The Conversational Framework and the ISE "Basketball Shot" Video Analysis Activity
ERIC Educational Resources Information Center
English, Vincent; Crotty, Yvonne; Farren, Margaret
2015-01-01
Inspiring Science Education (ISE) (http://www.inspiringscience.eu/) is an EU funded initiative that seeks to further the use of inquiry-based science learning (IBSL) through the medium of ICT in the classroom. The Basketball Shot is a scenario (lesson plan) that involves the use of video capture to help the student investigate the concepts of…
NASA Technical Reports Server (NTRS)
Egolf, T. A.; Landgrebe, A. J.
1981-01-01
The theory for the UTRC Energy Conversion System Performance Analysis (WECSPER) for the prediction of horizontal axis wind turbine performance is presented. Major features of the analysis are the ability to: (1) treat the wind turbine blades as lifting lines with a prescribed wake model; (2) solve for the wake-induced inflow and blade circulation using real nonlinear airfoil data; and (3) iterate internally to obtain a compatible wake transport velocity and blade loading solution. This analysis also provides an approximate treatment of wake distortions due to tower shadow or wind shear profiles. Finally, selected results of internal UTRC application of the analysis to existing wind turbines and correlation with limited test data are described.
ISE structural dynamic experiments
NASA Technical Reports Server (NTRS)
Lock, Malcolm H.; Clark, S. Y.
1988-01-01
The topics are presented in viewgraph form and include the following: directed energy systems - vibration issue; Neutral Particle Beam Integrated Space Experiment (NPB-ISE) opportunity/study objective; vibration sources/study plan; NPB-ISE spacecraft configuration; baseline slew analysis and results; modal contributions; fundamental pitch mode; vibration reduction approaches; peak residual vibration; NPB-ISE spacecraft slew experiment; goodbye ISE - hello Zenith Star Program.
NASA Technical Reports Server (NTRS)
Vance, W.
1973-01-01
The design and application of a vertical axis wind rotor is reported that operates as a two stage turbine wherein the wind impinging on the concave side is circulated through the center of the rotor to the back of the convex side, thus decreasing what might otherwise be a high negative pressure region. Successful applications of this wind rotor to water pumps, ship propulsion, and building ventilators are reported. Also shown is the feasibility of using the energy in ocean waves to drive the rotor. An analysis of the impact of rotor aspect ratio on rotor acceleration shows that the amount of venting between rotor vanes has a very significant effect on rotor speed for a given wind speed.
Safety and wind energy conversion systems with horizontal axis (HA WECS)
NASA Astrophysics Data System (ADS)
Eggwertz, S.; Carlsson, I.; Gustafsson, A.; Linde, M.; Lundemo, C.; Montgomerie, B.; Thor, S. E.
1981-03-01
Hazards imposed by a wind energy conversion system on the general public and on the operator personnel by complete collapse, by separation of fractured parts, or by pieces of ice (flying off) were calculated to provide a manual for safety evaluations. Land based large scale turbine systems with horizontal axes situated in areas with sparse population are considered. Blade material is assumed to be steel, aluminum alloy or fiber reinforced plastics; the tower being built of steel or reinforced concrete. Primary structure, function and failure modes are identified. Statistical information of loads and load combinations, strength properties of materials and geometry deviation are provided. A simplified method of risk analysis is described. The object and function of a safety system, both hardware and software, is reviewed, considering the effects of inspection and repair. The probability of being hit is evaluated, provided a fracture occurs and a risk zone is established.
Liu, Fujian; Willhammar, Tom; Wang, Liang; Zhu, Longfeng; Sun, Qi; Meng, Xiangju; Carrillo-Cabrera, Wilder; Zou, Xiaodong; Xiao, Feng-Shou
2012-03-14
The relatively small and sole micropores in zeolite catalysts strongly influence the mass transfer and catalytic conversion of bulky molecules. We report here aluminosilicate zeolite ZSM-5 single crystals with b-axis-aligned mesopores, synthesized using a designed cationicamphiphilic copolymer as a mesoscale template. This sample exhibits excellent hydrothermal stability. The orientation of the mesopores was confirmed by scanning and transmission electron microscopy. More importantly, the b-axis-aligned mesoporous ZSM-5 shows much higher catalytic activities for bulky substrate conversion than conventional ZSM-5 and ZSM-5 with randomly oriented mesopores. The combination of good hydrothermal stability with high activities is important for design of novel zeolite catalysts. The b-axis-aligned mesoporous ZSM-5 reported here shows great potential for industrial applications. PMID:22380406
Creutz, M.
1985-01-01
The author discusses a reversible deterministic dynamics for Ising spins. The algorithm is a variation of microcanonical Monte Carlo techniques and is easily implemented with simple bit manipulation. This provides fast programs to study non-equilibrium phenomena such as heat flow.
Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth
2010-11-12
Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.
ISE System Development Methodology Manual
Hayhoe, G.F.
1992-02-17
The Information Systems Engineering (ISE) System Development Methodology Manual (SDM) is a framework of life cycle management guidelines that provide ISE personnel with direction, organization, consistency, and improved communication when developing and maintaining systems. These guide-lines were designed to allow ISE to build and deliver Total Quality products, and to meet the goals and requirements of the US Department of Energy (DOE), Westinghouse Savannah River Company, and Westinghouse Electric Corporation.
Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.
2006-06-01
From an experimental-mathematical perspective we analyze"Ising-class" integrals. Our experimental results involvedextreme-precision, multidimensional quadrature on intricate integrands;thus, highly parallel computation was required.
ISEE-1 and ISEE-2 fast plasma experiment and the ISEE-1 solar wind experiment
NASA Technical Reports Server (NTRS)
Bame, S. J.; Asbridge, J. R.; Felthauser, H. E.; Glore, J. P.; Paschmann, G.; Hemmerich, P.; Lehmann, K.; Rosenbauer, H.
1978-01-01
Identical fast plasma experiment (FPE) systems were placed on the ISEE-1 and ISEE-2 spacecraft. The FPE consists of three high efficiency 90 deg spherical section electrostatic analyzers using large secondary emitters and discrete dynode multipliers to detect analyzed particles. Two of them, viewing in opposite directions, produce complete 2D velocity distribution measurements of both protons and electrons every spacecraft revolution. A third FPE analyzer with a divided emitter measures 3D distributions at a slower rate. ISEE-1 also carries a solar-wind experiment (SWE) to measure solar-wind ions with high resolution. The SWE is composed of two 150 deg spherical section analyzers using the same set of plates. The two acceptance fans are tilted with respect to each other so that 3D characteristics of the ion distributions can be derived.
ISEE-3 Microwave Filter Requirements
NASA Technical Reports Server (NTRS)
Galvez, J. L.; Marlin, H.; Stanton, P.
1984-01-01
The 64 m subnet is committed to support the International Sun Earth Explorer (ISEE-3) spacecraft. The uplink and one of the downlink frequencies will be respectively, 2090 and 2217 MHz. As these two frequencies fall outside the normal DSN transmit and receive bands, the 64-m antennas present new filter requirements, which are analyzed.
ISE: An Integrated Search Environment. The manual
NASA Technical Reports Server (NTRS)
Chu, Lon-Chan
1992-01-01
Integrated Search Environment (ISE), a software package that implements hierarchical searches with meta-control, is described in this manual. ISE is a collection of problem-independent routines to support solving searches. Mainly, these routines are core routines for solving a search problem and they handle the control of searches and maintain the statistics related to searches. By separating the problem-dependent and problem-independent components in ISE, new search methods based on a combination of existing methods can be developed by coding a single master control program. Further, new applications solved by searches can be developed by coding the problem-dependent parts and reusing the problem-independent parts already developed. Potential users of ISE are designers of new application solvers and new search algorithms, and users of experimental application solvers and search algorithms. The ISE is designed to be user-friendly and information rich. In this manual, the organization of ISE is described and several experiments carried out on ISE are also described.
Topological Characterization of Extended Quantum Ising Models
NASA Astrophysics Data System (ADS)
Zhang, G.; Song, Z.
2015-10-01
We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic X Y model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the X Y model corresponds to an ellipse, while other models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the ground state energy density, which is a function of the loop, experiences a nonanalytical point when the winding number of the corresponding loop changes. The winding number can serve as a topological quantum number of the quantum phases in the extended quantum Ising model, which sheds some light upon the relation between quantum phase transition and the geometrical order parameter characterizing the phase diagram.
Topological Characterization of Extended Quantum Ising Models.
Zhang, G; Song, Z
2015-10-23
We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic XY model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the XY model corresponds to an ellipse, while other models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the ground state energy density, which is a function of the loop, experiences a nonanalytical point when the winding number of the corresponding loop changes. The winding number can serve as a topological quantum number of the quantum phases in the extended quantum Ising model, which sheds some light upon the relation between quantum phase transition and the geometrical order parameter characterizing the phase diagram. PMID:26551140
Chen, H H; Lu, J; Guan, Y F; Li, S J; Hu, T T; Xie, Z S; Wang, F; Peng, X H; Liu, X; Xu, X; Zhao, F P; Yu, B L; Li, X P
2016-01-01
Estrogen is related with the low morbidity associated with obstructive sleep apnea hypopnea syndrome (OSAS) in women, but the underlying mechanisms remain largely unknown. In this study, we examined the relationship between OSAS and estrogen related receptor-α (ERR-α). We found that the expression levels of ERR-α and Myh7 were both downregulated in palatopharyngeal tissues from OSAS patients. In addition, we report that ERR-α is dynamically expressed during differentiation of C2C12 myoblasts. Knockdown of ERR-α via instant siRNA resulted in reduced expression of Myh7, but not Myh4. Furthermore, differentiation of C2C12 cells under 3% chronic intermittent hypoxia, a model resembling human OSAS, was impaired and accompanied by a obvious reduction in Myh7 expression levels. Moreover, activation of ERR-α with 17β-estradiol (E2) increased the expression of Myh7, whereas pretreatment with the ERR-α antagonist XCT790 reversed the E2-induced slow fiber-type switch. A rat ovariectomy model also demonstrated the switch to fast fiber type. Collectively, our findings suggest that ERR-α is involved in estrogen-mediated OSAS by regulating Myhc-slow expression. The present study illustrates an important role of the estrogen/ERR-α axis in the pathogenesis of OSAS, and may represent an attractive therapeutic target, especially in postmenopausal women. PMID:27250523
Chen, H. H.; Lu, J.; Guan, Y. F.; Li, S. J.; Hu, T. T.; Xie, Z. S.; Wang, F.; Peng, X. H.; Liu, X.; Xu, X.; Zhao, F. P.; Yu, B. L.; Li, X. P.
2016-01-01
Estrogen is related with the low morbidity associated with obstructive sleep apnea hypopnea syndrome (OSAS) in women, but the underlying mechanisms remain largely unknown. In this study, we examined the relationship between OSAS and estrogen related receptor-α (ERR-α). We found that the expression levels of ERR-α and Myh7 were both downregulated in palatopharyngeal tissues from OSAS patients. In addition, we report that ERR-α is dynamically expressed during differentiation of C2C12 myoblasts. Knockdown of ERR-α via instant siRNA resulted in reduced expression of Myh7, but not Myh4. Furthermore, differentiation of C2C12 cells under 3% chronic intermittent hypoxia, a model resembling human OSAS, was impaired and accompanied by a obvious reduction in Myh7 expression levels. Moreover, activation of ERR-α with 17β-estradiol (E2) increased the expression of Myh7, whereas pretreatment with the ERR-α antagonist XCT790 reversed the E2-induced slow fiber-type switch. A rat ovariectomy model also demonstrated the switch to fast fiber type. Collectively, our findings suggest that ERR-α is involved in estrogen-mediated OSAS by regulating Myhc-slow expression. The present study illustrates an important role of the estrogen/ERR-α axis in the pathogenesis of OSAS, and may represent an attractive therapeutic target, especially in postmenopausal women. PMID:27250523
Applications of ISES for meteorology
NASA Technical Reports Server (NTRS)
Try, Paul D.
1990-01-01
The results are summarized from an initial assessment of the potential real-time meteorological requirements for the data from Eos systems. Eos research scientists associated with facility instruments, investigator instruments, and interdisciplinary groups with data related to meteorological support were contacted, along with those from the normal operational user and technique development groups. Two types of activities indicated the greatest need for real-time Eos data: technology transfer groups (e.g., NOAA's Forecasting System Laboratory and the DOD development laboratories), and field testing groups with airborne operations. A special concern was expressed by several non-U.S. participants who desire a direct downlink to be sure of rapid receipt of the data for their area of interest. Several potential experiments or demonstrations are recommended for ISES which include support for hurricane/typhoon forecasting, space shuttle reentry, severe weather forecasting (using microphysical cloud classification techniques), field testing, and quick reaction of instrumented aircraft to measure such events as polar stratospheric clouds and volcanic eruptions.
Ising model for distribution networks
NASA Astrophysics Data System (ADS)
Hooyberghs, H.; Van Lombeek, S.; Giuraniuc, C.; Van Schaeybroeck, B.; Indekeu, J. O.
2012-01-01
An elementary Ising spin model is proposed for demonstrating cascading failures (breakdowns, blackouts, collapses, avalanches, etc.) that can occur in realistic networks for distribution and delivery by suppliers to consumers. A ferromagnetic Hamiltonian with quenched random fields results from policies that maximize the gap between demand and delivery. Such policies can arise in a competitive market where firms artificially create new demand, or in a solidarity environment where too high a demand cannot reasonably be met. Network failure in the context of a policy of solidarity is possible when an initially active state becomes metastable and decays to a stable inactive state. We explore the characteristics of the demand and delivery, as well as the topological properties, which make the distribution network susceptible of failure. An effective temperature is defined, which governs the strength of the activity fluctuations which can induce a collapse. Numerical results, obtained by Monte Carlo simulations of the model on (mainly) scale-free networks, are supplemented with analytic mean-field approximations to the geometrical random field fluctuations and the thermal spin fluctuations. The role of hubs versus poorly connected nodes in initiating the breakdown of network activity is illustrated and related to model parameters.
Quasicrystal Ising chain and automata theory
Allouche, J.P.; France, M.M.
1986-03-01
An automatic sequence is generated by a finite machine (automaton). These sequences can be periodic or not; in the latter case, however, they are not random, but rather ''quasicrystalline.'' The authors consider an Ising chain with variable interaction in a uniform external field, at zero temperature, and prove that, if this interaction is automatic, then the induced magnetic field is also automatic.
Ising, Schelling and self-organising segregation
NASA Astrophysics Data System (ADS)
Stauffer, D.; Solomon, S.
2007-06-01
The similarities between phase separation in physics and residential segregation by preference in the Schelling model of 1971 are reviewed. Also, new computer simulations of asymmetric interactions different from the usual Ising model are presented, showing spontaneous magnetisation (=self-organising segregation) and in one case a sharp phase transition.
ISEE/ICE plasma wave data analysis
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.
1989-01-01
The work performed for the period 1 Jan. 1985 to 30 Oct. 1989 is presented. The objective was to provide reduction and analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the International Sun Earth Explorer 3 (ISEE-3)/International Cometary Explorer (ICE) missions.
Transverse Field and Random-Field Ising Ferromagnetism in Mn12-acetates
NASA Astrophysics Data System (ADS)
Subedi, Pradeep
2013-03-01
Single molecule magnets (SMMs) single crystals can exhibit long range ferromagnetic order associated with intermolecular interactions, principally magnetic dipole interactions. With their high spin (S ~ 10) and strong Ising-like magnetic anisotropy, they are model materials to the study of physics associated with Transverse-Field Ising Ferromagnet Model (TFIFM). We have measured magnetic susceptibility of single crystals of the prototype SMM, Mn12-acetate, and of a new high-symmetry variant, Mn12-ac-MeOH. At zero transverse field the inverse susceptibility of both SMMs is found to accurately follow a Curie-Weiss law with an intercept at a non-zero temperature Tcw ~ 0.9 K, indicating a transition to a ferromagnetic phase due to dipolar interactions. With increasing transverse field, the susceptibility and the Curie-Weiss temperature decreases due to increase in spin fluctuations but the nature of the decrease is very different in the two materials. We find that in Mn12-ac-MeOH, the suppression of ferromagnetism by the transverse field is consistent with TFIFM, while the suppression of ferromagnetism by the transverse field is considerably more rapid in Mn12-acetate. Previous studies show that due to solvent disorder Mn12-acetate has an intrinsic distribution of discrete tilts of the molecular magnetic easy axis from the global easy axis of the crystal. Thus with the application of transverse field, the molecules with tilted easy axis experience an additional field along their easy axis and give rise to a distribution of random-fields that further destroys the long-range order, suggesting that this prototypical molecular magnet is a realization of Random-Field Ising Ferromagnet (RFIFM). Work performed in collaboration with: A. D. Kent, Physics Dept., NYU, Bo Wen, M. P. Sarachik, Physics Dept., CCNY, CUNY, Y. Yeshurun, Physics Dept., Bar Ilan U, A. J. Millis, Physics Dept., Columbia U, and G. Christou, Chemistry Dept., U of Florida.
Midlatitude Pi2 pulsations: AFGL and ISEE magnetometer observations correlated
Hughes, W.J.; Singer, H.J.; Maynard, N.C.
1982-01-01
The ISEE observations of the pi2 magnetic pulsations occuring substorm onset in the inner magnetosphere are discussed. One of these events which was also detected as a pi2 event by the AFGL midlatitude magnetometers is considered. The event occurred when the foot of the ISEE field line was over North America. The ground and satellite signals are remarkably similar: they start and stop at the same time, have the same period and can be correlated cycle by cycle. The waves are detected in the electric field data from ISEE 1 and in the magnetic field data from both ISEE 1 and ISEE 2. Calculation of the Poynting vector at ISEE 1 shows that the energy flowed mainly westward, but that there was also a component towards the nearer (southern) ionospheric foot of the field line. The phases between the various field components measured by ISEE 1 and 2 indicate that this is a standing hydromagnetic oscillation.
NASA Astrophysics Data System (ADS)
Haribara, Yoshitaka; Utsunomiya, Shoko; Yamamoto, Yoshihisa
An optical parametric oscillator network driven by a quantum measurement-feedback circuit, composed of optical homodyne detectors, analog-to-digital conversion devices and field programmable gate arrays (FPGA), is proposed and analysed as a scalable coherent Ising machine. The new scheme has an advantage that a large number of optical coupling paths, which is proportional to the square of a problem size in the worst case, can be replaced by a single quantum measurement-feedback circuit. There is additional advantage in the new scheme that a three body or higher order Ising interaction can be implemented in the FPGA digital circuit. Noise associated with the measurement-feedback process is governed by the standard quantum limit. Numerical simulation based on c-number coupled Langevin equations demonstrate a satisfying performance of the proposed Ising machine against the NP-hard MAX-CUT problems.
Robustness of topological quantum codes: Ising perturbation
NASA Astrophysics Data System (ADS)
Zarei, Mohammad Hossein
2015-02-01
We study the phase transition from two different topological phases to the ferromagnetic phase by focusing on points of the phase transition. To this end, we present a detailed mapping from such models to the Ising model in a transverse field. Such a mapping is derived by rewriting the initial Hamiltonian in a new basis so that the final model in such a basis has a well-known approximated phase transition point. Specifically, we consider the toric codes and the color codes on various lattices with Ising perturbation. Our results provide a useful table to compare the robustness of the topological codes and to explicitly show that the robustness of the topological codes depends on triangulation of their underlying lattices.
Antiferromagnetic Ising Model in Hierarchical Networks
NASA Astrophysics Data System (ADS)
Cheng, Xiang; Boettcher, Stefan
2015-03-01
The Ising antiferromagnet is a convenient model of glassy dynamics. It can introduce geometric frustrations and may give rise to a spin glass phase and glassy relaxation at low temperatures [ 1 ] . We apply the antiferromagnetic Ising model to 3 hierarchical networks which share features of both small world networks and regular lattices. Their recursive and fixed structures make them suitable for exact renormalization group analysis as well as numerical simulations. We first explore the dynamical behaviors using simulated annealing and discover an extremely slow relaxation at low temperatures. Then we employ the Wang-Landau algorithm to investigate the energy landscape and the corresponding equilibrium behaviors for different system sizes. Besides the Monte Carlo methods, renormalization group [ 2 ] is used to study the equilibrium properties in the thermodynamic limit and to compare with the results from simulated annealing and Wang-Landau sampling. Supported through NSF Grant DMR-1207431.
Ferrimagnetic behaviors in a transverse Ising nanoisland
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2016-05-01
In this paper, the phase diagrams and magnetizations of a magnetic nanoisland described by the transverse Ising model (TIM) are investigated by the use of the effective-field theory (EFT) with correlations. A lot of characteristic behaviors observed in standard ferrimagnetic materials as well as novel phenomena have been obtained, although the system consists of two finite spin-1/2 layers coupled antiferromagnetically with a negative interlayer coupling.
Complexity and Ability in Ising Games
NASA Astrophysics Data System (ADS)
Ramirez, Ayax; George, Michael
2008-03-01
In previous work [1, 2], we discussed various facets of designs in games, and considered the evolution [2] of Ising games. The traditional aspect of game theory, with its focus on rational decisions, was not considered in this work. Instead, there was a predominant interest in the time evolution of design toward a goal design, and resulting levels of frustration. There was also a concern with time- reversal properties. In the new work, our goal is to consider the molecular structureof the Ising model as it evolves, and to associate this molecular structure with feedback into the structure that can be understood in algorithmic terms. We develop an analogy with the famous Malthusian argument concerning exponential population increase, associating ability to cope with complexity, and algorithmic complexity, and discuss biological implications of the ideas associated with these games. [1] M. George, A nonequilibrium statistical model based on latin squares, paper presented at WorldComp'07, Las Vegas, Nevada, June 25-28, 2007. [2] M. George, Classical and quantum Ising games, paper presented at Fourth International Conference in Applied Mathematics and Computing, Plovdiv, Bulgaria, August, 2007.
ICE/ISEE plasma wave data analysis
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.
1992-01-01
The interval reported on, from Jan. 1990 to Dec. 1991, has been one of continued processing and archiving of ICE plasma wave (pw) data and transition from analysis of ISEE 3 and ICE cometary data to ICE data taken along its cruise trajectory, where coronal mass ejections are the focus of attention. We have continued to examine with great interest the last year of ISEE 3's precomet phase, when it spent considerable time far downwind from Earth, recording conditions upstream, downstream, and across the very weak, distant flank bow shock. Among other motivations was the apparent similarity of some shock and post shock structures to the signatures of the bow wave surrounding comet Giacobini-Zinner, whose ICE-phase data was revisited. While pursuing detailed, second-order scientific inquiries still pending from the late ISEE 3 recordings, we have also sought to position ourselves for study of CME's by instituting a data processing format new to the ISEE 3/ICE pw detector. Processed detector output has always been summarized and archived in 24-hour segments, with all pw channels individually plotted and stacked one above the next down in frequency, with each channel calibrated separately to keep all data patterns equally visible in the plots, regardless of gross differences in energy content at the various frequencies. Since CME's, with their preceding and following solar wind plasmas, can take more than one day to pass by the spacecraft, a more condensed synoptic view of the pw data is required to identify, let alone assess, CME characteristics than has been afforded by the traditional routines. This requirement is addressed in a major new processing initiative in the past two years. Besides our own ongoing and fresh investigations, we have cooperated, within our resources, with studies conducted extramurally by distant colleagues irrespective of the phase of the ISEE 3/ICE mission under scrutiny. The remainder of this report summarizes our processing activities, our
The 1983 tail-era series. Volume 1: ISEE 3 plasma
NASA Technical Reports Server (NTRS)
Fairfield, D. H.; Phillips, J. L.
1991-01-01
Observations from the ISEE 3 electron analyzer are presented in plots. Electrons were measured in 15 continuous energy levels between 8.5 and 1140 eV during individual 3-sec spacecraft spins. Times associated with each data point are the beginning time of the 3 sec data collection interval. Moments calculated from the measured distribution function are shown as density, temperature, velocity, and velocity azimuthal angle. Spacecraft ephemeris is shown at the bottom in GSE and GSM coordinates in units of Earth radii, with vertical ticks on the time axis corresponding to the printed positions.
The 1983 tail-era series. Volume 1: ISEE 3 plasma
NASA Astrophysics Data System (ADS)
Fairfield, D. H.; Phillips, J. L.
1991-04-01
Observations from the ISEE 3 electron analyzer are presented in plots. Electrons were measured in 15 continuous energy levels between 8.5 and 1140 eV during individual 3-sec spacecraft spins. Times associated with each data point are the beginning time of the 3 sec data collection interval. Moments calculated from the measured distribution function are shown as density, temperature, velocity, and velocity azimuthal angle. Spacecraft ephemeris is shown at the bottom in GSE and GSM coordinates in units of Earth radii, with vertical ticks on the time axis corresponding to the printed positions.
Ising and dimer models in two and three dimensions
NASA Astrophysics Data System (ADS)
Moessner, R.; Sondhi, S. L.
2003-08-01
Motivated by recent interest in 2+1 dimensional quantum dimer models, we revisit Fisher’s mapping of two-dimensional Ising models to hardcore dimer models. First, we note that the symmetry breaking transition of the ferromagnetic Ising model maps onto a non-symmetry breaking transition in dimer language—instead it becomes a deconfinement transition for test monomers. Next, we introduce a modification of Fisher’s mapping in which a second dimer model, also equivalent to the Ising model, is defined on a generically different lattice derived from the dual. In contrast to Fisher’s original mapping, this enables us to reformulate frustrated Ising models as dimer models with positive weights and we illustrate this by providing a new solution of the fully frustrated Ising model on the square lattice. Finally, by means of the modified mapping we show that a large class of three-dimensional Ising models are precisely equivalent, in the time continuum limit, to particular quantum dimer models. As Ising models in three dimensions are dual to Ising gauge theories, this further yields an exact map between the latter and the quantum dimer models. The paramagnetic phase in Ising language maps onto a deconfined, topologically ordered phase in the dimer models. Using this set of ideas, we also construct an exactly soluble quantum eight vertex model.
Nuclear and ionic charge distribution experiment on ISEE-1 and ISEE-3
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.
1987-01-01
The experimental work carried out under this contract is a continuation of that originally performed under Contracts NAS5-20062 and NAS5-26739. The data analyzed are from the Max-Planck Institut/Univ. of Maryland experiment on ISEE-1 and ISEE-3. Each spacecraft experiment consists of a nearly identical set of three sensors (designated the ULECA, ULEWAT, and ULEZEQ sensors) designed to measure the energy spectra and composition of suprathermal and energetic ions over a broad energy range (less than 3 keV/e to more than 20 MeV/nucleon). Since the launch of ISEE's 2 and 3, the MPI/Univ. of Maryland experiments have generally performed as expected except for a partial failure of the ULEWAT sensor on ISEE-1 in August 1978. A number of scientific studies have either been completed, initiated or are at various stages of completion. A brief summary of Primary Results is given, followed by a more detailed summary of the major accomplishments at the Univ. of Maryland.
(Tb_1-xY_x)Ni_2Ge_2: From Ising Antiferromagnet to Ising Spin Glass.
NASA Astrophysics Data System (ADS)
Canfield, P. C.; Wiener, T.; Bud'Ko, S. L.
2000-03-01
Recent measurements [1,2] on single crystals of RNi_2Ge2 compounds have revealed complex, anisotropies and H-T phase diagrams. In addition recent work on (Gd_1-xEu_x)Ni_2Ge2 has demonstrated our ability to change the band filling so as to tune the ordering wave-vector of the magnetically ordered state [3]. In this talk we will present the results of measurements on another pseudo- ternary series: (Tb_1-xY_x)Ni_2Ge_2. The Tb local moments are aligned along the crystallographic c-axis for all concentrations of Y and as Y replaces Tb the two magnetic transition temperatures decrease rapidly. For x > 0.6 the low temperature ground state of the magnetic sublattice is that of an Ising spin glass. T -x phase diagrams and detailed characterization of the spin glass state will be presented. [1]S.L.Bud'ko et al. JMMM 205, 53 (1999). [2]Z.Islam et al. PRB 58, 8522 (1998). [3]Z.Islam et al. PRL 83, 2817 (1999). Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences.
Dynamical transitions of a driven Ising interface
NASA Astrophysics Data System (ADS)
Sahai, Manish K.; Sengupta, Surajit
2008-03-01
We study the structure of an interface in a three-dimensional Ising system created by an external nonuniform field H(r,t) . H changes sign over a two-dimensional plane of arbitrary orientation. When the field is pulled with velocity ve , [i.e., H(r,t)=H(r-vet) ], the interface undergoes several dynamical transitions. For low velocities it is pinned by the field profile and moves along with it, the distribution of local slopes undergoing a series of commensurate-incommensurate transitions. For large ve the interface depins and grows with Kardar-Parisi-Zhang exponents.
Diluted Ising Magnet on the Bethe Lattice
NASA Astrophysics Data System (ADS)
Semkin, S. V.; Smagin, V. P.
2016-04-01
A solution is obtained for the Ising model on the Bethe lattice comprising a mixture of magnetic and nonmagnetic atoms in a thermodynamic equilibrium. The concentration and temperature dependences of spontaneous magnetization, the Curie temperature, and the percolation threshold are found together with the pair correlation functions of three types that characterize the arrangement of impurity atoms and the correlation of magnetic moments. It is demonstrated that the system with mobile impurities in the thermodynamic equilibrium can be brought closer to the system with frozen impurities by adjusting the parameters of interatomic interaction.
Ferrimagnetism in a transverse Ising antiferromagnet
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2016-05-01
The phase diagrams and temperature dependences of total magnetization mT in a transverse Ising antiferromagnet consisting of alternating two (A and B) layers are studied by the uses of the effective-field theory with correlations and the mean-field-theory. A lot of characteristic phenomena, namely ferrimagnetic behaviors, have been found in the mT, when the crystallographically equivalent conditions between the A and B layers are broken. The appearance of a compensation point has been found below its transition temperature.
Magnetization dynamics in isolated Ising chains
Kudasov, A. N.
2010-02-15
The Glauber dynamics of an Ising chain or ring is shown to be determined by two characteristic times: {tau}{sub 1} for relaxation of the average magnetization per spin and {tau}{sub 2} for dynamical spontaneous symmetry breaking. An analytical solution for magnetization dynamics in a finite chain with fixed spins at both ends is found by the method of images. This solution is then used to calculate the spin-spin correlation functions for rings and chains. At low temperatures, since {tau}{sub 1} >> {tau}{sub 2}, there must exist a range of times when the chain is in one of two ordered states.
Calibration of the ISEE plasma composition experiment
NASA Technical Reports Server (NTRS)
Baugher, C. R.; Olsen, R. C.; Reasoner, D. L.
1986-01-01
The Plasma Composition experiment on the ISEE-1 satellite was designed to measure ions from 1 to 16 amu, at energies from near zero to 16 keV. The two nearly identical flight instruments were calibrated by means of preflight laboratory tests and in-flight data comparisons. This document presents most of the details of those efforts, with special emphasis on the low energy (0 to 100 eV) portion of the instrument response. The analysis of the instrument includes a ray-tracing calculation, which follows an ensemble of test particles through the detector.
The Worm Process for the Ising Model is Rapidly Mixing
NASA Astrophysics Data System (ADS)
Collevecchio, Andrea; Garoni, Timothy M.; Hyndman, Timothy; Tokarev, Daniel
2016-07-01
We prove rapid mixing of the worm process for the zero-field ferromagnetic Ising model, on all finite connected graphs, and at all temperatures. As a corollary, we obtain a fully-polynomial randomized approximation scheme for the Ising susceptibility, and for a certain restriction of the two-point correlation function.
Networked Ising-Sznajd AR-β Model
NASA Astrophysics Data System (ADS)
Nagao, Tomonori; Ohmiya, Mayumi
2009-09-01
The modified Ising-Sznajd model is studied to clarify the machanism of price formation in the stock market. The conventional Ising-Sznajd model is improved as a small world network with the rewireing probability β(t) which depends on the time. Numerical experiments show that phase transition, regarded as a economical crisis, is inevitable in this model.
One-Dimensional Ising Model with "k"-Spin Interactions
ERIC Educational Resources Information Center
Fan, Yale
2011-01-01
We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…
The Worm Process for the Ising Model is Rapidly Mixing
NASA Astrophysics Data System (ADS)
Collevecchio, Andrea; Garoni, Timothy M.; Hyndman, Timothy; Tokarev, Daniel
2016-09-01
We prove rapid mixing of the worm process for the zero-field ferromagnetic Ising model, on all finite connected graphs, and at all temperatures. As a corollary, we obtain a fully-polynomial randomized approximation scheme for the Ising susceptibility, and for a certain restriction of the two-point correlation function.
An Artificial Ising System with Phononic Excitations
NASA Astrophysics Data System (ADS)
Ghaffari, Hamed; Griffith, W. Ashley; Benson, Philip; Nasseri, M. H. B.; Young, R. Paul
Many intractable systems and problems can be reduced to a system of interacting spins. Here, we report mapping collective phononic excitations from different sources of crystal vibrations to spin systems. The phononic excitations in our experiments are due to micro and nano cracking (yielding crackling noises due to lattice distortion). We develop real time mapping of the multi-array senores to a network-space and then mapping the excitation- networks to spin-like systems. We show that new mapped system satisfies the quench (impulsive) characteristics of the Ising model in 2D classical spin systems. In particular, we show that our artificial Ising system transits between two ground states and approaching the critical point accompanies with a very short time frozen regime, inducing formation of domains separated by kinks. For a cubic-test under a true triaxial test (3D case), we map the system to a 6-spin ring under a transversal-driving field where using functional multiplex networks, the vector components of the spin are inferred (i.e., XY model). By visualization of spin patterns of the ring per each event, we demonstrate that ``kinks'' (as defects) proliferate when system approach from above to its critical point. We support our observations with employing recorded acoustic excitations during distortion of crystal lattices in nano-indentation tests on different crystals (silicon and graphite), triaxial loading test on rock (poly-crystal) samples and a true 3D triaxial test.
Topological phases of shaken quantum Ising lattices
NASA Astrophysics Data System (ADS)
Fernández-Lorenzo, Samuel; José García-Ripoll, Juan; Porras, Diego
2016-02-01
The quantum compass model consists of a two-dimensional square spin lattice where the orientation of the spin-spin interactions depends on the spatial direction of the bonds. It has remarkable symmetry properties and the ground state shows topological degeneracy. The implementation of the quantum compass model in quantum simulation setups like ultracold atoms and trapped ions is far from trivial, since spin interactions in those systems typically are independent of the spatial direction. Ising spin interactions, on the contrary, can be induced and controlled in atomic setups with state-of-the art experimental techniques. In this work, we show how the quantum compass model on a rectangular lattice can be simulated by the use of the photon-assisted tunneling induced by periodic drivings on a quantum Ising spin model. We describe a procedure to adiabatically prepare one of the doubly degenerate ground states of this model by adiabatically ramping down a transverse magnetic field, with surprising differences depending on the parity of the lattice size. Exact diagonalizations confirm the validity of this approach for small lattices. Specific implementations of this scheme are presented with ultracold atoms in optical lattices in the Mott insulator regime, as well as with Rydberg atoms.
ICE/ISEE plasma wave data analysis
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.; Moses, S. L.
1993-01-01
This report is one of the final processing of ICE plasma wave (pw) data and analysis of late ISEE 3, ICE cometary, and ICE cruise trajectory data, where coronal mass ejections (CME's) were the first locus of attention. Interest in CME's inspired an effort to represent our pw data in a condensed spectrogram format that facilitated rapid digestion of interplanetary phenomena on long (greater than 1 day) time scales. The format serendipitously allowed us to also examine earth-orbiting data from a new perspective, invigorating older areas of investigation in Earth's immediate environment. We, therefore, continued to examine with great interest the last year of ISEE 3's precomet phase, when it spent considerable time far downwind from Earth, recording for days on end conditions upstream, downstream, and across the very weak, distant flank bow shock. Among other motivations has been the apparent similarity of some shock and post shock structures to the signatures of the bow wave surrounding comet Giacobini-Zinner, whose ICE-phase data we revisited.
Inverse Ising inference with correlated samples
NASA Astrophysics Data System (ADS)
Obermayer, Benedikt; Levine, Erel
2014-12-01
Correlations between two variables of a high-dimensional system can be indicative of an underlying interaction, but can also result from indirect effects. Inverse Ising inference is a method to distinguish one from the other. Essentially, the parameters of the least constrained statistical model are learned from the observed correlations such that direct interactions can be separated from indirect correlations. Among many other applications, this approach has been helpful for protein structure prediction, because residues which interact in the 3D structure often show correlated substitutions in a multiple sequence alignment. In this context, samples used for inference are not independent but share an evolutionary history on a phylogenetic tree. Here, we discuss the effects of correlations between samples on global inference. Such correlations could arise due to phylogeny but also via other slow dynamical processes. We present a simple analytical model to address the resulting inference biases, and develop an exact method accounting for background correlations in alignment data by combining phylogenetic modeling with an adaptive cluster expansion algorithm. We find that popular reweighting schemes are only marginally effective at removing phylogenetic bias, suggest a rescaling strategy that yields better results, and provide evidence that our conclusions carry over to the frequently used mean-field approach to the inverse Ising problem.
Applications of ISES for the atmospheric sciences
NASA Technical Reports Server (NTRS)
Hoell, James M., Jr.
1990-01-01
The proposed Information Sciences Experiment System (ISES) will offer the opportunity for real-time access to measurements acquired aboard the Earth Observation System (Eos) satellite. These measurements can then be transmitted to remotely located ground based stations. The application of such measurements to issues related to atmospheric science which was presented to a workshop convened to review possible application of the ISES in earth sciences is summarized. The proposed protocol for Eos instruments requires that measurement results be available in a central data archive within 72 hours of acquiring data. Such a turnaround of raw satellite data to the final product will clearly enhance the timeliness of the results. Compared to the time that results from many current satellite programs, the 72 hour turnaround may be considered real time. Examples are discussed showing how real-time measurements from one or more of the proposed Eos instruments could have been applied to the study of certain issues important to global atmospheric chemistry. Each of the examples discussed is based upon a field mission conducted during the past five years. Each of these examples will emphasize how real-time data could have been used to alter the course of a field experiment, thereby enhancing the scientific output. For the examples, brief overviews of the scientific rationale and objectives, the region of operation, the measurements aboard the aircraft, and finally how one or more of the proposed Eos instruments could have provided data to enhance the productivity of the mission are discussed.
Ising superconductivity and Majorana fermions in transition-metal dichalcogenides
NASA Astrophysics Data System (ADS)
Zhou, Benjamin T.; Yuan, Noah F. Q.; Jiang, Hong-Liang; Law, K. T.
2016-05-01
In monolayer transition-metal dichalcogenides (TMDs), electrons in opposite K valleys are subject to opposite effective Zeeman fields, which are referred to as Ising spin-orbit coupling (SOC) fields. The Ising SOC, originating from in-plane mirror symmetry breaking, pins the electron spins to the out-of-plane directions, and results in Ising superconducting states with strongly enhanced upper critical fields. Here, we show that the Ising SOC generates equal-spin-triplet Cooper pairs with spin polarized in the in-plane directions. Importantly, the spin-triplet Cooper pairs can induce superconducting pairings in a half-metal wire placed on top of the TMD and result in a topological superconductor with Majorana end states. Direct ways to detect equal-spin triplet Cooper pairs and the differences between Ising superconductors and Rashba superconductors are discussed.
Hypothalamus-Pituitary-Thyroid Axis.
Ortiga-Carvalho, Tania M; Chiamolera, Maria I; Pazos-Moura, Carmen C; Wondisford, Fredic E
2016-01-01
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016. PMID:27347897
NASA Technical Reports Server (NTRS)
Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.
1982-01-01
Correlation variability between ISEE 1 and 3 IMF measurements is investigated, and factors governing the variability are discussed. About 200 two-hour periods when correlation was good, and 200 when correlation was poor, are examined, and both IMF variance and spacecraft separation distance in the plane perpendicular to the earth-sun line exert substantial control. The scale size of magnetic features is larger when variance is high, and abrupt changes in the correlation coefficient from poor to good or good to poor in adjacent two-hour intervals appear to be governed by the sense of change of IMF variance and vice versa. During periods of low variance, good correlations are most likely to occur when the distance between ISEE 1 and 3 perpendicular to the IMF is less than 20 earth radii.
Spacecraft potential control on ISEE-1
NASA Technical Reports Server (NTRS)
Gonfalone, A.; Pedersen, A.; Fahleson, U. V.; Faelthammar, C. G.; Mozer, F. S.; Torbert, R. B.
1979-01-01
Active control of the potential of the ISEE-1 satellite by the use of electron guns is reviewed. The electron guns contain a special cathode capable of emitting an electron current selectable between 10 to the -8th power and 10 to the -3rd power at energies from approximately .6 to 41 eV. Results obtained during flight show that the satellite potential can be stabilized at a value more positive than the normally positive floating potential. The electron guns also reduce the spin modulation of the spacecraft potential which is due to the aspect dependent photoemission of the long booms. Plasma parameters like electron temperature and density can be deduced from the variation of the spacecraft potential as a function of the gun current. The effects of electron beam emission on other experiments are briefly mentioned.
Magnetocaloric effect in ferroelectric Ising chain magnet
NASA Astrophysics Data System (ADS)
Qi, Yan; Liu, Jia; Yu, Nai-sen; Du, An
2016-05-01
We investigate the magnetocaloric effect (MCE) in multiferroic chain system by adopting the elastic Ising-chain model. Based on the transfer-matrix method, the magnetothermal quantities of characterizing MCE behaviors including the entropy, entropy change and adiabatic cooling rate are rigorously determined. Combined with analysis of ground-state, we mainly discuss results in an antiferromagnetic regime associated with ferroelectric transition. Our results show that the entropy change is greatly enhanced near the saturation field as frustration parameter varies in this regime, and accompanied with remarkable inverse MCE, indicating the enormous potential of multiferroic system in low-temperature refrigeration. Meanwhile we also observe a prominent temperature variation in the isoentropy curves close to zero-temperature ferroelectric transition, but this enhancing MCE signal is very sensitive to the thermal fluctuations, and can be strongly suppressed even under a small temperature.
Ising antiferromagnet on the Archimedean lattices.
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices. PMID:26172675
Hypergeometric Forms for Ising-Class Integrals
Bailey, David H.; Borwein, David; Borwein, Jonathan M.; Crandall,Richard E.
2006-07-01
We apply experimental-mathematical principles to analyzecertain integrals relevant to the Ising theory of solid-state physics. Wefind representations of the these integrals in terms of MeijerG-functions and nested-Barnes integrals. Our investigations began bycomputing 500-digit numerical values of Cn,k,namely a 2-D array of Isingintegrals for all integers n, k where n is in [2,12]and k is in [0,25].We found that some Cn,k enjoy exact evaluations involving DirichletL-functions or the Riemann zeta function. In theprocess of analyzinghypergeometric representations, we found -- experimentally and strikingly-- that the Cn,k almost certainly satisfy certain inter-indicialrelations including discrete k-recursions. Using generating functions,differential theory, complex analysis, and Wilf-Zeilberger algorithms weare able to prove some central cases of these relations.
Transient Loschmidt echo in quenched Ising chains
NASA Astrophysics Data System (ADS)
Lupo, Carla; Schiró, Marco
2016-07-01
We study the response to sudden local perturbations of highly excited quantum Ising spin chains. The key quantity encoding this response is the overlap between time-dependent wave functions, which we write as a transient Loschmidt Echo. Its asymptotics at long time differences contain crucial information about the structure of the highly excited nonequilibrium environment induced by the quench. We compute the echo perturbatively for a weak local quench but for arbitrarily large global quench, using a cumulant expansion. Our perturbative results suggest that the echo decays exponentially, rather than power law as in the low-energy orthogonality catastrophe, a further example of quench-induced decoherence already found in the case of quenched Luttinger liquids. The emerging decoherence scale is set by the strength of the local potential and the bulk excitation energy.
Sheared Ising models in three dimensions
NASA Astrophysics Data System (ADS)
Hucht, Alfred; Angst, Sebastian
2013-03-01
The nonequilibrium phase transition in sheared three-dimensional Ising models is investigated using Monte Carlo simulations in two different geometries corresponding to different shear normals [A. Hucht and S. Angst, EPL 100, 20003 (2012)]. We demonstrate that in the high shear limit both systems undergo a strongly anisotropic phase transition at exactly known critical temperatures Tc which depend on the direction of the shear normal. Using dimensional analysis, we determine the anisotropy exponent θ = 2 as well as the correlation length exponents ν∥ = 1 and ν⊥ = 1 / 2 . These results are verified by simulations, though considerable corrections to scaling are found. The correlation functions perpendicular to the shear direction can be calculated exactly and show Ornstein-Zernike behavior. Supported by CAPES-DAAD through PROBRAL as well as by the German Research Society (DFG) through SFB 616 ``Energy Dissipation at Surfaces.''
Ising antiferromagnet on the 2-uniform lattices
NASA Astrophysics Data System (ADS)
Yu, Unjong
2016-08-01
The antiferromagnetic Ising model is investigated on the twenty 2-uniform lattices using the Monte Carlo method based on the Wang-Landau algorithm and the Metropolis algorithm to study the geometric frustration effect systematically. Based on the specific heat, the residual entropy, and the Edwards-Anderson freezing order parameter, the ground states of them were determined. In addition to the long-range-ordered phase and the spin ice phase found in the Archimedean lattices, two more phases were found. The partial long-range order is long-range order with exceptional disordered sites, which give extensive residual entropy. In the partial spin ice phase, the partial freezing phenomenon appears: A majority of sites are frozen without long-range order, but the other sites are fluctuating even at zero temperature. The spin liquid ground state was not found in the 2-uniform lattices.
Ising antiferromagnet on the Archimedean lattices
NASA Astrophysics Data System (ADS)
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Interconnecting conductively coated coverslides. [for ISEE-1
NASA Technical Reports Server (NTRS)
Gaddy, E. M.; Bass, J. A.
1978-01-01
The International Sun Earth Explorer-1 has the requirement that the entire outer surface of the spacecraft be conductive. A transparent coating of indium oxide was deposited for that reason on the satellite's solar cell coverglasses in order to give them a conductive surface, and the surfaces were interconnected to ground. This paper examines the interconnector attachment problem. On the ISEE-1, wires were bonded to the coverglasses by using a conductive epoxy; the resistance of these bonds increased dramatically with time. A program was initiated to find the functional cause of the resistance increase and to flight-qualify an alternative method of bonding. It was found the tests initiated were insufficient to find the cause of resistance increase and that an alternative solution of using indium solder is acceptable for bonding wires directly to indium oxide.
Quantum annealing correction for random Ising problems
NASA Astrophysics Data System (ADS)
Pudenz, Kristen L.; Albash, Tameem; Lidar, Daniel A.
2015-04-01
We demonstrate that the performance of a quantum annealer on hard random Ising optimization problems can be substantially improved using quantum annealing correction (QAC). Our error correction strategy is tailored to the D-Wave Two device. We find that QAC provides a statistically significant enhancement in the performance of the device over a classical repetition code, improving as a function of problem size as well as hardness. Moreover, QAC provides a mechanism for overcoming the precision limit of the device, in addition to correcting calibration errors. Performance is robust even to missing qubits. We present evidence for a constructive role played by quantum effects in our experiments by contrasting the experimental results with the predictions of a classical model of the device. Our work demonstrates the importance of error correction in appropriately determining the performance of quantum annealers.
Taxonomy of particles in Ising spin chains.
Liu, Dan; Lu, Ping; Müller, Gerhard; Karbach, Michael
2011-08-01
The statistical mechanics of particles with shapes on a one-dimensional lattice is investigated in the context of the s=1 Ising chain with uniform nearest-neighbor coupling, quadratic single-site potential, and a magnetic field, which supports four distinct ground states: |↑↓↑↓⋯>, |∘∘⋯>, |↑↑⋯>, |↑∘↑∘⋯>. The complete spectrum is generated from each ground state by particles from a different set of six or seven species. Particles and elements of the pseudovacuum are characterized by motifs (patterns of several consecutive site variables). Particles are floating objects that can be placed into open slots on the lattice. Open slots are recognized as permissible links between motifs. The energy of a particle varies between species but is independent of where it is placed. Placement of one particle changes the open-slot configuration for particles of all species. This statistical interaction is encoded in a generalized Pauli principle, from which the multiplicity of states for a given particle combination is determined and used for the exact statistical mechanical analysis. Particles from all species belong to one of four categories: compacts, hosts, tags, or hybrids. Compacts and hosts find open slots in segments of pseudovacuum. Tags find open slots inside hosts. Hybrids are tags with hosting capability. In the taxonomy of particles proposed here, "species" is indicative of structure and "category" indicative of function. The hosting function splits the Pauli principle into exclusion and accommodation parts. Near phase boundaries, the state of the Ising chain at low temperature is akin to that of miscible or immiscible liquids with particles from one species acting as surfactant molecules. PMID:21928978
Ising lines: Natural topological defects within ferroelectric Bloch walls
NASA Astrophysics Data System (ADS)
Stepkova, V.; Marton, P.; Hlinka, J.
2015-09-01
Phase-field simulations demonstrate that the polarization order-parameter field in the Ginzburg-Landau-Devonshire model of rhombohedral ferroelectric BaTiO3 allows for an interesting linear defect, stable under simple periodic boundary conditions. This linear defect, here called the Ising line, can be described as an about 2-nm-thick intrinsic paraelectric nanorod acting as a highly mobile borderline between finite portions of Bloch-like domain walls of opposite helicity. These Ising lines play the role of domain boundaries associated with the Ising-to-Bloch domain-wall phase transition.
Geometrical aspects of critical Ising configurations in two dimensions
NASA Astrophysics Data System (ADS)
Blöte, H. W. J.; Knops, Y. M. M.; Nienhuis, B.
1992-06-01
We present a physical interpretation of a number of exotic exponents of the two-dimensional Ising model, i.e., exponents that do have a conformal classification, but outside the unitary grid. They describe the scaling behavior of geometric properties of Ising and random clusters. For instance, the probability that two spins at a distance r lie on the perimeter of the same Ising cluster decays as r-5/4 at criticality. These results are obtained via mappings on the Coulomb gas. A part of the Coulomb gas scenario is verified by means of finite-size scaling of transfer-matrix results.
ISEE-C attitude determination using fine sun sensor data only
NASA Technical Reports Server (NTRS)
Gunshol, L. P.
1978-01-01
Techniques developed to determine the spin axis attitude using Fine Sun Sensor (FSS) data only are described. At any given time, the Sun angle specifies the orientation of the spin axis relative to the sunline. The instantaneous time rate of change of the sun angle is directly proportional to the orientation of the spin axis relative to a reference plane that is normal to the ecliptic. Thus, the spin axis attitude can be determined when sufficient data has been collected to accurately measure the rate of change of the sun angle. The uncertainties can be computed directly from the uncertainties in the coefficients of the smoothed sun angle curve. The FSS-only technique is unique in that ephemeris vectors are required only to transform the attitude results to more conventional coordinate frames. The combination of the mission geometry and the FSS accuracy make ISEE-C an ideal mission for applying this method. However, the technique can be used on other missions, such as spin stabilized geosynchronous missions.
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Klecker, B.; Ipavich, F. M.; Gloeckler, G.
1980-01-01
Two energetic particle events (28 keV - 145 keV) upstream of the earth's bow shock have been investigated with two identical experiments of the Max-Planck-Institut/University of Maryland on ISEE-1 and ISEE-3. Close to the bow shock the particle distribution is more or less isotropic and indicates strong scattering of these particles in the upstream wave field. At ISEE-3 the particles move essentially scatter-free from the general bow shock direction. The temporal evolution of the particle bursts is discussed in terms of the interplanetary magnetic field topology and the scattering conditions.
Plasma wave experiment for the ISEE-3 mission
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1982-01-01
Analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission is presented. The performance of work on the data analysis phase is summarized.
Linear relaxation in large two-dimensional Ising models
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, F.
2016-02-01
Critical dynamics in two-dimension Ising lattices up to 2048 ×2048 is simulated on field-programmable-gate-array- based computing devices. Linear relaxation times are measured from extremely long Monte Carlo simulations. The longest simulation has 7.1 ×1016 spin updates, which would take over 37 years to simulate on a general purpose computer. The linear relaxation time of the Ising lattices is found to follow the dynamic scaling law for correlation lengths as long as 2048. The dynamic exponent z of the system is found to be 2.179(12), which is consistent with previous studies of Ising lattices with shorter correlation lengths. It is also found that Monte Carlo simulations of critical dynamics in Ising lattices larger than 512 ×512 are very sensitive to the statistical correlations between pseudorandom numbers, making it even more difficult to study such large systems.
Quasiparticle breakdown in the quasi-one-dimensional Ising ferromagnet CoNb2O6
NASA Astrophysics Data System (ADS)
Robinson, Neil J.; Essler, Fabian H. L.; Cabrera, Ivelisse; Coldea, Radu
2014-11-01
We present experimental and theoretical evidence that an interesting quantum many-body effect—quasiparticle breakdown—occurs in the quasi-one-dimensional spin-1/2 Ising-like ferromagnet CoNb2O6 in its paramagnetic phase at high transverse field as a result of explicit breaking of spin inversion symmetry. We propose a quantum spin Hamiltonian capturing the essential one-dimensional physics of CoNb2O6 and determine the exchange parameters of this model by fitting the calculated single-particle dispersion to the one observed experimentally in applied transverse magnetic fields [1]. We present high-resolution inelastic neutron scattering measurements of the single-particle dispersion which observe "anomalous broadening" effects over a narrow energy range at intermediate energies. We propose that this effect originates from the decay of the one particle mode into two-particle states. This decay arises from (i) a finite overlap between the one-particle dispersion and the two-particle continuum in a narrow energy-momentum range and (ii) a small misalignment of the applied field away from the direction perpendicular to the Ising axis in the experiments, which allows for nonzero matrix elements for decay by breaking the Z2 spin inversion symmetry of the Hamiltonian.
LETTER TO THE EDITOR: Frustration in Ising-type spin models on the pyrochlore lattice
NASA Astrophysics Data System (ADS)
Bramwell, S. T.; Harris, M. J.
1998-04-01
We compare the behaviour of ferromagnetic and antiferromagnetic Ising-type spin models on the cubic pyrochlore lattice. With simple `up - down' Ising spins, the antiferromagnet is highly frustrated and the ferromagnet is not. However, such spin symmetry cannot be realized on the pyrochlore lattice, since it requires a unique symmetry axis, which is incompatible with the cubic symmetry. The only two-state spin symmetry which is compatible is that with four local 0953-8984/10/14/002/img5 anisotropy axes, which direct the spins to point in or out of the tetrahedral plaquettes of the pyrochlore lattice. We show how the local `in - out' magnetic anisotropy reverses the roles of the ferro- and antiferromagnetic exchange couplings with regard to frustration, such that the ferromagnet is highly frustrated and the antiferromagnet is not. The in - out ferromagnet is a magnetic analogue of the ice model, which we have termed the `spin ice model'. It is realized in the material 0953-8984/10/14/002/img6. The up - down antiferromagnet is also an analogue of the ice model, albeit a less direct one, as originally shown by Anderson. Combining these results shows that the up - down spin models map onto the in - out spin models with the opposite sign of the exchange coupling. We present Monte Carlo simulations of the susceptibility for each model, and discuss their relevance to experimental systems.
Scaling functions in the square Ising model
NASA Astrophysics Data System (ADS)
Hassani, S.; Maillard, J.-M.
2015-03-01
We show and give the linear differential operators Lqscal of order q={{n}2}/4+n+7/8+{{(-1)}n}/8, for the integrals {{I}n}(r) which appear in the two-point correlation scaling function of Ising model \\{{F}+/- }(r)={{lim }scaling}M+/- -2 \\lt {{σ }0,0} {{σ }M,N}\\gt ={{\\sum }n}{{I}n}(r). The integrals {{I}n}(r) are given in expansion around r=0 in the basis of the formal solutions of Lqscal with transcendental combination coefficients. We find that the expression {{r}1/4}exp ({{r}2}/8) is a solution of the Painlevé VI equation in the scaling limit. Combinations of the (analytic at r=0) solutions of Lqscal sum to exp ({{r}2}/8). We show that the expression {{r}1/4}exp ({{r}2}/8) is the scaling limit of the correlation function C(N,N) and C(N,N+1). The differential Galois groups of the factors occurring in the operators Lqscal are given.
Complete analyticity for 2D Ising completed
NASA Astrophysics Data System (ADS)
Schonmann, Roberto H.; Shlosman, Senya B.
1995-06-01
We study the behavior of the two-dimensional nearest neighbor ferromagnetic Ising model under an external magnetic field h. We extend to every subcritical value of the temperature a result previously proven by Martirosyan at low enough temperature, and which roughly states that for finite systems with — boundary conditions under a positive external field, the boundary effect dominates in the bulk if the linear size of the system is of order B/h with B small enough, while if B is large enough, then the external field dominates in the bulk. As a consequence we are able to complete the proof that “complete analyticity for nice sets” holds for every value of the temperature and external field in the interior of the uniqueness region in the phase diagram of the model. The main tools used are the results and techniques developed to study large deviations for the block magnetization in the absence of the magnetic field, and recently extended to all temperatures below the critical one by Ioffe.
Continuous error correction for Ising anyons
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Wootton, James R.
2016-04-01
Quantum gates in topological quantum computation are performed by braiding non-Abelian anyons. These braiding processes can presumably be performed with very low error rates. However, to make a topological quantum computation architecture truly scalable, even rare errors need to be corrected. Error correction for non-Abelian anyons is complicated by the fact that it needs to be performed on a continuous basis, and further errors may occur while we are correcting existing ones. Here, we prove the feasibility of this task, establishing non-Abelian anyons as a viable platform for scalable quantum computation. We thereby focus on Ising anyons as the most prominent example of non-Abelian anyons and show that for these a finite error rate can indeed be corrected continuously. There is a threshold error rate pc>0 such that for all error rates p
Applications of ISES for coastal zone studies
NASA Technical Reports Server (NTRS)
Bartlett, D. S.
1990-01-01
In contrast to the discipline- and process-oriented topics addressed, coastal zone studies are defined geographically by the special circumstances inherent in the interface between land and water. The characteristics of coastal zones which make them worthy of separate consideration are: (1) the dynamic nature of natural and anthropogenic processes taking place; (2) the relatively restricted spatial domain of the narrow land/water interface; and (3) the large proportion of the Earth's population living within coastal zones, and the resulting extreme pressure on natural and human resources. These characteristics place special constraints and priorities on remote sensing applications, even though the applications themselves bear close relation to those addressed by other elements of this report (e.g., oceans, ice, vegetation/land use). The discussion which follows first describes the suite of remote sensing activities relevant to coastal zone studies. Potential Information Sciences Experiment System (ISES) experiments will then be addressed within two general categories: applications of real-time data transmission and applications of onboard data acquisition and processing.
Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks
NASA Astrophysics Data System (ADS)
Krasnytska, M.; Berche, B.; Holovatch, Yu; Kenna, R.
2016-04-01
We analyse the partition function of the Ising model on graphs of two different types: complete graphs, wherein all nodes are mutually linked and annealed scale-free networks for which the degree distribution decays as P(k) ˜ k -λ . We are interested in zeros of the partition function in the cases of complex temperature or complex external field (Fisher and Lee-Yang zeros respectively). For the model on an annealed scale-free network, we find an integral representation for the partition function which, in the case λ > 5, reproduces the zeros for the Ising model on a complete graph. For 3 < λ < 5 we derive the λ-dependent angle at which the Fisher zeros impact onto the real temperature axis. This, in turn, gives access to the λ-dependent universal values of the critical exponents and critical amplitudes ratios. Our analysis of the Lee-Yang zeros reveals a difference in their behaviour for the Ising model on a complete graph and on an annealed scale-free network when 3 < λ < 5. Whereas in the former case the zeros are purely imaginary, they have a non zero real part in latter case, so that the celebrated Lee-Yang circle theorem is violated.
ISEE-1 and 2 observations of magnetic flux ropes in the magnetotail - FTE's in the plasma sheet?
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Russell, C. T.; Cattell, C. A.; Takahasi, K.; Bame, S. J.
1986-01-01
Magnetic field observations on ISEE-1 and 2 in and near the neutral sheet about 20 Re down the near-earth magnetotail reveal the occurrence of structures resembling magnetic flux ropes. Both electric field and fast plasma data show that these structures convect across the spacecraft at speeds of 200 - 600 km/s, and that they have scale sizes of roughly 3 5 Re. The rope axis orientation is across the tail, approximately in the -Y GSM direction. Their magnetic structure is strikingly similar to magnetic flux ropes observed in the Venus ionosphere, and to flux transfer events observed at the dayside magnetopause. The total field-aligned current within these ropes may approach a million amps. These structures may arise because of patchy reconnection within the plasma sheet, or may be tearing islands formed when the plasma sheet magnetic field has a cross-tail component. Plasma sheet flux ropes are not a common feature at ISEE orbital altitudes; this suggests that near-earth neutral line formation within ISEE apogee (22 Re) may be equally rare.
Frustrated Ising chains on the triangular lattice in Sr3NiIrO6
NASA Astrophysics Data System (ADS)
Toth, S.; Wu, W.; Adroja, D. T.; Rayaprol, S.; Sampathkumaran, E. V.
2016-05-01
Inelastic neutron scattering study on the spin-chain compound Sr3NiIrO6 reveals gapped quasi-1D magnetic excitations. The observed one-magnon band between 29.5 and 39 meV consists of magnon modes of the Ni2 + ions. The fitting of the spin wave spectrum reveals strongly coupled Ising-like chains along the c axis that are weakly coupled into a frustrated triangular lattice in the a b plane. The magnetic excitations survive up to 200 K well above the magnetic ordering temperature of TN˜75 K, also indicating a quasi-1D nature of the magnetic interactions in Sr3NiIrO6 . Our microscopic model is in agreement with ab initio electronic structure calculations and explains the giant spin-flip field observed in bulk magnetization measurements.
Barkhausen noise in the random field Ising magnet Nd2Fe14B
NASA Astrophysics Data System (ADS)
Xu, J.; Silevitch, D. M.; Dahmen, K. A.; Rosenbaum, T. F.
2015-07-01
With sintered needles aligned and a magnetic field applied transverse to its easy axis, the rare-earth ferromagnet Nd2Fe14B becomes a room-temperature realization of the random field Ising model. The transverse field tunes the pinning potential of the magnetic domains in a continuous fashion. We study the magnetic domain reversal and avalanche dynamics between liquid helium and room temperatures at a series of transverse fields using a Barkhausen noise technique. The avalanche size and energy distributions follow power-law behavior with a cutoff dependent on the pinning strength dialed in by the transverse field, consistent with theoretical predictions for Barkhausen avalanches in disordered materials. A scaling analysis reveals two regimes of behavior: one at low temperature and high transverse field, where the dynamics are governed by the randomness, and the second at high temperature and low transverse field, where thermal fluctuations dominate the dynamics.
Theory of microwave absorption by the spin-1/2 Heisenberg-Ising magnet.
Brockmann, Michael; Göhmann, Frank; Karbach, Michael; Klümper, Andreas; Weisse, Alexander
2011-07-01
We analyze the problem of microwave absorption by the Heisenberg-Ising magnet in terms of shifted moments of the imaginary part of the dynamical susceptibility. When both the Zeeman field and the wave vector of the incident microwave are parallel to the anisotropy axis, the first four moments determine the shift of the resonance frequency and the linewidth in a situation where the frequency is varied for fixed Zeeman field. For the one-dimensional model we can calculate the moments exactly. This provides exact data for the resonance shift and the linewidth at arbitrary temperatures and magnetic fields. In current ESR experiments the Zeeman field is varied for fixed frequency. We show how in this situation the moments give perturbative results for the resonance shift and for the integrated intensity at small anisotropy as well as an explicit formula connecting the linewidth with the anisotropy parameter in the high-temperature limit. PMID:21797567
Energy Science and Technology Software Center (ESTSC)
2002-04-01
Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.
Interfaces in Random Field Ising Systems
NASA Astrophysics Data System (ADS)
Seppälä, Eira
2001-03-01
Domain walls are studied in random field Ising magnets at T=0 in two and three dimensions using exact ground state calculations. In 2D below the random field strength dependent length scale Lb the walls exhibit a super-rough behavior with a roughness exponent greater than unity ζ ~= 1.20 ± 0.05. The nearest-neighbor height difference probability distribution depends on the system size below L_b. Above Lb domains become fractal, ζ ~= 1.(E. T. Seppälä, V. Petäjä, and M. J. Alava, Phys. Rev. E 58), R5217 (1998). The energy fluctuation exponent has a value θ=1, contradicting the exponent relation θ = 2ζ -1 due to the broken scale-invariance, below Lb and vanishes for system sizes above L_b. The broken scale-invariance should be manifest also in Kardar-Parisi-Zhang problem with random-field noise.(E. Frey, U. C. Täuber, and H. K. Janssen, Europhys. Lett. 47), 14 (1999). In 3D there exists a transition between ferromagnetic and paramagnetic phases at the critical random field strength (Δ/J)_c. Below (Δ/J)c the roughness exponent is also greater ζ ~= 0.73 ± 0.03 than the functional-renormalization-group calculation result ζ = (5-d)/3.(D. Fisher, Phys. Rev. Lett. 56), 1964 (1986).(P. Chauve, P. Le Doussal, and K. Wiese, cond-mat/0006056.) The height differences are system size dependent in 3D, as well. The behavior of the domain walls in 2D below Lb with a constant external field, i.e., the random-bulk wetting, is demonstrated.(E. T. Seppälä, I. Sillanpää, and M. J. Alava, unpublished.)
An Ising spin state explanation for financial asset allocation
NASA Astrophysics Data System (ADS)
Horvath, Philip A.; Roos, Kelly R.; Sinha, Amit
2016-03-01
We build on the developments in the application of statistical mechanics, notably the identity of the spin degree of freedom in the Ising model, to explain asset price dynamics in financial markets with a representative agent. Specifically, we consider the value of an individual spin to represent the proportional holdings in various assets. We use partial moment arguments to identify asymmetric reactions to information and develop an extension of a plunging and dumping model. This unique identification of the spin is a relaxation of the conventional discrete state limitation on an Ising spin to accommodate a new archetype in Ising model-finance applications wherein spin states may take on continuous values, and may evolve in time continuously, or discretely, depending on the values of the partial moments.
Improved fair sampling of ground states in Ising spin glasses
NASA Astrophysics Data System (ADS)
Katzgraber, Helmut G.; Zhu, Zheng; Ochoa, Andrew J.
2015-03-01
Verifying that an optimization approach can sample all solutions that minimize a Hamiltonian is a stringent test for any newly-developed algorithm. While most solvers easily compute the minimum of a cost function for small to moderate input sizes, equiprobable sampling of all ground-state configurations (within Poissonian fluctuations) is much harder to obtain. Most notably, methods such as transverse-field quantum annealing fail in passing this test for certain highly-degenerate problems. Here we present an attempt to sample ground states for Ising spin glasses based on a combination of low-temperature parallel tempering Monte Carlo combined with the cluster algorithm by Houdayer. Because the latter is rejection free and obeys details balance, the ground-state manifold is efficiently sampled. We illustrate the approach for Ising spin glasses on the D-Wave Two quantum annealer topology, known as the Chimera graph, as well as two-dimensional Ising spin glasses.
One-dimensional Ising model with multispin interactions
NASA Astrophysics Data System (ADS)
Turban, Loïc
2016-09-01
We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.
Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.
Nakayama, Yu
2016-04-01
Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries. PMID:27104697
Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2016-04-01
Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.
Ordering and phase transitions in random-field Ising systems
NASA Technical Reports Server (NTRS)
Maritan, Amos; Swift, Michael R.; Cieplak, Marek; Chan, Moses H. W.; Cole, Milton W.; Banavar, Jayanth R.
1991-01-01
An exact analysis of the Ising model with infinite-range interactions in a random field and a local mean-field theory in three dimensions is carried out leading to a phase diagram with several coexistence surfaces and lines of critical points. The results show that the phase diagram depends crucially on whether the distribution of random fields is symmetric or not. Thus, Ising-like phase transitions in a porous medium (the asymmetric case) are in a different universality class from the conventional random-field model (symmetric case).
Plasma wave experiment for the ISEE-3 mission
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1983-01-01
Sensitive, high resolution plasma probes for analysis of the distribution functions and plasma wave instruments for measurements of electromagnetic and electrostatic wave modes are commonly flown together to provide information on plasma instabilities and wave particle interactions. Analysis of the data for the ISEE 3 mission is provided.
An antiferromagnetic transverse Ising nanoisland; unconventional surface effects
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2015-12-01
The phase diagrams and temperature dependences of magnetizations in a transverse Ising nanosisland with an antiferromagnetic spin configuration are studied by the use of the effective-field theory with correlations (EFT). Some novel features, such as the re-entrant phenomena with two compensation points being free from disorder induced frustration, are obtained for the magnetic properties in the system.
Ising Model Reprogramming of a Repeat Protein's Equilibrium Unfolding Pathway.
Millership, C; Phillips, J J; Main, E R G
2016-05-01
Repeat proteins are formed from units of 20-40 aa that stack together into quasi one-dimensional non-globular structures. This modular repetitive construction means that, unlike globular proteins, a repeat protein's equilibrium folding and thus thermodynamic stability can be analysed using linear Ising models. Typically, homozipper Ising models have been used. These treat the repeat protein as a series of identical interacting subunits (the repeated motifs) that couple together to form the folded protein. However, they cannot describe subunits of differing stabilities. Here we show that a more sophisticated heteropolymer Ising model can be constructed and fitted to two new helix deletion series of consensus tetratricopeptide repeat proteins (CTPRs). This analysis, showing an asymmetric spread of stability between helices within CTPR ensembles, coupled with the Ising model's predictive qualities was then used to guide reprogramming of the unfolding pathway of a variant CTPR protein. The designed behaviour was engineered by introducing destabilising mutations that increased the thermodynamic asymmetry within a CTPR ensemble. The asymmetry caused the terminal α-helix to thermodynamically uncouple from the rest of the protein and preferentially unfold. This produced a specific, highly populated stable intermediate with a putative dimerisation interface. As such it is the first step in designing repeat proteins with function regulated by a conformational switch. PMID:26947150
Internet Access to ISEE-1 and 2 Magnetometer Data
NASA Technical Reports Server (NTRS)
1997-01-01
It is reported that the entire ISEE-1 and -2 magnetometer data are placed on-line, using an 8 Gbyte disk drive. The data are stored at 4-s and 60-s resolution. Also, an interactive world wide web page, which allows to plot, on request, any interval for which magnetometer data are available, is developed.
Some Fruits of Genius: Lars Onsager and the Ising Model
NASA Astrophysics Data System (ADS)
Fisher, Michael E.
2006-03-01
The story of the exact solution of the two-dimensional Ising model by Lars Onsager in the 1940's will be sketched and some of the striking developments following from it, especially for the behavior of fluctuating interfaces, will be recounted.
Duality Between Spin Networks and the 2D Ising Model
NASA Astrophysics Data System (ADS)
Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.
2016-06-01
The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.
Plasma wave experiment for the ISEE-3 mission
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1983-01-01
An analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 Mission is provided. Work on the data analysis phase of the contract from 1 October 1982 through 30 March 1983 is summarized.
Analytical properties of the anisotropic cubic Ising model
Hansel, D.; Maillard, J.M.; Oitmaa, J.; Velgakis, M.J.
1987-07-01
The authors combine an exact functional relation, the inversion relation, with conventional high-temperature expansions to explore the analytic properties of the anisotropic Ising model on both the square and simple cubic lattice. In particular, they investigate the nature of the singularities that occur in partially resummed expansions of the partition function and of the susceptibility.
Phase transitions in Ising models on directed networks.
Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof
2015-11-01
We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme. PMID:26651748
Hyperinflation in the Ising model on quasiperiodic chains
NASA Astrophysics Data System (ADS)
Odagaki, T.
1990-02-01
Using a hyperinflation rule, the free energy of the two component Ising system on a chain with an arbitrary quasiperiodic order is shown to be given by an average of the free energy of each component, in agreement with the result obtained by the transfer matrix formalism.
Phase transitions in Ising models on directed networks
NASA Astrophysics Data System (ADS)
Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof
2015-11-01
We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.
Nature versus nurture: Predictability in low-temperature Ising dynamics
NASA Astrophysics Data System (ADS)
Ye, J.; Machta, J.; Newman, C. M.; Stein, D. L.
2013-10-01
Consider a dynamical many-body system with a random initial state subsequently evolving through stochastic dynamics. What is the relative importance of the initial state (“nature”) versus the realization of the stochastic dynamics (“nurture”) in predicting the final state? We examined this question for the two-dimensional Ising ferromagnet following an initial deep quench from T=∞ to T=0. We performed Monte Carlo studies on the overlap between “identical twins” raised in independent dynamical environments, up to size L=500. Our results suggest an overlap decaying with time as t-θh with θh=0.22±0.02; the same exponent holds for a quench to low but nonzero temperature. This “heritability exponent” may equal the persistence exponent for the two-dimensional Ising ferromagnet, but the two differ more generally.
Phase transition of the Ising model on a fractal lattice.
Genzor, Jozef; Gendiar, Andrej; Nishino, Tomotoshi
2016-01-01
The phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of 4. The free energy and the spontaneous magnetization of the system are obtained by means of the higher-order tensor renormalization group method. The system exhibits the order-disorder phase transition, where the critical indices are different from those of the square-lattice Ising model. An exponential decay is observed in the density-matrix spectrum even at the critical point. It is possible to interpret that the system is less entangled because of the fractal geometry. PMID:26871057
Nature versus nurture: predictability in low-temperature Ising dynamics.
Ye, J; Machta, J; Newman, C M; Stein, D L
2013-10-01
Consider a dynamical many-body system with a random initial state subsequently evolving through stochastic dynamics. What is the relative importance of the initial state ("nature") versus the realization of the stochastic dynamics ("nurture") in predicting the final state? We examined this question for the two-dimensional Ising ferromagnet following an initial deep quench from T=∞ to T=0. We performed Monte Carlo studies on the overlap between "identical twins" raised in independent dynamical environments, up to size L=500. Our results suggest an overlap decaying with time as t(-θ)(h) with θ(h)=0.22 ± 0.02; the same exponent holds for a quench to low but nonzero temperature. This "heritability exponent" may equal the persistence exponent for the two-dimensional Ising ferromagnet, but the two differ more generally. PMID:24229093
Applications of ISES for vegetation and land use
NASA Technical Reports Server (NTRS)
Wilson, R. Gale
1990-01-01
Remote sensing relative to applications involving vegetation cover and land use is reviewed to consider the potential benefits to the Earth Observing System (Eos) of a proposed Information Sciences Experiment System (ISES). The ISES concept has been proposed as an onboard experiment and computational resource to support advanced experiments and demonstrations in the information and earth sciences. Embedded in the concept is potential for relieving the data glut problem, enhancing capabilities to meet real-time needs of data users and in-situ researchers, and introducing emerging technology to Eos as the technology matures. These potential benefits are examined in the context of state-of-the-art research activities in image/data processing and management.
A MATLAB GUI to study Ising model phase transition
NASA Astrophysics Data System (ADS)
Thornton, Curtislee; Datta, Trinanjan
We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.
Coherence lengths of upstream ULF waves - Dual ISEE observations
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.; Orlowski, D. S.
1993-01-01
We have used high time resolution simultaneous magnetic field data from the dual ISEE spacecraft to study the coherence lengths of upstream ULF waves. We examine the cross-correlation between ISEE 1 and 2 observations for different spacecraft separations and determine the coherence lengths for upstream 30-second waves, 3-second waves, and one-Hz waves. We find that the observed coherence lengths are consistent with those estimated from the bandwidth of the spectral peak and that these lengths vary markedly from less than 100 km to over 1 R(E). In order to study all these wave phenomena, a multiple spacecraft mission such as the upcoming ESA Cluster mission would need to be capable of assuming a wide variety of possible separations.
The 2014 Earth return of the ISEE-3/ICE spacecraft
NASA Astrophysics Data System (ADS)
Dunham, David W.; Farquhar, Robert W.; Loucks, Michel; Roberts, Craig E.; Wingo, Dennis; Cowing, Keith L.; Garcia, Leonard N.; Craychee, Tim; Nickel, Craig; Ford, Anthony; Colleluori, Marco; Folta, David C.; Giorgini, Jon D.; Nace, Edward; Spohr, John E.; Dove, William; Mogk, Nathan; Furfaro, Roberto; Martin, Warren L.
2015-05-01
In 1978, the 3rd International Sun-Earth Explorer (ISEE-3) became the first libration-point mission, about the Sun-Earth L1 point. Four years later, a complex series of lunar swingbys and small propulsive maneuvers ejected ISEE-3 from the Earth-Moon system, to fly by a comet (Giacobini-Zinner) for the first time in 1985, as the rechristened International Cometary Explorer (ICE). In its heliocentric orbit, ISEE-3/ICE slowly drifted around the Sun to return to the Earth's vicinity in 2014. Maneuvers in 1986 targeted a 2014 August 10th lunar swingby to recapture ISEE-3 into Earth orbit. In 1999, ISEE-3/ICE passed behind the Sun; after that, tracking of the spacecraft ceased and its control center at Goddard was shut down. In 2013, meetings were held to assess the viability of "re-awakening" ISEE-3. The goal was to target the 2014 lunar swingby, to recapture the spacecraft back into a halo-like Sun-Earth L1 orbit. However, special hardware for communicating with the spacecraft via NASA's Deep Space Network stations was discarded after 1999, and NASA had no funds to reconstruct the lost equipment. After ISEE-3's carrier signal was detected on March 1st with the 20 m antenna at Bochum, Germany, Skycorp, Inc. decided to initiate the ISEE-3 Reboot Project, to use software-defined radio with a less costly S-band transmitter that was purchased with a successful RocketHub crowdsourcing effort. NASA granted Skycorp permission to command the spacecraft. Commanding was successfully accomplished using the 300 m radio telescope at Arecibo. New capture trajectories were computed, including trajectories that would target the August lunar swingby and use a second ΔV (velocity change) that could target later lunar swingbys that would allow capture into almost any desired final orbit, including orbits about either the Sun-Earth L1 or L2 points, a lunar distant retrograde orbit, or targeting a flyby of the Earth-approaching active Comet Wirtanen in 2018. A tiny spinup maneuver was
Transfer-matrix scaling for diluted Ising systems
NASA Astrophysics Data System (ADS)
de Queiroz, S. L. A.; Stinchcombe, R. B.
1992-09-01
A transfer-matrix scaling technique is developed for randomly diluted systems and applied to the site-diluted Ising model on a square lattice. For each connected configuration between adjacent columns, the contribution of the respective transfer matrix to the decay of correlations is considered only as far as the ratio of the two largest eigenvalues, allowing an economical incorporation of configurational averages. Predictions for the phase boundary at and near the percolation and pure Ising limits, and for the correlation exponent η at those limits, agree with exactly known results to within 1% error with largest strip widths of only L=5. The exponent η remains near the pure value (1/4) for all intermediate concentrations until it turns over to the percolation value at the threshold.
Precision islands in the Ising and O( N ) models
NASA Astrophysics Data System (ADS)
Kos, Filip; Poland, David; Simmons-Duffin, David; Vichi, Alessandro
2016-08-01
We make precise determinations of the leading scaling dimensions and operator product expansion (OPE) coefficients in the 3d Ising, O(2), and O(3) models from the conformal bootstrap with mixed correlators. We improve on previous studies by scanning over possible relative values of the leading OPE coefficients, which incorporates the physical information that there is only a single operator at a given scaling dimension. The scaling dimensions and OPE coefficients obtained for the 3d Ising model, (Δ σ , Δ ɛ , λ σσɛ , λ ɛɛɛ ) = (0 .5181489(10) , 1 .412625(10) , 1 .0518537(41) , 1 .532435(19) , give the most precise determinations of these quantities to date.
Phase transition of the Ising model on a fractal lattice
NASA Astrophysics Data System (ADS)
Genzor, Jozef; Gendiar, Andrej; Nishino, Tomotoshi
2016-01-01
The phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of 4. The free energy and the spontaneous magnetization of the system are obtained by means of the higher-order tensor renormalization group method. The system exhibits the order-disorder phase transition, where the critical indices are different from those of the square-lattice Ising model. An exponential decay is observed in the density-matrix spectrum even at the critical point. It is possible to interpret that the system is less entangled because of the fractal geometry.
Substorm warnings - An ISEE-3 real time data system
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Baker, D.
1979-01-01
The use of solar wind measurements made by ISEE-3 in its halo orbit around the L1 libration point to predict the onsets of magnetospheric substorms and geomagnetic storms is discussed. Consideration is given to the limitations on the predictive ability of the satellite measurements set by the bulk solar wind velocity, the elliptical orbit of the satellite and the correlation lengths of the magnetic field and the solar wind plasma. The ISEE-3 real-time data system is presented, with attention given to the ground receiving stations, the NASCOM communications system, the Multisatellite Operations Control Center and Information Processing Division at the Goddard Space Flight Center, the link between Goddard and the NOAA Space Environmental Services Center, and the NOAA Space Environment Laboratory data acquisition and display data system, which includes displays allowing storm forecasts. It is noted that the entire system should be operational by March, 1980.
OpenCL Implementation of NeuroIsing
NASA Astrophysics Data System (ADS)
Zapart, C. A.
Recent advances in graphics card hardware combined with anintroduction of the OpenCL standard promise to accelerate numerical simulations across diverse scientific disciplines. One such field benefiting from new hardware/software paradigms is econophysics. The paper describes an OpenCL implementation of a selected econophysics model: NeuroIsing, which has been designed to execute in parallel on a vendor-independent graphics card. Originally introduced in the paper [C.~A.~Zapart, ``Econophysics in Financial Time Series Prediction'', PhD thesis, Graduate University for Advanced Studies, Japan (2009)], at first it was implemented on a CELL processor running inside a SONY PS3 games console. The NeuroIsing framework can be applied to predicting and trading foreign exchange as well as stock market index futures.
On the dynamics of the Ising model of cooperative phenomena.
Montroll, E W
1981-01-01
A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955
On the Dynamics of the Ising Model of Cooperative Phenomena
NASA Astrophysics Data System (ADS)
Montroll, Elliott W.
1981-01-01
A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions.
On the dynamics of the Ising model of cooperative phenomena
Montroll, Elliott W.
1981-01-01
A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955
Two-dimensional frustrated Ising network as an eigenvalue problem
NASA Astrophysics Data System (ADS)
Blackman, J. A.
1982-11-01
The Pfaffian method is used to study the square frustrated Ising network. The formalism is adapted in order to develop a relation with the problem of excitations in random alloys. It is shown that the counterpart of frustrated plaquettes are local modes within a band gap. Properties of the local modes are examined, including questions of gauge invariance and duality. Numerical calculations are done to investigate the way in which the local modes broaden into an impurity band.
Ising model observables and non-backtracking walks
Helmuth, Tyler
2014-08-15
This paper presents an alternative proof of the connection between the partition function of the Ising model on a finite graph G and the set of non-backtracking walks on G. The techniques used also give formulas for spin-spin correlation functions in terms of non-backtracking walks. The main tools used are Viennot's theory of heaps of pieces and turning numbers on surfaces.
Magnetospheric pulsations observed by ISEE 1 and 2 satellites
NASA Technical Reports Server (NTRS)
Singer, H. J.; Hughes, W. J.; Russell, C. T.; Grard, R.
1984-01-01
The ISEE 1 and 2 spacecraft studied whether observed amplitude variations in hydromagnetic waves were due to the motion of the spacecraft through a time stationary structure or were due to temporal changes. The data provide evidence for spatially limited standing hydromagnetic wave resonant regions. The standing wave harmonic and Poynting vector were deduced from the simultaneous observations of the wave magnetic and electric field.
Long range Ising model for credit risk modeling
NASA Astrophysics Data System (ADS)
Molins, Jordi; Vives, Eduard
2005-07-01
Within the framework of maximum entropy principle we show that the finite-size long-range Ising model is the adequate model for the description of homogeneous credit portfolios and the computation of credit risk when default correlations between the borrowers are included. The exact analysis of the model suggest that when the correlation increases a first-order-like transition may occur inducing a sudden risk increase.
Magnetization of the Ising model on the generalized checkerboard lattice
NASA Astrophysics Data System (ADS)
Lin, K. Y.; Wu, F. Y.
1988-08-01
We consider the Ising model on the generalized checkerboard lattice. Using a recent result by Baxter and Choy, we derive exact expressions for the magnetization of nodal spins at two values of the magnetic field, H=0 and H=i1/2 πkT. Our results are given in terms of Boltzmann weights of a unit cell of the checkerboard lattice without specifying its cell structures.
The Ising Model in Physics and Statistical Genetics
Majewski, Jacek; Li, Hao; Ott, Jurg
2001-01-01
Interdisciplinary communication is becoming a crucial component of the present scientific environment. Theoretical models developed in diverse disciplines often may be successfully employed in solving seemingly unrelated problems that can be reduced to similar mathematical formulation. The Ising model has been proposed in statistical physics as a simplified model for analysis of magnetic interactions and structures of ferromagnetic substances. Here, we present an application of the one-dimensional, linear Ising model to affected-sib-pair (ASP) analysis in genetics. By analyzing simulated genetics data, we show that the simplified Ising model with only nearest-neighbor interactions between genetic markers has statistical properties comparable to much more complex algorithms from genetics analysis, such as those implemented in the Allegro and Mapmaker-Sibs programs. We also adapt the model to include epistatic interactions and to demonstrate its usefulness in detecting modifier loci with weak individual genetic contributions. A reanalysis of data on type 1 diabetes detects several susceptibility loci not previously found by other methods of analysis. PMID:11517425
Thermodynamics of trajectories of the one-dimensional Ising model
NASA Astrophysics Data System (ADS)
Loscar, Ernesto S.; Mey, Antonia S. J. S.; Garrahan, Juan P.
2011-12-01
We present a numerical study of the dynamics of the one-dimensional Ising model by applying the large-deviation method to describe ensembles of dynamical trajectories. In this approach trajectories are classified according to a dynamical order parameter and the structure of ensembles of trajectories can be understood from the properties of large-deviation functions, which play the role of dynamical free-energies. We consider both Glauber and Kawasaki dynamics, and also the presence of a magnetic field. For Glauber dynamics in the absence of a field we confirm the analytic predictions of Jack and Sollich about the existence of critical dynamical, or space-time, phase transitions at critical values of the 'counting' field s. In the presence of a magnetic field the dynamical phase diagram also displays first order transition surfaces. We discuss how these non-equilibrium transitions in the 1d Ising model relate to the equilibrium ones of the 2d Ising model. For Kawasaki dynamics we find a much simpler dynamical phase structure, with transitions reminiscent of those seen in kinetically constrained models.
Numerical tests of nucleation theories for the Ising models
NASA Astrophysics Data System (ADS)
Ryu, Seunghwa; Cai, Wei
2010-07-01
The classical nucleation theory (CNT) is tested systematically by computer simulations of the two-dimensional (2D) and three-dimensional (3D) Ising models with a Glauber-type spin flip dynamics. While previous studies suggested potential problems with CNT, our numerical results show that the fundamental assumption of CNT is correct. In particular, the Becker-Döring theory accurately predicts the nucleation rate if the correct droplet free energy function is provided as input. This validates the coarse graining of the system into a one dimensional Markov chain with the largest droplet size as the reaction coordinate. Furthermore, in the 2D Ising model, the droplet free energy predicted by CNT matches numerical results very well, after a logarithmic correction term from Langer’s field theory and a constant correction term are added. But significant discrepancies are found between the numerical results and existing theories on the magnitude of the logarithmic correction term in the 3D Ising model. Our analysis underscores the importance of correctly accounting for the temperature dependence of surface energy when comparing numerical results and nucleation theories.
Information geometry of the ising model on planar random graphs.
Janke, W; Johnston, D A; Malmini, Ranasinghe P K C
2002-11-01
It has been suggested that an information geometric view of statistical mechanics in which a metric is introduced onto the space of parameters provides an interesting alternative characterization of the phase structure, particularly in the case where there are two such parameters, such as the Ising model with inverse temperature beta and external field h. In various two-parameter calculable models, the scalar curvature R of the information metric has been found to diverge at the phase transition point beta(c) and a plausible scaling relation postulated: R approximately |beta-beta(c)|(alpha-2). For spin models the necessity of calculating in nonzero field has limited analytic consideration to one-dimensional, mean-field and Bethe lattice Ising models. In this paper we use the solution in field of the Ising model on an ensemble of planar random graphs (where alpha=-1, beta=1/2, gamma=2) to evaluate the scaling behavior of the scalar curvature, and find R approximately |beta-beta(c)|(-2). The apparent discrepancy is traced back to the effect of a negative alpha. PMID:12513568
Submillimeter Wave ESR Study of Magnetic Excitations in the Ising Ferromagnetic Chain CoNb 2O 6
NASA Astrophysics Data System (ADS)
Kunimoto, Takashi; Nagasaka, Keigo; Nojiri, Hiroyuki; Luther, Sebastian; Motokawa, Mitsuhiro; Ohta, Hitoshi; Goto, Tomohiro; Okubo, Susumu; Kohn, Kay
1999-05-01
Magnetic excitations in the Ising ferromagnetic chain CoNb2O6 have been studied by submillimeter wave electron spin resonance in strong transverse magnetic fields. A distinct non-linear field dependence of the resonance branches and also zero field splittings have been observed. A large residual intensity of the spin-cluster resonance was found which was caused by the strong mixing among the different n-fold spin-clusters. In addition to a series of n-fold spin-cluster excitations, we also discovered a new set of spin-cluster excitation which can be attributed to non-integer n such as n˜1.5 or n˜2.5 for the first time. This effect is explained by the change of the quantization axis of the system in strong transverse magnetic fields. These new aspects of spin-cluster excitation show the significant effect of transverse magnetic fields on the magnetic excitation in an Ising ferromagnetic chain.
NASA Astrophysics Data System (ADS)
Barns, Chris E.; Gunter, William D.
1990-09-01
A reticle permits the alignment of three orthogonal axes (X, Y and Z) that intersect at a common target point. Thin, straight filaments are supported on a frame. The filaments are each contained in a different orthogonal plane (S sub xy, S sub xz, and S sub yz) and each filament intersects two of the three orthogonal axes. The filaments, as viewed along the frame axis, give the appearance of a triangle with a V extending from each triangle vertex. When axial alignment is achieved, the filament portions adjacent to a triangle vertex are seen (along the axis of interest) as a right-angle cross, whereas these filament portions are seen to intersect at an oblique angle when axial misalignment occurs. The reticle is open in the region near the target point leaving ample space for alignment aids such as a pentaprism or a cube mirror.
Network of time-multiplexed optical parametric oscillators as a coherent Ising machine
NASA Astrophysics Data System (ADS)
Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa
2014-12-01
Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.
NASA Astrophysics Data System (ADS)
Mun, Eundeok; Weickert, Franziska; Kim, Jaewook; Scott, Brian L.; Miclea, Corneliu Florin; Movshovich, Roman; Wilcox, Jason; Manson, Jamie; Zapf, Vivien S.
2016-03-01
We investigate partially disordered antiferromagnetism in CoCl2-2SC(NH2)2, in which a b -plane hexagonal layers are staggered along the c axis rather than stacked. A robust 1/3 state forms in applied magnetic fields in which the spins are locked, varying as a function of neither temperature nor field. By contrast, in zero field and applied fields at higher temperatures, partial antiferromagnetic order occurs, in which free spins are available to create a Curie-like magnetic susceptibility. We report measurements of the crystallographic structure and the specific heat, magnetization, and electric polarization down to T =50 mK and up to μ0H =60 T . The Co2 +S =3 /2 spins are Ising-like and form distorted hexagonal layers. The Ising energy scale is well separated from the magnetic exchange, and both energy scales are accessible to the measurements, allowing us to cleanly parametrize them. In transverse fields, a quantum Ising phase transition can be observed at 2 T. Finally, we find that magnetic exchange striction induces changes in the electric polarization up to 3 μ C /m2 , and single-ion magnetic anisotropy effects induce a much larger electric polarization change of 300 μ C /m2 .
Mun, Eundeok; Weickert, Dagmar Franziska; Kim, Jaewook; Scott, Brian L.; Miclea, Corneliu Florin; Movshovich, Roman; Wilcox, Jason; Manson, Jamie; Zapf, Vivien S.
2016-03-01
We investigate partially disordered antiferromagnetism in CoCl2-2SC(NH2)2, in which ab-plane hexagonal layers are staggered along the c axis rather than stacked. A robust 1/3 state forms in applied magnetic fields in which the spins are locked, varying as a function of neither temperature nor field. By contrast, in zero field and applied fields at higher temperatures, partial antiferromagnetic order occurs, in which free spins are available to create a Curie-like magnetic susceptibility. We report measurements of the crystallographic structure and the specific heat, magnetization, and electric polarization down to T = 50mK and up to μ0H = 60T. The Co2+more » S = 3/2 spins are Ising-like and form distorted hexagonal layers. The Ising energy scale is well separated from the magnetic exchange, and both energy scales are accessible to the measurements, allowing us to cleanly parametrize them. In transverse fields, a quantum Ising phase transition can be observed at 2 T. Lastly, we find that magnetic exchange striction induces changes in the electric polarization up to 3μC/m2, and single-ion magnetic anisotropy effects induce a much larger electric polarization change of 300μC/m2.« less
Neuroactive steroids and stress axis regulation: Pregnancy and beyond.
Brunton, Paula J
2016-06-01
The hypothalamo-pituitary-adrenal (HPA) axis plays a critical role in regulating responses to stress and long term dysregulation of the HPA axis is associated with higher rates of mood disorders. There are circumstances where the HPA axis is more or less responsive to stress. For example, during late pregnancy ACTH and corticosterone responses to stress are markedly suppressed, whereas in offspring born to mothers that experienced repeated stress during pregnancy, the HPA axis is hyper-responsive to stress. Neuroactive steroids such as allopregnanolone, tetrahydrodeoxycorticosterone (THDOC) and androstanediol can modulate HPA axis activity and concentrations of some neuroactive steroids in the brain are altered during pregnancy and following stress. Thus, here altered neurosteroidogenesis is proposed as a mechanism that could underpin the dynamic changes in HPA axis regulation typically observed in late pregnant and in prenatally stressed individuals. In support of this hypothesis, evidence in rats demonstrates that elevated levels of allopregnanolone in pregnancy induce a central inhibitory opioid mechanism that serves to minimize stress-induced HPA axis activity. Conversely, in prenatally stressed rodents, where HPA axis stress responses are enhanced, evidence indicates the capacity of the brain for neurosteroidogenesis is reduced. Understanding the mechanisms involved in adaptations in HPA axis regulation may provide insights for manipulating stress sensitivity and for developing therapies for stress-related disorders in humans. PMID:26259885
Quantum cluster algorithm for frustrated Ising models in a transverse field
NASA Astrophysics Data System (ADS)
Biswas, Sounak; Rakala, Geet; Damle, Kedar
2016-06-01
Working within the stochastic series expansion framework, we introduce and characterize a plaquette-based quantum cluster algorithm for quantum Monte Carlo simulations of transverse field Ising models with frustrated Ising exchange interactions. As a demonstration of the capabilities of this algorithm, we show that a relatively small ferromagnetic next-nearest-neighbor coupling drives the transverse field Ising antiferromagnet on the triangular lattice from an antiferromagnetic three-sublattice ordered state at low temperature to a ferrimagnetic three-sublattice ordered state.
Neutron diffraction study on the two-dimensional Ising system KEr(MoO{sub 4}){sub 2}
Mat'as, Slavomir; Dudzik, Esther; Feyerherm, Ralf; Gerischer, Sebastian; Klemke, Sebastian; Prokes, Karel; Orendacova, Alzbeta
2010-11-01
The magnetic properties of the two-dimensional Ising antiferromagnet KEr(MoO{sub 4}){sub 2} have been investigated below and above transition temperature T{sub N}{approx}0.95 K in zero field and in fields up to 6.5 T by means of elastic neutron-diffraction, heat-capacity, and magnetization measurements. The low-temperature signal recorded at 0.34 K by neutron diffraction is explained within a noncollinear magnetic structure model. However, additional contribution is also present when applying the external magnetic field along the c axis even at temperatures well above the magnetic transition temperature T{sub N}. Various explanations are discussed.
Magnetic structure of Yb2Pt2Pb: Ising moments on the Shastry-Sutherland lattice
Miiller, W.; Zaliznyak, I.; Wu, L. S.; Kim, M. S.; Orvis, T.; Simonson, J. W.; Gamza, M.; McNally, D. M.; Nelson, C. S.; Ehlers, G.; et al
2016-03-22
Neutron diffraction measurements were carried out on single crystals and powders of Yb2Pt2Pb, where Yb moments form two interpenetrating planar sublattices of orthogonal dimers, a geometry known as Shastry-Sutherland lattice, and are stacked along the c axis in a ladder geometry. Yb2Pt2Pb orders antiferromagnetically at TN=2.07K, and the magnetic structure determined from these measurements features the interleaving of two orthogonal sublattices into a 5×5×1 magnetic supercell that is based on stripes with moments perpendicular to the dimer bonds, which are along (110) and (–110). Magnetic fields applied along (110) or (–110) suppress the antiferromagnetic peaks from an individual sublattice, butmore » leave the orthogonal sublattice unaffected, evidence for the Ising character of the Yb moments in Yb2Pt2Pb that is supported by point charge calculations. Furthermore, specific heat, magnetic susceptibility, and electrical resistivity measurements concur with neutron elastic scattering results that the longitudinal critical fluctuations are gapped with ΔE≃0.07meV.« less
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij
2011-03-08
A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.
Single Axis Piezoceramic Gimbal
NASA Technical Reports Server (NTRS)
Horner, Garnett C.; Taleghani, Barmac K.
1999-01-01
This paper describes the fabrication, testing, and analysis of a single axis piezoceramic gimbal. The fabrication process consist of pre-stressing a piezoceramic wafer using a high-temperature thermoplastic polyimide and a metal foil. The differential thermal expansion between the ceramic and metal induces a curvature. The pre-stressed, curved piezoceramic is mounted on a support mechanism and a mirror is attached to the piezoceramic. A plot of gimbal angle versus applied voltage to the piezoceramic is presented. A finite element analysis of the piezoceramic gimbal is described. The predicted gimbal angle versus applied voltage is compared to experimental results.
Single Axis Piezoceramic Gimbal
NASA Technical Reports Server (NTRS)
Horner, Garnett; Taleghani, Barmac
2001-01-01
This paper describes the fabrication, testing, and analysis of a single axis piezoceramic gimbal. The fabrication process consists of pre-stressing a piezoceramic wafer using a high-temperature thermoplastic polyimide and a metal foil. The differential thermal expansion between the ceramic and metal induces a curvature. The pre-stressed, curved piezoceramic is mounted on a support mechanism and a mirror is attached to the piezoceramic. A plot of gimbal angle versus applied voltage to the piezoceramic is presented. A finite element analysis of the piezoceramic gimbal is described. The predicted gimbal angle versus applied voltage is compared to experimental results.
Semimajor Axis Estimation Strategies
NASA Technical Reports Server (NTRS)
How, Jonathan P.; Alfriend, Kyle T.; Breger, Louis; Mitchell, Megan
2004-01-01
This paper extends previous analysis on the impact of sensing noise for the navigation and control aspects of formation flying spacecraft. We analyze the use of Carrier-phase Differential GPS (CDGPS) in relative navigation filters, with a particular focus on the filter correlation coefficient. This work was motivated by previous publications which suggested that a "good" navigation filter would have a strong correlation (i.e., coefficient near -1) to reduce the semimajor axis (SMA) error, and therefore, the overall fuel use. However, practical experience with CDGPS-based filters has shown this strong correlation seldom occurs (typical correlations approx. -0.1), even when the estimation accuracies are very good. We derive an analytic estimate of the filter correlation coefficient and demonstrate that, for the process and sensor noises levels expected with CDGPS, the expected value will be very low. It is also demonstrated that this correlation can be improved by increasing the time step of the discrete Kalman filter, but since the balance condition is not satisfied, the SMA error also increases. These observations are verified with several linear simulations. The combination of these simulations and analysis provide new insights on the crucial role of the process noise in determining the semimajor axis knowledge.
ISEES: an institute for sustainable software to accelerate environmental science
NASA Astrophysics Data System (ADS)
Jones, M. B.; Schildhauer, M.; Fox, P. A.
2013-12-01
Software is essential to the full science lifecycle, spanning data acquisition, processing, quality assessment, data integration, analysis, modeling, and visualization. Software runs our meteorological sensor systems, our data loggers, and our ocean gliders. Every aspect of science is impacted by, and improved by, software. Scientific advances ranging from modeling climate change to the sequencing of the human genome have been rendered possible in the last few decades due to the massive improvements in the capabilities of computers to process data through software. This pivotal role of software in science is broadly acknowledged, while simultaneously being systematically undervalued through minimal investments in maintenance and innovation. As a community, we need to embrace the creation, use, and maintenance of software within science, and address problems such as code complexity, openness,reproducibility, and accessibility. We also need to fully develop new skills and practices in software engineering as a core competency in our earth science disciplines, starting with undergraduate and graduate education and extending into university and agency professional positions. The Institute for Sustainable Earth and Environmental Software (ISEES) is being envisioned as a community-driven activity that can facilitate and galvanize activites around scientific software in an analogous way to synthesis centers such as NCEAS and NESCent that have stimulated massive advances in ecology and evolution. We will describe the results of six workshops (Science Drivers, Software Lifecycles, Software Components, Workforce Development and Training, Sustainability and Governance, and Community Engagement) that have been held in 2013 to envision such an institute. We will present community recommendations from these workshops and our strategic vision for how ISEES will address the technical issues in the software lifecycle, sustainability of the whole software ecosystem, and the critical
Interacting damage models mapped onto ising and percolation models
Toussaint, Renaud; Pride, Steven R.
2004-03-23
The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in the system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model
Interacting damage models mapped onto Ising and percolation models.
Toussaint, Renaud; Pride, Steven R
2005-04-01
We introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasi-static fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in the system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, we obtain the probability distribution of each damage configuration at any level of the imposed external deformation. We demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, we show that damage models with global load sharing are isomorphic to standard percolation theory and that damage models with a local load sharing rule are isomorphic to the standard Ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. We also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, we also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model to standard
Some results on hyperscaling in the 3D Ising model
Baker, G.A. Jr.; Kawashima, Naoki
1995-09-01
The authors review exact studies on finite-sized 2 dimensional Ising models and show that the point for an infinite-sized model at the critical temperature is a point of nonuniform approach in the temperature-size plane. They also illuminate some strong effects of finite-size on quantities which do not diverge at the critical point. They then review Monte Carlo studies for 3 dimensional Ising models of various sizes (L = 2--100) at various temperatures. From these results they find that the data for the renormalized coupling constant collapses nicely when plotted against the correlation length, determined in a system of edge length L, divided by L. They also find that {zeta}{sub L}/L {ge} 0.26 is definitely too large for reliable studies of the critical value, g*, of the renormalized coupling constant. They have reasonable evidence that {zeta}{sub L}/L {approx} 0.1 is adequate for results that are within one percent of those for the infinite system size. On this basis, they have conducted a series of Monte Carlo calculations with this condition imposed. These calculations were made practical by the development of improved estimators for use in the Swendsen-Wang cluster method. The authors found from these results, coupled with a reversed limit computation (size increases with the temperature fixed at the critical temperature), that g* > 0, although there may well be a sharp downward drop in g as the critical temperature is approached in accord with the predictions of series analysis. The results support the validity of hyperscaling in the 3 dimensional Ising model.
Ising-like models on arbitrary graphs: The Hadamard way
NASA Astrophysics Data System (ADS)
Mosseri, Rémy
2015-01-01
We propose a generic framework to describe classical Ising-like models defined on arbitrary graphs. The energy spectrum is shown to be the Hadamard transform of a suitably defined sparse "coding" vector associated with the graph. We expect that the existence of a fast Hadamard transform algorithm (used, for instance, in image compression processes), together with the sparseness of the coding vector, may provide ways to fasten the spectrum computation. Applying this formalism to regular graphs, such as hypercubic graphs, we obtain a simple recurrence relation for the spectrum, which significantly speeds up its determination. First attempts to analyze partition functions and transfer matrices are also presented.
A transverse Ising bilayer film with an antiferromagnetic spin configuration
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2015-10-01
The phase diagrams and temperature dependences of magnetizations in a transverse Ising bilayer film with an antiferromagnetic spin configuration are studied by the uses of the effective-field theory (EFT) with correlations, in order to clarify whether the appearance of a compensation point is possible below the transition temperature in the system. From these investigations, we have found a lot of characteristic phenomena in these properties, when the value of an interlayer coupling takes a large value, such as the reentrant phenomenon free from the disorder-induced frustration and the novel types of magnetization curve with a compensation point.
Simulation of financial market via nonlinear Ising model
NASA Astrophysics Data System (ADS)
Ko, Bonggyun; Song, Jae Wook; Chang, Woojin
2016-09-01
In this research, we propose a practical method for simulating the financial return series whose distribution has a specific heaviness. We employ the Ising model for generating financial return series to be analogous to those of the real series. The similarity between real financial return series and simulated one is statistically verified based on their stylized facts including the power law behavior of tail distribution. We also suggest the scheme for setting the parameters in order to simulate the financial return series with specific tail behavior. The simulation method introduced in this paper is expected to be applied to the other financial products whose price return distribution is fat-tailed.
Roaming form factors for the tricritical to critical Ising flow
NASA Astrophysics Data System (ADS)
Horváth, D. X.; Dorey, P. E.; Takács, G.
2016-07-01
We study the massless flows described by the staircase model introduced by Al.B. Zamolodchikov through the analytic continuation of the sinh-Gordon S-matrix, focusing on the renormalisation group flow from the tricritical to the critical Ising model. We show that the properly defined roaming limits of certain sinh-Gordon form factors are identical to the form factors of the order and disorder operators for the massless flow. As a by-product, we also construct form factors for a semi-local field in the sinh-Gordon model, which can be associated with the twist field in the ultraviolet limiting free massless bosonic theory.
Logical operations realized on the Ising chain of N qubits
Asano, Masanari; Tateda, Norihiro; Ishii, Chikara
2004-08-01
Multiqubit logical gates are proposed as implementations of logical operations on N qubits realized physically by the local manipulation of qubits before and after the one-time evolution of an Ising chain. This construction avoids complicated tuning of the interactions between qubits. The general rules of the action of multiqubit logical gates are derived by decomposing the process into the product of two-qubit logical operations. The formalism is demonstrated by the construction of a special type of multiqubit logical gate that is simulated by a quantum circuit composed of controlled-NOT gates.
A parity breaking Ising chain Hamiltonian as a Brownian motor
NASA Astrophysics Data System (ADS)
Cornu, F.; Hilhorst, H. J.
2014-10-01
We consider the translationally invariant but parity (left-right symmetry) breaking Ising chain Hamiltonian {\\cal H} =-{U_2}\\sumk sksk+1 - {U_3}\\sumk sksk+1sk+3 and let this system evolve by Kawasaki spin exchange dynamics. Monte Carlo simulations show that perturbations forcing this system off equilibrium make it act as a Brownian molecular motor which, in the lattice gas interpretation, transports particles along the chain. We determine the particle current under various different circumstances, in particular as a function of the ratio {U_3}/{U_2} and of the conserved magnetization M=\\sum_ksk . The symmetry of the U3 term in the Hamiltonian is discussed.
Operator space entanglement entropy in a transverse Ising chain
Prosen, Tomaz; Pizorn, Iztok
2007-09-15
The efficiency of time-dependent density matrix renormalization group methods is intrinsically connected to the rate of entanglement growth. We introduce a measure of entanglement in the space of operators and show, for a transverse Ising spin-1/2 chain, that the simulation of observables, contrary to the simulation of typical pure quantum states, is efficient for initial local operators. For initial operators with a finite index in Majorana representation, the operator space entanglement entropy saturates with time to a level which is calculated analytically, while for initial operators with infinite index the growth of operator space entanglement entropy is shown to be logarithmic.
Atmospheric Science Data Center
2013-03-12
... 1,000,000 1,000,000 micrometers nano- 1,000,000,000 1,000,000,000 nanometers ... conversions, see the National Institute of Standards and Technology (NIST) Special Publications: NIST Guide to SI Units: ...
High spacecraft potentials on ISEE-1 in sunlight
NASA Technical Reports Server (NTRS)
Whipple, E. C., Jr.; Olsen, R. C.
1987-01-01
Data from two electric field experiments and from the plasma composition experiment on ISEE-1 show that the spacecraft charged to close to -70 V in sunlight at about 0700 UT on March 17, 1978. Data from the electron spectrometer experiment show that there was a potential barrier of some -10 to -20 V about the spacecraft during this event. The potential barrier was effective in turning back emitted photoelectrons to the spacecraft. Potential barriers can be formed by differential charging on the spacecraft or by the presence of space charge. The stringent electrostatic cleanliness specifications imposed on ISEE made the presence of differential charging seem unlikely, if these precautions were effective. Modeling of the event to determine if the barrier was produced by the presence of space charge suggested that this could not explain the observed barrier. The angular shape of the distribution could be successfully modeled as a product of differential charging on the solar arrays. This implies that the conductive coating was not completely effective in preventing differential charging, and that differential charging did occur.
Ising tricriticality in the extended Hubbard model with bond dimerization
NASA Astrophysics Data System (ADS)
Ejima, Satoshi; Essler, Fabian H. L.; Lange, Florian; Fehske, Holger
2016-06-01
We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c =7 /10 . Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results.
Oscillating hysteresis in the q -neighbor Ising model
NASA Astrophysics Data System (ADS)
JÈ©drzejewski, Arkadiusz; Chmiel, Anna; Sznajd-Weron, Katarzyna
2015-11-01
We modify the kinetic Ising model with Metropolis dynamics, allowing each spin to interact only with q spins randomly chosen from the whole system, which corresponds to the topology of a complete graph. We show that the model with q ≥3 exhibits a phase transition between ferromagnetic and paramagnetic phases at temperature T*, which linearly increases with q . Moreover, we show that for q =3 the phase transition is continuous and that it is discontinuous for larger values of q . For q >3 , the hysteresis exhibits oscillatory behavior—expanding for even values of q and shrinking for odd values of q . Due to the mean-field-like nature of the model, we are able to derive the analytical form of transition probabilities and, therefore, calculate not only the probability density function of the order parameter but also precisely determine the hysteresis and the effective potential showing stable, unstable, and metastable steady states. Our results show that a seemingly small modification of the kinetic Ising model leads not only to the switch from a continuous to a discontinuous phase transition, but also to an unexpected oscillating behavior of the hysteresis and a puzzling phenomenon for q =5 , which might be taken as evidence for the so-called mixed-order phase transition.
Oscillating hysteresis in the q-neighbor Ising model.
Jȩdrzejewski, Arkadiusz; Chmiel, Anna; Sznajd-Weron, Katarzyna
2015-11-01
We modify the kinetic Ising model with Metropolis dynamics, allowing each spin to interact only with q spins randomly chosen from the whole system, which corresponds to the topology of a complete graph. We show that the model with q≥3 exhibits a phase transition between ferromagnetic and paramagnetic phases at temperature T*, which linearly increases with q. Moreover, we show that for q=3 the phase transition is continuous and that it is discontinuous for larger values of q. For q>3, the hysteresis exhibits oscillatory behavior-expanding for even values of q and shrinking for odd values of q. Due to the mean-field-like nature of the model, we are able to derive the analytical form of transition probabilities and, therefore, calculate not only the probability density function of the order parameter but also precisely determine the hysteresis and the effective potential showing stable, unstable, and metastable steady states. Our results show that a seemingly small modification of the kinetic Ising model leads not only to the switch from a continuous to a discontinuous phase transition, but also to an unexpected oscillating behavior of the hysteresis and a puzzling phenomenon for q=5, which might be taken as evidence for the so-called mixed-order phase transition. PMID:26651645
Critical frontier of the triangular Ising antiferromagnet in a field
NASA Astrophysics Data System (ADS)
Qian, Xiaofeng; Wegewijs, Maarten; Blöte, Henk W.
2004-03-01
We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible, involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes of an O(2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the critical line that is inconsistent with the first prediction, but consistent with the numerical data.
ISE Analysis of Hydrogen Sulfide in Cigarette Smoke
NASA Astrophysics Data System (ADS)
Li, Guofeng; Polk, Brian J.; Meazell, Liz A.; Hatchett, David W.
2000-08-01
Many advanced undergraduate analytical laboratory courses focus on exposing students to various modern instruments. However, students rarely have the opportunity to construct their own analytical tools for solving practical problems. We designed an experiment in which students are required to build their own analytical module, a potentiometric device composed of a Ag/AgCl reference electrode, a Ag/Ag2S ion selective electrode (ISE), and a pH meter used as voltmeter, to determine the amount of hydrogen sulfide in cigarette smoke. Very simple techniques were developed for constructing these electrodes. Cigarette smoke is collected by a gas washing bottle into a 0.1 M NaOH solution. The amount of sulfide in the cigarette smoke solution is analyzed by standard addition of sulfide solution while monitoring the response of the Ag/Ag2S ISE. The collected data are further evaluated using the Gran plot technique to determine the concentration of sulfide in the cigarette smoke solution. The experiment has been successfully incorporated into the lab course Instrumental Analysis at Georgia Institute of Technology. Students enjoy the idea of constructing an analytical tool themselves and applying their classroom knowledge to solve real-life problems. And while learning electrochemistry they also get a chance to visualize the health hazard imposed by cigarette smoking.
Thermal-Cycle Memory Functions and Ising Dynamics
NASA Astrophysics Data System (ADS)
Johnson, Brad; Patrick, David
2008-03-01
The Ising model provides a rich system for the study of a variety of correlated systems. In this talk, we present the results of numerical studies of 2- and 3-dimensional Ising spin systems subjected to thermal cycling from an ordered state to states with a fixed order parameter (<1), but with differing overall morphologies, and back to a quenched state. We find that for systems with initial states generated by thermal disordering above Tc, the initial state of a given order parameter has larger `islands' of like-spin (than the case for random disorder with the same overall order parameter) and consequent quenches of the state to T is the average quenched order parameter, and B is a constant that depends upon the morphology of the initial state. The reason for the strong correlation stems from the energies associated with spins at the borders of large clusters. This `memory effect' does not occur in 3D (due to the larger number of near-neighbors). Finally, we discuss the `memory function' in the context of interfacial states of liquid crystals.
Toward an Ising model of cancer and beyond.
Torquato, Salvatore
2011-02-01
The holy grail of tumor modeling is to formulate theoretical and computational tools that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies to control cancer growth. In order to develop such a predictive model, one must account for the numerous complex mechanisms involved in tumor growth. Here we review the research work that we have done toward the development of an 'Ising model' of cancer. The Ising model is an idealized statistical-mechanical model of ferromagnetism that is based on simple local-interaction rules, but nonetheless leads to basic insights and features of real magnets, such as phase transitions with a critical point. The review begins with a description of a minimalist four-dimensional (three dimensions in space and one in time) cellular automaton (CA) model of cancer in which cells transition between states (proliferative, hypoxic and necrotic) according to simple local rules and their present states, which can viewed as a stripped-down Ising model of cancer. This model is applied to study the growth of glioblastoma multiforme, the most malignant of brain cancers. This is followed by a discussion of the extension of the model to study the effect on the tumor dynamics and geometry of a mutated subpopulation. A discussion of how tumor growth is affected by chemotherapeutic treatment, including induced resistance, is then described. We then describe how to incorporate angiogenesis as well as the heterogeneous and confined environment in which a tumor grows in the CA model. The characterization of the level of organization of the invasive network around a solid tumor using spanning trees is subsequently discussed. Then, we describe open problems and future promising avenues for future research, including the need to develop better molecular-based models that incorporate the true heterogeneous environment over wide range of length and time scales (via imaging data), cell motility
Toward an Ising Model of Cancer and Beyond
Torquato, Salvatore
2011-01-01
The holy grail of tumor modeling is to formulate theoretical and computational tools that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies to control cancer growth. In order to develop such a predictive model, one must account for the numerous complex mechanisms involved in tumor growth. Here we review resarch work that we have done toward the development of an “Ising model” of cancer. The Ising model is an idealized statistical-mechanical model of ferromagnetism that is based on simple local-interaction rules, but nonetheless leads to basic insights and features of real magnets, such as phase transitions with a critical point. The review begins with a description of a minimalist four-dimensional (three dimensions in space and one in time) cellular automaton (CA) model of cancer in which healthy cells transition between states (proliferative, hypoxic, and necrotic) according to simple local rules and their present states, which can viewed as a stripped-down Ising model of cancer. This model is applied to model the growth of glioblastoma multiforme, the most malignant of brain cancers. This is followed by a discussion of the extension of the model to study the effect on the tumor dynamics and geometry of a mutated subpopulation. A discussion of how tumor growth is affected by chemotherapeutic treatment, including induced resistance, is then described. How angiogenesis as well as the heterogeneous and confined environment in which a tumor grows is incorporated in the CA model is discussed. The characterization of the level of organization of the invasive network around a solid tumor using spanning trees is subsequently described. Then, we describe open problems and future promising avenues for future research, including the need to develop better molecular-based models that incorporate the true heterogeneous environment over wide range of length and time scales (via imaging data), cell
Toward an Ising model of cancer and beyond
NASA Astrophysics Data System (ADS)
Torquato, Salvatore
2011-02-01
The holy grail of tumor modeling is to formulate theoretical and computational tools that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies to control cancer growth. In order to develop such a predictive model, one must account for the numerous complex mechanisms involved in tumor growth. Here we review the research work that we have done toward the development of an 'Ising model' of cancer. The Ising model is an idealized statistical-mechanical model of ferromagnetism that is based on simple local-interaction rules, but nonetheless leads to basic insights and features of real magnets, such as phase transitions with a critical point. The review begins with a description of a minimalist four-dimensional (three dimensions in space and one in time) cellular automaton (CA) model of cancer in which cells transition between states (proliferative, hypoxic and necrotic) according to simple local rules and their present states, which can viewed as a stripped-down Ising model of cancer. This model is applied to study the growth of glioblastoma multiforme, the most malignant of brain cancers. This is followed by a discussion of the extension of the model to study the effect on the tumor dynamics and geometry of a mutated subpopulation. A discussion of how tumor growth is affected by chemotherapeutic treatment, including induced resistance, is then described. We then describe how to incorporate angiogenesis as well as the heterogeneous and confined environment in which a tumor grows in the CA model. The characterization of the level of organization of the invasive network around a solid tumor using spanning trees is subsequently discussed. Then, we describe open problems and future promising avenues for future research, including the need to develop better molecular-based models that incorporate the true heterogeneous environment over wide range of length and time scales (via imaging data), cell motility
NASA Technical Reports Server (NTRS)
Fainberg, J.; Hoang, S.; Manning, R.
1985-01-01
An analysis is presented of the system response of a satellite receiver-antenna system to locate a radio source when the satellite is tilted on its axis. The satellite is spin stabilized but experiences a tilt due to either a mechanical misalignment or a shift in the electrical axis caused by parasitic currents in other spacecraft structures. The shorter the antenna, the more significant the effects. Numerical techniques are developed for obtaining the Stokes parameters and the angular parameters of a uniform conical source sensed by a linear antenna in order to derive the average power response of a synthesized dipole to a point on a distributed polarized source. Relative gains are calculated along the antenna at different angles to the source. The techniques are applied to sample ISEE-3 satellite data for Type III solar radio bursts which were sensed by an axial and an equatorial antenna. The two antennas permit localization of the source and quantification of the polarization and angular extent of the source. The resulting high precision in calculations of all three source parameters commends use of the model in analyses of data from the planned ULYSSES mission.
Driven-dissipative Ising model: Mean-field solution
NASA Astrophysics Data System (ADS)
Goldstein, G.; Aron, C.; Chamon, C.
2015-11-01
We study the fate of the Ising model and its universal properties when driven by a rapid periodic drive and weakly coupled to a bath at equilibrium. The far-from-equilibrium steady-state regime is accessed by means of a Floquet mean-field approach. We show that, depending on the details of the bath, the drive can strongly renormalize the critical temperature to higher temperatures, modify the critical exponents, or even change the nature of the phase transition from second to first order after the emergence of a tricritical point. Moreover, by judiciously selecting the frequency of the field and by engineering the spectrum of the bath, one can drive a ferromagnetic Hamiltonian to an antiferromagnetically ordered phase and vice versa.
Robust criticality of an Ising model on rewired directed networks
NASA Astrophysics Data System (ADS)
Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota
2015-06-01
We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.
Entanglement entropy in a periodically driven Ising chain
NASA Astrophysics Data System (ADS)
Russomanno, Angelo; Santoro, Giuseppe E.; Fazio, Rosario
2016-07-01
In this work we study the entanglement entropy of a uniform quantum Ising chain in transverse field undergoing a periodic driving of period τ. By means of Floquet theory we show that, for any subchain, the entanglement entropy tends asymptotically to a value τ-periodic in time. We provide a semi-analytical formula for the leading term of this asymptotic regime: It is constant in time and obeys a volume law. The entropy in the asymptotic regime is always smaller than the thermal one: because of integrability the system locally relaxes to a generalized Gibbs ensemble (GGE) density matrix. The leading term of the asymptotic entanglement entropy is completely determined by this GGE density matrix. Remarkably, the asymptotic entropy shows marked features in correspondence to some non-equilibrium quantum phase transitions undergone by a Floquet state analog of the ground state.
A quadrangular transverse Ising nanowire with an antiferromagnetic spin configuration
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2015-11-01
The phase diagrams and the temperature dependences of magnetizations in a transverse Ising nanowire with an antiferromagnetic spin configuration are investigated by the use of the effective-field theory with correlations (EFT) and the core-shell concept. Many characteristic and unexpected behaviors are found for them, especially for thermal variation of total magnetization mT. The reentrant phenomenon induced by a transverse field in the core, the appearance of a compensation point, the non-monotonic variation with a compensation point, the reentrant phenomena with a compensation point and the existence of both a broad maximum and a compensation point have been found in the thermal variations of mT.
The ISEE-C gamma ray burst spectrometer
NASA Technical Reports Server (NTRS)
Teegarden, B. J.; Porreca, G.; Stilwell, D.; Desai, U. D.; Cline, T. L.; Hovestadt, D.
1978-01-01
The technical properties, operation, and expected sensitivity are discussed for an experiment intended to search for narrow lines in the spectra of gamma ray bursts during the ISEE-C mission. At the heart of the experiment is a radiatively cooled germanium solid state photon detector. The instrumentation is capable of storing the entire spectrum of all but the largest bursts in the energy range 0.05-6.5 MeV. In addition, it analyzes the signals from two CsI detectors in two other experiments on the spacecraft and records event time histories from these to a few millisecond accuracy. A background mode permits spectral analysis during quiet times and will allow the determination of physically interesting upper limits for narrow lines in the diffuse gamma ray background radiation.
Reentrance of disorder in the anisotropic shuriken Ising model
NASA Astrophysics Data System (ADS)
Pohle, Rico; Benton, Owen; Jaubert, L. D. C.
2016-07-01
Frustration is often a key ingredient for reentrance mechanisms. Here we study the frustrated anisotropic shuriken Ising model, where it is possible to extend the notion of reentrance between disordered phases, i.e., in absence of phase transitions. By tuning the anisotropy of the lattice, we open a window in the phase diagram where magnetic disorder prevails down to zero temperature, in a classical analogy with a quantum critical point. In this region, the competition between multiple disordered ground states gives rise to a double crossover where both the low- and high-temperature regimes are less correlated than the intervening classical spin liquid. This reentrance of disorder is characterized by an entropy plateau and a multistep Curie law crossover. Our theory is developed based on Monte Carlo simulations, analytical Husimi-tree calculations and an exact decoration-iteration transformation. Its relevance to experiments, in particular, artificial lattices, is discussed.
Quantum annealing speedup over simulated annealing on random Ising chains
NASA Astrophysics Data System (ADS)
Zanca, Tommaso; Santoro, Giuseppe E.
2016-06-01
We show clear evidence of a quadratic speedup of a quantum annealing (QA) Schrödinger dynamics over a Glauber master equation simulated annealing (SA) for a random Ising model in one dimension, via an equal-footing exact deterministic dynamics of the Jordan-Wigner fermionized problems. This is remarkable, in view of the arguments of H. G. Katzgraber et al. [Phys. Rev. X 4, 021008 (2014), 10.1103/PhysRevX.4.021008], since SA does not encounter any phase transition, while QA does. We also find a second remarkable result: that a "quantum-inspired" imaginary-time Schrödinger QA provides a further exponential speedup, i.e., an asymptotic residual error decreasing as a power law τ-μ of the annealing time τ .
The Ising Model Applied on Chronification of Pain
2016-01-01
This is a hypothesis-article suggesting an entirely new framework for understanding and treating longstanding pain. Most medical and psychological models are described with boxes and arrows. Such models are of little clinical and explanatory use when describing the phenomenon of chronification of pain due to unknown causes. To date no models that have been provided - and tested in a scientific satisfactory way - lays out a plan for specific assessment due to a specific causal explanation, and in the end serves the clinicians, patients and researcher with tools on how to address the specific pain condition to every individual pain patient's condition. By applying the Ising model (from physics) on the phenomenon of chronification of pain, one is able to detangle all these factors, and thus have a model that both suggests an explanation of the condition and outlines how one might target the treatment of chronic pain patients with the use of network science. PMID:26398917
Plasma wave experiment for the ISEE-3 mission
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1982-01-01
Results of analyses of data received from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission are discussed in two papers prepared for publication. A study of plasma wave levels in and interplanetary magnetic field orientation preceding observations of interplanetary shocks by the satellite infers that quasi-parallel, interplanetary shocks are preceded by foreshocks whose presence is not obviously attributable to scattering of ion beams generated at quasi-perpendicular zones of these interplanetary shocks. Investigations of whistler mode turbulence in the disturbed solar wind resulted in various indirect lines of evidence indicating that these whistler waves are generated propagating at large angles to the local interplanetary field, a fact which helps identify possible free energy sources for their growth.
The plasmaspheric electric field as measured by ISEE 1
NASA Technical Reports Server (NTRS)
Maynard, N. C.; Aggson, T. L.; Heppner, J. P.
1983-01-01
The electrodynamics of the plasmasphere has been a topic of considerable interest. Models predict a space charge buildup, or Alfven layer, at the inner edge of the ring current which opposes the dawn-dusk convection electric field in the magnetosphere and thus shields the plasmasphere from the convection electric field. The current study has the objective to present data from the ISEE 1 double cylindrical probe instrument. All measurements reported were made in the plasmasphere with electron densities of the order of 30-50 or greater per cu cm. The average electric field pattern for quiet conditions is found to be qualitatively consistent with previous average results from whistler measurements and radar backscattering measurements. The magnitudes and gross patterns are in qualitative agreement with representative ionospheric dynamo models. The basic convective flow vectors from the penetration of the magnetospheric electric field tend to follow contours which are parallel to those of the average plasmapause boundary on the nightside.
Crystallization in Ising quantum magnets and Rydberg superatoms
NASA Astrophysics Data System (ADS)
Schauss, Peter
2016-05-01
Dominating finite-range interactions in many-body systems can lead to intriguing self-ordered phases of matter. For quantum magnets, Ising models with power-law interactions are among the most elementary systems that support such phases. These models can be implemented by laser coupling ensembles of ultracold atoms to Rydberg states. In this talk, I will report on the experimental preparation of crystalline ground states of such spin systems. We observe a magnetization staircase as a function of the system size and show directly the emergence of crystalline states with vanishing susceptibility. Recent results connect these findings with the picture of Rydberg superatoms. We investigated their scalability and observed collective Rabi oscillations with the perspective of using Rydberg superatoms as collective qubits. Experiments performed at Max-Planck Institute of Quantum Optics, Garching, Germany.
Planar ordering in the plaquette-only gonihedric Ising model
NASA Astrophysics Data System (ADS)
Mueller, Marco; Janke, Wolfhard; Johnston, Desmond A.
2015-05-01
In this paper we conduct a careful multicanonical simulation of the isotropic 3d plaquette ("gonihedric") Ising model and confirm that a planar, fuki-nuke type order characterises the low-temperature phase of the model. From consideration of the anisotropic limit of the model we define a class of order parameters which can distinguish the low- and high-temperature phases in both the anisotropic and isotropic cases. We also verify the recently voiced suspicion that the order parameter like behaviour of the standard magnetic susceptibility χm seen in previous Metropolis simulations was an artefact of the algorithm failing to explore the phase space of the macroscopically degenerate low-temperature phase. χm is therefore not a suitable order parameter for the model.
Droplet model for autocorrelation functions in an Ising ferromagnet
NASA Technical Reports Server (NTRS)
Tang, Chao; Nakanishi, Hiizu; Langer, J. S.
1989-01-01
The autocorrelation function of Ising spins in an ordered phase is studied via a droplet model. Only noninteracting spherical droplets are considered. The Langevin equation which describes fluctuations in the radius of a single droplet is studied in detail. A general description of the transformation to a Fokker-Planck equations and the ways in which a spectral analysis of that equation can be used to compute the autocorrelation function is given. It is shown that the eigenvalues of the Fokker-Planck operator form (1) a continuous spectrum of relaxation rates starting from zero for d = 2, (2) a continuous spectrum with a finite gap for d = 3, and (3) a discrete spectrum for d greater than 4, where d is the spatial dimensionality. Detailed solutions for various cases are presented.
A hydromagnetic vortex seen by ISEE-1 and 2
NASA Technical Reports Server (NTRS)
Saunders, M. A.; Southwood, D. J.; Hones, E. W., Jr.; Russell, C. T.
1981-01-01
Magnetometer and plasma data from the dual ISEE spacecraft are combined in a study of the initial plasma vortex event reported by Hones et al. (1978) in the dawn plasma sheet. The event is a transient hydromagnetic wave of two cycles duration with a six minute period. Large amplitude compressional and transverse magnetic components were present. Particle and magnetic pressure oscillations were in strict antiphase, but did not balance. When combined with the plasma velocity data these properties show that substantial Earthward field-aligned flows of electromagnetic energy and heat flux occurred during the vortex. The net energy flow perpendicular to B was in the antisolar direction. This event possesses hydromagnetic features unique to a hot plasma environment.
ERIC Educational Resources Information Center
Xia, Jiang
1998-01-01
Describes an activity for use in the conversational English-as-a-foreign-language classroom. The activity involves having each student say one or two sentences that continues a story being made up as the activity goes along. Students were positive about the activity, because saying only one or two sentences helped them not to feel pressured or…
The quantum Ising chain with a generalized defect
NASA Astrophysics Data System (ADS)
Grimm, Uwe
1990-08-01
The finite-size scaling properties of the quantum Ising chain with different types of generalized defects are studied. This not only means an alteration of the coupling constant as previously examined, but also an additional arbitrary transformation in the algebra of observables at one site of the chain. One can distinguish between two classes of generalized defects: on the one hand those which do not affect the finite-size integrability of the Ising chain, and on the other hand those that destroy this property. In this context, finite-size integrability is always understood as a synonym for the possibility to write the hamiltonian of the finite chain as a bilinear expression in fermionic operators by means of a Jordan-Wigner transformation. Concerning the first type of defect, an exact solution for the scaling spectrum is obtained for the most universal defect that preserves the global Z2 symmetry of the chain. It is shown that in the continuum limit this yields the same result as for one properly chosen ordinary defect, that is changing the coupling constant only, and thus the finite-size scaling spectra can be described by irreps of a shifted u(1) Kac-Moody algebra. The other type of defect is examined by means of numerical finite-size calculations. In contrast to the first case, these calculations suggest a non-continuous dependence of the scaling dimensions on the defect parameters. A conjecture for the operator content involving only one primary field of a Virasoro algebra with central charge c= {1}/{2} is given.
Non-self-averaging in Ising spin glasses and hyperuniversality
NASA Astrophysics Data System (ADS)
Lundow, P. H.; Campbell, I. A.
2016-01-01
Ising spin glasses with bimodal and Gaussian near-neighbor interaction distributions are studied through numerical simulations. The non-self-averaging (normalized intersample variance) parameter U22(T ,L ) for the spin glass susceptibility [and for higher moments Un n(T ,L ) ] is reported for dimensions 2 ,3 ,4 ,5 , and 7. In each dimension d the non-self-averaging parameters in the paramagnetic regime vary with the sample size L and the correlation length ξ (T ,L ) as Un n(β ,L ) =[Kdξ (T ,L ) /L ] d and so follow a renormalization group law due to Aharony and Harris [Phys. Rev. Lett. 77, 3700 (1996), 10.1103/PhysRevLett.77.3700]. Empirically, it is found that the Kd values are independent of d to within the statistics. The maximum values [Unn(T,L ) ] max are almost independent of L in each dimension, and remarkably the estimated thermodynamic limit critical [Unn(T,L ) ] max peak values are also practically dimension-independent to within the statistics and so are "hyperuniversal." These results show that the form of the spin-spin correlation function distribution at criticality in the large L limit is independent of dimension within the ISG family. Inspection of published non-self-averaging data for three-dimensional Heisenberg and X Y spin glasses the light of the Ising spin glass non-self-averaging results show behavior which appears to be compatible with that expected on a chiral-driven ordering interpretation but incompatible with a spin-driven ordering scenario.
Information cascade, Kirman's ant colony model, and kinetic Ising model
NASA Astrophysics Data System (ADS)
Hisakado, Masato; Mori, Shintaro
2015-01-01
In this paper, we discuss a voting model in which voters can obtain information from a finite number of previous voters. There exist three groups of voters: (i) digital herders and independent voters, (ii) analog herders and independent voters, and (iii) tanh-type herders. In our previous paper Hisakado and Mori (2011), we used the mean field approximation for case (i). In that study, if the reference number r is above three, phase transition occurs and the solution converges to one of the equilibria. However, the conclusion is different from mean field approximation. In this paper, we show that the solution oscillates between the two states. A good (bad) equilibrium is where a majority of r select the correct (wrong) candidate. In this paper, we show that there is no phase transition when r is finite. If the annealing schedule is adequately slow from finite r to infinite r, the voting rate converges only to the good equilibrium. In case (ii), the state of reference votes is equivalent to that of Kirman's ant colony model, and it follows beta binomial distribution. In case (iii), we show that the model is equivalent to the finite-size kinetic Ising model. If the voters are rational, a simple herding experiment of information cascade is conducted. Information cascade results from the quenching of the kinetic Ising model. As case (i) is the limit of case (iii) when tanh function becomes a step function, the phase transition can be observed in infinite size limit. We can confirm that there is no phase transition when the reference number r is finite.
NASA Astrophysics Data System (ADS)
Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave
2014-05-01
Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.
NASA Astrophysics Data System (ADS)
Preece, Alun; Webberley, Will; Braines, Dave
2015-05-01
Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".
Algorithmic proof for the completeness of the two-dimensional Ising model
NASA Astrophysics Data System (ADS)
Karimipour, Vahid; Zarei, Mohammad Hossein
2012-11-01
We show that the two-dimensional (2D) Ising model is complete, in the sense that the partition function of any lattice model on any graph is equal to the partition function of the 2D Ising model with complex coupling. The latter model has all its spin-spin coupling equal to i(π)/(4) and all parameters of the original model are contained in the local magnetic fields of the Ising model. This result has already been derived by using techniques from quantum information theory and by exploiting the universality of cluster states. Here we do not use the quantum formalism and hence make the completeness result accessible to a wide audience. Furthermore, our method has the advantage of being algorithmic in nature so that, by following a set of simple graphical transformations, one is able to transform any discrete lattice model to an Ising model defined on a (polynomially) larger 2D lattice.
Some contributions to knowledge of the magnetospheric plasma by ISEE investigators
NASA Technical Reports Server (NTRS)
Ogilvie, K. W.
1984-01-01
The ISEE project has made substantial contributions to the knowledge of the magnetosphere during the period of the IMS, especially in the discipline of Space Plasma Physics. Results obtained during approximately the first two years of the operation of ISEE-1 and -2, and touches on relevant results of ISEE-3 are reviewed. The ability to control the separation between ISEE-1 and -2, which are in nearly identical orbits, has permitted study of the motion and structure of the bow shock and magnetopause, the boundary layers, and the plasma sheet. Much evidence was obtained favoring the existence of reconnection and its relevance to the transfer of magnetic flux from the frontside to the rear of the magnetosphere, although not everyone agrees that it is the only important process. The presence of both reflected and accelerated particles was shown to lead to the development of a foreshock region between the bow shock and the interplanetary magnetic field line tangential to it.
On the formation and evolution of plasmoids - A survey of ISEE 3 Geotail data
NASA Technical Reports Server (NTRS)
Moldwin, Mark B.; Hughes, W. J.
1992-01-01
The magnetic and plasma properties of plasmoids, their evolution with distance downtail, and the effect of the direction of the IMF on the plasmoid magnetic configuration were investigated by examining the ISEE 3 magnetometer and electron plasma measurements of the 1983 ISEE 3 Geotail Mission. Both data sets were systematically examined for the presence of bipolar magnetic signatures that occur while ISEE 3 was in the plasma sheet. Results revealed 366 events consistent with this signature while ISEE was in the plasma sheet. It was found that plasmoids are characterized by high-speed plasma flow and that many of them have a well-defined magnetic core field characterized by a field strength maximum at the center of the pass through the structure. Once completely formed, plasmoids are relatively stable. It was found that the size, velocity, magnetic core strength, and Bz field amplitude of plasmoids do not depend on the distance downtail beyond -100 R(E).
Efficient cluster Monte Carlo algorithm for Ising spin glasses in more than two space dimensions
NASA Astrophysics Data System (ADS)
Ochoa, Andrew J.; Zhu, Zheng; Katzgraber, Helmut G.
2015-03-01
A cluster algorithm that speeds up slow dynamics in simulations of nonplanar Ising spin glasses away from criticality is urgently needed. In theory, the cluster algorithm proposed by Houdayer poses no advantage over local moves in systems with a percolation threshold below 50%, such as cubic lattices. However, we show that the frustration present in Ising spin glasses prevents the growth of system-spanning clusters at temperatures roughly below the characteristic energy scale J of the problem. Adding Houdayer cluster moves to simulations of Ising spin glasses for T ~ J produces a speedup that grows with the system size over conventional local moves. We show results for the nonplanar quasi-two-dimensional Chimera graph of the D-Wave Two quantum annealer, as well as conventional three-dimensional Ising spin glasses, where in both cases the addition of cluster moves speeds up thermalization visibly in the physically-interesting low temperature regime.
Two-axis tracking solar collector mechanism
Johnson, Kenneth C.
1992-01-01
This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.
Two-axis tracking solar collector mechanism
Johnson, Kenneth C.
1990-01-01
This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.
Two-axis tracking solar collector mechanism
Johnson, K.C.
1992-12-08
This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.
Mathematical structure of the three-dimensional (3D) Ising model
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Dong
2013-03-01
An overview of the mathematical structure of the three-dimensional (3D) Ising model is given from the points of view of topology, algebra, and geometry. By analyzing the relationships among transfer matrices of the 3D Ising model, Reidemeister moves in the knot theory, Yang-Baxter and tetrahedron equations, the following facts are illustrated for the 3D Ising model. 1) The complex quaternion basis constructed for the 3D Ising model naturally represents the rotation in a (3+1)-dimensional space-time as a relativistic quantum statistical mechanics model, which is consistent with the 4-fold integrand of the partition function obtained by taking the time average. 2) A unitary transformation with a matrix that is a spin representation in 2n·l·o-space corresponds to a rotation in 2n·l·o-space, which serves to smooth all the crossings in the transfer matrices and contributes the non-trivial topological part of the partition function of the 3D Ising model. 3) A tetrahedron relationship would ensure the commutativity of the transfer matrices and the integrability of the 3D Ising model, and its existence is guaranteed by the Jordan algebra and the Jordan-von Neumann-Wigner procedures. 4) The unitary transformation for smoothing the crossings in the transfer matrices changes the wave functions by complex phases varphix, varphiy, and varphiz. The relationship with quantum field and gauge theories and the physical significance of the weight factors are discussed in detail. The conjectured exact solution is compared with numerical results, and the singularities at/near infinite temperature are inspected. The analyticity in β = 1/(kBT) of both the hard-core and the Ising models has been proved only for β > 0, not for β = 0. Thus the high-temperature series cannot serve as a standard for judging a putative exact solution of the 3D Ising model.
NASA Astrophysics Data System (ADS)
Song, Young-Joon; Lee, Kwan-Woo; Pickett, Warren E.
2015-09-01
BaFe2(PO4)2 is an unusual Ising insulating ferromagnet based on the Fe2 + spin S =2 ion, the susceptibility of which suggests a large orbital component to the Fe local moment. We apply density functional theory based methods to obtain a microscopic picture of the competing interactions and the critical role of spin-orbit coupling (SOC) in this honeycomb lattice system. The low-temperature ferromagnetic phase displays a half-semimetallic Dirac point pinning the Fermi level and preventing gap opening before consideration of SOC, presenting a case in which correlation effects modeled by a repulsive Hubbard U fail to open a gap. Simultaneous inclusion of both correlation and SOC drives a large orbital moment in excess of 0.7 μB (essentially L =1 ) for spin aligned along the c ̂ axis, with a gap comparable with the inferred experimental value. The large orbital moment accounts for the large Ising anisotropy, in spite of the small magnitude of the SOC strength on the 3 d (Fe) ion. Ultimately, the Mott-Hubbard gap is enabled by degeneracy lifting by SOC and the large Fe moments, rather than by standard Hubbard interactions alone. We suggest that competing orbital occupations are responsible for the structural transitions involved in the observed reentrant rhombohedral-triclinic-rhombohedral sequence.
NASA Astrophysics Data System (ADS)
Springborg, Michael; Kirtman, Bernard
2013-03-01
Piezoelectricity results from a coupling between responses to mechanical and electric perturbations and leads to changes in the polarization due to strain or stress or, alternatively, the occurrence of strain as a function of an applied external, electrostatic field (i.e., converse piezoelectricity). Theoretical studies of those properties for extended systems require accordingly that their dipole moment or polarization can be calculated. However, whereas the definition of the operator for the dipole moment for any finite system is trivial, it is only within the last 2 decades that the expressions for the equivalent operator in the independent-particle approximation for the infinite and periodic system have been presented. Here, we demonstrate that the so called branch dependence of the polarization for the infinite, periodic system is related to physical observables in contrast to what often is assumed. This is related to the finding that converse piezoelectric properties depend both on the surfaces of the samples of interest even for samples with size well above the thermodynamic limit. However, we shall demonstrate that these properties can be calculated without explicitly taking the surfaces into account. Both the foundations and results for real system shall be presented.
A new wind energy conversion system
NASA Technical Reports Server (NTRS)
Smetana, F. O.
1975-01-01
It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.
The gonihedric paradigm extension of the Ising model
NASA Astrophysics Data System (ADS)
Savvidy, George
2015-11-01
In this paper we review a recently suggested generalization of the Feynman path integral to an integral over random surfaces. The proposed action is proportional to the linear size of the random surfaces and is called gonihedric. The convergence and the properties of the partition function are analyzed. The model can also be formulated as a spin system with identical partition functions. The spin system represents a generalization of the Ising model with ferromagnetic, antiferromagnetic and quartic interactions. Higher symmetry of the model allows to construct dual spin systems in three and four dimensions. In three dimensions the transfer matrix describes the propagation of closed loops and we found its exact spectrum. It is a unique exact solution of the three-dimensional statistical spin system. In three and four dimensions, the system exhibits the second-order phase transitions. The gonihedric spin systems have exponentially degenerated vacuum states separated by the potential barriers and can be used as a storage of binary information.
Periodic Striped Ground States in Ising Models with Competing Interactions
NASA Astrophysics Data System (ADS)
Giuliani, Alessandro; Seiringer, Robert
2016-06-01
We consider Ising models in two and three dimensions, with short range ferromagnetic and long range, power-law decaying, antiferromagnetic interactions. We let J be the ratio between the strength of the ferromagnetic to antiferromagnetic interactions. The competition between these two kinds of interactions induces the system to form domains of minus spins in a background of plus spins, or vice versa. If the decay exponent p of the long range interaction is larger than d + 1, with d the space dimension, this happens for all values of J smaller than a critical value J c (p), beyond which the ground state is homogeneous. In this paper, we give a characterization of the infinite volume ground states of the system, for p > 2d and J in a left neighborhood of J c (p). In particular, we prove that the quasi-one-dimensional states consisting of infinite stripes (d = 2) or slabs (d = 3), all of the same optimal width and orientation, and alternating magnetization, are infinite volume ground states. Our proof is based on localization bounds combined with reflection positivity.
Ising pairing in superconducting NbSe2 atomic layers
NASA Astrophysics Data System (ADS)
Xi, Xiaoxiang; Wang, Zefang; Zhao, Weiwei; Park, Ju-Hyun; Law, Kam Tuen; Berger, Helmuth; Forró, László; Shan, Jie; Mak, Kin Fai
2016-02-01
The properties of two-dimensional transition metal dichalcogenides arising from strong spin-orbit interactions and valley-dependent Berry curvature effects have recently attracted considerable interest. Although single-particle and excitonic phenomena related to spin-valley coupling have been extensively studied, the effects of spin-valley coupling on collective quantum phenomena remain less well understood. Here we report the observation of superconducting monolayer NbSe2 with an in-plane upper critical field of more than six times the Pauli paramagnetic limit, by means of magnetotransport measurements. The effect can be interpreted in terms of the competing Zeeman effect and large intrinsic spin-orbit interactions in non-centrosymmetric NbSe2 monolayers, where the electron spin is locked to the out-of-plane direction. Our results provide strong evidence of unconventional Ising pairing protected by spin-momentum locking, and suggest further studies of non-centrosymmetric superconductivity with unique spin and valley degrees of freedom in the two-dimensional limit.
Differential geometry of the space of Ising models
NASA Astrophysics Data System (ADS)
Machta, Benjamin; Chachra, Ricky; Transtrum, Mark; Sethna, James
2012-02-01
We use information geometry to understand the emergence of simple effective theories, using an Ising model perturbed with terms coupling non-nearest-neighbor spins as an example. The Fisher information is a natural metric of distinguishability for a parameterized space of probability distributions, applicable to models in statistical physics. Near critical points both the metric components (four-point susceptibilities) and the scalar curvature diverge with corresponding critical exponents. However, connections to Renormalization Group (RG) ideas have remained elusive. Here, rather than looking at RG flows of parameters, we consider the reparameterization-invariant flow of the manifold itself. To do this we numerically calculate the metric in the original parameters, taking care to use only information available after coarse-graining. We show that under coarse-graining the metric contracts very anisotropically, leading to a ``sloppy'' spectrum with the metric's Eigenvalues spanning many orders of magnitude. Our results give a qualitative explanation for the success of simple models: most directions in parameter space become fundamentally indistinguishable after coarse-graining.
Constrained variational problem with applications to the Ising model
NASA Astrophysics Data System (ADS)
Schonmann, Roberto H.; Shlosman, Senya B.
1996-06-01
We continue our study of the behavior of the two-dimensional nearest neighbor ferromagnetic Ising model under an external magnetic field h, initiated in our earlier work. We strengthen further a result previously proven by Martirosyan at low enough temperature, which roughly states that for finite systems with (-)-boundary conditions under a positive external field, the boundary effect dominates in the system if the linear size of the system is of order B/h with B small enough, while if B is large enough, then the external field dominates in the system. In our earlier work this result was extended to every subcritical value of the temperature. Here for every subcritical value of the temperature we show the existence of a critical value B 0 (T) which separates the two regimes specified above. We also find the asymptotic shape of the region occupied by the (+)-phase in the second regime, which turns out to be a "squeezed Wulff shape". The main step in our study is the solution of the variational problem of finding the curve minimizing the Wulff functional, which curve is constrained to the unit square. Other tools used are the results and techniques developed to study large deviations for the block magnetization in the absence of the magnetic field, extended to all temperatures below the critical one.
Topological defects on the lattice: I. The Ising model
NASA Astrophysics Data System (ADS)
Aasen, David; Mong, Roger S. K.; Fendley, Paul
2016-09-01
In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutation relations, cousins of the Yang–Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with properties depending only on topology. In this part I, we focus on the simplest example, the Ising model. We define lattice spin-flip and duality defects and their branching, and prove they are topological. One useful consequence is a simple implementation of Kramers–Wannier duality on the torus and higher genus surfaces by using the fusion of duality defects. We use these topological defects to do simple calculations that yield exact properties of the conformal field theory describing the continuum limit. For example, the shift in momentum quantization with duality-twisted boundary conditions yields the conformal spin 1/16 of the chiral spin field. Even more strikingly, we derive the modular transformation matrices explicitly and exactly.
Low-temperature dynamics of kinks on Ising interfaces.
Karma, Alain; Lobkovsky, Alexander E
2005-03-01
The anisotropic motion of an interface driven by its intrinsic curvature or by an external field is investigated in the context of the kinetic Ising model in both two and three dimensions. We derive in two dimensions (2D) a continuum evolution equation for the density of kinks by a time-dependent and nonlocal mapping to the asymmetric exclusion process. Whereas kinks execute random walks biased by the external field and pile up vertically on the physical 2D lattice, they execute hard-core biased random walks on a transformed 1D lattice. Their density obeys a nonlinear diffusion equation which can be transformed into the standard expression for the interface velocity, v=M [ (gamma+gamma'') kappa+H] , where M , gamma+gamma", and kappa are the interface mobility, stiffness, and curvature, respectively. In 3D, we obtain the velocity of a curved interface near the 100 orientation from an analysis of the self-similar evolution of 2D shrinking terraces. We show that this velocity is consistent with the one predicted from the 3D tensorial generalization of the law for anisotropic curvature-driven motion. In this generalization, both the interface stiffness tensor and the curvature tensor are singular at the 100 orientation. However, their product, which determines the interface velocity, is smooth. In addition, we illustrate how this kink-based kinetic description provides a useful framework for studying more complex situations by modeling the effect of immobile dilute impurities. PMID:15903500
Critical behavior of the Ising model on random fractals
NASA Astrophysics Data System (ADS)
Monceau, Pascal
2011-11-01
We study the critical behavior of the Ising model in the case of quenched disorder constrained by fractality on random Sierpinski fractals with a Hausdorff dimension df≃1.8928. This is a first attempt to study a situation between the borderline cases of deterministic self-similarity and quenched randomness. Intensive Monte Carlo simulations were carried out. Scaling corrections are much weaker than in the deterministic cases, so that our results enable us to ensure that finite-size scaling holds, and that the critical behavior is described by a new universality class. The hyperscaling relation is compatible with an effective dimension equal to the Hausdorff one; moreover the two eigenvalues exponents of the renormalization flows are shown to be different from the ones calculated from ɛ expansions, and from the ones obtained for fourfold symmetric deterministic fractals. Although the space dimensionality is not integer, lack of self-averaging properties exhibits some features very close to the ones of a random fixed point associated with a relevant disorder.
Modeling Dark Energy Through AN Ising Fluid with Network Interactions
NASA Astrophysics Data System (ADS)
Luongo, Orlando; Tommasini, Damiano
2014-12-01
We show that the dark energy (DE) effects can be modeled by using an Ising perfect fluid with network interactions, whose low redshift equation of state (EoS), i.e. ω0, becomes ω0 = -1 as in the ΛCDM model. In our picture, DE is characterized by a barotropic fluid on a lattice in the equilibrium configuration. Thus, mimicking the spin interaction by replacing the spin variable with an occupational number, the pressure naturally becomes negative. We find that the corresponding EoS mimics the effects of a variable DE term, whose limiting case reduces to the cosmological constant Λ. This permits us to avoid the introduction of a vacuum energy as DE source by hand, alleviating the coincidence and fine tuning problems. We find fairly good cosmological constraints, by performing three tests with supernovae Ia (SNeIa), baryonic acoustic oscillation (BAO) and cosmic microwave background (CMB) measurements. Finally, we perform the Akaike information criterion (AIC) and Bayesian information criterion (BIC) selection criteria, showing that our model is statistically favored with respect to the Chevallier-Polarsky-Linder (CPL) parametrization.
Information theoretic aspects of the two-dimensional Ising model.
Lau, Hon Wai; Grassberger, Peter
2013-02-01
We present numerical results for various information theoretic properties of the square lattice Ising model. First, using a bond propagation algorithm, we find the difference 2H(L)(w)-H(2L)(w) between entropies on cylinders of finite lengths L and 2L with open end cap boundaries, in the limit L→∞. This essentially quantifies how the finite length correction for the entropy scales with the cylinder circumference w. Secondly, using the transfer matrix, we obtain precise estimates for the information needed to specify the spin state on a ring encircling an infinitely long cylinder. Combining both results, we obtain the mutual information between the two halves of a cylinder (the "excess entropy" for the cylinder), where we confirm with higher precision but for smaller systems the results recently obtained by Wilms et al., and we show that the mutual information between the two halves of the ring diverges at the critical point logarithmically with w. Finally, we use the second result together with Monte Carlo simulations to show that also the excess entropy of a straight line of n spins in an infinite lattice diverges at criticality logarithmically with n. We conjecture that such logarithmic divergence happens generically for any one-dimensional subset of sites at any two-dimensional second-order phase transition. Comparing straight lines on square and triangular lattices with square loops and with lines of thickness 2, we discuss questions of universality. PMID:23496480
Information theoretic aspects of the two-dimensional Ising model
NASA Astrophysics Data System (ADS)
Lau, Hon Wai; Grassberger, Peter
2013-02-01
We present numerical results for various information theoretic properties of the square lattice Ising model. First, using a bond propagation algorithm, we find the difference 2HL(w)-H2L(w) between entropies on cylinders of finite lengths L and 2L with open end cap boundaries, in the limit L→∞. This essentially quantifies how the finite length correction for the entropy scales with the cylinder circumference w. Secondly, using the transfer matrix, we obtain precise estimates for the information needed to specify the spin state on a ring encircling an infinitely long cylinder. Combining both results, we obtain the mutual information between the two halves of a cylinder (the “excess entropy” for the cylinder), where we confirm with higher precision but for smaller systems the results recently obtained by Wilms , and we show that the mutual information between the two halves of the ring diverges at the critical point logarithmically with w. Finally, we use the second result together with Monte Carlo simulations to show that also the excess entropy of a straight line of n spins in an infinite lattice diverges at criticality logarithmically with n. We conjecture that such logarithmic divergence happens generically for any one-dimensional subset of sites at any two-dimensional second-order phase transition. Comparing straight lines on square and triangular lattices with square loops and with lines of thickness 2, we discuss questions of universality.
An Ising model of transcription polarity in bacterial chromosomes
NASA Astrophysics Data System (ADS)
Baran, Robert H.; Ko, Hanseok
2006-04-01
Bacterial genes form clusters of the same transcription polarity and typically exhibit a preference to be coded on the leading strand of replication. An Ising model is proposed to quantify these two phenomena by analogy to the behavior of magnetic dipoles (spins) in a one-dimensional lattice. Corresponding to magnetic forces that co-orient adjacent spins and align them with an externally applied field, we imagine pseudo-forces that influence transcription polarity. Bonds of uniform strength {1}/{2} J between adjacent sites will model the adhesive (or repulsive) interactions while a polarity entraining force of strength H has the direction of replication. Ten bacterial chromosomes are reduced to spin configurations from which the model parameters are estimated by the method of maximum likelihood under the assumption of thermal equilibrium, following the application of established methods to locate replication origins and termini. χ 2-tests show that the model fits the data well in about half the cases but cluster size exhibits excess variance in general. These findings lead to a speculative interpretation of the pseudo-forces as the net effects of numerous insertions and deletions that succeed or fail according to their impact on the motions of enzymatic complexes involved in replication and transcription.
Upstream waves simultaneously observed by ISEE and UKS
NASA Technical Reports Server (NTRS)
Russell, C. T.; Luhmann, J. G.; Elphic, R. C.; Southwood, D. J.; Smith, M. F.
1987-01-01
Measurements obtained in the solar wind by ISEE-2 and the United Kingdom Subsatellite (UKS) have been examined for observations of upstream waves. These data reveal that the waves in the foreshock region are enhanced at all frequencies from at least 0.003 Hz to 0.5 Hz. The wave spectra generally have a spectral peak, but this peak is usually broad and the peak frequency depends on the position of the spacecraft. Generally, the spectra seen at the two spacecraft are most similar at high frequencies and least similar at low frequencies. The geometry of the interaction is displayed in the plane containing the magnetic field, the solar wind velocity, and the spacecraft location. However, this coordinate system does not order all the observed wave properties. It does not clearly explain or order the handedness of the waves, or their direction of propagation. It is clear that the upstream region is inherently three-dimensional. The position-dependent nature of the upstream waves indicates that comparisons between ground-based measurements and in-situ observations must be undertaken with some caution.
Interaction Versus Entropic Repulsion for Low Temperature Ising Polymers
NASA Astrophysics Data System (ADS)
Ioffe, Dmitry; Shlosman, Senya; Toninelli, Fabio Lucio
2015-03-01
Contours associated to many interesting low-temperature statistical mechanics models (2D Ising model, (2+1)D SOS interface model, etc) can be described as self-interacting and self-avoiding walks on . When the model is defined in a finite box, the presence of the boundary induces an interaction, that can turn out to be attractive, between the contour and the boundary of the box. On the other hand, the contour cannot cross the boundary, so it feels entropic repulsion from it. In various situations of interest (in Caputo et al. Ann. Probab., arXiv:1205.6884, J. Eur. Math. Soc., arXiv:1302.6941, arXiv:1406.1206, Ioffe and Shlosman, in preparation), a crucial technical problem is to prove that entropic repulsion prevails over the pinning interaction: in particular, the contour-boundary interaction should not modify significantly the contour partition function and the related surface tension should be unchanged. Here we prove that this is indeed the case, at least at sufficiently low temperature, in a quite general framework that applies in particular to the models of interest mentioned above.
Two Dimensional Ising Superconductivity in Gated MoS2
NASA Astrophysics Data System (ADS)
Yuan, Noah; Lu, Jianming; Law, Kam Tuen; Zheliuk, Oleksandr; Leermakers, Inge; Zeitler, Ulrich; Ye, Jianting
The Zeeman effect, which is usually considered to be detrimental to superconductivity, can surprisingly protect the superconducting states created by gating a layered transition metal dichalcogenide. This effective Zeeman field, which is originated from intrinsic spin orbit coupling induced by breaking in-plane inversion symmetry, can reach nearly a hundred Tesla in magnitude. It strongly pins the spin orientation of the electrons to the out-of-plane directions and protects the superconductivity from being destroyed by an in-plane external magnetic field. In magnetotransport experiments of ionic-gate MoS2 transistors, where gating prepares individual superconducting state with different carrier doping, we indeed observe a spin-protected superconductivity by measuring an in-plane critical field Bc 2 far beyond the Pauli paramagnetic limit. The gating-enhanced Bc 2 is more than an order of magnitude larger compared to the bulk superconducting phases where the effective Zeeman field is weakened by interlayer coupling. Our study gives the first experimental evidence of an Ising superconductor, in which spins of the pairing electrons are strongly pinned by an effective Zeeman field.
Three axis attitude control system
NASA Technical Reports Server (NTRS)
Studer, Philip A. (Inventor)
1988-01-01
A three-axis attitude control system for an orbiting body comprised of a motor driven flywheel supported by a torque producing active magnetic bearing is described. Free rotation of the flywheel is provided about its central axis and together with limited angular torsional deflections of the flywheel about two orthogonal axes which are perpendicular to the central axis. The motor comprises an electronically commutated DC motor, while the magnetic bearing comprises a radially servoed permanent magnet biased magnetic bearing capable of producing cross-axis torques on the flywheel. Three body attitude sensors for pitch, yaw and roll generate respective command signals along three mutually orthogonal axes (x, y, z) which are coupled to circuit means for energizing a set of control coils for producing torques about two of the axes (x and y) and speed control of the flywheel about the third (z) axis. An energy recovery system, which is operative during motor deceleration, is also included which permits the use of a high-speed motor to perform effectively as a reactive wheel suspended in the magnetic bearing.
Woodall, J.M.
1982-02-16
Energy conversion capable of receiving input energy in thermal or radiant form at a variable rate and releasing energy in thermal, radiant or electrical form independent of rate is accomplished by providing a buffer member of a material that has three criteria: a melting temperature above 1300/sup degree/ K, a thermal conductance greater than 0.1 in calories per square centimeter per centimeter per degree per second and a latent heat of fusion of the order of 1 kilocalorie per mole. The converter can absorb energy of multiple types, store it and then release it in a form compatible with the prospective use. Sunlight of daylight duration and varying intensity is converted to steady 24 hour a day electrical output.
Final Report for Isee/3ICE Data Restoration NAG5-7188 Restoration of ISEE-3/ICE X-Ray Data
NASA Technical Reports Server (NTRS)
Fisher, George H.
2000-01-01
The objective of this project is to take solar flare X-ray data obtained by ISEE-3/ICE (Third International Sun Earth Explorer/ International Cometary Explorer) spacecraft and convert it from its current non-standard format into FITS binary tables. These files will then be made available to the public at the Solar Data Analysis Center (SDAC).
NASA Technical Reports Server (NTRS)
Hughes, W. J.; Grard, R. J. L.
1984-01-01
A description is provided of observations made by GEOS 1, ISEE 1, and ISEE 2 of a hydromagnetic wave with a period approximately 90 s observed near 0200 LT between L = 9 and L = 6, close to the measured inner boundary of the plasma sheet. The wave magnetic oscillations perpendicular to and along the ambient field had similar amplitudes. Using primarily the transverse magnetic components, it is shown that the wave is a second harmonic resonance of the local geomagnetic field lines. ISEE 1 and 2 observed the opposite sense of polarization for about 30 min, although the spacecraft were separated by only 9 min in their orbit; this remarkable feature cannot be explained by either a stationary spatial boundary or a simple temporal boundary but could result from a rapid movement of the resonant region. It is argued that the most likely energy source is bounce resonance with medium energy (approximately 5 keV) ions. Calculations of the wave Poynting vector at ISEE 1 support this conclusion.
Exact solution of the spin-1/2 Ising model on the Shastry Sutherland (orthogonal-dimer) lattice
NASA Astrophysics Data System (ADS)
Strečka, Jozef
2006-01-01
A star-triangle mapping transformation is used to establish an exact correspondence between the spin-1/2 Ising model on the Shastry Sutherland (orthogonal-dimer) lattice and respectively, the spin-1/2 Ising model on a bathroom tile (4 8) lattice. Exact results for the critical temperature and spontaneous magnetization are obtained and compared with corresponding results on the regular Ising lattices.
NASA Astrophysics Data System (ADS)
Fritsch, K.; Ehlers, G.; Rule, K. C.; Habicht, K.; Ramazanoglu, M.; Dabkowska, H. A.; Gaulin, B. D.
2015-11-01
The application of a magnetic field transverse to the easy axis, Ising direction in the quasi-two-dimensional kagome staircase magnet, Co3V2O8 , induces three quantum phase transitions at low temperatures, ultimately producing a novel high field polarized state, with two distinct sublattices. New time-of-flight neutron scattering techniques, accompanied by large angular access, high magnetic field infrastructure allow the mapping of a sequence of ferromagnetic and incommensurate phases and their accompanying spin excitations. At least one of the transitions to incommensurate phases at μ0Hc 1˜6.25 T and μ0Hc 2˜7 T is discontinuous, while the final quantum critical point at μ0Hc 3˜13 T is continuous.
Fritsch, Katharina; Ehlers, G.; Rule, K. C.; Habicht, Klaus; Ramazanoglu, Mehmet K.; Dabkowska, H. A.; Gaulin, Bruce D.
2015-11-05
We study the application of a magnetic field transverse to the easy axis, Ising direction in the quasi-two-dimensional kagome staircase magnet, Co3V2O8, induces three quantum phase transitions at low temperatures, ultimately producing a novel high field polarized state, with two distinct sublattices. New time-of-flight neutron scattering techniques, accompanied by large angular access, high magnetic field infrastructure allow the mapping of a sequence of ferromagnetic and incommensurate phases and their accompanying spin excitations. Also, at least one of the transitions to incommensurate phases at μ0Hc1~6.25 T and μ0Hc2~7 T is discontinuous, while the final quantum critical point at μ0Hc3~13 T ismore » continuous.« less
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
Off-axis photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Shelton, Ryan; Applegate, Brian E.
2010-02-01
Photoacoustic microscopy (PAM) is a high-contrast, high-resolution imaging modality used primarily for imaging hemoglobin and melanin. Important applications include mapping of the microvasculature and melanoma tumor margins. We have developed a novel photoacoustic microscope design, which substantially simplifies construction by enabling the use of unmodified commercial optics and ultrasonic transducers. Moreover, the simple design may be readily incorporated into a standard light microscope, thus providing a familiar imaging platform for clinical researchers. A proof-of-concept Off-Axis PAM system with a lateral resolution of 26 μm and a modest axial resolution of 410 μm has been assembled and characterized using tissue samples. We have derived the appropriate equations to describe the relevant design parameters and verified the equations via measurements made on our prototype Off-Axis PAM system. A consequence of the simple design is a reduction in axial resolution compared to coaxial designs. The reduction is inversely proportional to the cosine of the angle between excitation and detection and equal to 15% and 41% for angles of 30º and 45º, respectively. While resolution is negatively affected by off-axis detection, the ability to measure weak signals at depth is enhanced. Off-axis detection has an inherent dark-field quality; chromophores excited outside the numerical aperture of the ultrasonic detector will not be detected. The physical geometry of Off-Axis PAM enables the placement of the ultrasonic transducer at the minimum distance from the sample with no obstructions between the sample and transducer. This may prove to be an additional advantage of Off-Axis PAM over designs that incorporate long working distance ultrasonic transducers and/or require the propagation of the acoustic wave through the laser excitation optics to achieve co-axial detection.
Helical axis stellarator equilibrium model
Koniges, A.E.; Johnson, J.L.
1985-02-01
An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift.
Vaughn, Mark R.; Robinett, III, Rush D.; Phelan, John R.; Van Zuiden, Don M.
1997-01-21
A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.
Magnetic and magnetocaloric properties of quasi-one-dimensional Ising spin chain CoV2O6
NASA Astrophysics Data System (ADS)
Nandi, M.; Mandal, P.
2016-04-01
We have investigated the magnetic and magnetocaloric properties of antiferromagnetic Ising spin chain CoV2O6 by magnetization and heat capacity measurements. Both monoclinic α-CoV2O6 and triclinic γ-CoV2O6 exhibit field-induced metamagnetic transitions from antiferromagnetic to ferromagnetic state via an intermediate ferrimagnetic state with 1/3 magnetization plateau. Due to the field-induced metamagnetic transitions, these systems show large conventional as well as inverse magnetocaloric effects. In α-CoV2O6, we observe field-induced complex magnetic phases and multiple magnetization plateaus below 6 K when the field is applied along c axis. Several critical temperatures and fields have been identified from the temperature and field dependence of magnetization, magnetic entropy change, and heat capacity to construct the H-T phase diagram. As compared to α-CoV2O6, γ-CoV2O6 displays a relatively simple magnetic phase diagram. Due to the large magnetic entropy change and adiabatic temperature change at low or moderate applied magnetic field, γ-CoV2O6 may be considered as a magnetic refrigerant in the low-temperature region below 20 K.
Magnetic ordering in the frustrated J1 - J2 Ising chain candidate BaNd2O4
Aczel, Adam A.; Li, Ling; Garlea, Vasile O.; Yan, Jiaqiang; Weickert, Franziska; Jaime, M.; Maiorov, B.; Movshovich, R.; Civale, L.; Keppens, V.; et al
2014-10-06
The AR2O4 family (R = rare earth) has recently been attracting interest as a new series of frustrated magnets, with the magnetic R atoms forming zigzag chains running along the c axis. In this paper, we have investigated polycrystalline BaNd2O4 with a combination of magnetization, heat-capacity, and neutron powder diffraction measurements. Magnetic Bragg peaks are observed below TN = 1.7 K, and they can be indexed with a propagation vector of k = (0,1/2,1/2). The signal from magnetic diffraction is well described by long-range ordering of only one of the two types of Nd zigzag chains, with collinear up-up-down-down intrachainmore » spin configurations (double Néel state). Furthermore, low-temperature magnetization and heat-capacity measurements reveal two magnetic-field-induced spin transitions at 2.75 and 4 T for T = 0.46 K. The high-field phase is paramagnetic, while the intermediate-field state may arise from a spin transition of the long-range ordered Nd chains. Finally, one possible candidate for the field-induced ordered state corresponds to an up-up-down intrachain spin configuration, as predicted for a classical J1-J2 Ising chain with a double Néel ground state in zero field.« less
Bimodal and Gaussian Ising spin glasses in dimension two.
Lundow, P H; Campbell, I A
2016-02-01
An analysis is given of numerical simulation data to size L=128 on the archetype square lattice Ising spin glasses (ISGs) with bimodal (±J) and Gaussian interaction distributions. It is well established that the ordering temperature of both models is zero. The Gaussian model has a nondegenerate ground state and thus a critical exponent η≡0, and a continuous distribution of energy levels. For the bimodal model, above a size-dependent crossover temperature T(*)(L) there is a regime of effectively continuous energy levels; below T(*)(L) there is a distinct regime dominated by the highly degenerate ground state plus an energy gap to the excited states. T(*)(L) tends to zero at very large L, leaving only the effectively continuous regime in the thermodynamic limit. The simulation data on both models are analyzed with the conventional scaling variable t=T and with a scaling variable τ(b)=T(2)/(1+T(2)) suitable for zero-temperature transition ISGs, together with appropriate scaling expressions. The data for the temperature dependence of the reduced susceptibility χ(τ(b),L) and second moment correlation length ξ(τ(b),L) in the thermodynamic limit regime are extrapolated to the τ(b)=0 critical limit. The Gaussian critical exponent estimates from the simulations, η=0 and ν=3.55(5), are in full agreement with the well-established values in the literature. The bimodal critical exponents, estimated from the thermodynamic limit regime analyses using the same extrapolation protocols as for the Gaussian model, are η=0.20(2) and ν=4.8(3), distinctly different from the Gaussian critical exponents. PMID:26986300
Smeared spin-flop transition in random antiferromagnetic Ising chain
Timonin, P. N.
2012-12-15
At T = 0 and in a sufficiently large field, the nearest-neighbor antiferromagnetic Ising chain undergoes a first-order spin-flop transition into the ferromagnetic phase. We consider its smearing under the random-bond disorder such that all independent random bonds are antiferromagnetic (AF). It is shown that the ground-state thermodynamics of this random AF chain can be described exactly for an arbitrary distribution P(J) of AF bonds. Moreover, the site magnetizations of finite chains can be found analytically in this model. We consider a continuous P(J) that is zero above some -J{sub 1} and behaves near it as (-J{sub 1}-J){sup {lambda}}, {lambda} > -1. In this case, the ferromagnetic phase emerges continuously in a field H > H{sub c} = 2J{sub 1}. At 0 > {lambda} > -1, it has the usual second-order anomalies near H{sub c} with the critical indices obeying the scaling relation and depending on {lambda}. At {lambda} > 0, higher-order transitions occur (third, fourth, etc.), marked by a divergence of the corresponding nonlinear susceptibilities. In the chains with an even number of spins, the intermediate 'bow-tie' phase with linearly modulated AF order exists between the AF and ferromagnetic phases at J{sub 1} < H < H{sub c}. Its origin can be traced to the infinite correlation length of the degenerate AF phase from which it emerges. This implies the existence of similar inhomogeneous phases with size- and form-dependent order in a number of other systems with infinite correlation length. The possibility to observe the signs of the 'bow-tie' phase in low-T neutron diffraction experiments is discussed.
±J Ising model on homogeneous Archimedean lattices
NASA Astrophysics Data System (ADS)
Valdés, J. F.; Lebrecht, W.; Vogel, E. E.
2012-04-01
We tackle the problem of finding analytical expressions describing the ground state properties of homogeneous Archimedean lattices over which a generalized Edwards-Anderson model (±J Ising model) is defined. A local frustration analysis is performed based on representative cells for square lattices, triangular lattices and honeycomb lattices. The concentration of ferromagnetic (F) bonds x is used as the independent variable in the analysis (1-x is the concentration for antiferromagnetic (A) bonds), where x spans the range [0.0,1.0]. The presence of A bonds brings frustration, whose clear manifestation is when bonds around the minimum possible circuit of bonds (plaquette) cannot be simultaneously satisfied. The distribution of curved (frustrated) plaquettes within the representative cell is determinant for the evaluation of the parameters of interest such as average frustration segment, energy per bond, and fractional content of unfrustrated bonds. Two methods are developed to cope with this analysis: one based on the direct probability of a plaquette being curved; the other one is based on the consideration of the different ways bonds contribute to the particular plaquette configuration. Exact numerical simulations on a large number of randomly generated samples allow to validate previously described theoretical analysis. It is found that the second method presents slight advantages over the first one. However, both methods give an excellent description for most of the range for x. The small deviations at specific intervals of x for each lattice have to do with the self-imposed limitations of both methods due to practical reasons. A particular discussion for the point x=0.5 for each one of the lattices also shines light on the general trends of the properties described here.
Bimodal and Gaussian Ising spin glasses in dimension two
NASA Astrophysics Data System (ADS)
Lundow, P. H.; Campbell, I. A.
2016-02-01
An analysis is given of numerical simulation data to size L =128 on the archetype square lattice Ising spin glasses (ISGs) with bimodal (±J ) and Gaussian interaction distributions. It is well established that the ordering temperature of both models is zero. The Gaussian model has a nondegenerate ground state and thus a critical exponent η ≡0 , and a continuous distribution of energy levels. For the bimodal model, above a size-dependent crossover temperature T*(L ) there is a regime of effectively continuous energy levels; below T*(L ) there is a distinct regime dominated by the highly degenerate ground state plus an energy gap to the excited states. T*(L ) tends to zero at very large L , leaving only the effectively continuous regime in the thermodynamic limit. The simulation data on both models are analyzed with the conventional scaling variable t =T and with a scaling variable τb=T2/(1 +T2) suitable for zero-temperature transition ISGs, together with appropriate scaling expressions. The data for the temperature dependence of the reduced susceptibility χ (τb,L ) and second moment correlation length ξ (τb,L ) in the thermodynamic limit regime are extrapolated to the τb=0 critical limit. The Gaussian critical exponent estimates from the simulations, η =0 and ν =3.55 (5 ) , are in full agreement with the well-established values in the literature. The bimodal critical exponents, estimated from the thermodynamic limit regime analyses using the same extrapolation protocols as for the Gaussian model, are η =0.20 (2 ) and ν =4.8 (3 ) , distinctly different from the Gaussian critical exponents.
Large-scale Ising spin network based on degenerate optical parametric oscillators
NASA Astrophysics Data System (ADS)
Inagaki, Takahiro; Inaba, Kensuke; Hamerly, Ryan; Inoue, Kyo; Yamamoto, Yoshihisa; Takesue, Hiroki
2016-06-01
Solving combinatorial optimization problems is becoming increasingly important in modern society, where the analysis and optimization of unprecedentedly complex systems are required. Many such problems can be mapped onto the ground-state-search problem of the Ising Hamiltonian, and simulating the Ising spins with physical systems is now emerging as a promising approach for tackling such problems. Here, we report a large-scale network of artificial spins based on degenerate optical parametric oscillators (DOPOs), paving the way towards a photonic Ising machine capable of solving difficult combinatorial optimization problems. We generate >10,000 time-division-multiplexed DOPOs using dual-pump four-wave mixing in a highly nonlinear fibre placed in a cavity. Using those DOPOs, a one-dimensional Ising model is simulated by introducing nearest-neighbour optical coupling. We observe the formation of spin domains and find that the domain size diverges near the DOPO threshold, which suggests that the DOPO network can simulate the behaviour of low-temperature Ising spins.
Three axis velocity probe system
Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.
1992-01-01
A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.
Anderson, Matthew J.; Schimmang, Thomas; Lewandoski, Mark
2016-01-01
During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is
Anderson, Matthew J; Schimmang, Thomas; Lewandoski, Mark
2016-05-01
During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is
NASA Astrophysics Data System (ADS)
Maruo, Daiki; Utsunomiya, Shoko; Yamamoto, Yoshihisa
2016-08-01
We present the quantum theory of coherent Ising machines based on networks of degenerate optical parametric oscillators (DOPOs). In a simple model consisting of two coupled DOPOs, both positive-P representation and truncated Wigner representation predict quantum correlation and inseparability between the two DOPOs in spite of the open-dissipative nature of the system. Here, we apply the truncated Wigner representation method to coherent Ising machines with thermal, vacuum, and squeezed reservoir fields. We find that the probability of finding the ground state of a one-dimensional Ising model increases substantially as a result of reducing excess thermal noise and squeezing the incident vacuum fluctuation on the out-coupling port.
Volatility behavior of visibility graph EMD financial time series from Ising interacting system
NASA Astrophysics Data System (ADS)
Zhang, Bo; Wang, Jun; Fang, Wen
2015-08-01
A financial market dynamics model is developed and investigated by stochastic Ising system, where the Ising model is the most popular ferromagnetic model in statistical physics systems. Applying two graph based analysis and multiscale entropy method, we investigate and compare the statistical volatility behavior of return time series and the corresponding IMF series derived from the empirical mode decomposition (EMD) method. And the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, we find that the degree distribution of visibility graph for the simulation series has the power law tails, and the assortative network exhibits the mixing pattern property. All these features are in agreement with the real market data, the research confirms that the financial model established by the Ising system is reasonable.
NASA Astrophysics Data System (ADS)
Kohring, G. A.; Stauffer, D.
Geometric parallelization was tested on the Intel Hypercube with 32 MIMD processors of 1860 type, each with 16 Mbytes of distributed memory. We applied it to Ising models in two and three dimensions as well as to neural networks and two-dimensional hydrodynamic cellular automata. For system sizes suited to this machine, up to 60960*60960 and 1410*1410*1408 Ising spins, we found nearly hundred percent parallel efficiency in spite of the needed inter-processor communications. For small systems, the observed deviations from full efficiency were compared with the scaling concepts of Heermann and Burkitt and of Jakobs and Gerling. For Ising models, we determined the Glauber kinetic exponent z≃2.18 in two dimensions and confirmed the stretched exponential relaxation of the magnetization towards the spontaneous magnetization below Tc. For three dimensions we found z≃2.09 and simple exponential relaxation.
SKRYN: A fast semismooth-Krylov-Newton method for controlling Ising spin systems
NASA Astrophysics Data System (ADS)
Ciaramella, G.; Borzì, A.
2015-05-01
The modeling and control of Ising spin systems is of fundamental importance in NMR spectroscopy applications. In this paper, two computer packages, ReHaG and SKRYN, are presented. Their purpose is to set-up and solve quantum optimal control problems governed by the Liouville master equation modeling Ising spin-1/2 systems with pointwise control constraints. In particular, the MATLAB package ReHaG allows to compute a real matrix representation of the master equation. The MATLAB package SKRYN implements a new strategy resulting in a globalized semismooth matrix-free Krylov-Newton scheme. To discretize the real representation of the Liouville master equation, a norm-preserving modified Crank-Nicolson scheme is used. Results of numerical experiments demonstrate that the SKRYN code is able to provide fast and accurate solutions to the Ising spin quantum optimization problem.
Initial survey of the wave distribution functions for plasmaspheric hiss observed by ISEE 1
NASA Technical Reports Server (NTRS)
Storey, L. R. O.; Lefeuvre, F.; Parrot, M.; Cairo, L.; Anderson, R. R.
1991-01-01
The generation mechanism of hiss observed by ISEE 1 satellite in the earth magnetosphere is investigated by analyzing the ELF/VLF wave data obtained from four passes of ISEE 1, all of which occurring during magnetically quiet periods. The results of these measurements, together with those published earlier, indicate that the generation mechanisms proposed by Kennel alnd Petschek (1966), by Thorne et al. (1979), and by Solomon et al. (1988, 1989) are all physically possible and can come into action whenever the necessary conditions exist. However, plasmaspheric hiss was observed by ISEE even when the conditions for any of these mechanisms existed; under these conditions, hiss appears to be generated near the equatorial plane over a wide range of L values, with the wave normals at large angles to the field. The generation mechanism that applies in such cases is still unknown.
Observations of low-energy plasma composition from the ISEE-1 and SCATHA satellites
NASA Technical Reports Server (NTRS)
Horwitz, J. L.; Chappell, C. R.; Reasoner, D. L.; Craven, P. D.; Green, J. L.; Baugher, C. R.
1983-01-01
This brief review is concerned with some of the initial measurements of low-energy ion properties conducted with the aid of ion composition detectors aboard the ISEE-1 and SCATHA satellites. ISEE-1 was launched in October 1977 into a highly elliptical orbit, while SCATHA was launched in January 1979 into a near geosynchronous orbit. Attention is given to the origin of low-energy plasma, the energization of ionospheric ions, the transport of ionospheric ions, and the loss of low-energy plasma from the magnetosphere. According to results obtained during the past several years, including the present ISEE-1 and SCATHA results, there are significant, and occasionally dominant, concentrations of He(+) and O(+) in various locations within the magnetosphere.
On the Ising character of the quantum-phase transition in LiHoF4
NASA Astrophysics Data System (ADS)
Skomski, R.
2016-05-01
It is investigated how a transverse magnetic field affects the quantum-mechanical character of LiHoF4, a system generally considered as a textbook example for an Ising-like quantum-phase transition. In small magnetic fields, the low-temperature behavior of the ions is Ising-like, involving the nearly degenerate low-lying Jz = ± 8 doublet. However, as the transverse field increases, there is a substantial admixture of states having |Jz| < 8. Near the quantum-phase-transition field, the system is distinctively non-Ising like, and all Jz eigenstates yield ground-state contributions of comparable magnitude. A classical analog to this mechanism is the micromagnetic single point in magnets with uniaxial anisotropy. Since Ho3+ has J = 8, the ion's behavior is reminiscent of the classical limit (J = ∞), but quantum corrections remain clearly visible.
Stress and the reproductive axis.
Toufexis, D; Rivarola, M A; Lara, H; Viau, V
2014-09-01
There exists a reciprocal relationship between the hypothalamic-pituitary-adrenal (HPA) and the hypothalamic-pituitary-gonadal (HPG) axes, wherein the activation of one affects the function of the other and vice versa. For example, both testosterone and oestrogen modulate the response of the HPA axis, whereas activation of the stress axis, especially activation that is repeating or chronic, has an inhibitory effect upon oestrogen and testosterone secretion. Alterations in maternal care can produce significant effects on both HPG and HPA physiology, as well as behaviour in the offspring at adulthood. For example, changes in reproductive behaviour induced by altered maternal care may alter the expression of sex hormone receptors such as oestrogen receptor (ER)α that govern sexual behaviour, and may be particularly important in determining the sexual strategies utilised by females. Stress in adulthood continues to mediate HPG activity in females through activation of a sympathetic neural pathway originating in the hypothalamus and releasing norepinephrine into the ovary, which produces a noncyclic anovulatory ovary that develops cysts. In the opposite direction, sex differences and sex steroid hormones regulate the HPA axis. For example, although serotonin (5-HT) has a stimulatory effect on the HPA axis in humans and rodents that is mediated by the 5-HT1A receptor, only male rodents respond to 5-HT1A antagonism to show increased corticosterone responses to stress. Furthermore, oestrogen appears to decrease 5-HT1A receptor function at presynaptic sites, yet increases 5-HT1A receptor expression at postsynaptic sites. These mechanisms could explain the heightened stress HPA axis responses in females compared to males. Studies on female rhesus macaques show that chronic stress in socially subordinate female monkeys produces a distinct behavioural phenotype that is largely unaffected by oestrogen, a hyporesponsive HPA axis that is hypersensitive to the modulating effects
Stress and the Reproductive Axis
Toufexis, Donna; Rivarola, Maria Angelica; Lara, Hernan; Viau, Victor
2014-01-01
There exists a reciprocal relationship between the hypothalamic-pituitary-adrenal (HPA) and the hypothalamic-pituitary-gonadal (HPG) axes wherein the activation of one affects the function of the other and vice versa. For instance, both testosterone and oestrogen modulate the response of the HPA axis, while activation of the stress axis, especially activation that is repeating or chronic, has an inhibitory effect upon oestrogen and testosterone secretion. Alterations in maternal care can produce significant effects on both HPG and HPA physiology and behaviour in the offspring at adulthood. For example, changes in reproductive behaviour induced by altered maternal care may alter the expression of sex hormone receptors like ERα that govern sexual behaviour, and may be particularly important in determining the sexual strategies utilized by females. Stress in adulthood continues to mediate HPG activity in females through activation of a sympathetic neural pathway originating in the hypothalamus and releasing norepinephrine (NE) into the ovary, which produces a non-cyclic anovulatory ovary that develops cysts. In the opposite direction, sex differences and sex steroid hormones regulate the HPA axis. For example, although serotonin (5-HT) has a stimulatory effect on the HPA axis in humans and rodents that is mediated by the 5-HT1A receptor, only male rodents respond to 5-HT1A antagonism to show increased corticosterone responses to stress. Furthermore, oestrogen appears to decrease 5-HT1A receptor function at presynaptic sites, yet increase 5-HT1A receptor expression at postsynaptic sites. These mechanisms could explain heightened stress HPA axis responses in females compared to males. Studies on female rhesus macaques show that chronic stress in socially subordinate female monkeys produces a distinct behavioral phenotype that is largely unaffected by oestrogen, a hypo-responsive HPA axis that is hypersensitive to the modulating effects of oestrogen, and changes in 5-HT
The Critical Z-Invariant Ising Model via Dimers: Locality Property
NASA Astrophysics Data System (ADS)
Boutillier, Cédric; de Tilière, Béatrice
2011-01-01
We study a large class of critical two-dimensional Ising models, namely critical Z-invariant Ising models. Fisher (J Math Phys 7:1776-1781, 1966) introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model, consisting of explicit expressions which only depend on the local geometry of the underlying isoradial graph. Our main result is an explicit local formula for the inverse Kasteleyn matrix, in the spirit of Kenyon (Invent Math 150(2):409-439, 2002), as a contour integral of the discrete exponential function of Mercat (Discrete period matrices and related topics, 2002) and Kenyon (Invent Math 150(2):409-439, 2002) multiplied by a local function. Using results of Boutillier and de Tilière (Prob Theor Rel Fields 147(3-4):379-413, 2010) and techniques of de Tilière (Prob Th Rel Fields 137(3-4):487-518, 2007) and Kenyon (Invent Math 150(2):409-439, 2002), this yields an explicit local formula for a natural Gibbs measure, and a local formula for the free energy. As a corollary, we recover Baxter's formula for the free energy of the critical Z-invariant Ising model (Baxter, in Exactly solved models in statistical mechanics, Academic Press, London, 1982), and thus a new proof of it. The latter is equal, up to a constant, to the logarithm of the normalized determinant of the Laplacian obtained in Kenyon (Invent Math 150(2):409-439, 2002).
Cyclic period-3 window in antiferromagnetic potts and Ising models on recursive lattices
NASA Astrophysics Data System (ADS)
Ananikian, N. S.; Ananikyan, L. N.; Chakhmakhchyan, L. A.
2011-09-01
The magnetic properties of the antiferromagnetic Potts model with two-site interaction and the antiferromagnetic Ising model with three-site interaction on recursive lattices have been studied. A cyclic period-3 window has been revealed by the recurrence relation method in the antiferromagnetic Q-state Potts model on the Bethe lattice (at Q < 2) and in the antiferromagnetic Ising model with three-site interaction on the Husimi cactus. The Lyapunov exponents have been calculated, modulated phases and a chaotic regime in the cyclic period-3 window have been found for one-dimensional rational mappings determined the properties of these systems.
Ground-state candidate for the classical dipolar kagome Ising antiferromagnet
NASA Astrophysics Data System (ADS)
Chioar, I. A.; Rougemaille, N.; Canals, B.
2016-06-01
We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.
Ising-model description of long-range correlations in DNA sequences
NASA Astrophysics Data System (ADS)
Colliva, A.; Pellegrini, R.; Testori, A.; Caselle, M.
2015-05-01
We model long-range correlations of nucleotides in the human DNA sequence using the long-range one-dimensional (1D) Ising model. We show that, for distances between 103 and 106 bp, the correlations show a universal behavior and may be described by the non-mean-field limit of the long-range 1D Ising model. This allows us to make some testable hypothesis on the nature of the interaction between distant portions of the DNA chain which led to the DNA structure that we observe today in higher eukaryotes.
Canonical vs. micro-canonical sampling methods in a 2D Ising model
Kepner, J.
1990-12-01
Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs.
Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.
2015-11-01
The magnetic properties of spins-S and σ Ising model on the Bethe lattice have been investigated by using the Monte Carlo simulation. The thermal total magnetization and magnetization of spins S and σ with the different exchange interactions, different external magnetic field and different temperatures have been studied. The critical temperature and compensation temperature have been deduced. The magnetic hysteresis cycle of Ising ferrimagnetic system on the Bethe lattice has been deduced for different values of exchange interactions between the spins S and σ, for different values of crystal field and for different sizes. The magnetic coercive filed has been deduced.
Self-Organizing Two-Temperature Ising Model Describing Human Segregation
NASA Astrophysics Data System (ADS)
Ódor, Géza
A two-temperature Ising-Schelling model is introduced and studied for describing human segregation. The self-organized Ising model with Glauber kinetics simulated by Müller et al. exhibits a phase transition between segregated and mixed phases mimicking the change of tolerance (local temperature) of individuals. The effect of external noise is considered here as a second temperature added to the decision of individuals who consider a change of accommodation. A numerical evidence is presented for a discontinuous phase transition of the magnetization.
Complex zeros of the 2 d Ising model on dynamical random lattices
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.
1998-04-01
We study the zeros in the complex plane of the partition function for the Ising model coupled to 2 d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.
Transverse field Ising ferromagnetism in Mn12-acetate-MeOH
NASA Astrophysics Data System (ADS)
Subedi, P.; Kent, A. D.; Wen, Bo; Sarachik, M. P.; Yeshurun, Y.; Millis, A. J.; Mukherjee, S.; Christou, G.
2012-04-01
We report measurements of the magnetic susceptibility of single crystals of Mn12-acetate-MeOH, a newly-synthesized high-symmetry variant of the original single molecule magnet Mn12-acetate. A comparison of these data to theory and to data for the Mn12-acetate material shows that Mn12-acetate-MeOH is a realization of a transverse-field Ising ferromagnet in contrast to the original Mn12-acetate material, in which solvent disorder leads to effects attributed to random-field Ising ferromagnetism.
The ISEE-3 ULEWAT: Flux tape description and heavy ion fluxes 1978-1984. [plasma diagnostics
NASA Technical Reports Server (NTRS)
Mason, G. M.; Klecker, B.
1985-01-01
The ISEE ULEWAT FLUX tapes contain ULEWAT and ISEE pool tape data summarized over relatively long time intervals (1hr) in order to compact the data set into an easily usable size. (Roughly 3 years of data fit onto one 1600 BPI 9-track magnetic tape). In making the tapes, corrections were made to the ULEWAT basic data tapes in order to, remove rate spikes and account for changes in instrument response so that to a large extent instrument fluxes can be calculated easily from the FLUX tapes without further consideration of instrument performance.
Thermal Ising transitions in the vicinity of two-dimensional quantum critical points
NASA Astrophysics Data System (ADS)
Hesselmann, S.; Wessel, S.
2016-04-01
The scaling of the transition temperature into an ordered phase close to a quantum critical point as well as the order parameter fluctuations inside the quantum critical region provide valuable information about universal properties of the underlying quantum critical point. Here, we employ quantum Monte Carlo simulations to examine these relations in detail for two-dimensional quantum systems that exhibit a finite-temperature Ising-transition line in the vicinity of a quantum critical point that belongs to the universality class of either (i) the three-dimensional Ising model for the case of the quantum Ising model in a transverse magnetic field on the square lattice or (ii) the chiral Ising transition for the case of a half-filled system of spinless fermions on the honeycomb lattice with nearest-neighbor repulsion. While the first case allows large-scale simulations to assess the scaling predictions to a high precision in terms of the known values for the critical exponents at the quantum critical point, for the later case, we extract values of the critical exponents ν and η , related to the order parameter fluctuations, which we discuss in relation to other recent estimates from ground-state quantum Monte Carlo calculations as well as analytical approaches.
Ising antiferromagnet on a finite triangular lattice with free boundary conditions
NASA Astrophysics Data System (ADS)
Kim, Seung-Yeon
2015-11-01
The exact integer values for the density of states of the Ising model on an equilateral triangular lattice with free boundary conditions are evaluated up to L = 24 spins on a side for the first time by using the microcanonical transfer matrix. The total number of states is 2 N s = 2300 ≈ 2.037 × 1090 for L = 24, where N s = L( L+1)/2 is the number of spins. Classifying all 2300 spin states according to their energy values is an enormous work. From the density of states, the exact partition function zeros in the complex temperature plane of the triangular-lattice Ising model are evaluated. Using the density of states and the partition function zeros, we investigate the properties of the triangularlattice Ising antiferromagnet. The scaling behavior of the ground-state entropy and the form of the correlation length at T = 0 are studied for the triangular-lattice Ising antiferromagnet with free boundary conditions. Also, the scaling behavior of the Fisher edge singularity is investigated.
One-dimensional random field Ising model and discrete stochastic mappings
Behn, U.; Zagrebnov, V.A.
1987-06-01
Previous results relating the one-dimensional random field Ising model to a discrete stochastic mapping are generalized to a two-valued correlated random (Markovian) field and to the case of zero temperature. The fractal dimension of the support of the invariant measure is calculated in a simple approximation and its dependence on the physical parameters is discussed.
Physics and financial economics (1776-2014): puzzles, Ising and agent-based models.
Sornette, Didier
2014-06-01
This short review presents a selected history of the mutual fertilization between physics and economics--from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the 'Emerging Intelligence Market Hypothesis' to reconcile the pervasive presence of 'noise traders' with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets. PMID:24875470
Physics and financial economics (1776-2014): puzzles, Ising and agent-based models
NASA Astrophysics Data System (ADS)
Sornette, Didier
2014-06-01
This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.
Generation of Control by SU(2) Reduction for the Anisotropic Ising Model
NASA Astrophysics Data System (ADS)
Delgado, F.
2016-03-01
Control of entanglement is fundamental in Quantum Information and Quantum Computation towards scalable spin-based quantum devices. For magnetic systems, Ising interaction with driven magnetic fields modifies entanglement properties of matter based quantum systems. This work presents a procedure for dynamics reduction on SU(2) subsystems using a non-local description. Some applications for Quantum Information are discussed.
ERIC Educational Resources Information Center
Sarshar, Shanon Etty
2013-01-01
Using the Gap Analysis problem-solving framework (Clark & Estes, 2008), this study examined the performance gap experienced by 6th grade students on the math sections of the ISEE (Independent School Entrance Exam). The purpose of the study was to identify and validate the knowledge, motivation, and organization causes of the students' low…
The Hidden Symmetries of Spin-1 Ising Lattice Gas for Usual Quantum Hamiltonians
NASA Astrophysics Data System (ADS)
Payandeh, Farrin
2016-02-01
In this letter, the most common quantum Hamiltonian is exploited in order to compare the definite equivalences, corresponding to possible spin values in a lattice gas model, to those in a spin-1 Ising model. Our approach also requires interpolating both results in a p-state clock model, in order to find the hidden symmetries of both under consideration models.
Spontaneous magnetization of the Ising model on the union jack and 4-6 lattices
NASA Astrophysics Data System (ADS)
Lin, K. Y.; Wang, S. C.
1988-03-01
Spontaneous magnetization of the Ising model on the anisotropic Union Jack and 4-6 lattices are derived exactly. The conjecture by Lin and Wang is confirmed. Our result is a generalization of the recent work on the isotropic Union Jack lattice by Choy and Baxter.
Spontaneous magnetization of the Ising model on a 4-8 lattice
NASA Astrophysics Data System (ADS)
Lin, K. Y.
1988-03-01
Spontaneous magnetization of the Ising model on a 4-8 lattice is derived. The result agrees with the conjecture of Lin, Kao and Chen. Our derivation is closely related to the recent work of Choy and Baxter on the isotropic Union Jack lattice.
Document Conversion Methodology.
ERIC Educational Resources Information Center
Bovee, Donna
1990-01-01
Discusses digital imaging technology and examines document database conversion considerations. Two types of document imaging systems are described: (1) a work in process system, and (2) a storage and retrieval system. Conversion methodology is outlined, and a document conversion scenario is presented as a practical guide to conversion. (LRW)
Centration axis in refractive surgery.
Arba Mosquera, Samuel; Verma, Shwetabh; McAlinden, Colm
2015-01-01
The human eye is an asymmetric optical system and the real cornea is not a rotationally symmetrical volume. Each optical element in the eye has its own optical and neural axes. Defining the optimum center for laser ablation is difficult with many available approaches. We explain the various centration approaches (based on these reference axes) in refractive surgery and review their clinical outcomes. The line-of-sight (LOS) (the line joining the entrance pupil center with the fixation point) is often the recommended reference axis for representing wavefront aberrations of the whole eye (derived from the definition of chief ray in geometrical optics); however pupil centration can be unstable and change with the pupil size. The corneal vertex (CV) represents a stable preferable morphologic reference which is the best approximate for alignment to the visual axis. However, the corneal light reflex can be considered as non-constant, but dependent on the direction of gaze of the eye with respect to the light source. A compromise between the pupil and CV centered ablations is seen in the form of an asymmetric offset where the manifest refraction is referenced to the CV while the higher order aberrations are referenced to the pupil center. There is a need for a flexible choice of centration in excimer laser systems to design customized and non-customized treatments optimally. PMID:26605360
Flexible helical-axis stellarator
Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.
1988-01-01
An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.
Yao, Jeffrey; Zlotolow, Dan A; Lee, Steve K
2016-03-01
Background Treating chronic scapholunate ligament injuries without the presence of arthritis remains an unsolved clinical problem facing wrist surgeons. This article highlights a technique for reconstructing the scapholunate ligament using novel fixation, the ScaphoLunate Axis Method (SLAM). Materials and Methods In a preliminary review of the early experience of this technique, 13 patients were evaluated following scapholunate ligament reconstruction utilizing the SLAM technique. Description of Techinque The scapholunate interval is reconstructed utilizing a palmaris longus autograft passed between the scaphoid and lunate along the axis of rotation in the sagittal plane. It is secured in the lunate using a graft anchor and in the scaphoid utilizing an interference screw. The remaining graft is passed dorsally to reconstruct the dorsal scapholunate ligament. Results At an average follow-up of 11 months, the mean postoperative scapholunate gap was 2.1 mm. The mean postoperative scapholunate angle was 59 degrees. The mean postoperative wrist flexion and extension was 45 and 56 degrees, respectively. The mean grip strength was 24.9 kg, or 62% of the contralateral side. The mean pain score (VAS) was 1.7. There was 1 failure with recurrence of the pathologic scapholunate gap and the onset of pain. Conclusion While chronic scapholunate ligament instability remains an unsolved problem facing wrist surgeons, newer techniques are directed toward restoring the normal relationships of the scaphoid and lunate in both the coronal and sagittal planes. The SLAM technique has demonstrated promise in preliminary clinical studies. PMID:26855838
Raman conversion in intense femtosecond Bessel beams in air
NASA Astrophysics Data System (ADS)
Scheller, Maik; Chen, Xi; Ariunbold, Gombojav O.; Born, Norman; Moloney, Jerome; Kolesik, Miroslav; Polynkin, Pavel
2014-05-01
We demonstrate experimentally that bright and nearly collimated radiation can be efficiently generated in air pumped by an intense femtosecond Bessel beam. We show that this nonlinear conversion process is driven by the rotational Raman response of air molecules. Under optimum conditions, the conversion efficiency from the Bessel pump into the on-axis propagating beam exceeds 15% and is limited by the onset of intensity clamping and plasma refraction on the beam axis. Our experimental findings are in excellent agreement with numerical simulations based on the standard model for the ultrafast nonlinear response of air.
Bound states in two-dimensional spin systems near the Ising limit: A quantum finite-lattice study
Dusuel, Sebastien; Kamfor, Michael; Schmidt, Kai Phillip; Thomale, Ronny; Vidal, Julien
2010-02-01
We analyze the properties of low-energy bound states in the transverse-field Ising model and in the XXZ model on the square lattice. To this end, we develop an optimized implementation of perturbative continuous unitary transformations. The Ising model is studied in the small-field limit which is found to be a special case of the toric code model in a magnetic field. To analyze the XXZ model, we perform a perturbative expansion about the Ising limit in order to discuss the fate of the elementary magnon excitations when approaching the Heisenberg point.
Off-Axis Photoacoustic Microscopy
Shelton, Ryan L.
2016-01-01
Photoacoustic microscopy (PAM) is a high-contrast, high-resolution imaging modality, used primarily for imaging hemoglobin and melanin. Important applications include mapping of the microvasculature and melanoma tumor margins. We demonstrate a novel PAM design that markedly simplifies the implementation by separating the optical illumination from the acoustic detection path. This modification enables the use of high-quality commercial optics and transducers, and may be readily adapted to commercial light microscopes. The designed PAM system is only sensitive to signals generated in the overlap of the illumination and detection solid angles, providing the additional benefit of quasi-dark-field detection. An off-axis PAM system with a lateral resolution of 26 μm and a modest axial resolution of 410 μm has been assembled and characterized using tissue samples. The axial resolution is readily scaled down to tens of micrometers within the same design, by utilizing commercially available high-frequency acoustic transducers. PMID:20176531
Off-axis photoacoustic microscopy.
Shelton, Ryan L; Applegate, Brian E
2010-08-01
Photoacoustic microscopy (PAM) is a high-contrast, high-resolution imaging modality, used primarily for imaging hemoglobin and melanin. Important applications include mapping of the microvasculature and melanoma tumor margins. We demonstrate a novel PAM design that markedly simplifies the implementation by separating the optical illumination from the acoustic detection path. This modification enables the use of high-quality commercial optics and transducers, and may be readily adapted to commercial light microscopes. The designed PAM system is only sensitive to signals generated in the overlap of the illumination and detection solid angles, providing the additional benefit of quasi-dark-field detection. An off-axis PAM system with a lateral resolution of 26 microm and a modest axial resolution of 410 microm has been assembled and characterized using tissue samples. The axial resolution is readily scaled down to tens of micrometers within the same design, by utilizing commercially available high-frequency acoustic transducers. PMID:20176531
NASA Astrophysics Data System (ADS)
Land, Kate; Magueijo, João
2007-06-01
In light of the three-year data release from the Wilkinson Microwave Anisotropy Probe, we re-examine the evidence for the `Axis of Evil' (AoE). We discover that previous statistics are not robust with respect to the data sets available and different treatments of the Galactic plane. We identify the cause of the instability and implement an alternative `model selection' approach. A comparison to Gaussian isotropic simulations finds the features significant at the 94-98 per cent level, depending on the particular AoE model. The Bayesian evidence finds lower significance, ranging from `substantial' at Δ(lnE) ~ 1.4 to no evidence for the most general AoE model.
Pashto Conversation Manual and Pashto Conversation Tapescript.
ERIC Educational Resources Information Center
Tegey, Habibullah; Robson, Barbara
This conversation manual and tapescript are part of a set of materials that have been developed to teach oral and written Afghan Pashto to English speakers. In addition to the conversation manual and tapescript, the set consists of a beginning textbook, an intermediate textbook, a reader, and a set of taped lessons that correlate with the…
Suzuki, Chika
2016-01-30
Tokyo Bay, Ise Bay, and the Seto Inland Sea are the total pollutant load control target areas in Japan. A significant correlation between the incidence of red tides and water quality has been observed in the Seto Inland Sea (Honjo, 1991). However, while red tides also occur in Ise Bay and Tokyo Bay, similar correlations have not been observed. Hence, it is necessary to understand what factors cause red tides to effectively manage these semi-closed systems. This study aims to investigate the relationship between the dynamics of the Red Tide Index and nitrogen regulation as well as phosphorus regulation, even in Ise Bay where, unlike Tokyo Bay, there are few observation items, by selecting a suitable objective variable. The introduction of a new technique that uses the Red Tide Index has revealed a possibility that the total pollution load control has influenced the dynamics of red tide blooms in Ise Bay. PMID:26337227
A fast vectorized program for the CDC cyber 205 to simulate the ising spin glass in three dimensions
NASA Astrophysics Data System (ADS)
Bhanot, Gyan; Salvador, Román; Duke, Dennis; Moriarty, K. J. M.
1988-06-01
We describe a computer program that performs the Metropolis algorithm for the three-dimensional ( J = ±1) Ising spin glass problem at a peak speed of 80 million spin updates per second on a 2-pipe CDC CYBER 205.
NASA Technical Reports Server (NTRS)
Sugiyama, T.; Terasawa, T.; Kawano, H.; Yamamoto, T.; Kokubun, S.; Frank, L.; Ackerson, K.; Tsurutani, B.
1994-01-01
This paper presents a statistical study of the spatial distribution of low frequency waves in the region upstream of the pre-dawn to dawn side bow shock using both GEOTAIL and ISEE-3 magnetometer data.
NASA Astrophysics Data System (ADS)
Merdan, Ziya; Karakuş, Özlem
2016-07-01
The six dimensional Ising model with nearest-neighbor pair interactions has been simulated and verified numerically on the Creutz Cellular Automaton by using five bit demons near the infinite-lattice critical temperature with the linear dimensions L=4,6,8,10. The order parameter probability distribution for six dimensional Ising model has been calculated at the critical temperature. The constants of the analytical function have been estimated by fitting to probability function obtained numerically at the finite size critical point.
Noble, Andrew E.; Machta, Jonathan; Hastings, Alan
2015-01-01
Understanding the synchronization of oscillations across space is fundamentally important to many scientific disciplines. In ecology, long-range synchronization of oscillations in spatial populations may elevate extinction risk and signal an impending catastrophe. The prevailing assumption is that synchronization on distances longer than the dispersal scale can only be due to environmental correlation (the Moran effect). In contrast, we show how long-range synchronization can emerge over distances much longer than the length scales of either dispersal or environmental correlation. In particular, we demonstrate that the transition from incoherence to long-range synchronization of two-cycle oscillations in noisy spatial population models is described by the Ising universality class of statistical physics. This result shows, in contrast to all previous work, how the Ising critical transition can emerge directly from the dynamics of ecological populations. PMID:25851364
Magnetic and Ising quantum phase transitions in a model for isoelectronically tuned iron pnictides
NASA Astrophysics Data System (ADS)
Wu, Jianda; Si, Qimiao; Abrahams, Elihu
2016-03-01
Considerations of the observed bad-metal behavior in Fe-based superconductors led to an early proposal for quantum criticality induced by isoelectronic P for As doping in iron arsenides, which has since been experimentally confirmed. We study here an effective model for the isoelectronically tuned pnictides using a large-N approach. The model contains antiferromagnetic and Ising-nematic order parameters appropriate for J1-J2 exchange-coupled local moments on an Fe square lattice, and a damping caused by coupling to itinerant electrons. The zero-temperature magnetic and Ising transitions are concurrent and essentially continuous. The order-parameter jumps are very small, and are further reduced by the interplane coupling; consequently, quantum criticality occurs over a wide dynamical range. Our results reconcile recent seemingly contradictory experimental observations concerning the quantum phase transition in the P-doped iron arsenides.
Ivanov, Dmitri A; Abanov, Alexander G
2013-02-01
We propose to describe correlations in classical and quantum systems in terms of full counting statistics of a suitably chosen discrete observable. The method is illustrated with two exactly solvable examples: the classical one-dimensional Ising model and the quantum spin-1/2 XY chain. For the one-dimensional Ising model, our method results in a phase diagram with two phases distinguishable by the long-distance behavior of the Jordan-Wigner strings. For the anisotropic spin-1/2 XY chain in a transverse magnetic field, we compute the full counting statistics of the magnetization and use it to classify quantum phases of the chain. The method, in this case, reproduces the previously known phase diagram. We also discuss the relation between our approach and the Lee-Yang theory of zeros of the partition function. PMID:23496467
Bound states and E8 symmetry effects in perturbed quantum Ising chains
NASA Astrophysics Data System (ADS)
Kjall, Jonas; Pollmann, Frank; Moore, Joel
2011-03-01
In a recent experiment on CoNb2O6 , Coldea et al. found for the first time experimental evidence of the exceptional Lie algebra E8 . The emergence of this symmetry was theoretically predicted long ago for the transverse quantum Ising chain in the presence of a weak longitudinal field. We consider an accurate microscopic model of CoNb2O6 incorporating additional couplings and calculate numerically the dynamical structure function using a recently developed matrix-product-state method. We compare the signatures of this model to those found in the transverse Ising chain in a longitudinal field and to experimental data, with focus on how far the effects of integrability extends and how robust they are to the additional interactions. The excitation spectra show bound states characteristic of the weakly broken E8 symmetry and a bound state continuum carrying spectral weight comparable to the higher bound states.
Bound states and E8 symmetry effects in perturbed quantum Ising chains
NASA Astrophysics Data System (ADS)
Kjäll, Jonas A.; Pollmann, Frank; Moore, Joel E.
2011-01-01
In a recent experiment on CoNb2O6, R. Coldea [ScienceSCIEAS0036-807510.1126/science.1180085 327, 177 (2010)] found experimental evidence of the exceptional Lie algebra E8. The emergence of this symmetry was theoretically predicted long ago for the transverse quantum Ising chain in the presence of a weak longitudinal field. We consider an accurate microscopic model of CoNb2O6 incorporating additional couplings and calculate numerically the dynamical structure function using a recently developed matrix-product-state method. The excitation spectra show bound states characteristic of the weakly broken E8 symmetry. We compare the observed bound-state signatures in this model to those found in the transverse Ising chain in a longitudinal field and to experimental data.
Critical adsorption in the undersaturated regime: Scaling and exact results in Ising strips
NASA Astrophysics Data System (ADS)
Ciach, A.; Maciolek, A.; Stecki, J.
1998-04-01
Critical adsorption for weak surface field h1 is reconsidered. On the basis of physical heuristic arguments, approximate behavior of the scaling function is derived. New form of a scaling for weak h1 in finite systems is proposed and verified by testing against exact results obtained for this purpose in the 2D Ising strips. For weak h1 we find the approximate behavior of adsorption Γ˜τβ-Δ1 for the reduced temperatures h11/Δ1˜τ≪1. This behavior is consistent with experimental data [N. S. Desai, S. Peach, and C. Franck, Phys. Rev. E 52, 4129 (1995)] obtained for τ=10-5, and is in a very good agreement with exact results in the 2D Ising strip.
Tricritical Ising phase transition in a two-ladder Majorana fermion lattice
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyu; Franz, M.
2016-05-01
We introduce a two-ladder lattice model with interacting Majorana fermions that could be realized on the surfaces of a topological insulator film. We study this model with a combination of analytical and numerical techniques, and we find a phase diagram that features both gapless and gapped phases as well as interesting phase transitions including a quantum critical point in the tricritical Ising (TCI) universality class. The latter occurs at an intermediate-coupling strength at a meeting point of a first-order transition line and an Ising critical line, and it is known to be described by a superconformal field theory with central charge c =7/10 . We discuss the experimental feasibility of constructing the model and tuning parameters to the vicinity of the TCI point where signatures of the elusive supersymmetry can be observed.
Some contributions to knowledge of the magnetospheric plasma by ISEE-1 investigators
NASA Technical Reports Server (NTRS)
Ogilive, K. W.
1984-01-01
The ability to control the separation between ISEE-1 and 2 permitted study of the motion and structure of the bow shock and magnetopause, the boundary layers, and the plasma sheet. Evidence favoring the existence of reconnection and its relevance to the transfer of magnetic flux from the frontside to the rear of the magnetosphere, was obtained. The presence of reflected and accelerated particles is shown to lead to the development of a foreshock region between the bow shock and the interplanetary magnetic field line tangential to it. Precursors to interplanetary shocks are also observed. Inside the magnetosphere, ISEE contributed to knowledge of plasma waves, and, augmenting work with GEOS, to studies of plasma composition. In the near tail, the boundary layer of the plasma sheet disclosed interesting phenomena.
Pc 5 pulsations in the outer dawn magnetosphere seen by ISEE 1 and 2
NASA Technical Reports Server (NTRS)
Mitchell, D. G.; Williams, D. J.; Engebretson, M. J.; Cattell, C. A.; Lundin, R.
1990-01-01
A long-lasting Pc 5 pulsation at the dawn flank of the magnetosphere is studied using particle and field instrumentation from the ISEE 1 and 2 satellites. Electric field and particle modulation signatures were clearer than magnetic field variations, consistent with the satellites' position in latitude near the equatorial node of a fundamental resonance. Pulsation flow velocities along the ISEE 1 trajectory were calculated from particle characteristics using data from several instruments and from electric and magnetic field data. These flow velocities were all consistent with each other, but the velocities derived from plasma and energetic particle observations were a factor of 2.5 larger than velocities derived from the fields data. In contrast to observations of pulsations during magnetic storms, which often involve resonant or gyrating particle behavior, particles at all energies sampled (10 eV to 200 keV) appeared to respond passively to the pulsation throughout most of the period of interest.
Applying Tabu Search to the Two-Dimensional Ising Spin Glass
NASA Astrophysics Data System (ADS)
Laguna, Manuel; Laguna, Pablo
A variety of problems in statistical physics, such as Ising-like systems, can be modeled as integer programs. Physicists have relied mostly on Monte Carlo methods to find approximate solutions to these computationally difficult problems. In some cases, optimal solutions to relatively small problems have been found using standard optimization techniques, e.g., cutting plane and branch-and-bound algorithms. Motivated by the success of tabu search (TS) in finding optimal or near-optimal solutions to combinatorial optimization problems in a number of different settings, we study the application of this methodology to Ising-like systems. Particularly, we develop a TS method to find ground states of two-dimensional spin glasses. Our method performs a search at different levels of resolution in the spin lattice, and it is designed to obtain optimal or near-optimal solutions to problem instances with several different characteristics. Results are reported for computational experiments with up to 64×64 lattices.
Self-overlap as a method of analysis in Ising models.
Ferrera, A; Luque, B; Lacasa, L; Valero, E
2007-06-01
The damage spreading (DS) method provided a useful tool to obtain analytical results of the thermodynamics and stability of the two-dimensional (2D) Ising model--amongst many others--but it suffered both from ambiguities in its results and from large computational costs. In this paper we propose an alternative method, the so-called self-overlap method, based on the study of correlation functions measured at subsequent time steps as the system evolves towards its equilibrium. Applying Markovian and mean-field approximations to a 2D Ising system we obtain both analytical and numerical results on the thermodynamics that agree with the expected behavior. We also provide some analytical results on the stability of the system. Since only a single replica of the system needs to be studied, this method would seem to be free from the ambiguities that afflicted the DS method. It also seems to be numerically more efficient and analytically simpler. PMID:17677216
XY ring exchange model with frustrated Ising coupling on the triangular lattice
NASA Astrophysics Data System (ADS)
Owerre, S. A.
2016-07-01
We investigate the nature of a Z2-invariant XY ring-exchange interaction with a frustrated Ising coupling on the triangular lattice. Within the limits of pure XY ring-exchange interaction, we show that the classical ground state is degenerate resulting from the Z2-invariance of the Hamiltonian. Quantum fluctuations lift these classical degenerate ground states and produce an unusual state whose excitation spectrum exhibits a gapped maximum quadratic dispersion near k = 0 and vanishes at the midpoints of each side of the Brillouin zone. This result is in contrast to a gapless quadratic dispersion near k = 0 in the U(1)-invariant counterpart. We also study the effects of frustration when competing with a classically frustrated Ising interaction. We provide a glimpse into the possible quantum phases that could emerge. A comprehensive understanding of this Hamiltonian, however, cannot be elucidated analytically and requires an explicit numerical simulation.
Experimental realization of a compressed quantum simulation of a 32-spin Ising chain.
Li, Zhaokai; Zhou, Hui; Ju, Chenyong; Chen, Hongwei; Zheng, Wenqiang; Lu, Dawei; Rong, Xing; Duan, Changkui; Peng, Xinhua; Du, Jiangfeng
2014-06-01
Certain n-qubit quantum systems can be faithfully simulated by quantum circuits with only O(log(n)) qubits [B. Kraus, Phys. Rev. Lett. 107, 250503 (2011)]. Here we report an experimental realization of this compressed quantum simulation on a one-dimensional Ising chain. By utilizing an nuclear magnetic resonance quantum simulator with only five qubits, the property of ground-state magnetization of an open-boundary 32-spin Ising model is experimentally simulated, prefacing the expected quantum phase transition in the thermodynamic limit. This experimental protocol can be straightforwardly extended to systems with hundreds of spins by compressing them into up to merely 10-qubit systems. Our experiment paves the way for exploring physical phenomena in large-scale quantum systems with quantum simulators under current technology. PMID:24949746
Singularities of the Partition Function for the Ising Model Coupled to 2D Quantum Gravity
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.
We study the zeros in the complex plane of the partition function for the Ising model coupled to 2D quantum gravity for complex magnetic field and real temperature, and for complex temperature and real magnetic field, respectively. We compute the zeros by using the exact solution coming from a two-matrix model and by Monte-Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional curves in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of the singularities near the critical point. Despite the small size of the systems studied, we can obtain a reasonable estimate of the (known) critical exponents.
The Ising Model on a Quenched Ensemble of c=-5 Gravity Graphs
NASA Astrophysics Data System (ADS)
Anagnostopoulos, K. N.; Bialas, P.; Thorleifsson, G.
1999-02-01
We study with Monte Carlo methods an ensemble of c=-5 gravity graphs, generated by coupling a conformal field theory with central charge c=-5 to two-dimensional quantum gravity. We measure the fractal properties of the ensemble, such as the string susceptibility exponent γ s and the intrinsic fractal dimension d H. We find γ s=-1.5(1) and d H=3.36(4), in reasonable agreement with theoretical predictions. In addition, we study the critical behavior of an Ising model on a quenched ensemble of the c=-5 graphs and show that it agrees, within numerical accuracy, with theoretical predictions for the critical behavior of an Ising model coupled dynamically to two-dimensional quantum gravity, with a total central charge of the matter sector c=-5.
Rumenjak, Vlatko; Milardović, Stjepan; Kruhak, Ivan; Grabarić, Bozidar S
2003-09-01
The understanding of the most important sources of error in potentiometric blood analyser which might contribute to better instruments measurement repeatability is very often marginalized in fabrications and daily operation of some commercial blood analysers. In this paper ISEs-potentiometric measurements were performed and validated in Clinical Institute of Laboratory Diagnosis of the Zagreb University School of Medicine and Clinical Hospital Centre, using a carefully designed and constructed fully automated (computerised) homemade ISE-based blood electrolyte analyser constructed with an in-line five-channel flow-through measuring cell. The influence of electrolyte concentration of the salt bridge is reported. Special attention has been paid to the reference electrode design, and constructions which can operate in open liquid junction and membrane restricted liquid junction modes are described. PMID:12927687
Rényi information flow in the Ising model with single-spin dynamics.
Deng, Zehui; Wu, Jinshan; Guo, Wenan
2014-12-01
The n-index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase. PMID:25615223
Rényi information flow in the Ising model with single-spin dynamics
NASA Astrophysics Data System (ADS)
Deng, Zehui; Wu, Jinshan; Guo, Wenan
2014-12-01
The n -index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.
An analysis of intergroup rivalry using Ising model and reinforcement learning
NASA Astrophysics Data System (ADS)
Zhao, Feng-Fei; Qin, Zheng; Shao, Zhuo
2014-01-01
Modeling of intergroup rivalry can help us better understand economic competitions, political elections and other similar activities. The result of intergroup rivalry depends on the co-evolution of individual behavior within one group and the impact from the rival group. In this paper, we model the rivalry behavior using Ising model. Different from other simulation studies using Ising model, the evolution rules of each individual in our model are not static, but have the ability to learn from historical experience using reinforcement learning technique, which makes the simulation more close to real human behavior. We studied the phase transition in intergroup rivalry and focused on the impact of the degree of social freedom, the personality of group members and the social experience of individuals. The results of computer simulation show that a society with a low degree of social freedom and highly educated, experienced individuals is more likely to be one-sided in intergroup rivalry.
Biotechnology of biomass conversion
Wayman, M.; Parekh, S.R.
1990-01-01
This book covers: An introduction to biomass crops; The microbiology of fermentation processes; The production of ethanol from biomass crops, such as sugar cane and rubbers; The energy of biomass conversion; and The economics of biomass conversion.
Ising-like phase transition of an n-component Eulerian face-cubic model
NASA Astrophysics Data System (ADS)
Ding, Chengxiang; Guo, Wenan; Deng, Youjin
2013-11-01
By means of Monte Carlo simulations and a finite-size scaling analysis, we find a critical line of an n-component Eulerian face-cubic model on the square lattice and the simple cubic lattice in the region v>1, where v is the bond weight. The phase transition belongs to the Ising universality class independent of n. The critical properties of the phase transition can also be captured by the percolation of the complement of the Eulerian graph.
NASA Astrophysics Data System (ADS)
Neto, Minos A.; de Sousa, J. Ricardo; Padilha, Igor T.; Rodriguez Salmon, Octavio D.; Roberto Viana, J.; Dinóla Neto, F.
2016-06-01
We study the three-dimensional antiferromagnetic Ising model in both uniform longitudinal (H) and transverse (Ω) magnetic fields by using the effective-field theory (EFT) with finite cluster N = 1 spin (EFT-1). We analyzed the behavior of the magnetic susceptibility to investigate the reentrant phenomena that we have seen in the same phase diagram previously obtained in other papers. Our results shows the presence of two divergences in the susceptibility that indicates the existence of a reentrant behavior.
Phase diagram of the three-dimensional axial next-nearest-neighbor Ising model
NASA Astrophysics Data System (ADS)
Gendiar, A.; Nishino, T.
2005-01-01
The three-dimensional axial next-nearest-neighbor Ising model is studied by a modified tensor product variational approach. A global phase diagram is constructed with numerous commensurate and incommensurate magnetic phases. The devil’s stairs behavior for the model is confirmed. The wavelength of the spin modulated phases increases to infinity at the boundary with the ferromagnetic phase. Widths of the commensurate phases are considerably narrower than those calculated by mean-field approximations.
Inaba, Kensuke; Tamaki, Kiyoshi; Igeta, Kazuhiro; Yamashita, Makoto; Tokunaga, Yuuki
2014-12-04
In this study, we propose a method for generating cluster states of atoms in an optical lattice. By utilizing the quantum properties of Wannier orbitals, we create an tunable Ising interaction between atoms without inducing the spin-exchange interactions. We investigate the cause of errors that occur during entanglement generations, and then we propose an error-management scheme, which allows us to create high-fidelity cluster states in a short time.
Adaptive Thouless-Anderson-Palmer approach to inverse Ising problems with quenched random fields.
Huang, Haiping; Kabashima, Yoshiyuki
2013-06-01
The adaptive Thouless-Anderson-Palmer equation is derived for inverse Ising problems in the presence of quenched random fields. We test the proposed scheme on Sherrington-Kirkpatrick, Hopfield, and random orthogonal models and find that the adaptive Thouless-Anderson-Palmer approach allows accurate inference of quenched random fields whose distribution can be either Gaussian or bimodal. In particular, another competitive method for inferring external fields, namely, the naive mean field method with diagonal weights, is compared and discussed. PMID:23848649
Smeared quantum phase transition in the dissipative random quantum Ising model
NASA Astrophysics Data System (ADS)
Vojta, Thomas; Hoyos, José A.
2010-01-01
We investigate the quantum phase transition in the random transverse-field Ising model under the influence of Ohmic dissipation. To this end, we numerically implement a strong-disorder renormalization-group scheme. We find that Ohmic dissipation destroys the quantum critical point and the associated quantum Griffiths phase by smearing. Our results quantitatively confirm a recent theory [J.A. Hoyos, T. Vojta, Phys. Rev. Lett. 100 (2008) 240601] of smeared quantum phase transitions.
A universal form of slow dynamics in zero-temperature random-field Ising model
NASA Astrophysics Data System (ADS)
Ohta, H.; Sasa, S.
2010-04-01
The zero-temperature Glauber dynamics of the random-field Ising model describes various ubiquitous phenomena such as avalanches, hysteresis, and related critical phenomena. Here, for a model on a random graph with a special initial condition, we derive exactly an evolution equation for an order parameter. Through a bifurcation analysis of the obtained equation, we reveal a new class of cooperative slow dynamics with the determination of critical exponents.
Uniqueness of Translation-Covariant Zero-Temperature Metastate in Disordered Ising Ferromagnets
NASA Astrophysics Data System (ADS)
Wehr, Jan; Wasielak, Aramian
2016-01-01
We study ground states of Ising models with random ferromagnetic couplings, proving the triviality of all zero-temperature metastates. This result sheds a new light on the properties of these systems, putting strong restrictions on their possible ground state structure. Open problems related to existence of interface-supporting ground states are stated and an interpretation of the main result in terms of first-passage and random surface models in a random environment is presented.
Ising ferromagnet on a fractal family: Thermodynamical functions and scaling laws
NASA Astrophysics Data System (ADS)
Redinz, José Arnaldo; de Magalhães, Aglaé C. N.
1995-02-01
The Ising model with external magnetic field on infinitely ramified fractal lattices is studied. We derive exact expressions for the specific heat, spontaneous magnetization, and susceptibility. The critical exponents α, β, and γ corresponding to these respective thermal functions (at zero field) as well as the correlation length critical exponent ν are obtained. The hyperscaling law extended to fractals and the Rushbrooke scaling law are verified for these fractals.
Focal axis resolver for offset reflector antennas
NASA Technical Reports Server (NTRS)
Schmidt, R. F.
1980-01-01
Described are electrical means for determining the focal axis of an offset reflector antenna whose physical rim is not coincident with the boundary of the electrical aperture. Even and odd sensing functions are employed in the focal region, leading to both amplitude and phase criteria for resolving a focal axis generally inclined with respect to the system axis. The analytical aspects of the problem are discussed, and an example related to a 4-meter Large-Antenna Multiple-Frequency Microwave Radiometer (LAMMR) is included. The technique is useful for focal axis determination in mathematical simulations and in the physical world.
Principles of the prolactin/vasoinhibin axis
Bertsch, Thomas; Bollheimer, Cornelius; Rios-Barrera, Daniel; Pearce, Christy F.; Hüfner, Michael; Martínez de la Escalera, Gonzalo; Clapp, Carmen
2015-01-01
The hormonal family of vasoinhibins, which derive from the anterior pituitary hormone prolactin, are known for their inhibiting effects on blood vessel growth, vasopermeability, and vasodilation. As pleiotropic hormones, vasoinhibins act in multiple target organs and tissues. The generation, secretion, and regulation of vasoinhibins are embedded into the organizational principle of an axis, which integrates the hypothalamus, the pituitary, and the target tissue microenvironment. This axis is designated as the prolactin/vasoinhibin axis. Disturbances of the prolactin/vasoinhibin axis are associated with the pathogenesis of retinal and cardiac diseases and with diseases occurring during pregnancy. New phylogenetical, physiological, and clinical implications are discussed. PMID:26310939
Helical axis stellarator with noninterlocking planar coils
Reiman, Allan; Boozer, Allen H.
1987-01-01
A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.
A numerical method of tracing a vortical axis along local topological axis line
NASA Astrophysics Data System (ADS)
Nakayama, Katsuyuki; Hasegawa, Hideki
2016-06-01
A new numerical method is presented to trace or identify a vortical axis in flow, which is based on Galilean invariant flow topology. We focus on the local flow topology specified by the eigenvalues and eigenvectors of the velocity gradient tensor, and extract the axis component from its flow trajectory. Eigen-vortical-axis line is defined from the eigenvector of the real eigenvalue of the velocity gradient tensor where the tensor has the conjugate complex eigenvalues. This numerical method integrates the eigen-vortical-axis line and traces a vortical axis in terms of the invariant flow topology, which enables to investigate the feature of the topology-based vortical axis.
Angle between principal axis triples
NASA Astrophysics Data System (ADS)
Tape, Walter; Tape, Carl
2012-09-01
The principal axis angle ξ0, or Kagan angle, is a measure of the difference between the orientations of two seismic moment tensors. It is the smallest angle needed to rotate the principal axes of one moment tensor to the corresponding principal axes of the other. This paper is a conceptual review of the main features of ξ0. We give a concise formula for calculating ξ0, but our main goal is to illustrate the behaviour of ξ0 geometrically. When the first of two moment tensors is fixed, the angle ξ0 between them becomes a function on the unit ball. The level surfaces of ξ0 can then be depicted in the unit ball, and they give insights into ξ0 that are not obvious from calculations alone. We also include a derivation of the known probability density inline image of ξ0. The density inline image is proportional to the area of a certain surface inline image. The easily seen variation of inline image with t then explains the rather peculiar shape of inline image. Because the curve inline image is highly non-uniform, its shape needs to be considered when analysing distributions of empirical ξ0 values. We recall an example of Willemann which shows that ξ0 may not always be the most appropriate measure of separation for moment tensor orientations, and we offer an alternative measure.
ERIC Educational Resources Information Center
Corliss, William R.
This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…
Phase diagram and critical behavior of the antiferromagnetic Ising model in an external field
NASA Astrophysics Data System (ADS)
Jeferson Lourenço, Bruno; Dickman, Ronald
2016-03-01
We study the critical properties of the antiferromagnetic spin-1/2 Ising model in an external field on the square lattice. Using tomographic entropic sampling, a flat-histogram simulation method, we estimate the number of configurations, Ω , and related microcanonical averages in the energy-magnetization space, for system sizes L = 10-30. The critical line and exponents are calculated using finite-size scaling analysis in the temperature-external field plane. With these estimates in hand, we perform detailed studies of critical behavior using Metropolis sampling of larger systems (L≤slant 320 ). These results are compared to several approximate theoretical methods. Our estimates of critical exponents and Binder’s reduced fourth cumulant along the critical line are in very good agreement with their respective literature values for the two-dimensional Ising universality class. We verify as well that the specific heat scales ˜ \\ln L along the critical line, as expected for an Ising-like critical point.
Graphical Representations for Ising and Potts Models in General External Fields
NASA Astrophysics Data System (ADS)
Cioletti, Leandro; Vila, Roberto
2016-01-01
This work is concerned with the theory of graphical representation for the Ising and Potts models over general lattices with non-translation invariant external field. We explicitly describe in terms of the random-cluster representation the distribution function and, consequently, the expected value of a single spin for the Ising and q-state Potts models with general external fields. We also consider the Gibbs states for the Edwards-Sokal representation of the Potts model with non-translation invariant magnetic field and prove a version of the FKG inequality for the so called general random-cluster model (GRC model) with free and wired boundary conditions in the non-translation invariant case. Adding the amenability hypothesis on the lattice, we obtain the uniqueness of the infinite connected component and the almost sure quasilocality of the Gibbs measures for the GRC model with such general magnetic fields. As a final application of the theory developed, we show the uniqueness of the Gibbs measures for the ferromagnetic Ising model with a positive power-law decay magnetic field with small enough power, as conjectured in Bissacot et al. (Commun Math Phys 337: 41-53, 2015).
Quantum criticality and confinement effects in an Ising chain in transverse field
NASA Astrophysics Data System (ADS)
Coldea, Radu
2011-03-01
The Ising chain in transverse field is one of the key paradigms for the theory of continuous zero-temperature quantum phase transitions. We have recently realized this system experimentally by applying strong magnetic fields to the quasi- 1D, low-exchange Ising ferromagnet CoNb2O6 to drive it to its quantum critical point where the spontaneous long-range magnetic order is suppressed by magnetic field. Using high-resolution single-crystal neutron scattering we have probed how the spin dynamics evolves with the applied field and have observed a dramatic change in the character of spin excitations at the quantum critical point, from pairs of domain-wall (kink) quasiparticles in the magnetically-ordered phase, to sharp spin- flip quasiparticles in the paramagnetic phase. The weak, but finite couplings between the chains significantly enrich the physics by stabilizing a complex structure of two-kink bound states due to mean-field confinement effects. In zero field the rich spectrum of bound states can be quantitatitively understood following McCoy and Wu's analytic theory of weak confinement. Just below the critical field the energies of the two lowest bound states approach the ``golden ratio'' as predicted by Zamolodchikov's E8 scaling limit solution of the off-critical Ising model in a weak longitudinal field.
Observation of 2D Ising criticality of liquid-gas transition by the flowgram method
NASA Astrophysics Data System (ADS)
Yarmolinsky, Max; Kuklov, Anatoly
We study the critical properties of the transition in 2D liquid-gas system with the square-well potential interaction by Monte Carlo simulations in the grand canonical ensemble. Due to lack of the underlying Ising symmetry, the analysis cannot be done reliably by the standard methods applicable to lattice systems. In contrast, the analysis based on the flowgram method allowed us to find the critical point to significantly higher (and controllable) accuracy than in previous studies by other authors. Simulations were performed in a progression of sizes L up to size L = 84 , with the particle numbers varying over 3 orders of magnitude and the subcritical behavior not extending beyond L = 10 - 15 . The finite size scaling analysis of the critical exponents and their ratio, μ and γ / ν , gives values consistent with the 2D Ising universality class within 1-2% of errors. Our result essentially closes proposals that the nature of the liquid-gas transition might be different from the Ising model in systems with short-range interactions. This work was supported by the NSF Grant PHY1314469.
Ising spin network states for loop quantum gravity: a toy model for phase transitions
NASA Astrophysics Data System (ADS)
Feller, Alexandre; Livine, Etera R.
2016-03-01
Non-perturbative approaches to quantum gravity call for a deep understanding of the emergence of geometry and locality from the quantum state of the gravitational field. Without background geometry, the notion of distance should emerge entirely from the correlations between the gravity fluctuations. In the context of loop quantum gravity, quantum states of geometry are defined as spin networks. These are graphs decorated with spin and intertwiners, which represent quantized excitations of areas and volumes of the space geometry. Here, we develop the condensed-matter point of view on extracting the physical and geometrical information from spin network states: we introduce new Ising spin network states, both in 2d on a square lattice and in 3d on a hexagonal lattice, whose correlations map onto the usual Ising model in statistical physics. We construct these states from the basic holonomy operators of loop gravity and derive a set of local Hamiltonian constraints that entirely characterize our states. We discuss their phase diagram and show how the distance can be reconstructed from the correlations in the various phases. Finally, we propose generalizations of these Ising states, which open the perspective to study the coarse-graining and dynamics of spin network states using well-known condensed-matter techniques and results.
Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations
NASA Astrophysics Data System (ADS)
Assis, M.; Boukraa, S.; Hassani, S.; van Hoeij, M.; Maillard, J.-M.; McCoy, B. M.
2012-02-01
We give the exact expressions of the partial susceptibilities χ(3)d and χ(4)d for the diagonal susceptibility of the Ising model in terms of modular forms and Calabi-Yau ODEs, and more specifically, 3F2([1/3, 2/3, 3/2], [1, 1] z) and 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1] z) hypergeometric functions. By solving the connection problems we analytically compute the behavior at all finite singular points for χ(3)d and χ(4)d. We also give new results for χ(5)d. We see, in particular, the emergence of a remarkable order-6 operator, which is such that its symmetric square has a rational solution. These new exact results indicate that the linear differential operators occurring in the n-fold integrals of the Ising model are not only ‘derived from geometry’ (globally nilpotent), but actually correspond to ‘special geometry’ (homomorphic to their formal adjoint). This raises the question of seeing if these ‘special geometry’ Ising operators are ‘special’ ones, reducing, in fact systematically, to (selected, k-balanced, ...) q + 1Fq hypergeometric functions, or correspond to the more general solutions of Calabi-Yau equations.
Inference of the sparse kinetic Ising model using the decimation method.
Decelle, Aurélien; Zhang, Pan
2015-05-01
In this paper we study the inference of the kinetic Ising model on sparse graphs by the decimation method. The decimation method, which was first proposed in Decelle and Ricci-Tersenghi [Phys. Rev. Lett. 112, 070603 (2014)] for the static inverse Ising problem, tries to recover the topology of the inferred system by setting the weakest couplings to zero iteratively. During the decimation process the likelihood function is maximized over the remaining couplings. Unlike the ℓ(1)-optimization-based methods, the decimation method does not use the Laplace distribution as a heuristic choice of prior to select a sparse solution. In our case, the whole process can be done auto-matically without fixing any parameters by hand. We show that in the dynamical inference problem, where the task is to reconstruct the couplings of an Ising model given the data, the decimation process can be applied naturally into a maximum-likelihood optimization algorithm, as opposed to the static case where pseudolikelihood method needs to be adopted. We also use extensive numerical studies to validate the accuracy of our methods in dynamical inference problems. Our results illustrate that, on various topologies and with different distribution of couplings, the decimation method outperforms the widely used ℓ(1)-optimization-based methods. PMID:26066148
Exact ground states of large two-dimensional planar Ising spin glasses
NASA Astrophysics Data System (ADS)
Pardella, G.; Liers, F.
2008-11-01
Studying spin-glass physics through analyzing their ground-state properties has a long history. Although there exist polynomial-time algorithms for the two-dimensional planar case, where the problem of finding ground states is transformed to a minimum-weight perfect matching problem, the reachable system sizes have been limited both by the needed CPU time and by memory requirements. In this work, we present an algorithm for the calculation of exact ground states for two-dimensional Ising spin glasses with free boundary conditions in at least one direction. The algorithmic foundations of the method date back to the work of Kasteleyn from the 1960s for computing the complete partition function of the Ising model. Using Kasteleyn cities, we calculate exact ground states for huge two-dimensional planar Ising spin-glass lattices (up to 30002 spins) within reasonable time. According to our knowledge, these are the largest sizes currently available. Kasteleyn cities were recently also used by Thomas and Middleton in the context of extended ground states on the torus. Moreover, they show that the method can also be used for computing ground states of planar graphs. Furthermore, we point out that the correctness of heuristically computed ground states can easily be verified. Finally, we evaluate the solution quality of heuristic variants of the L. Bieche approach.
Iterated multidimensional wave conversion
NASA Astrophysics Data System (ADS)
Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.
2011-12-01
Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.
Concentrating solar cookers with eccentric axis
Wang Xiping; Sha Yong Ling; Hou Shugin; Liu Zude
1992-12-31
This paper describes the design, development and use of a concentrating solar cooker with eccentric axis in China. For the same power, the older circular parabolic cookers are large in volume and less convenient to operate than the cooker with eccentric axis. Calculations are presented for the design of the cooker and for obtaining an accurate test of its efficiency.
The axis of evil - a polarization perspective
NASA Astrophysics Data System (ADS)
Frommert, M.; Enßlin, T. A.
2010-04-01
We search for an unusual alignment of the preferred axes of the quadrupole and octopole, the so-called axis of evil, in the cosmic microwave background (CMB) temperature and polarization data from the Wilkinson Microwave Anisotropy Probe. We use the part of the polarization map which is uncorrelated with the temperature map as a statistically independent probe of the axis of evil, which helps to assess whether the latter has a cosmological origin or if it is a mere chance fluctuation in the temperature. Note, though, that for certain models creating a preferred axis in the temperature map, we would not expect to see the axis in the uncorrelated polarization map. We find that the axis of the quadrupole of the uncorrelated polarization map roughly aligns with the axis of evil within our measurement precision, whereas the axis of the octopole does not. However, with our measurement uncertainty, the probability of such a scenario to happen by chance in an isotropic universe is of the order of 50 per cent. We also find that the so-called cold spot present in the CMB temperature map is even colder in the part of the temperature map which is uncorrelated with the polarization, although there is still a large uncertainty in the latter. Therefore, our analysis of the axis of evil and a future analysis of the cold spot in the uncorrelated temperature data will strongly benefit from the polarization data expected from the Planck satellite.
Morping blade design for vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Macphee, David; Beyene, Asfaw
2015-11-01
Wind turbines operate at peak efficiency at a certain set of operational conditions. Away from these conditions, conversion efficiency drops significantly, requiring pitch and yaw control schemes to mitigate these losses. These efforts are an example of geometric variability, allowing for increased power production but with an unfortunate increase in investment cost to the energy conversion system. In Vertical-Axis Wind Turbines (VAWTs), the concept of pitch control is especially complicated due to a dependence of attack angle on armature azimuth. As a result, VAWT pitch control schemes, both active and passive, are as of yet unfeasible. This study investigates a low-cost, passive pitch control system, in which VAWT blades are constructed of a flexible material, allowing for continuous shape-morphing in response to local aerodynamic loading. This design is analyzed computationally using a finite-volume fluid-structure interaction routine and compared to a geometrically identical rigid rotor. The results indicate that the flexible blade increases conversion efficiency by reducing the severity of vortex shedding, allowing for greater average torque over a complete revolution.
The Thymus–Neuroendocrine Axis
Reggiani, Paula C.; Morel, Gustavo R.; Cónsole, Gloria M.; Barbeito, Claudio G.; Rodriguez, Silvia S.; Brown, Oscar A.; Bellini, Maria Jose; Pléau, Jean-Marie; Dardenne, Mireille; Goya, Rodolfo G.
2009-01-01
Thymulin is a thymic hormone exclusively produced by the thymic epithelial cells. It consists of a nonapeptide component coupled to the ion zinc, which confers biological activity to the molecule. After its discovery in the early 1970s, thymulin was characterized as a thymic hormone involved in several aspects of intrathymic and extrathymic T cell differentiation. Subsequently, it was demonstrated that thymulin production and secretion is strongly influenced by the neuroendocrine system. Conversely, a growing core of information, to be reviewed here, points to thymulin as a hypophysotropic peptide. In recent years, interest has arisen in the potential use of thymulin as a therapeutic agent. Thymulin was shown to possess anti-inflammatory and analgesic properties in the brain. Furthermore, an adenoviral vector harboring a synthetic gene for thymulin, stereotaxically injected in the rat brain, achieved a much longer expression than the adenovirally mediated expression in the brain of other genes, thus suggesting that an anti-inflammatory activity of thymulin prevents the immune system from destroying virus-transduced brain cells. Other studies suggest that thymulin gene therapy may also be a suitable therapeutic strategy to prevent some of the endocrine and metabolic alterations that typically appear in thymus-deficient animal models. The present article briefly reviews the literature on the physiology, molecular biology, and therapeutic potential of thymulin. PMID:19236333
Focal axis resolver for offset reflector antennas
NASA Technical Reports Server (NTRS)
Schmidt, R. F. (Inventor)
1983-01-01
Method and apparatus for determining the focal axis of an asymmetrical antenna such as an offset paraboloid reflector whose physical rim is not coincident with the boundary of the electrical aperture but whose focal point is known is provided. A transmitting feed horn array consisting of at least two feed horn elements is positioned asymmetrically on either side of an estimated focal axis which is generally inclined with respect to the boresight axis of the antenna. The feed horn array is aligned with the estimated focal axis so that the phase centers (CP sub 1, CP sub 2) of the two feed horn elements are located on a common line running through the focal point (F) orthogonally with respect to the estimated focal axis.
Fritsch, Katharina; Ehlers, G.; Rule, K. C.; Habicht, Klaus; Ramazanoglu, Mehmet K.; Dabkowska, H. A.; Gaulin, Bruce D.
2015-11-05
We study the application of a magnetic field transverse to the easy axis, Ising direction in the quasi-two-dimensional kagome staircase magnet, Co_{3}V_{2}O_{8}, induces three quantum phase transitions at low temperatures, ultimately producing a novel high field polarized state, with two distinct sublattices. New time-of-flight neutron scattering techniques, accompanied by large angular access, high magnetic field infrastructure allow the mapping of a sequence of ferromagnetic and incommensurate phases and their accompanying spin excitations. Also, at least one of the transitions to incommensurate phases at μ_{0}H_{c1}~6.25 T and μ_{0}H_{c2}~7 T is discontinuous, while the final quantum critical point at μ_{0}H_{c3}~13 T is continuous.
Identification of kinematic errors of five-axis machine tool trunnion axis from finished test piece
NASA Astrophysics Data System (ADS)
Zhang, Ya; Fu, Jianzhong; Chen, Zichen
2014-09-01
Compared with the traditional non-cutting measurement, machining tests can more accurately reflect the kinematic errors of five-axis machine tools in the actual machining process for the users. However, measurement and calculation of the machining tests in the literature are quite difficult and time-consuming. A new method of the machining tests for the trunnion axis of five-axis machine tool is proposed. Firstly, a simple mathematical model of the cradle-type five-axis machine tool was established by optimizing the coordinate system settings based on robot kinematics. Then, the machining tests based on error-sensitive directions were proposed to identify the kinematic errors of the trunnion axis of cradle-type five-axis machine tool. By adopting the error-sensitive vectors in the matrix calculation, the functional relationship equations between the machining errors of the test piece in the error-sensitive directions and the kinematic errors of C-axis and A-axis of five-axis machine tool rotary table was established based on the model of the kinematic errors. According to our previous work, the kinematic errors of C-axis can be treated as the known quantities, and the kinematic errors of A-axis can be obtained from the equations. This method was tested in Mikron UCP600 vertical machining center. The machining errors in the error-sensitive directions can be obtained by CMM inspection from the finished test piece to identify the kinematic errors of five-axis machine tool trunnion axis. Experimental results demonstrated that the proposed method can reduce the complexity, cost, and the time consumed substantially, and has a wider applicability. This paper proposes a new method of the machining tests for the trunnion axis of five-axis machine tool.
NASA Technical Reports Server (NTRS)
Knoll, R.; Epstein, G.; Hoang, S.; Huntzinger, G.; Steinberg, J. L.; Fainberg, J.; Grena, F.; Stone, R. G.; Mosier, S. R.
1978-01-01
The SBH experiment on ISEE-C will provide maps of the large scale structure of the interplanetary magnetic field from ten solar radii altitude to the earth orbit, in and out of the ecliptic. The SBH instrument will track type III solar radio bursts at 24 frequencies in the range 30 kHz-2 MHz thus providing the positions of 24 points along the line of force which guides the electrons producing the radio radiation. The antennas are two dipoles: one (90 m long) in the spin plane, the other (15 m long) along the spin axis. The receiver was designed for high sensitivity (0.3 microV in 3 kHz BW), high intermodulation rejection (80 dB/1 microV input for order 2 products), large dynamic range (70 dB), high selectivity (-30-dB response 6.5 kHz away from the center frequency of 10.7 MHz for the 3 kHz BW channels), and high reliability (expected orbital life: 3 years).
Ising-Type Ferromagnetic Ground State Driven by Anisotropic c-f Hybridization in CeRu2Al2B
NASA Astrophysics Data System (ADS)
Matsuno, Haruki; Kotegawa, Hisashi; Matsuoka, Eiichi; Tomiyama, Yo; Sugawara, Hitoshi; Tou, Hideki
2014-10-01
The magnetic correlations between Ce 4f electrons and conduction electrons in the new tetragonal compound CeRu2Al2B have been investigated by 27Al nuclear magnetic resonance (NMR). The 27Al NMR spin-lattice relaxation rate 1/T1 exhibits a large magnetic anisotropy for field directions. Within a localized moment picture, the Ce 4f spin-fluctuation rates Γ|| for the c-axis and Γ⊥ for the c-plane are evaluated by taking account of the magnetic anisotropy. The relation of Γ allel gg Γ bot , which holds in the entire temperature range, indicates that the c-f hybridization between the ligand conduction electrons and the Ce 4f electrons with the Γ 7(1) crystal electric field ground state is anisotropic. From the temperature dependence of Γ, it is found that the Kondo effect dominates the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction at high temperatures, whereas below 60 K the RKKY interaction overcomes the Kondo effect and causes the magnetic order. These results indicate that the anisotropic c-f hybridization plays a vital role in realization of the Ising-type ferromagnetic magnetic ground state in CeRu2Al2B.
Design of off-axis PIAACMC mirrors
NASA Astrophysics Data System (ADS)
Pluzhnik, Eugene; Guyon, Olivier; Belikov, Ruslan; Bendek, Eduardo
2015-09-01
The Phase-Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) provides an efficient way to control diffraction propagation effects caused by the central obstruction/segmented mirrors of the telescope. PIAACMC can be optimized in a way that takes into account both chromatic diffraction effects caused by the telescope obstructed aperture and tip/tilt sensitivity of the coronagraph. As a result, unlike classic PIAA, the PIAACMC mirror shapes are often slightly asymmetric even for an on-axis configuration and require more care in calculating off-axis shapes when an off-axis configuration is preferred. A method to design off-axis PIAA mirror shapes given an on-axis mirror design is presented. The algorithm is based on geometrical ray tracing and is able to calculate off-axis PIAA mirror shapes for an arbitrary geometry of the input and output beams. The method is demonstrated using the third generation PIAACMC design for WFIRST-AFTA telescope. Geometrical optics design issues related to the off-axis diffraction propagation effects are also discussed.
NASA Technical Reports Server (NTRS)
2004-01-01
I/NET, Inc., is making the dream of natural human-computer conversation a practical reality. Through a combination of advanced artificial intelligence research and practical software design, I/NET has taken the complexity out of developing advanced, natural language interfaces. Conversational capabilities like pronoun resolution, anaphora and ellipsis processing, and dialog management that were once available only in the laboratory can now be brought to any application with any speech recognition system using I/NET s conversational engine middleware.
Off-axis reflective optical apparatus
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor); Leary, David F. (Inventor); Mammini, Paul V. (Inventor)
2005-01-01
Embodiments of the present invention are directed to a simple apparatus and a convenient and accurate method of mounting the components to form an off-axis reflective optical apparatus such as a collimator. In one embodiment, an off-axis reflective optical apparatus comprises a mounting block having a ferrule holder support surface and an off-axis reflector support surface which is generally perpendicular to the ferrule holder support surface. An optical reflector is mounted on the off-axis reflector support surface and has a reflected beam centerline. The optical reflector has a conic reflective surface and a conic center. A ferrule holder is mounted on the ferrule holder support surface. The ferrule holder provides a ferrule for coupling to an optical fiber and orienting a fiber tip of the optical fiber along a fiber axis toward the optical reflector. The fiber axis is nonparallel to the reflected beam centerline. Prior to mounting the optical reflector to the off-axis reflector support surface and prior to mounting the ferrule holder to the ferrule holder support surface, the optical reflector is movable on the off-axis reflector surface and the ferrule holder is movable on the ferrule holder support surface to align the conic center of the optical reflector with respect to the fiber tip of the optical fiber, and the apparatus has at least one of the following features: (1) the optical reflector is movable on the off-axis reflector support surface to adjust a focus of the fiber tip with respect to the optical reflector, and (2) the ferrule holder is movable on the ferrule holder support surface to adjust the focus of the fiber tip with respect to the optical reflector.
Dual Axis Light Sensor for Tracking Sun
NASA Astrophysics Data System (ADS)
Shibata, Miki; Tambo, Toyokazu
We have developed convenient light sensors to control a platform of solar cell panel. Dual axis light sensor in the present paper has structure of 5 PD (photodiode) light sensor which is composed of 5 photodiodes attached on a frustum of pyramid(1). Light source can be captured in front of the sensor by rotating the X and Y axis as decreasing the output deviation between two pairs of outside photodiodes. We here report the mechanism of sun tacking using the dual axis 5 PD light sensor and the fundamental results performed in the dark room.
Emergent Ising degrees of freedom in the J1-J2-J3 model for the iron tellurides
NASA Astrophysics Data System (ADS)
Zhang, Guanghua; Fernandes, Rafael; Flint, Rebecca
The iron-telluride family of superconductors form a double-stripe [ Q = (π / 2 , π / 2) ] magnetic order, which can be captured within a J1 -J2 -J3 Heisenberg model in the regime J3 >>J2 >>J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground state manifold has three additional Ising degrees of freedom. Via their coupling to the lattice, they give rise to a monoclinic distortion and to two non-uniform lattice distortions with wave-vector (π , π) . Because the ground state is four-fold degenerate (mod rotations in spin space), only two of these Ising order parameters are independent. Here we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order. All three transitions (corresponding to the condensations of two Ising and one magnetic order parameter) are simultaneous and first order in three dimensions, but lower dimensionality (or equivalently weaker interlayer coupling) and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions.
NASA Astrophysics Data System (ADS)
Seabra, Luis; Shannon, Nic
2011-04-01
The majority of magnetic materials possess some degree of magnetic anisotropy, either at the level of a single ion, or in the exchange interactions between different magnetic ions. Where these exchange interactions are also frustrated, the competition between them and anisotropy can stabilize a wide variety of new phases in applied magnetic field. Motivated by the hexagonal delafossite 2H-AgNiO2, we study the Heisenberg antiferromagnet on a layered triangular lattice with competing first- and second-neighbor interactions and single-ion easy-axis anisotropy. Using a combination of classical Monte Carlo simulation, mean-field analysis, and Landau theory, we establish the magnetic phase diagram of this model as a function of temperature and magnetic field for a fixed ratio of exchange interactions, but with values of easy-axis anisotropy D extending from the Heisenberg (D=0) to the Ising (D=∞) limits. We uncover a rich variety of different magnetic phases. These include several phases which are magnetic supersolids (in the sense of Matsuda and Tsuneto or Liu and Fisher), one of which may already have been observed in AgNiO2. We explore how this particular supersolid arises through the closing of a gap in the spin-wave spectrum, and how it competes with rival collinear phases as the easy-axis anisotropy is increased. The finite temperature properties of this phase are found to be different from those of any previously studied magnetic supersolid.
Noncyclic geometric quantum computation and preservation of entanglement for a two-qubit Ising model
NASA Astrophysics Data System (ADS)
Rangani Jahromi, H.; Amniat-Talab, M.
2015-10-01
After presenting an exact analytical solution of time-dependent Schrödinger equation, we study the dynamics of entanglement for a two-qubit Ising model. One of the spin qubits is driven by a static magnetic field applied in the direction of the Ising interaction, while the other is coupled with a rotating magnetic field. We also investigate how the entanglement can be controlled by changing the external parameters. Because of the important role of maximally entangled Bell states in quantum communication, we focus on the generalized Bell states as the initial states of the system. It is found that the entanglement evolution is independent of the initial Bell states. Moreover, we can preserve the initial maximal entanglement by adjusting the angular frequency of the rotating field or controlling the exchange coupling between spin qubits. Besides, our calculation shows that the entanglement dynamics is unaffected by the static magnetic field imposed in the direction of the Ising interaction. This is an interesting result, because, as we shall show below, this driving field can be used to control and manipulate the noncyclic geometric phase without affecting the system entanglement. Besides, the nonadiabatic and noncyclic geometric phase for evolved states of the present system are calculated and described in detail. In order to identify the unusable states for quantum communication, completely deviated from the initial maximally entangled states, we also study the fidelity between the initial Bell state and the evolved state of the system. Interestingly, we find that these unusable states can be detected by geometric quantum computation.
Solar wind-magnetosphere coupling and the distant magnetotail: ISEE-3 observations
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Smith, E. J.; Sibeck, D. G.; Baker, D. N.; Zwickl, R. D.; Akasofu, S. I.; Lepping, R. P.
1985-01-01
ISEE-3 Geotail observations are used to investigate the relationship between the interplanetary magnetic field, substorm activity, and the distant magnetotail. Magnetic field and plasma observations are used to present evidence for the existence of a quasi-permanent, curved reconnection neutral line in the distant tail. The distance to the neutral line varies from absolute value of X = 120 to 140 R/sub e near the center of the tail to beyond absolute value of X = 200 R/sub e at the flanks. Downstream of the neutral line the plasma sheet magnetic field is shown to be negative and directly proportional to negative B/sub z in the solar wind as observed by IMP-8. V/sub x in the distant plasma sheet is also found to be proportional to IMF B/sub z with southward IMF producing the highest anti-solar flow velocities. A global dayside reconnection efficiency of 20 +- 5% is derived from the ISEE-3/IMP-8 magnetic field comparisons. Substorm activity, as measured by the AL index, produces enhanced negative B/sub z and tailward V/sub x in the distant plasma sheet in agreement with the basic predictions of the reconnection-based models of substorms. The rate of magnetic flux transfer out of the tail as a function of AL is found to be consistent with previous near-Earth studies. Similarly, the mass and energy fluxes carried by plasma sheet flow down the tail are consistent with theoretical mass and energy budgets for an open magnetosphere. In summary, the ISEE-3 Geotail observations appear to provide good support for reconnection models of solar wind-magnetosphere coupling and substorm energy rates.
Thermal entanglement of the Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Qiao, Jie; Zhou, Bin
2015-11-01
We investigate the thermal entanglement in a spin-1/2 Ising-Heisenberg diamond chain, in which the vertical Heisenberg spin dimers alternate with single Ising spins. Due to the fact that the Dzyaloshinskii-Moriya (DM) interaction contributes to unusual and interesting magnetic properties in actual materials, and moreover it plays a significant role in the degree of the entanglement of the Heisenberg quantum spin systems, we focus on the effects of different DM interactions, including Dz and Dx, on the thermal entanglement of the Heisenberg spin dimer. The concurrence, as a measure of spin dimer entanglement, is calculated for different values of exchange interactions, DM interaction, external magnetic field, and temperature. It is found that the critical temperature and the critical magnetic field corresponding to the vanishing of entanglement increase with DM interaction, and the entanglement revival region gets larger by increasing DM interaction, thus DM interaction favors the formation of the thermal entanglement. It is observed that different DM interaction parameters (Dz and Dx) have remarkably different influences on the entanglement. Different from the case Dz, there is the non-monotonic variation of the concurrence with temperature in the case Dx, and additionally the DM interaction Dx can induce the entanglement near zero temperature in the case that the antiferromagnetic Ising-type interaction constant is larger than the antiferromagnetic Heisenberg interaction constant. It is also shown that for the same value of DM interaction the critical magnetic field of the case Dx is larger than that of the case Dz. Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134208110001).
Monte Carlo Simulations of inter- and intra-grain spin structure of Ising and Heisenberg models
NASA Astrophysics Data System (ADS)
Leblanc, Martin
In order to keep supplying computer hard disk drives with more and more storage space, it is essential to have smaller bits. With smaller bits, superparamagnetism, the spontaneous flipping of the magnetic moments in a bit caused by thermal fluctuations, becomes increasingly important and impacts the stability of stored data. Recording media is composed of magnetic grains (usually made of CoCrPt alloys) roughly 10 nm in size from which bits are composed. Most modeling efforts that study magnetic recording media treat the grains as weakly interacting uniformly magnetized objects. In this work, the spin structure internal to a grain is examined along with the impact of varying the relative strengths of intrar-grain and inter-grain exchange interactions. The interplay between these two effects needs to be examined for a greater understanding of superparamagnetism as well as for the applications of the proposed Heat Assisted Magnetic Recording (HAMR) technology where thermal fluctuations facilitate head-field induced bit reversal in high anisotropy media. Simulations using the Monte Carlo method (with cluster-flipping algorithms) are performed on a 2D single-layer and multilayer Ising model with a strong intrar-grain exchange interaction J as well as a weak inter-grain exchange J'. A strong deviation from traditional behavior is found when J'/J is significant. M-H hysteresis loops are also calculated and the coercivity, H c is estimated. A large value represents a strong resilience to the superparamagnetic effect. It is found that taking into account the internal degrees of freedom has a significant effect on Hce. As the Ising model serves only as an approximation, preliminary simulations are also reported on a more realistic Heisenberg model with uniaxial anisotropy. Key Words: Ising model, Heisenberg model, Monte Carlo Simulation
Vertical Axis Wind Turbine Foundation parameter study
Lodde, P.F.
1980-07-01
The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.
Structure of the plasmapause from ISEE 1 low-energy ion and plasma wave observations
NASA Technical Reports Server (NTRS)
Nagai, T.; Horwitz, J. L.; Anderson, R. R.; Chappell, C. R.
1985-01-01
Low-energy ion pitch angle distributions are compared with plasma density profiles in the near-earth magnetosphere using ISEE 1 observations. The classical plasmapause determined by the sharp density gradient is not always observed in the dayside region, whereas there almost always exists the ion pitch angle distribution transition from cold, isotropic to warm, bidirectional, field-aligned distributions. In the nightside region the plasmapause density gradient is typically found, and it normally coincides with the ion pitch angle distribution transition. The sunward motion of the plasma is found in the outer part of the 'plasmaspheric' plasma in the dusk bulge region.
Ising nanowires with simple core-shell structure; Their characteristic phenomena
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2016-09-01
The phase diagrams and magnetizations of Ising nanowires with simple core-shell structure are investigated by the use of the effective field theory with correlations. A lot of characteristic behaviors observed in ferromagnetic and ferrimagnetic materials as well as novel phenomena have been obtained, although one section of the system is consisted of one spin-1/2 surface shell atom and one spin-1/2 core atom and they are coupled with a positive or a negative shell-core exchange interaction.
Evidence for nonuniversal scaling in dimension-four Ising spin glasses
NASA Astrophysics Data System (ADS)
Lundow, P. H.; Campbell, I. A.
2015-04-01
The critical behavior of the Binder cumulant for Ising spin glasses in dimension four is studied through simulation measurements. Data for the bimodal interaction model are compared with those for the Laplacian interaction model. Special attention is paid to scaling corrections. The limiting infinite size value at criticality for this dimensionless variable is a parameter characteristic of a universality class. This critical limit is estimated to be equal to 0.523(3) in the bimodal model and to 0.473(3) in the Laplacian model.
Three-spin interaction Ising model with a nondegenerate ground state at zero applied field
NASA Astrophysics Data System (ADS)
Bidaux, R.; Boccara, N.; Forgàcs, G.
1986-10-01
The field-temperature phase diagram of a two-dimensional, three-spin interaction Ising model is studied using two different methods: mean field approximation and numerical transfer matrix techniques. The former leads to a rather rich phase diagram in which two separate phases with different symmetries can be found, and which presents first-order transition lines, a triple point, and a critical end point, like the solid-liquid-gas phase diagram of a pure compound. The numerical transfer matrix study confirms part of these results, but does not clearly evidence the existence of the less symmetric phase.
Universal critical behavior of the two-dimensional Ising spin glass
NASA Astrophysics Data System (ADS)
Fernandez, L. A.; Marinari, E.; Martin-Mayor, V.; Parisi, G.; Ruiz-Lorenzo, J. J.
2016-07-01
We use finite size scaling to study Ising spin glasses in two spatial dimensions. The issue of universality is addressed by comparing discrete and continuous probability distributions for the quenched random couplings. The sophisticated temperature dependency of the scaling fields is identified as the major obstacle that has impeded a complete analysis. Once temperature is relinquished in favor of the correlation length as the basic variable, we obtain a reliable estimation of the anomalous dimension and of the thermal critical exponent. Universality among binary and Gaussian couplings is confirmed to a high numerical accuracy.
Ovchinnikov, O. S.; Jesse, S.; Kalinin, S. V.; Bintacchit, P.; Trolier-McKinstry, S.
2009-10-09
An approach for the direct identification of disorder type and strength in physical systems based on recognition analysis of hysteresis loop shape is developed. A large number of theoretical examples uniformly distributed in the parameter space of the system is generated and is decorrelated using principal component analysis (PCA). The PCA components are used to train a feed-forward neural network using the model parameters as targets. The trained network is used to analyze hysteresis loops for the investigated system. The approach is demonstrated using a 2D random-bond-random-field Ising model, and polarization switching in polycrystalline ferroelectric capacitors.
Topological Aspects of Symmetry Breaking in Triangular-Lattice Ising Antiferromagnets
NASA Astrophysics Data System (ADS)
Smerald, Andrew; Korshunov, Sergey; Mila, Frédéric
2016-05-01
Using a specially designed Monte Carlo algorithm with directed loops, we investigate the triangular lattice Ising antiferromagnet with coupling beyond the nearest neighbors. We show that the first-order transition from the stripe state to the paramagnet can be split, giving rise to an intermediate nematic phase in which algebraic correlations coexist with a broken symmetry. Furthermore, we demonstrate the emergence of several properties of a more topological nature such as fractional edge excitations in the stripe state, the proliferation of double domain walls in the nematic phase, and the Kasteleyn transition between them. Experimental implications are briefly discussed.
Simple method for inference in inverse Ising problem using full data
NASA Astrophysics Data System (ADS)
Kiwata, Hirohito
2015-10-01
We consider inference in the inverse Ising problem using full data, which means incorporating sets of spin configurations. We approximate the Boltzmann distribution of the system to generate a frequency distribution derived from the given data. Then, the ratio between two Boltzmann distributions with different spin configurations eliminates the partition function and we obtain linear equations which can be solved to yield statistical parameters. Our method is applicable to cases where the absolute values of the coupling parameters and external fields are large. Compared to pseudolikelihood maximization, the accuracy of the inference obtained from our method is similar, although our approach is less labor intensive.
NASA Technical Reports Server (NTRS)
Fitzenreiter, R. J.; Scudder, J. D.
1981-01-01
A computer package which produces contour plots of the three dimensional electron distribution function measured by an electron spectrometer aboard ISEE-1 is described. Examples of the contour plots and an explanation of how to use the program, including the necessary computer code for running the program on the GSFC 360/91 computer is presented. The method by which the discrete measurements of the distribution function, given by points on the four dimensional surface are synthesized into a smooth surface in a three dimensional space which can be contoured is described. The velocity components are parallel and perpendicular to the magnetic field, respectively, in the proper frame of the electrons.
Onsager and Kaufman's Calculation of the Spontaneous Magnetization of the Ising Model
NASA Astrophysics Data System (ADS)
Baxter, R. J.
2011-11-01
Lars Onsager announced in 1949 that he and Bruria Kaufman had proved a simple formula for the spontaneous magnetization of the square-lattice Ising model, but did not publish their derivation. It was three years later when C.N. Yang published a derivation in Physical Review. In 1971 Onsager gave some clues to his and Kaufman's method, and there are copies of their correspondence in 1950 now available on the Web and elsewhere. Here we review how the calculation appears to have developed, and add a copy of a draft paper, almost certainly by Onsager and Kaufman, that obtains the result.
Observing the nonequilibrium dynamics of the quantum transverse-field Ising chain in circuit QED.
Viehmann, Oliver; von Delft, Jan; Marquardt, Florian
2013-01-18
We show how a quantum Ising spin chain in a time-dependent transverse magnetic field can be simulated and experimentally probed in the framework of circuit QED with current technology. The proposed setup provides a new platform for observing the nonequilibrium dynamics of interacting many-body systems. We calculate its spectrum to offer a guideline for its initial experimental characterization. We demonstrate that quench dynamics and the propagation of localized excitations can be observed with the proposed setup and discuss further possible applications and modifications of this circuit QED quantum simulator. PMID:23373908
Condensation of helium in aerogel and athermal dynamics of the random-field Ising model.
Aubry, Geoffroy J; Bonnet, Fabien; Melich, Mathieu; Guyon, Laurent; Spathis, Panayotis; Despetis, Florence; Wolf, Pierre-Etienne
2014-08-22
High resolution measurements reveal that condensation isotherms of (4)He in high porosity silica aerogel become discontinuous below a critical temperature. We show that this behavior does not correspond to an equilibrium phase transition modified by the disorder induced by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out-of-equilibrium dynamics of the random-field Ising model. Our results evidence the key role of nonequilibrium effects in the phase transitions of disordered systems. PMID:25192103
Statics and Dynamics of a Two-Dimensional Ising Spin-Glass Model
NASA Astrophysics Data System (ADS)
Young, A. P.
1983-03-01
The temperature and field dependence of spatial correlations and relaxation times are investigated in detail by Monte Carlo simulations for a two-dimensional Ising spin-glass model. There is no transition, but, in zero field, barrier heights and correlation range increase smoothly at low temperatures. This increase does not seem to be fast enough to explain experiments. In a field, barrier heights and the correlation length tend to a finite limit as T-->0. Points in the h-T plane with constant relaxation time satisfy T(h)-T(0)~h23 at moderately low temperatures.
Surface critical behavior of thin Ising films at the ‘special point’
NASA Astrophysics Data System (ADS)
Moussa, Najem; Bekhechi, Smaine
2003-03-01
The critical surface phenomena of a magnetic thin Ising film is studied using numerical Monte-Carlo method based on Wolff cluster algorithm. With varying the surface coupling, js= Js/ J, the phase diagram exhibits a special surface coupling jsp at which all the films have a unique critical temperature Tc for an arbitrary thickness n. In spite of this, the critical exponent of the surface magnetization at the special point is found to increase with n. Moreover, non-universal features as well as dimensionality crossover from two- to three-dimensional behavior are found at this point.
Tricritical behaviour of the frustrated Ising antiferromagnet on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Bobák, A.; Lučivjanský, T.; Žukovič, M.; Borovský, M.; Balcerzak, T.
2016-08-01
We use the effective-field theory with correlations based on different cluster sizes to investigate phase diagrams of the frustrated Ising antiferromagnet on the honeycomb lattice with isotropic interactions of the strength J1 < 0 between nearest-neighbour pairs and J2 < 0 between next-nearest neighbour pairs of spins. We present results for the ground-state energy as a function of the frustration parameter R =J2 / |J1 |. We find that the cluster-size has a considerable effect on the existence and location of a tricritical point in the phase diagram at which the phase transition changes from the second order to the first one.
Universal free-energy distribution in the critical point of a random Ising ferromagnet.
Dotsenko, Victor; Holovatch, Yurij
2014-11-01
We discuss the non-self-averaging phenomena in the critical point of weakly disordered Ising ferromagnet. In terms of the renormalized replica Ginzburg-Landau Hamiltonian in dimensions D<4, we derive an explicit expression for the probability distribution function (PDF) of the critical free-energy fluctuations. In particular, using known fixed-point values for the renormalized coupling parameters, we obtain the universal curve for such PDF in the dimension D=3. It is demonstrated that this function is strongly asymmetric: its left tail is much slower than the right one. PMID:25493758
Exact results for the site-dilute antiferromagnetic Ising model on finite triangular lattices
NASA Astrophysics Data System (ADS)
Farach, H. A.; Creswick, R. J.; Poole, C. P., Jr.
1988-04-01
Exact analytical and numerical results for the site-diluted antiferromagnetic Ising model on the triangular lattice (AFIT) are presented. For infinitesimal dilution the change in the free energy of the system is related to the distribution of local fields, and it is shown that for a frustrated system such as the AFIT, dilution lowers the entropy per spin. For lattices of finite size and dilution the transfer matrix for the partition function is evaluated numerically. The entropy per spin shows a marked minimum near a concentration of spins x=0.70, in some disagreement with earlier transfer-matrix results.
An Ising-like model for monolayer-monolayer coupling in lipid bilayers
NASA Astrophysics Data System (ADS)
Sornbundit, Kan; Modchang, Charin; Nuttavut, Narin; Ngamsaad, Waipot; Triampo, Darapond; Triampo, Wannapong
2013-07-01
We have proposed the Ising bilayer model to study the domain growth dynamics in lipid bilayers. Interactions within and between layers are adopted from recent experimental and theoretical data. We investigate the effects of the mismatch area on the domain coarsening dynamics in both symmetric and asymmetric lipid bilayers. To explore domain coarsening, we used the Monte Carlo (MC) method with a standard Kawasaki dynamics to simulate the systems. The results show that domains on both layers grow following a power-law and that the domains grow slower when the mismatch areas are increased.
Ultrafast vectorized multispin coding algorithm for the Monte Carlo simulation of the 3D Ising model
NASA Astrophysics Data System (ADS)
Wansleben, Stephan
1987-02-01
A new Monte Carlo algorithm for the 3D Ising model and its implementation on a CDC CYBER 205 is presented. This approach is applicable to lattices with sizes between 3·3·3 and 192·192·192 with periodic boundary conditions, and is adjustable to various kinetic models. It simulates a canonical ensemble at given temperature generating a new random number for each spin flip. For the Metropolis transition probability the speed is 27 ns per updates on a two-pipe CDC Cyber 205 with 2 million words physical memory, i.e. 1.35 times the cycle time per update or 38 million updates per second.
Finite-size scaling and the three-dimensional Ising model
NASA Astrophysics Data System (ADS)
Bhanot, G.; Duke, D.; Salvador, R.
1986-06-01
We give results of an extensive finite-size-scaling analysis of the three-dimensional Ising model on lattices of size up to 443. Contrary to the results of Barber et al.
Ising type models applied to Geophysics and high frequency market data
NASA Astrophysics Data System (ADS)
Mariani, M. C.; Bezdek, P.; Serpa, L.; Florescu, I.
2011-11-01
The classical Ising model was used to re-create the ferromagnetic phenomenon in statistical mechanics. The model describes the behavior of atoms in a lattice. Each atom may interact only with its neighbors, and has two states called spins. When the atoms polarize their spins, the resulting material exhibits a net magnetization. A similar model has been used before in financial math: the spins correspond to the buy/sell position of a trader and the polarization is equivalent with all the traders in the market wanting to sell. This leads to a market crash. In this work, we present extensions and applications to geophysics and high frequency market data.
Effect of magnetic field on dynamic response function in Ising systems
NASA Astrophysics Data System (ADS)
Pawlak, A.; Erdem, R.
2013-11-01
As a continuation of our previously published work, we use the Nelson's method to study the effect of the magnetic field on the temperature-, frequency-, and momentum-dependent response function and dynamic correlation function in the Ising-type systems with relaxational dynamics. The scaling function is given within the renormalization group formalism at one-loop order for nonzero field. We show how the typical two-peak structure of the real part of response function changes with magnetic field. We discuss the deviations of the correlation function from the Gaussian expression. The Fisher-Langer maximum is also considered.
NASA Astrophysics Data System (ADS)
Abgaryan, V. S.; Ananikian, N. S.; Ananikyan, L. N.; Hovhannisyan, V.
2015-02-01
Thermal entanglement, magnetic and quadrupole moments properties of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on a diamond chain are considered. Magnetization and quadrupole moment plateaus are observed for the antiferromagnetic couplings. Thermal negativity as a measure of quantum entanglement of the mixed spin system is calculated. Different behavior for the negativity is obtained for the various values of Heisenberg dipolar and quadrupole couplings. The intermediate plateau of the negativity has been observed at the absence of the single-ion anisotropy and quadrupole interaction term. When dipolar and quadrupole couplings are equal there is a similar behavior of negativity and quadrupole moment.
NASA Astrophysics Data System (ADS)
Bhattacherjee, Aranya B.; Jha, Pradip; Kumar, Tarun; Mohan, Man
2011-01-01
We study the physical properties of a Luttinger liquid in a superlattice that is characterized by alternating two tunneling parameters. Using the bosonization approach, we describe the corresponding Hubbard model by the equivalent Tomonaga-Luttinger model. We analyze the spin-charge separation and transport properties of the superlattice system. We suggest that cold Fermi gases trapped in a bichromatic optical lattice and coupled quantum dots offer the opportunity to measure these effects in a convenient manner. We also study the classical Ising chain with two tunneling parameters. We find that the classical two-point correlator decreases as the difference between the two tunneling parameters increases.
Saturation field entropies of antiferromagnetic Ising models: Ladders and the kagome lattice
NASA Astrophysics Data System (ADS)
Varma, Vipin Kerala
2013-10-01
Saturation field entropies of antiferromagnetic Ising models on quasi-one-dimensional lattices (ladders) and the kagome lattice are calculated. The former is evaluated exactly by constructing the corresponding transfer matrices, while the latter calculation uses Binder's algorithm for efficiently and exactly computing the partition function of over 1300 spins to give Skag/kB=0.393589(6). We comment on the relation of the kagome lattice to the experimental situation in the spin-ice compound Dy2Ti2O7.
The Ising model for changes in word ordering rules in natural languages
NASA Astrophysics Data System (ADS)
Itoh, Yoshiaki; Ueda, Sumie
2004-11-01
The order of ‘noun and adposition’ is an important parameter of word ordering rules in the world’s languages. The seven parameters, ‘adverb and verb’ and others, depend strongly on the ‘noun and adposition’. Japanese as well as Korean, Tamil and several other languages seem to have a stable structure of word ordering rules, while Thai and other languages, which have the opposite word ordering rules to Japanese, are also stable in structure. It seems therefore that each language in the world fluctuates between these two structures like the Ising model for finite lattice.
Supporting Kibble-Zurek Mechanism in Quantum Ising Model through a Trapped Ion
NASA Astrophysics Data System (ADS)
Hu, Changkang; Cui, Jinming; Huang, Yunfeng; Wang, Zhao; Cao, Dongyang; Wang, Jian; Lv, Weimin; Lu, Yong; Luo, Le; Campo, Adolfo; Han, Yongjian; Li, Chuanfeng; Guo, Guangcan
The Kibble-Zurek mechanism is the paradigm to account for the non adiabatic dynamics of a system across a phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be probed with high accuracy using a single trapped ion. Our results support the Kibble-Zurek mechanism in the quantum regime and advance the quantum simulation of critical systems far-away from equilibrium.
Chaos and stiffness exponents for short-range Gaussian Ising spin glasses
NASA Astrophysics Data System (ADS)
Almeida, Sebastião T. O.; Curado, Evaldo M. F.; Nobre, Fernando D.
2013-06-01
Two important exponents in spin-glass theory, namely, the chaos (ζ) and stiffness (y) exponents, are studied for Ising spin glasses with nearest-neighbor Gaussian interactions on different approaches to Bravais lattices. We consider hierarchical lattices of the Migdal-Kadanoff type (both diamond and tress families), with varying fractal dimensions, as well as two lattices of the Wheatstone-bridge family, more specifically, those with fractal dimensions D ≈ 2.32 and D ≈ 3.58. Whenever it is possible to compare, our estimates agree with those obtained from extensive numerical simulations on Bravais lattices, suggesting the present results represent good approximations for these exponents.
A theoretical study of the hysteresis behaviors of a transverse spin-1/2 Ising nanocube
NASA Astrophysics Data System (ADS)
El Hamri, M.; Bouhou, S.; Essaoudi, I.; Ainane, A.; Ahuja, R.
2016-09-01
The applied magnetic field dependencies of the surface shell, core and total magnetizations of a transverse spin-1/2 Ising nanocube are investigated within the effective-field theory with correlations, based on the probability distribution technique, for both ferro- and antiferromagnetic exchange interactions. We have found that interfacial coupling has a strong effect on the shape and the number of hysteresis loops and also on the coercive field and remanent magnetization behaviors. Furthermore, when the temperature exceeds a critical one, the coercivities of the core, the surface shell and the system become zero.
Electrical-Discharge Machining With Additional Axis
NASA Technical Reports Server (NTRS)
Malinzak, Roger M.; Booth, Gary N.
1991-01-01
Proposed electrical-discharge-machining (EDM) apparatus uses moveable vertical wire as electrode. Wire positionable horizontally along one axis as it slides vertically past workpiece. Workpiece indexed in rotation about horizontal axis. Because of symmetry of parts, process used to make two such parts at a time by defining boundary between them. Advantages: cost of material reduced, imparts less residual stress to workpiece, and less time spent machining each part when parts produced in such symmetrical pairs.
NASA Astrophysics Data System (ADS)
Ceballos, M. Teresa
We present the process followed to create the AXIS-SVO Data Centre at the Instituto de Física de Cantabria under the standards of the Virtual Observatory using the publication tools elaborated by the ESA-VO team at the European Space Astronomy Centre (ESAC). The current content of this Data Centre is a sample of optical spectra which are part of the AXIS-XMS sample, based on observations of the XMM-Newton X-ray observatory.
2001-05-01
This appendix presents tables of some of the more common conversion factors for units of measure used throughout Current Protocols manuals, as well as prefixes indicating powers of ten for SI units. Another table gives conversions between temperatures on the Celsius (Centigrade) and Fahrenheit scales. PMID:18770653
Assessment through Conversation.
ERIC Educational Resources Information Center
Fu, Danling; Lamme, Linda L.
2002-01-01
Presents conversations with parents, teachers, and children around portfolios that provide a better picture of a child's growth and understanding than standardized test scores ever can. Concludes that the involvement of students, teachers, and parents in conversation about children's literacy development brings the potential of a common vision and…
Marathi Conversational Situations.
ERIC Educational Resources Information Center
Berntsen, Maxine; Nimbkar, Jai
This volume is an elementary Marathi conversation text for adult learners of Marathi, both foreign and Indian. Designed to be used in conjunction with "Marathi Structural Patterns. Book One," the volume presents over 80 conversations that include material required in everyday situations. Each section contains basic and more difficult…
Energy conversion alternatives study
NASA Technical Reports Server (NTRS)
Shure, L. T.
1979-01-01
Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.
Seaborg, G.T.
1960-09-13
A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.
ERIC Educational Resources Information Center
Porto, Mark
2007-01-01
In this article, a principal is inspired to change the conversations with students and staff members from discipline and deficit to hope and planning for future achievement. He wants conversations to be more about academic goals and decision making and less about discipline and random acceptance of postsecondary plans. He has asked all staff…
Eight Pulse Performance of DARHT Axis II - Preliminary Results
Schulze, Martin E.
2015-12-08
The DARHT-II accelerator produces a 1.65-kA, 17-MeV beam in a 1600-ns pulse. Standard operation of the DARHT Axis II accelerator involves extracting four short pulses from the 1.6 us long macro-pulse produced by the LIA. The four short pulses are extracted using a fast kicker in combination with a quadrupole septum magnet and then transported for several meters to a high-Z material target for conversion to x-rays for radiography. The ability of the DARHT Axis 2 kicker to produce more than the standard four pulse format has been previously demonstrated. This capability was developed to study potential risks associated with beam transport during an initial commissioning phase at low energy (8 MeV) and low current (1.0 kA).The ability of the kicker to deliver more than four pulses to the target has been realized for many years. This note describes the initial results demonstrating this capability.
NASA Astrophysics Data System (ADS)
Ehrmann, Andrea; Blachowicz, Tomasz; Zghidi, Hafed
2015-05-01
Modelling hysteresis behaviour, as it can be found in a broad variety of dynamical systems, can be performed in different ways. An elementary approach, applied for a set of elementary cells, which uses only two possible states per cell, is the Ising model. While such Ising models allow for a simulation of many systems with sufficient accuracy, they nevertheless depict some typical features which must be taken into account with proper care, such as meta-stability or the externally applied field sweeping speed. This paper gives a general overview of recent results from Ising models from the perspective of a didactic model, based on a 2D spreadsheet analysis, which can be used also for solving general scientific problems where direct next-neighbour interactions take place.
Geometrical theory of aberrations near the axis in classical off-axis reflecting telescopes.
Chang, Seunghyuk; Prata, Aluizio
2005-11-01
A geometrical theory of aberrations for the vicinity of the focus of arbitrary off-axis sections of conic mirrors is derived. It is shown that an off-axis conic mirror introduces linear astigmatism in the image. However, in classical two-mirror telescopes this aberration can be eliminated by tilting the secondary parent mirror axis. It is also shown that the practical geometrical-optics performance of a classical off-axis two-mirror telescope with no linear astigmatism is equivalent to the performance of an on-axis system, proving that both systems have identical third-order coma. To demonstrate the applicability of the theory developed in a practical system, a fast (i.e., f/2), compact, obstruction-free classical off-axis Cassegrain telescope is designed. PMID:16302396
A search for upstream pressure pulses associated with flux transfer events: An AMPTE/ISEE case study
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Baumjohann, W.; Cattell, C. A.; Luehr, H.; Smith, M. F.
1994-01-01
On September 19, 1984, the Active Magnetospheric Particle Tracers Explorers (AMPTE) United Kingdom Satellite (UKS) and Ion Release Module (IRM) and International Sun Earth Explorers (ISEE) 1 and 2 spacecraft passed outbound through the dayside magnetopause at about the same time. The AMPTE spacecraft pair crossed first and were in the near-subsolar magnetosheath for more than an hour. Meanwhile the ISEE pair, about 5 R(sub E) to the south, observed flux transfer event (FTE) signatures. We use the AMPTE UKS and IRM plasma and field observations of magnetosheath conditions directly upstream of the subsolar magnetopause to check whether pressure pulses are responsible for the FTE signatures seen at ISEE. Pulses in both the ion thermal pressure and the dynamic pressure are observed in the magnetosheath early on when IRM and UKS are close to the magnetopause, but not later. These large pulses appear to be related to reconnection going on at the magnetopause nearby. AMPTE magnetosheath data far from the magnetopause do not show a pressure pulse correlation with FTEs at ISEE. Moreover, the magnetic pressure and tension effects seen in the ISEE FTEs are much larger than any pressure effects seen in the magnetosheath. A superposed epoch analysis based on small-amplitude peaks in the AMPTE magnetosheath total static pressure (nkT + B(exp 2)/2 mu(sub 0)) hint at some boundary effects, less than 5 nT peak-to-peak variations in the ISEE 1 and 2 B(sub N) signature starting about 1 min after the pressure peak epoch. However, these variations are much smaller than the standard deviations of the B(sub N) field component. Thus the evidence from this case study suggests that upstream magnetosheath pressure pulses do not give rise to FTEs, but may produce very small amplitude signatures in the magnetic field at the magnetopause.
ERIC Educational Resources Information Center
Singh, Satya Pal
2014-01-01
This paper presents a brief review of Ising's work done in 1925 for one dimensional spin chain with periodic boundary condition. Ising observed that no phase transition occurred at finite temperature in one dimension. He erroneously generalized his views in higher dimensions but that was not true. In 1941 Kramer and Wannier obtained…
Actuator assembly including a single axis of rotation locking member
Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.
2009-12-08
An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.
NASA Astrophysics Data System (ADS)
Kobayashi, S.; Mitsuda, S.; Jogetsu, T.; Miyamoto, J.; Katagiri, H.; Kohn, K.
1999-10-01
The growth kinetics in the geometrically frustrated isosceles triangular Ising antiferromagnet CoNb2O6 has been studied by neutron scattering and ac susceptibility measurements under magnetic fields. Spatially anisotropic growth of fourfold degenerate ground states is found to proceed according to the power law tn with anomalously low growth exponent n~=0.2 compared with 1/2 of the conventional Ising magnets. This anomalous power law is independent of both the strength of applied field and the degree of ground-state degeneracy.
NASA Astrophysics Data System (ADS)
Miwa, Tetsuji
2013-03-01
Studies on integrable models in statistical mechanics and quantum field theory originated in the works of Bethe on the one-dimensional quantum spin chain and the work of Onsager on the two-dimensional Ising model. I will talk on the discovery in 1977 of the link between quantum field theory in the scaling limit of the two-dimensional Ising model and the theory of monodromy preserving linear ordinary differential equations. This work was the staring point of our journey with Michio Jimbo in integrable models, the journey which finally led us to the exact results on the correlation functions of quantum spin chains in 1992.
Nonequilibrium dynamics of arbitrary-range Ising models with decoherence: An exact analytic solution
NASA Astrophysics Data System (ADS)
Foss-Feig, Michael; Hazzard, Kaden R. A.; Bollinger, John J.; Rey, Ana Maria
2013-04-01
The interplay between interactions and decoherence in many-body systems is of fundamental importance in quantum physics. In a step toward understanding this interplay, we obtain an exact analytic solution for the nonequilibrium dynamics of Ising models with arbitrary couplings (and therefore in arbitrary dimension) and subject to local Markovian decoherence. Our solution shows that decoherence significantly degrades the nonclassical correlations developed during coherent Ising spin dynamics, which relax much faster than predicted by treating decoherence and interactions separately. We also show that the competition of decoherence and interactions induces a transition from oscillatory to overdamped dynamics that is absent at the single-particle or mean-field level. These calculations are applicable to ongoing quantum information and emulation efforts using a variety of atomic, molecular, optical, and solid-state systems. In particular, we apply our results to the NIST Penning trapped-ion experiment and show that the current experiment is capable of producing entanglement amongst hundreds of quantum spins.
Ising-nematic order in the bilinear-biquadratic model for the iron pnictides
NASA Astrophysics Data System (ADS)
Bilbao Ergueta, Patricia; Nevidomskyy, Andriy H.
2015-10-01
Motivated by the recent inelastic neutron scattering (INS) measurements in the iron pnictides which show a strong anisotropy of spin excitations even above the magnetic transition temperature TN, we study the spin dynamics within the frustrated Heisenberg model with biquadratic spin-spin exchange interactions. Using the Dyson-Maleev (DM) representation, which proves appropriate for all temperature regimes, we find that the spin-spin dynamical structure factors are in excellent agreement with experiment, exhibiting breaking of the C4 symmetry even into the paramagnetic region TN
Long-range Ising and Kitaev models: phases, correlations and edge modes
NASA Astrophysics Data System (ADS)
Vodola, Davide; Lepori, Luca; Ercolessi, Elisa; Pupillo, Guido
2016-05-01
We analyze the quantum phases of the Ising chain with anti-ferromagnetic long-range interactions decaying with distance r as 1 /rα and of a related class of fermionic Hamiltonians generalising the Kitaev chain, with hopping and pairing terms long-range. We provide the phase diagram for all exponents α, based on an analysis of the entanglement entropy, the decay of correlation functions, and the edge modes in the case of open chains. We demonstrate that violations of the area law can occur for α < 1 , while correlation functions decay with a hybrid exponential and power-law behaviour. For the fermionic models we provide an exact analytical derivation for the decay of the correlation functions at every α. For the fermionic models we show that the edge modes, massless for α > 1 , acquire a mass for α < 1 . For the Ising chain a similar edge localization appears for the first and second excited states on the paramagnetic side of the phase diagram, where edge modes are not expected. We argue that, at least for the fermionic chains, these massive states correspond to the appearance of new phases, notably approached via quantum phase transitions without mass gap closure.
A simulation of the mixed spin 3-spin 3/2 ferrimagnetic Ising model
NASA Astrophysics Data System (ADS)
Özkan, Aycan
2016-01-01
The mixed spin 3-spin 3/2 ferrimagnetic Ising model was simulated using cooling algorithm on cellular automaton (CA). The simulations were carried out in the intervals -4 ≤ DA/J ≤ 8 and -4 ≤ DB/J ≤ 8 for the square lattices with periodic boundary conditions. The ground-state phase diagram of the model has different types of ferrimagnetic phases. Although only the antiferromagnetic nearest-neighbor interaction was contained in the Hamiltonian, the compensation points emerged through DA/J = 2 at kT/J = 0. The values of the critical exponents (ν, α , β and γ) were estimated within the framework of the finite-size scaling theory and power-law relations for the selected DA/J values (-2, 0, 1, 2, and 4). The estimated critical exponent values were in good agreement with the universal values of the two-dimensional Ising model (ν = 1, α = α‧ = 0, β = 0.125, β‧ = 0.875 and γ = γ‧ = 1.75).
Automata and the susceptibility of the square lattice Ising model modulo powers of primes
NASA Astrophysics Data System (ADS)
Guttmann, A. J.; Maillard, J.-M.
2015-11-01
We study the full susceptibility of the Ising model modulo powers of primes. We find exact functional equations for the full susceptibility modulo these primes. Revisiting some lesser-known results on discrete finite automata, we show that these results can be seen as a consequence of the fact that, modulo 2 r , one cannot distinguish the full susceptibility from some simple diagonals of rational functions which reduce to algebraic functions modulo 2 r , and, consequently, satisfy exact functional equations modulo 2 r . We sketch a possible physical interpretation of these functional equations modulo 2 r as reductions of a master functional equation corresponding to infinite order symmetries such as the isogenies of elliptic curves. One relevant example is the Landen transformation which can be seen as an exact generator of the Ising model renormalization group. We underline the importance of studying a new class of functions corresponding to ratios of diagonals of rational functions: they reduce to algebraic functions modulo powers of primes and they may have solutions with natural boundaries. Dedicated to R J Baxter, for his 75th birthday.
NASA Astrophysics Data System (ADS)
Moujaes, Elie A.; Khater, A.; Abou Ghantous, M.
2015-10-01
Ferromagnetic phase diagrams were, for a long time, unsuccessfully determined theoretically, despite the important Callen's 1963 [21] theoretical model. A great variety of experimental data for the magnetization over the entire range of temperature defining the ordered phase compared well with an empirical formula recently determined by Kuz'min (2005) [22]. Nonetheless, the Ising effective field theory (EFT), which can be of enormous support to both methods, was never given attention. The present work intends to show how the Ising EFT technique, when combined with the Green functions in Callen's work, is able to reconcile theoretical work with experimental data. The ratio kTc / JZS(S + 1) plays an important role in finding values for the exchange parameter J, whose first-principles calculation, often depending on the package used, is not properly done. J can be determined for a variety of ferromagnetic materials represented by general spin systems S with a number of nearest neighbours Z and critical temperature Tc, even for models including a percolative feature, characteristic of diluted interactive systems. We demonstrate that EFT is capable of estimating a value of J, which can substitute the use of more complex theoretical models or the performance of ab initio/DFT calculations.
Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system
NASA Astrophysics Data System (ADS)
Gong, Ming; Wen, Xueda; Sun, Guozhu; Zhang, Dan-Wei; Lan, Dong; Zhou, Yu; Fan, Yunyi; Liu, Yuhao; Tan, Xinsheng; Yu, Haifeng; Yu, Yang; Zhu, Shi-Liang; Han, Siyuan; Wu, Peiheng
2016-03-01
The Kibble-Zurek mechanism (KZM) predicts the density of topological defects produced in the dynamical processes of phase transitions in systems ranging from cosmology to condensed matter and quantum materials. The similarity between KZM and the Landau-Zener transition (LZT), which is a standard tool to describe the dynamics of some non-equilibrium physics in contemporary physics, is being extensively exploited. Here we demonstrate the equivalence between KZM in the Ising model and LZT in a superconducting qubit system. We develop a time-resolved approach to study quantum dynamics of LZT with nano-second resolution. By using this technique, we simulate the key features of KZM in the Ising model with LZT, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region, especially, the scaling law of the excited state population as the square root of the quenching speed. Our results provide the experimental evidence of the close connection between KZM and LZT, two textbook paradigms to study the dynamics of the non-equilibrium phenomena.
Critical properties of a two-dimensional Ising magnet with quasiperiodic interactions
NASA Astrophysics Data System (ADS)
Alves, G. A.; Vasconcelos, M. S.; Alves, T. F. A.
2016-04-01
We address the study of quasiperiodic interactions on a square lattice by using an Ising model with ferromagnetic and antiferromagnetic exchange interactions following a quasiperiodic Fibonacci sequence in both directions of a square lattice. We applied the Monte Carlo method, together with the Metropolis algorithm, to calculate the thermodynamic quantities of the system. We obtained the Edwards-Anderson order parameter qEA, the magnetic susceptibility χ , and the specific heat c in order to characterize the universality class of the phase transition. We also use the finite size scaling method to obtain the critical temperature of the system and the critical exponents β ,γ , and ν . In the low-temperature limit we obtained a spin-glass phase with critical temperature around Tc≈2.274 , and the critical exponents β ,γ , and ν , indicating that the quasiperiodic order induces a change in the universality class of the system. Also, we discovered a spin-glass ordering in a two-dimensional system which is rare and, as far as we know, the unique example is an under-frustrated Ising model.
Critical properties of a two-dimensional Ising magnet with quasiperiodic interactions.
Alves, G A; Vasconcelos, M S; Alves, T F A
2016-04-01
We address the study of quasiperiodic interactions on a square lattice by using an Ising model with ferromagnetic and antiferromagnetic exchange interactions following a quasiperiodic Fibonacci sequence in both directions of a square lattice. We applied the Monte Carlo method, together with the Metropolis algorithm, to calculate the thermodynamic quantities of the system. We obtained the Edwards-Anderson order parameter q_{EA}, the magnetic susceptibility χ, and the specific heat c in order to characterize the universality class of the phase transition. We also use the finite size scaling method to obtain the critical temperature of the system and the critical exponents β,γ, and ν. In the low-temperature limit we obtained a spin-glass phase with critical temperature around T_{c}≈2.274, and the critical exponents β,γ, and ν, indicating that the quasiperiodic order induces a change in the universality class of the system. Also, we discovered a spin-glass ordering in a two-dimensional system which is rare and, as far as we know, the unique example is an under-frustrated Ising model. PMID:27176258
Nonequilibrium dynamics of the Ising chain in a fluctuating transverse field
NASA Astrophysics Data System (ADS)
Roósz, Gergő; Juhász, Róbert; Iglói, Ferenc
2016-04-01
We study nonequilibrium dynamics of the quantum Ising chain at zero temperature when the transverse field is varied stochastically. In the equivalent fermion representation, the equation of motion of Majorana operators is derived in the form of a one-dimensional, continuous-time quantum random walk with stochastic, time-dependent transition amplitudes. This type of external noise gives rise to decoherence in the associated quantum walk and the semiclassical wave packet generally has a diffusive behavior. As a consequence, in the quantum Ising chain, the average entanglement entropy grows in time as t1 /2 and the logarithmic average magnetization decays in the same form. In the case of a dichotomous noise, when the transverse field is changed in discrete time steps, τ , there can be excitation modes, for which coherence is maintained, provided their energy satisfies ɛkτ ≈n π with a positive integer n . If the dispersion of ɛk is quadratic, the long-time behavior of the entanglement entropy and the logarithmic magnetization is dominated by these ballistically traveling coherent modes and both will have a t3 /4 time dependence.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Zwickl, R. D.; Bame, S. J.; Hones, E. W., Jr.; Tsurutani, B. T.; Smith, E. J.; Akasofu, S.-I.
1983-01-01
The coupling between the solar wind and the geomagnetic disturbances was examined using data from the ISEE-3 spacecraft at an earth-sun libration point and ground-based data. One minute data were used to avoid aliasing in determining the internal magnetospheric response to solar wind conditions. Attention was given to the cross-correlations between the geomagnetic index (AE), the total energy dissipation rate (UT), and the solar wind parameters, as well as the spatial and temporal scales on which the magnetosphere reacts to the solar wind conditions. It was considered necessary to characterize the physics of the solar wind-magnetosphere coupling in order to define the requirements for a spacecraft like the ISEE-3 that could be used as a real time monitoring system for predicting storms and substorms. The correlations among all but one parameter were lower during disturbance intervals; UT was highly correlated with all parameters during the disturbed times. An intrinsic 25-40 min delay was detected between interplanetary activity and magnetospheric response in quite times, diminishing to no more than 15 min during disturbed times.
Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Arballo, John K.; Mok, John; Smith, Edward J.; Mason, Glenn M.; Tan, Lun C.
1994-01-01
Low Frequency (LF) electromagnetic waves with periods near the local proton gyrofrequency have been detected in interplanetary space by the magnetometer onboard International-Sun-Earth-Explorer-3 (ISEE-3). Transverse peak-to-peak amplitudes as large as delta vector B/absolute value of B approximately 0.4 have been noted with compressional components (Delta absolute value of B/absolute value of B) typically less than or = 0.1. Generally, the waves have even smaller amplitudes, or are not detectable within the solar wind turbulence. The waves are elliptically/linearly polarized and are often, but not always, found to propagate nearly along vector B(sub zero). Both right- and left-hand polarizations in the spacecraft-frame have been detected. The waves are observed during all orientations of the interplanetary magnetic field, with the Parker spiral orientation being the most common case. Because the waves are detected at and near the local proton cyclotron frequency, the generation mechanism must almost certainly be solar wind pickup of freshly created hydrogen ions. Possible sources for the hydrogen are the Earth's atmosphere, coronal mass ejections from the Sun, comets and interstellar neutral atoms. At this time it is not obvious which potential source is the correct one. Statistical tests employing over one year of ISEE-3 data will be done in the near future to eliminate/confirm some of these possibilities.
NASA Astrophysics Data System (ADS)
Sornette, Didier; Zhou, Wei-Xing
2006-10-01
Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisions of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients, which evolve in time with a memory of how past news have explained realized market returns. We study two versions of the model, which differ on how the agents interpret the predictive power of news. We show that the stylized facts of financial markets are reproduced only when agents are overconfident and mis-attribute the success of news to predict return to herding effects, thereby providing positive feedbacks leading to the model functioning close to the critical point. Our model exhibits a rich multifractal structure characterized by a continuous spectrum of exponents of the power law relaxation of endogenous bursts of volatility, in good agreement with previous analytical predictions obtained with the multifractal random walk model and with empirical facts.
Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry
NASA Astrophysics Data System (ADS)
Coldea, R.; Tennant, D. A.; Wheeler, E. M.; Wawrzynska, E.; Prabhakaran, D.; Telling, M.; Habicht, K.; Smeibidl, P.; Kiefer, K.
2010-01-01
Quantum phase transitions take place between distinct phases of matter at zero temperature. Near the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of the system. A symmetry described by the E8 Lie group with a spectrum of eight particles was long predicted to appear near the critical point of an Ising chain. We realize this system experimentally by using strong transverse magnetic fields to tune the quasi-one-dimensional Ising ferromagnet CoNb2O6 (cobalt niobate) through its critical point. Spin excitations are observed to change character from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a ratio that approaches the golden mean predicted for the first two meson particles of the E8 spectrum. Our results demonstrate the power of symmetry to describe complex quantum behaviors.
Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry.
Coldea, R; Tennant, D A; Wheeler, E M; Wawrzynska, E; Prabhakaran, D; Telling, M; Habicht, K; Smeibidl, P; Kiefer, K
2010-01-01
Quantum phase transitions take place between distinct phases of matter at zero temperature. Near the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of the system. A symmetry described by the E8 Lie group with a spectrum of eight particles was long predicted to appear near the critical point of an Ising chain. We realize this system experimentally by using strong transverse magnetic fields to tune the quasi-one-dimensional Ising ferromagnet CoNb2O6 (cobalt niobate) through its critical point. Spin excitations are observed to change character from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a ratio that approaches the golden mean predicted for the first two meson particles of the E8 spectrum. Our results demonstrate the power of symmetry to describe complex quantum behaviors. PMID:20056884
Frustrated mixed spin-1/2 and spin-1 Ising ferrimagnets on a triangular lattice
NASA Astrophysics Data System (ADS)
Žukovič, M.; Bobák, A.
2015-05-01
Mixed spin-1/2 and spin-1 Ising ferrimagnets on a triangular lattice with sublattices A, B, and C are studied for two spin-value distributions (SA,SB,SC) =(1 /2 ,1 /2 ,1 ) and (1 /2 ,1 ,1 ) by Monte Carlo simulations. The nonbipartite character of the lattice induces geometrical frustration in both systems, which leads to the critical behavior rather different from their ferromagnetic counterparts. We confirm second-order phase transitions belonging to the standard Ising universality class occurring at higher temperatures, however, in both models these change at tricritical points (TCP) to first-order transitions at lower temperatures. In the model (1 /2 ,1 /2 ,1 ) , TCP occurs on the boundary between paramagnetic and ferrimagnetic (±1 /2 ,±1 /2 ,∓1 ) phases. The boundary between two ferrimagnetic phases (±1 /2 ,±1 /2 ,∓1 ) and (±1 /2 ,∓1 /2 ,0 ) at lower temperatures is always first order and it is joined by a line of second-order phase transitions between the paramagnetic and the ferrimagnetic (±1 /2 ,∓1 /2 ,0 ) phases at a critical endpoint. The tricritical behavior is also confirmed in the model (1 /2 ,1 ,1 ) on the boundary between the paramagnetic and ferrimagnetic (0 ,±1 ,∓1 ) phases.
Pc 5 pulsations in the outer dawn magnetosphere seen by ISEE 1 and 2
Mitchell, D.G.; Williams, D.J. ); Engebretson, M.J. ); Cattell, C.A. ); Lundin, R. )
1990-02-01
A long-lasting Pc 5 pulsation at the dawn flank of the magnetosphere is studies using particle and field instrumentation from the ISEE 1 and 2 satellites. Electric field and particle modulation signatures were clearer than magnetic field variations, consistent with the satellites' position in latitude near the equatorial node of a fundamental resonance. Pulsation flow velocities along the ISEE 1 trajectory were calculated from particle characteristics using data from several instruments and from electric and magnetic field data. These flow velocities were all consistent with each other, but the velocities derived from plasma and energetic particle observations were a factor of 2.5 larger than velocities derived from the fields data. The authors have not been able to find the source of this discrepancy; one possibility is that the field near the spacecraft differs from the large-scale field. In contrast to observations of pulsations during magnetic storms, which often involve resonant or gyrating particle behavior, particles at all energies sampled (10 eV to 200 keV) appeared to respond passively to the pulsation throughout most of the period of interest. Comparison of data from the two spacecraft, which traveled from {approximately}15 R{sub E} to {approximately}7 R{sub E} with a time separation of {approximately}1 hour, suggests the propagation of relatively broadband pulsation energy from the magnetopause/low latitude boundary layer and subsequent resonance of independent L shells in the fundamental toroidal mode after the cessation of power input.
From Cycle Rooted Spanning Forests to the Critical Ising Model: an Explicit Construction
NASA Astrophysics Data System (ADS)
de Tilière, Béatrice
2013-04-01
Fisher established an explicit correspondence between the 2-dimensional Ising model defined on a graph G and the dimer model defined on a decorated version {{G}} of this graph (Fisher in J Math Phys 7:1776-1781, 1966). In this paper we explicitly relate the dimer model associated to the critical Ising model and critical cycle rooted spanning forests (CRSFs). This relation is established through characteristic polynomials, whose definition only depends on the respective fundamental domains, and which encode the combinatorics of the model. We first show a matrix-tree type theorem establishing that the dimer characteristic polynomial counts CRSFs of the decorated fundamental domain {{G}_1}. Our main result consists in explicitly constructing CRSFs of {{G}_1} counted by the dimer characteristic polynomial, from CRSFs of G 1, where edges are assigned Kenyon's critical weight function (Kenyon in Invent Math 150(2):409-439, 2002); thus proving a relation on the level of configurations between two well known 2-dimensional critical models.
2D-Ising critical behavior in mixtures of water and 3-methylpyridine
Sadakane, Koichiro; Iguchi, Kazuya; Nagao, Michihiro; Seto, Hideki
2011-01-01
The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of D{sub 2}O and 3-methylpyridine was investigated by visual inspection and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh{sub 4}), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. These results suggest that the concentration fluctuation of the mixture of solvents is limited to a quasi two-dimensional space by the periodic structure induced by the adding the salt. The same behaviors were also observed in mixtures composed of water, 3-methylpyridine, and ionic surfactant.
The Ising Decision Maker: a binary stochastic network for choice response time.
Verdonck, Stijn; Tuerlinckx, Francis
2014-07-01
The Ising Decision Maker (IDM) is a new formal model for speeded two-choice decision making derived from the stochastic Hopfield network or dynamic Ising model. On a microscopic level, it consists of 2 pools of binary stochastic neurons with pairwise interactions. Inside each pool, neurons excite each other, whereas between pools, neurons inhibit each other. The perceptual input is represented by an external excitatory field. Using methods from statistical mechanics, the high-dimensional network of neurons (microscopic level) is reduced to a two-dimensional stochastic process, describing the evolution of the mean neural activity per pool (macroscopic level). The IDM can be seen as an abstract, analytically tractable multiple attractor network model of information accumulation. In this article, the properties of the IDM are studied, the relations to existing models are discussed, and it is shown that the most important basic aspects of two-choice response time data can be reproduced. In addition, the IDM is shown to predict a variety of observed psychophysical relations such as Piéron's law, the van der Molen-Keuss effect, and Weber's law. Using Bayesian methods, the model is fitted to both simulated and real data, and its performance is compared to the Ratcliff diffusion model. PMID:25090426
Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states
Bonderson, Parsa; Gurarie, Victor; Nayak, Chetan
2011-02-15
We study the non-Abelian statistics of quasiparticles in the Ising-type quantum Hall states which are likely candidates to explain the observed Hall conductivity plateaus in the second Landau level, most notably the one at filling fraction {nu}=5/2. We complete the program started in V. Gurarie and C. Nayak, [Nucl. Phys. B 506, 685 (1997)]. and show that the degenerate four-quasihole and six-quasihole wave functions of the Moore-Read Pfaffian state are orthogonal with equal constant norms in the basis given by conformal blocks in a c=1+(1/2) conformal field theory. As a consequence, this proves that the non-Abelian statistics of the excitations in this state are given by the explicit analytic continuation of these wave functions. Our proof is based on a plasma analogy derived from the Coulomb gas construction of Ising model correlation functions involving both order and (at most two) disorder operators. We show how this computation also determines the non-Abelian statistics of collections of more than six quasiholes and give an explicit expression for the corresponding conformal block-derived wave functions for an arbitrary number of quasiholes. Our method also applies to the anti-Pfaffian wave function and to Bonderson-Slingerland hierarchy states constructed over the Moore-Read and anti-Pfaffian states.
Anisotropies and flows of suprathermal particles in the distant magnetotail - ISEE 3 observations
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Klecker, B.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.
1983-01-01
The ISEE-3 spacecraft has been transferred in 1982 into an earth orbit which brings the satellite close to the tailward Lagrangian point L2 at about 220 R(E) and thus allows exploration of the distant geomagnetic tail. An initial analysis of energetic proton measurements greater than 30 keV from the Max-Planck-Institut/University of Maryland sensor system on ISEE-3 is reported. It has been found that suprathermal protons are a persistent feature of the distant tail. Differential intensitites at 30 keV are essentially constant between the lunar distance and 220 R(E) and about one order of magnitude smaller than in the near earth, or greater than about 20 R(E), plasma sheet. Assuming that these protons are convected with the local plasma flow, it is possible to derive plasma velocities. During time periods where a comparison is possible, these velocities compare favourably well with the velocities derived from the Los Alamos National Laboratory plasma analyzer on board the same spacecraft. The appearance of the plasma sheet, as evidenced by the suprathermal particles, is rather bursty. Anisotropies are large, and predominantly tailward.
Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree
NASA Astrophysics Data System (ADS)
Mukhamedov, Farrukh; Barhoumi, Abdessatar; Souissi, Abdessatar
2016-05-01
The main aim of the present paper is to prove the existence of a phase transition in quantum Markov chain (QMC) scheme for the Ising type models on a Cayley tree. Note that this kind of models do not have one-dimensional analogous, i.e. the considered model persists only on trees. In this paper, we provide a more general construction of forward QMC. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions, i.e. QMC depends on the boundary conditions. Our main result states the existence of a phase transition for the Ising model with competing interactions on a Cayley tree of order two. By the phase transition we mean the existence of two distinct QMC which are not quasi-equivalent and their supports do not overlap. We also study some algebraic property of the disordered phase of the model, which is a new phenomena even in a classical setting.
Interface localization in the 2D Ising model with a driven line
NASA Astrophysics Data System (ADS)
Cohen, O.; Mukamel, D.
2016-04-01
We study the effect of a one-dimensional driving field on the interface between two coexisting phases in a two dimensional model. This is done by considering an Ising model on a cylinder with Glauber dynamics in all sites and additional biased Kawasaki dynamics in the central ring. Based on the exact solution of the two-dimensional Ising model, we are able to compute the phase diagram of the driven model within a special limit of fast drive and slow spin flips in the central ring. The model is found to exhibit two phases where the interface is pinned to the central ring: one in which it fluctuates symmetrically around the central ring and another where it fluctuates asymmetrically. In addition, we find a phase where the interface is centered in the bulk of the system, either below or above the central ring of the cylinder. In the latter case, the symmetry breaking is ‘stronger’ than that found in equilibrium when considering a repulsive potential on the central ring. This equilibrium model is analyzed here by using a restricted solid-on-solid model.
Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system
Gong, Ming; Wen, Xueda; Sun, Guozhu; Zhang, Dan-Wei; Lan, Dong; Zhou, Yu; Fan, Yunyi; Liu, Yuhao; Tan, Xinsheng; Yu, Haifeng; Yu, Yang; Zhu, Shi-Liang; Han, Siyuan; Wu, Peiheng
2016-01-01
The Kibble-Zurek mechanism (KZM) predicts the density of topological defects produced in the dynamical processes of phase transitions in systems ranging from cosmology to condensed matter and quantum materials. The similarity between KZM and the Landau-Zener transition (LZT), which is a standard tool to describe the dynamics of some non-equilibrium physics in contemporary physics, is being extensively exploited. Here we demonstrate the equivalence between KZM in the Ising model and LZT in a superconducting qubit system. We develop a time-resolved approach to study quantum dynamics of LZT with nano-second resolution. By using this technique, we simulate the key features of KZM in the Ising model with LZT, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region, especially, the scaling law of the excited state population as the square root of the quenching speed. Our results provide the experimental evidence of the close connection between KZM and LZT, two textbook paradigms to study the dynamics of the non-equilibrium phenomena. PMID:26951775
The Ising model for prediction of disordered residues from protein sequence alone
NASA Astrophysics Data System (ADS)
Lobanov, Michail Yu; Galzitskaya, Oxana V.
2011-06-01
Intrinsically disordered regions serve as molecular recognition elements, which play an important role in the control of many cellular processes and signaling pathways. It is useful to be able to predict positions of disordered residues and disordered regions in protein chains using protein sequence alone. A new method (IsUnstruct) based on the Ising model for prediction of disordered residues from protein sequence alone has been developed. According to this model, each residue can be in one of two states: ordered or disordered. The model is an approximation of the Ising model in which the interaction term between neighbors has been replaced by a penalty for changing between states (the energy of border). The IsUnstruct has been compared with other available methods and found to perform well. The method correctly finds 77% of disordered residues as well as 87% of ordered residues in the CASP8 database, and 72% of disordered residues as well as 85% of ordered residues in the DisProt database.
Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system.
Gong, Ming; Wen, Xueda; Sun, Guozhu; Zhang, Dan-Wei; Lan, Dong; Zhou, Yu; Fan, Yunyi; Liu, Yuhao; Tan, Xinsheng; Yu, Haifeng; Yu, Yang; Zhu, Shi-Liang; Han, Siyuan; Wu, Peiheng
2016-01-01
The Kibble-Zurek mechanism (KZM) predicts the density of topological defects produced in the dynamical processes of phase transitions in systems ranging from cosmology to condensed matter and quantum materials. The similarity between KZM and the Landau-Zener transition (LZT), which is a standard tool to describe the dynamics of some non-equilibrium physics in contemporary physics, is being extensively exploited. Here we demonstrate the equivalence between KZM in the Ising model and LZT in a superconducting qubit system. We develop a time-resolved approach to study quantum dynamics of LZT with nano-second resolution. By using this technique, we simulate the key features of KZM in the Ising model with LZT, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region, especially, the scaling law of the excited state population as the square root of the quenching speed. Our results provide the experimental evidence of the close connection between KZM and LZT, two textbook paradigms to study the dynamics of the non-equilibrium phenomena. PMID:26951775
NASA Astrophysics Data System (ADS)
Borovský, Michal; Weigel, Martin; Barash, Lev Yu.; Žukovič, Milan
2016-02-01
The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = -1). The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.
Engineering 2D Ising Interactions in a Large (N>100) Ensemble of Trapped Ions
NASA Astrophysics Data System (ADS)
Sawyer, Brian; Britton, Joseph; Keith, Adam; Wang, Joseph; Freericks, James; Uys, Hermann; Biercuk, Michael; Bollinger, John
2012-06-01
Experimental progress in atomic, molecular, and optical physics has enabled exquisite control over ensembles of cold trapped ions. We have recently engineered long-range Ising interactions in a two-dimensional, 1-mK Coulomb crystal of hundreds of ^9Be^+ ions confined within a Penning trap. Interactions between the ^9Be^+ valence spins are mediated via spin-dependent optical dipole forces (ODFs) coupling to transverse motional modes of the planar crystal. A continuous range of inverse power-law spin-spin interactions from infinite (1/r^0) to dipolar (1/r^3) are accessible by varying the ODF drive frequency relative to the transverse modes. The ions naturally form a triangular lattice structure within the planar array, allowing for simulation of spin frustration using our generated antiferromagnetic couplings. We report progress toward simulating the ferromagnetic/antiferromagnetic transverse quantum Ising Hamiltonians in this large ensemble. We also report spectroscopy, thermometry, and sensitive displacement detection (˜100 pm) via entanglement of valence spin and drumhead oscillations.
Critical behavior of a triangular lattice Ising AF/FM bilayer
NASA Astrophysics Data System (ADS)
Žukovič, M.; Bobák, A.
2016-03-01
We study a bilayer Ising spin system consisting of antiferromagnetic (AF) and ferromagnetic (FM) triangular planes, coupled by ferromagnetic exchange interaction, by standard Monte Carlo and parallel tempering methods. The AF/FM bilayer is found to display the critical behavior completely different from both the single FM and AF constituents as well as the FM/FM and AF/AF bilayers. Namely, by finite-size scaling (FSS) analysis we identify at the same temperature a standard Ising transition from the paramagnetic to FM state in the FM plane that induces a ferrimagnetic state with a finite net magnetic moment in the AF plane. At lower temperatures there is another phase transition, that takes place only in the AF plane, to different ferrimagnetic state with spins on two sublattices pointing parallel and on one sublattice antiparallel to the spins on the FM plane. FSS indicates that the corresponding critical exponents are close to the two-dimensional three-state ferromagnetic Potts model values.
Analysis of the phase transition for the Ising model on the frustrated square lattice
NASA Astrophysics Data System (ADS)
Kalz, Ansgar; Honecker, Andreas; Moliner, Marion
2011-11-01
We analyze the phase transition of the frustrated J1-J2 Ising model with antiferromagnetic nearest- and strong next-nearest-neighbor interactions on the square lattice. Using extensive Monte Carlo simulations we show that the nature of the phase transition for 1/2
Two-dimensional XXZ -Ising model on a square-hexagon lattice
NASA Astrophysics Data System (ADS)
Valverde, J. S.; Rojas, Onofre; de Souza, S. M.
2009-04-01
We study a two-dimensional XXZ -Ising model on a square-hexagon (denoted for simplicity by 4-6) lattice with spin 1/2. The phase diagram at zero temperature is discussed, where five states are found, two types of ferrimagnetic states, two types of antiferromagnetic states, and one ferromagnetic state. To solve this model, we have mapped onto the eight-vertex model with union Jack interaction term, and it was verified that the model cannot be completely mapped onto eight-vertex model. However, by imposing an exact solution condition, we have found the region where the XXZ -Ising model on 4-6 lattice is exactly soluble with one free parameter, particularly for the case of symmetric eight-vertex model condition. In this manner we have explored the properties of the system and have analyzed the interacting competition parameters which preserve the region where there is an exact solution. Unfortunately the present model does not satisfy the free fermion condition of the eight-vertex model, unless for a trivial solution. Even so, we are able to discuss the critical point region, beyond the region of exact resolvability.
Flocking with discrete symmetry: The two-dimensional active Ising model
NASA Astrophysics Data System (ADS)
Solon, A. P.; Tailleur, J.
2015-10-01
We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles.
Postoperative conversion disorder.
Afolabi, Kola; Ali, Sameer; Gahtan, Vivian; Gorji, Reza; Li, Fenghua; Nussmeier, Nancy A
2016-05-01
Conversion disorder is a psychiatric disorder in which psychological stress causes neurologic deficits. A 28-year-old female surgical patient had uneventful general anesthesia and emergence but developed conversion disorder 1 hour postoperatively. She reported difficulty speaking, right-hand numbness and weakness, and right-leg paralysis. Neurologic examination and imaging revealed no neuronal damage, herniation, hemorrhage, or stroke. The patient mentioned failing examinations the day before surgery and discontinuing her prescribed antidepressant medication, leading us to diagnose conversion disorder, with eventual confirmation by neuroimaging and follow-up examinations. PMID:27041258
Hale, L C; Wulff, T A
2004-06-28
The Aerotech model S-180-69-A, a brushless DC motor of slotless design, was selected as the B-axis drive for the Precision Optical Grinder and Lathe (POGAL). It is common knowledge that a slotless motor will have effectively no magnetic cogging and much less torque ripple than a traditional slot-type motor. It is logical to believe that the radial and axial forces generated between the rotor and stator would also be smaller for a slotless design. This is important when a frameless motor is directly coupled to the axis, as these forces directly influence the axis and affect its error motion. It is the purpose of this test to determine the radial and axial forces generated by the Aerotech motor and to estimate their effect on the error motion of the axis using a mathematical model of the hydrostatic bearing being designed for POGAL. The test results combined with a mathematical model of the POGAL B axis indicate that the directly coupled Aerotech motor will be quite acceptable. In the radial direction, the residual motor force, after subtracting out the one-cycle force, could cause sub nanometer level error motion at the tool point. The axial direction is not in a sensitive direction for turning.
Yamamoto, Hiroki; Hashimoto, Masayuki; Higashitsuji, Yuhei; Harada, Hiroyuki; Hariyama, Nozomi; Takahashi, Lisa; Iwashita, Tomoaki; Ooiwa, Seika; Sekiguchi, Junichi
2008-10-01
Three D,L-endopeptidases, LytE, LytF and CwlS, are involved in the vegetative cell separation in Bacillus subtilis. A novel cell surface protein, IseA, inhibits the cell wall lytic activities of these d,l-endopeptidases in vitro, and IseA negatively regulates the cell separation enzymes at the post-translational level. Immunofluorescence microscopy indicated that the IseA-3xFLAG fusion protein was specifically localized at cell separation sites and poles on the vegetative cell surface in a similar manner of the d,l-endopeptidases. Furthermore, pull-down assay showed that IseA binds to the catalytic domain of LytF, indicating that IseA is localized on the cell surface through the catalytic domain of LytF. Overexpression of IseA caused a long-chained cell morphology in the exponential growth phase, indicating that IseA inhibits the cell separation D,L-endopeptidases in vivo. Besides, overexpression of IseA in a cwlO disruptant affected cell growth, implying that IseA is also involved in the cell elongation event. However, although IseA inhibits the activities of LytE, LytF, CwlS and CwlO in vitro, it is unlikely to inhibit CwlS and CwlO in vivo. This is the first demonstration that the cell separation event is post-translationally controlled through a direct interaction between cell separation enzymes and a specific novel inhibitor in bacteria. PMID:18761694
Responsive Teaching through Conversation
ERIC Educational Resources Information Center
Dozier, Cheryl; Garnett, Susan; Tabatabai, Simeen
2011-01-01
Conversations are the heart of responsive teaching. By talking with struggling learners, teachers can find out about their interests in order to design effective, personalized instruction; build relationships; work through complexities in teaching and learning; and celebrate successes.
Structured luminescence conversion layer
Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin
2012-12-11
An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.
NASA Astrophysics Data System (ADS)
Semenov, N. N.; Shilov, A. E.
The papers presented in this volume provide an overview of current theoretical and experimental research related to the conversion and practical utilization of solar energy. Topics discussed include semiconductor photovoltaic cells, orbital solar power stations, chemical and biological methods of solar energy conversion, and solar energy applications. Papers are included on new theoretical models of solar cells and prospects for increasing their efficiency, metrology and optical studies of solar cells, and some problems related to the thermally induced deformations of large space structures.
Enclosed, off-axis solar concentrator
Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A
2013-11-26
A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.
DARHT AXIS II Beam Position Monitors
Johnson, Jeff; Ekdahl, Carl; Broste, William
2004-11-10
One of Los Alamos National Laboratory's (LANL's) primary responsibilities for national security is to certify the readiness of our nation's nuclear stockpile. Since the end of underground testing in 1994, LANL has used non-nuclear experiments and computational models to certify our stockpile. The Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility is the next tool scientists will utilize for stockpile certification. DARHT will soon be capable of producing a three dimensional, time resolved radiographic image of a nuclear weapon pit during implosion. Data from these radiographic images will be used to validate the computational models used to study nuclear weapons. The first axis of DARHT with its single-pulse capability has been in use for about 2 years. Data returned from DARHT's First axis has been exceptional, producing the highest resolution radiographic image ever for a pit test.
Stability of vertical and horizontal axis Levitrons
NASA Astrophysics Data System (ADS)
Michaelis, M. M.; Taylor, D. B.
2015-11-01
The stability of the new horizontal axis Levitron3 is compared with that of the vertical axis device. The rotation frequency ranges are similar because they are determined by the same precessional micro-trap, for which some theory is given. But the macro-trap of the horizontal axis system gives it far greater mechanical stability. Field-line studies allow this to be more easily visualized. The greater stability allows for educational experiments which could only be contemplated with the old Levitron: driven precession and nutation and motion along the field lines. These experiments illustrate some very fundamental space dynamics and several other topics. The enhanced stability may also lead to electro-mechanical applications.
Modular off-axis solar concentrator
Plesniak, Adam P; Hall, John C
2015-01-27
A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.
DARHT AXIS II Beam Position Monitors
NASA Astrophysics Data System (ADS)
Johnson, Jeff; Ekdahl, Carl; Broste, William
2004-11-01
One of Los Alamos National Laboratory's (LANL's) primary responsibilities for national security is to certify the readiness of our nation's nuclear stockpile. Since the end of underground testing in 1994, LANL has used non-nuclear experiments and computational models to certify our stockpile. The Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility is the next tool scientists will utilize for stockpile certification. DARHT will soon be capable of producing a three dimensional, time resolved radiographic image of a nuclear weapon pit during implosion. Data from these radiographic images will be used to validate the computational models used to study nuclear weapons. The first axis of DARHT with its single-pulse capability has been in use for about 2 years. Data returned from DARHT's First axis has been exceptional, producing the highest resolution radiographic image ever for a pit test.
[Leptin and hypothalamus-hypophysis-thyroid axis].
Riccioni, G; Menna, V; Lambo, M S; Della Vecchia, R; Di Ilio, C; De Lorenzo, A; D'Orazio, N
2004-01-01
The leptin system is a major regulator of food intake and metabolic rate. The leptin, an adipose tissue hormone whose plasma levels reflect energy stores, plays an important rule in the pathogenesis of such eating disorders like bulimia and anorexia. Thyroid hormones are major regulators of energy homeostasis. It is possible that leptin and thyroid hormone exert their actions on thermogenesis and energy metabolism via the same common effector patways. Leptin influences feedback regulation of the hypotalamic TRH-secreting neurons by thyroid hormone. Low serum levels of thyroid hormones reflect a dysfunction of the hypotalamic-pituitary-thyroid (HPT) and hypotalamic-pituitary-adrenal (HPA) axis in patients with nervosa anorexia. Neuroendocrine effects of leptin include effects on the HPT and HPA axis. The aim of this work is to evaluated the interactions between leptina and HPT axis on the basis of recent published works and reviews in literature. PMID:15147079
Conversational Flow Promotes Solidarity
Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H.
2013-01-01
Social interaction is fundamental to the development of various aspects of “we-ness”. Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed. PMID:24265683
Aeroelastically coupled blades for vertical axis wind turbines
Paquette, Joshua; Barone, Matthew F.
2016-02-23
Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.
Solar rotating magnetic dipole?. [around axis perpendicular to rotation axis of the sun
NASA Technical Reports Server (NTRS)
Antonucci, E.
1974-01-01
A magnetic dipole rotating around an axis perpendicular to the rotation axis of the sun can account for the characteristics of the surface large-scale solar magnetic fields through the solar cycle. The polarity patterns of the interplanetary magnetic field, predictable from this model, agree with the observed interplanetary magnetic sector structure.
Isodynamic axisymmetric equilibrium near the magnetic axis
Arsenin, V. V.
2013-08-15
Plasma equilibrium near the magnetic axis of an axisymmetric toroidal magnetic confinement system is described in orthogonal flux coordinates. For the case of a constant current density in the vicinity of the axis and magnetic surfaces with nearly circular cross sections, expressions for the poloidal and toroidal magnetic field components are obtained in these coordinates by using expansion in the reciprocal of the aspect ratio. These expressions allow one to easily derive relationships between quantities in an isodynamic equilibrium, in which the absolute value of the magnetic field is constant along the magnetic surface (Palumbo’s configuration)
Isodynamic axisymmetric equilibrium near the magnetic axis
NASA Astrophysics Data System (ADS)
Arsenin, V. V.
2013-08-01
Plasma equilibrium near the magnetic axis of an axisymmetric toroidal magnetic confinement system is described in orthogonal flux coordinates. For the case of a constant current density in the vicinity of the axis and magnetic surfaces with nearly circular cross sections, expressions for the poloidal and toroidal magnetic field components are obtained in these coordinates by using expansion in the reciprocal of the aspect ratio. These expressions allow one to easily derive relationships between quantities in an isodynamic equilibrium, in which the absolute value of the magnetic field is constant along the magnetic surface (Palumbo's configuration).
Michalakis, Konstantinos; Mintziori, Gesthimani; Kaprara, Athina; Tarlatzis, Basil C; Goulis, Dimitrios G
2013-04-01
The aim of this narrative review is to provide current evidence for the interaction between obesity, metabolic syndrome (MS) and reproductive axis. Gonadotropin-releasing hormone (GnRH) pulses and, consequently, normal function of reproductive (hypothalamus-pituitary-gonadal) axis depend on normal energy balance, which presupposes sufficient food intake, reasonable energy consumption and average thermoregulatory costs. In case of an energy imbalance, reproductive dysfunction may occur. In young women, excessive leanness is accompanied by puberty delay, whereas premature puberty might be a manifestation of obesity. In a similar way, obesity in men affects fertility. Excess adipose tissue results in increased conversion of testosterone to estradiol, which may lead to secondary hypogonadism through reproductive axis suppression. Moreover, oxidative stress at the level of the testicular micro-environment may result in decreased spermatogenesis and sperm damage. Products of the adipocyte, such as leptin, adiponectin and resistin, and gut peptides, such as ghrelin, are considered to be crucial in the interaction between energy balance and reproduction. Finally, an indirect evidence for the interplay between MS and reproductive axis is the fact that when treating components of one, parameters of the other can be improved as well. These therapeutic interventions include lifestyle modifications, pharmacological agents, such as sex hormone replacement therapy, and surgical procedures. Although many issues remain unclear, the elucidation of the complex interaction between MS and reproductive axis will have obvious clinical implications in the therapeutic approach of both entities. PMID:22999785
Petra, Anastasia I.; Panagiotidou, Smaro; Hatziagelaki, Erifili; Stewart, Julia M.; Conti, Pio; Theoharides, Theoharis C.
2015-01-01
Purpose Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. Here we reviewed the bidirectional relationship between the gut microbiota and the brain, termed microbiota-gut-brain (MGB) axis, and we discuss how it contributes to the pathogenesis of certain disorders, that may involve brain inflammation. Methods Articles were chosen from Medline since 1980 using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, stress. Findings Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, essential metabolites, all convey information about the intestinal state to the CNS. Conversely, the HPA axis, the CNS regulatory areas of satiety and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions appear to influence the pathogenesis of a number of disorders in which inflammation is implicated such as mood disorder, autism-spectrum disorders (ASDs), attention-deficit hypersensitivity disorder (ADHD), multiple sclerosis (MS) and obesity. Implications Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation and flavonoids are discussed. PMID:26046241
NASA Technical Reports Server (NTRS)
Mozer, F. S.; Torbert, R. B.; Fahleson, U. V.; Falthammar, C. G.; Gonfalone, A.; Pedersen, A.
1978-01-01
The spherical double-probe electric-field experiment on the ISEE-1 spacecraft is described. It is shown that the instrument measures magnetospheric, magetosheath, and solar wind electric fields with a sensitivity well below one mV/m. Design features and diagnostic experiments performed in orbit to understand the instrument operation are discussed.
On the search for evidence of fast mode compressions in the near-earth tail - ISEE observations
NASA Technical Reports Server (NTRS)
Moortgat, K. T.; Cattell, C. A.; Mozer, F. S.; Elphic, R.
1990-01-01
A search for earthward propagating fast mode compressions in the near-earth tail has been conducted. ISEE electric and magnetic field data were studied for substorm and quiet times when the spacecraft was close to the neutral sheet, near midnight, and at radial distances of 5.5 to 13 R(E) (earth radii). Due to ISEE orbit characteristics, the set of events covered 12.5 hours, during which time the satellite remained between 8.5 and 13 R(E). Contrary to earlier ideas, no evidence for fast mode compression waves was found during the substorm events studied here, since plasma data and spacecraft potential data showed no density increases at the times of rapid magnetic field increases. For the one compression event for which a temporal offset between the ISEE 1 and ISEE 2 magnetic field structures could be clearly determined, the propagation velocity was about 140 km/s, well below the fast mode speed of about 400 km/s for the measured composition. During substorm events, the largest convection flows were earthward with magnitudes of 100-350 km/sec.
Kriz, Igor; Loebl, Martin; Somberg, Petr
2013-05-15
We study various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. We also obtain partial results regarding conjectured limits realized by fermions in rational conformal field theories.
NASA Astrophysics Data System (ADS)
Idaszak, R.; Lenhardt, W. C.; Jones, M. B.; Ahalt, S.; Schildhauer, M.; Hampton, S. E.
2014-12-01
The NSF, in an effort to support the creation of sustainable science software, funded 16 science software institute conceptualization efforts. The goal of these conceptualization efforts is to explore approaches to creating the institutional, sociological, and physical infrastructures to support sustainable science software. This paper will present the lessons learned from two of these conceptualization efforts, the Institute for Sustainable Earth and Environmental Software (ISEES - http://isees.nceas.ucsb.edu) and the Water Science Software Institute (WSSI - http://waters2i2.org). ISEES is a multi-partner effort led by National Center for Ecological Analysis and Synthesis (NCEAS). WSSI, also a multi-partner effort, is led by the Renaissance Computing Institute (RENCI). The two conceptualization efforts have been collaborating due to the complementarity of their approaches and given the potential synergies of their science focus. ISEES and WSSI have engaged in a number of activities to address the challenges of science software such as workshops, hackathons, and coding efforts. More recently, the two institutes have also collaborated on joint activities including training, proposals, and papers. In addition to presenting lessons learned, this paper will synthesize across the two efforts to project a unified vision for a science software institute.
The ISES: A non-intrusive medium for in-space experiments in on-board information extraction
NASA Technical Reports Server (NTRS)
Murray, Nicholas D.; Katzberg, Stephen J.; Nealy, Mike
1990-01-01
The Information Science Experiment System (ISES) represents a new approach in applying advanced systems technology and techniques to on-board information extraction in the space environment. Basically, what is proposed is a 'black box' attached to the spacecraft data bus or local area network. To the spacecraft the 'black box' appears to be just another payload requiring power, heat rejection, interfaces, adding weight, and requiring time on the data management and communication system. In reality, the 'black box' is a programmable computational resource which eavesdrops on the data network, taking and producing selectable, real-time science data back on the network. This paper will present a brief overview of the ISES Concept and will discuss issues related to applying the ISES to the polar platform and Space Station Freedom. Critical to the operation of ISES is the viability of a payload-like interface to the spacecraft data bus or local area network. Study results that address this question will be reviewed vis-a-vis the solar platform and the core space station. Also, initial results of processing science and other requirements for onboard, real-time information extraction will be presented with particular emphasis on the polar platform. Opportunities for a broader range of applications on the core space station will also be discussed.
In-Situ Ion Analysis of Fresh Waters via an ISE Multiprobe and Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Mueller, A. V.; Hemond, H.
2010-12-01
The ecological and geochemical sciences stand to substantially gain from capability for comprehensive, real-time, in-situ characterization of the chemical constituents of natural waters, e.g. by facilitating rapid high-resolution adaptive sampling campaigns and avoiding the potential errors and high costs related to traditional grab sample collection, transportation and in-lab analysis. In-situ chemical instrumentation also promotes the goals of large-scale monitoring networks, such as CUASHI and WATERS, by reducing the financial and human resources overhead required for traditional sampling at this scale. Problems of environmental remediation and monitoring of industrial waste waters would additionally benefit from such instrumental capacity. We have pursued in-situ measurement of all major ions contributing to the charge makeup (>99%) of oxic natural fresh waters via an instrument combining an array of ion-selective electrode (ISE) hardware with an appropriate multivariate signal processing architecture. Commercially available electrochemical sensors promote low cost and a fast development schedule, as well as easy maintenance and reproduction. Data processing techniques are adapted from artificial intelligence and chemometrics to extract accurate information from the corresponding in-situ data matrix. This architecture takes into account temperature, conductivity, and non-linearity effects, as well as taking advantage of sensor cross-selectivities traditionally considered as interferences. Chemical and mathematical constraints, e.g. charge balance and total ionic strength, provide further system-level information. Maximizing data recovery from the sensor array allows use of the instrument without the standard additions or ionic strength adjustment traditionally-required with use of ISEs. Initial work demonstrates the effectiveness of this methodology at predicting inorganic cations (sodium, potassium, calcium, and ammonium ) and hydrogen ion in a simplified
Tennis Rackets and the Parallel Axis Theorem
NASA Astrophysics Data System (ADS)
Christie, Derek
2014-04-01
This simple experiment uses an unusual graph straightening exercise to confirm the parallel axis theorem for an irregular object. Along the way, it estimates experimental values for g and the moment of inertia of a tennis racket. We use Excel to find a 95% confidence interval for the true values.
Multi-axis control of telemanipulators
NASA Technical Reports Server (NTRS)
Mckinnon, G. M.; Kruk, Ron
1989-01-01
The development of multi-axis hand controllers for use in telemanipulator systems is described. Experience in the control of the SRMS (shuttle remote manipulator system) arm is reviewed together with subsequent tests involving a number of simulators and configurations, including use as a side-arm flight control for helicopters. The factors affecting operator acceptability are reviewed.
Tailored airfoils for vertical axis wind turbines
Klimas, P.C.
1984-01-01
The evolution of a family of airfoil sections designed to be used as blade elements of a vertical axis wind turbine (VAWT) is described. This evolution consists of extensive computer simulation, wind tunnel testing and field testing. The process reveals that significant reductions in system costs-of-energy and increases in fatigue lifetime may be expected for VAWT systems using these blade elements.
Tailored airfoils for Vertical Axis Wind Turbines*
Klimas, P.C.
1984-08-01
The evolution of a family of airfoil sections designed to be used as blade elements of a vertical axis wind turbine (VAWT) is described. This evolution consists of extensive computer simulation, wind tunnel testing and field testing. The process reveals that significant reductions in system cost-ofenergy and increases in fatigue lifetime may be expected for VAWT systems using these blade elements.
Tailored airfoils for vertical axis wind turbines
Klimas, P.C.
1984-11-01
The evolution of a family of airfoil sections designed to be used as blade elements of a vertical axis wind turbine (VAWT) is described. This evolution consists of extensive computer simulation, wind tunnel testing and field testing. The process reveals that significant reductions in system costs-of-energy and increases in fatigue lifetime may be expected for VAWT systems using these blade elements.
Three-axis adjustable loading structure
NASA Technical Reports Server (NTRS)
Lynch, E. J.; Gray, D. T. (Inventor)
1973-01-01
A three axis adjustable loading structure for testing the movable surfaces of aircraft by applying pressure, is described. The device has three electric drives where the wall angle, horizontal position, and vertical position of the test device can be rapidly and accurately positioned.
Tennis Rackets and the Parallel Axis Theorem
ERIC Educational Resources Information Center
Christie, Derek
2014-01-01
This simple experiment uses an unusual graph straightening exercise to confirm the parallel axis theorem for an irregular object. Along the way, it estimates experimental values for g and the moment of inertia of a tennis racket. We use Excel to find a 95% confidence interval for the true values.
Thyroid axis alterations in childhood obesity.
Gertig, Anna M; Niechciał, Elżbieta; Skowrońska, Bogda
2012-01-01
In recent years researchers have become increasingly interested in the particular relation between the function of the thyroid gland and the body mass in the population of obese children. Numerous studies have been conducted and the literature on the related issues has been abounding. Several thereof have strived at pinpointing a significant link between the function of the thyroid axis and the body mass. Yet, it still remains to be clarified whether these subtle changes in the level of thyroid hormones and TSH observed in childhood obesity are responsible for the increased body mass or rather they represent a secondary phenomenon. The mechanism most often put forward by the researchers that links obesity to thyroid function is the increased level of leptin, which affects neurones in the hypothalamus and the thyroid axis causing TRH and TSH secretion. The body mass is positively correlated with serum leptin and elevated level of leptin is connected with an increase in TSH level. However, there is still controversy whether these inconspicuous differences observed in thyroid axis merit the treatment with thyroxine since these changes seem to constitute a consequence rather than a cause of obesity. Therefore, as most authors postulate, primary importance should be placed on lifestyle changes and body weight reduction leaving substitutive treatment as a supplementary option. The purpose of this review is to present the most current issues on child obesity and the related malfunction of the thyroid axis through an overview of international publications from the years 1996-2011. PMID:23146791
Horizontal Axis Levitron--A Physics Demonstration
ERIC Educational Resources Information Center
Michaelis, Max M.
2014-01-01
After a brief history of the Levitron, the first horizontal axis Levitron is reported. Because it is easy to operate, it lends itself to educational physics experiments and analogies. Precession and nutation are visualized by reflecting the beam from a laser pointer off the "spignet". Precession is fundamental to nuclear magnetic…
Detect genuine multipartite entanglement in the one-dimensional transverse-field Ising model
Deng Dongling; Gu Shijian; Chen Jingling
2010-02-15
Recently Seevinck and Uffink argued that genuine multipartite entanglement (GME) had not been established in the experiments designed to confirm GME. In this paper, we use the Bell-type inequalities introduced by Seevinck and Svetlichny [M. Seevinck, G. Svetlichny, Phys. Rev. Lett. 89 (2002) 060401] to investigate the GME problem in the one-dimensional transverse-field Ising model. We show explicitly that the ground states of this model violate the inequality when the external transverse magnetic field is weak, which indicate that the ground states in this model with weak magnetic field are fully entangled. Since this model can be simulated with nuclear magnetic resonance, our results provide a fresh approach to experimental test of GME.
Solar wind observations with the ion composition instrument aboard the ISEE-3 ICE spacecraft
NASA Technical Reports Server (NTRS)
Ogilvie, K. W.; Coplan, M. A.; Bochsler, P.; Geiss, J.
1989-01-01
The principal observations obtained by the Ion Composition Instrument (ICI) flown on the ISEE-3/ICE spacecraft, which was in the solar wind from September 1978 to the end of 1982, before being directed to the far magnetotail of the Earth are discussed. Almost continuous observations were made of the abundances of 3He++, 4He++, O6+, O7+, Ne, Si and Fe in various charge states, and of their bulk speeds and temperatures. The results show that there is a strong tendency in the collisionless solar wind for the ionic temperatures to be proportional to the masses. For heavier ions these temperatures exceed typical coronal electron temperatures. 4He++, especially in high speed streams, moves faster than H+, and travels at the same speed as heavier ions. The mechanism leading to this heating and rapid streaming is still not entirely clear.
Hysteresis in random-field Ising model on a Bethe lattice with a mixed coordination number
NASA Astrophysics Data System (ADS)
Shukla, Prabodh; Thongjaomayum, Diana
2016-06-01
We study zero-temperature hysteresis in the random-field Ising model on a Bethe lattice where a fraction c of the sites have coordination number z = 4 while the remaining fraction 1-c have z = 3. Numerical simulations as well as probabilistic methods are used to show the existence of critical hysteresis for all values of c\\gt 0. This extends earlier results for c = 0 and c = 1 to the entire range 0≤slant c≤slant 1, and provides new insight in non-equilibrium critical phenomena. Our analysis shows that a spanning avalanche can occur on a lattice even in the absence of a spanning cluster of z = 4 sites.
Structure and properties of the subsolar magnetopause for northward IMF - ISEE observations
NASA Technical Reports Server (NTRS)
Song, P.; Russell, C. T.; Elphic, R. C.; Gosling, J. T.; Cattell, C. A.
1990-01-01
This paper describes the structure and the magnetic-field, electric-field, and plasma properties of the ISEE-1 magnetopause crossing on November 5, 1978, which occurred near the subsolar point when the IMF was strongly northward. It was found that the magnetopause was composed of three layers: (1) a sheath transition layer, in which there is a gradual density decrease without a change in temperature and which occurs totally within the magnetosheath plasma; (2) an outer boundary layer, which is dominated by magnetosheath particles; (3) and an inner boundary layer dominated by magnetospheric particles. No significnt heating or cooling was seen across the magnetopause during this crossing. The plasma within each of the layers was quite uniform, and their boundaries were sharp, suggesting that there was very little diffusion present.
Violation of Lee-Yang circle theorem for Ising phase transitions on complex networks
NASA Astrophysics Data System (ADS)
Krasnytska, M.; Berche, B.; Holovatch, Yu.; Kenna, R.
2015-09-01
The Ising model on annealed complex networks with degree distribution decaying algebraically as p(K)∼ K-λ has a second-order phase transition at finite temperature if λ>3 . In the absence of space dimensionality, λ controls the transition strength; classical mean-field exponents apply for λ >5 but critical exponents are λ-dependent if λ < 5 . Here we show that, as for regular lattices, the celebrated Lee-Yang circle theorem is obeyed for the former case. However, unlike on regular lattices where it is independent of dimensionality, the circle theorem fails on complex networks when λ < 5 . We discuss the importance of this result for both theory and experiments on phase transitions and critical phenomena. We also investigate the finite-size scaling of Lee-Yang zeros in both regimes as well as the multiplicative logarithmic corrections which occur at λ=5 .
Form factor expansions in the 2D Ising model and Painlevé VI
NASA Astrophysics Data System (ADS)
Mangazeev, Vladimir V.; Guttmann, Anthony J.
2010-10-01
We derive a Toda-type recurrence relation, in both high- and low-temperature regimes, for the λ-extended diagonal correlation functions C(N,N;λ) of the two-dimensional Ising model, using an earlier connection between diagonal form factor expansions and tau-functions within Painlevé VI (PVI) theory, originally discovered by Jimbo and Miwa. This greatly simplifies the calculation of the diagonal correlation functions, particularly their λ-extended counterparts. We also conjecture a closed form expression for the simplest off-diagonal case C(0,1;λ) where a connection to PVI theory is not known. Combined with the results for diagonal correlations these give all the initial conditions required for the λ-extended version of quadratic difference equations for the correlation functions discovered by McCoy, Perk and Wu. The results obtained here should provide a further potential algorithmic improvement in the λ-extended case, and facilitate other developments.
Tuning the Ising-type anisotropy in trigonal bipyramidal Co(II) complexes.
Shao, Feng; Cahier, Benjamin; Guihéry, Nathalie; Rivière, Eric; Guillot, Régis; Barra, Anne-Laure; Lan, Yanhua; Wernsdorfer, Wolfgang; Campbell, Victoria E; Mallah, Talal
2015-11-28
This paper demonstrates the engineering and tuning of Ising-type magnetic anisotropy in trigonal bipyramidal Co(II) complexes. Here, we predict that employing a ligand that forces a trigonal bipyramidal arrangement and has weak equatorial σ-donating atoms, increases (in absolute value) the negative zero field splitting parameter D. With these considerations in mind, we used a sulfur containing ligand (NS3(iPr)), which imposes a trigonal bipyramidal geometry to the central Co(II) ion with long equatorial Co-S bonds. The resulting complex exhibits a larger anisotropy barrier and a longer relaxation time in comparison to the complex prepared with a nitrogen containing ligand (Me6tren). PMID:26440770
Evidence for two-dimensional Ising superconductivity in gated MoS₂.
Lu, J M; Zheliuk, O; Leermakers, I; Yuan, N F Q; Zeitler, U; Law, K T; Ye, J T
2015-12-11
The Zeeman effect, which is usually detrimental to superconductivity, can be strongly protective when an effective Zeeman field from intrinsic spin-orbit coupling locks the spins of Cooper pairs in a direction orthogonal to an external magnetic field. We performed magnetotransport experiments with ionic-gated molybdenum disulfide transistors, in which gating prepared individual superconducting states with different carrier dopings, and measured an in-plane critical field B(c2) far beyond the Pauli paramagnetic limit, consistent with Zeeman-protected superconductivity. The gating-enhanced B(c2) is more than an order of magnitude larger than it is in the bulk superconducting phases, where the effective Zeeman field is weakened by interlayer coupling. Our study provides experimental evidence of an Ising superconductor, in which spins of the pairing electrons are strongly pinned by an effective Zeeman field. PMID:26563134
Ising nematic quantum critical point in a metal: a Monte Carlo study
NASA Astrophysics Data System (ADS)
Lederer, Samuel
The Ising nematic quantum critical point (QCP) associated with the zero temperature transition from a symmetric to a nematic metal is an exemplar of metallic quantum criticality. We have carried out a minus sign-free quantum Monte Carlo study of this QCP for a two dimensional lattice model with sizes up to 24 × 24 sites. The system remains non-superconducting down to the lowest accessible temperatures. The results exhibit critical scaling behavior over the accessible ranges of temperature, (imaginary) time, and distance. This scaling behavior has remarkable similarities with recently measured properties of the Fe-based superconductors proximate to their putative nematic QCP. With Yoni Schattner, Steven A. Kivelson, and Erez Berg.
Specific Heat of the Dilute Ising Magnet LiHoxY1-xF4
NASA Astrophysics Data System (ADS)
Quilliam, J. A.; Mugford, C. G. A.; Gomez, A.; Kycia, S. W.; Kycia, J. B.
2007-01-01
We present specific heat data on three samples of the dilute Ising magnet LiHoxY1-xF4 with x=0.018, 0.045, and 0.080. Previous measurements of the ac susceptibility of an x=0.045 sample showed the Ho3+ moments to remain dynamic down to very low temperatures, and the specific heat was found to have unusually sharp features. In contrast, our measurements do not exhibit these sharp features in the specific heat and instead show a broad feature, for all three samples studied, which is qualitatively consistent with a spin glass state. Integrating C/T, however, reveals an increase in residual entropy with lower Ho concentration, consistent with recent Monte Carlo simulations showing a lack of spin glass transition for low x.
The hypergeometric series for the partition function of the 2D Ising model
NASA Astrophysics Data System (ADS)
Viswanathan, G. M.
2015-07-01
In 1944 Onsager published the formula for the partition function of the Ising model for the infinite square lattice. He was able to express the internal energy in terms of a special function, but he left the free energy as a definite integral. Seven decades later, the partition function and free energy have yet to be written in closed form, even with the aid of special functions. Here we evaluate the definite integral explicitly, using hypergeometric series. Let β denote the reciprocal temperature, J the coupling and f the free energy per spin. We prove that - β f = \\ln(2 \\cosh 2K) - κ2 ~ {_4F_3} \\big[~ 1,~1,~3/2,~3/2 ~~~2,~2,~2 ;16 κ2 ~\\big] ~ , where pFq is the generalized hypergeometric function, K = βJ, and 2κ = tanh 2K sech 2K.
Partition function zeros and magnetization plateaus of the spin-1 Ising-Heisenberg diamond chain
NASA Astrophysics Data System (ADS)
Hovhannisyan, V. V.; Ananikian, N. S.; Kenna, R.
2016-07-01
We study the properties of the generalized spin-1 Ising-Heisenberg model on a diamond chain, which can be considered as a theoretical model for the homometallic magnetic complex [Ni3(C4H2O4)2 -(μ3 - OH) 2(H2O)4 ] n ṡ(2H2 O) n. The model possesses a large variety of ground-state phases due to the presence of biquadratic and single-ion anisotropy parameters. Magnetization and quadrupole moment plateaus are observed at one- and two-thirds of the saturation value. The distributions of Yang-Lee and Fisher zeros are studied numerically for a variety of values of the model parameters. The usual value σ = -1/2 alongside an unusual value σ = -2/3 is determined for the Yang-Lee edge singularity exponents.
Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems
Martinez, E.; Monasterio, P.R.; Marian, J.
2011-02-20
An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors' time clocks current in a global sense. Boundary conflicts are resolved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of serial calculations, which confirms the statistical validity of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.
Effective-field theory on the kinetic spin-3/2 Ising model
NASA Astrophysics Data System (ADS)
Shi, Xiaoling; Qi, Yang
2015-11-01
The effective-field theory (EFT) is used to study the dynamical response of the kinetic spin-3/2 Ising model in the presence of a sinusoidal oscillating magnetic field. The effective-field dynamic equations are given for the honeycomb lattices (Z = 3). The dynamic order parameter, the dynamic quadrupole moment are calculated. We have found that the behavior of the system strongly depends on the crystal field interaction D. The dynamic phase boundaries are obtained, and there is no dynamic tricritical point on the dynamic phase transition line. The results are also compared with previous results which obtained from the mean-field theory (MFT) and the effective-field theory (EFT) for the square lattices (Z = 4). Different dynamic phase transition lines show that the thermal fluctuations are a key factor of the dynamic phase transition.
Lateral critical Casimir force in 2D Ising strip with inhomogeneous walls.
Nowakowski, Piotr; Napiórkowski, Marek
2014-08-14
We analyze the lateral critical Casimir force acting between two planar, chemically inhomogeneous walls confining an infinite 2D Ising strip of width M. The inhomogeneity of each of the walls has size N1; they are shifted by the distance L along the strip. Using the exact diagonalization of the transfer matrix, we calculate the lateral critical Casimir force and discuss its properties, in particular its scaling close to the 2D bulk critical point, as a function of temperature, surface magnetic field, and the geometric parameters M, N1, L. We determine the magnetization profiles which display the formation of the bridge joining the inhomogeneities on the walls and establish the relation between the characteristic properties of the lateral Casimir force and magnetization morphologies. We check numerically that breaking of the bridge is related to the inflection point of the lateral force. PMID:25134587
Lateral critical Casimir force in 2D Ising strip with inhomogeneous walls
NASA Astrophysics Data System (ADS)
Nowakowski, Piotr; Napiórkowski, Marek
2014-08-01
We analyze the lateral critical Casimir force acting between two planar, chemically inhomogeneous walls confining an infinite 2D Ising strip of width M. The inhomogeneity of each of the walls has size N1; they are shifted by the distance L along the strip. Using the exact diagonalization of the transfer matrix, we calculate the lateral critical Casimir force and discuss its properties, in particular its scaling close to the 2D bulk critical point, as a function of temperature, surface magnetic field, and the geometric parameters M, N1, L. We determine the magnetization profiles which display the formation of the bridge joining the inhomogeneities on the walls and establish the relation between the characteristic properties of the lateral Casimir force and magnetization morphologies. We check numerically that breaking of the bridge is related to the inflection point of the lateral force.
Self-organizing Ising model of artificial financial markets with small-world network topology
NASA Astrophysics Data System (ADS)
Zhao, Haijie; Zhou, Jie; Zhang, Anghui; Su, Guifeng; Zhang, Yi
2013-01-01
We study a self-organizing Ising-like model of artificial financial markets with underlying small-world (SW) network topology. The asset price dynamics results from the collective decisions of interacting agents which are located on a small-world complex network (the nodes symbolize the agents of a financial market). The model incorporates the effects of imitation, the impact of external news and private information. We also investigate the influence of different network topologies, from regular lattice to random graph, on the asset price dynamics by adjusting the probability of the rewiring procedure. We find that a specific combination of model parameters reproduce main stylized facts of real-world financial markets.
Long-range random transverse-field Ising model in three dimensions
NASA Astrophysics Data System (ADS)
Kovács, István A.; Juhász, Róbert; Iglói, Ferenc
2016-05-01
We consider the random transverse-field Ising model in d =3 dimensions with long-range ferromagnetic interactions which decay as a power α >d with the distance. Using a variant of the strong-disorder renormalization group method we study numerically the phase-transition point from the paramagnetic side. We find that the fixed point controlling the transition is of the strong-disorder type, and based on experience with other similar systems, we expect the results to be qualitatively correct, but probably not asymptotically exact. The distribution of the (sample dependent) pseudocritical points is found to scale with 1 /lnL , L being the linear size of the sample. Similarly, the critical magnetization scales with (lnL) χ/Ld and the excitation energy behaves as L-α. Using extreme-value statistics we argue that extrapolating from the ferromagnetic side the magnetization approaches a finite limiting value and thus the transition is of mixed order.
Theory and simulation of the dynamic heat capacity of the east Ising model.
Brown, Jonathan R; McCoy, John D; Borchers, Brian
2010-08-14
A recently developed methodology for the calculation of the dynamic heat capacity from simulation is applied to the east Ising model. Results show stretched exponential relaxation with the stretching exponent, beta, decreasing with decreasing temperature. For low temperatures, the logarithm of the relaxation time is approximately proportional to the inverse of the temperature squared, which is the theoretical limiting behavior predicted by theories of facilitated dynamics. In addition, an analytical approach is employed where the overall relaxation is a composite of relaxation processes of subdomains, each with their own characteristic time. Using a Markov chain method, these times are computed both numerically and in closed form. The Markov chain results are seen to match the simulations at low temperatures and high frequencies. The dynamics of the east model are tracked very well by this analytic procedure, and it is possible to associate features of the spectrum of the dynamic heat capacity with specific domain relaxation events. PMID:20707576
A theory of solving TAP equations for Ising models with general invariant random matrices
NASA Astrophysics Data System (ADS)
Opper, Manfred; Çakmak, Burak; Winther, Ole
2016-03-01
We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields an effective dynamics of a single variable trajectory. Our main novel contribution is the expression for the implicit memory term of the dynamics for general invariant ensembles. By subtracting these terms, that depend on magnetizations at previous time steps, the implicit memory terms cancel making the iteration dependent on a Gaussian distributed field only. The TAP magnetizations are stable fixed points if a de Almeida-Thouless stability criterion is fulfilled. We illustrate our method explicitly for coupling matrices drawn from the random orthogonal ensemble.
NASA Technical Reports Server (NTRS)
Russell, C. T.
1981-01-01
Highlights of the design and fabrication of fluxgate magnetometers for the ISEE A and B satellites which were launched from a single launch vehicle into the same highly elliptical orbit are presented. The instrument consisted of four basic assemblies: the sensors, the drive and sense electronics, the data handling unit; and the flipper. The digital handling data handling assembly contained a digital filter that mantained a uniform transfer function for all three axes of both spacecraft. Initial studies centered on the bow shock and the magnetopause and show that both boundaries are in rapid motion. The bow shock was found to be very thin, close to an ion inertial length in thickness, but the magnetopause was much thicker than expected, about 400 to 1000 km on average. The magnetometers have each logged over 3 2/3 years of continuous operation.
Modulated phases and chaotic behavior in a spin-1 Ising model with competing interactions
NASA Astrophysics Data System (ADS)
Tomé, Tânia; Salinas, S. R.
1989-02-01
We formulate the Blume-Capel spin-1 Ising model, with competing first- and second-neighbor interactions along the branches of a Cayley tree, in the infinite-coordination limit, as a discrete two-dimensional nonlinear mapping problem. The phase diagram displays multicritical points and many modulated phases. Mean-field calculations for the analogous model on a cubic lattice give the same qualitative results. We take advantage of the simplicity of the mapping to show the existence of complete devil's staircases, at low temperatures T, with increasing values of the Hausdorff dimensionality DF with T. We show that there are regions of the phase diagram associated with positive values of the Lyapunov exponents of the mapping, and we give strong numerical evidence to support the existence of a strange attractor with a Lyapunov dimension Dλ>1. We also find a route to chaos, according to the scenario of Feigenbaum, with a reasonable estimate of the exponent δ.
Conformal perturbation of off-critical correlators in the 3D Ising universality class
NASA Astrophysics Data System (ADS)
Caselle, M.; Costagliola, G.; Magnoli, N.
2016-07-01
Thanks to the impressive progress of conformal bootstrap methods we have now very precise estimates of both scaling dimensions and operator product expansion coefficients for several 3D universality classes. We show how to use this information to obtain similarly precise estimates for off-critical correlators using conformal perturbation. We discuss in particular the ⟨σ (r )σ (0 )⟩ , ⟨ɛ (r )ɛ (0 )⟩ and ⟨σ (r )ɛ (0 )⟩ two-point functions in the high and low temperature regimes of the 3D Ising model and evaluate the leading and next to leading terms in the s =trΔt expansion, where t is the reduced temperature. Our results for ⟨σ (r )σ (0 )⟩ agree both with Monte Carlo simulations and with a set of experimental estimates of the critical scattering function.
NASA Technical Reports Server (NTRS)
Song, PU; Elphic, R. C.; Russell, C. T.
1990-01-01
Examination of multiple magnetopause crossings observed with the magnetometers on ISEE 1 and 2 makes it possible to determine the amplitude of the oscillation of surface waves on the magnetopause with periods greater than about 2 min and its dependence on latitude, local time, and the direction of the IMF. The magnetopause is more oscillatory for southward IMF than for northward IMF. When the IMF is southward, the amplitude of the oscillation increases with increasing angle from the subsolar point, which suggests that reconnection-related phenomena can generate surface waves on the magnetopause. When the IMF is northward, the oscillation does not grow with distance from the subsolar point, which is contrary to the expected growth of the Kelvin-Helmholtz (K-H) instability. It is also found that solar-wind pressure fluctuations may cause all of the observed boundary oscillations for northward IMF.
Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2
NASA Technical Reports Server (NTRS)
Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.
1992-01-01
The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.
NASA Technical Reports Server (NTRS)
Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.
1985-01-01
It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.
Parity Symmetry and Parity Breaking in the Quantum Rabi Model with Addition of Ising Interaction
NASA Astrophysics Data System (ADS)
Wang, Qiong; He, Zhi; Yao, Chun-Mei
2015-04-01
We explore the possibility to generate new parity symmetry in the quantum Rabi model after a bias is introduced. In contrast to a mathematical treatment in a previous publication [J. Phys. A 46 (2013) 265302], we consider a physically realistic method by involving an additional spin into the quantum Rabi model to couple with the original spin by an Ising interaction, and then the parity symmetry is broken as well as the scaling behavior of the ground state by introducing a bias. The rule can be found that the parity symmetry is broken by introducing a bias and then restored by adding new degrees of freedom. Experimental feasibility of realizing the models under discussion is investigated. Supported by the National Natural Science Foundation of China under Grant Nos. 61475045 and 11347142, the Natural Science Foundation of Hunan Province, China under Grant No. 2015JJ3092
Behavior of Early Warnings near the Critical Temperature in the Two-Dimensional Ising Model
Morales, Irving O.; Landa, Emmanuel; Angeles, Carlos Calderon; Toledo, Juan C.; Rivera, Ana Leonor; Temis, Joel Mendoza; Frank, Alejandro
2015-01-01
Among the properties that are common to complex systems, the presence of critical thresholds in the dynamics of the system is one of the most important. Recently, there has been interest in the universalities that occur in the behavior of systems near critical points. These universal properties make it possible to estimate how far a system is from a critical threshold. Several early-warning signals have been reported in time series representing systems near catastrophic shifts. The proper understanding of these early-warnings may allow the prediction and perhaps control of these dramatic shifts in a wide variety of systems. In this paper we analyze this universal behavior for a system that is a paradigm of phase transitions, the Ising model. We study the behavior of the early-warning signals and the way the temporal correlations of the system increase when the system is near the critical point. PMID:26103513
Fortuin-Kasteleyn and damage-spreading transitions in random-bond Ising lattices
NASA Astrophysics Data System (ADS)
Lundow, P. H.; Campbell, I. A.
2012-10-01
The Fortuin-Kasteleyn and heat-bath damage-spreading temperatures TFK(p) and TDS(p) are studied on random-bond Ising models of dimensions 2-5 and as functions of the ferromagnetic interaction probability p; the conjecture that TDS(p)˜TFK(p) is tested. It follows from a statement by Nishimori that in any such system, exact coordinates can be given for the intersection point between the Fortuin-Kasteleyn TFK(p) transition line and the Nishimori line [pNL,FK,TNL,FK]. There are no finite-size corrections for this intersection point. In dimension 3, at the intersection concentration [pNL,FK], the damage spreading TDS(p) is found to be equal to TFK(p) to within 0.1%. For the other dimensions, however, TDS(p) is observed to be systematically a few percent lower than TFK(p).
Studies of hysteresis in two-dimensional kinetic Ising model using the FORC technique
NASA Astrophysics Data System (ADS)
Robb, Daniel; Novotny, Mark; Rikvold, Per Arne
2004-03-01
We describe the FORC (first order reversal curve) technique [1] for hysteresis, first developed as an experimental method to better characterize magnetic materials, and present FORC distributions for simulations of a square-lattice kinetic Ising model. To understand the simulation results, we apply a theory of magnetization reversal for the multidroplet (MD) regime [2] for homogeneous nucleation and growth, also called the Kolmogorov-Johnson-Mehl-Avrami regime. The FORC `partial hysteresis' loops exhibit different properties than those of systems with strong disorder [1]. We compare the simulation and the theory for several lattice sizes, frequencies of the external field, and temperatures. [1] C.R. Pike, A.P. Roberts, and K.L. Verosub, J. Appl. Phys. 85, 6660 (1999). [2] S.W. Sides, P.A. Rikvold, and M.A. Novotny, Phys. Rev. E 59, 2710 (1999).
Convergence of the Equi-Energy Sampler and Its Application to the Ising Model.
Hua, Xia; Kou, S C
2011-10-01
We provide a complete proof of the convergence of a recently developed sampling algorithm called the equi-energy (EE) sampler (Kou, Zhou, and Wong, 2006) in the case that the state space is countable. We show that in a countable state space, each sampling chain in the EE sampler is strongly ergodic a.s. with the desired steady-state distribution. Furthermore, all chains satisfy the individual ergodic property. We apply the EE sampler to the Ising model to test its efficiency, comparing it with the Metropolis algorithm and the parallel tempering algorithm. We observe that the dynamic exponent of the EE sampler is significantly smaller than those of parallel tempering and the Metropolis algorithm, demonstrating the high efficiency of the EE sampler. PMID:21969801
Quantum energy teleportation across a three-spin Ising chain in a Gibbs state
NASA Astrophysics Data System (ADS)
Trevison, Jose; Hotta, Masahiro
2015-05-01
In general, it is important to identify what is the informational resource for quantum tasks. Quantum energy teleportation (QET) is a quantum task, which attains energy transfer in an operational sense by local operations and classical communication, and is expected to play a role in future development of nano-scale smart grids. We consider QET protocols in a three-element Ising spin system with non-periodic boundary conditions coupled to a thermal bath. The open chain is the minimal model of QET between two edge spins that allows the measurement and operation steps of the QET protocol to be optimized without restriction. It is possible to analyze how two-body correlations of the system, such as mutual information, entanglement and quantum discord, can be resources of this QET at each temperature. In particular, we stress that quantum discord is not the QET resource in some cases, even if arbitrary measurements and operations are available.
Form factors in the Bullough-Dodd-related models: The Ising model in a magnetic field
NASA Astrophysics Data System (ADS)
Alekseev, O. V.
2012-11-01
We consider a certain modification of the free-field representation of the form factors in the Bullough-Dodd model. The two-particle minimal form factors are eliminated from the construction. We consequently obtain a convenient representation for the multiparticle form factors, establish recurrence relations between them, and study their properties. We use the proposed construction to obtain the free-field representation of form factors for the lightest particles in the Φ 1,2 -perturbed minimal models. As an important example, we consider the Ising model in a magnetic field. We verify that the results obtained in the framework of the proposed free-field representation agree with the corresponding results obtained by solving the bootstrap equations.
Form factors in the Bullough-Dodd related models: The Ising model in a magnetic field
NASA Astrophysics Data System (ADS)
Alekseev, O. V.
2012-04-01
A particular modification of the free-field representation of the form factors in the Bullough-Dodd model is considered. The two-particles minimal form factors are excluded from the construction. As a consequence, a convenient representation for the multiparticle form factors has been obtained, recurrence relations between them have been established, and their properties have been studied. The proposed construction is used to obtain the free-field representation of the lightest particles form factors in the Φ1, 2 perturbed minimal models. The Ising model in a magnetic field is considered as a significant example. The results obtained in the framework of the proposed free-field representation are in agreement with the corresponding results obtained by solving the bootstrap equations.
Amoruso, C.; Moore, M. A.; Hartmann, A. K.; Hastings, M. B.
2006-12-31
We present numerical evidence that the techniques of conformal field theory might be applicable to two-dimensional Ising spin glasses with Gaussian bond distributions. It is shown that certain domain wall distributions in one geometry can be related to that in a second geometry by a conformal transformation. We also present direct evidence that the domain walls are stochastic Loewner (SLE) processes with {kappa}{approx_equal}2.1. An argument is given that their fractal dimension d{sub f} is related to their interface energy exponent {theta} by d{sub f}-1=3/[4(3+{theta})], which is consistent with the commonly quoted values d{sub f}{approx_equal}1.27 and {theta}{approx_equal}-0.28.
Further determination of the characteristics of magnetospheric plasma vortices with Isee 1 and 2
NASA Technical Reports Server (NTRS)
Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.; Birn, J.; Paschmann, G.; Sckopke, N.; Haerendel, G.
1981-01-01
Further studies of the vortices in magnetospheric plasma flow with the Los Alamos Scientific Laboratory/Max-Planck-Institut (LASL/MPI) fast plasma experiment on Isee 1 and 2 have revealed that the pattern of vortical flow has a wavelength of approximately 20-40 earth radii and moves tailward through the magnetosphere at speeds of several hundred kilometers per second. The tendency toward vorticity pervades the total breadth of the plasma sheet tailward of the dawn-dusk meridian. The sense of rotation of the plasma flow (as viewed from above the ecliptic plane) is clockwise in the morning side of the plasma sheet and counterclockwise in the evening side. The sense of rotation in the morning and evening boundary layers is reversed from that in the contiguous regions of the plasma sheet. The occurrence of vortical flow is independent of the level of geomagnetic activity but is associated with long-period geomagnetic pulsations.
Initial observations of low energy charged particles near the earth's bow shock on ISEE-1
NASA Technical Reports Server (NTRS)
Ipavich, F. M.; Gloeckler, G.; Fan, C. Y.; Fisk, L. A.; Hovestadt, D.; Klecker, B.; Scholer, M.; Ogallagher, J. J.
1979-01-01
Initial measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE 1 are reported. ULECA is an electrostatic deflection - total energy sensor consisting of a collimator, a deflection analyzer, and an array of solid-state detectors. The position of a given detector, which determines the energy per charge of an incident particle, together with the measured energy, determines the particle's charge state. It is found that a rich variety of phenomena are operative in the transthermal energy regime (about 10 keV/Q to 100 keV/Q) covered by ULECA. Specifically, observations are presented of locally accelerated protons, alpha particles, and heavier ions in the magnetosheath and upstream of earth's bow shock. Preliminary analysis indicates that the behavior of these locally accelerated particles is most similar at the same energy per charge.
ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Kelly, T. J.; Russell, C. T.
1985-01-01
Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.
Universality Class of the Nishimori Point in the 2D +/-J Random-Bond Ising Model
NASA Astrophysics Data System (ADS)
Honecker, A.; Picco, M.; Pujol, P.
2001-07-01
We study the universality class of the Nishimori point in the 2D +/-J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value pc = 0.1094+/-0.0002 and estimate ν = 1.33+/-0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464+/-0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point.
Universality class of the Nishimori point in the 2D +/- J random-bond Ising model.
Honecker, A; Picco, M; Pujol, P
2001-07-23
We study the universality class of the Nishimori point in the 2D +/- J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value p(c) = 0.1094 +/- 0.0002 and estimate nu = 1.33 +/- 0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464 +/- 0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point. PMID:11461639
Plasma properties of driver gas following interplanetary shocks observed by ISEE-3
NASA Technical Reports Server (NTRS)
Zwickl, R. D.; Ashbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Smith, E. J.
1982-01-01
Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied. The characteristic properties of driver gas following interplanetary shocks was determined. Of 54 shocks observed from August 1978 to February 1980, nine contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of nine of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies.
Non-equilibrium steady states in two-temperature Ising models with Kawasaki dynamics
NASA Astrophysics Data System (ADS)
Borchers, Nick; Pleimling, Michel; Zia, R. K. P.
2013-03-01
From complex biological systems to a simple simmering pot, thermodynamic systems held out of equilibrium are exceedingly common in nature. Despite this, a general theory to describe these types of phenomena remains elusive. In this talk, we explore a simple modification of the venerable Ising model in hopes of shedding some light on these issues. In both one and two dimensions, systems attached to two distinct heat reservoirs exhibit many of the hallmarks of phase transition. When such systems settle into a non-equilibrium steady-state they exhibit numerous interesting phenomena, including an unexpected ``freezing by heating.'' There are striking and surprising similarities between the behavior of these systems in one and two dimensions, but also intriguing differences. These phenomena will be explored and possible approaches to understanding the behavior will be suggested. Supported by the US National Science Foundation through Grants DMR-0904999, DMR-1205309, and DMR-1244666
Critical behavior of the two-dimensional Ising model with long-range correlated disorder
NASA Astrophysics Data System (ADS)
Dudka, M.; Fedorenko, A. A.; Blavatska, V.; Holovatch, Yu.
2016-06-01
We study critical behavior of the diluted two-dimensional Ising model in the presence of disorder correlations which decay algebraically with distance as ˜r-a . Mapping the problem onto two-dimensional Dirac fermions with correlated disorder we calculate the critical properties using renormalization group up to two-loop order. We show that beside the Gaussian fixed point the flow equations have a nontrivial fixed point which is stable for 0.995
Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems
NASA Astrophysics Data System (ADS)
Martínez, E.; Monasterio, P. R.; Marian, J.
2011-02-01
An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors' time clocks current in a global sense. Boundary conflicts are resolved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of serial calculations, which confirms the statistical validity of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.
A survey of ISEE-3 energetic ion results (EPAS) in the deep geomagnetic tail
NASA Astrophysics Data System (ADS)
Daly, P. W.
1986-10-01
An overview is presented of the results of the energetic particle anisotropy spectrometer (EPAS) on board ISEE-3 during its geotail mission. Ions of energy greater than 35 keV are seen in the plasma sheet with very strong streaming, predominantly in the tailward direction. The change-over from almost equal earthward and tailward flow to mainly tailward flow occurs near 100 earth radii. A dawn-dusk anisotropy is also observed, and interpreted as a density gradient effect within the plasma sheet. The existence of an energetic particle boundary layer has been established, where the ion flows are also highly anisotropic in the tailward direction, but apparently uncoupled from the plasma particles. Remote sensing of the plasma sheet, using finite gyroradius effects, shows that the plasma sheet is layered and oscillating. A 'vortex-like' event has been observed, in which the ion flow vector rotates through 720 deg in 30 min.
Stochastic Resonance in the Ising Model on a BARABÁSI-ALBERT Network
NASA Astrophysics Data System (ADS)
Krawiecki, A.
Stochastic resonance is investigated in the Ising model with ferromagnetic coupling on a Barabási-Albert network, subjected to weak periodic magnetic field. Spectral power amplification as a function of temperature shows strong dependence on the number of nodes, which is related to the dependence of the critical temperature for the ferromagnetic phase transition, and on the frequency of the periodic signal. Double maxima of the spectral power amplification evaluated from the time-dependent magnetization are observed for intermediate frequencies of the periodic signal, which are also dependent on the number of nodes. In the thermodynamic limit, the height of the maxima decreases to zero and stochastic resonance disappears. Results of numerical simulations are in qualitative agreement with predictions of the linear response theory in the mean-field approximation.
Dynamical Phase Transition in the Ising Model on a Scale-Free Network
NASA Astrophysics Data System (ADS)
Krawiecki, A.
Dynamical phase transition in the Ising model on a Barabási-Albert network under the influence of periodic magnetic field is studied using Monte-Carlo simulations. For a wide range of the system sizes N and the field frequencies, approximate phase borders between dynamically ordered and disordered phases are obtained on a plane h (field amplitude) versus T/Tc (temperature normalized to the static critical temperature without external field, Tc∝lnN). On these borders, second- or first-order transitions occur, for parameter ranges separated by a tricritical point. For all frequencies of the magnetic field, position of the tricritical point is shifted toward higher values of T/Tc and lower values of h with increasing system size, i.e. the range of critical parameters corresponding to the first-order transition is broadened.
The sign-factor of the 3D Ising model on dual BCC lattice
NASA Astrophysics Data System (ADS)
Khachatryan, Sh.; Sedrakyan, A.
2002-01-01
We modify the two-dimensional model for the sign-factor of the regular 3D Ising model (3DIM) presented by Kavalov and Sedrakyan (Phys. Lett. 173B (1986) 449 and Nucl. Phys. 285B (1987) 264) for the case of dual to body centered cubic (DBCC) three-dimensional lattice. The advantage of this lattice is in an absence of self-intersections of the two-dimensional surfaces embedded there. We investigate simpler case of the model with scalar fermions (instead of SU(2) needed for 3DIM) and have found it's spectrum, which appeared to be massless. We reformulate the model by use of R-matrix formalism and a new interesting structure appears in a necessity to introduce three-particle R(3)ijk-matrices. We formulate the integrability property of the model for more general case.
Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system
Kocakaplan, Yusuf; Keskin, Mustafa
2014-09-07
The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We also compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement.
Stimulation of plasma waves by electron guns on the ISEE-1 satellite
NASA Technical Reports Server (NTRS)
Lebreton, J.-P.; Torbert, R.; Anderson, R.; Harvey, C.
1982-01-01
The results of the ISEE-1 satellite experiment relating to observations of the waves stimulated during electron injections, when the spacecraft is passing through the magnetosphere, the magnetosheath, and the solar wind, are discussed. It is shown that the injection of an electron beam current of the order of 10 to 60 microamperes with energies ranging from 0 to 40 eV produces enhancements in the electric wave spectrum. An attempt has been made to identify the low-frequency electrostatic wave observed below the ion plasma frequency as an ion acoustic mode, although the excitation mechanism is not clear. A coupling mechanism between the electron plasma mode and streaming electrons with energies higher than the thermal speed of the cold electron population has been proposed to explain the observations above the electron plasma frequency.
Almost Gibbsianness and Parsimonious Description of the Decimated 2d-Ising Model
NASA Astrophysics Data System (ADS)
Le Ny, Arnaud
2013-07-01
In this paper, we complete and provide details for the existing characterizations of the decimation of the Ising model on {Z}2 in the generalized Gibbs context. We first recall a few features of the Dobrushin program of restoration of Gibbsianness and present the construction of global specifications consistent with the extremal decimated measures. We use them to prove that these renormalized measures are almost Gibbsian at any temperature and to analyse in detail its convex set of DLR measures. We also recall the weakly Gibbsian description and complete it using a potential that admits a quenched correlation decay, i.e. a well-defined configuration-dependent length beyond which this potential decays exponentially. We use these results to incorporate these decimated measures in the new framework of parsimonious random fields that has been recently developed to investigate probability aspects related to neurosciences.
Magnetic structure of the distant geotail from -60 to -220 earth radii - ISEE-3
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Slavin, J. A.; Smith, E. J.; Okida, R.; Jones, D. E.
1984-01-01
ISEE-3 magnetic-field measurements in the region of the geomagnetic tail from -80 to -220 earth radii are reported and discussed. A well-ordered field structure is found, comprising two 7-8-nT lobes separated by a plasma sheet, an embedded neutral sheet with significant By fields, and an intermittent plasma-sheet boundary layer with 5-nT-amplitude (peak-to-peak) electromagnetic waves. The plasma-sheet Bz distribution changes from principally northern orientation near the earth to an approximately equal north-south distribution at 200-220 earth radii. These findings are considered to be in general agreement with magnetic-reconnection models of the magnetosphere, with reconnection either throughout the region observed (in tearing-mode or plasmoid-formation models) or at a constant (about 220-earth-radii) or variable (40-80 to 220-earth-radii) X line (in X-line models).
Ising-like dynamics in large-scale functional brain networks
NASA Astrophysics Data System (ADS)
Fraiman, Daniel; Balenzuela, Pablo; Foss, Jennifer; Chialvo, Dante R.
2009-06-01
Brain “rest” is defined—more or less unsuccessfully—as the state in which there is no explicit brain input or output. This work focuses on the question of whether such state can be comparable to any known dynamical state. For that purpose, correlation networks from human brain functional magnetic resonance imaging are contrasted with correlation networks extracted from numerical simulations of the Ising model in two dimensions at different temperatures. For the critical temperature Tc , striking similarities appear in the most relevant statistical properties, making the two networks indistinguishable from each other. These results are interpreted here as lending support to the conjecture that the dynamics of the functioning brain is near a critical point.
Fixed-point distributions of short-range Ising spin glasses on hierarchical lattices
NASA Astrophysics Data System (ADS)
Almeida, Sebastião T. O.; Nobre, Fernando D.
2015-03-01
Fixed-point distributions for the couplings of Ising spin glasses with nearest-neighbor interactions on hierarchical lattices are investigated numerically. Hierarchical lattices within the Migdal-Kadanoff family with fractal dimensions in the range 2.58 ≤D ≤7 , as well as a lattice of the Wheatstone-Bridge family with fractal dimension D ≈3.58 are considered. Three initial distributions for the couplings are analyzed, namely, the Gaussian, bimodal, and uniform ones. In all cases, after a few iterations of the renormalization-group procedure, the associated probability distributions approached universal fixed shapes. For hierarchical lattices of the Migdal-Kadanoff family, the fixed-point distributions were well fitted either by stretched exponentials, or by q -Gaussian distributions; both fittings recover the expected Gaussian limit as D →∞ . In the case of the Wheatstone-Bridge lattice, the best fit was found by means of a stretched-exponential distribution.
Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model
NASA Astrophysics Data System (ADS)
Rotskoff, Grant M.; Crooks, Gavin E.
2015-12-01
A general understanding of optimal control in nonequilibrium systems would illuminate the operational principles of biological and artificial nanoscale machines. Recent work has shown that a system driven out of equilibrium by a linear response protocol is endowed with a Riemannian metric related to generalized susceptibilities, and that geodesics on this manifold are the nonequilibrium control protocols with the lowest achievable dissipation. While this elegant mathematical framework has inspired numerous studies of exactly solvable systems, no description of the thermodynamic geometry yet exists when the metric cannot be derived analytically. Herein, we numerically construct the dynamic metric of the two-dimensional Ising model in order to study optimal protocols for reversing the net magnetization.