik, G.

    1989-05-01

    Data acquisition applications at Fermilab require a reliable, distributed communication system for downloading, diagnostics, control, and data distribution. TCP/IP over Ethernet was chosen because of its uniform user interface and commercial availability for a number of processors and operating systems. This paper describes our software and hardware support for TCP/IP on VAX/VMS, VME/pSOS, FASTBUS/pSOS, and Unix systems. It includes plans to provide a portable, hardware independent implementation of TCP/IP based on Berkeley BSD software. 8 refs., 3 figs.

  13. Scalable architecture for VoIP privacy

    NASA Astrophysics Data System (ADS)

    Medvinsky, Alexander

    2001-07-01

    An access network for Voice over IP (VoIP) clients (e.g. DOCSIS-based HFC network) often provides a privacy service. However, such a privacy service is limited only to that access network. When VoIP packets are carried over an open IP network or over a network with some connections to the Internet, it is desirable to provide an end-to-end privacy service where each VoIP packet is encrypted at the source and decrypted at the terminating endpoint. Clearly, public key encryption cannot be applied to each voice packet; the performance would be unacceptable regardless of the choice of a public key algorithm. The only alternative is for the two VoIP endpoints to negotiate a shared symmetric key. Since VoIP connections are established only for duration of a phone call, the end-to-end key negotiation needs to occur during each call setup. And it should not noticeably delay the call setup phase. In order to provide end-to-end privacy, it is not sufficient to encrypt all messages between the two endpoints. It is important that the two endpoints authenticate each other - validate each other's identity. Without authentication an adversary might trick two VoIP clients to negotiate keys with her and then sit in the middle of their conversation and record each VoIP packet, before forwarding it to the intended destination. However, direct authentication of the two VoIP endpoints is not always possible in telephony networks - in particular when caller ID blocking services are enabled. To support such anonymity services, it may be sufficient to authenticate not the identity of the caller but the fact that it is a valid subscriber and that all subsequent signaling and voice traffic will be coming from the same source. The PacketCable specifications provide an example of a VoIP architecture with end-to-end privacy that meets the above stated criteria. This paper describes the PacketCable end-to-end privacy approach and suggests additional mechanisms that may be used to further strengthen VoIP privacy under the PacketCable architecture.

  14. IPS guidestar selection for stellar mode (ASTRO)

    NASA Technical Reports Server (NTRS)

    Mullins, Larry; Wooten, Lewis

    1988-01-01

    This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.

  15. 33 CFR 183.220 - Preconditioning for tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Preconditioning for tests. 183.220 Section 183.220 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General...

  16. 33 CFR 183.320 - Preconditioning for tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Preconditioning for tests. 183.320 Section 183.320 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of 2 Horsepower or Less General §...

  17. 40 CFR 1066.405 - Vehicle preparation and preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Preparing Vehicles and Running an Exhaust Emission Test 1066.405 Vehicle preparation and preconditioning. Prepare the vehicle for testing (including... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Vehicle preparation...

  18. Preconditions of Change in Schools (FISK). Project Number 6051.

    ERIC Educational Resources Information Center

    Svingby, Gunilla

    1981-01-01

    Preliminary results of this study of the preconditions for pedagogical change in Swedish schools indicate that national curricular emphases have changed, but that accompanying changes in teaching methods may conceal wide variation in content and import. The study's objective was to identify the factors conducive or hostile to change in the…

  19. 40 CFR 1065.516 - Sample system decontamination and preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Sample system decontamination and preconditioning. 1065.516 Section 1065.516 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.516 Sample...

  20. 40 CFR 86.1774-99 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Vehicle preconditioning. 86.1774-99... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...

  1. 40 CFR 86.1774-99 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle preconditioning. 86.1774-99... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...

  2. 40 CFR 86.132-00 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preconditioning. 86.132-00... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle...

  3. 40 CFR 86.232-94 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Vehicle preconditioning. 86.232-94... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New...

  4. 40 CFR 86.232-94 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Vehicle preconditioning. 86.232-94... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New...

  5. 40 CFR 86.132-00 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Vehicle preconditioning. 86.132-00... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle...

  6. 40 CFR 86.132-00 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Vehicle preconditioning. 86.132-00... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle...

  7. 40 CFR 86.1774-99 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Vehicle preconditioning. 86.1774-99... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...

  8. 40 CFR 86.232-94 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preconditioning. 86.232-94... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New...

  9. Dexmedetomidine Preconditioning Attenuates Cisplatin-Induced Ototoxicity in Zebrafish

    PubMed Central

    Min, Too Jae; Ha, Young Ran; Jeong, In young; Yoo, Ji young

    2014-01-01

    Objectives Utilisation of high-frequency drills is known to increase noise induced hearing loss due to increasing the damages of inner ear cells. This study aimed to investigate whether preconditioning by using dexmedetomidine (DEX) decreased the occurrence of ischemia in inner cells of the ear. Methods We utilised a transgenic zebrafish line Brn3C, and the embryos were collected from breeding adult zebrafish. Five-day-old larvae were cultured at the density of 50 embryos, and the larvae were classified into 4 groups: control, cisplatin group, DEX group, and DEX+yohimbine; adrenoreceptor blocker group. The DEX group was categorised into 3 subgroups by dosage; 0.1, 1, and 10 µM. Preconditioning was performed for 150 minutes and then exposed to cisplatin for 6 hours. The experiment was performed in 7 replicates for each group and the number of hair cells in 3 parts of the neuromasts of each fish was determined. Results Hair cell apoptosis by cisplatin was attenuated more significantly in the DEX preconditioning group than in the control group. However, the preconditioning effects were not blocked by yohimbine. Conclusion The results of this study suggest that hearing loss caused by vibration-induced noise could be reduced by using DEX and may occur through other mechanisms rather than adreno-receptors. PMID:25436046

  10. Effect of Hypoxic Preconditioning on Stress Reaction in Rats.

    PubMed

    Naryzhnaya, N V; Maslov, L N; Vychuzhanova, E A; Sementsov, A S; Podoksyonov, Yu K; Portnichenko, A G; Lishmanov, Yu B

    2015-08-01

    In rats, immobilization stress (24 h) induced involution of the thymus and spleen, adrenal hypertrophy, and pronounced elevation (by 67%) of serum cortisol in comparison with intact animals; the mean number of stomach ulcers in rats subjected to stress was 6.9. Hypoxic preconditioning consisting of 6 sessions of 10-min hypoxia (8% O2) followed by 10-min reoxygenation with atmospheric air induced adrenal hypertrophy and spleen involution, but did not change blood cortisol level; no stomach ulcers were found in preconditioned rats. In rats subjected to both hypoxic preconditioning and immobilization, the weights of the thymus, adrenal glands, and spleen, as well as cortisol level did not differ from the corresponding parameters in rats subjected to immobilization stress alone. The number of stomach ulcers in experimental rats was 1.5-fold lower than in the stress-control ones. Thus, hypoxic preconditioning exerts a pronounced preventive anti-ulcer effect during immobilization, but it does not affect other indices of the stress reaction. PMID:26385407

  11. 40 CFR 86.132-96 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Vehicle preconditioning. 86.132-96 Section 86.132-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New...

  12. 40 CFR 86.132-96 - Vehicle preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Vehicle preconditioning. 86.132-96 Section 86.132-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New...

  13. VoIP technology comes of age.

    PubMed

    2008-04-01

    Cabling specialist Connectix examines the growing potential for healthcare sector use of VoIP technology and highlights the importance of correct cabling infrastructure as a carrier of both voice and high-speed data traffic. PMID:18494421

  14. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke.

    PubMed

    Wang, Yuechun; Reis, Cesar; Applegate, Richard; Stier, Gary; Martin, Robert; Zhang, John H

    2015-10-01

    In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those recently reported methodological and mechanistic discoveries in the realm of ischemic conditioning. Due to the varied time differences of ischemic conditioning in different animal models and clinical trials, it is important to define optimal timing to achieve the best conditioning induced neuroprotection. This brings not only an opportunity in the treatment of stroke, but challenges as well, as data is just becoming available and the procedures are not yet optimized. The purpose of this review is to shed light on exploiting these ischemic conditioning modalities to protect the cerebrovascular system against diverse injuries and neurodegenerative disorders. PMID:25900056

  15. Hyperacute management of ischemic stroke.

    PubMed

    Song, Sarah

    2013-11-01

    Stroke is a devastating disease and currently the fourth leading cause of death in this country. Acute ischemic stroke is an emergency and requires effective triage, diagnosis, and critical management. The hyperacute management of ischemic stroke begins in the field, with recognition of stroke symptoms by emergency medical systems (EMS) personnel. The EMS is an important component to an effective stroke system of care, which also includes primary stroke centers, routing protocols for acute ischemic stroke, and telemedicine. Following the arrival of a potential stroke patient to the emergency room setting, patients should be stabilized and undergo assessment for potential intravenous alteplase (IV tPA) treatment. Assessments include diagnostic tests, neuroimaging, and standardized stroke evaluations. After these assessments have been performed, IV tPA, the only medication for acute stroke approved by the U.S. Food and Drug Administration, can be considered using a variety of inclusion and exclusion criteria. Previously time restrictions limited the usage of IV tPA to 3 hours, but this time window has now been extended for eligible candidates to 4.5 hours. The administration of IV tPA has specific requirements for monitoring and should be standardized via protocol across hospitals. PMID:24504604

  16. Security labeling in TCP/IP networks

    SciTech Connect

    Brown, C.D.

    1989-01-30

    TCP/IP is the name commonly used to refer to a suite of networking protocols that was originally developed under the auspices of the Department of Defense for use on the Arpanet. These protocols are in wide use today on a large number of networks and have become accepted as a de facto industry standard. The Transmission Control Protocol (TCP) occupies the transport layer in the protocol suite, and the Internet Protocol (IP) occupies the network layer. In addition, there are a wide variety of other protocols in the DDN protocol suite. For example, the Unreliable Datagram Protocol (UDP) is alternative transport layer protocol that provides a simple unreliable datagram (packet) delivery service and uses the services of IP. The File Transport Protocol (FTP) and TELNET are application layer protocols that provide for file transfers and interactive logins, respectively, across a network using the services of TCP and IP. In this paper, we will discuss security labeling in a TCP/IP network with emphasis on the attempts to standardize labels at the IP layer; however, we will also discuss some of the issues relating to application protocols and privileged server processes in host computer systems. 4 refs., 1 fig.

  17. Strategies for study of neuroprotection from cold-preconditioning.

    PubMed

    Mitchell, Heidi M; White, David M; Kraig, Richard P

    2010-01-01

    Neurological injury is a frequent cause of morbidity and mortality from general anesthesia and related surgical procedures that could be alleviated by development of effective, easy to administer and safe preconditioning treatments. We seek to define the neural immune signaling responsible for cold-preconditioning as means to identify novel targets for therapeutics development to protect brain before injury onset. Low-level pro-inflammatory mediator signaling changes over time are essential for cold-preconditioning neuroprotection. This signaling is consistent with the basic tenets of physiological conditioning hormesis, which require that irritative stimuli reach a threshold magnitude with sufficient time for adaptation to the stimuli for protection to become evident. Accordingly, delineation of the immune signaling involved in cold-preconditioning neuroprotection requires that biological systems and experimental manipulations plus technical capacities are highly reproducible and sensitive. Our approach is to use hippocampal slice cultures as an in vitro model that closely reflects their in vivo counterparts with multi-synaptic neural networks influenced by mature and quiescent macroglia/microglia. This glial state is particularly important for microglia since they are the principal source of cytokines, which are operative in the femtomolar range. Also, slice cultures can be maintained in vitro for several weeks, which is sufficient time to evoke activating stimuli and assess adaptive responses. Finally, environmental conditions can be accurately controlled using slice cultures so that cytokine signaling of cold-preconditioning can be measured, mimicked, and modulated to dissect the critical node aspects. Cytokine signaling system analyses require the use of sensitive and reproducible multiplexed techniques. We use quantitative PCR for TNF-α to screen for microglial activation followed by quantitative real-time qPCR array screening to assess tissue-wide cytokine changes. The latter is a most sensitive and reproducible means to measure multiple cytokine system signaling changes simultaneously. Significant changes are confirmed with targeted qPCR and then protein detection. We probe for tissue-based cytokine protein changes using multiplexed microsphere flow cytometric assays using Luminex technology. Cell-specific cytokine production is determined with double-label immunohistochemistry. Taken together, this brain tissue preparation and style of use, coupled to the suggested investigative strategies, may be an optimal approach for identifying potential targets for the development of novel therapeutics that could mimic the advantages of cold-preconditioning. PMID:20834222

  18. Reconstructing Clusters for Preconditioned Short-term Load Forecasting

    NASA Astrophysics Data System (ADS)

    Itagaki, Tadahiro; Mori, Hiroyuki

    This paper presents a new preconditioned method for short-term load forecasting that focuses on more accurate predicted value. In recent years, the deregulated and competitive power market increases the degree of uncertainty. As a result, more sophisticated short-term load forecasting techniques are required to deal with more complicated load behavior. To alleviate the complexity of load behavior, this paper presents a new preconditioned model. In this paper, clustering results are reconstructed to equalize the number of learning data after clustering with the Kohonen-based neural network. That enhances a short-term load forecasting model at each reconstructed cluster. The proposed method is successfully applied to real data of one-step ahead daily maximum load forecasting.

  19. HMC algorithm with multiple time scale integration and mass preconditioning

    NASA Astrophysics Data System (ADS)

    Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.

    2006-01-01

    We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.

  20. Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol

    PubMed Central

    2015-01-01

    Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys.2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. The approach also shows promise for free energy calculations when thermal noise can be controlled. PMID:25516726

  1. Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers

    NASA Technical Reports Server (NTRS)

    Guru Prasad, K.; Kane, J. H.

    1992-01-01

    The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.

  2. Toward future IP optical backbone networks

    NASA Astrophysics Data System (ADS)

    Urushidani, Shigeo

    2005-11-01

    The rapid and aggressive penetration of broadband access services such as fiber to the home (FTTH) has been accelerating the increase in IP traffic volume and new networking technologies are required in order to accommodate future traffic in a cost-effective manner. This paper overviews the advanced IP optical network architecture and technologies for very-large-scale IP backbone networks. These technologies are the key to accommodate the huge volumes of IP traffic expected and control network resources in an effective and dynamic manner. We describe advanced IP optical networking technologies which accommodate multiple service networks using multi-instance technologies, and enable multi-layer traffic engineering using virtual network topology technologies. The migration scenario is described from the existing networks to GMPLS networks; reference is made to the advanced Path Computation Element (PCE) which enables multi-layer traffic engineering and MPLS/GMPLS migration. New network concepts such as Layer 1 Virtual Private Network (L1VPN) and GMPLS interoperability issues, which are being discussed in IETF, are also described.

  3. Regulation of IP 3 Receptors by IP 3 and Ca 2+

    NASA Astrophysics Data System (ADS)

    Taylor, Colin W.; Swatton, Jane E.

    Inositol 1,4,5-trisphosphate ( IP 3) receptors are intracellular Ca 2+ channels that mediate release of Ca 2+ from intracellular stores. The channels are oligomeric assemblies of four subunits, each of which has an N-terminal IP 3-binding domain and each of which contributes to formation of the Ca 2+ channel. In mammals, three different genes encode IP 3 receptors subunits and the type 1 receptor (and perhaps the type 2 receptor) is also expressed as splice variants. Further diversity arises from assembly of the receptor in hetero- and homo-tetrameric channels. The subtypes differ in their expression and regulation, but they share the key property of being regulated by both IP3 and cytosolic Ca 2+. All three mammalian IP 3 subtypes, and probably also the IP 3 receptors expressed in invertebrates, are biphasically regulated by cytosolic Ca2+, although the underlying mechanisms appear to differ between subtypes. The interactions between IP 3 and Ca 2+ in controlling IP 3 receptor gating, and the physiological significance of such regulation will be reviewed.

  4. Object-oriented design of preconditioned iterative methods

    SciTech Connect

    Bruaset, A.M.

    1994-12-31

    In this talk the author discusses how object-oriented programming techniques can be used to develop a flexible software package for preconditioned iterative methods. The ideas described have been used to implement the linear algebra part of Diffpack, which is a collection of C++ class libraries that provides high-level tools for the solution of partial differential equations. In particular, this software package is aimed at rapid development of PDE-based numerical simulators, primarily using finite element methods.

  5. Parallel Domain Decomposition Preconditioning for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai; Kutler, Paul (Technical Monitor)

    1998-01-01

    This viewgraph presentation gives an overview of the parallel domain decomposition preconditioning for computational fluid dynamics. Details are given on some difficult fluid flow problems, stabilized spatial discretizations, and Newton's method for solving the discretized flow equations. Schur complement domain decomposition is described through basic formulation, simplifying strategies (including iterative subdomain and Schur complement solves, matrix element dropping, localized Schur complement computation, and supersparse computations), and performance evaluation.

  6. Preconditioning the bidomain model with almost linear complexity

    NASA Astrophysics Data System (ADS)

    Pierre, Charles

    2012-01-01

    The bidomain model is widely used in electro-cardiology to simulate spreading of excitation in the myocardium and electrocardiograms. It consists of a system of two parabolic reaction diffusion equations coupled with an ODE system. Its discretisation displays an ill-conditioned system matrix to be inverted at each time step: simulations based on the bidomain model therefore are associated with high computational costs. In this paper we propose a preconditioning for the bidomain model either for an isolated heart or in an extended framework including a coupling with the surrounding tissues (the torso). The preconditioning is based on a formulation of the discrete problem that is shown to be symmetric positive semi-definite. A block LU decomposition of the system together with a heuristic approximation (referred to as the monodomain approximation) are the key ingredients for the preconditioning definition. Numerical results are provided for two test cases: a 2D test case on a realistic slice of the thorax based on a segmented heart medical image geometry, a 3D test case involving a small cubic slab of tissue with orthotropic anisotropy. The analysis of the resulting computational cost (both in terms of CPU time and of iteration number) shows an almost linear complexity with the problem size, i.e. of type nlog α( n) (for some constant α) which is optimal complexity for such problems.

  7. Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-11-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality.

  8. Chromatin immunoprecipitation for ChIP-chip and ChIP-seq.

    PubMed

    Schulz, Sebastian; Häussler, Susanne

    2014-01-01

    Bacterial adaptation to given environmental conditions is largely achieved by complex gene regulatory processes. To address the question how and to what extend single transcriptional regulators modulate gene expression, chromatin immunoprecipitation (ChIP) coupled to DNA microarrays (ChIP-chip) or to next-generation sequencing (ChIP-seq) is one of the preferred methods. Both ChIP-chip and ChIP-seq can generate genome-wide maps of protein-DNA interactions and thus identify primary regulons of transcription factors. In combination with transcriptome analyses, the obtained data can be used to compile complex regulatory networks which in terms will advance our understanding of bacterial adaptation processes to specific environmental conditions. PMID:24818935

  9. Hypoxic preconditioning increases triiodothyronine (T3) level in the developing rat brain.

    PubMed

    Minato, Kenji; Tomimatsu, Takuji; Mimura, Kazuya; Jugder, Otgonbaatar; Kakigano, Aiko; Kanayama, Tomoko; Fujita, Satoko; Taniguchi, Yukiko; Kanagawa, Takeshi; Endo, Masayuki; Kimura, Tadashi

    2013-03-21

    Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the major causes of neurodegeneration and mortality in the neonatal period. Although hypoxic preconditioning (HPC) provided strong neuroprotection against HIE in an animal model, the mechanism underlying this effect is not fully understood especially in the immature brain. Here, we investigated whether thyroid hormones (THs), especially triiodothyronine (T3), which are essential during normal brain development, contribute to the neuroprotective mechanisms of HPC by using an established model of HPC in neonatal rats. HPC treatment (8% O2 for 2.5h at 37°C) was performed in immature rats at postnatal day 6 (P6). Subsequently, we investigated the levels of THs, TH receptors (TRs) and type 2 and 3 deiodinase (D2 and D3) mRNA, and glutamate transporter 1 (GLT1) at 24h after HPC treatment, and myelin basic protein (MBP) at 6, 12 and 24h after HPC treatment. The HIE procedure was performed at 24h after HPC, and the neuroprotective effect of HPC was assessed via microtubule-associated protein 2 (MAP2) and MBP immunohistochemical staining at 14 days after HIE (P21). HPC treatment afforded marked neuroprotection at 14 days after HIE. The local level of T3 was upregulated 24h after HPC treatment in the developing rat brain, probably via the upregulation of D2. In addition, the expression of MBP and GLT1, which are the downstream protein of T3, were significantly increased 24h after HPC treatment. The present study indicates that thyroid hormones and their associated molecules may be involved in neuroprotective mechanisms of HPC during the developmental period. PMID:23376195

  10. A survey of IP over ATM architectures

    SciTech Connect

    Chen, H.; Tsang, R.; Brandt, J.; Hutchins, J.

    1997-07-01

    Over the past decade, the Internet has burgeoned into a worldwide information highway consisting of approximately 5 million hosts on over 45,000 interconnected networks. This unprecedented growth, together with the introduction of multimedia workstations, has spurred the development of innovative applications that require high speed, low latency, and real-time transport. Today`s Internet can neither scale in its bandwidth nor guarantee the Quality of Services (QoS) necessary to meet these performance requirements. Many network researchers propose to use the Asynchronous Transfer Mode (ATM) technology as the underlying infrastructure for the next generation of workgroup, campus, and enterprise IP networks. Since ATM is significantly different from today`s legacy network technologies, efficient implementation of IP over ATM is especially challenging. This tutorial paper covers several existing proposals that integrate IP over ATM.

  11. A day of an IP worker.

    PubMed

    Pratt, E

    1991-09-01

    Judging from the warm welcome villagers issue its field workers, the Integrated Family Planning, Nutrition and Parasite Control Project (IP) has been successful in Ghana. Employing a strategy of community participation and self-help, the IP project seeks to improve the health and nutritional conditions of villagers, as well as increase family planning acceptance. 9 communities were chosen for the pilot IP, including Tsotsoo, a village of 500 people who are mostly subsistence farmers. These villagers have long suffered from intestinal parasite infections -- especially hookworms and roundworms. The village has also experienced a high birth rate. But things began changing with the beginning of the IP project, which brought along with it weekly visits by Juliana Vanderpuye, and IP field worker. "Auntie Julie," as the villagers call her, has been working with the community for 2 years. Since the success of the program depends on community participation, Auntie Julie first meets with the Local Steering Committee during her visits, where they plan strategies and discuss on-going projects. One such project is the building of latrines, made from local materials and through communal labor. The women's latrine has already been completed, and the village now plans to construct a men's latrine. Auntie Julie also visits households to discuss health and personal hygiene. She examines new-born babies and their mothers, gives nutritional advice, and examines children to see if they need to be dewormed. After health and nutrition are addressed, the field worker discusses family planning. Since the IP will eventually come to an end, local villagers have begun receiving training on sanitation and family planning. PMID:12284295

  12. Space-Based Voice over IP Networks

    NASA Technical Reports Server (NTRS)

    Nguyen, Sam P.; Okino, Clayton; Walsh, William; Clare, Loren

    2007-01-01

    In human space exploration missions (e.g. a return to the Moon and for future missions to Mars), there will be a need to provide voice communications services. In this work we focus on the performance of Voice over IP (VoIP) techniques applied to space networks, where long range latencies, simplex links, and significant bit error rates occur. Link layer and network layer overhead issues are examined. Finally, we provide some discussion on issues related to voice conferencing in the space network environment.

  13. De novo ChIP-seq analysis.

    PubMed

    He, Xin; Cicek, A Ercument; Wang, Yuhao; Schulz, Marcel H; Le, Hai-Son; Bar-Joseph, Ziv

    2015-01-01

    Methods for the analysis of chromatin immunoprecipitation sequencing (ChIP-seq) data start by aligning the short reads to a reference genome. While often successful, they are not appropriate for cases where a reference genome is not available. Here we develop methods for de novo analysis of ChIP-seq data. Our methods combine de novo assembly with statistical tests enabling motif discovery without the use of a reference genome. We validate the performance of our method using human and mouse data. Analysis of fly data indicates that our method outperforms alignment based methods that utilize closely related species. PMID:26400819

  14. IP-RFID Based Container Monitoring System

    NASA Astrophysics Data System (ADS)

    Choi, Hyung-Rim; Park, Byung-Kwon; Park, Yong-Sung; Lee, Chang-Sup; Park, Chang-Hyun

    RFID technology in container management field is considered for increasing productivity and efficiency in logistics industry. But there are a lot of problems caused by inappropriate application of RFID technology in shipping logistics. Therefore, technology development based on IP is needed for accepting diverse technology applied before and offering better service to develop container management technology involved with RFID. In this study, realtime container monitoring system using IP-RFID is designed and implemented for supplementing weakness of information gathering using existing RFID and transferring data in real time to user.

  15. Preconditioning concepts in polymer flooding in high-salinity reservoirs; Laboratory investigations and case histories

    SciTech Connect

    Volz, H.; Maltin, B.K. ); Sohn, W.O.

    1990-11-01

    In polymer-flood field projects with partially hydrolized polyacrylamide (PH PAA) solutions, the authors applied two methods of preconditioning: a preflush with fresh water and the use of a relatively small slug of a less-salt-sensitive polymer. Results of laboratory work that led to an improved preconditioning concept with polymer are described. Case histories of two projects with two different preconditioning processes are presented and discussed in detail.

  16. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood-brain barrier disruption and neurological deficits in stroke.

    PubMed

    Alfieri, Alessio; Srivastava, Salil; Siow, Richard C M; Cash, Diana; Modo, Michel; Duchen, Michael R; Fraser, Paul A; Williams, Steven C R; Mann, Giovanni E

    2013-12-01

    Disruption of the blood-brain barrier (BBB) and cerebral edema are the major pathogenic mechanisms leading to neurological dysfunction and death after ischemic stroke. The brain protects itself against infarction via activation of endogenous antioxidant defense mechanisms, and we here report the first evidence that sulforaphane-mediated preactivation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target heme oxygenase-1 (HO-1) in the cerebral vasculature protects the brain against stroke. To induce ischemic stroke, Sprague-Dawley rats were subjected to 70 min middle cerebral artery occlusion (MCAo) followed by 4, 24, or 72 h reperfusion. Nrf2 and HO-1 protein expression was upregulated in cerebral microvessels of peri-infarct regions after 4-72 h, with HO-1 preferentially associated with perivascular astrocytes rather than the cerebrovascular endothelium. In naïve rats, treatment with sulforaphane increased Nrf2 expression in cerebral microvessels after 24h. Upregulation of Nrf2 by sulforaphane treatment prior to transient MCAo (1h) was associated with increased HO-1 expression in perivascular astrocytes in peri-infarct regions and cerebral endothelium in the infarct core. BBB disruption, lesion progression, as analyzed by MRI, and neurological deficits were reduced by sulforaphane pretreatment. As sulforaphane pretreatment led to a moderate increase in peroxynitrite generation, we suggest that hormetic preconditioning underlies sulforaphane-mediated protection against stroke. In conclusion, we propose that pharmacological or dietary interventions aimed to precondition the brain via activation of the Nrf2 defense pathway in the cerebral microvasculature provide a novel therapeutic approach for preventing BBB breakdown and neurological dysfunction in stroke. PMID:24017972

  17. Zinc preconditioning protects against neuronal apoptosis through the mitogen-activated protein kinase-mediated induction of heat shock protein 70.

    PubMed

    Lee, Jeong-Min; Lee, Jong-Min; Kim, Ki-Ryeong; Im, Hana; Kim, Yang-Hee

    2015-04-01

    During brain ischemic preconditioning (PC), mild bursts of ischemia render neurons resistant to subsequent strong ischemic injuries. Previously, we reported that zinc plays a key role in PC-induced neuroprotection in vitro and in vivo. Zinc-triggered p75(NTR) induction transiently activates caspase-3, which cleaves poly(ADP-ribose) polymerase-1 (PARP-1). Subsequently, the PARP-1 over-activation-induced depletion of nicotinamide adenine dinucleotide (NAD(+))/adenosine triphosphate (ATP) after exposures to lethal doses of zinc or N-methyl-D-aspartate is significantly attenuated in cortical neuronal cultures. In the present study, zinc-mediated preconditioning (Zn PC) reduced apoptotic neuronal death that was caused by N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), etoposide, or staurosporine in mouse cortical cells. We focused on heat shock protein 70 (HSP70) because NAD(+)/ATP depletion does not directly cause apoptosis, and HSP70 can inhibit the activation of caspase-9 or caspase-3 by preventing apoptosome formation or cytochrome C release. Zn PC-mediated HSP70 induction was required for neuroprotection against neuronal apoptosis, and geldanamycin-induced HSP70 induction sufficiently blocked neuronal apoptotic cell death. Furthermore, Zn PC-mediated HSP70 induction was blocked by chemical inhibitors of extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein kinase (MAPK) signaling, but not c-Jun N-terminal protein kinase. Similarly, neuroprotection by Zn PC against TPEN-induced apoptosis was almost completely reversed by the blockade of ERK or p38 MAPK signaling. Our findings suggest that the ERK- or p38 MAPK-mediated induction of HSP70 plays a key role in inhibiting caspase-3 activation during Zn PC. PMID:25712525

  18. Is VoIP Worth It?

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2008-01-01

    School districts have by and large had great results implementing VoIP, which has become the conduit for delivering expanded functionality, achieving greater internal control, and gaining freedom from onerous monthly phone bills. But demonstrating a financial return on what is a substantial investment can be an elusive effort. The goal of…

  19. How To: Be VoIP-Savvy

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2005-01-01

    Cablevision, Comcast, Verizon, and many other high-speed broadband Internet providers are now also offering telephone services through "Voice over Internet Protocol" (VoIP). This technology sends ordinary telephone calls over the Internet rather than over telephone lines. While impractical without the use of a broadband Internet connection, with…

  20. Call progress time measurement in IP telephony

    NASA Astrophysics Data System (ADS)

    Khasnabish, Bhumip

    1999-11-01

    Usually a voice call is established through multiple stages in IP telephony. In the first stage, a phone number is dialed to reach a near-end or call-originating IP-telephony gateway. The next stages involve user identification through delivering an m-digit user-id to the authentication and/or billing server, and then user authentication by using an n- digit PIN. After that, the caller is allowed (last stage dial tone is provided) to dial a destination phone number provided that authentication is successful. In this paper, we present a very flexible method for measuring call progress time in IP telephony. The proposed technique can be used to measure the system response time at every stage. It is flexible, so that it can be easily modified to include new `tone' or a set of tones, or `voice begin' can be used in every stage to detect the system's response. The proposed method has been implemented using scripts written in Hammer visual basic language for testing with a few commercially available IP telephony gateways.

  1. Operational Space Weather Products at IPS

    NASA Astrophysics Data System (ADS)

    Neudegg, D.; Steward, G.; Marshall, R.; Terkildsen, M.; Kennewell, J.; Patterson, G.; Panwar, R.

    2008-12-01

    IPS Radio and Space Services operates an extensive network (IPSNET) of monitoring stations and observatories within the Australasian and Antarctic regions to gather information on the space environment. This includes ionosondes, magnetometers, GPS-ISM, oblique HF sounding, riometers, and solar radio and optical telescopes. IPS exchanges this information with similar organisations world-wide. The Regional Warning Centre (RWC) is the Australian Space Forecast Centre (ASFC) and it utilizes this data to provide products and services to support customer operations. A wide range of customers use IPS services including; defence force and emergency services using HF radio communications and surveillance systems, organisations involved in geophysical exploration and pipeline cathodic protection, GPS users in aviation. Subscriptions to the alerts, warnings, forecasts and reports regarding the solar, geophysical and ionospheric conditions are distributed by email and Special Message Service (SMS). IPS also develops and markets widely used PC software prediction tools for HF radio skywave and surface wave (ASAPS/GWPS) and provides consultancy services for system planning.

  2. EQuIP-ped for Success

    ERIC Educational Resources Information Center

    Ewing, Molly

    2015-01-01

    The Educators Evaluating the Quality of Instructional Products (EQuIP) Rubric for science is a new tool for science educators that provides criteria by which to examine the alignment and overall quality of lessons and units with respect to the "Next Generation Science Standards" ("NGSS"). The rubric criteria are divided into

  3. EQuIP-ped for Success

    ERIC Educational Resources Information Center

    Ewing, Molly

    2015-01-01

    The Educators Evaluating the Quality of Instructional Products (EQuIP) Rubric for science is a new tool for science educators that provides criteria by which to examine the alignment and overall quality of lessons and units with respect to the "Next Generation Science Standards" ("NGSS"). The rubric criteria are divided into…

  4. IP validation in remote microelectronics testing

    NASA Astrophysics Data System (ADS)

    Osseiran, Adam; Eshraghian, Kamran; Lachowicz, Stefan; Zhao, Xiaoli; Jeffery, Roger; Robins, Michael

    2004-03-01

    This paper presents the test and validation of FPGA based IP using the concept of remote testing. It demonstrates how a virtual tester environment based on a powerful, networked Integrated Circuit testing facility, aimed to complement the emerging Australian microelectronics based research and development, can be employed to perform the tasks beyond the standard IC test. IC testing in production consists in verifying the tested products and eliminating defective parts. Defects could have a number of different causes, including process defects, process migration and IP design and implementation errors. One of the challenges in semiconductor testing is that while current fault models are used to represent likely faults (stuck-at, delay, etc.) in a global context, they do not account for all possible defects. Research in this field keeps growing but the high cost of ATE is preventing a large community from accessing test and verification equipment to validate innovative IP designs. For these reasons a world class networked IC teletest facility has been established in Australia under the support of the Commonwealth government. The facility is based on a state-of-the-art semiconductor tester operating as a virtual centre spanning Australia and accessible internationally. Through a novel approach the teletest network provides virtual access to the tester on which the DUT has previously been placed. The tester software is then accessible as if the designer is sitting next to the tester. This paper presents the approach used to test and validate FPGA based IPs using this remote test approach.

  5. 75 FR 13235 - IP-Enabled Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... 47 CFR 63.60(a) and (f), published on August 7, 2009 (74 FR 39551), were approved by the Office of... published a document in the Federal Register, 74 FR 39551, August 7, 2009, that sets forth an effective date... COMMISSION 47 CFR Part 63 IP-Enabled Services AGENCY: Federal Communications Commission ACTION: Final...

  6. Hyperbaric oxygen preconditioning attenuates hyperglycemia-enhanced hemorrhagic transformation by inhibiting matrix metalloproteinases in focal cerebral ischemia in rats.

    PubMed

    Soejima, Yoshiteru; Hu, Qin; Krafft, Paul R; Fujii, Mutsumi; Tang, Jiping; Zhang, John H

    2013-09-01

    Hyperglycemia dramatically aggravates brain infarct and hemorrhagic transformation (HT) after ischemic stroke. Oxidative stress and matrix metalloproteinases (MMPs) play an important role in the pathophysiology of HT. Hyperbaric oxygen preconditioning (HBO-PC) has been proved to decrease oxidative stress and has been demonstrated to be neuroprotective in experimental stroke models. The present study determined whether HBO-PC would ameliorate HT by a pre-ischemic increase of reactive oxygen species (ROS) generation, and a suppression of MMP-2 and MMP-9 in hyperglycemic middle cerebral artery occlusion (MCAO) rats. Rats were pretreated with HBO (100% O₂, 2.5 atmosphere absolutes) 1 h daily for 5 days before MCAO. Acute hyperglycemia was induced by an injection of 50% dextrose. Neurological deficits, infarction volume and hemorrhagic volume were assessed 24 h and 7 days after ischemia. ROS scavenger n-acetyl cysteine (NAC), hypoxia-inducible factor-1α (HIF-1α), inhibitor 2-methoxyestradiol (2ME2) and activator cobalt chloride (CoCl₂), and MMP inhibitor SB-3CT were administrated for mechanism study. The activity of MMP-2 and MMP-9, and the expression HIF-1α were measured. HBO-PC improved neurological deficits, and reduced hemorrhagic volume; the expression of HIF-1α was significantly decreased, and the activity of MMP-2 and MMP-9 was reduced by HBO-PC compared with vehicle group. Our results suggested that HBO-PC attenuated HT via decreasing HIF-1α and its downstream MMP-2 and MMP-9 in hyperglycemic MCAO rats. PMID:23537951

  7. Expression of Monocarboxylate Transporter Isoforms in Rat Skeletal Muscle Under Hypoxic Preconditioning and Endurance Training.

    PubMed

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju

    2016-03-01

    Saxena, Saurabh, Dhananjay Shukla, and Anju Bansal. Expression of monocarboxylate transporter isoforms in rat skeletal muscle under hypoxic preconditioning and endurance training. High Alt Med Biol 17:32-42, 2016-Previously, we have reported the regulation of monocarboxylate transporters (MCT)1 and MCT4 by physiological stimuli such as hypoxia and exercise. In the present study, we have evaluated the effect of hypoxic preconditioning and training on expression of different MCT isoforms in muscles. We found the increased mRNA expression of MCT1, MCT11, and MCT12 after hypoxic preconditioning with cobalt chloride and training. However, the expression of other MCT isoforms increased marginally or even reduced after hypoxic preconditioning. Only the protein expression of MCT1 increased after hypoxia preconditioning. MCT2 protein expression increased after training only and MCT4 protein expression decreased both in preconditioning and hypoxic training. Furthermore, we found decreased plasma lactate level during hypoxia preconditioning (0.74-fold), exercise (0.78-fold), and hypoxia preconditioning along with exercise (0.67-fold), which indicates increased lactate uptake by skeletal muscle. The protein-protein interactions with hypoxia inducible factor-1 and MCT isoforms were also evaluated, but no interaction was found. In conclusion, we say that almost all MCTs are expressed in red gastrocnemius muscle at the mRNA level and their expression is regulated differently under hypoxia preconditioning and exercise condition. PMID:26716978

  8. Using VoIP to compete.

    PubMed

    Werbach, Kevin

    2005-09-01

    Internet telephony, or VoIP, is rapidly replacing the conventional kind. This year, for the first time, U.S. companies bought more new Internet-phone connections than standard lines. The major driver behind this change is cost. But VoIP isn't just a new technology for making old-fashioned calls cheaper, says consultant Kevin Werbach. It is fundamentally changing how companies use voice communications. What makes VoIP so powerful is that it turns voice into digital data packets that can be stored, copied, combined with other data, and distributed to virtually any device that connects to the Internet. And it makes it simple to provide all the functionality of a corporate phone-call features, directories, security-to anyone anywhere there's broadband access. That fosters new kinds of businesses such as virtual call centers, where widely dispersed agents work at all hours from their homes. The most successful early adopters, says Werbach, will focus more on achieving business objectives than on saving money. They will also consider how to push VoIP capabilities out to the extended organization, making use of everyone as a resource. Deployment may be incremental, but companies should be thinking about where VoIP could take them. Executives should ask what they could do if, on demand, they could bring all their employees, customers, suppliers, and partners together in a virtual room, with shared access to every modern communications and computing channel. They should take a fresh look at their business processes to find points at which richer and more customizable communications could eliminate bottlenecks and enhance quality. The important dividing line won't be between those who deploy Vol P and those who don't, or even between early adopters and laggards. It will be between those who see Vol P as just a new way to do the same old things and those who use itto rethink their entire businesses. PMID:16171218

  9. Characteristics of Misclassified CT Perfusion Ischemic Core in Patients with Acute Ischemic Stroke

    PubMed Central

    Geuskens, Ralph R. E. G.; Borst, Jordi; Lucas, Marit; Boers, A. M. Merel; Berkhemer, Olvert A.; Roos, Yvo B. W. E. M.; van Walderveen, Marianne A. A.; Jenniskens, Sjoerd F. M.; van Zwam, Wim H.; Dippel, Diederik W. J.; Majoie, Charles B. L. M.; Marquering, Henk A.

    2015-01-01

    Background CT perfusion (CTP) is used to estimate the extent of ischemic core and penumbra in patients with acute ischemic stroke. CTP reliability, however, is limited. This study aims to identify regions misclassified as ischemic core on CTP, using infarct on follow-up noncontrast CT. We aim to assess differences in volumetric and perfusion characteristics in these regions compared to areas that ended up as infarct on follow-up. Materials and Methods This study included 35 patients with >100 mm brain coverage CTP. CTP processing was performed using Philips software (IntelliSpace 7.0). Final infarct was automatically segmented on follow-up noncontrast CT and used as reference. CTP and follow-up noncontrast CT image data were registered. This allowed classification of ischemic lesion agreement (core on CTP: rMTT≥145%, aCBV<2.0 ml/100g and infarct on follow-up noncontrast CT) and misclassified ischemic core (core on CTP, not identified on follow-up noncontrast CT) regions. False discovery ratio (FDR), defined as misclassified ischemic core volume divided by total CTP ischemic core volume, was calculated. Absolute and relative CTP parameters (CBV, CBF, and MTT) were calculated for both misclassified CTP ischemic core and ischemic lesion agreement regions and compared using paired rank-sum tests. Results Median total CTP ischemic core volume was 49.7ml (IQR:29.9ml-132ml); median misclassified ischemic core volume was 30.4ml (IQR:20.9ml-77.0ml). Median FDR between patients was 62% (IQR:49%-80%). Median relative mean transit time was 243% (IQR:198%-289%) and 342% (IQR:249%-432%) for misclassified and ischemic lesion agreement regions, respectively. Median absolute cerebral blood volume was 1.59 (IQR:1.43–1.79) ml/100g (P<0.01) and 1.38 (IQR:1.15–1.49) ml/100g (P<0.01) for misclassified ischemic core and ischemic lesion agreement, respectively. All CTP parameter values differed significantly. Conclusion For all patients a considerable region of the CTP ischemic core is misclassified. CTP parameters significantly differed between ischemic lesion agreement and misclassified CTP ischemic core, suggesting that CTP analysis may benefit from revisions. PMID:26536226

  10. Growth factors in ischemic stroke

    PubMed Central

    Lanfranconi, S; Locatelli, F; Corti, S; Candelise, L; Comi, G P; Baron, P L; Strazzer, S; Bresolin, N; Bersano, A

    2011-01-01

    Abstract Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects. PMID:20015202

  11. Ischemic post-conditioning to counteract intestinal ischemia/reperfusion injury

    PubMed Central

    Guan, Yan-Fang; Pritts, Timothy A; Montrose, Marshall H

    2010-01-01

    Intestinal ischemia is a severe disorder with a variety of causes. Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion (IR) may lead to even more serious complications from intestinal atrophy to multiple organ failure and death. The susceptibility of the intestine to IR-induced injury (IRI) appears from various experimental studies and clinical settings such as cardiac and major vascular surgery and organ transplantation. Whereas oxygen free radicals, activation of leukocytes, failure of microvascular perfusion, cellular acidosis and disturbance of intracellular homeostasis have been implicated as important factors in the pathogenesis of intestinal IRI, the mechanisms underlying this disorder are not well known. To date, increasing attention is being paid in animal studies to potential pre- and post-ischemia treatments that protect against intestinal IRI such as drug interference with IR-induced apoptosis and inflammation processes and ischemic pre-conditioning. However, better insight is needed into the molecular and cellular events associated with reperfusion-induced damage to develop effective clinical protection protocols to combat this disorder. In this respect, the use of ischemic post-conditioning in combination with experimentally prolonged acidosis blocking deleterious reperfusion actions may turn out to have particular clinical relevance. PMID:21607154

  12. Glycine preconditioning to ameliorate pulmonary ischemia reperfusion injury in rats†

    PubMed Central

    Sommer, Sebastian-Patrick; Sommer, Stefanie; Sinha, Bhanu; Leyh, Rainer G.

    2012-01-01

    This study examines the impact of glycine (Gly) preconditioning on ischemia reperfusion (IR)-induced pulmonary mitochondrial injury to research the previously, in pig lungs, demonstrated Gly-dependent amelioration of pulmonary IR injury. IR injury was induced in rat lungs by 30 min pulmonary hilum clamping followed by 60 min reperfusion time. Rats were subjected to controls, shams and two study groups (IR30/60, Gly-IR30/60) receiving 37.5 mg Gly i.v. or not before IR induction. The wet/dry-weight ratio, mitochondria viability (MV), membrane integrity (MI), respiratory chain complex (RCC) activities, mitochondrial membrane potential (ΔΨm) and cytochrome C (Cyt C) content were analysed. In IR30/60, RCC and MV were impaired; Cyt C loss and MI combined with matrix metalloproteinase-9 (MMP-9) activation and ΔΨm alteration were observed when compared with controls. In Gly-IR30/60, complex II function and mitochondrial viability were protected during IR, and MMP-9 activation combined with tissue-water content accumulation and ΔΨm alteration were ameliorated. Cyt C loss, mitochondrial membranes damage, tissue GSH oxidation or neutrophil sequestration was not extenuated in Gly-IR30/60. Gly ameliorates IR-associated mitochondrial dysfunction and decay of viability and normalizes ΔΨm but does not protect from Cyt C liberation and mitochondrial membrane damage. Our data suggest that the previously described effect of Gly preconditioning results at least partially from mitochondrial protection. A dose-finding study is necessary to improve results of Gly preconditioning. PMID:22350772

  13. Steps to translate preconditioning from basic research to the clinic

    PubMed Central

    Bahjat, Frances R; Gesuete, Raffaella; Stenzel-Poore, Mary P

    2012-01-01

    Efforts to treat cardiovascular and cerebrovascular diseases often focus on the mitigation of ischemia-reperfusion (I/R) injury. Many treatments or preconditioners are known to provide substantial protection against the I/R injury when administered prior to the event. Brief periods of ischemia itself have been validated as a means to achieve neuroprotection in many experimental disease settings, in multiple organ systems, and in multiple species suggesting a common pathway leading to tolerance. In addition, pharmacological agents that act as potent preconditioners have been described. Experimental induction of neuroprotection using these various preconditioning paradigms has provided a unique window into the brains endogenous protective mechanisms. Moreover, preconditioning agents themselves hold significant promise as clinical-stage therapies for prevention of I/R injury. The aim of this article is to explore several key steps involved in the preclinical validation of preconditioning agents prior to the conduct of clinical studies in humans. Drug development is difficult, expensive and relies on multi-factorial analysis of data from diverse disciplines. Importantly, there is no single path for the preclinical development of a novel therapeutic and no proven strategy to ensure success in clinical translation. Rather, the conduct of a diverse array of robust preclinical studies reduces the risk of clinical failure by varying degrees depending upon the relevance of preclinical models and drug pharmacology to humans. A strong sense of urgency and high tolerance of failure are often required to achieve success in the development of novel treatment paradigms for complex human conditions. PMID:23504609

  14. Weighted graph based ordering techniques for preconditioned conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Clift, Simon S.; Tang, Wei-Pai

    1994-01-01

    We describe the basis of a matrix ordering heuristic for improving the incomplete factorization used in preconditioned conjugate gradient techniques applied to anisotropic PDE's. Several new matrix ordering techniques, derived from well-known algorithms in combinatorial graph theory, which attempt to implement this heuristic, are described. These ordering techniques are tested against a number of matrices arising from linear anisotropic PDE's, and compared with other matrix ordering techniques. A variation of RCM is shown to generally improve the quality of incomplete factorization preconditioners.

  15. Preconditioning methods for ideal and multiphase fluid flows

    NASA Astrophysics Data System (ADS)

    Gupta, Ashish

    The objective of this study is to develop a preconditioning method for ideal and multiphase multispecies compressible fluid flow solver using homogeneous equilibrium mixture model. The mathematical model for fluid flow going through phase change uses density and temperature in the formulation, where the density represents the multiphase mixture density. The change of phase of the fluid is then explicitly determined using the equation of state of the fluid, which only requires temperature and mixture density. The method developed is based on a finite-volume framework in which the numerical fluxes are computed using Roe's approximate Riemann solver and the modified Harten, Lax and Van-leer scheme (HLLC). All speed Roe and HLLC flux based schemes have been developed either by using preconditioning or by directly modifying dissipation to reduce the effect of acoustic speed in its numerical dissipation when Mach number decreases. Preconditioning proposed by Briley, Taylor and Whitfield, Eriksson and Turkel are studied in this research, where as low dissipation schemes proposed by Rieper and Thornber, Mosedale, Drikakis, Youngs and Williams are also considered. Various preconditioners are evaluated in terms of development, performance, accuracy and limitations in simulations at various Mach numbers. A generalized preconditioner is derived which possesses well conditioned eigensystem for multiphase multispecies flow simulations. Validation and verification of the solution procedure are carried out on several small model problems with comparison to experimental, theoretical, and other numerical results. Preconditioning methods are evaluated using three basic geometries; 1) bump in a channel 2) flow over a NACA0012 airfoil and 3) flow over a cylinder, which are then compared with theoretical and numerical results. Multiphase capabilities of the solver are evaluated in cryogenic and non-cryogenic conditions. For cryogenic conditions the solver is evaluated by predicting cavitation on two basic geometries for which experimental data are available, that is, flow over simple foil and a quarter caliber hydrofoil in a tunnel using liquid nitrogen as a fluid. For non-cryogenic conditions, water near boiling conditions is used to predict cavitation on two simple geometries, that is, flow over simple foil in a tunnel and flow over a one caliber ogive. Cavitation predictions in both cryogenic and non-cryogenic cases are shows to agree well with available experimental data.

  16. Customer choice test is running well for IP

    SciTech Connect

    1996-06-01

    As of May 4, eight of the 21 eligible Illinois Power Company (IP) electricity customers had chosen to buy some of their power from an entity other than IP. They are free to do this because IP is conducting an experiment in customer choice, the first of its kind in the country, according to the utility. Although it is still very early, the experiment seems to be working well. {open_quotes}Our experience so far has been very good,{close_quotes} said John Dewey, a spokesman for IP. {open_quotes}Some of our customers say they expect to see substantial savings.{close_quotes} IP expects to gain knowledge of what it takes to retain customers and, when the entire industry becomes competitive, to gain new customers. IP`s own marketing affiliate, Illinova Power Marketing, based in Salt Lake City, Utah, is participating: It arranged for 4 MWe of power from another supplier to be shipped across IP`s transmission system to one of IP`s customers. IP`s tariff for such use of its transmission lines, as approved by the Federal Energy Regulatory Commission, is between 0.3 and 0.5 cents/kWh.

  17. Optimization of OSPF Routing in IP Networks

    NASA Astrophysics Data System (ADS)

    Bley, Andreas; Fortz, Bernard; Gourdin, Eric; Holmberg, Kaj; Klopfenstein, Olivier; Pióro, Michał; Tomaszewski, Artur; Ümit, Hakan

    The Internet is a huge world-wide packet switching network comprised of more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs) autonomous system AS . They all rely on the Internet Protocol (IP) internet protocol IP for transport of packets across the network. And most of them use shortest path routing protocols shortest path routing!protocols , such as OSPF or IS-IS, to control the routing of IP packets routing!of IP packets within an AS. The idea of the routing is extremely simple — every packet is forwarded on IP links along the shortest route between its source and destination nodes of the AS. The AS network administrator can manage the routing of packets in the AS by supplying the so-called administrative weights of IP links, which specify the link lengths that are used by the routing protocols for their shortest path computations. The main advantage of the shortest path routing policy is its simplicity, allowing for little administrative overhead. From the network engineering perspective, however, shortest path routing can pose problems in achieving satisfactory traffic handling efficiency. As all routing paths depend on the same routing metric routing!metric , it is not possible to configure the routing paths for the communication demands between different pairs of nodes explicitly or individually; the routing can be controlled only indirectly and only as a whole by modifying the routing metric. Thus, one of the main tasks when planning such networks is to find administrative link weights that induce a globally efficient traffic routing traffic!routing configuration of an AS. It turns out that this task leads to very difficult mathematical optimization problems. In this chapter, we discuss and describe exact integer programming models and solution approaches as well as practically efficient smart heuristics for such shortest path routing problems shortest path routing!problems .

  18. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.

    PubMed

    Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun

    2016-06-01

    Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials. PMID:27016619

  19. Neuroprotective Mechanisms of Taurine against Ischemic Stroke

    PubMed Central

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-01-01

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke. PMID:24961429

  20. Acute ischemic stroke therapy. A clinical overview.

    PubMed

    Onal, M Z; Fisher, M

    1997-01-01

    Acute ischemic stroke therapy has two basic therapies, dissolving the intravascular occlusion by thrombolytic therapy and protecting the brain from the harmfull cellular, and metabolic consequences ofischemic injury by neuroprotective therapy. It seems most likely that the methods that will be used to treat the acute ischemic stroke patient will be multiple, likely a combination of thrombolytic therapy for early reperfusion and neuroprotective therapy for maintaining vitality. In the last decade, a number of advances in the field of imaging and pharmacology have been made which should provide meaningful improvement for the management of acute ischemic stroke patients in the near future. This update summarizes recent clinical trials and emphasizes the question of risk versus benefit for the acute ischemic stroke therapies being developed. PMID:9363826

  1. Histopathologic studies of ischemic optic neuropathy.

    PubMed Central

    Knox, D L; Kerrison, J B; Green, W R

    2000-01-01

    PURPOSE: To define the histopathologic features of eyes in which a pathologic diagnosis of ischemic optic neuropathy had been made in the years 1951 through 1998. METHODS: The following data were documented: age of patient, race, sex, source of tissue, cause of death, clinical history, interval from loss of vision to death, enucleation, exenteration, and biopsy. The histopathologic criteria for diagnosis of ischemic optic neuropathy were the presence of localized ischemic edema, cavernous degeneration, or an area of atrophy located superior or inferior in the optic nerve. Cases with history of abrupt loss of vision were combined with reports from the literature to construct a time table of histopathologic features and associated conditions. RESULTS: Ischemic optic neuropathy was present in 193 eyes. There were 88 females and 65 males. The average age was 71.6 years. Ischemic edema without (early) and with (later) gitter macrophages was present in 26 (13.5%). Cavernous degeneration was present in 69 nerves (36%). Mucopolysaccharide (MPS) was present in 37 cavernous lesions 1 month or longer after loss of vision. Cavernous lesions were seen in 3 eyes in which peripapillary retinal nerve fiber layer hemorrhage had been observed prior to death. Atrophic lesions, the most common pattern, were observed in 133 optic nerves (66.8%). More than 1 ischemic lesion was seen in 38 optic nerves (19.7%). Bilateral ischemic lesions were seen in 50 (35.2%) of 142 paired eyes. CONCLUSIONS: Ischemic optic nerve lesions are initially acellular and later show macrophage infiltration. Cavernous lesions with MPS are present 4 weeks or longer after vision loss. The location of MPS posteriorly and along the internal margin suggests that MPS is produced at the edges of lesions. Progressive vision loss in ischemic optic neuropathy may be secondary to compression of intact nerve from ischemic edema and cavernous swelling, or a second ischemic lesion. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 A FIGURE 24 B FIGURE 24 C FIGURE 24 D FIGURE 24 E FIGURE 24 F FIGURE 25 A FIGURE 25 B FIGURE 25 C FIGURE 25 D FIGURE 25 E FIGURE 25 F FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 PMID:11190024

  2. Research study on IPS digital controller design

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Folkerts, C.

    1976-01-01

    The performance is investigated of the simplified continuous-data model of the Instrument Pointing System (IPS). Although the ultimate objective is to study the digital model of the system, knowledge on the performance of the continuous-data model is important in the sense that the characteristics of the digital system should approach those of the continuous-data system as the sampling period approaches zero.

  3. [Ischemic colitis induced by cocaine. Clinical case].

    PubMed

    Boza, Camilo; Dagnino, Bruno; Garrido, Ana María; Llanos, Osvaldo

    2002-06-01

    We report a 29 years old male, with a history of cocaine abuse and excessive alcohol intake, who was admitted to the hospital with an acute peritonitis. The patient was operated and multiple perforations of the cecum were found. A right hemicolectomy was performed and the pathological study of the surgical piece showed an ischemic colitis. A literature review reveals 22 reported cases of ischemic colitis associated to cocaine abuse. PMID:12194690

  4. Chinese Herbal Products for Ischemic Stroke.

    PubMed

    Hung, I-Ling; Hung, Yu-Chiang; Wang, Lin-Yi; Hsu, Sheng-Feng; Chen, Hsuan-Ju; Tseng, Ying-Jung; Kuo, Chun-En; Hu, Wen-Long; Li, Tsai-Chung

    2015-01-01

    Traditional Chinese herbal products (CHPs) have been described in ancient medicine systems as treatments for various stroke-associated ailments. This study is aimed to investigate the prescription patterns and combinations of CHPs for ischemic stroke in Taiwan. Prescriptions of CHPs for ischemic stroke were obtained from the National Health Insurance Research Database (NHIRD) of Taiwan. Every prescription with a leading diagnosis of ischemic stroke made during 2000-2010 was analyzed. Descriptive statistics were applied to the pattern of co-prescriptions. Multiple logistic regression models were used to assess demographic and risk factors that are correlated with CHP use. The dataset of inpatient claims data contained information on 15,896 subjects who experienced ischemic stroke from 2000 to 2010. There was an average of 5.82 CHPs in a single prescription for subjects with ischemic stroke. Bu-yang-huan-wu-tang (BYHWT) (40.32%) was by far the most frequently prescribed formula CHP for ischemic stroke, and the most commonly used combination of two-formula-CHP was BYHWT with Shu-jin-huo-xue-tang (SJHXT) (4.40%). Dan Shen (16.50%) was the most commonly used single CHP for ischemic stroke, and the most commonly used combination of two single CHPs was Shi Chang Pua with Yuan Zhi (4.79%). We found that BYHWT and Dan Shen were the most frequently prescribed formula and single CHP for ischemic stroke, respectively. These results provide information about individualized therapy and may contribute to further pharmacologic experiments and clinical trials. PMID:26477801

  5. Preconditioning 2D Integer Data for Fast Convex Hull Computations

    PubMed Central

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221

  6. Stress Preconditioning of Spreading Depression in the Locust CNS

    PubMed Central

    Rodgers, Corinne I.; Armstrong, Gary A. B.; Shoemaker, Kelly L.; LaBrie, John D.; Moyes, Christopher D.; Robertson, R. Meldrum

    2007-01-01

    Cortical spreading depression (CSD) is closely associated with important pathologies including stroke, seizures and migraine. The mechanisms underlying SD in its various forms are still incompletely understood. Here we describe SD-like events in an invertebrate model, the ventilatory central pattern generator (CPG) of locusts. Using K+ -sensitive microelectrodes, we measured extracellular K+ concentration ([K+]o) in the metathoracic neuropile of the CPG while monitoring CPG output electromyographically from muscle 161 in the second abdominal segment to investigate the role K+ in failure of neural circuit operation induced by various stressors. Failure of ventilation in response to different stressors (hyperthermia, anoxia, ATP depletion, Na+/K+ ATPase impairment, K+ injection) was associated with a disturbance of CNS ion homeostasis that shares the characteristics of CSD and SD-like events in vertebrates. Hyperthermic failure was preconditioned by prior heat shock (3 h, 45°C) and induced-thermotolerance was associated with an increase in the rate of clearance of extracellular K+ that was not linked to changes in ATP levels or total Na+/K+ ATPase activity. Our findings suggest that SD-like events in locusts are adaptive to terminate neural network operation and conserve energy during stress and that they can be preconditioned by experience. We propose that they share mechanisms with CSD in mammals suggesting a common evolutionary origin. PMID:18159249

  7. Local preconditioning by thermal stress accelerates microvascular thrombus formation.

    PubMed

    Rücker, Martin; Laschke, Matthias W; Stamm, Alexander; Harder, Yves; Vollmar, Brigitte; Menger, Michael D

    2009-06-01

    Heme oxygenase 1 (HO-1) has been shown to suppress microvascular thrombus formation. Because stress conditioning induces HO-1 and, in addition, the anticoagulant thrombomodulin and thrombospondin 1, we studied the effect of hyperthermic and hypothermic local stress conditioning on microvascular thrombus formation. For local stress conditioning, the hindlimb of Sprague-Dawley rats was subjected to local heating (42.5 degrees C) or cooling (4 degrees C) for 30 min at 24 h before induction of thrombosis. Sham-exposed hindlimbs served as controls. Thrombosis was induced photochemically in arterioles and venules of the preconditioned tissue (muscle, subcutis, and periosteum) by continuous light exposure after injection of a fluorescent dye. Immunohistochemistry revealed that stress conditioning distinctly induced HO-1, thrombomodulin, and thrombospondin 1 but also von Willebrand factor in endothelial cells. Of interest, intravital fluorescence microscopic analysis of the kinetics of thrombus formation could not confirm an antithrombotic effect of stress conditioning but showed, in contrast, a significant acceleration of thrombosis (P < 0.05) in both arterioles and venules of either of the tissues studied. Although hypothermic and hyperthermic stress conditioning induces antithrombotic HO-1, thrombomodulin, and thrombospondin 1, it enhances endogenous thrombogenicity, most probably due to upregulation of the prothrombotic von Willebrand factor. Thus, preconditioning with local stress cannot be considered as a strategy to prevent thrombus formation. PMID:18827743

  8. Preconditioning 2D Integer Data for Fast Convex Hull Computations.

    PubMed

    Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221

  9. Sensory Preconditioning in Newborn Rabbits: From Common to Distinct Odor Memories

    ERIC Educational Resources Information Center

    Coureaud, Gerard; Tourat, Audrey; Ferreira, Guillaume

    2013-01-01

    This study evaluated whether olfactory preconditioning is functional in newborn rabbits and based on joined or independent memory of odorants. First, after exposure to odorants A+B, the conditioning of A led to high responsiveness to odorant B. Second, responsiveness to B persisted after amnesia of A. Third, preconditioning was also functional…

  10. 40 CFR 85.2218 - Preconditioned idle test-EPA 91.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Preconditioned idle test-EPA 91. 85.2218 Section 85.2218 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Tests § 85.2218 Preconditioned idle test—EPA 91. (a) General requirements—(1) Exhaust gas...

  11. A note on the preconditioned Gauss-Seidel (GS) method for linear systems

    NASA Astrophysics Data System (ADS)

    Li, Wen

    2005-10-01

    In this note recent comparison results for preconditioned Gauss-Seidel (GS) methods are discussed. A new strict comparison result between two different preconditioned GS methods is given, some errors in a recent article by Niki et al. (J. Comput. Appl. Math. 164-165 (2004) 587) are pointed out and a new proof for the corresponding results in Niki et al. is presented.

  12. 40 CFR 85.2218 - Preconditioned idle test-EPA 91.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Preconditioned idle test-EPA 91. 85.2218 Section 85.2218 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emission Control System Performance Warranty Short Tests § 85.2218 Preconditioned idle...

  13. 40 CFR 85.2218 - Preconditioned idle test-EPA 91.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Preconditioned idle test-EPA 91. 85.2218 Section 85.2218 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emission Control System Performance Warranty Short Tests § 85.2218 Preconditioned idle...

  14. Angiotensinogen polymorphism and ischemic stroke risk

    PubMed Central

    Bao, Huan; Hao, Jun-Jie; Yang, Yu-Mei; Xu, Xia-Hong; Wang, Yue; Zuo, Lian; Lu, Jing; Zhang, Jing; Zhang, Yue; Xu, Si-Yi; Wang, Xuan; Li, Ying; Li, Gang

    2015-01-01

    The angiotensinogen M235T polymorphism was associated with ischemic stroke risk. However, the results were controversial. Thus, a meta-analysis was conducted. NCBI, Medline, Web of Science and Embase databases were systematically searched. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated using random-effects models. There was a significant association between angiotensinogen M235T polymorphism and ischemic stroke risk (OR = 1.69; 95% CI, 1.35-2.11; P < 0.001). In the stratified analysis by ethnicity, we found that this polymorphism was significantly associated with ischemic stroke in Asian (OR = 1.85; 95% CI, 1.45-2.35; P < 0.001). In the age subgroup, we found that angiotensinogen M235T polymorphism could increase both early-onset ischemic stroke risk (OR = 1.88; 95% CI, 1.33-2.43; P < 0.001) and late-onset ischemic stroke risk (OR = 1.20; 95% CI, 1.01-1.39; P = 0.04). This meta-analysis suggested that angiotensinogen M235T polymorphism was associated with ischemic stroke. PMID:26550208

  15. The Ischemic Stroke Genetics Study (ISGS) Protocol

    PubMed Central

    Meschia, James F; Brott, Thomas G; Brown, Robert D; Crook, Richard JP; Frankel, Michael; Hardy, John; Merino, José G; Rich, Stephen S; Silliman, Scott; Worrall, Bradford Burke

    2003-01-01

    Background The molecular basis for the genetic risk of ischemic stroke is likely to be multigenic and influenced by environmental factors. Several small case-control studies have suggested associations between ischemic stroke and polymorphisms of genes that code for coagulation cascade proteins and platelet receptors. Our aim is to investigate potential associations between hemostatic gene polymorphisms and ischemic stroke, with particular emphasis on detailed characterization of the phenotype. Methods/Design The Ischemic Stroke Genetic Study is a prospective, multicenter genetic association study in adults with recent first-ever ischemic stroke confirmed with computed tomography or magnetic resonance imaging. Patients are evaluated at academic medical centers in the United States and compared with sex- and age-matched controls. Stroke subtypes are determined by central blinded adjudication using standardized, validated mechanistic and syndromic classification systems. The panel of genes to be tested for polymorphisms includes β-fibrinogen and platelet glycoprotein Ia, Iba, and IIb/IIIa. Immortalized cell lines are created to allow for time- and cost-efficient testing of additional candidate genes in the future. Discussion The study is designed to minimize survival bias and to allow for exploring associations between specific polymorphisms and individual subtypes of ischemic stroke. The data set will also permit the study of genetic determinants of stroke outcome. Having cell lines will permit testing of future candidate risk factor genes. PMID:12848902

  16. Ischemic stroke associated with immune thrombocytopenia.

    PubMed

    Zhao, HongMei; Lian, YaJun; Zhang, HaiFeng; Xie, NanChang; Gao, YanLun; Wang, ZhongYue; Zhang, Yi

    2015-08-01

    The objective of this study was to review all cases in literature in which the clinical manifestations of ischemic stroke and immune thrombocytopenia (ITP) were presented in the same patient including a new case of our own and discuss the possible mechanism and management of this syndrome. We reviewed 12 reports in which 18 cases were diagnosed as ischemic stroke and ITP. The clinical manifestations and ischemic lesion patterns of the 18 cases and our new case were analyzed in detail to elucidate the characteristics and management of this kind of syndrome. Of all the cases, 8 females and 10 males, 10 of them were Koreans; 3 were Americans; 3 were Japanese; 1 was British and 1 was Australian. The age of eight patients was no more than 50 years old. Most of them had a low platelet count. CT and/or MRI of brain were seen in all tested cases. Prognosis of ischemic stroke was good in 18 of the 19 patients. Although extremely rare, ischemic stroke and ITP may present in the same patient with variant characteristics. This paradoxical mechanism and management of ischemic stroke associated with ITP requires further investigation. PMID:25381164

  17. A Survey of Voice over IP Security Research

    NASA Astrophysics Data System (ADS)

    Keromytis, Angelos D.

    We present a survey of Voice over IP security research. Our goal is to provide a roadmap for researchers seeking to understand existing capabilities and, and to identify gaps in addressing the numerous threats and vulnerabilities present in VoIP systems. We also briefly discuss the implications of our findings with respect to actual vulnerabilities reported in a variety VoIP products.

  18. DETERMINATION OF AN EMPIRICALLY DERIVED IP/TSP RELATIONSHIP

    EPA Science Inventory

    The primary objective of this study was to provide researchers with statistical methodology for comparing data on inhalable particulate (IP) and on the IP/TSP ratios from various sites, predicting IP concentration as a function of total suspended particulate (TSP) concentration, ...

  19. A Conjoint Analysis of Voice Over IP Attributes.

    ERIC Educational Resources Information Center

    Zubey, Michael L.; Wagner, William; Otto, James R.

    2002-01-01

    Managers need to understand the tradeoffs associated with voice over Internet protocol (VoIP) networks as compared to the Public Switched Telephone Network (PSTN). This article measures the preference structures between IP telephony and PSTN services using conjoint analysis. The purpose is to suggest VoIP technology attributes that best meet…

  20. Impact of genome assembly status on ChIP-Seq and ChIP-PET data mapping

    PubMed Central

    2009-01-01

    Background ChIP-Seq and ChIP-PET can potentially be used with any genome for genome wide profiling of protein-DNA interaction sites. Unfortunately, it is probable that most genome assemblies will never reach the quality of the human genome assembly. Therefore, it remains to be determined whether ChIP-Seq and ChIP-PET are practicable with genome sequences other than a few (e.g. human and mouse). Findings Here, we used in silico simulations to assess the impact of completeness or fragmentation of genome assemblies on ChIP-Seq and ChIP-PET data mapping. Conclusions Most currently published genome assemblies are suitable for mapping the short sequence tags produced by ChIP-Seq or ChIP-PET. PMID:20015379

  1. Contribution of the maritime continent convection during the preconditioning stage of the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Kubota, H.; Yoneyama, K.; Nasuno, T.; Hamada, J.

    2013-12-01

    During the international field experiment 'Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011)', the preconditioning process of the MJO was observed. In this study, the contribution of the maritime continent convection was focused on the preconditioning process of the third MJO. During the preconditioning stage of the MJO, westward propagating disturbances were observed from Sumatera Island to the central Indian Ocean and moistened the atmosphere. Convections over the Sumatera Island were activated around December 15th when the moist air mass reached from South China Sea. The origin of the moist air mass was tropical cyclone which was formed in South China Sea in December 10th. The high moisture associated with tropical cyclone activated the convection over Sumatera Island, promoted westward propagating disturbances, and acted a favorable environment for the preconditioning of the MJO. This preconditioning stage of the MJO is simulated by Nonhydrostatic ICosahedral Atmospheric Model (NICAM) and investigated the moistening process.

  2. Ischemic enteritis with intestinal stenosis

    PubMed Central

    Koshikawa, Yorimitsu; Matsuura, Minoru; Yoshino, Takuya; Honzawa, Yusuke; Minami, Naoki; Yamada, Satoshi; Yasuhara, Yumiko; Fujii, Shigehiko; Kusaka, Toshihiro; Manaka, Dai; Kokuryu, Hiroyuki

    2016-01-01

    A 75-year-old man was admitted to our hospital with sudden onset of vomiting and abdominal distension. The patient was taking medication for arrhythmia. Computed tomography showed stenosis of the ileum and a small bowel dilatation on the oral side from the region of stenosis. A transnasal ileus tube was placed. Enteroclysis using contrast medium revealed an approximately 6-cm afferent tubular stenosis 10 cm from the terminal ileum and thumbprinting in the proximal bowel. Transanal double-balloon enteroscopy showed a circumferential shallow ulcer with a smooth margin and edema of the surrounding mucosa. The stenosis was so extensive that we could not perform endoscopic balloon dilation therapy. During hospitalization, the patient's nutritional status deteriorated. In response, we surgically resected the region of stenosis. Histologic examination revealed disappearance of the mucosal layer and transmural ulceration with marked fibrosis, especially in the submucosal layer. Hemosiderin staining revealed sideroferous cells in the submucosal layers. Based on the pathologic findings, the patient was diagnosed with ischemic enteritis. The patient's postoperative course was uneventful. PMID:26884740

  3. IP address management : augmenting Sandia's capabilities through open source tools.

    SciTech Connect

    Nayar, R. Daniel

    2005-08-01

    Internet Protocol (IP) address management is an increasingly growing concern at Sandia National Laboratories (SNL) and the networking community as a whole. The current state of the available IP addresses indicates that they are nearly exhausted. Currently SNL doesn't have the justification to obtain more IP address space from Internet Assigned Numbers Authority (IANA). There must exist a local entity to manage and allocate IP assignments efficiently. Ongoing efforts at Sandia have been in the form of a multifunctional database application notably known as Network Information System (NWIS). NWIS is a database responsible for a multitude of network administrative services including IP address management. This study will explore the feasibility of augmenting NWIS's IP management capabilities utilizing open source tools. Modifications of existing capabilities to better allocate available IP address space are studied.

  4. Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering

    PubMed Central

    Ibarretxe, Gaskon; Alvarez, Antonia; Cañavate, Maria-Luz; Hilario, Enrique; Aurrekoetxea, Maitane; Unda, Fernando

    2012-01-01

    The procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current state of knowledge on IPS cells advises that research on their regenerative properties is carried out in appropriate tissue and organ systems that permit a safe assessment of the long-term behavior of these reprogrammed cells. In the present paper, we discuss the mechanisms of cell reprogramming, current technical limitations of IPS cells for their use in human tissue engineering, and possibilities to overcome them in the particular case of dental regeneration. PMID:22690226

  5. Source identification of the Arctic sea ice proxy IP25.

    PubMed

    Brown, T A; Belt, S T; Tatarek, A; Mundy, C J

    2014-01-01

    Analysis of the organic geochemical biomarker IP25 in marine sediments is an established method for carrying out palaeo sea ice reconstructions for the Arctic. Such reconstructions cover timescales from decades back to the early Pleistocene, and are critical for understanding past climate conditions on Earth and for informing climate prediction models. Key attributes of IP25 include its strict association with Arctic sea ice together with its ubiquity and stability in underlying marine sediments; however, the sources of IP25 have remained undetermined. Here we report the identification of IP25 in three (or four) relatively minor (<5%) sea ice diatoms isolated from mixed assemblages collected from the Canadian Arctic. In contrast, IP25 was absent in the dominant taxa. Chemical and taxonomical investigations suggest that the IP25-containing taxa represent the majority of producers and are distributed pan-Arctic, thus establishing the widespread applicability of the IP25 proxy for palaeo Arctic sea ice reconstruction. PMID:24939562

  6. Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium.

    PubMed

    Stein, Adam B; Bolli, Roberto; Dawn, Buddhadeb; Sanganalmath, Santosh K; Zhu, Yanqing; Wang, Ou-Li; Guo, Yiru; Motterlini, Roberto; Xuan, Yu-Ting

    2012-01-01

    A growing body of evidence indicates that carbon monoxide (CO), once perceived merely as a poisonous gas, exerts antiapoptotic and cytoprotective effects. Using a water-soluble CO-releasing molecule (CORM) tricarbonylchloro(glycinato)ruthenium(II) (CORM-3), we previously reported that CO induces a delayed protection against myocardial infarction similar to that observed in the late phase of ischemic preconditioning (PC). In the current study, we investigated the molecular mechanisms underlying this cardioprotective effect. The impact on apoptotic signaling pathways was first examined in the setting of ischemia/reperfusion injury. Mice were pretreated with CORM-3 or iCORM-3 (which does not release CO) and subjected to coronary occlusion/reperfusion 24h later. In mice that received CORM-3, there was a significant reduction in markers of apoptosis (cleaved lamin A, cleaved caspase-3, and cleaved PARP-1) after ischemia/reperfusion injury. To elucidate the mechanism of CORM-3-induced cardioprotection we further examined the activation of transcription factors and induction of cardioprotective and apoptosis modulating proteins. Infusion of CORM-3 rapidly activated the stress-responsive transcription factors nuclear factor kappaB (NF-κB), signal transducers and activators of transcription (STAT)1, STAT3, and NF-E2-related factor-2 (Nrf2). This was followed 24h later by upregulation of cardioprotective proteins (heme oxygenase-1 [HO-1], cyclooxygenase-2 [COX-2], and extracellular superoxide dismutase [Ec-SOD]) and antiapoptotic proteins involving both the mitochondria-mediated (Mcl-1) and the death receptor-mediated (c-FLIP(S) and c-FLIP(L)) apoptosis pathways. We conclude that CO released by CORM-3 triggers a cardioprotective signaling cascade that recruits the transcription factors NF-κB, STAT1/3, and Nrf2 with a subsequent increase in cardioprotective and antiapoptotic molecules in the myocardium leading to the late PC-mimetic infarct-sparing effects. This article is part of a Special Issue entitled 'Possible Editorial'. PMID:22119801

  7. Study of retinal vessel oxygen saturation in ischemic and non-ischemic branch retinal vein occlusion

    PubMed Central

    Lin, Lei-Lei; Dong, Yan-Min; Zong, Yao; Zheng, Qi-Shan; Fu, Yue; Yuan, Yong-Guang; Huang, Xia; Qian, Garrett; Gao, Qian-Ying

    2016-01-01

    AIM To explore how oxygen saturation in retinal blood vessels is altered in ischemic and non-ischemic branch retinal vein occlusion (BRVO). METHODS Fifty BRVO eyes were divided into ischemic (n=26) and non-ischemic (n=24) groups, based on fundus fluorescein angiography. Healthy individuals (n=52 and n=48, respectively) were also recruited as controls for the two groups. The mean oxygen saturations of the occluded vessels and central vessels were measured by oximetry in the BRVO and control groups. RESULTS In the ischemic BRVO group, the occluded arterioles oxygen saturation (SaO2-A, 106.0%±14.3%), instead of the occluded venule oxygen saturation (SaO2-V, 60.8%±9.4%), showed increases when compared with those in the same quadrant vessels (SaO2-A, 86.1%±16.5%) in the contralateral eyes (P<0.05). The oxygen saturations of the central vessels showed similar trends with those of the occluded vessels. In the non-ischemic BRVO group, the occluded and central SaO2-V and SaO2-A showed no significant changes. In both the ischemic and non-ischemic BRVOs, the central SaO2-A was significantly increased when compared to healthy individuals. CONCLUSION Obvious changes in the occluded and central SaO2-A were found in the ischemic BRVO group, indicating that disorders of oxygen metabolism in the arterioles may participate in the pathogenesis of ischemic BRVO. PMID:26949618

  8. Citalopram enhances neurovascular regeneration and sensorimotor functional recovery after ischemic stroke in mice.

    PubMed

    Espinera, A R; Ogle, M E; Gu, X; Wei, L

    2013-09-01

    Recent clinical trials have demonstrated that treatment with selective serotonin reuptake inhibitors after stroke enhances motor functional recovery; however, the underlying mechanisms remain to be further elucidated. We hypothesized that daily administration of the clinical drug citalopram would produce these functional benefits via enhancing neurovascular repair in the ischemic peri-infarct region. To test this hypothesis, focal ischemic stroke was induced in male C57/B6 mice by permanent ligation of distal branches of the middle cerebral artery to the barrel cortex and 7-min occlusion of the bilateral common carotid arteries. Citalopram (10mg/kg, i.p.) was injected 24h after stroke and daily thereafter. To label proliferating cells, bromo-deoxyuridine was injected daily beginning 3 days after stroke. Immunohistochemical and functional assays were performed to elucidate citalopram-mediated cellular and sensorimotor changes after stroke. Citalopram treatment had no significant effect on infarct formation or edema 3 days after stroke; however, citalopram-treated mice had better functional recovery than saline-treated controls 3 and 14 days after stroke in the adhesive removal test. Increased expression of brain-derived neurotrophic factor was detected in the peri-infarct region 7 days after stroke in citalopram-treated animals. The number of proliferating neural progenitor cells and the distance of neuroblast migration from the sub-ventricular zone toward the ischemic cortex were significantly greater in citalopram-treated mice at 7 days after stroke. Immunohistochemical staining and co-localization analysis showed that citalopram-treated animals generated more new neurons and microvessels in the peri-infarct region 21 and 28 days after stroke. Taken together, these results suggest that citalopram promotes post-stroke sensorimotor recovery likely via enhancing neurogenesis, neural cell migration and the microvessel support in the peri-infarct region of the ischemic brain. PMID:23590907

  9. Citalopram Enhances Neurovascular Regeneration and Sensorimotor Functional Recovery after Ischemic Stroke in Mice

    PubMed Central

    Espinera, Alyssa R.; Ogle, Molly E.; Gu, Xiaohuan; Wei, Ling

    2013-01-01

    Recent clinical trials have demonstrated that treatment with selective serotonin reuptake inhibitors (SSRIs) after stroke enhances motor functional recovery; however, the underlying mechanisms remain to be further elucidated. We hypothesized that daily administration of the clinical drug citalopram would produce these functional benefits via enhancing neurovascular repair in the ischemic peri-infarct region. To test this hypothesis, focal ischemic stroke was induced in male C57/B6 mice by permanent ligation of distal branches of the middle cerebral artery to the barrel cortex and 7-min occlusion of the bilateral common carotid arteries. Citalopram (10 mg/kg, i.p.) was injected 24 hrs after stroke and daily thereafter. To label proliferating cells, bromo-deoxyuridine was injected daily beginning 3 days after stroke. Immunohistochemical and functional assays were performed to elucidate citalopram-mediated cellular and sensorimotor changes after stroke. Citalopram treatment had no significant effect on infarct formation or edema 3 days after stroke; however, citalopram-treated mice had better functional recovery than saline-treated controls 3 and 14 days after stroke in the adhesive removal test. Increased expression of brain derived neurotrophic factor was detected in the peri-infarct region 7 days after stroke in citalopram-treated animals. The number of proliferating neural progenitor cells and the distance of neuroblast migration from the sub-ventricular zone towards the ischemic cortex were significantly greater in citalopram-treated mice at 7 days after stroke. Immunohistochemical staining and co-localization analysis showed that citalopram-treated animals generated more new neurons and microvessels in the peri-infarct region 21 and 28 days after stroke. Taken together, these results suggest that citalopram promotes post-stroke sensorimotor recovery likely via enhancing neurogenesis, neural cell migration and the microvessel support in the peri-infarct region of the ischemic brain. PMID:23590907

  10. Methanesulfonyl fluoride, an acetylcholinesterase inhibitor, attenuates simple learning and memory deficits in ischemic rats.

    PubMed

    Borlongan, Cesario V; Sumaya, Isabel C; Moss, Donald E

    2005-03-15

    Methanesulfonyl fluoride (MSF), a highly selective CNS inhibitor of acetylcholinesterase, has been recently demonstrated to promote improvement in cognitive performance in patients with senile dementia of Alzheimer type. Because a similar cognitive impairment may accompany stroke, we investigated in the present study whether treatment with MSF could produce beneficial effects in adult rats subjected to an experimental stroke model. Sprague-Dawley rats received transient 60 min intraluminal occlusion of the right middle cerebral artery (MCAo) and were given i.p. injections of either MSF (1 mg/kg at 24 and 48 h post-MCAo and 0.3 mg/kg thereafter every other day) or the vehicle, peanut oil, for 4 weeks. Behavioral tests and biochemical assays were performed at 28 days post-surgery. MSF treatment produced about 90% inhibition of acetylcholinesterase in the brain. Ischemic animals that received the vehicle displayed significant elevated body swing biased activity (84.8 +/- 10%) and significantly prolonged acquisition (398 +/- 62 s) and shortened retention (79 +/- 26 s) of the passive avoidance task. Interestingly, while the ischemic animals that received the MSF exhibited elevated body swing biased activity (87.7 +/- 8%), they performed significantly better in the passive avoidance task (255 +/- 36 s and 145 +/- 18 s in acquisition and retention) than the vehicle-treated animals. Moreover, whereas brains from both groups of animals revealed similar extent and degree of cerebral infarction, the MSF-treated ischemic animals showed more intense immunoreactivity, as well as a significantly higher number (10-15% increase) of septal choline acetyltransferase-positive cells than the vehicle-treated ischemic animals. These results show that MSF, possibly by preserving a functional cholinergic system, attenuated stroke-induced deficits in a simple learning and memory task. PMID:15748872

  11. Demonstrating a Realistic IP Mission Prototype

    NASA Technical Reports Server (NTRS)

    Rash, James; Ferrer, Arturo B.; Goodman, Nancy; Ghazi-Tehrani, Samira; Polk, Joe; Johnson, Lorin; Menke, Greg; Miller, Bill; Criscuolo, Ed; Hogie, Keith

    2003-01-01

    Flight software and hardware and realistic space communications environments were elements of recent demonstrations of the Internet Protocol (IP) mission concept in the lab. The Operating Missions as Nodes on the Internet (OMNI) Project and the Flight Software Branch at NASA/GSFC collaborated to build the prototype of a representative space mission that employed unmodified off-the-shelf Internet protocols and technologies for end-to-end communications between the spacecraft/instruments and the ground system/users. The realistic elements used in the prototype included an RF communications link simulator and components of the TRIANA mission flight software and ground support system. A web-enabled camera connected to the spacecraft computer via an Ethernet LAN represented an on-board instrument creating image data. In addition to the protocols at the link layer (HDLC), transport layer (UDP, TCP), and network (IP) layer, a reliable file delivery protocol (MDP) at the application layer enabled reliable data delivery both to and from the spacecraft. The standard Network Time Protocol (NTP) performed on-board clock synchronization with a ground time standard. The demonstrations of the prototype mission illustrated some of the advantages of using Internet standards and technologies for space missions, but also helped identify issues that must be addressed. These issues include applicability to embedded real-time systems on flight-qualified hardware, range of applicability of TCP, and liability for and maintenance of commercial off-the-shelf (COTS) products. The NASA Earth Science Technology Office (ESTO) funded the collaboration to build and demonstrate the prototype IP mission.

  12. A frequency dependent preconditioned wavelet method for atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny

    2013-12-01

    Atmospheric tomography, i.e. the reconstruction of the turbulence in the atmosphere, is a main task for the adaptive optics systems of the next generation telescopes. For extremely large telescopes, such as the European Extremely Large Telescope, this problem becomes overly complex and an efficient algorithm is needed to reduce numerical costs. Recently, a conjugate gradient method based on wavelet parametrization of turbulence layers was introduced [5]. An iterative algorithm can only be numerically efficient when the number of iterations required for a sufficient reconstruction is low. A way to achieve this is to design an efficient preconditioner. In this paper we propose a new frequency-dependent preconditioner for the wavelet method. In the context of a multi conjugate adaptive optics (MCAO) system simulated on the official end-to-end simulation tool OCTOPUS of the European Southern Observatory we demonstrate robustness and speed of the preconditioned algorithm. We show that three iterations are sufficient for a good reconstruction.

  13. Can endurance exercise preconditioning prevention disuse muscle atrophy?

    PubMed Central

    Wiggs, Michael P.

    2015-01-01

    Emerging evidence suggests that exercise training can provide a level of protection against disuse muscle atrophy. Endurance exercise training imposes oxidative, metabolic, and heat stress on skeletal muscle which activates a variety of cellular signaling pathways that ultimately leads to the increased expression of proteins that have been demonstrated to protect muscle from inactivity –induced atrophy. This review will highlight the effect of exercise-induced oxidative stress on endogenous enzymatic antioxidant capacity (i.e., superoxide dismutase, glutathione peroxidase, and catalase), the role of oxidative and metabolic stress on PGC1-α, and finally highlight the effect heat stress and HSP70 induction. Finally, this review will discuss the supporting scientific evidence that these proteins can attenuate muscle atrophy through exercise preconditioning. PMID:25814955

  14. Preconditioned Mixed Spectral Element Methods for Elasticity and Stokes Problems

    NASA Technical Reports Server (NTRS)

    Pavarino, Luca F.

    1996-01-01

    Preconditioned iterative methods for the indefinite systems obtained by discretizing the linear elasticity and Stokes problems with mixed spectral elements in three dimensions are introduced and analyzed. The resulting stiffness matrices have the structure of saddle point problems with a penalty term, which is associated with the Poisson ratio for elasticity problems or with stabilization techniques for Stokes problems. The main results of this paper show that the convergence rate of the resulting algorithms is independent of the penalty parameter, the number of spectral elements Nu and mildly dependent on the spectral degree eta via the inf-sup constant. The preconditioners proposed for the whole indefinite system are block-diagonal and block-triangular. Numerical experiments presented in the final section show that these algorithms are a practical and efficient strategy for the iterative solution of the indefinite problems arising from mixed spectral element discretizations of elliptic systems.

  15. Brain protection against ischemic stroke using choline as a new molecular bypass treatment

    PubMed Central

    Jin, Xin; Wang, Ru-huan; Wang, Hui; Long, Chao-liang; Wang, Hai

    2015-01-01

    Aim: To determine whether administration of choline could attenuate brain injury in a rat model of ischemic stroke and the underlying mechanisms. Methods: A rat model of ischemic stroke was established through permanent middle cerebral artery occlusion (pMCAO). After the surgery, the rats were treated with choline or choline plus the specific α7 nAChR antagonist methyllycaconitine (MLA), or with the control drug nimodipine for 10 days. The neurological deficits, brain-infarct volume, pial vessel density and the number of microvessels in the cortex were assessed. Rat brain microvascular endothelial cells (rBMECs) cultured under hypoxic conditions were used in in vitro experiments. Results: Oral administration of choline (100 or 200 mg·kg−1·d−1) or nimodipine (20 mg·kg−1·d−1) significantly improved neurological deficits, and reduced infarct volume and nerve cell loss in the ischemic cerebral cortices in pMCAO rats. Furthermore, oral administration of choline, but not nimodipine, promoted the pial arteriogenesis and cerebral-cortical capillary angiogenesis in the ischemic regions. Moreover, oral administration of choline significantly augmented pMCAO-induced increases in the expression levels of α7 nAChR, HIF-1α and VEGF in the ischemic cerebral cortices as well as in the serum levels of VEGF. Choline-induced protective effects were prevented by co-treatment with MLA (1 mg·kg−1·d−1, ip). Treatment of rBMECs cultured under hypoxic conditions in vitro with choline (1, 10 and 100 μmol/L) dose-dependently promoted the endothelial-cell proliferation, migration and tube formation, as well as VEGF secretion, which were prevented by co-treatment with MLA (1 μmol/L) or by transfection with HIF-1α siRNA. Conclusion: Choline effectively attenuates brain ischemic injury in pMCAO rats, possibly by facilitating pial arteriogenesis and cerebral-cortical capillary angiogenesis via upregulating α7 nAChR levels and inducing the expression of HIF-1α and VEGF. PMID:26567726

  16. Exercise preconditioning of myocardial infarct size in dogs is triggered by calcium.

    PubMed

    Parra, Víctor M; Macho, Pilar; Sánchez, Gina; Donoso, Paulina; Domenech, Raúl J

    2015-03-01

    We showed that exercise induces early and late myocardial preconditioning in dogs and that these effects are mediated through nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase activation. As the intracoronary administration of calcium induces preconditioning and exercise enhances the calcium inflow to the cell, we studied if this effect of exercise triggers exercise preconditioning independently of its hemodynamic effects. We analyzed in 81 dogs the effect of blocking sarcolemmal L-type Ca channels with a low dose of verapamil on early and late preconditioning by exercise, and in other 50 dogs, we studied the effect of verapamil on NADPH oxidase activation in early exercise preconditioning. Exercise reduced myocardial infarct size by 76% and 52% (early and late windows respectively; P < 0.001 both), and these effects were abolished by a single low dose of verapamil given before exercise. This dose of verapamil did not modify the effect of exercise on metabolic and hemodynamic parameters. In addition, verapamil blocked the activation of NADPH oxidase during early preconditioning. The protective effect of exercise preconditioning on myocardial infarct size is triggered, at least in part, by calcium inflow increase to the cell during exercise and, during the early window, is mediated by NADPH oxidase activation. PMID:25658459

  17. The Effect of Hypoxic Preconditioning on Induced Schwann Cells under Hypoxic Conditions

    PubMed Central

    Chen, Ou; Wu, Miaomiao; Jiang, Liangfu

    2015-01-01

    Object Our objective was to explore the protective effects of hypoxic preconditioning on induced Schwann cells exposed to an environment with low concentrations of oxygen. It has been observed that hypoxic preconditioning of induced Schwann cells can promote axonal regeneration under low oxygen conditions. Method Rat bone marrow mesenchymal stem cells (MSCs) were differentiated into Schwann cells and divided into a normal oxygen control group, a hypoxia-preconditioning group and a hypoxia group. The ultrastructure of each of these groups of cells was observed by electron microscopy. In addition, flow cytometry was used to measure changes in mitochondrial membrane potential. Annexin V-FITC/PI staining was used to detect apoptosis, and Western blots were used to detect the expression of Bcl-2/Bax. Fluorescence microscopic observations of axonal growth in NG-108 cells under hypoxic conditions were also performed. Results The hypoxia-preconditioning group maintained mitochondrial cell membrane and crista integrity, and these cells exhibited less edema than the hypoxia group. In addition, the cells in the hypoxia-preconditioning group were found to be in early stages of apoptosis, whereas cells from the hypoxia group were in the later stages of apoptosis. The hypoxia-preconditioning group also had higher levels of Bcl-2/Bax expression and longer NG-108 cell axons than were observed in the hypoxia group. Conclusion Hypoxic preconditioning can improve the physiological state of Schwann cells in a severe hypoxia environment and improve the ability to promote neurite outgrowth. PMID:26509259

  18. Ocular ischemic syndrome - a systematic review.

    PubMed

    Terelak-Borys, Barbara; Skonieczna, Katarzyna; Grabska-Liberek, Iwona

    2012-08-01

    Ocular ischemic syndrome is a rare condition, which is caused by ocular hypoperfusion due to stenosis or occlusion of the common or internal carotid arteries. Atherosclerosis is the major cause of changes in the carotid arteries. Ocular ischemic syndrome is manifested as visual loss, orbital pain and, frequently, changes of the visual field, and various anterior and posterior segment signs. Anterior segment signs include iris neovascularization and secondary neovascular glaucoma, iridocyclitis, asymmetric cataract, iris atrophy and sluggish reaction to light. Posterior eye segment changes are the most characteristic, such as narrowed retinal arteries, perifoveal telangiectasias, dilated retinal veins, mid-peripheral retinal hemorrhages, microaneurysms, neovascularization at the optic disk and in the retina, a cherry-red spot, cotton-wool spots, vitreous hemorrhage and normal-tension glaucoma. Differential diagnosis of ocular ischemic syndrome includes diabetic retinopathy and moderate central retinal vein occlusion. Carotid artery imaging and fundus fluorescein angiography help to establish the diagnosis of ocular ischemic syndrome. The treatment can be local, for example, ocular (conservative, laser and surgical) or systemic (conservative and surgical treatment of the carotid artery). Since the condition does not affect the eyes alone, patients with ocular ischemic syndrome should be referred for consultation to the neurologist, vascular surgeon and cardiologist. PMID:22847215

  19. IP-Based Video Modem Extender Requirements

    SciTech Connect

    Pierson, L G; Boorman, T M; Howe, R E

    2003-12-16

    Visualization is one of the keys to understanding large complex data sets such as those generated by the large computing resources purchased and developed by the Advanced Simulation and Computing program (aka ASCI). In order to be convenient to researchers, visualization data must be distributed to offices and large complex visualization theaters. Currently, local distribution of the visual data is accomplished by distance limited modems and RGB switches that simply do not scale to hundreds of users across the local, metropolitan, and WAN distances without incurring large costs in fiber plant installation and maintenance. Wide Area application over the DOE Complex is infeasible using these limited distance RGB extenders. On the other hand, Internet Protocols (IP) over Ethernet is a scalable well-proven technology that can distribute large volumes of data over these distances. Visual data has been distributed at lower resolutions over IP in industrial applications. This document describes requirements of the ASCI program in visual signal distribution for the purpose of identifying industrial partners willing to develop products to meet ASCI's needs.

  20. Using IPS Magnetic Modeling to Determine Bz

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Yu, H. S.; Hick, P. P.; Buffington, A.; Mejia-Ambriz, J. C.; Bisi, M. M.; Tokumaru, M.

    2014-12-01

    Interplanetary scintillation (IPS) observations enable remote determinations of velocity and density in the inner heliosphere while also providing forecasts of these quantities. Using the global velocities inferred from IPS, and through convection upward of magnetic fields perpendicular to a source surface produced by the Current-Sheet Source Surface (CSSS) modified potential model (Zhao and Hoeksema, J. Geophys. Res., 100, 19, 1995), global long-duration radial and tangential heliospheric field components can also be determined. In order to better include short-term transient effects and derive a value for the field normal to these components (Bn) during periods where CMEs, are present, we have tested an extension to our current 3D vector-field analysis. This extension adds closed fields from below the source surface to the CSSS model values, and when traced outward from the sub-Earth point, three magnetic field components are present. These are compared to in-situ magnetic fields measured near Earth for several periods throughout the current solar cycle from the minimum between Solar Cycle 23 and 24 up until the present. We find a significant positive correlation when using this extension to current analyses including that of the Bn field for the test cases analyzed thus far.

  1. IP-based video lab monitor system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengbing; Li, Zhongnian; Xia, Zhenhua; Zhu, Guangxi

    2005-02-01

    In this paper, an IP-based video lab-monitor system is proposed in order to efficiently supervise and manage the Electrical Engineering Example Lab Center of Hubei Province. The proposed system is composed of one Control & Display Unit (CDU) and a number of Lab View Units (LVU). The CDU is placed in the lab-supervisor"s office, while each LVU with a video camera is placed in one of the labs to be watched. The CDU and all LVUs are connected with an IP network. An LVU is mainly composed of 4 parts: Video Capture, Video Encoder based on H.263, Media Deliverer and Communication Controller. Accordingly, the CDU is composed of the following parts: a Center Controller, a Media Receiver, a Multi-Video Decoder and a Multi-Video Displayer. The supervisor can simultaneously watch the dynamic scene of 16 (4x4) labs on the CDU, with a resolution of 176 x 144 for each lab. He may choose to watch 4 (2x2) labs or only one lab at a time with higher resolution.

  2. Live Video and IP-TV

    NASA Astrophysics Data System (ADS)

    Merani, Maria Luisa; Saladino, Daniela

    This Chapter aims at providing a comprehensive insight into the most recent advances in the field of P2P architectures for video broadcasting, focusing on live video streaming P2P live video streaming . After introducing a classification of P2P video solutions, the first part of the Chapter provides an overview of the most interesting P2P IP-TV P2P IP-TV systems currently available over the Internet. It also concentrates on the process of data diffusion within the P2P overlay and complements this view with some measurements that highlight the most salient features of P2P architectures. The second part of the Chapter completes the view, bringing up the modeling efforts to capture the main characteristics and limits of P2P streaming systems, both analytically and numerically. The Chapter is closed by a pristine look at some challenging, open questions, with a specific emphasis on the adoption of network coding in P2P streaming solutions.

  3. Role of phosphoinositide 3-kinase IA (PI3K-IA) activation in cardioprotection induced by ouabain preconditioning

    PubMed Central

    Duan, Qiming; Madan, Namrata D.; Wu, Jian; Kalisz, Jennifer; Doshi, Krunal Y.; Haldar, Saptarsi M.; Liu, Lijun; Pierre, Sandrine V.

    2015-01-01

    Acute myocardial infarction, the clinical manifestation of ischemia-reperfusion (IR) injury, is a leading cause of death worldwide. Like ischemic preconditioning (IPC) induced by brief episodes of ischemia and reperfusion, ouabain preconditioning (OPC) mediated by Na/K-ATPase signaling protects the heart against IR injury. Class I PI3K activation is required for IPC, but its role in OPC has not been investigated. While PI3K-IB is critical to IPC, studies have suggested that ouabain signaling is PI3K-IA-specific. Hence, a pharmacological approach was used to test the hypothesis that OPC and IPC rely on distinct PI3K-I isoforms. In Langendorff-perfused mouse hearts, OPC was initiated by 4 min of ouabain 10 μM and IPC was triggered by 4 cycles of 5 min ischemia and reperfusion prior to 40 min of global ischemia and 30 min of reperfusion. Without affecting PI3K-IB, ouabain doubled PI3K-IA activity and Akt phosphorylation at Ser473. IPC and OPC significantly preserved cardiac contractile function and tissue viability as evidenced by left ventricular developed pressure and end-diastolic pressure recovery, reduced lactate dehydrogenase release, and decreased infarct size. OPC protection was blunted by the PI3K-IA inhibitor PI-103, but not by the PI3K-IB inhibitor AS-604850. In contrast, IPC-mediated protection was not affected by PI-103 but was blocked by AS-604850, suggesting that PI3K-IA activation is required for OPC while PI3K-IB activation is needed for IPC. Mechanistically, PI3K-IA activity is required for ouabain-induced Akt activation but not PKCε translocation. However, in contrast to PKCε translocation which is critical to protection, Akt activity was not required for OPC. Further studies shall reveal the identity of the downstream targets of this new PI3K IA-dependent branch of OPC. These findings may be of clinical relevance in patients at risk for myocardial infarction with underlying diseases and/or medication that could differentially affect the integrity of cardiac PI3K-IA and IB pathways. PMID:25575882

  4. Monophosphoryl lipid A induces pharmacologic 'preconditioning' in rabbit hearts without concomitant expression of 70-kDa heat shock protein.

    PubMed

    Yoshida, K; Maaieh, M M; Shipley, J B; Doloresco, M; Bernardo, N L; Qian, Y Z; Elliott, G T; Kukreja, R C

    1996-03-01

    The purpose of this study was to evaluate the protective effect of a new endotoxin analogue, monophosphoryl lipid A (MLA) in a rabbit model of myocardial ischemia/reperfusion and to show if this protection was mediated via synthesis of 70 kDa heat shock protein (HSP 70). Three groups of New Zealand White rabbits underwent 30 min coronary occlusion, followed by 4 hours reperfusion. First group of rabbits (n = 6) were treated with 0.35 ml vehicle (40 % propylene glycol, 10 % ethanol in water). The second and third group of rabbits (n = 6-8) were treated with MLA (35 micrograms/kg, i.v.) 12 and 24 hours prior to ischemia and reperfusion. MLA treatment either 12 or 24 h prior to ischemia/reperfusion demonstrated significantly reduced infarct size (12.5 +/- 1.7 and 14.7 +/- 2.1% for 12 and 24 h) when compared with vehicle control (40.4 +/- 8.6%, mean +/- S.E.M, p < 0.05). No significant differences in the infarct size was observed between the 12 and 24 h MLA treated groups. The area at risk was not significantly different between the three groups. Baseline values of heart rate, systolic and diastolic blood pressure were not significantly different between the control and MLA treated groups. However, the systolic as well as diastolic blood pressure during reperfusion were significantly lower in rabbits treated with MLA. Western blot analysis of the protein extracts of the hearts (n = 2/group) demonstrated no increase in the expression of the inducible form of HSP 70 following treatment with MLA. We conclude that MLA has significant anti-infarct effect in rabbit which is not mediated by the cardioprotective protein HSP 70. The anti-infarct effect of this drug is superior to the reported protective effects of delayed ischemic or heat stress preconditioning. We hypothesize that the pharmacologic preconditioning afforded by MLA is accomplished via a unique pathway that bypasses the usual intracellular signaling pathways which lead to the myocardial protection with the expression of heat shock proteins. PMID:8709970

  5. Monophosphoryl lipid A induces pharmacologic 'preconditioning' in rabbit hearts without concomitant expression of 70-kDa heat shock protein.

    PubMed

    Yoshida, K; Maaieh, M M; Shipley, J B; Doloresco, M; Bernardo, N L; Qian, Y Z; Elliott, G T; Kukreja, R C

    1996-06-01

    The purpose of this study was to evaluate the protective effect of a new endotoxin analogue, monophosphoryl lipid A (MLA) in a rabbit model of myocardial ischemia/reperfusion and to show if this protection was mediated via synthesis of 70 kDa heat shock protein (HSP 70). Three groups of New Zealand White rabbits underwent 30 min coronary occlusion, followed by 4 hours reperfusion. First group of rabbits (n = 6) were treated with 0.35 ml vehicle (40% propylene glycol, 10% ethanol in water). The second and third group of rabbits (n = 6-8) were treated with MLA (35 micrograms/kg, i.v.) 12 and 24 hours prior to ischemia and reperfusion. MLA treatment either 12 or 24 h prior to ischemia/reperfusion demonstrated significantly reduced infarct size (12.5 +/- 1.7 and 14.7 +/- 2.1% for 12 and 24 h) when compared with vehicle control (40.4 +/- 8.6%, mean +/- S.E.M, p < 0.05). No significant differences in the infarct size was observed between the 12 and 24 h MLA treated groups. The area at risk was not significantly different between the three groups. Baseline values of heart rate, systolic and diastolic blood pressure were not significantly different between the control and MLA treated groups. However, the systolic as well as diastolic blood pressure during reperfusion were significantly lower in rabbits treated with MLA. Western blot analysis of the protein extracts of the hearts (n = 2/group) demonstrated no increase in the expression of the inducible form of HSP 70 following treatment with MLA. We conclude that MLA has significant anti-infarct effect in rabbit which is not mediated by the cardioprotective protein HSP 70. The anti-infarct effect of this drug is superior to the reported protective effects of delayed ischemic or heat stress preconditioning. We hypothesize that the pharmacologic preconditioning afforded by MLA is accomplished via a unique pathway that bypasses the usual intracellular signaling pathways which lead to the myocardial protection with the expression of heat shock proteins. PMID:8813712

  6. Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations

    NASA Technical Reports Server (NTRS)

    Darmofal, David L.

    1998-01-01

    An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.

  7. Exercise and Cyclic Light Preconditioning Protect Against Light-Induced Retinal Degeneration and Evoke Similar Gene Expression Patterns.

    PubMed

    Chrenek, Micah A; Sellers, Jana T; Lawson, Eric C; Cunha, Priscila P; Johnson, Jessica L; Girardot, Preston E; Kendall, Cristina; Han, Moon K; Hanif, Adam; Ciavatta, Vincent T; Gogniat, Marissa A; Nickerson, John M; Pardue, Machelle T; Boatright, Jeffrey H

    2016-01-01

    To compare patterns of gene expression following preconditioning cyclic light rearing versus preconditioning aerobic exercise. BALB/C mice were preconditioned either by rearing in 800 lx 12:12 h cyclic light for 8 days or by running on treadmills for 9 days, exposed to toxic levels of light to cause light-induced retinal degeneration (LIRD), then sacrificed and retinal tissue harvested. Subsets of mice were maintained for an additional 2 weeks and for assessment of retinal function by electroretinogram (ERG). Both preconditioning protocols partially but significantly preserved retinal function and morphology and induced similar leukemia inhibitory factor (LIF) gene expression pattern. The data demonstrate that exercise preconditioning and cyclic light preconditioning protect photoreceptors against LIRD and evoke a similar pattern of retinal LIF gene expression. It may be that similar stress response pathways mediate the protection provided by the two preconditioning modalities. PMID:26427444

  8. Mitral valve repair for ischemic mitral regurgitation

    PubMed Central

    Mohebali, Jahan

    2015-01-01

    Mitral valve repair for ischemic mitral valve regurgitation remains controversial. In moderate mitral regurgitation (MR), controversy exists whether revascularization alone will be adequate to restore native valve geometry or whether intervention on the valve (repair) should be performed concomitantly. When MR is severe, the need for valve intervention is not disputed. Rather, the controversy is whether repair versus replacement should be undertaken. In contrast to degenerative or myxomatous disease that directly affects leaflet integrity and morphology, ischemic FMR results from a distortion and dilation of native ventricular geometry that normally supports normal leaflet coaptation. To address this, the first and most crucial step in successful valve repair is placement of an undersized, complete remodeling annuloplasty ring to restore the annulus to its native geometry. The following article outlines the steps for repair of ischemic mitral regurgitation. PMID:26309832

  9. Resilience in Patients with Ischemic Heart Disease

    PubMed Central

    de Lemos, Conceição Maria Martins; Moraes, David William; Pellanda, Lucia Campos

    2016-01-01

    Background Resilience is a psychosocial factor associated with clinical outcomes in chronic diseases. The relationship between this protective factor and certain diseases, such heart diseases, is still under-explored. Objective The present study sought to investigate the frequency of resilience in individuals with ischemic heart disease. Method This was a cross-sectional study with 133 patients of both genders, aged between 35 and 65 years, treated at Rio Grande do Sul Cardiology Institute - Cardiology University Foundation, with a diagnosis of ischemic heart disease during the study period. Sixty-seven patients had a history of acute myocardial infarction. The individuals were interviewed and evaluated by the Wagnild & Young resilience scale and a sociodemographic questionnaire. Results Eighty-one percent of patients were classified as resilient according to the scale. Conclusion In the sample studied, resilience was identified in high proportion among patients with ischemic heart disease. PMID:26815312

  10. Drug Delivery to the Ischemic Brain

    PubMed Central

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  11. Sustained signalling by PTH modulates IP3 accumulation and IP3 receptors through cyclic AMP junctions

    PubMed Central

    Meena, Abha; Tovey, Stephen C.; Taylor, Colin W.

    2015-01-01

    ABSTRACT Parathyroid hormone (PTH) stimulates adenylyl cyclase through type 1 PTH receptors (PTH1R) and potentiates the Ca2+ signals evoked by carbachol, which stimulates formation of inositol 1,4,5-trisphosphate (IP3). We confirmed that in HEK cells expressing PTH1R, acute stimulation with PTH(1-34) potentiated carbachol-evoked Ca2+ release. This was mediated by locally delivered cyclic AMP (cAMP), but unaffected by inhibition of protein kinase A (PKA), exchange proteins activated by cAMP, cAMP phosphodiesterases (PDEs) or substantial inhibition of adenylyl cyclase. Sustained stimulation with PTH(1-34) causes internalization of PTH1R–adenylyl cyclase signalling complexes, but the consequences for delivery of cAMP to IP3R within cAMP signalling junctions are unknown. Here, we show that sustained stimulation with PTH(1-34) or with PTH analogues that do not evoke receptor internalization reduced the potentiated Ca2+ signals and attenuated carbachol-evoked increases in cytosolic IP3. Similar results were obtained after sustained stimulation with NKH477 to directly activate adenylyl cyclase, or with the membrane-permeant analogue of cAMP, 8-Br-cAMP. These responses were independent of PKA and unaffected by substantial inhibition of adenylyl cyclase. During prolonged stimulation with PTH(1-34), hyperactive cAMP signalling junctions, within which cAMP is delivered directly and at saturating concentrations to its targets, mediate sensitization of IP3R and a more slowly developing inhibition of IP3 accumulation. PMID:25431134

  12. Colonoscopy-induced ischemic colitis in patients without risk factors

    PubMed Central

    Lee, Sang Ok; Kim, Sae Hee; Jung, Sung Hee; Park, Chan Woong; Lee, Min Ji; Lee, Jin A; Koo, Hyun Cheol; Kim, Anna; Han, Hyun-Young; Kang, Dong-Wook

    2014-01-01

    Ischemic colitis is the most common form of intestinal ischemia. It is a condition that is commonly seen in the elderly and among individuals with risk factors for ischemia. Common predisposing conditions for ischemic colitis are major vascular occlusion, small vessel disorder, shock, some medications, colonic obstructions and hematologic disorders. Ischemic colitis following colonoscopy is rare. Here, we report two cases of ischemic colitis after a routine screening colonoscopy in patients without risk factors for ischemia. PMID:24707156

  13. Whole Genome Approaches in Ischemic Stroke

    PubMed Central

    Meschia, James F.

    2014-01-01

    Background and Purpose The field of ischemic stroke genetics is moving beyond candidate gene studies into the realm of genomewide association studies. Such studies have resulted in discoveries in diverse, complex disorders. Methods The author conducted an informal qualitative review of peer-reviewed medical literature. Results The power of genomewide association studies to confirm prior associations and establish new ones is illustrated by recent work focusing on type 2 diabetes mellitus. A pilot genomewide association study of ischemic stroke failed to identify a single gene of major effect. Conclusions Follow-up studies with substantially greater statistical power are essential and are being planned by the Wellcome Trust and others. PMID:19064793

  14. Sonographic and Endoscopic Findings in Cocaine-Induced Ischemic Colitis

    PubMed Central

    Leth, Thomas; Wilkens, Rune; Bonderup, Ole K.

    2015-01-01

    Cocaine-induced ischemic colitis is a recognized entity. The diagnosis is based on clinical and endoscopic findings. However, diagnostic imaging is helpful in the evaluation of abdominal symptoms and prior studies have suggested specific sonographic findings in ischemic colitis. We report sonographic and endoscopic images along with abdominal computed tomography in a case of cocaine-induced ischemic colitis. PMID:26798523

  15. Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process.

    PubMed

    Yatabe, Rui; Noda, Junpei; Tahara, Yusuke; Naito, Yoshinobu; Ikezaki, Hidekazu; Toko, Kiyoshi

    2015-01-01

    It is possible to evaluate the taste of foods or medicines using a taste sensor. The taste sensor converts information on taste into an electrical signal using several lipid/polymer membranes. A lipid/polymer membrane for bitterness sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG), which is called "preconditioning". However, we have not yet analyzed the change in the surface structure of the membrane as a result of preconditioning. Thus, we analyzed the change in the surface by performing contact angle and surface zeta potential measurements, Fourier transform infrared spectroscopy (FTIR), X-ray photon spectroscopy (XPS) and gas cluster ion beam time-of-flight secondary ion mass spectrometry (GCIB-TOF-SIMS). After preconditioning, the concentrations of MSG and tetradodecylammonium bromide (TDAB), contained in the lipid membrane were found to be higher in the surface region than in the bulk region. The effect of preconditioning was revealed by the above analysis methods. PMID:26404301

  16. Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning.

    PubMed

    Sverdlik, A; Lanir, Y

    2002-02-01

    The time-dependent mechanical properties of sheep digital extensor tendons were studied by sequences of stress-relaxation tests. The results exhibited irreversible preconditioning and reversible viscoelasticity. Preconditioning effects were manifested by stress decay during consecutive stretch cycles to the same strain level, accompanied by elongation of the tendon's reference length. They intensified with increased strain level, and were reduced or became negligible as the strain decreased. The significance of intrinsic response mechanisms was studied via a structural model that includes viscoelasticity, preconditioning, and morphology of the tendon's collagen fibers. Model/data comparisons showed good agreement and good predictive power, suggesting that preconditioning can be integrated into comprehensive material characterization of tendons. PMID:11871608

  17. Preconditioning for Numerical Simulation of Low Mach Number Three-Dimensional Viscous Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.; Chima, Rodrick V.; Turkel, Eli

    1997-01-01

    A preconditioning scheme has been implemented into a three-dimensional viscous computational fluid dynamics code for turbomachine blade rows. The preconditioning allows the code, originally developed for simulating compressible flow fields, to be applied to nearly-incompressible, low Mach number flows. A brief description is given of the compressible Navier-Stokes equations for a rotating coordinate system, along with the preconditioning method employed. Details about the conservative formulation of artificial dissipation are provided, and different artificial dissipation schemes are discussed and compared. The preconditioned code was applied to a well-documented case involving the NASA large low-speed centrifugal compressor for which detailed experimental data are available for comparison. Performance and flow field data are compared for the near-design operating point of the compressor, with generally good agreement between computation and experiment. Further, significant differences between computational results for the different numerical implementations, revealing different levels of solution accuracy, are discussed.

  18. Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

    SciTech Connect

    Cai, Yunfeng; Department of Computer Science, University of California, Davis 95616 ; Bai, Zhaojun; Pask, John E.; Sukumar, N.

    2013-12-15

    The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal block preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.

  19. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart.

    PubMed

    Frasier, Chad R; Moore, Russell L; Brown, David A

    2011-09-01

    The ability of exercise to protect the heart against ischemia-reperfusion (I/R) injury is well known in both human epidemiological studies and experimental animal models. In this review article, we describe what is currently known about the ability of exercise to precondition the heart against infarction. Just 1 day of exercise can protect the heart against ischemia/reperfusion damage, and this protection is upheld with months of exercise, making exercise one of the few sustainable preconditioning stimuli. Exercise preconditioning depends on the model and intensity of exercise, and appears to involve heightened oxidant buffering capacity, upregulated subunits of sarcolemmal ATP-sensitive potassium channels, and adaptations to cardiac mitochondria. We review the putative mechanisms involved in exercise preconditioning and point out many areas where future research is necessary to advance our understanding of how this stimulus confers resistance against I/R damage. PMID:21393468

  20. An IP Traceback Model for Network Forensics

    NASA Astrophysics Data System (ADS)

    Pilli, Emmanuel S.; Joshi, R. C.; Niyogi, Rajdeep

    Network forensics deals with capture, recording, analysis and investigation of network traffic to traceback the attackers. Its ultimate goal is to provide sufficient evidence to allow the perpetrator to be prosecuted. IP traceback is an important aspect in the investigation process where the real attacker is identified by tracking source address of the attack packets. In this paper we classify the various approaches to network forensics to list the requirements of the traceback. We propose a novel model for traceback based on autonomous systems (AS) and deterministic packet marking (DPM) to enable traceback even with a single packet. The model is analyzed against various evaluation metrics. The traceback solution will be a major step in the direction of attack attribution and investigation.

  1. Telemetry and Communication IP Video Player

    NASA Technical Reports Server (NTRS)

    OFarrell, Zachary L.

    2011-01-01

    Aegis Video Player is the name of the video over IP system for the Telemetry and Communications group of the Launch Services Program. Aegis' purpose is to display video streamed over a network connection to be viewed during launches. To accomplish this task, a VLC ActiveX plug-in was used in C# to provide the basic capabilities of video streaming. The program was then customized to be used during launches. The VLC plug-in can be configured programmatically to display a single stream, but for this project multiple streams needed to be accessed. To accomplish this, an easy to use, informative menu system was added to the program to enable users to quickly switch between videos. Other features were added to make the player more useful, such as watching multiple videos and watching a video in full screen.

  2. IPS Empress: a standard of excellence.

    PubMed

    Hornbrook, D S; Roberts, M

    1998-01-01

    For 10 years, clinicians have been able to provide patients with a proven aesthetic and functional restoration that exhibits wear-compatibility, durability, and marginal integrity. This leucite-reinforced, pressed ceramic (IPS Empress, Ivoclar Williams, Amherst, NY) presents to patients and dentists the option of a metal-free alternative which retains the functional advantages of a porcelain-fused-to-metal restoration. This article illustrates the importance of sound laboratory communication in the utilization of this restorative material, focusing upon three aspects: midline and incisal edge inclination, elimination of open gingival embrasures, and incisal edge translucency. Techniques are also presented in order to efficiently communicate details of each case presented to the laboratory. PMID:9543867

  3. Mapping protein-DNA interactions using ChIP-sequencing.

    PubMed

    Massie, Charles E; Mills, Ian G

    2012-01-01

    Chromatin immunoprecipitation (ChIP) allows enrichment of genomic regions which are associated with specific transcription factors, histone modifications, and indeed any other epitopes which are present on chromatin. The original ChIP methods used site-specific PCR and Southern blotting to confirm which regions of the genome were enriched, on a candidate basis. The combination of ChIP with genomic tiling arrays (ChIP-chip) allowed a more unbiased approach to map ChIP-enriched sites. However, limitations of microarray probe design and probe number have a detrimental impact on the coverage, resolution, sensitivity, and cost of whole-genome tiling microarray sets for higher eukaryotes with large genomes. The combination of ChIP with high-throughput sequencing technology has allowed more comprehensive surveys of genome occupancy, greater resolution, and lower cost for whole genome coverage. Herein, we provide a comparison of high-throughput sequencing platforms and a survey of ChIP-seq analysis tools, discuss experimental design, and describe a detailed ChIP-seq method.Chromatin immunoprecipitation (ChIP) allows enrichment of genomic regions which are associated with specific transcription factors, histone modifications, and indeed any other epitopes which are present on chromatin. The original ChIP methods used site-specific PCR and Southern blotting to confirm which regions of the genome were enriched, on a candidate basis. The combination of ChIP with genomic tiling arrays (ChIP-chip) allowed a more unbiased approach to map ChIP-enriched sites. However, limitations of microarray probe design and probe number have a detrimental impact on the coverage, resolution, sensitivity, and cost of whole-genome tiling microarray sets for higher eukaryotes with large genomes. The combination of ChIP with high-throughput sequencing technology has allowed more comprehensive surveys of genome occupancy, greater resolution, and lower cost for whole genome coverage. Herein, we provide a comparison of high-throughput sequencing platforms and a survey of ChIP-seq analysis tools, discuss experimental design, and describe a detailed ChIP-seq method. PMID:22113275

  4. Chromosome and genetic testing using ChIP assay.

    PubMed

    Kohzaki, Hidetsugu; Asano, Maki

    2016-01-01

    Chromatin immunoprecipitation (ChIP) assay can be used to easily visualize information about proteins, DNA, and RNA on chromosomes and is widely used for analysis of genomes, epigenomes, mRNAs, and non-coding RNAs. The ChIP assay can detect, not only DNA-binding proteins of various organisms, but also the temporal and spatial regulating mechanisms of RNA-binding proteins. Because of these features, demand for ChIP assay is expected to grow. Here, by using yeast and Drosophila as examples, we describe the superiority of the improved ChIP assay that we have developed. PMID:27100707

  5. Security Research on VoIP with Watermarking

    NASA Astrophysics Data System (ADS)

    Hu, Dong; Lee, Ping

    2008-11-01

    With the wide application of VoIP, many problems have occurred. One of the problems is security. The problems with securing VoIP systems, insufficient standardization and lack of security mechanisms emerged the need for new approaches and solutions. In this paper, we propose a new security architecture for VoIP which is based on digital watermarking which is a new, flexible and powerful technology that is increasingly gaining more and more attentions. Besides known applications e.g. to solve copyright protection problems, we propose to use digital watermarking to secure not only transmitted audio but also signaling protocol that VoIP is based on.

  6. Machinability of IPS Empress 2 framework ceramic.

    PubMed

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. PMID:10898875

  7. Lessons Learned in the Design and Use of IP1 / IP2 Flexible Packaging - 13621

    SciTech Connect

    Sanchez, Mike; Reeves, Wendall; Smart, Bill

    2013-07-01

    For many years in the USA, Low Level Radioactive Waste (LLW), contaminated soils and construction debris, have been transported, interim stored, and disposed of, using IP1 / IP2 metal containers. The performance of these containers has been more than adequate, with few safety occurrences. The containers are used under the regulatory oversight of the US Department of Transportation (DOT), 49 Code of Federal Regulations (CFR). In the late 90's the introduction of flexible packaging for the transport, storage, and disposal of low level contaminated soils and construction debris was introduced. The development of flexible packaging came out of a need for a more cost effective package, for the large volumes of waste generated by the decommissioning of many of the US Department of Energy (DOE) legacy sites across the US. Flexible packaging had to be designed to handle a wide array of waste streams, including soil, gravel, construction debris, and fine particulate dust migration. The design also had to meet all of the IP1 requirements under 49CFR 173.410, and be robust enough to pass the IP2 testing 49 CFR 173.465 required for many LLW shipments. Tens of thousands of flexible packages have been safely deployed and used across the US nuclear industry as well as for hazardous non-radioactive applications, with no recorded release of radioactive materials. To ensure that flexible packages are designed properly, the manufacturer must use lessons learned over the years, and the tests performed to provide evidence that these packages are suitable for transporting low level radioactive wastes. The design and testing of flexible packaging for LLW, VLLW and other hazardous waste streams must be as strict and stringent as the design and testing of metal containers. The design should take into consideration the materials being loaded into the package, and should incorporate the right materials, and manufacturing methods, to provide a quality, safe product. Flexible packaging can be shown to meet the criteria for safe and fit for purpose packaging, by meeting the US DOT regulations, and the IAEA Standards for IP-1 and IP-2 including leak tightness. (authors)

  8. Effects of Thermal Preconditioning on Tissue Susceptibility to Histotripsy.

    PubMed

    Vlaisavljevich, Eli; Xu, Zhen; Arvidson, Alexa; Jin, Lifang; Roberts, William; Cain, Charles

    2015-11-01

    Histotripsy is a non-invasive ablation method that mechanically fractionates tissue by controlling acoustic cavitation. Previous work has revealed that tissue mechanical properties play a significant role in the histotripsy process, with stiffer tissues being more resistant to histotripsy-induced tissue damage. In this study, we propose a thermal pretreatment strategy to precondition tissues before histotripsy. We hypothesize that a thermal pretreatment can be used to alter tissue stiffness by modulating collagen composition, thus changing tissue susceptibility to histotripsy. More specifically, we hypothesize that tissues will soften and become more susceptible to histotripsy when preheated at ∼60°C because of collagen denaturation, but that tissues will rapidly stiffen and become less susceptible to histotripsy when preheated at ∼90°C because of collagen contraction. To test this hypothesis, a controlled temperature water bath was used to heat various ex vivo bovine tissues (tongue, artery, liver, kidney medulla, tendon and urethra). After heating, the Young's modulus of each tissue sample was measured using a tissue elastometer, and changes in tissue composition (i.e., collagen structure/density) were analyzed histologically. The susceptibility of tissues to histotripsy was investigated by treating the samples using a 750-kHz histotripsy transducer. Results revealed a decrease in stiffness and an increase in susceptibility to histotripsy for tissues (except urethra) preheated to 58°C. In contrast, preheating to 90°C increased tissue stiffness and reduced susceptibility to histotripsy for all tissues except tendon, which was significantly softened due to collagen hydrolysis into gelatin. On the basis of these results, a final set of experiments were conducted to determine the feasibility of using high-intensity focused ultrasound to provide the thermal pretreatment. Overall, the results of this study indicate the initial feasibility of a thermal pretreatment strategy to precondition tissue mechanical properties and alter tissue susceptibility to histotripsy. Future work will aim to optimize this thermal pretreatment strategy to determine if this approach is practical for specific clinical applications in vivo without causing unwanted damage to surrounding or overlying tissue. PMID:26318560

  9. An objective procedure for ischemic area evaluation of the stroke intraluminal thread model in the mouse and rat.

    PubMed

    Wexler, Eric J; Peters, Elaine E; Gonzales, Armando; Gonzales, Maria L; Slee, Andrew M; Kerr, Janet S

    2002-01-15

    Computer-assisted procedures are used to measure infarct areas in animal stroke models, but this approach usually follows the less objective manual tracing of the boundaries of the infarct. Building on previously reported methodology using scanned images of triphenyltetrazolium chloride (TTC)-stained rat brains in the intraluminal thread model, we developed an objective method to assess ischemic damage in both the mouse and rat brains. The unique addition to our approach is the use of sham-treated animals, which thereby permits the removal of normal brain white matter from the ipsilateral injured brain. All brain sections per animal were scanned simultaneously using a Microtek Scanmaker 4 flatbed scanner. Color segmentation on full color images of 2 mm coronal brain sections was performed. Using Image Pro Plus (4.0) and color segmentation, ischemic and normal white matter areas were measured in the green channel and the entire brain area in the red channel. The percent of unstained tissue was calculated for sham-treated animals and for those with cerebral ischemia. By subtracting the average unstained area of the sham-treated group from the average unstained area from the ischemic group, the ischemic area was calculated. This methodology was validated using mouse and rat permanent and transient, focal ischemia models and MK-801 in the permanent ischemia models. MK-801, dosed at 3 mg/kg i.p. prior to the injury, reduced the injury by 75% in the mouse and 44% in the rat permanent occlusion models. The benefits of this methodology include: objectivity of the analysis of the ischemic injury, use of readily available software so that costs can be contained and removal of normal subcortical white matter from the calculation. This method should allow more consistent evaluation of changes in the infarct size, therefore, resulting in reduced variability and higher productivity. PMID:11741721

  10. An overview of antithrombotics in ischemic stroke.

    PubMed

    Schweickert, Patricia A; Gaughen, John R; Kreitel, Elizabeth M; Shephard, Timothy J; Solenski, Nina J; Jensen, Mary E

    2016-06-19

    The use of antithrombotic medications is an important component of ischemic stroke treatment and prevention. This article reviews the evidence for best practices for antithrombotic use in stroke with focused discussion on the specific agents used to treat and prevent stroke. PMID:27153001

  11. Intensive care management of acute ischemic stroke.

    PubMed

    Burns, Joseph D; Green, Deborah M; Metivier, Kristen; DeFusco, Christina

    2012-08-01

    Despite the success of acute reperfusion therapies for the treatment of acute ischemic stroke, only a minority of patients receive such treatment. Even patients who receive reperfusion therapy remain at risk for further neuronal death through progressive infarction and secondary injury mechanisms. The goal of neurocritical care for the patient with acute ischemic stroke is to optimize long-term outcomes by minimizing the amount of brain tissue that is lost to these processes. This is accomplished by optimizing brain perfusion, limiting secondary brain injury, and compensating for associated dysfunction in other organ systems. Because of the rapid and irreversible nature of ischemic brain injury, it is crucial for best neurocritical care practices to begin as early as possible. Therefore, this chapter will discuss optimal, pragmatic neurocritical care management of patients with acute ischemic stroke during the "golden" emergency department hours from the perspective of the neurointensivist. Major topics include cerebral perfusion optimization; management of cerebral edema; post-thrombolytic care; acute anticoagulation; treatment of commonly associated cardiac and pulmonary complications; fluid, electrolyte and glucose management; the role of induced normothermia and therapeutic hypothermia; and prophylaxis against common complications. PMID:22974646

  12. Enhanced nucleotide excision repair capacity in lung cancer cells by preconditioning with DNA-damaging agents

    PubMed Central

    Choi, Ji Ye; Park, Jeong-Min; Yi, Joo Mi; Leem, Sun-Hee; Kang, Tae-Hong

    2015-01-01

    The capacity of tumor cells for nucleotide excision repair (NER) is a major determinant of the efficacy of and resistance to DNA-damaging chemotherapeutics, such as cisplatin. Here, we demonstrate that using lesion-specific monoclonal antibodies, NER capacity is enhanced in human lung cancer cells after preconditioning with DNA-damaging agents. Preconditioning of cells with a nonlethal dose of UV radiation facilitated the kinetics of subsequent cisplatin repair and vice versa. Dual-incision assay confirmed that the enhanced NER capacity was sustained for 2 days. Checkpoint activation by ATR kinase and expression of NER factors were not altered significantly by the preconditioning, whereas association of XPA, the rate-limiting factor in NER, with chromatin was accelerated. In preconditioned cells, SIRT1 expression was increased, and this resulted in a decrease in acetylated XPA. Inhibition of SIRT1 abrogated the preconditioning-induced predominant XPA binding to DNA lesions. Taking these data together, we conclude that upregulated NER capacity in preconditioned lung cancer cells is caused partly by an increased level of SIRT1, which modulates XPA sensitivity to DNA damage. This study provides some insights into the molecular mechanism of chemoresistance through acquisition of enhanced DNA repair capacity in cancer cells. PMID:26317794

  13. Convergence Acceleration of the Navier-Stokes Equations Through Time-Derivative Preconditioning

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.; Venkateswaran, Sankaran; Deshpande, Manish

    1996-01-01

    Chorin's method of artificial compressibility is extended to both compressible and incompressible fluids by using physical arguments to define artificial fluid properties that make up a local preconditioning matrix. In particular, perturbation expansions are used to provide appropriate temporal derivatives for the equations of motion at both low speeds and low Reynolds numbers. These limiting forms are then combined into a single function that smoothly merges into the physical time derivatives at high speeds so that the equations are left unchanged at transonic, high Reynolds number conditions. The effectiveness of the resulting preconditioning procedures for the Navier-Stokes equations is demonstrated for a wide speed and Reynolds number ranges by means of stability results and computational solutions. Nevertheless, the preconditioned equations sometimes fail to provide a solution for applications for which the non-preconditioned equations converge. Often this is because the reduced dissipation in the preconditioned equations results in an unsteady solution while the more dissipative non-preconditioned equations result in a steady state. Problems of this type represent a computational challenge; it is important to distinguish between non-convergence of algorithms, and the non-existence of steady state solutions.

  14. Isoflurane preconditioning reduces mouse microglial activation and injury induced by lipopolysaccharide and interferon-γ

    PubMed Central

    Xu^, Xuebing; Kim, Jie Ae; Zuo, Zhiyi

    2008-01-01

    Activation and injury of microglial cells are involved in a broad range of brain diseases including stroke, brain infection and neurodegenerative diseases. However, there is very little information regarding how to reduce microglial reaction and preserve these cells to provide neuroprotection. Here, we showed that the incubation of C8-B4 mouse microglial cells with lipopolysaccharide (LPS) plus interferon-γ (IFNγ) for 24 hr decreased the viability of these cells. Pretreatment of these cells with 1%, 2% or 3% isoflurane, a commonly used volatile anesthetic, for 1 hr at 30 min before the exposure to LPS plus IFNγ attenuated the reduction of cell viability (preconditioning effect). LPS plus IFNγ also activated these microglial cells to express inducible nitric oxide synthase (iNOS) and to induce accumulation of nitrite, a stable oxidation product of nitric oxide, in the incubation medium. Isoflurane preconditioning attenuated these LPS plus IFNγ effects on the iNOS expression and nitrite accumulation. Aminoguanidine, an iNOS inhibitor, attenuated the LPS plus IFNγ-induced glutamate release and decrease of microglial viability. Isoflurane preconditioning also reduced LPS plus IFNγ-induced glutamate release. Exogenous glutamate decreased microglial viability. Finally, the isoflurane preconditioning-induced protection was abolished by chelerythrine, a protein kinase C inhibitor. These results suggest that LPS plus IFNγ activates the iNOS-nitric oxide-glutamate pathway to induce microglial injury and that this activation is attenuated by isoflurane preconditioning. Protein kinase C may be involved in the isoflurane preconditioning effects. PMID:18495358

  15. Preconditioning as a potential strategy for the prevention of Parkinson's disease.

    PubMed

    Golpich, Mojtaba; Rahmani, Behrouz; Mohamed Ibrahim, Norlinah; Dargahi, Leila; Mohamed, Zahurin; Raymond, Azman Ali; Ahmadiani, Abolhassan

    2015-02-01

    Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. A numerous of cellular processes including oxidative stress, mitochondrial dysfunction, and accumulation of α-synuclein aggregates are considered to contribute to the pathogenesis of Parkinson's disease. A further understanding of the cellular and molecular mechanisms involved in the pathophysiology of PD is crucial for developing effective diagnostic, preventative, and therapeutic strategies to cure this devastating disorder. Preconditioning (PC) is assumed as a natural adaptive process whereby a subthreshold stimulus can promote protection against a subsequent lethal stimulus in the brain as well as in other tissues that affords robust brain tolerance facing neurodegenerative insults. Multiple lines of evidence have demonstrated that preconditioning as a possible neuroprotective technique may reduce the neural deficits associated with neurodegenerative diseases such as PD. Throughout the last few decades, a lot of efforts have been made to discover the molecular determinants involved in preconditioning-induced protective responses; although, the accurate mechanisms underlying this "tolerance" phenomenon are not fully understood in PD. In this review, we will summarize pathophysiology and current therapeutic approaches in PD and discuss about preconditioning in PD as a potential neuroprotective strategy. Also the role of gene reprogramming and mitochondrial biogenesis involved in the preconditioning-mediated neuroprotective events will be highlighted. Preconditioning may represent a promising therapeutic weapon to combat neurodegeneration. PMID:24696268

  16. Maintaining high-quality IP audio services in lossy IP network environments

    NASA Astrophysics Data System (ADS)

    Barton, Robert J., III; Chodura, Hartmut

    2000-07-01

    In this paper we present our research activities in the area of digital audio processing and transmission. Today's available teleconference audio solutions are lacking in flexibility, robustness and fidelity. There was a need for enhancing the quality of audio for IP-based applications to guarantee optimal services under varying conditions. Multiple tests and user evaluations have shown that a reliable audio communication toolkit is essential for any teleconference application. This paper summarizes our research activities and gives an overview of developed applications. In a first step the parameters, which influence the audio quality, were evaluated. All of these parameters have to be optimized in order to result into the best achievable quality. Therefore it was necessary to enhance existing schemes or develop new methods. Applications were developed for Internet-Telephony, broadcast of live music and spatial audio for Virtual Reality environments. This paper describes these applications and issues of delivering high quality digital audio services over lossy IP networks.

  17. Telomere Reprogramming and Maintenance in Porcine iPS Cells

    PubMed Central

    Ji, Guangzhen; Ruan, Weimin; Liu, Kai; Wang, Fang; Sakellariou, Despoina; Chen, Jijun; Yang, Yang; Okuka, Maja; Han, Jianyong; Liu, Zhonghua; Lai, Liangxue; Gagos, Sarantis; Xiao, Lei; Deng, Hongkui; Li, Ning; Liu, Lin

    2013-01-01

    Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells). Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells. PMID:24098638

  18. Cerenkov luminescence tomography based on preconditioning orthogonal matching pursuit

    NASA Astrophysics Data System (ADS)

    Liu, Haixiao; Hu, Zhenhua; Wang, Kun; Tian, Jie; Yang, Xin

    2015-03-01

    Cerenkov luminescence imaging (CLI) is a novel optical imaging method and has been proved to be a potential substitute of the traditional radionuclide imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). This imaging method inherits the high sensitivity of nuclear medicine and low cost of optical molecular imaging. To obtain the depth information of the radioactive isotope, Cerenkov luminescence tomography (CLT) is established and the 3D distribution of the isotope is reconstructed. However, because of the strong absorption and scatter, the reconstruction of the CLT sources is always converted to an ill-posed linear system which is hard to be solved. In this work, the sparse nature of the light source was taken into account and the preconditioning orthogonal matching pursuit (POMP) method was established to effectively reduce the ill-posedness and obtain better reconstruction accuracy. To prove the accuracy and speed of this algorithm, a heterogeneous numerical phantom experiment and an in vivo mouse experiment were conducted. Both the simulation result and the mouse experiment showed that our reconstruction method can provide more accurate reconstruction result compared with the traditional Tikhonov regularization method and the ordinary orthogonal matching pursuit (OMP) method. Our reconstruction method will provide technical support for the biological application for Cerenkov luminescence.

  19. Prolonged preconditioning with natural honey against myocardial infarction injuries.

    PubMed

    Eteraf-Oskouei, Tahereh; Shaseb, Elnaz; Ghaffary, Saba; Najafi, Moslem

    2013-07-01

    Potential protective effects of prolonged preconditioning with natural honey against myocardial infarction were investigated. Male Wistar rats were pre-treated with honey (1%, 2% and 4%) for 45 days then their hearts were isolated and mounted on a Langendorff apparatus and perfused with a modified Krebs-Henseleit solution during 30 min regional ischemia fallowed by 120 min reperfusion. Two important indexes of ischemia-induced damage (infarction size and arrhythmias) were determined by computerized planimetry and ECG analysis, respectively. Honey (1% and 2%) reduced infarct size from 23±3.1% (control) to 9.7±2.4 and 9.5±2.3%, respectively (P<0.001). At the ischemia, honey (1%) significantly reduced (P<0.05) the number and duration of ventricular tachycardia (VT). Honey (1% and 2%) also significantly decreased number of ventricular ectopic beats (VEBs). In addition, incidence and duration of reversible ventricular fibrillation (Rev VF) were lowered by honey 2% (P<0.05). During reperfusion, honey produced significant reduction in the incidences of VT, total and Rev VF, duration and number of VT. The results showed cardioprotective effects of prolonged pre-treatment of rats with honey following myocardial infarction. Maybe, the existence of antioxidants and energy sources (glucose and fructose) in honey composition and improvement of hemodynamic functions may involve in those protective effects. PMID:23811442

  20. Isoflurane Preconditioning Confers Cardioprotection by Activation of ALDH2

    PubMed Central

    Lang, Xiao-E; Wang, Xiong; Zhang, Ke-Rang; Lv, Ji-Yuan; Jin, Jian-Hua; Li, Qing-Shan

    2013-01-01

    The volatile anesthetic, isoflurane, protects the heart from ischemia/reperfusion (I/R) injury. Aldehyde dehydrogenase 2 (ALDH2) is thought to be an endogenous mechanism against ischemia-reperfusion injury possibly through detoxification of toxic aldehydes. We investigated whether cardioprotection by isoflurane depends on activation of ALDH2.Anesthetized rats underwent 40 min of coronary artery occlusion followed by 120 min of reperfusion and were randomly assigned to the following groups: untreated controls, isoflurane preconditioning with and without an ALDH2 inhibitor, the direct activator of ALDH2 or a protein kinase C (PKCε) inhibitor. Pretreatment with isoflurane prior to ischemia reduced LDH and CK-MB levels and infarct size, while it increased phosphorylation of ALDH2, which could be blocked by the ALDH2 inhibitor, cyanamide. Isolated neonatal cardiomyocytes were treated with hypoxia followed by reoxygenation. Hypoxia/reoxygenation (H/R) increased cardiomyocyte apoptosis and injury which were attenuated by isoflurane and forced the activation of ALDH2. In contrast, the effect of isoflurane-induced protection was almost abolished by knockdown of ALDH2. Activation of ALDH2 and cardioprotection by isoflurane were substantially blocked by the PKCε inhibitor. Activation of ALDH2 by mitochondrial PKCε plays an important role in the cardioprotection of isoflurane in myocardium I/R injury. PMID:23468836

  1. pGlu-serpinin protects the normotensive and hypertensive heart from ischemic injury.

    PubMed

    Pasqua, T; Tota, B; Penna, C; Corti, A; Cerra, M C; Loh, Y P; Angelone, T

    2015-12-01

    Serpinin peptides derive from proteolytic cleavage of Chromogranin-A at C-terminus. Serpinin and the more potent pyroglutaminated-serpinin (pGlu-Serp) are positive cardiac β-adrenergic-like modulators, acting through β1-AR/AC/cAMP/PKA pathway. Because in some conditions this pathway and/or other pro-survival pathways, activated by other Chromogranin-A fragments, may cross-talk and may be protective, here we explored whether pGlu-Serp cardioprotects against ischemia/reperfusion injury under normotensive and hypertensive conditions. In the latter condition, cardioprotection is often blunted because of the limitations on pro-survival Reperfusion Injury Salvage Kinases (RISK) pathway activation. The effects of pGlu-Serp were evaluated on infarct size (IS) and cardiac function by using the isolated and Langendorff perfused heart of normotensive (Wistar Kyoto, WKY) and spontaneously hypertensive (SHR) rats exposed to ischemic pre-conditioning (PreC) and post-conditioning (PostC). In both WKY and SHR rat, pGlu-Serp induced mild cardioprotection in both PreC and PostC. pGlu-Serp administered at the reperfusion (Serp-PostC) significantly reduced IS, being more protective in SHR than in WKY. Conversely, left ventricular developed pressure (LVDevP) post-ischemic recovery was greater in WKY than in SHR. pGlu-Serp-PostC reduced contracture in both strains. Co-infusion with specific RISK inhibitors (PI3K/Akt, MitoKATP channels and PKC) blocked the pGlu-Serp-PostC protective effects. To show direct effect on cardiomyocytes, we pre-treated H9c2 cells with pGlu-Serp, which were thus protected against hypoxia/reoxygenation. These results suggest pGlu-Serp as a potential modulatory agent implicated in the protective processes that can limit infarct size and overcome the hypertension-induced failure of PostC. PMID:26400960

  2. Safeguarding Nonhuman Primate iPS Cells With Suicide Genes

    PubMed Central

    Zhong, Bonan; Watts, Korashon L; Gori, Jennifer L; Wohlfahrt, Martin E; Enssle, Joerg; Adair, Jennifer E; Kiem, Hans-Peter

    2011-01-01

    The development of technology to generate induced pluripotent stem (iPS) cells constitutes one of the most exciting scientific breakthroughs because of the enormous potential for regenerative medicine. However, the safety of iPS cell-related products is a major concern for clinical translation. Insertional mutagenesis, possible oncogenic transformation of iPS cells or their derivatives, or the contamination of differentiated iPS cells with undifferentiated cells, resulting in the formation of teratomas, have remained considerable obstacles. Here, we demonstrate the utility of suicide genes to safeguard iPS cells and their derivatives. We found suicide genes can control the cell fate of iPS cells in vitro and in vivo without interfering with their pluripotency and self-renewal capacity. This study will be useful to evaluate the safety of iPS cell technology in a clinically highly relevant, large animal model and further benefit the clinical use of human iPS cells. PMID:21587213

  3. Fair Scheduling for Delay-Sensitive VoIP Traffic

    NASA Astrophysics Data System (ADS)

    Ahmed, Shawish; Jiang, Xiaohong; Horiguchi, Susumu

    With the wide expansion of voice services over the IP networks (VoIP), the volume of this delay sensitive traffic is steadily growing. The current packet schedulers for IP networks meet the delay constraint of VoIP traffic by simply assigning its packets the highest priority. This technique is acceptable as long as the amount of VoIP traffic is relatively very small compared to other non-voice traffic. With the notable expansion of VoIP applications, however, the current packet schedulers will significantly sacrifice the fairness deserved by the non-voice traffic. In this paper, we extend the conventional Deficit Round-Robin (DRR) scheduler by including a packet classifier, a Token Bucket and a resource reservation scheme and propose an integrated packet scheduler architecture for the growing VoIP traffic. We demonstrate through both theoretical analysis and extensive simulation that the new architecture makes it possible for us to significantly improve the fairness to non-voice traffic while still meeting the tight delay requirement of VoIP applications.

  4. Protection of the ischaemic heart: investigations into the phenomenon of ischaemic preconditioning.

    PubMed

    Lochner, A; Marais, E; Genade, S; Huisamen, B; du Toit, E F; Moolman, J A

    2009-01-01

    Exposure of the heart to one or more short episodes of ischaemia/reperfusion protects the heart against a subsequent prolonged period of ischaemia, as evidenced by a reduction in infarct size and an improvement in functional recovery during reperfusion. Elucidation of the mechanism of this endogenous protection could lead to the development of pharmacological mimetics to be used in the clinical setting. The aim of our studies was therefore to gain more information regarding the mechanism of ischaemic preconditioning, using the isolated perfused working rat heart as model. A preconditioning protocol of 1 x 5 or 3 x 5 min of ischaemia, interspersed with 5 min of reperfusion was found to protect hearts exposed to 25 min of global ischaemia or 35-45 min of regional ischaemia. These models were used throughout our studies. In view of the release of catecholamines by ischaemic tissue, our first aim was to evaluate the role of the alphaadrenergic receptor in ischaemic preconditioning. However, using a multi-cycle ischaemic preconditioning protocol, we could not find any evidence for alpha-1 adrenergic or PKC activation in the mechanism of preconditioning. Cyclic increases in the tissue cyclic nucleotides, cAMP and cGMP were found, however, to occur during a multi-cycle preconditioning protocol, suggesting roles for the beta-adrenergic signalling pathway and nitric oxide (NO) as triggers of cardioprotection. This was substantiated by the findings that (1) administration of the beta-adrenergic agonist, isoproterenol, or the NO donors SNAP or SNP before sustained ischaemia also elicited cardioprotection similar to ischaemic preconditioning; (2) beta-adrenergic blockade or nitric oxide synthase inhibition during an ischaemic preconditioning protocol abolished protection. Effectors downstream of cAMP, such as p38MAPK and CREB, were also demonstrated to be involved in the triggering process. Our next step was to evaluate intracellular signalling during sustained ischaemia and reperfusion. Our results showed that ischaemic preconditioned-induced cardioprotection was associated with a significant reduction in tissue cAMP, attenuation of p38MAPK activation and increased tissue cGMP levels and HSP27 activation, compared to non-preconditioned hearts. The role of the stress kinase p38MAPK was further investigated by using the inhibitor SB203580. Our results suggested that injury by necrosis and apoptosis share activation of p38MAPK as a common signal transduction pathway and that pharmacological targeting of this kinase offers a tenable option to manipulate both these processes during ischaemia/reperfusion injury. PMID:19287816

  5. Research on implementation of proxy Arp in IP DSLAM

    NASA Astrophysics Data System (ADS)

    Cheng, Chuanqing; Wang, Li; Huang, Qiugen

    2005-02-01

    While the ethernet is applied more and more in public network environment and xdsl service become the most common access mode ,IP kenel DSLAM undertakes some functions such as service distribution and convergence ,security management and customer management.Facing the contradiction of the need of port isolation and the shortage of ip address,VLAN aggregation technology is applied in DSLAM.How to implement the communicatio between the two vlan but share the same ip subnet,proxy arp does this. This paper introduces how to implement proxy arp in the DSLAM. TCP/IP communication detail procedure betweent two host ,the relation of VLAN and network segment are discussed. The proxy arp model and its implementation in IP DSLAM is also expatiated in this paper and a conformance tesing is given.

  6. Audio CAPTCHA for SIP-Based VoIP

    NASA Astrophysics Data System (ADS)

    Soupionis, Yannis; Tountas, George; Gritzalis, Dimitris

    Voice over IP (VoIP) introduces new ways of communication, while utilizing existing data networks to provide inexpensive voice communications worldwide as a promising alternative to the traditional PSTN telephony. SPam over Internet Telephony (SPIT) is one potential source of future annoyance in VoIP. A common way to launch a SPIT attack is the use of an automated procedure (bot), which generates calls and produces audio advertisements. In this paper, our goal is to design appropriate CAPTCHA to fight such bots. We focus on and develop audio CAPTCHA, as the audio format is more suitable for VoIP environments and we implement it in a SIP-based VoIP environment. Furthermore, we suggest and evaluate the specific attributes that audio CAPTCHA should incorporate in order to be effective, and test it against an open source bot implementation.

  7. Scalable Network Emulator Architecture for IP Optical Network Management

    NASA Astrophysics Data System (ADS)

    Oki, Eiji; Kitsuwan, Nattapong; Tsunoda, Shunichi; Miyamura, Takashi; Masuda, Akeo; Shiomoto, Kohei

    This letter proposes a scalable network emulator architecture to support IP optical network management. The network emulator uses the same router interfaces to communicate with the IP optical TE server as the actual IP optical network, and behaves as an actual IP optical network between the interfaces. The network emulator mainly consists of databases and three modules: interface module, resource simulator module, and traffic generator module. To make the network emulator scalable in terms of network size, we employ TCP/IP socket communications between the modules. The proposed network emulator has the benefit that its implementation is not strongly dependent on hardware limitations. We develop a prototype of the network emulator based on the proposed architecture. Our design and experiments show that the proposed architecture is effective.

  8. Defining bacterial regulons using ChIP-seq.

    PubMed

    Myers, Kevin S; Park, Dan M; Beauchene, Nicole A; Kiley, Patricia J

    2015-09-15

    Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is a powerful method that identifies protein-DNA binding sites in vivo. Recent studies have illustrated the value of ChIP-seq in studying transcription factor binding in various bacterial species under a variety of growth conditions. These results show that in addition to identifying binding sites, correlation of ChIP-seq data with expression data can reveal important information about bacterial regulons and regulatory networks. In this chapter, we provide an overview of the current state of knowledge about ChIP-seq methodology in bacteria, from sample preparation to raw data analysis. We also describe visualization and various bioinformatic analyses of processed ChIP-seq data. PMID:26032817

  9. Computational methodology for ChIP-seq analysis

    PubMed Central

    Shin, Hyunjin; Liu, Tao; Duan, Xikun; Zhang, Yong; Liu, X. Shirley

    2015-01-01

    Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq) is a powerful technology to identify the genome-wide locations of DNA binding proteins such as transcription factors or modified histones. As more and more experimental laboratories are adopting ChIP-seq to unravel the transcriptional and epigenetic regulatory mechanisms, computational analyses of ChIP-seq also become increasingly comprehensive and sophisticated. In this article, we review current computational methodology for ChIP-seq analysis, recommend useful algorithms and workflows, and introduce quality control measures at different analytical steps. We also discuss how ChIP-seq could be integrated with other types of genomic assays, such as gene expression profiling and genome-wide association studies, to provide a more comprehensive view of gene regulatory mechanisms in important physiological and pathological processes. PMID:25741452

  10. Probabilistic Route Selection Algorithm for IP Traceback

    NASA Astrophysics Data System (ADS)

    Yim, Hong-Bin; Jung, Jae-Il

    DoS(Denial of Service) or DDoS(Distributed DoS) attack is a major threaten and the most difficult problem to solve among many attacks. Moreover, it is very difficult to find a real origin of attackers because DoS/DDoS attacker uses spoofed IP addresses. To solve this problem, we propose a probabilistic route selection traceback algorithm, namely PRST, to trace the attacker's real origin. This algorithm uses two types of packets such as an agent packet and a reply agent packet. The agent packet is in use to find the attacker's real origin and the reply agent packet is in use to notify to a victim that the agent packet is reached the edge router of the attacker. After attacks occur, the victim generates the agent packet and sends it to a victim's edge router. The attacker's edge router received the agent packet generates the reply agent packet and send it to the victim. The agent packet and the reply agent packet is forwarded refer to probabilistic packet forwarding table (PPFT) by routers. The PRST algorithm runs on the distributed routers and PPFT is stored and managed by routers. We validate PRST algorithm by using mathematical approach based on Poisson distribution.

  11. I.P. Pavlov as a youth.

    PubMed

    Windholz, G

    1991-01-01

    Ivan P. Pavlov's youthful relations with parents and siblings, formal education, and social activities in Riazan' are described. The Pavlovs, a highly achievement-oriented family descending from a lowly serf, improved their social status by serving the Russian Orthodox Church. Pavlov, the son of a priest, studied in the 1860s at the Riazan' Ecclesiastic Seminary for priesthood. The turbulent 1860s' decade was a period of social and political reforms. Western ideas and science were introduced to Russia. The ambitious and idealistic I.P. Pavlov was influenced by popular essays written by the journalist D.I. Pisarev, the works of the German physiologist J. Moleschott, the English writer G.H. Lewes, the German zoologist C. Vogt and the physiologist M.I. Sechenov. Losing his religious faith, Pavlov abandoned the traditional goal of becoming a priest, and, convinced that science was a road to truth and progress, left Riazan' to study natural science at the University of St. Petersburg. PMID:2054299

  12. Forced Exercise Preconditioning Attenuates Experimental Autoimmune Neuritis by Altering Th1 Lymphocyte Composition and Egress.

    PubMed

    Calik, Michael W; Shankarappa, Sahadev A; Langert, Kelly A; Stubbs, Evan B

    2015-01-01

    A short-term exposure to moderately intense physical exercise affords a novel measure of protection against autoimmune-mediated peripheral nerve injury. Here, we investigated the mechanism by which forced exercise attenuates the development and progression of experimental autoimmune neuritis (EAN), an established animal model of Guillain-Barré syndrome. Adult male Lewis rats remained sedentary (control) or were preconditioned with forced exercise (1.2 km/day × 3 weeks) prior to P2-antigen induction of EAN. Sedentary rats developed a monophasic course of EAN beginning on postimmunization day 12.3 ± 0.2 and reaching peak severity on day 17.0 ± 0.3 (N = 12). By comparison, forced-exercise preconditioned rats exhibited a similar monophasic course but with significant (p < .05) reduction of disease severity. Analysis of popliteal lymph nodes revealed a protective effect of exercise preconditioning on leukocyte composition and egress. Compared with sedentary controls, forced exercise preconditioning promoted a sustained twofold retention of P2-antigen responsive leukocytes. The percentage distribution of pro-inflammatory (Th1) lymphocytes retained in the nodes from sedentary EAN rats (5.1 ± 0.9%) was significantly greater than that present in nodes from forced-exercise preconditioned EAN rats (2.9 ± 0.6%) or from adjuvant controls (2.0 ± 0.3%). In contrast, the percentage of anti-inflammatory (Th2) lymphocytes (7-10%) and that of cytotoxic T lymphocytes (∼20%) remained unaltered by forced exercise preconditioning. These data do not support an exercise-inducible shift in Th1:Th2 cell bias. Rather, preconditioning with forced exercise elicits a sustained attenuation of EAN severity, in part, by altering the composition and egress of autoreactive proinflammatory (Th1) lymphocytes from draining lymph nodes. PMID:26186926

  13. Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function.

    PubMed

    Scherer, Paul C; Ding, Yan; Liu, Zhiqing; Xu, Jing; Mao, Haibin; Barrow, James C; Wei, Ning; Zheng, Ning; Snyder, Solomon H; Rao, Feng

    2016-03-29

    The family of cullin-RING E3 Ligases (CRLs) and the constitutive photomorphogenesis 9 (COP9) signalosome (CSN) form dynamic complexes that mediate ubiquitylation of 20% of the proteome, yet regulation of their assembly/disassembly remains poorly understood. Inositol polyphosphates are highly conserved signaling molecules implicated in diverse cellular processes. We now report that inositol hexakisphosphate (IP6) is a major physiologic determinant of the CRL-CSN interface, which includes a hitherto unidentified electrostatic interaction between the N-terminal acidic tail of CSN subunit 2 (CSN2) and a conserved basic canyon on cullins. IP6, with an EC50of 20 nM, acts as an intermolecular "glue," increasing cullin-CSN2 binding affinity by 30-fold, thereby promoting assembly of the inactive CRL-CSN complexes. The IP6 synthase, Ins(1,3,4,5,6)P5 2-kinase (IPPK/IP5K) binds to cullins. Depleting IP5K increases the percentage of neddylated, active Cul1 and Cul4A, and decreases levels of the Cul1/4A substrates p27 and p21. Besides dysregulating CRL-mediated cell proliferation and UV-induced apoptosis, IP5K depletion potentiates by 28-fold the cytotoxic effect of the neddylation inhibitor MLN4924. Thus, IP5K and IP6 are evolutionarily conserved components of the CRL-CSN system and are potential targets for cancer therapy in conjunction with MLN4924. PMID:26976604

  14. Protection of retinal function by sulforaphane following retinal ischemic injury.

    PubMed

    Ambrecht, Lindsay A; Perlman, Jay I; McDonnell, James F; Zhai, Yougang; Qiao, Liang; Bu, Ping

    2015-09-01

    Sulforaphane, a precursor of glucosinolate in cruciferous vegetables such as broccoli and cauliflower, has been shown to protect brain ischemic injury. In this study, we examined the effect of systemic administration of sulforaphane on retinal ischemic reperfusion injury. Intraocular pressure was elevated in two groups of C57BL/6 mice (n = 8 per group) for 45 min to induce retinal ischemic reperfusion injury. Following retinal ischemic reperfusion injury, vehicle (1% DMSO saline) or sulforaphane (25 mg/kg/day) was administered intraperitoneally daily for 5 days. Scotopic electroretinography (ERG) was used to quantify retinal function prior to and one-week after retinal ischemic insult. Retinal morphology was examined one week after ischemic insult. Following ischemic reperfusion injury, ERG a- and b-wave amplitudes were significantly reduced in the control mice. Sulforaphane treatment significantly attenuated ischemic-induced loss of retinal function as compared to vehicle treated mice. In vehicle treated mice, ischemic reperfusion injury produced marked thinning of the inner retinal layers, but the thinning of the inner retinal layers appeared significantly less with sulforaphane treatment. Thus, sulforaphane may be beneficial in the treatment of retinal disorders with ischemic reperfusion injury. PMID:26142954

  15. Meclizine Preconditioning Protects the Kidney Against Ischemia–Reperfusion Injury

    PubMed Central

    Kishi, Seiji; Campanholle, Gabriela; Gohil, Vishal M.; Perocchi, Fabiana; Brooks, Craig R.; Morizane, Ryuji; Sabbisetti, Venkata; Ichimura, Takaharu; Mootha, Vamsi K.; Bonventre, Joseph V.

    2015-01-01

    Global or local ischemia contributes to the pathogenesis of acute kidney injury (AKI). Currently there are no specific therapies to prevent AKI. Potentiation of glycolytic metabolism and attenuation of mitochondrial respiration may decrease cell injury and reduce reactive oxygen species generation from the mitochondria. Meclizine, an over-the-counter anti-nausea and -dizziness drug, was identified in a ‘nutrient-sensitized’ chemical screen. Pretreatment with 100 mg/kg of meclizine, 17 h prior to ischemia protected mice from IRI. Serum creatinine levels at 24 h after IRI were 0.13 ± 0.06 mg/dl (sham, n = 3), 1.59 ± 0.10 mg/dl (vehicle, n = 8) and 0.89 ± 0.11 mg/dl (meclizine, n = 8). Kidney injury was significantly decreased in meclizine treated mice compared with vehicle group (p < 0.001). Protection was also seen when meclizine was administered 24 h prior to ischemia. Meclizine reduced inflammation, mitochondrial oxygen consumption, oxidative stress, mitochondrial fragmentation, and tubular injury. Meclizine preconditioned kidney tubular epithelial cells, exposed to blockade of glycolytic and oxidative metabolism with 2-deoxyglucose and NaCN, had reduced LDH and cytochrome c release. Meclizine upregulated glycolysis in glucose-containing media and reduced cellular ATP levels in galactose-containing media. Meclizine inhibited the Kennedy pathway and caused rapid accumulation of phosphoethanolamine. Phosphoethanolamine recapitulated meclizine-induced protection both in vitro and in vivo. PMID:26501107

  16. Analysis and modeling of neural processes underlying sensory preconditioning.

    PubMed

    Matsumoto, Yukihisa; Hirashima, Daisuke; Mizunami, Makoto

    2013-03-01

    Sensory preconditioning (SPC) is a procedure to demonstrate learning to associate between relatively neutral sensory stimuli in the absence of an external reinforcing stimulus, the underlying neural mechanisms of which have remained obscure. We address basic questions about neural processes underlying SPC, including whether neurons that mediate reward or punishment signals in reinforcement learning participate in association between neutral sensory stimuli. In crickets, we have suggested that octopaminergic (OA-ergic) or dopaminergic (DA-ergic) neurons participate in memory acquisition and retrieval in appetitive or aversive conditioning, respectively. Crickets that had been trained to associate an odor (CS2) with a visual pattern (CS1) (phase 1) and then to associate CS1 with water reward or quinine punishment (phase 2) exhibited a significantly increased or decreased preference for CS2 that had never been paired with the US, demonstrating successful SPC. Injection of an OA or DA receptor antagonist at different phases of the SPC training and testing showed that OA-ergic or DA-ergic neurons do not participate in learning of CS2-CS1 association in phase 1, but that OA-ergic neurons participate in learning in phase 2 and memory retrieval after appetitive SPC training. We also obtained evidence suggesting that association between CS2 and US, which should underlie conditioned response of crickets to CS2, is formed in phase 2, contrary to the standard theory of SPC assuming that it occurs in the final test. We propose models of SPC to account for these findings, by extending our model of classical conditioning. PMID:23380289

  17. Meclizine Preconditioning Protects the Kidney Against Ischemia-Reperfusion Injury.

    PubMed

    Kishi, Seiji; Campanholle, Gabriela; Gohil, Vishal M; Perocchi, Fabiana; Brooks, Craig R; Morizane, Ryuji; Sabbisetti, Venkata; Ichimura, Takaharu; Mootha, Vamsi K; Bonventre, Joseph V

    2015-09-01

    Global or local ischemia contributes to the pathogenesis of acute kidney injury (AKI). Currently there are no specific therapies to prevent AKI. Potentiation of glycolytic metabolism and attenuation of mitochondrial respiration may decrease cell injury and reduce reactive oxygen species generation from the mitochondria. Meclizine, an over-the-counter anti-nausea and -dizziness drug, was identified in a 'nutrient-sensitized' chemical screen. Pretreatment with 100 mg/kg of meclizine, 17 h prior to ischemia protected mice from IRI. Serum creatinine levels at 24 h after IRI were 0.13 ± 0.06 mg/dl (sham, n = 3), 1.59 ± 0.10 mg/dl (vehicle, n = 8) and 0.89 ± 0.11 mg/dl (meclizine, n = 8). Kidney injury was significantly decreased in meclizine treated mice compared with vehicle group (p < 0.001). Protection was also seen when meclizine was administered 24 h prior to ischemia. Meclizine reduced inflammation, mitochondrial oxygen consumption, oxidative stress, mitochondrial fragmentation, and tubular injury. Meclizine preconditioned kidney tubular epithelial cells, exposed to blockade of glycolytic and oxidative metabolism with 2-deoxyglucose and NaCN, had reduced LDH and cytochrome c release. Meclizine upregulated glycolysis in glucose-containing media and reduced cellular ATP levels in galactose-containing media. Meclizine inhibited the Kennedy pathway and caused rapid accumulation of phosphoethanolamine. Phosphoethanolamine recapitulated meclizine-induced protection both in vitro and in vivo. PMID:26501107

  18. Glaciations in response to climate variations preconditioned by evolving topography.

    PubMed

    Pedersen, Vivi Kathrine; Egholm, David Lundbek

    2013-01-10

    Landscapes modified by glacial erosion show a distinct distribution of surface area with elevation (hypsometry). In particular, the height of these regions is influenced by climatic gradients controlling the altitude where glacial and periglacial processes are the most active, and as a result, surface area is focused just below the snowline altitude. Yet the effect of this distinct glacial hypsometric signature on glacial extent and therefore on continued glacial erosion has not previously been examined. Here we show how this topographic configuration influences the climatic sensitivity of Alpine glaciers, and how the development of a glacial hypsometric distribution influences the intensity of glaciations on timescales of more than a few glacial cycles. We find that the relationship between variations in climate and the resulting variation in areal extent of glaciation changes drastically with the degree of glacial modification in the landscape. First, in landscapes with novel glaciations, a nearly linear relationship between climate and glacial area exists. Second, in previously glaciated landscapes with extensive area at a similar elevation, highly nonlinear and rapid glacial expansions occur with minimal climate forcing, once the snowline reaches the hypsometric maximum. Our results also show that erosion associated with glaciations before the mid-Pleistocene transition at around 950,000 years ago probably preconditioned the landscape--producing glacial landforms and hypsometric maxima--such that ongoing cooling led to a significant change in glacial extent and erosion, resulting in more extensive glaciations and valley deepening in the late Pleistocene epoch. We thus provide a mechanism that explains previous observations from exposure dating and low-temperature thermochronology in the European Alps, and suggest that there is a strong topographic control on the most recent Quaternary period glaciations. PMID:23302860

  19. An overview of NSPCG: A nonsymmetric preconditioned conjugate gradient package

    NASA Astrophysics Data System (ADS)

    Oppe, Thomas C.; Joubert, Wayne D.; Kincaid, David R.

    1989-05-01

    The most recent research-oriented software package developed as part of the ITPACK Project is called "NSPCG" since it contains many nonsymmetric preconditioned conjugate gradient procedures. It is designed to solve large sparse systems of linear algebraic equations by a variety of different iterative methods. One of the main purposes for the development of the package is to provide a common modular structure for research on iterative methods for nonsymmetric matrices. Another purpose for the development of the package is to investigate the suitability of several iterative methods for vector computers. Since the vectorizability of an iterative method depends greatly on the matrix structure, NSPCG allows great flexibility in the operator representation. The coefficient matrix can be passed in one of several different matrix data storage schemes. These sparse data formats allow matrices with a wide range of structures from highly structured ones such as those with all nonzeros along a relatively small number of diagonals to completely unstructured sparse matrices. Alternatively, the package allows the user to call the accelerators directly with user-supplied routines for performing certain matrix operations. In this case, one can use the data format from an application program and not be required to copy the matrix into one of the package formats. This is particularly advantageous when memory space is limited. Some of the basic preconditioners that are available are point methods such as Jacobi, Incomplete LU Decomposition and Symmetric Successive Overrelaxation as well as block and multicolor preconditioners. The user can select from a large collection of accelerators such as Conjugate Gradient (CG), Chebyshev (SI, for semi-iterative), Generalized Minimal Residual (GMRES), Biconjugate Gradient Squared (BCGS) and many others. The package is modular so that almost any accelerator can be used with almost any preconditioner.

  20. IP3 levels and their modulation FY fusicoccin measured by a novel ( sup 3 H) IP3 binding assay

    SciTech Connect

    Aducci, P.; Marra, M. )

    1990-05-16

    A recently developed sensitive assay based on the binding reaction of IP3 to bovine adrenal preparations has been utilized for determining the level of endogenous inositol-1,4,5 trisphosphate (IP3) in maize roots and coleoptiles. The amount of IP3 found in these tissues ranges from 0.1 to 1.0 nmol g-1 fresh weight. Reproducible results were obtained with extracts of tissues from a same harvest, while they showed a 2-3 fold variation when different batches of plantlets were compared. The fungal phytotoxin fusicoccin (FC) known to affect several physiological processes in higher plants, increases the level of IP3 in coleoptiles. This observation suggests that IP3 might be involved in the transduction of the FC encoded signal from its receptors at the plasmalemma level to the cell machinery.

  1. 2-(3',5'-Dimethoxybenzylidene) cyclopentanone, a novel synthetic small-molecule compound, provides neuroprotective effects against ischemic stroke.

    PubMed

    Gu, W W; Lu, S Q; Ni, Y; Liu, Z H; Zhou, X Y; Zhu, Y M; Luo, Y; Li, X; Li, L S; Sun, W Z; Zhang, H L; Ao, G Z

    2016-03-01

    2-(3',5'-Dimethoxybenzylidene) cyclopentanone (DMBC) is a novel small-molecule compound synthesized by our group. Here, we found that in rat models of permanent middle cerebral artery occlusion (pMCAO), intraperitoneal injection (ip) of DMBC at 1h after ischemia reduced infarct volume, improved neurological deficits and increased the protein levels of microtubule-associated protein 2 (MAP 2) and glial fibrillary acid protein (GFAP) in the ischemic cortex. Post-treatment of DMBC still produced neuroprotective effects even when administered at 6h after ischemia. In the oxygen-glucose deprivation (OGD)-induced astrocytes or HT22 cell injury, DMBC treatment decreased the OGD-induced lactate dehydrogenase (LDH) leakage and increased the GFAP levels in astrocytes. In addition, Annexin-V-Fluos staining analysis revealed that DMBC treatment attenuated both OGD-induced apoptosis and necrosis in astrocytes. Western blotting analysis showed DMBC treatment inhibited the ischemia or OGD-induced increases in active cathepsin B in the ischemic cortex or in astrocytes or HT22 cells. Immunofluorescence analysis demonstrated that DMBC treatment blocked the ischemia or OGD-induced release of cathepsin B from the lysosomes into the cytoplasm in the ischemic cortex or in astrocytes or HT22 cells. Taken together, our results indicate that DMBC can offer neuroprotective effects against cerebral ischemia with an extended therapeutic window and its mechanism might be associated with inhibition of the cathepsin B activation. PMID:26656221

  2. Hypoxic Ischemic Encephalopathy: Pathophysiology and Experimental Treatments

    PubMed Central

    Allen, Kimberly A.; Brandon, Debra H.

    2011-01-01

    Hypoxic ischemic encephalopathy (HIE) is a serious birth complication affecting full term infants: 40–60% of affected infants die by 2 years of age or have severe disabilities. The majority of the underlying pathologic events of HIE are a result of impaired cerebral blood flow and oxygen delivery to the brain with resulting primary and secondary energy failure. In the past, treatment options were limited to supportive medical therapy. Currently, several experimental treatments are being explored in neonates and animal models to ameliorate the effects of secondary energy failure. This review discusses the underlying pathophysiologic effects of a hypoxic-ischemic event and experimental treatment modalities being explored to manage infants with HIE. Further research is needed to better understand if the long-term impact of the experimental treatments and whether the combinations of experimental treatments can improve outcomes in infants with HIE. PMID:21927583

  3. Aspirin resistant patients with recent ischemic stroke.

    PubMed

    Castilla-Guerra, L; Navas-Alcántara, M S; Fernández-Moreno, M C

    2014-04-01

    Some patients with a recent ischemic stroke who are being treated with aspirin as an antiaggregant suffer a new ischemic stroke. These patients (15-25%) have been called unresponsive to aspirin or aspirin resistant. The aspirin-resistant patients have a four-time greater risk of suffering a stroke. Furthermore, these strokes are generally more severe, with increased infarct volume and greater risk of recurrence. There is currently no ideal laboratory test to detect the resistance to the antiaggregant effect of aspirin. The study of resistance to aspirin would only be indicated in selected cases. In these patients, one should first rule out any "pseudo-resistance" to aspirin (lack of compliance, concomitant treatments that interfere with the action of the aspirin). PMID:24211052

  4. Evolving Treatments for Acute Ischemic Stroke.

    PubMed

    Zerna, Charlotte; Hegedus, Janka; Hill, Michael D

    2016-04-29

    The purpose of this article is to review advances in stroke treatment in the hyperacute period. With recent evolutions of technology in the fields of imaging, thrombectomy devices, and emergency room workflow management, as well as improvement in statistical methods and study design, there have been ground breaking changes in the treatment of acute ischemic stroke. We describe how stroke presents as a clinical syndrome and how imaging as the most important biomarker will help differentiate between stroke subtypes and treatment eligibility. The evolution of hyperacute treatment has led to the current standard of care: intravenous thrombolysis with tissue-type plasminogen activator and endovascular treatment for proximal vessel occlusion in the anterior cerebral circulation. All patients with acute ischemic stroke are in need of hyperacute secondary prevention because the risk of recurrence is highest closest to the index event. The dominant themes of modern stroke care are the use of neurovascular imaging and speed of diagnosis and treatment. PMID:27126651

  5. A mathematical model of ischemic cutaneous wounds

    PubMed Central

    Xue, Chuan; Friedman, Avner; Sen, Chandan K.

    2009-01-01

    Chronic wounds represent a major public health problem affecting 6.5 million people in the United States. Ischemia, primarily caused by peripheral artery diseases, represents a major complicating factor in cutaneous wound healing. In this work, we sought to develop a mathematical model of ischemic dermal wounds. The model consists of a coupled system of partial differential equations in the partially healed region, with the wound boundary as a free boundary. The extracellular matrix (ECM) is assumed to be viscoelastic, and the free boundary moves with the velocity of the ECM at the boundary. The model equations involve the concentration of oxygen, PDGF and VEGF, the densities of macrophages, fibroblasts, capillary tips and sprouts, and the density and velocity of the ECM. Simulations of the model demonstrate how ischemic conditions may limit macrophage recruitment to the wound-site and impair wound closure. The results are in general agreement with experimental findings. PMID:19805373

  6. [Ischemic cholangiopathy induced by extended burns].

    PubMed

    Cohen, Laurence; Angot, Emilie; Goria, Odile; Koning, Edith; François, Arnaud; Sabourin, Jean-Christophe

    2013-04-01

    Ischemic cholangiopathy is a recently described entity occurring mainly after hepatic grafts. Very few cases after intensive care unit (ICU) for extended burn injury were reported. We report the case of a 73-year-old woman consulting in an hepatology unit, for a jaundice appearing during a hospitalisation in an intensive care unit and increasing from her leaving from ICU, where she was treated for an extended burn injury. She had no pre-existing biological features of biliary disease. Biological tests were normal. Magnetic resonance imaging acquisitions of biliary tracts pointed out severe stenosing lesions of diffuse cholangiopathy concerning intrahepatic biliary tract, mainly peri-hilar. Biopsie from the liver confirmed the diagnosis, showing a biliary cirrhosis with bile infarcts. This case is the fourth case of ischemic cholangiopathy after extended burn injury, concerning a patient without a prior history of hepatic or biliary illness and appearing after hospitalisation in intensive care unit. PMID:23582838