Science.gov

Sample records for island nuclear generating

  1. 76 FR 29279 - Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... COMMISSION NORTHERN STATES POWER COMPANY Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of... Nuclear Plants Regarding the License Renewal of Prairie Island Nuclear Generating Plants, Units 1 and 2... years of operation for Prairie Island Nuclear Generating Plant, Units 1 and Unit 2 (PINGP 1 and 2)....

  2. 75 FR 38845 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... on the quality of the human environment (75 FR 36700). This exemption is effective upon issuance... COMMISSION Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit No. 1; Exemption 1.0... No. DPR-50 which authorizes operation of the Three Mile Island Nuclear Station, Unit 1 (TMI-1)....

  3. 75 FR 36700 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit 1; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit 1; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption from Title 10 of the...

  4. 76 FR 39445 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... issuance of the renewed licenses was published in the Federal Register on June 17, 2008 (73 FR 34335). For... COMMISSION Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2... Company--Minnesota (licensee), the ] operator of Prairie Island Nuclear Generating Plant, Units 1 and...

  5. 75 FR 63213 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering the issuance of an...

  6. 75 FR 44292 - Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ...-AA90) published in the Federal Register on April 26, 1991 (56 FR 18997); and (C) The Nuclear Energy... contrary to the rationale for rulemaking, as discussed in 56 FR 18997. On October 26 and December 2, 2009... Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Issuance of...

  7. 76 FR 11521 - Prairie Island Nuclear Generating Plant, Unit 1, Northern States Power Company-Minnesota; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... (76 FR 9827), which informed the public that the Nuclear Regulatory Commission was considering the issuance of amendments to Facility Operating License Nos. DPR-42 and DPR-60, respectively, for the Prairie... COMMISSION Prairie Island Nuclear Generating Plant, Unit 1, Northern States Power Company--Minnesota;...

  8. Life stage differences in resident coping with restart of the Three Mile Island nuclear generating facility.

    PubMed

    Prince-Embury, S; Rooney, J F

    1990-12-01

    A study of residents who remained in the vicinity of Three Mile Island (TMI) immediately following the restart of the nuclear generating plant revealed that older residents employed a more emotion-focused coping style in the face of this event than did younger residents. Coping style was, however, unrelated to the level of psychological symptoms for these older residents, whereas demographic variables were related. Among younger residents, on the other hand, coping style was related to the level of psychological symptoms, whereas demographic variables were not. Among younger residents, emotion-focused coping was associated with more symptoms and problem-focused coping was associated with fewer symptoms, contradicting previous findings among TMI area residents. PMID:2087105

  9. Life stage differences in resident coping with restart of the Three Mile Island nuclear generating facility

    SciTech Connect

    Prince-Embury, S.; Rooney, J.F.

    1990-12-01

    A study of residents who remained in the vicinity of Three Mile Island (TMI) immediately following the restart of the nuclear generating plant revealed that older residents employed a more emotion-focused coping style in the face of this event than did younger residents. Coping style was, however, unrelated to the level of psychological symptoms for these older residents, whereas demographic variables were related. Among younger residents, on the other hand, coping style was related to the level of psychological symptoms, whereas demographic variables were not. Among younger residents, emotion-focused coping was associated with more symptoms and problem-focused coping was associated with fewer symptoms, contradicting previous findings among TMI area residents.

  10. 75 FR 6225 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... revisions to 10 CFR part 73, as discussed in a Federal Register notice dated March 27, 2009 (74 FR 13967... Requirements, 74 FR 13926, 13967 (March 27, 2009)]. The licensee currently maintains a security system... COMMISSION Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant Units 1 and...

  11. 75 FR 9625 - Northern States Power Company-Minnesota Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    .... As noted in the final Power Reactor Security Requirements rule (74 FR 13925, March 27, 2009), the... COMMISSION Northern States Power Company--Minnesota Prairie Island Nuclear Generating Plant, Units 1 and 2... holder of Facility Operating License Nos. DPR-42 and DPR-60, which authorize operation of the...

  12. 75 FR 3946 - License Nos. DPR-42 and DPR-60; Northern States Power Company; Prairie Island Nuclear Generating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ...) published in the Federal Register on April 26, 1991 (56 FR 18997); and (C) Nuclear Energy Institute's (NEI...'' (56 FR 18997). The NRC is treating the petitioner's request pursuant to 10 CFR 2.206, ``Requests for... COMMISSION License Nos. DPR-42 and DPR-60; Northern States Power Company; Prairie Island Nuclear...

  13. 77 FR 65417 - Northern States Power Company (Prairie Island Nuclear Generating Plant Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... Storage Installation); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing Board (Board) in the above-captioned Prairie Island... Administrative Judge, Atomic Safety and Licensing Board Panel. BILLING CODE 7590-01-P...

  14. Processing, packaging, and storage of non-fuel-bearing components from the rod consolidation demonstration at Prairie Island Nuclear Generating Station

    SciTech Connect

    McCarten, L.; Kapitz, J.; Kaczmarsky, M.; Rec, J.

    1988-01-01

    Many nuclear power plants are running out of space in their spent-fuel pools, and by the early 1990s, existing spent-fuel storage capacity must be supplemented at over 20 commercial nuclear plants. Rod consolidation and dry storage, either individually or in combination, are the only viable alternatives to meet the spent-fuel storage requirements until a government storage facility or repository is established. The Prairie Island Nuclear Generating Station operated by Northern States Power Company (NSP) is in this predicament. To meet Prairie Island's storage needs, NSP is evaluating the feasibility of full-scale implementation of spent-fuel consolidation. The technical and economic success of fuel consolidation requires successful and economical processing, storage and disposal of the scrap non-fuel-bearing components (NFBC). In the fall of 1987, NSP initiated a consolidation demonstration program at Prairie Island, during which 29 equipment spent-fuel assemblies were successfully consolidated by Westinghouse. The paper discusses program scope, NFBC characterization and classification, NFBC processing and NFBC segregation and packaging.

  15. Nuclear power beyond Three Mile Island

    SciTech Connect

    Rowlette, J.

    1980-05-01

    At the Three Mile Island-2 Reactor accident in March, 1979, there was concern expressed over a chemical explosion that might rupture the containment vessel and release radioactive material. The absolute worst possible event that could take place at a nuclear power plant would be a melt-down that breached the containment vessel and allowed radioactive material to escape, but this absolute worst possible case would create less cost and loss of life than many natural disasters. When the anti-nukes talk about a nuclear power plant devastating an area the size of Pennsylvania or California, and leaving a vast wasteland for 10,000 years, they are being grossly dishonest, for even at Hiroshima and Nagasaki, where we exploded weapons with the intent of massive destruction, the area has been completely restored and repopulated. The only major threat from nuclear power plant accidents is radiation. The average radiation dose received by every American each year is 170 millirems-130 from natural radiation and 40 millirems from man-made sources. A summary of the risks encountered from the combustion of coal, watching TV, diagnostic x-rays, dams collapsing, etc. making the risk level from nuclear radiation much smaller than most secular activities, is given.

  16. Endless generations of nuclear weapons

    SciTech Connect

    Taylor, T.B.

    1986-11-01

    The author feels that pursuit of Star Wars and continued US nuclear testing is blocking progress toward the eventual worldwide elimination of nuclear weapons. It is also bound to reveal new ways to attack military or civilian targets that will, in turn, stimulate further searches for new types of offensive and defensive nuclear weapons. Some of these developments could intensify the belief that limited nuclear wars can be fought and won. In short, development of new generations of nuclear weapons will provide the kind of positive feedback to the nuclear arms race that will greatly expand its dangers and its costs. Further proliferation of new types of nuclear weapons will increase the already extreme complexity of military planning and response, and the attendant dangers of nuclear war occurring by accident or through misinterpretation of information. Assessments of possible new military threats will become more uncertain as the complexities increase. Uncertainty can lead to catastrophic mistakes. Real or mistakenly perceived gaps in nuclear preparedness are likely to be used as further arguments for vast new military expenditures. We may all come to long for the relative simplicity of military nuclear issues during the first decade or so following the end of World War II. For these reasons, the author is convinced that there should be a halt to all nuclear tests, worldwide, as soon as possible. 2 references.

  17. REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.

    SciTech Connect

    HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

    2005-05-08

    The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have

  18. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE PAGESBeta

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  19. Engineer and technical training at GPUN's nuclear generating stations

    SciTech Connect

    Coe, R.P. )

    1993-01-01

    GPU Nuclear (GPUN) owns and operates the Oyster Creek and Three Mile Island (TMI) unit I nuclear generating stations. They also continue the recovery efforts of the damaged reactor at TMI-2. Technical training for engineers and support staff is managed by the GPUN Corporate Training Department. The group also manages the Institute of Nuclear Power Operations (INPO)-accredited Engineering Support Personnel (ESP) Training Program and the GPUN New Engineer Training Program. The New Engineer Training Program has been in existence since 1982 and has trained and oriented [approximately]100 new college graduates to the nuclear industry.

  20. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOEpatents

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  1. The Next Generation Nuclear Plant

    SciTech Connect

    Dr. David A. Petti

    2009-01-01

    The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950°C) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

  2. Connecting the Super-Heavy Island to the Nuclear Mainland

    NASA Astrophysics Data System (ADS)

    Rykaczewski, K.; Miernik, K.; Grzywacz, R.; Miller, D.

    2011-10-01

    The reactions between radioactive actinide targets and doubly-magic 48Ca beam led the identification of 6 new super-heavy elements (SHE) and 48 nuclei. Since the observed decay chains are ended by a fission process, these super-heavy nuclei are forming an isolated island in the nuclear chart. The HRIBF development of new detector system and digital data acquisition sensitive to very short-lived α-emitters made possible to attempt the studies extending the SHE island. The experiments aiming in new nuclei produced in the reactions with 248Cm and 239,242Pu targets and 40 , 44 , 48Ca projectiles and connecting the SHE island to the known nuclear mainland will be discussed. Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy.

  3. Health effects of the nuclear accident at Three Mile Island

    SciTech Connect

    Fabrikant, J.I.

    1980-05-01

    Between March 28 and April 15, 1979 the collective dose resulting from the radioactivity released to the population living within a 50-mile radius of the Three Mile Island nuclear plant was about 2000 person-rems, less than 1% of the annual natural background level. The average dose to a person living within 5 miles of the nuclear plant was less than 10% of annual background radiation. The maximum estimated radiation dose received by any one individual in the general population (excluding the nuclear plant workers) during the accident was 70 mrem. The doses received by the general population as a result of the accident were so small that there will be no detectable additional cases of cancer, developmental abnormalities, or genetic ill-health. Three Three Mile Island nuclear workers received radiation doses of about 3 to 4 rem, exceeding maximum permissible quarterly dose of 3 rem. The major health effect of the accident at Three Mile Island was that of a pronounced demoralizing effect on the general population in the Three Mile Island area, including teenagers and mothers of preschool children and the nuclear plant workers. However, this effect proved transient in all groups studied except the nuclear workers.

  4. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Wilreker, V. F.; Stiller, P. H.; Scott, G. W.; Kruse, V. J.; Smith, R. F.

    1984-01-01

    Primary results are summarized for a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The MOD-OA installation considered was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program and was characterized by the highest wind energy penetration levels of four sites. The study analyses address: fuel displacement, dynamic interaction, and three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted on Block Island, Rhode Island.

  5. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 2: Data analysis

    NASA Technical Reports Server (NTRS)

    Wilreker, V. F.; Stiller, P. H.; Scott, G. W.; Kruse, V. J.; Smith, R. F.

    1984-01-01

    Assessing the performance of a MOD-OA horizontal axis wind turbine connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. The detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three models of wind turbine reactive power control are presented. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. Even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level.

  6. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by...

  7. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by...

  8. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by...

  9. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by...

  10. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by...

  11. Thyroid neoplasia in Marshall Islanders exposed to nuclear fallout

    SciTech Connect

    Hamilton, T.E.; van Belle, G.; LoGerfo, J.P.

    1987-08-07

    We studied the risk of thyroid neoplasia in Marshall Islanders exposed to radioiodines in nuclear fallout from the 1954 BRAVO thermonuclear test. We screened 7266 Marshall Islanders for thyroid nodules; the islanders were from 14 atolls, including several southern atolls, which were the source of the best available unexposed comparison group. Using a retrospective cohort design, we determined the prevalence of thyroid nodularity in a subgroup of 2273 persons who were alive in 1954 and who therefore were potentially exposed to fallout from the BRAVO test. For those 12 atolls previously thought to be unexposed to fallout, the prevalence of thyroid nodules ranged from 0.9% to 10.6%. Using the distance of each atoll from the test site as a proxy for the radiation dose to the thyroid gland, a weighted linear regression showed an inverse linear relationship between distance and the age-adjusted prevalence of thyroid nodules. Distance was the strongest single predictor in logistic regression analysis. A new absolute risk estimate was calculated to be 1100 excess cases/Gy/y/1 X 10(6) persons (11.0 excess cases/rad/y/1 million persons), 33% higher than previous estimates. We conclude that an excess of thyroid nodules was not limited only to the two northern atolls but extended throughout the northern atolls; this suggests a linear dose-response relationship.

  12. Nuclear Effects in Generators: the Path Forward

    SciTech Connect

    Mosel, Ulrich

    2011-11-23

    The extraction of neutrino oscillation parameters requires the determination of the neutrino energy from observations of the hadronic final state. The use of nuclear targets then requires the use of event generators to isolate the interesting elementary processes and to take experimental acceptances into account. In this talk I briefly summarize the history of event generators and their use in nuclear physics, talk briefly about the generators used in the neutrino community and then discuss future necessary developments.

  13. Nuclear reactor safety research since three mile island.

    PubMed

    Mynatt, F R

    1982-04-01

    The Three Mile Island nuclear power plant accident has resulted in redirection of reactor safety research priorities. The small release to the environment of radioactive iodine-13 to 17 curies in a total radioactivity release of 2.4 million to 13 million curies-has led to a new emphasis on the physical chemistry of fission product behavior in accidents; the fact that the nuclear core was severely damaged but did not melt down has opened a new accident regime-that of the degraded core; the role of the operators in the progression and severity of the accident has shifted emphasis from equipment reliability to human reliability. As research progresses in these areas, the technical base for regulation and risk analysis will change substantially. PMID:17736229

  14. Cancer near the Three Mile Island nuclear plant: radiation emissions.

    PubMed

    Hatch, M C; Beyea, J; Nieves, J W; Susser, M

    1990-09-01

    As a public charge, cancers among the 159,684 residents living within a 10-mile (16-km) radius of the Three Mile Island nuclear plant were studied relative to releases of radiation during the March 28, 1979, accident as well as to routine plant emissions. The principal cancers considered were leukemia and childhood malignancies. Estimates of the emissions delivered to small geographic study tracts were derived from mathematical dispersion models which accounted for modifying factors such as wind and terrain; the model of accident emissions was validated by readings from off-site dosimeters. Incident cancers among area residents for the period 1975-1985 (n = 5,493) were identified by a review of the records at all local and regional hospitals; preaccident and postaccident trends in cancer rates were examined. For accident emissions, the authors failed to find definite effects of exposure on the cancer types and population subgroups thought to be most susceptible to radiation. No associations were seen for leukemia in adults or for childhood cancers as a group. For leukemia in children, the odds ratio was raised, but cases were few (n = 4), and the estimate was highly variable. Moreover, rates of childhood leukemia in the Three Mile Island area are low compared with national and regional rates. For exposure to routine emissions, the odds ratios were raised for childhood cancers as a whole and for childhood leukemia, but confidence intervals were wide and included 1.0. For leukemia in adults, there was a negative trend. Trends for two types of cancer ran counter to expectation. Non-Hodgkin's lymphoma showed raised risks relative to both accident and routine emissions; lung cancer (adjusted only indirectly for smoking) showed raised risks relative to accident emissions, routine emissions, and background gamma radiation. Overall, the pattern of results does not provide convincing evidence that radiation releases from the Three Mile Island nuclear facility influenced

  15. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  16. The Fourth Generation of Nuclear Power

    SciTech Connect

    Lake, James Alan

    2000-11-01

    The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

  17. Safe Hydrogen Generation by Nuclear HTR

    SciTech Connect

    Sochet, Isabelle; Viossat, Anne-Laure; Rouyer, Jean-Loup

    2004-07-01

    Several concepts of new high temperature nuclear reactors are designed to generate electricity and hydrogen. Hydrogen processes envisaged here are sulfur iodine thermo-chemical process and high temperature electrolysis. Proximity of hydrogen generation is a safety challenge for nuclear reactor. This paper describes prevention and protection against hydrogen hazards as a function of inventories and type of operation of the processes. This study is important for the designers because long distance between reactor and hydrogen facility induces difficult technological equipment. (authors)

  18. STEAM GENERATOR FOR NUCLEAR REACTOR

    DOEpatents

    Kinyon, B.W.; Whitman, G.D.

    1963-07-16

    The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

  19. 76 FR 79227 - Exemption Request Submitted by Oyster Creek Nuclear Generating Station; Exelon Generation Company...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exemption Request Submitted by Oyster Creek Nuclear Generating Station; Exelon Generation Company... Generation Company, LLC (the licensee), for operation of the Oyster Creek Nuclear Generating Station...

  20. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S

  1. Prairie Island Nuclear Station Spent Filter Processing for Direct Disposal - 12333

    SciTech Connect

    Anderson, H. Michael

    2012-07-01

    This paper will discuss WMG's filter processing experience within the commercial nuclear power industry, specifically recent experience processing high activity spent filters generated by Xcel Energy's Prairie Island Nuclear Station (Prairie Island), located in Welch, MN. WMG processed for disposal eighty-four 55-gallon drums filled with varying types of high activity spent filters. The scope of work involved characterization, packaging plan development, transport to the WMG's Off-Site Processing location, shredding the filter contents of each drum, cement solidifying the shredded filter material, and finally shipping the solidified container of shredded filter material to Clive, Utah where the container was presented to EnergySolutions Disposal site for disposal in their Containerised Waste Facility. This sequence of events presented in this paper took place a total of nine (9) times over a period of four weeks. All 1294 filters were successfully solidified into nine (9) -WMG 142 steel liners, and each was successfully disposed of as Class A Waste at EnergySolutions Disposal Site in Clive, Utah. Prairie Island's waste material was unique in that all its filters were packaged in 55-gallon drums; and since the station packaged its filters in drums it was much easier to develop packaging plans for such a large volume of legacy filters. For this author, having over 20-years of waste management experiences, storing and shipping waste material in 55-gallon drums is not immediately thought of as a highly efficient method of managing its waste material. However, Prairie Island's use of 55-gallon drums to store and package its filters provided a significant advantage. Drums could be mixed and matched to provide the most efficient processing method while still meeting the Waste Class A limits required for disposal. (author)

  2. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2001-04-01

    During the period January 1, 2001-March 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) finalized the engineering of the Willow Island cofiring project, completed the fuel characterizations for both the Willow Island and Albright Generating Station projects, and initiated construction of both projects. Allegheny and its contractor, Foster Wheeler, selected appropriate fuel blends and issued purchase orders for all processing and mechanical equipment to be installed at both sites. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The third quarter of the project involved completing the detailed designs for the Willow Island Designer Fuel project. It also included complete characterization of the coal and biomass fuels being burned, focusing upon the following characteristics: proximate and ultimate analysis; higher heating value; carbon 13 nuclear magnetic resonance testing for aromaticity, number of aromatic carbons per cluster, and the structural characteristics of oxygen in the fuel; drop tube reactor testing for high temperature devolatilization kinetics and generation of fuel chars; thermogravimetric analyses (TGA) for char oxidation kinetics; and related testing. The construction at both sites commenced during this quarter, and was largely completed at the Albright Generating Station site.

  3. The Birth of Nuclear-Generated Electricity

    DOE R&D Accomplishments Database

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  4. Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia

    NASA Astrophysics Data System (ADS)

    Wolanski, E.; Colin, P.; Naithani, J.; Deleersnijder, E.; Golbuu, Y.

    2004-08-01

    Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50-100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ≈10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.

  5. Real time testing of intelligent relays for synchronous distributed generation islanding detection

    NASA Astrophysics Data System (ADS)

    Zhuang, Davy

    As electric power systems continue to grow to meet ever-increasing energy demand, their security, reliability, and sustainability requirements also become more stringent. The deployment of distributed energy resources (DER), including generation and storage, in conventional passive distribution feeders, gives rise to integration problems involving protection and unintentional islanding. Distributed generators need to be islanded for safety reasons when disconnected or isolated from the main feeder as distributed generator islanding may create hazards to utility and third-party personnel, and possibly damage the distribution system infrastructure, including the distributed generators. This thesis compares several key performance indicators of a newly developed intelligent islanding detection relay, against islanding detection devices currently used by the industry. The intelligent relay employs multivariable analysis and data mining methods to arrive at decision trees that contain both the protection handles and the settings. A test methodology is developed to assess the performance of these intelligent relays on a real time simulation environment using a generic model based on a real-life distribution feeder. The methodology demonstrates the applicability and potential advantages of the intelligent relay, by running a large number of tests, reflecting a multitude of system operating conditions. The testing indicates that the intelligent relay often outperforms frequency, voltage and rate of change of frequency relays currently used for islanding detection, while respecting the islanding detection time constraints imposed by standing distributed generator interconnection guidelines.

  6. PROGRESS REPORT: COFIRING PROJECTS FOR WILLOW ISLAND AND ALBRIGHT GENERATING STATIONS

    SciTech Connect

    K. Payette; D. Tillman

    2001-07-01

    During the period April 1, 2001--June 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) accelerated construction of the Willow Island cofiring project, completed the installation of foundations for the fuel storage facility, the fuel receiving facility, and the processing building. Allegheny received all processing equipment to be installed at Willow Island. Allegheny completed the combustion modeling for the Willow Island project. During this time period construction of the Albright Generating Station cofiring facility was completed, with few items left for final action. The facility was dedicated at a ceremony on June 29. Initial testing of cofiring at the facility commenced. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.

  7. Microstructural Characterization of Next Generation Nuclear Graphites

    SciTech Connect

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  8. THE NEXT GENERATION NUCLEAR PLANT GRAPHITE PROGRAM

    SciTech Connect

    William E. Windes; Timothy D. Burchell; Robert L. Bratton

    2008-09-01

    Developing new nuclear grades of graphite used in the core of a High Temperature Gas-cooled Reactor (HTGR) is one of the critical development activities being pursued within the Next Generation Nuclear Plant (NGNP) program. Graphite’s thermal stability (in an inert gas environment), high compressive strength, fabricability, and cost effective price make it an ideal core structural material for the HTGR reactor design. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermo-mechanical design of the structural graphite in NGNP is based. The NGNP graphite R&D program has selected a handful of commercially available types for research and development activities necessary to qualify this nuclear grade graphite for use within the NGNP reactor. These activities fall within five primary areas; 1) material property characterization, 2) irradiated material property characterization, 3) modeling, and 4) ASTM test development, and 5) ASME code development efforts. Individual research and development activities within each area are being pursued with the ultimate goal of obtaining a commercial operating license for the nuclear graphite from the US NRC.

  9. 75 FR 33656 - Exelon Generation Company, LLC Oyster Creek Nuclear Generating Station Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC Oyster Creek Nuclear Generating Station Environmental Assessment....2, as requested by Exelon Generation Company, LLC (the licensee), for operation of the Oyster...

  10. 78 FR 39018 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3 AGENCY: Nuclear Regulatory Commission. ACTION: Supplement to Final Supplement 38 to the Generic...

  11. Nuclear power generation and fuel cycle report 1996

    SciTech Connect

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  12. Nuclear power generation and fuel cycle report 1997

    SciTech Connect

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  13. Historical and contemporary factors generate unique butterfly communities on islands.

    PubMed

    Vodă, Raluca; Dapporto, Leonardo; Dincă, Vlad; Shreeve, Tim G; Khaldi, Mourad; Barech, Ghania; Rebbas, Khellaf; Sammut, Paul; Scalercio, Stefano; Hebert, Paul D N; Vila, Roger

    2016-01-01

    The mechanisms shaping island biotas are not yet well understood mostly because of a lack of studies comparing eco-evolutionary fingerprints over entire taxonomic groups. Here, we linked community structure (richness, frequency and nestedness) and genetic differentiation (based on mitochondrial DNA) in order to compare insular butterfly communities occurring over a key intercontinental area in the Mediterranean (Italy-Sicily-Maghreb). We found that community characteristics and genetic structure were influenced by a combination of contemporary and historical factors, and among the latter, connection during the Pleistocene had an important impact. We showed that species can be divided into two groups with radically different properties: widespread taxa had high dispersal capacity, a nested pattern of occurrence, and displayed little genetic structure, while rare species were mainly characterized by low dispersal, high turnover and genetically differentiated populations. These results offer an unprecedented view of the distinctive butterfly communities and of the main processes determining them on each studied island and highlight the importance of assessing the phylogeographic value of populations for conservation. PMID:27353723

  14. Historical and contemporary factors generate unique butterfly communities on islands

    NASA Astrophysics Data System (ADS)

    Vodă, Raluca; Dapporto, Leonardo; Dincă, Vlad; Shreeve, Tim G.; Khaldi, Mourad; Barech, Ghania; Rebbas, Khellaf; Sammut, Paul; Scalercio, Stefano; Hebert, Paul D. N.; Vila, Roger

    2016-06-01

    The mechanisms shaping island biotas are not yet well understood mostly because of a lack of studies comparing eco-evolutionary fingerprints over entire taxonomic groups. Here, we linked community structure (richness, frequency and nestedness) and genetic differentiation (based on mitochondrial DNA) in order to compare insular butterfly communities occurring over a key intercontinental area in the Mediterranean (Italy-Sicily-Maghreb). We found that community characteristics and genetic structure were influenced by a combination of contemporary and historical factors, and among the latter, connection during the Pleistocene had an important impact. We showed that species can be divided into two groups with radically different properties: widespread taxa had high dispersal capacity, a nested pattern of occurrence, and displayed little genetic structure, while rare species were mainly characterized by low dispersal, high turnover and genetically differentiated populations. These results offer an unprecedented view of the distinctive butterfly communities and of the main processes determining them on each studied island and highlight the importance of assessing the phylogeographic value of populations for conservation.

  15. Historical and contemporary factors generate unique butterfly communities on islands

    PubMed Central

    Vodă, Raluca; Dapporto, Leonardo; Dincă, Vlad; Shreeve, Tim G.; Khaldi, Mourad; Barech, Ghania; Rebbas, Khellaf; Sammut, Paul; Scalercio, Stefano; Hebert, Paul D. N.; Vila, Roger

    2016-01-01

    The mechanisms shaping island biotas are not yet well understood mostly because of a lack of studies comparing eco-evolutionary fingerprints over entire taxonomic groups. Here, we linked community structure (richness, frequency and nestedness) and genetic differentiation (based on mitochondrial DNA) in order to compare insular butterfly communities occurring over a key intercontinental area in the Mediterranean (Italy-Sicily-Maghreb). We found that community characteristics and genetic structure were influenced by a combination of contemporary and historical factors, and among the latter, connection during the Pleistocene had an important impact. We showed that species can be divided into two groups with radically different properties: widespread taxa had high dispersal capacity, a nested pattern of occurrence, and displayed little genetic structure, while rare species were mainly characterized by low dispersal, high turnover and genetically differentiated populations. These results offer an unprecedented view of the distinctive butterfly communities and of the main processes determining them on each studied island and highlight the importance of assessing the phylogeographic value of populations for conservation. PMID:27353723

  16. 76 FR 19148 - PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1 and 2; Notice of Availability of the Final Supplement 45 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants Notice...

  17. 77 FR 40091 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3 AGENCY: Nuclear... statement for license renewal of nuclear plants; availability. SUMMARY: The U.S. Nuclear...

  18. Environmentally sound disposal of wastes: Multipurpose offshore islands offer safekeeping, continuous monitoring of hazardous, nuclear wastes

    SciTech Connect

    Tengelsen, W.E.

    1995-05-01

    Solid wastes have become a health threat to all municipalities and safe disposal costs are increasing for coastal cities. Onland dumps have become a continuing source of pollution, existing landfill sites should be eliminated. Ocean dumping is rules out because of the threat to aquatic resources but pollutants deep-sixed in the past should be isolated from the ocean environment before they further harm the aquatic food chain. And there are still no totally satisfactory solutions for nuclear waste disposal, especially for high-level wastes. A practical answer to our waste disposal problem is to build waterproof storage vault islands offshore to safely contain all past and futuer solid wastes so they would not mix with the ocean waters. Contaminated dredged spoil and construction materials can be safely included, in turn providing free shielding for nuclear waste stored in special vault chambers. Offshore islands can be built to ride out erthquakes and the ocean`s waters provide a stable temperature environment. Building modular structures in large quantities reduces per-unit costs; implementing these islands creates quality jobs and an economic stimulus. The island`s tops become valuable waterfront property for commercial, institutional, educational, infrastructural, and recreational uses; tenants and users provide the revenues that make this island concept self-supporting.

  19. Reactor engineering support of operations at Three Mile Island nuclear station

    SciTech Connect

    Tropasso, R.T.

    1995-12-31

    The purpose of this paper is to detail the activities in which plant nuclear engineering personnel provide direct support to plant operations. The specific activities include steady-state, transient, and shutdown/refueling operation support as well as special project involvement. The paper is intended to describe the experiences at Three Mile Island (TMI) in which significant benefit to the success of the activity is achieved through the support of the nuclear engineers.

  20. Method and apparatus for anti-islanding protection of distributed generations

    DOEpatents

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  1. Power generation from nuclear reactors in aerospace applications

    SciTech Connect

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  2. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  3. Anti-islanding Protection of Distributed Generation Using Rate of Change of Impedance

    NASA Astrophysics Data System (ADS)

    Shah, Pragnesh; Bhalja, Bhavesh

    2013-08-01

    Distributed Generation (DG), which is interlinked with distribution system, has inevitable effect on distribution system. Integrating DG with the utility network demands an anti-islanding scheme to protect the system. Failure to trip islanded generators can lead to problems such as threats to personnel safety, out-of-phase reclosing, and degradation of power quality. In this article, a new method for anti-islanding protection based on impedance monitoring of distribution network is carried out in presence of DG. The impedance measured between two phases is used to derive the rate of change of impedance (dz/dt), and its peak values are used for final trip decision. Test data are generated using PSCAD/EMTDC software package and the performance of the proposed method is evaluated in MatLab software. The simulation results show the effectiveness of the proposed scheme as it is capable to detect islanding condition accurately. Subsequently, it is also observed that the proposed scheme does not mal-operate during other disturbances such as short circuit and switching event.

  4. Distributed photovoltaic generation in residential distribution systems: Impacts on power quality and anti-islanding

    NASA Astrophysics Data System (ADS)

    Mitra, Parag

    The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on voltage unbalance needs to be explored. Furthermore, the islanding of DGs presents a technical hurdle towards the seamless integration of DG sources with the electricity grid. The work done in this thesis explores two important aspects of grid inte-gration of distributed PV generation, namely, the impact on power quality and anti-islanding. A test distribution system, representing a realistic distribution feeder in Arizona is modeled to study both the aforementioned aspects. The im-pact of distributed PV on voltage profile, voltage unbalance and distribution sys-tem primary losses are studied using CYMDIST. Furthermore, a PSCAD model of the inverter with anti-island controls is developed and the efficacy of the anti-islanding techniques is studied. Based on the simulations, generalized conclusions are drawn and the problems/benefits are elucidated.

  5. Nuclear Knowledge to the Next Generation

    SciTech Connect

    Mazour, Thomas.; Kossilov, Andrei

    2004-06-01

    The safe, reliable, and cost-effective operation of Nuclear Power Plants (NPPs) requires that personnel possess and maintain the requisite knowledge, skills, and attitudes to do their jobs properly. Such knowledge includes not only the technical competencies required by the nature of the technology and particular engineering designs, but also the softer competencies associated with effective management, communication and teamwork. Recent studies have shown that there has been a loss of corporate knowledge and memory. Both explicit knowledge and tacit knowledge must be passed on to the next generation of workers in the industry to ensure a quality workforce. New and different techniques may be required to ensure timely and effective knowledge retention and transfer. The IAEA prepared a report on this subject. The main conclusions from the report regarding strategies for managing the aging workforce are included. Also included are main conclusions from the report regarding the capture an d preservation of mission critical knowledge, and the effective transfer of this knowledge to the next generation of NPP personnel. The nuclear industry due to its need for well-documented procedures, specifications, design basis, safety analyses, etc., has a greater fraction of its mission critical knowledge as explicit knowledge than do many other industries. This facilitates the task of knowledge transfer. For older plants in particular, there may be a need for additional efforts to transfer tacit knowledge to explicit knowledge to support major strategic initiatives such as plant license extensions/renewals, periodic safety reviews, major plant upgrades, and plant specific control room simulator development. The challenge in disseminating explicit knowledge is to make employees aware that it is available and provide easy access in formats and forms that are usable. Tacit knowledge is more difficult to identify and disseminate. The challenge is to identify what can be converted to

  6. Wind data analysis for the design of a hybrid generation system at the Algodoal Island - Brazil

    SciTech Connect

    Bezerra, U.H.; Pinho, J.T.; J.C. da Cunha, D. de; Araujo, A.C.S.

    1997-12-31

    The northeastern coast of the State of Para and the Marajo Island - in Brazil, exhibit a wind potential that seems adequate to the generation of electric energy to supply local demands. These local demands are mostly formed by small towns and villages located invariably far from the big urban centers with little or no possibility to be supplied by the utility grid. In this paper it is intended to report the studies being conducted to design a hybrid wind diesel system to attend a small population center, namely the Algodoal Island, that is a representative sample of this region. It will be described the process of data acquisition and statistical treatment as well as some environmental, social and economic aspects regarding the Algodoal Island. Finally it will be presented a preliminary estimate of energy demand for this locality as well as a probable wind-diesel system arrangement to supply this demand.

  7. A new insight on magma generation environment beneath Jeju (Cheju) volcanic island

    NASA Astrophysics Data System (ADS)

    Shin, Y.; CHOI, K.; Koh, J.; Yun, S.; Nakamura, E.; Na, S.

    2011-12-01

    We present a Moho undulation model from gravity inversion that gives a new insight on the magma generation environment beneath Jeju (Cheju) volcanic island, Korea. The island is an intra-plate volcanic island located behind Ryukyu Trench, the collisional boundary between Eurasian plate and Philippine plate. Jeju island is a symmetrical shield volcano of oval shape (74 km by 32 km) whose peak is Hallasan (Mt. Halla: 1950m). The landform, which is closely related to the volcanism, can be divided topographically into the lava plateau, the shield-shaped Halla volcanic edifice and the monogenetic cinder cones, which numbers over 365. The basement rock mainly consists of Precambrian gneiss, Mesozoic granite and volcanic rocks. Unconsolidated sedimentary rock is found between basement rock and lava. The lava plateau is composed of voluminous basaltic lava flows, which extend to the coast region with a gentle slope. Based on volcanic stratigraphy, paleontology and geochronology, the Jeju basalts range from the early Pleistocene to Holocene in age. The mean density of the island is estimated to be very low, 2390 kg/cubic cm from gravity data analysis, which reflects the abundant unconsolidated pyroclastic sediments below the surface lava. The mean Moho depth is estimated to be 29.5 km from power spectral density of gravity anomaly, which means it has continental crust. It is noticeable that the gravity inversion indicates the island is developed above and along a swelled-up belt (ridge), several hundred meters higher than the surrounding area. The structure is also shows positive correlation with high magnetic anomaly distribution that could indicate existence of volcanic rocks. We interpret the Moho structure has a key to the magma generation: 1) the high gravity anomaly belt is formed by folding/buckling process under compressional environment, 2) it causes decrease of pressure beneath the lithosphere along the belt, and 3) it accelerates melting of basaltic magma in

  8. Idiopathic pulmonary fibrosis in a Christmas Island nuclear test veteran

    PubMed Central

    Parfrey, H; Babar, J; Fiddler, CA; Chilvers, ER

    2010-01-01

    We describe the case of a 71-year-old man with idiopathic pulmonary fibrosis (usual interstitial pneumonia (UIP) pattern) diagnosed on clinical, radiological and lung function criteria, in accordance with the American Thoracic Society/European Respiratory Society consensus criteria (2000), who had been in close proximity to three atmospheric nuclear bomb blasts during military service in 1957. He does not have clubbing and clinically and radiologically his lung disease is stable. He also has bladder carcinoma and carotid arteriosclerosis, both recognised consequences of radiation injury. This is the first reported case of UIP in a nuclear test veteran. Awareness of this potential association is important given the current attempts of the British Nuclear Test Veterans Association to gain compensation for claimed injuries. PMID:22797205

  9. Idiopathic pulmonary fibrosis in a Christmas Island nuclear test veteran.

    PubMed

    Parfrey, H; Babar, J; Fiddler, C A; Chilvers, E R

    2010-01-01

    We describe the case of a 71-year-old man with idiopathic pulmonary fibrosis (usual interstitial pneumonia (UIP) pattern) diagnosed on clinical, radiological and lung function criteria, in accordance with the American Thoracic Society/European Respiratory Society consensus criteria (2000), who had been in close proximity to three atmospheric nuclear bomb blasts during military service in 1957. He does not have clubbing and clinically and radiologically his lung disease is stable. He also has bladder carcinoma and carotid arteriosclerosis, both recognised consequences of radiation injury. This is the first reported case of UIP in a nuclear test veteran. Awareness of this potential association is important given the current attempts of the British Nuclear Test Veterans Association to gain compensation for claimed injuries. PMID:22797205

  10. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  11. Performance Analysis of Positive-feedback-based Active Anti-islanding Schemes for Inverter-Based Distributed Generators

    SciTech Connect

    Du, Pengwei; Aponte, Erick E.; Nelson, J. Keith

    2010-06-14

    Recently proposed positive-feedback-based anti-islanding schemes (AI) are highly effective in preventing islanding without causing any degradation in power quality. This paper aims to analyze the performance of these schemes quantitatively in the context of the dynamic models of inverter-based distributed generators (DG). In this study, the characteristics of these active anti-islanding methods are discussed and design guidelines are derived.

  12. 76 FR 19488 - Exelon Generation Company, LLC, Oyster Creek Nuclear Generating Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC, Oyster Creek Nuclear Generating Station; Exemption 1.0 Background Exelon Generation Company, LLC (Exelon or the licensee) is the holder of Facility Operating License No. DPR-16 that authorizes operation of the...

  13. 76 FR 19795 - Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Exemption 1.0 Background Exelon Generation Company, LLC (Exelon or the licensee) is the holder of Facility Operating License No. DPR-16 that authorizes operation of the...

  14. 78 FR 52987 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ...The U.S. Nuclear Regulatory Commission (NRC) has concluded that existing exemptions from its regulations, ``Fire Protection Program for Nuclear Power Facilities Operating Prior to January 1, 1979,'' for Fire Areas ETN-4 and PAB-2, issued to Entergy Nuclear Operations, Inc. (the licensee), for operation of Indian Point Nuclear Generating Unit 3 (Indian Point 3), located in Westchester County,......

  15. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2004-01-01

    During the period October 1, 2003-December 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) continued with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  16. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-07-01

    During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  17. 3D numerical investigation on landslide generated tsunamis around a conical island

    NASA Astrophysics Data System (ADS)

    Montagna, Francesca; Bellotti, Giorgio

    2010-05-01

    This paper presents numerical computations of tsunamis generated by subaerial and submerged landslides falling along the flank of a conical island. The study is inspired by the tsunamis that on 30th December 2002 attacked the coast of the volcanic island of Stromboli (South Tyrrhenian sea, Italy). In particular this paper analyzes the important feature of the lateral spreading of landside generated tsunamis and the associated flooding hazard. The numerical model used in this study is the full three dimensional commercial code FLOW-3D. The model has already been successfully used (Choi et al., 2007; 2008; Chopakatla et al, 2008) to study the interaction of waves and structures. In the simulations carried out in this work a particular feature of the code has been employed: the GMO (General Moving Object) algorithm. It allows to reproduce the interaction between moving objects, as a landslide, and the water. FLOW-3D has been firstly validated using available 3D experiments reproducing tsunamis generated by landslides at the flank of a conical island. The experiments have been carried out in the LIC laboratory of the Polytechnic of Bari, Italy (Di Risio et al., 2009). Numerical and experimental time series of run-up and sea level recorded at gauges located at the flanks of the island and offshore have been successfully compared. This analysis shows that the model can accurately represent the generation, the propagation and the inundation of landslide generated tsunamis and suggests the use of the numerical model as a tool for preparing inundation maps. At the conference we will present the validation of the model and parametric analyses aimed to investigate how wave properties depend on the landslide kinematic and on further parameters such as the landslide volume and shape, as well as the radius of the island. The expected final results of the research are precomputed inundation maps that depend on the characteristics of the landslide and of the island. Finally we

  18. Post-accident cleanup of radioactivity at the Three Mile Island Nuclear Power Station

    SciTech Connect

    Brooksbank, R.E.; Armento, W.J.

    1980-02-01

    The technical staff of the President's Commission on the Accident at Three Mile Island (TMI) requested that Oak Ridge National Laboratory (ORNL) prepare documentation concerned with the cleanup of radioactivity on the Three Mile Island site following the March 28, 1979 accident. The objective of this report is to provide information in a summarized form, which will be of direct usefulness to the commissioners. The information contained herein includes discussion of on-site assistance and accomplishments following the accident, flowsheet development for the TMI recovery team (by the Technical Advisory Group), and the numerous reports already generated on the TMI cleanup and recovery.

  19. Physical Modeling of Landslide Generated Tsunamis in Fjords and around Conical Islands

    NASA Astrophysics Data System (ADS)

    McFall, B. C.; Fritz, H. M.

    2012-12-01

    Tsunamis generated by landslides and volcanic island collapses account for some of the most extreme events recorded in history (Lituya Bay, Alaska, 1958) and can be particularly catastrophic in the near field region. Source and runup scenarios based on real world events using generalized Froude similarity are physically modeled in the three dimensional NEES tsunami wave basin (TWB) at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The LTG consists of a sliding box filled with up to 1,350 kg of naturally rounded river gravel which is accelerated by means of four pneumatic pistons down the 2H: 1V slope. The granular landslides are launched towards the water surface at velocities of up to 5 m/s resulting in corresponding landslide Froude numbers at impact in the range 1 generated tsunamis are studied in different topographic and bathymetric configurations: basin wide propagation and runup, a narrow fjord, a curved headland fjord and a conical island setting representing landslides off an island or a volcanic flank collapse. Measurement instrumentation includes an array of wave and runup wave gauges, above and underwater cameras, a stereo particle image velocimetry (PIV) setup and a multi-transducer acoustic array (MTA). Three-dimensional landslide surfaces are reconstructed and the instantaneous landslide surface kinematics measured using the stereo PIV setup. Above and underwater cameras measure the slide deformation at impact and underwater runout, while the slide deposit is measured with the MTA on the basin floor. Runup wave gauges along with overlapping video cameras record the onshore and offshore runup. Empirical equations for predicting wave amplitude, wave period, wave length and near-source runup are obtained. The generated waves are primarily dependent on non-dimensional landslide and water body parameters such as the impact landslide

  20. The long-term impact of a man-made disaster: An examination of a small town in the aftermath of the Three Mile Island Nuclear Reactor Accident.

    PubMed

    Goldsteen, R; Schorr, J K

    1982-03-01

    This paper explores the long-term effects of a nuclear accident on residents' perceptions of their physical and mental health, their trust of public officials, and their attitudes toward the future risks of nuclear power generation In their community. We find that in the period after the accident at Three Mile Island that there are constant or Increasing levels of distress reported by community residents. We conclude that the effects of a technological disaster may often be more enduring than those natural disaster and that greater research efforts should be made to Investigate the long-term consequences of man-made catastrophies of all types. PMID:20958512

  1. Fallout Deposition in the Marshall Islands from Bikini and Enewetak Nuclear Weapons Tests

    PubMed Central

    Beck, Harold L.; Bouville, André; Moroz, Brian E.; Simon, Steven L.

    2009-01-01

    Deposition densities (Bq m-2) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for all the 31 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 25 inhabited atolls. This analysis was confirmed by the fact that the sum of our estimates of 137Cs deposition from these 20 tests at each atoll is in good agreement with the total 137Cs deposited as estimated from contemporary soil sample analyses. The monitoring data and meteorological analyses were used to quantitatively estimate the deposition density of 63 activation and fission products for each nuclear test, plus the cumulative deposition of 239+240Pu at each atoll. Estimates of the degree of fractionation of fallout from each test at each atoll, as well as of the fallout transit times from the test sites to the atolls were used in this analysis. The estimates of radionuclide deposition density, fractionation, and transit times reported here are the most complete available anywhere and are suitable for estimations of both external and internal dose to representative persons as described in companion papers. PMID:20622548

  2. Fallout deposition in the Marshall Islands from Bikini and Enewetak nuclear weapons tests.

    PubMed

    Beck, Harold L; Bouville, André; Moroz, Brian E; Simon, Steven L

    2010-08-01

    Deposition densities (Bq m(-2)) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for 32 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 23 inhabited atolls. This analysis was confirmed by the fact that the sum of our estimates of 137Cs deposition from these 20 tests at each atoll is in good agreement with the total 137Cs deposited as estimated from contemporary soil sample analyses. The monitoring data and meteorological analyses were used to quantitatively estimate the deposition density of 63 activation and fission products for each nuclear test, plus the cumulative deposition of 239+240Pu at each atoll. Estimates of the degree of fractionation of fallout from each test at each atoll, as well as of the fallout transit times from the test sites to the atolls were used in this analysis. The estimates of radionuclide deposition density, fractionation, and transit times reported here are the most complete available anywhere and are suitable for estimations of both external and internal dose to representative persons as described in companion papers. PMID:20622548

  3. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-04-30

    During the period January 1, 2003--March 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with improvements to both the Willow Island and Albright Generating Station cofiring systems. These improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  4. Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys.

    PubMed

    Choi, Heebok; Koh, Hyeon-Woo; Kim, Hongik; Chae, Jong-Chan; Park, Soo-Je

    2016-05-28

    Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments. PMID:26869600

  5. The Next Generation Nuclear Plant (NGNP) Project

    SciTech Connect

    F. H. Southworth; P. E. MacDonald

    2003-11-01

    The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOE’s project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10

  6. Characterization of radioactive ion exchange media waste generated at Three Mile Island

    SciTech Connect

    Runion, T.C.; Holzworth, R.E.; Ogle, R.E.; Burton, H.M.; Bixby, W.W.

    1981-10-01

    The March 1979 accident at General Public Utilities Nuclear Corporation (GPUNC) Three Mile Island Nuclear Power Station Unit 2 (TMI-2), resulted in the transfer of more than 1100 m/sup 3/ of contaminated water to the auxiliary and fuel handling building. The principal sources of the water were the makeup and letdown purification system and the containment building sump. The contaminated water was processed through an ion exchange system designated as EPICOR II. The EPICOR-II System is a three-stage process. The contaminated water passes through a first stage of ion exchange media, designated as prefilters, and then through the second and third stages, designated as demineralizers. The majority of the activity was deposited in the first-stage prefilters, which have a maximum administrative loading limit of 1300 curies. The predominant radionuclides present in the prefilters are cesium and strontium.

  7. Numerical analysis of internal solitary wave generation around a Island in Kuroshio Current using MITgcm.

    NASA Astrophysics Data System (ADS)

    Kodaira, Tsubasa; Waseda, Takuji

    2013-04-01

    We have conducted ADCP and CTD measurements from 31/8/2010 to 2/9/2010 at the Miyake Island, located approximately 180 km south of Tokyo. The Kuroshio Current approached the island in this period, and the PALSAR image showed parabolic bright line upstream of the island. This bright line may be a surface signature of large amplitude internal solitary wave. Although our measurements did not explicitly show evidence of the internal solitary wave, critical condition might have been satisfied because of the Kuroshio Current and strong seasonal thermocline. To discover the generation mechanism of the large amplitude internal solitary wave at the Miyake Island, we have conducted non-hydrostatic numerical simulation with the MITgcm. A simple box domain, with open boundaries at all sides, is used. The island is simplified to circular cylinder or Gaussian Bell whose radius is 3km at ocean surface level. The size of the domain is 40kmx40kmx500m for circular cylinder cases and 80kmx80kmx500m for Gaussian bell cases. By looking at our CTD data, we have chosen for initial and boundary conditions a tanh function for vertical temperature profile. Salinity was kept constant for simplicity. Vertical density profile is also described by tanh function because we adopt linear type of equation of state. Vertical velocity profile is constant or linearly changed with depth; the vertical mean speed corresponds to the linear phase speed of the first baroclinic mode obtained by solving the eigen-value problem. With these configurations, we have conducted two series of simulations: shear flow through cylinder and uniform flow going through Gaussian Bell topography. Internal solitary waves were generated in front of the cylinder for the first series of simulations with shear flow. The generated internal waves almost purely consisted of 1st baroclinic component. Their intensities were linearly related with upstream vertical shear strength. As the internal solitary wave became larger, its width

  8. High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    SciTech Connect

    Madsen, C. B.; Abu-samha, M.; Madsen, L. B.

    2010-04-15

    We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH{sub 4} and CD{sub 4} and thereby provide direct theoretical support for a recent experiment [S. Baker et al., Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane.

  9. High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    NASA Astrophysics Data System (ADS)

    Madsen, C. B.; Abu-Samha, M.; Madsen, L. B.

    2010-04-01

    We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4 and CD4 and thereby provide direct theoretical support for a recent experiment [S. Baker , Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane.

  10. Definitional Hegemony as a Public Relations Strategy: The Rhetoric of the Nuclear Power Industry after Three Mile Island.

    ERIC Educational Resources Information Center

    Dionisopoulos, George N.; Crable, Richard E.

    1988-01-01

    Examines (1) definitional hegemony as one of several rhetorical options available to issue managers; (2) the post-accident rhetorical context of the Three Mile Island nuclear crisis; and (3) the specific strategies utilized to deal with this crisis. Assesses the nuclear industry's public relations efforts. (MS)

  11. A Locational Analysis of Generation Benefits on Long Island, NewYork

    SciTech Connect

    Wang, Juan; Cohen, Jesse; Edwards, Jennifer; Marnay, Chris

    2005-11-08

    Beginning in April of 2004, nine sites owned by Verizon began to participate in the Long Island Real Time Purchasing Pilot Project (LIRTP) as retail choice customers. LIRTP was designed to minimize electricity costs for retail customers who own on-site distributed generation (DG) units in the near-term, and to stabilize overall electricity costs in the long-term. The nine Verizon buildings have two types of DG units: gas turbines with an estimated generation cost of $156/MWh, and diesel units with an estimated cost of $120/MWh. Due to total site emission limits, the operable hours of the DG units are limited. To estimate the economic value of running on-site DG units, an analysis of the New York Independent System Operator (NYISO) Locational Based Marginal Price (LBMP) data for Long Island was conducted, mainly covering the summer months from 2000 to 2004. Distributions of LBMP, relationship between LBMP and load, and estimates of profitable operating hours for the units were all analyzed. Since Long Island is a diverse and highly congested area, LBMP varies greatly. Looking at the data statistically offers a zone-wide viewpoint, while using spatial analysis shows the LBMP intrazonal differentiation. LBMP is currently used by NYISO for pricing in the 11 NY control zones. Because geographic information systems (GIS) visualize the distribution of a phenomenon over space, it clarifies where load and generation nodes are located, and where load reduction would be most valuable. This study is based on the assumption that the control zone areas do not fully represent the diversity of pricing, and that intrazonal pricing can be analyzed to determine where and when electricity conservation or injection into the network is most valuable.

  12. Investigation: revelations about Three Mile Island disaster raise doubts over nuclear plant safety: a special facing south investigation by Sue Sturgis.

    PubMed

    Sturgis, Sue

    2009-01-01

    A series of mishaps in a reactor at the Three Mile Island (TMI) nuclear plant led to the 1979 meltdown of almost half the uranium fuel and uncontrolled releases of radiation into the air and surrounding Susquehanna River. It was the single worst disaster ever to befall the U.S. nuclear power industry. Health physics technician Randall Thompson's story about what he witnessed while monitoring radiation there after the incident is being publicly disclosed for the first time. It is supported by a growing body of evidence and it contradicts the U.S. government's contention that the TMI accident posed no threat to the public. Thompson and his wife, a nuclear health physicist who also worked at TMI in the disaster's wake, warn that the government's failure to acknowledge the full scope of the disaster is leading officials to underestimate the risks posed by a new generation of nuclear power plants. PMID:20129905

  13. 77 FR 16278 - License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear Operations, Inc. AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent...

  14. Nuclear Islands: International Leasing of Nuclear Fuel Cycle Sites to Provide Enduring Assurance of Peaceful Use

    SciTech Connect

    Paine, Christopher E.; Cochran, Thomas B.

    2010-11-01

    Current International Atomic Energy Agency safeguards do not provide adequate protection against the diversion to military use of materials or technology from certain types of sensitive nuclear fuel cycle facilities. In view of highly enriched uranium’s relatively greater ease of use as a nuclear explosive material than plutonium and the significant diseconomies of commercial spent fuel reprocessing, this article focuses on the need for improved international controls over uranium enrichment facilities as the proximate justification for creation of an International Nuclear Fuel Cycle Association (INFCA). In principle, the proposal is equally applicable to alleviating the proliferation concerns provoked by nuclear fuel reprocessing plants and other sensitive nuclear fuel cycle facilities. The INFCA would provide significantly increased nonproliferation assurance to its member states and the wider international community by holding long-term leasehold contracts to operate secure restricted zones containing such sensitive nuclear facilities.

  15. 75 FR 33366 - Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Notice of Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Amendment published in the Federal Register on June 3, 2008 (73 FR 31719). However, by letter dated April 21... COMMISSION Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Notice of Withdrawal of...) has granted the request of Exelon Generation Company, LLC, (Exelon), to withdraw its November 2,...

  16. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  17. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  18. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-01-01

    During the period October 1, 2002--December 31, 2002, Allegheny Energy Supply Co., LLC (Allegheny) completed the first year of testing at the Willow Island cofiring project. This included data acquisition and analysis associated with certain operating parameters and environmental results. Over 2000 hours of cofiring operation were logged at Willow Island, and about 4,000 tons of sawdust were burned along with slightly more tire-derived fuel (TDF). The results were generally favorable. During this period, also, a new grinder was ordered for the Albright Generating Station to handle oversized material rejected by the disc screen. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the test results at Willow Island and summarizes the grinder program at Albright.

  19. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOEpatents

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  20. Tsunamis generated by 3D granular landslides in various scenarios from fjords to conical islands

    NASA Astrophysics Data System (ADS)

    McFall, Brian C.; Fritz, Hermann M.

    2015-04-01

    Landslide generated tsunamis such as in Lituya Bay, Alaska 1958 account for some of the highest recorded tsunami runup heights. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by pneumatic pistons down slope. Two different landslide materials are used to study the granulometry effects: naturally rounded river gravel and cobble mixtures. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are compared between the planar hill slope used in various scenarios and the convex hill slope of the conical island. The energy conversion rates from the landslide motion to the wave train is quantified for the planar and convex hill slopes. The wave runup data on the opposing headland is analyzed and evaluated with wave theories. The measured landslide and tsunami data serve to validate and advance three-dimensional numerical landslide tsunami prediction models.

  1. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    SciTech Connect

    Timothy J. Leahy

    2010-06-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  2. The pre-conceptual design of the nuclear island of ASTRID

    SciTech Connect

    Saez, M.

    2012-07-01

    The CEA is involved in a substantial effort on the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) pre-conceptual design in cooperation with EDF, as experienced Sodium-cooled Fast Reactor (SFR) operator, AREVA, as experienced SFR Nuclear Island engineering company and components designer, ALSTOM POWER as energy conversion system designer and COMEX NUCLEAIRE as mechanical systems designer. The CEA is looking for other partnerships, in France and abroad. The ASTRID preliminary design is based on a sodium-cooled pool reactor of 1500 MWth generating about 600 MWe, which is required to guarantee the representativeness of the reactor core and the main components with regard to future commercial reactors. ASTRID lifetime target is 60 years. Two Energy Conversion Systems are studied in parallel until the end of 2012: Rankine steam cycle or Brayton gas based energy conversion cycle. ASTRID design is guided by the following major objectives: improved safety, simplification of structures, improved In Service Inspection and Repair (ISIR), improved manufacturing conditions for cost reduction and increased quality, reduction of risks related to sodium fires and water/sodium reaction, and improved robustness against external hazards. The core is supported by a diagrid, which lay on a strong back to transfer the weight to the main vessel. AREVA is involved in a substantial effort in order to improve the core support structure in particular regarding the ISIR and the connection to primary pump. In the preliminary design, the primary system is formed by the main vessel and the upper closure comprising the reactor roof, two rotating plugs - used for fuel handling - and the components plugs located in the roof penetrations. The Above Core Structure deflects the sodium flow in the hot pool and provides support to core instrumentation and guidance of the control rod drive mechanisms. The number of the major components in the main vessel, primary pumps

  3. Nuclear steam-generator transplant total rises

    SciTech Connect

    Smock, R.

    1982-09-01

    Several utilities with pressurized water reactors (PWRs) are replacing leaking and corroded steam generators. Over half the PWRs face corrosion problems that will cost $50 million to $100 million per unit to correct. An alternative approach of installing new tube sleeves has only had one application. Corrosion prevention still eludes utilities, whose problems differ. Westinghouse units were the first to experience corrosion problems because they have almost all operated for a decade or more. Some advances in condenser and steam-generator technology should extend the component life of younger units, and some leaking PWR tubes can be plugged. Operating differences may explain why PWRs have operated for over 20 years on submarines using phosphate water chemistry, while the use of de-aerators in the secondary-systems of foreign PWRs may explain their better performance. Among the corrective steps recommended by Stone and Webster are tighter chemistry control, better plant layup practices, revamping secondary-system hardware, condensate polishing, and de-aerators. Research continues to find the long-term preventative. 2 tables. (DCK)

  4. Methane generation at Grand Gulf Nuclear Station

    SciTech Connect

    Carver, M.L.

    1995-09-01

    The methane generation at Grand Gulf has been brought to light twice. The initial event occurred in February 1990 and the second in December 1993. Both events involved the receipt of a cask at Barnwell Waste Management Facility that when opened indicated a gas escaping. The gas was subsequently sampled and indicated a percentage of explosive gas. Both events involved powdered resin and indicated that the generation was from a bacterial attack of the organic materials (cellulose in the powdered resin mixture). The first event occurred and was believed to be isolated in a particular waste stream. The situation was handled and a biocide was found to be effective in treatment of liners until severe cross contamination of another waste stream occurred. This allowed the shipment of a liner that was required to be sampled for explosive gases. The biocide used by GGNS was allowed reintroduction into the floor drains and this allowed the buildup of immunity of the bacterial population to this particular biocide. The approval of a new biocide has currently allowed GGNS to treat liners and ship them offsite.

  5. Reactions of psychiatric patients to the Three Mile Island nuclear accident.

    PubMed

    Bromet, E; Schulberg, H C; Dunn, L

    1982-06-01

    The reaction of patients in the community mental health system to the nuclear accident at Three Mile Island (TMI), Middletown, Pa, were assessed. The sample was composed of 151 patients from the TMI area and 64 patients from a comparison site where a similar nuclear plant is located. Mental health status was determined for the period immediately after the accident, nine to ten months later, and one year later. No significant differences were found between the TMI group and the comparison group. To isolate risk factors within the TMI group, patients who were most distressed were compared with patients with the least distress. The results showed that quality of network support and viewing TMI as dangerous were significantly associated with mental health. PMID:7092506

  6. Reactions of psychiatric patients to the Three Mile Island nuclear accident

    SciTech Connect

    Bromet, E.; Schulberg, H.C.; Dunn, L.

    1982-06-01

    The reaction of patients in the community mental health system to the nuclear accident at Three Mile Island (TMI), Middletown, Pa, were assessed. The sample was composed of 151 patients from the TMI area and 64 patients from a comparison site where a similar nuclear plant is located. Mental health status was determined for the period immediately after the accident, nine to ten months later, and one year later. No significant differences were found between the TMI group and the comparison group. To isolate risk factors within the TMI group, patients who were most distressed were compared with patients with the least distress. The results showed that quality of network support and viewing TMI as dangerous were significantly associated with mental health.

  7. Doses from external irradiation to Marshall Islanders from Bikini and Enewetak nuclear weapons tests.

    PubMed

    Bouville, André; Beck, Harold L; Simon, Steven L

    2010-08-01

    Annual doses from external irradiation resulting from exposure to fallout from the 65 atmospheric nuclear weapons tests conducted in the Marshall Islands at Bikini and Enewetak between 1946 and 1958 have been estimated for the first time for Marshallese living on all inhabited atolls. All tests that deposited fallout on any of the 23 inhabited atolls or separate reef islands have been considered. The methodology used to estimate the radiation doses at the inhabited atolls is based on test- and location-specific radiation survey data, deposition density estimates of 137Cs, and fallout times-of-arrival provided in a companion paper (Beck et al.), combined with information on the radionuclide composition of the fallout at various times after each test. These estimates of doses from external irradiation have been combined with corresponding estimates of doses from internal irradiation, given in a companion paper (Simon et al.), to assess the cancer risks among the Marshallese population (Land et al.) resulting from exposure to radiation from the nuclear weapons tests. PMID:20622549

  8. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and

  9. NNSA Program Develops the Next Generation of Nuclear Security Experts

    SciTech Connect

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  10. A review on the generation, determination and mitigation of urban heat island.

    PubMed

    Memon, Rizwan Ahmed; Leung, Dennis Y C; Chunho, Liu

    2008-01-01

    Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic heat sources are the main causes of UHI. The two heat sources increase the temperatures of an urban area as compared to its surroundings, which is known as Urban Heat Island Intensity (UHII). The problem is even worse in cities or metropolises with large population and extensive economic activities. The estimated three billion people living in the urban areas in the world are directly exposed to the problem, which will be increased significantly in the near future. Due to the severity of the problem, vast research effort has been dedicated and a wide range of literature is available for the subject. The literature available in this area includes the latest research approaches, concepts, methodologies, latest investigation tools and mitigation measures. This study was carried out to review and summarize this research area through an investigation of the most important feature of UHI. It was concluded that the heat re-radiated by the urban structures plays the most important role which should be investigated in details to study urban heating especially the UHI. It was also concluded that the future research should be focused on design and planning parameters for reducing the effects of urban heat island and ultimately living in a better environment. PMID:18572534

  11. Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography

    SciTech Connect

    Schultz, V. ); Schultz, S.C. ); Robison, W.L. )

    1991-05-01

    A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. This document is the bibliography.

  12. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-10-01

    During the period July 1, 2003-September 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of bio mass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. During this period, a major presentation summarizing the program was presented at the Pittsburgh Coal Conference. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  13. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2001-10-01

    During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.

  14. The impact of tourism on municipal solid waste generation: the case of Menorca Island (Spain).

    PubMed

    Mateu-Sbert, Josep; Ricci-Cabello, Ignacio; Villalonga-Olives, Ester; Cabeza-Irigoyen, Elena

    2013-12-01

    Tourism can sustain high levels of employment and income, but the sector is a source of environmental and health impacts. One of the most important is the generation of municipal solid waste (MSW). However, there is a lack of studies which quantify how much the tourist population engages in total MSW and separately collected recyclables. The aim of this paper is to estimate the impact of the tourist population on MSW, both total and separately collected, for the period 1998-2010, for the Mediterranean island of Menorca (Spain). We use dynamic regressions models, including data for monthly stocks of tourists. The results show that, on average, a 1% increase in the tourist population in Menorca causes an overall MSW increase of 0.282% and one more tourist in Menorca generates 1.31 kg day(-1) (while one more resident generates 1.48 kg day(-1)). This result could be useful to better estimate the seasonal population of different regions, since intrannual fluctuation of MSW is used as a proxy measure of actual population (the sum of residents and tourists). Moreover, an increase of 1% in the tourist population causes an increase of 0.232% in separately collected recyclables and an additional tourist generates 0.160 kg day(-1). One resident selectively collects on average 47.3% more than one tourist. These results can help in the planning of waste infrastructure and waste collection services in tourist areas. PMID:24001553

  15. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Chichester, D. L.; Seabury, E. H.

    2009-03-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  16. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  17. Generating the option of a two-stage nuclear renaissance.

    PubMed

    Grimes, Robin W; Nuttall, William J

    2010-08-13

    Concerns about climate change, security of supply, and depleting fossil fuel reserves have spurred a revival of interest in nuclear power generation in Europe and North America, while other regions continue or initiate an expansion. We suggest that the first stage of this process will include replacing or extending the life of existing nuclear power plants, with continued incremental improvements in efficiency and reliability. After 2030, a large-scale second period of construction would allow nuclear energy to contribute substantially to the decarbonization of electricity generation. For nuclear energy to be sustainable, new large-scale fuel cycles will be required that may include fuel reprocessing. Here, we explore the opportunities and constraints in both time periods and suggests ways in which measures taken today might, at modest cost, provide more options in the decades to come. Careful long-term planning, along with parallel efforts aimed at containing waste products and avoiding diversion of material into weapons production, can ensure that nuclear power generation remains a carbon-neutral option. PMID:20705854

  18. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2001-01-01

    During the period October 1, 2000 - December 31, 2000, Allegheny Energy Supply Co., LLC (Allegheny) executed a Cooperative Agreement with the National Energy Technology Laboratory to implement a major cofiring demonstration at the Willow Island Generating Station Boiler No.2. Willow Island Boiler No.2 is a cyclone boiler. Allegheny also will demonstrate separate injection cofiring at the Albright Generating Station Boiler No.3, a tangentially fired boiler. The Allegheny team includes Foster Wheeler as its primary subcontractor. Additional subcontractors are Cofiring Alternatives and N.S. Harding and Associates. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The second quarter of the project involved completing the designs for each location. Further, geotechnical investigations proceeded at each site. Preparations were made to perform demolition on two small buildings at the Willow Island site. Fuels strategies were initiated for each site. Test planning commenced for each site. A groundbreaking ceremony was held at the Willow Island site on October 18, with Governor C. Underwood being the featured speaker.

  19. Hydrogen Production from the Next Generation Nuclear Plant

    SciTech Connect

    M. Patterson; C. Park

    2008-03-01

    The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

  20. Multiple nuclear ortholog next generation sequencing phylogeny of Daucus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing is helping to solve the data insufficiency problem hindering well-resolved dominant gene phylogenies. We used Roche 454 technology to obtain DNA sequences from 93 nuclear orthologs, dispersed throughout all linkage groups of Daucus. Of these 93 orthologs, ten were designed...

  1. New Generation Nuclear Plant -- High Level Functions and Requirements

    SciTech Connect

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  2. The Environmental Impact of Electrical Generation: Nuclear vs. Conventional.

    ERIC Educational Resources Information Center

    McDermott, John J., Ed.

    This minicourse, partially supported by the Division of Nuclear Education and Training of the U.S. Atomic Energy Commission, is an effort to describe the benefit-to-risk ratio of various methods of generating electrical power. It attempts to present an unbiased, straightforward, and objective view of the advantages and disadvantages of nuclear…

  3. Cancer rates after the Three Mile Island nuclear accident and proximity of residence to the plant.

    PubMed Central

    Hatch, M C; Wallenstein, S; Beyea, J; Nieves, J W; Susser, M

    1991-01-01

    BACKGROUND: In the light of a possible link between stress and cancer promotion or progression, and of previously reported distress in residents near the Three Mile Island (TMI) nuclear power plant, we attempted to evaluate the impact of the March 1979 accident on community cancer rates. METHODS: Proximity of residence to the plant, which related to distress in previous studies, was taken as a possible indicator of accident stress; the postaccident pattern in cancer rates was examined in 69 "study tracts" within a 10-mile radius of TMI, in relation to residential proximity. RESULTS: A modest association was found between postaccident cancer rates and proximity (OR = 1.4; 95% CI = 1.3, 1.6). After adjusting for a gradient in cancer risk prior to the accident, the odds ratio contrasting those closest to the plant with those living farther out was 1.2 (95% CI = 1.0, 1.4). A postaccident increase in cancer rates near the Three Mile Island plant was notable in 1982, persisted for another year, and then declined. Radiation emissions, as modeled mathematically, did not account for the observed increase. CONCLUSION: Interpretation in terms of accident stress is limited by the lack of an individual measure of stress and by uncertainty about whether stress has a biological effect on cancer in humans. An alternative mechanism for the cancer increase near the plant is through changes in care-seeking and diagnostic practice arising from postaccident concern. PMID:2029040

  4. The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel

    SciTech Connect

    Tehan, Terry

    2000-09-27

    The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

  5. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  6. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  7. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  8. Economic comparison of nuclear and coal-fired generation. [Monograph

    SciTech Connect

    Corey, G.R.

    1980-01-01

    This paper compares the current and historic operating performance of 12 large nuclear and coal-fired units now operated by Commonwealth Edison Co., and provides specific comparisons of busbar costs of electricity generated by those units in recent years. It also provides cost comparisons for future nuclear and coal-fired units, and attempts to deal realistically with the effect of future inflation upon these comparisons. The paper deals with the problem of uncertainty, the effect of future developments on present-day comparisons, and how published comparisons have varied over the past four or five years. 9 tables.

  9. The Nuclear Accident at Three Mile Island a Practical Lesson in the Fundamental Importance of Effective Communications

    SciTech Connect

    DeVine Jr, J.C.

    2008-07-01

    The Three Mile Island Unit 2 (TMI-2) accident in March 1979 had a profound effect on the course of commercial nuclear generation in the United States and around the world. And while the central elements of the accident were matters of nuclear engineering, design and operations, its consequences were compounded, and in some respects superseded, by extraordinarily ineffective communications by all parties at all levels. Communications failures during the accident and its aftermath caused misunderstanding, distrust, and incorrect emergency response - and seeded or reinforced public opposition to nuclear power that persists to this day. There are communications lessons from TMI that have not yet been fully learned, and some that once were learned but are now gradually being forgotten. The more glaring TMI communications problems were in the arena of external interactions and communications among the plant owner, the Nuclear Regulatory Commission (NRC), the media, and the public. Confusing, fragmented, and contradictory public statements early in the accident, regardless of cause, undermined all possibility for reasonable discourse thereafter. And because the TMI accident was playing out on a world stage, the breakdown in public trust had long term and widespread implications. At the plant site, both TMI-2 cleanup and restart of the undamaged TMI-1 unit met with years of public and political criticism, and attendant regulatory pressure. Across the nation, public trust in nuclear power and those who operate it plummeted, unquestionably contributing to the 25+ year hiatus in new plant orders. There were other, less visible but equally important, consequences of ineffective communications at TMI. The unplanned 'precautionary' evacuation urged by the governor two days after the accident - a life changing, traumatic event for thousands of residents - was prompted primarily by misunderstandings and miscommunications regarding the condition of the plant. And today, nearly 30

  10. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2002-01-01

    During the period October 1, 2001--December 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) completed construction of the Willow Island cofiring project. This included completion of the explosion proof electrical wiring, the control system, and the control software. Procedures for system checkout, shakedown, and initial operation were initiated during this period. During this time period the 100-hour test of the Albright Generating Station cofiring facility was completed. The testing demonstrated that cofiring at the Albright Generating Station could reliably contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions over a significant load range. During this period of time Allegheny Energy conducted facility tours of both Albright and Willow Island for the Biomass Interest Group of the Electric Power Research Institute. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the completion of construction activities at the Willow Island site along with the 100-hr test at the Albright site.

  11. Nuclear isomers in superheavy elements as stepping stones towards the island of stability.

    PubMed

    Herzberg, R-D; Greenlees, P T; Butler, P A; Jones, G D; Venhart, M; Darby, I G; Eeckhaudt, S; Eskola, K; Grahn, T; Gray-Jones, C; Hessberger, F P; Jones, P; Julin, R; Juutinen, S; Ketelhut, S; Korten, W; Leino, M; Leppänen, A-P; Moon, S; Nyman, M; Page, R D; Pakarinen, J; Pritchard, A; Rahkila, P; Sarén, J; Scholey, C; Steer, A; Sun, Y; Theisen, Ch; Uusitalo, J

    2006-08-24

    A long-standing prediction of nuclear models is the emergence of a region of long-lived, or even stable, superheavy elements beyond the actinides. These nuclei owe their enhanced stability to closed shells in the structure of both protons and neutrons. However, theoretical approaches to date do not yield consistent predictions of the precise limits of the 'island of stability'; experimental studies are therefore crucial. The bulk of experimental effort so far has been focused on the direct creation of superheavy elements in heavy ion fusion reactions, leading to the production of elements up to proton number Z = 118 (refs 4, 5). Recently, it has become possible to make detailed spectroscopic studies of nuclei beyond fermium (Z = 100), with the aim of understanding the underlying single-particle structure of superheavy elements. Here we report such a study of the nobelium isotope 254No, with 102 protons and 152 neutrons--the heaviest nucleus studied in this manner to date. We find three excited structures, two of which are isomeric (metastable). One of these structures is firmly assigned to a two-proton excitation. These states are highly significant as their location is sensitive to single-particle levels above the gap in shell energies predicted at Z = 114, and thus provide a microscopic benchmark for nuclear models of the superheavy elements. PMID:16929293

  12. Reducing Risk for the Next Generation Nuclear Plant

    SciTech Connect

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  13. New Generation Nuclear Plant (NGNP) Project, Preliminary Point Design

    SciTech Connect

    F. H. Southworth; P. E. MacDonald; A. M. Baxter; P. D. Bayless; J. M. Bolin; H. D. Gougar; R. L. Moore; A. M. Ougouag; M. B. Richards; R. L. Sant; J. W. Sterbentz; W. K. Terry

    2004-03-01

    This paper provides a preliminary assessment of two possible versions of the Next Generation Nuclear Plant (NGNP), a prismatic fuel type helium gas-cooled reactor and a pebblebed fuel helium gas reactor. Both designs will meet the three basic requirements that have been set for the NGNP: a coolant outlet temperature of 1000 C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors.

  14. Radionuclides in fishes and mussels from the Farallon Islands Nuclear Waste Dump Site, California

    SciTech Connect

    Suchanek, T.H.; Lagunas-Solar, M.C.; Carvacho, O.

    1996-08-01

    The Farallon Islands Nuclear Waste Dump Site (FINWDS), approximately 30 miles west of San Francisco, California, received at least 500 TBq encapsulated in more than 47,500 containers from approximately 1945 to 1970. During several seasons in 1986/87 deep-sea bottom feeding fishes (Dover sole = Microstomus pacificus; sablefish = Anoplopoma fimbria; thornyheads = Sebastolobus spp.) and intertidal mussels (Mytilus californianus) were collected from the vicinity of the FINWDS and from comparable depths at a reference site near Point Arena, CA. Tissues were analyzed for several radionuclides ({sup 137}Cs, {sup 238}Pu, {sup 239+240}Pu, and {sup 241}Am). Radionuclide concentrations for fish mussel tissue ranged from non-detectable to 4,340 mBq kg{sup {minus}1} wet weight, with the following means for Farallon fishes: {sup 137}Cs = 1,110 mBq kg{sup {minus}1}; {sup 238}Pu = 390 mBq kg{sup {minus}1}; {sup 239+240}Pu = 130 mBq kg{sup {minus}1}; and {sup 241}Am = 1,350 mBq kg{sup {minus}1}. There were no statistically significant differences in the radionuclide concentrations observed in samples from the Farallon Islands compared to reference samples from Point Arena, CA. Concentrations of both {sup 238}Pu and {sup 241}Am in fish tissues (from both sites) were notably higher than those reported in literature from any other sites worldwide, including potentially contaminated sites. Concentrations of {sup 239+240}Pu from both sites were typical of low values found at some contaminated sites worldwide. These results show {approximately} 10 times higher concentrations of {sup 239+240}Pu and {approximately}40-50 times higher concentrations of {sup 238}Pu than those values reported for identical fish species from 1977 collections at the FINWDS. Radionuclide concentrations were converted to a hypothetical per capita annual radionuclide intake for adults. 51 refs., 5 figs., 3 tabs.

  15. Making Sense of Knowledge Transfer and Social Capital Generation for a Pacific Island Aid Infrastructure Project

    ERIC Educational Resources Information Center

    Manu, Christopher; Walker, Derek H. T.

    2006-01-01

    Purpose: The purpose of this research is to investigate how lessons learned from a case study of a construction project undertaken in the Pacific Islands relates to the interaction between social capital and knowledge transfer. The paper is reflective in nature focusing upon the experiences of one of the authors, being a Pacific Islander and…

  16. Over/Undervoltage and Undervoltage Shift of Hybrid Islanding Detection Method of Distributed Generation

    PubMed Central

    Premrudeepreechacharn, Suttichai

    2015-01-01

    The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast. ΔP/P > 38.41% could determine anti-islanding condition within 0.04 s; ΔP/P < −24.39% could determine anti-islanding condition within 0.04 s; −24.39% ≤ ΔP/P ≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of −24.39% ≤ ΔP/P ≤ 38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not. PMID:25879064

  17. Over/Undervoltage and undervoltage shift of hybrid islanding detection method of distributed generation.

    PubMed

    Yingram, Manop; Premrudeepreechacharn, Suttichai

    2015-01-01

    The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast. ΔP/P > 38.41% could determine anti-islanding condition within 0.04 s; ΔP/P < -24.39% could determine anti-islanding condition within 0.04 s; -24.39% ≤ ΔP/P ≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of -24.39% ≤ ΔP/P ≤ 38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not. PMID:25879064

  18. Relationships of scincid lizards (Mabuya spp; Reptilia: Scincidae) from the Cape Verde islands based on mitochondrial and nuclear DNA sequences.

    PubMed

    Brehm, A; Jesus, J; Pinheiro, M; Harris, D J

    2001-05-01

    Partial DNA sequences from two mitochondrial (mt) and one nuclear gene (cytochrome b, 12S rRNA, and C-mos) were used to estimate the phylogenetic relationships among the six extant species of skinks endemic to the Cape Verde Archipelago. The species form a monophyletic unit, indicating a single colonization of the islands, probably from West Africa. Mabuya vaillanti and M. delalandii are sister taxa, as indicated by morphological characters. Mabuya fogoensis and M. stangeri are closely related, but the former is probably paraphyletic. Mabuya spinalis and M. salensis are also probably paraphyletic. Within species, samples from separate islands always form monophyletic groups. Some colonization events can be hypothesized, which are in line with the age of the islands. C-mos variation is concordant with the topology derived from mtDNA. PMID:11341812

  19. Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography

    SciTech Connect

    Robison, W.L. ); Schultz, V. ); Schultz, S.C. )

    1991-04-01

    A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. Primary sources of information in preparing this bibliography were bibliographies on Oceania, citations in published papers, CIS Index and Abstracts, Monthly Catalog of United States Government Publications, Nuclear Science Abstracts, Energy Research Abstracts, numerous bibliographies on radiation ecology, and suggestions by many individuals whom we contacted. One goal in this bibliography is to include complete documentation of the source of congressional reports and other government-related publications. In addition, page numbers for material in this bibliography are provided in parentheses when the subject matter of a book or document is not restricted to nuclear weapons testing in the Marshall Islands.

  20. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  1. Salt disposal of heat-generating nuclear waste.

    SciTech Connect

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  2. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil

  3. The meteorological advisor in a nuclear generation station emergency plan

    SciTech Connect

    Caiazza, R.

    1985-01-01

    Niagara Mohawk Power Corporation (NMPC) has developed an extensive emergency response plan for the Nine Mile Point Nuclear Generating Station, located near Oswego, New York, in response to requirements of the Nuclear Regulatory Commission (NRC). If an emergency involving actual or potential release of radioactivity occurs, meteorological conditions in the vicinity of the plant are an extremely important factor in the emergency response. In recognition of this, NMPC has included a Meteorological Advisor position in its Technical Support Center (TSC)/Emergency Operations Facility (HOF) support staffing plans. The Meteorological Advisor is responsible for verification of meteorological measurements, interpretation and dissemination of weather forecasts, dose projection verification, and monitoring team direction. This paper describes those responsibilities as they are integrated into the emergency plan.

  4. MHTGR-Nuclear Island Engineering: Final summary report for the period November 30, 1987 through December 1, 1988

    SciTech Connect

    1988-12-01

    This report summarizes the Modular High-Temperature Gas-Cooled Reactor (MHTGR) - Nuclear Island Engineering (NIE) design and development work performed by General Atomics (GA) for the period November 30, 1987 through December 1, 1988, under the Department of Energy (DOE) Contract AC03-88SF17367. The scope of the report includes work performed by Bechtel National Inc. (BNI), Combustion Engineering Inc. (C-E), and James Howden Company, as major subcontractors to GA.

  5. Spontaneous abortions after the Three Mile Island nuclear accident: a life table analysis.

    PubMed

    Goldhaber, M K; Staub, S L; Tokuhata, G K

    1983-07-01

    A study was conducted to determine whether the incidence of spontaneous abortion was greater than expected near the Three Mile Island (TMI) nuclear power plant during the months following the March 28, 1979 accident. All persons living within five miles of TMI were registered shortly after the accident, and information on pregnancy at the time of the accident was collected. After one year, all pregnancy cases were followed up and outcomes ascertained. Using the life table method, it was found that, given pregnancies after four completed weeks of gestation counting from the first day of the last menstrual period, the estimated incidence of spontaneous abortion (miscarriage before completion of 16 weeks of gestation) was 15.1 per cent for women pregnant at the time of the TMI accident. Combining spontaneous abortions and stillbirths (delivery of a dead fetus after 16 weeks of gestation), the estimated incidence was 16.1 per cent for pregnancies after four completed weeks of gestation. Both incidences are comparable to baseline studies of fetal loss. PMID:6859357

  6. Spontaneous abortions after the Three Mile Island nuclear accident: a life table analysis

    SciTech Connect

    Goldhaber, M.K.; Staub, S.L.; Tokuhata, G.K.

    1983-07-01

    A study was conducted to determine whether the incidence of spontaneous abortion was greater than expected near the Three Mile Island (TMI) nuclear power plant during the months following the March 28, 1979 accident. All persons living within five miles of TMI were registered shortly after the accident, and information on pregnancy at the time of the accident was collected. After one year, all pregnancy cases were followed up and outcomes ascertained. Using the life table method, it was found that, given pregnancies after four completed weeks of gestation counting from the first day of the last menstrual period, the estimated incidence of spontaneous abortion (miscarriage before completion of 16 weeks of gestation) was 15.1 per cent for women pregnant at the time of the TMI accident. Combining spontaneous abortions and stillbirths (delivery of a dead fetus after 16 weeks of gestation), the estimated incidence was 16.1 per cent for pregnancies after four completed weeks of gestation. Both incidences are comparable to baseline studies of fetal loss.

  7. Spontaneous abortions after the Three Mile Island nuclear accident: a life table analysis.

    PubMed Central

    Goldhaber, M K; Staub, S L; Tokuhata, G K

    1983-01-01

    A study was conducted to determine whether the incidence of spontaneous abortion was greater than expected near the Three Mile Island (TMI) nuclear power plant during the months following the March 28, 1979 accident. All persons living within five miles of TMI were registered shortly after the accident, and information on pregnancy at the time of the accident was collected. After one year, all pregnancy cases were followed up and outcomes ascertained. Using the life table method, it was found that, given pregnancies after four completed weeks of gestation counting from the first day of the last menstrual period, the estimated incidence of spontaneous abortion (miscarriage before completion of 16 weeks of gestation) was 15.1 per cent for women pregnant at the time of the TMI accident. Combining spontaneous abortions and stillbirths (delivery of a dead fetus after 16 weeks of gestation), the estimated incidence was 16.1 per cent for pregnancies after four completed weeks of gestation. Both incidences are comparable to baseline studies of fetal loss. PMID:6859357

  8. The relationship of thyroid cancer with radiation exposure from nuclear weapon testing in the Marshall Islands.

    PubMed

    Takahashi, Tatsuya; Schoemaker, Minouk J; Trott, Klaus R; Simon, Steven L; Fujimori, Keisei; Nakashima, Noriaki; Fukao, Akira; Saito, Hiroshi

    2003-03-01

    The US nuclear weapons testing program in the Pacific conducted between 1946 and 1958 resulted in radiation exposure in the Marshall Islands. The potentially widespread radiation exposure from radio-iodines of fallout has raised concerns about the risk of thyroid cancer in the Marshallese population. The most serious exposures and its health hazards resulted from the hydrogen-thermonuclear bomb test, the Castle BRAVO, on March 1, 1954. Between 1993 and 1997, we screened 3,709 Marshallese for thyroid disease who were born before the BRAVO test. It was 60% of the entire population at risk and who were still alive at the time of our examinations. We diagnosed 30 thyroid cancers and found 27 other study participants who had been operated for thyroid cancer before our screening in this group. Fifty-seven Marshallese born before 1954 (1.5%) had thyroid cancer or had been operated for thyroid cancer. Nearly all (92%) of these cancers were papillary carcinoma. We derived estimates of individual thyroid dose proxy from the BRAVO test in 1954 on the basis of published age-specific doses estimated on Utirik atoll and 137Cs deposition levels on the atolls where the participants came from. There was suggestive evidence that the prevalence of thyroid cancer increased with category of estimated dose to the thyroid. PMID:12675119

  9. Design of robust level control system of nuclear steam generator

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Na, M. G.

    2007-12-01

    The nuclear steam generator feedwater control system is designed by the robust control methods. The design is divided into two steps. First, the feedwater controller in the feedwater station is designed by H ∞ and MWS methods. Then the controller located on the feedback loop is designed both by classical PID and by robust technique. It is found that the feedback controller of simple PID whose coefficients vary with the power is proper for the system performance. The simulations show that the hybrid system of H ∞ and PID has a good performance with proper stability margins.

  10. Review of Destructive Assay Methods for Nuclear Materials Characterization from the Three Mile Island (TMI) Fuel Debris

    SciTech Connect

    Carla J. Miller

    2013-09-01

    This report provides a summary of the literature review that was performed and based on previous work performed at the Idaho National Laboratory studying the Three Mile Island 2 (TMI-2) nuclear reactor accident, specifically the melted fuel debris. The purpose of the literature review was to document prior published work that supports the feasibility of the analytical techniques that were developed to provide quantitative results of the make-up of the fuel and reactor component debris located inside and outside the containment. The quantitative analysis provides a technique to perform nuclear fuel accountancy measurements

  11. The November 15, 2006 Kuril Islands-Generated Tsunami in Crescent City, California

    NASA Astrophysics Data System (ADS)

    Dengler, L.; Uslu, B.; Barberopoulou, A.; Yim, S. C.; Kelly, A.

    2009-02-01

    On November 15, 2006, Crescent City in Del Norte County, California was hit by a tsunami generated by a M w 8.3 earthquake in the central Kuril Islands. Strong currents that persisted over an eight-hour period damaged floating docks and several boats and caused an estimated 9.2 million in losses. Initial tsunami alert bulletins issued by the West Coast Alaska Tsunami Warning Center (WCATWC) in Palmer, Alaska were cancelled about three and a half hours after the earthquake, nearly five hours before the first surges reached Crescent City. The largest amplitude wave, 1.76-meter peak to trough, was the sixth cycle and arrived over two hours after the first wave. Strong currents estimated at over 10 knots, damaged or destroyed three docks and caused cracks in most of the remaining docks. As a result of the November 15 event, WCATWC changed the definition of Advisory from a region-wide alert bulletin meaning that a potential tsunami is 6 hours or further away to a localized alert that tsunami water heights may approach warning- level thresholds in specific, vulnerable locations like Crescent City. On January 13, 2007 a similar Kuril event occurred and hourly conferences between the warning center and regional weather forecasts were held with a considerable improvement in the flow of information to local coastal jurisdictions. The event highlighted the vulnerability of harbors from a relatively modest tsunami and underscored the need to improve public education regarding the duration of the tsunami hazards, improve dialog between tsunami warning centers and local jurisdictions, and better understand the currents produced by tsunamis in harbors.

  12. Self-organization of dynein motors generates meiotic nuclear oscillations.

    PubMed

    Vogel, Sven K; Pavin, Nenad; Maghelli, Nicola; Jülicher, Frank; Tolić-Nørrelykke, Iva M

    2009-04-21

    Meiotic nuclear oscillations in the fission yeast Schizosaccharomyces pombe are crucial for proper chromosome pairing and recombination. We report a mechanism of these oscillations on the basis of collective behavior of dynein motors linking the cell cortex and dynamic microtubules that extend from the spindle pole body in opposite directions. By combining quantitative live cell imaging and laser ablation with a theoretical description, we show that dynein dynamically redistributes in the cell in response to load forces, resulting in more dynein attached to the leading than to the trailing microtubules. The redistribution of motors introduces an asymmetry of motor forces pulling in opposite directions, leading to the generation of oscillations. Our work provides the first direct in vivo observation of self-organized dynamic dynein distributions, which, owing to the intrinsic motor properties, generate regular large-scale movements in the cell. PMID:19385717

  13. Foundations for the Fourth Generation of Nuclear Power

    SciTech Connect

    Lake, James Alan

    2000-11-01

    Plentiful, affordable electrical energy is a critically important commodity to nations wishing to grow their economy. Energy, and more specifically electricity, is the fuel of economic growth. More than one-third of the world’s population (more than 2 billion people), however, live today without access to any electricity. Further, another 2 billion people in the world exist on less than 100 watts of electricity per capita. By comparison, the large economies of Japan and France use more than 800 watts of electricity per capita, and the United States uses nearly 1500 watts of electricity per capita. As the governments of developing nations strive to improve their economies, and hence the standard of living of their people, electricity use is increasing. Several forecasts of electrical generation growth have concluded that world electricity demand will roughly double in the next 20–25 years, and possibly triple by 2050. This electrical generation growth will occur primarily in the rapidly developing and growing economies in Asia and Latin America. This net growth is in addition to the need for replacement generating capacity in the United States and Europe as aging power plants (primarily fossil-fueled) are replaced. This very substantial worldwide electricity demand growth places the issue of where this new electricity generation capacity is to come from squarely in front of the developed countries. They have a fundamental desire (if not a moral obligation) to help these developing countries sustain their economic growth and improve their standard of living, while at the same time protecting the energy (and economic) security of their own countries. There are currently 435 power reactors generating about 16 percent of the world’s electricity. We know full well that nuclear power shows great promise as an economical, safe, and emissions-free source of electrical energy, but it also carries at least the perception of great problems, from public safety to dealing

  14. Generating unstructured nuclear reactor core meshes in parallel

    SciTech Connect

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor core examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.

  15. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGESBeta

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  16. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  17. Nuclear power: renaissance or relapse? Global climate change and long-term Three Mile Island activists' narratives.

    PubMed

    Culley, Marci R; Angelique, Holly

    2010-06-01

    Community narratives are increasingly important as people move towards an ecologically sustainable society. Global climate change is a multi-faceted problem with multiple stakeholders. The voices of affected communities must be heard as we make decisions of global significance. We document the narratives of long-term anti-nuclear activists near the Three Mile Island (TMI) nuclear power plant who speak out in the dawn of a nuclear renaissance/relapse. While nuclear power is marketed as a "green" solution to global warming, their narratives reveal three areas for consideration; (1) significant problems with nuclear technology, (2) lessons "not" learned from the TMI disaster, and (3) hopes for a sustainable future. Nuclear waste, untrustworthy officials and economic issues were among the problems cited. Deceptive shaping of public opinion, nuclear illiteracy, and an aging anti-nuclear movement were reasons cited for the lessons not learned. However, many remain optimistic and envision increased participation to create an ecologically-balanced world. PMID:20232245

  18. Nuclear power: Fourth edition

    SciTech Connect

    Deutsch, R.W.

    1986-01-01

    This book describes the basics of nuclear power generation, explaining both the benefits and the real and imagined risks of nuclear power. It includes a discussion of the Three Mile Island accident and its effects. Nuclear Power has been used in the public information programs of more than 100 utilities. The contents discussed are: Nuclear Power and People; Why Nuclear Power. Electricity produced by coal; Electricity produced by nuclear fuel; Nuclear plant sites in the United States; Short History of Commercial Nuclear Power; U.S. nuclear submarines, Regulation of Nuclear Power Plants; Licensing process, Nuclear Power Plant Operator Training; Nuclear power plant simulator, Are Nuclear Plants Safe.; Containment structure, Nuclear Power Plant Insurance; Is Radiation Dangerous.; Man-made radiation, What is Nuclear Fuel.; Fuel cycle for commercial nuclear power plants; Warm Water Discharge; Cooling tower; Protection of Radioactive Materials; Plutonium and Proliferation; Disposal of Radioactive Wastes; Are Alternate Energy Sources Available.; Nuclear Opposition; and Nuclear Power in the Future.

  19. Effects of the accident at Three Mile Island on the mental health and behavior responses of the general population and the nuclear workers

    SciTech Connect

    Fabrikant, J.I.

    1982-02-01

    A main conclusion drawn from the investigation by the President's Commission was that the most serious health effect of the Three Mile Island nuclear accident was severe mental stress, which was short-lived. The highest levels of psychological distress were found among those living within 5 miles of Three Mile Island, in families with preschool children, and among the Three Mile Island nuclear workers. This report provides some understanding of how these conclusions were drawn, the methods used to obtain information of the experiences of mental stress and the behavioral effects and responses of the general population and the nuclear workers to the accident at Three Mile Island. In order to limit the scope of the discussion, information is taken from the Behavioral Effects Task Group Report (TMI79c) to the President's Commission, and thus from the labors of the many behavioral scientists.

  20. Generation of a magnetic island by edge turbulence in tokamak plasmas

    SciTech Connect

    Poyé, A.; Agullo, O.; Muraglia, M.; Benkadda, S.; Dubuit, N.; Garbet, X.; Sen, A.

    2015-03-15

    We investigate, through extensive 3D magneto-hydro-dynamics numerical simulations, the nonlinear excitation of a large scale magnetic island and its dynamical properties due to the presence of small-scale turbulence. Turbulence is induced by a steep pressure gradient in the edge region [B. D. Scott, Plasma Phys. Controlled Fusion 49, S25 (2007)], close to the separatrix in tokamaks where there is an X-point magnetic configuration. We find that quasi-resonant localized interchange modes at the plasma edge can beat together and produce extended modes that transfer energy to the lowest order resonant surface in an inner stable zone and induce a seed magnetic island. The island width displays high frequency fluctuations that are associated with the fluctuating nature of the energy transfer process from the turbulence, while its mean size is controlled by the magnetic energy content of the turbulence.

  1. Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective

    SciTech Connect

    Murphy, E.L.; Sullivan, E.J.

    1997-02-01

    In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule as a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with.

  2. 78 FR 26662 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... notice appearing in the Federal Register on April 3, 2013 (78 FR 20144), by extending the original public... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of...

  3. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  4. Mental health effects of the Three Mile Island nuclear reactor restart.

    PubMed

    Dew, M A; Bromet, E J; Schulberg, H C; Dunn, L O; Parkinson, D K

    1987-08-01

    Controversy over potential mental health effects of the Three Mile Island Unit-1 restart led the authors to examine prospectively the pattern of psychiatric symptoms in a sample of Three Mile Island area mothers of young children. Symptom levels after restart were elevated over previous levels; a sizable subcohort of the sample reported relatively serious degrees of postrestart distress. History of diagnosable major depression and generalized anxiety following the Three Mile Island accident, plus symptoms and beliefs about personal risk prior to the restart, best predicted postrestart symptoms. PMID:3605430

  5. Mental health effects of the Three Mile Island nuclear reactor restart

    SciTech Connect

    Dew, M.A.; Bromet, E.J.; Schulberg, H.C.; Dunn, L.O.; Parkinson, D.K.

    1987-08-01

    Controversy over potential mental health effects of the Three Mile Island Unit-1 restart led the authors to examine prospectively the pattern of psychiatric symptoms in a sample of Three Mile Island area mothers of young children. Symptom levels after restart were elevated over previous levels; a sizable subcohort of the sample reported relatively serious degrees of postrestart distress. History of diagnosable major depression and generalized anxiety following the Three Mile Island accident, plus symptoms and beliefs about personal risk prior to the restart, best predicted postrestart symptoms.

  6. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  7. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    SciTech Connect

    Mark Holbrook

    2010-09-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  8. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  9. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    SciTech Connect

    Thomas D'Agostino

    2009-07-14

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  10. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    SciTech Connect

    Thomas D'Agostino

    2009-07-14

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  11. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  12. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  13. Effects of Heat Generation on Nuclear Waste Disposal in Salt

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.

    2008-12-01

    Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to

  14. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    SciTech Connect

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  15. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  16. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    SciTech Connect

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  17. Connecting the "Hot Fusion Island" to the Nuclear Mainland: Search for 283,284,285Fl Decay Chains

    NASA Astrophysics Data System (ADS)

    Rykaczewski, K. P.; Utyonkov, V. K.; Brewer, N. T.; Grzywacz, R. K.; Miernik, K.; Roberto, J. B.; Oganessian, Yu. Ts.; Polyakov, A. N.; Tsyganov, Yu. S.; Voinov, A. A.; Abdullin, F. Sh.; Dmitriev, S. N.; Itkis, M. G.; Sabelnikov, A. V.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Subbotin, V. G.; Sukhov, A. M.; Vostokin, G. K.; Hamilton, J. H.; Henderson, R. A.; Stoyer, M. A.

    The program of studies on superheavy nuclei to identify new isotopes anchoring the decay chains from the Hot Fusion Island to the Nuclear Mainland has been started at the Dubna Gas Filled Recoil Separator (DGFRS, JINR Dubna) in collaboration between Russia, US and Poland. These studies are performed with new detection and digital data acquisition system developed at ORNL (Oak Ridge) and UT (Knoxville). The evidence for fast fission of the new isotope 284Fl is presented. The low cross section for the 3n channel of 239Pu + 48Ca reaction is attributed to lower than expected fission barriers in 287-284Fl.

  18. Comparison of nuclear and fossil-fired busbar generation costs - US

    SciTech Connect

    Delene, J.G.

    1984-09-17

    This paper is a collection of overhead projector information and graphs which was presented at IAEA Nuclear Power Course on Electric System Expansion Planning. The group of viewgraphs is a collection comparing the Nuclear and Fossil-Fired busbar generation costs of the US. Discussed is information on: (1) where nuclear new stands in the US, (2) what is needed to perform a nuclear vs coalfired busbar generation cost analysis, (3) results of a recent study, and (4) current considerations.

  19. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  20. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  1. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  2. Assessment of next generation nuclear plant intermediate heat exchanger design.

    SciTech Connect

    Majumdar, S.; Moisseytsev, A.; Natesan, K.; Nuclear Engineering Division

    2008-10-17

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made an assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. A detailed thermal hydraulic analysis, using models developed at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop. Two IHX designs namely, shell and straight tube and compact heat exchangers were considered in an earlier assessment. Helical coil heat exchangers were analyzed in the current report and the results were compared with the performance features of designs from industry. In addition, a comparative analysis is presented between the shell and straight tube, helical, and printed circuit heat exchangers from the standpoint of heat exchanger volume, primary and secondary sides pressure drop, and number of tubes. The IHX being a high temperature component, probably needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 component. With input from thermal hydraulic calculations performed at ANL, thermal conduction and stress analyses were performed for the helical heat exchanger design and the results were compared with earlier-developed results on

  3. Main Generator Seal Oil Supply Reliability Improvements at Southern California Edison's San Onofre Nuclear Generating Station

    SciTech Connect

    Simma, Fred Y.; Chetwynd, Russell J.; Rowe, Stuart A.

    2006-07-01

    This paper presents the justification for the approach, details and results of the Main Generator Seal Oil System reliability enhancements on the San Onofre Nuclear Generating Station, SONGS. The SONGS, Unit 3 experienced substantial turbine damage in early 2001 after the turbine bearings lubrication oil supply failed. During a loss of off-site power incident, power was lost to the two AC powered turbine lubrication oil pumps due to a breaker failure in the switchgear and the DC powered emergency bearing lubricating oil pump failed to start due to a breaker trip. The SONGS turbine generators coasted down from full speed to a full stop without lubricating oil. This resulted in significant bearing, journal and steam path damage that required a four-month duration repair outage during a time period where electricity was in short supply in the State of California. The generator hydrogen sealing system remained operable during this event, however it was recognized during the event follow up investigation that this system had vulnerabilities to failure similar to the bearing lubrication system. In order to prevent a reoccurrence of this extremely costly event, SONGS has taken actions to modify both of these critical turbine generator systems by adding additional, continuously operating pumps with a new, independent power source and independently routed cables. The main challenge was to integrate the additional equipment into the existing lubrication and seal oil systems. The lubrication Oil System was the first system to be retro-fitted and these results already have been presented. Reference 2. This paper provides the result of the reliability enhancements for the Main Generator Seal Oil System, which concludes the turbine/generator critical oil systems reliability improvements, performed by SONGS. It is worth noting that the design team discovered and corrected a number of other significant operational issues, which had been present from the early days and also learned

  4. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  5. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2007-01-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  6. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  7. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  8. Diffusion and stochastic island generation in the magnetic field line random walk

    SciTech Connect

    Vlad, M.; Spineanu, F.

    2014-08-10

    The cross-field diffusion of field lines in stochastic magnetic fields described by the 2D+slab model is studied using a semi-analytic statistical approach, the decorrelation trajectory method. We show that field line trapping and the associated stochastic magnetic islands strongly influence the diffusion coefficients, leading to dependences on the parameters that are different from the quasilinear and Bohm regimes. A strong amplification of the diffusion is produced by a small slab field in the presence of trapping. The diffusion regimes are determined and the corresponding physical processes are identified.

  9. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  10. Radionuclide gas transport through nuclear explosion-generated fracture networks

    SciTech Connect

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  11. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  12. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.

    PubMed

    Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  13. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGESBeta

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  14. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    NASA Astrophysics Data System (ADS)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  15. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: UPDATE 2, VOLUME III

    EPA Science Inventory

    The original report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem St...

  16. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: UPDATE 2, VOLUME II

    EPA Science Inventory

    The original report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem St...

  17. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: UPDATE 2, VOLUME I

    EPA Science Inventory

    The original report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem St...

  18. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  19. 76 FR 32237 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability of Draft Supplement 44 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants and Public Meetings for the License...

  20. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  1. 76 FR 53972 - Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit and serve all... COMMISSION Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of... Facility Operating License No. DPR-72 for Crystal River Unit 3 Nuclear generating Plant (CR-3),...

  2. 76 FR 5216 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption 1.0 Background... authorizes operation of the Crystal River ] Unit 3 Nuclear Generating Plant (Crystal River). The license... under 10 CFR 55.11 from the schedule requirements of 10 CFR 55.59. Specifically for Crystal River,...

  3. A new generation of power MOSFET based on the concept of "Floating Islands"

    NASA Astrophysics Data System (ADS)

    Cézac, N.; Morancho, F.; Rossel, P.; Tranduc, H.; Peyre-Lavigne, A.

    2000-06-01

    In this paper, a new concept called "Floating Islands diode" (FLI-diode) is proposed: the voltage handling capability of this new diode is assumed by the association of several PN junctions in series. This concept can be applied to any power devices (lateral or vertical). An example of vertical power MOSFET based on this concept is presented here: this new structure, called "FLIMOSFET", exhibits improved on-state resistance performance when compared to the conventional VDMOSFET. For instance, for a breakdown voltage of 900 volts, the theoretical performance are strongly improved in term of specific on-resistance (reduction of about 70% relative to the conventional structure and 40% relative to the silicon limit). Moreover the specific on-resistance theoretical limits of FLIMOSFET family are determined and compared to those of the "Superjunction" MOS Transistor family: this comparison shows the strong interest of the FLIMOSFET in the 200 volts-1000 volts breakdown voltage range.

  4. Physical Modeling of Tsunamis Generated By 3D Deformable Landslides in Various Scenarios From Fjords to Conical Islands

    NASA Astrophysics Data System (ADS)

    McFall, B. C.; Fritz, H. M.

    2013-12-01

    Tsunamis generated by landslides and volcano flank collapse can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. Two different materials are used to simulate landslides to study the granulometry effects: naturally rounded river gravel and cobble mixtures. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1 island setting representing a landslide off an island or a volcano flank collapse. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are

  5. A Technology Roadmap for Generation IV Nuclear Energy Systems Executive Summary

    SciTech Connect

    2003-03-01

    To meet future energy needs, ten countries--Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States--have agreed on a framework for international cooperation in research for an advanced generation of nuclear energy systems, known as Generation IV. These ten countries have joined together to form the Generation IV International Forum (GIF) to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide competitively priced and reliable energy products while satisfactorily addressing nuclear safety, waste, proliferation, and public perception concerns. The objective for Generation IV nuclear energy systems is to be available for international deployment before the year 2030, when many of the world's currently operating nuclear power plants will be at or near the end of their operating licenses.

  6. Nested Architecture of Pyroclastic Bedforms Generated by a Single Flow Event: Outcrop Examples from the Izu Volcanic Islands, Japan

    NASA Astrophysics Data System (ADS)

    Nemoto, Y.; Yoshida, S.

    2009-12-01

    We claim that compound bedforms, where small bedforms (e.g., dunes and antidunes) occur within and around the larger bedforms, are common in pyroclastic-flow deposits, using Quaternary-Holocene outcrop examples from the modern Izu volcanic island chain some 100-150 km SSW of Tokyo. The nested occurrence of bedforms have been well documented for siliciclastic deposits, as exemplified by compound dunes where small dunes (c. cm- dm thick) occur between the avalanche surfaces within larger dunes, indicating that these dunes of different sizes were produced simultaneously. However, compound dunes have rarely been reported from pyroclastic deposits. In contrast, we have discovered that compound dunes are common in pyroclastic flow deposits in the late Pleistocene & Holocene outcrops in Niijima and Oshima of the Izu volcanic island chain. Moreover, these outcrops contain abundant compound antidunes, which have been reported from neither siliciclastic or pyroclastic deposits. This is probably because flume studies, where most of published antidune studies are based, focus on small (c. cm-dm high) antidunes. In Niijima Island, we examined pyroclastic-flow deposits shed from Mt. Miyatsuka (14 ka) and Mt. Mukai (886 A.D.). Both groups of deposits contain abundant antidune stratifications, which commonly form nested structures in a two- or three-fold hierarchy, with subordinate crossbeddings originated from dune migrations. Each class of antidunes is characterized by multiple scour surfaces and vertical aggradations around mounds of lag deposits above erosion surfaces, and typically has both upstream and downstream accretion components with different proportions. The late Pleistocene pyroclastic outcrops of the nearby Oshima Island exhibit similar patterns. The geometry of the accretion surfaces vary significantly in the outcrops of both Niijima and Oshima. Whereas the antidunes dominated by upstream accretion are characterized by (1) gently inclined accretion surface and (2

  7. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Workshop

    SciTech Connect

    Hoopingarner, K.R.; Vause, J.W.

    1987-08-01

    Pacific Northwest Laboratory (PNL) evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume II, reports the results of an industry-wide workshop held on May 28 and 29, 1986, to discuss the technical issues associated with aging of nuclear service emergency diesel generators. The technical issues discussed most extensively were: man/machine interfaces, component interfaces, thermal gradients of startup and cooldown and the need for an accurate industry database for trend analysis of the diesel generator system.

  8. Contextualizing Next Generation Science Standards to Guide Climate Education in the U.S. Affiliated Pacific Islands (USAPI)

    NASA Astrophysics Data System (ADS)

    Sussman, A.; Fletcher, C. H.; Sachs, J. P.

    2012-12-01

    The USAPI has a population of about 1,800,000 people spread across 4.9 million square miles of the Pacific Ocean. The Pacific Islands are characterized by a multitude of indigenous cultures and languages. Many USAPI students live considerably below the poverty line. The Pacific Island region is projected to experience some of the most profound negative impacts of climate change considerably sooner than other regions. Funded by the National Science Foundation (NSF), the Pacific Islands Climate Education Partnership (PCEP) has developed a detailed strategic plan to collaboratively improve climate knowledge among the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and honor indigenous cultures. Students and citizens within the region will have the knowledge and skills to advance understanding of climate change, and to adapt to its impacts. Core PCEP partners contribute expertise in climate science, the science of learning, the region's education infrastructure, and the region's cultures and indigenous knowledge and practices. PCEP's strategic education plan is guided by a general, multidisciplinary K-14 Climate Education Framework (CEF) that organizes fundamental science concepts and practices within appropriate grade-span progressions. This CEF is based largely upon the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" and the emerging Next Generation Science Standards. While the CEF is based upon these national Next Generation documents, it is also informed and strongly influenced by the region's geographic, climatic, cultural and socioeconomic contexts, notably indigenous knowledge and practices. Guided by the CEF, the PCEP in its initial development/planning phase has prototyped regional approaches to professional development, contextualizing curricula, and supporting community

  9. Membranes for H2 generation from nuclear powered thermochemical cycles.

    SciTech Connect

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra; Iyer, Ratnasabapathy G.; Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  10. Impact-generated endolithic habitat within crystalline rocks of the Haughton impact structure, Devon Island, Canada.

    PubMed

    Pontefract, Alexandra; Osinski, Gordon R; Cockell, Charles S; Moore, Casey A; Moores, John E; Southam, Gordon

    2014-06-01

    The colonization of rocks by endolithic communities is an advantageous trait, especially in environments such as hot or cold deserts, where large temperature ranges, low water availability, and high-intensity ultraviolet radiation pose a significant challenge to survival and growth. On Mars, similar conditions (albeit more extreme) prevail. In these environments, meteorite impact structures could provide refuge for endolithic organisms. Though initially detrimental to biology, an impact event into a rocky body can favorably change the availability and habitability of a substrate for endolithic organisms, which are then able to (re)colonize microfractures and pore spaces created during the impact. Here, we show how shocked gneisses from the Haughton impact structure, Devon Island, Canada, offer significant refuge for endolithic communities. A total of 28 gneiss samples representing a range of shock states were analyzed, collected from in situ, stable field locations. For each sample, the top centimeter of rock was examined with confocal scanning laser microscopy, scanning electron microscopy, and bright-field microscopy to investigate the relationship of biomass with shock level, which was found to correlate generally with increased shock state and particularly with increased porosity. We found that gneisses, which experienced pressures between 35 and 60 GPa, provide the most ideal habitat for endolithic organisms. PMID:24926727

  11. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments

    SciTech Connect

    Doerge, D. H.; Haffner, D. R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

  12. Hospital organizational response to the nuclear accident at Three Mile Island: implications for future-oriented disaster planning.

    PubMed

    Maxwell, C

    1982-03-01

    The 1979 nuclear accident at Three Mile Island (TMI) near Harrisburg, Pennsylvania, caused severe organizational problems for neighboring health care institutions. Dauphin County, just north of TMI, contained four hospitals ranging in distance from 9.5 to 13.5 miles from the stricken plant. Crash plans put into effect within 48 hours of the initial incident successfully reduced hospital census to below 50 per cent of capacity, but retained bedridden and critically ill patients within the risk-zone. No plans existed for area-wide evacuation of hospitalized patients. Future-oriented disaster planning should include resource files of host institution bed capacity and transportation capabilities for the crash evacuation of hospitalized patients during non-traditional disasters. PMID:7058968

  13. Predictors of temporal patterns of psychiatric distress during 10 years following the nuclear accident at Three Mile Island.

    PubMed

    Dew, M A; Bromet, E J

    1993-04-01

    The present study examines psychiatric symptom levels during a 10-year period in a community sample of mothers of young children. All were identified in the early aftermath of the 1979 Three Mile Island nuclear accident, and followed through the accident's 1989 anniversary. Cluster analysis was used to identify long-term distress profiles during the study period; women's temporal profiles were found to be either (a) stable and at low, clinically nonsignificant levels of distress across all measurement points or (b) at consistently elevated, clinically significant levels that varied with the timing of postaccident events such as the restart of the undamaged reactor and the 10th anniversary. Subsequent multivariate analyses indicated that preaccident characteristics, as well as parameters reflecting respondents' initial involvement with, and reactions to the accident, were important for distinguishing between women within the two temporal profile groups. Implications of the results for both policy formulation and continued research on significant environmental stressors is discussed. PMID:8511662

  14. Hospital organizational response to the nuclear accident at Three Mile Island: implications for future-oriented disaster planning.

    PubMed Central

    Maxwell, C

    1982-01-01

    The 1979 nuclear accident at Three Mile Island (TMI) near Harrisburg, Pennsylvania, caused severe organizational problems for neighboring health care institutions. Dauphin County, just north of TMI, contained four hospitals ranging in distance from 9.5 to 13.5 miles from the stricken plant. Crash plans put into effect within 48 hours of the initial incident successfully reduced hospital census to below 50 per cent of capacity, but retained bedridden and critically ill patients within the risk-zone. No plans existed for area-wide evacuation of hospitalized patients. Future-oriented disaster planning should include resource files of host institution bed capacity and transportation capabilities for the crash evacuation of hospitalized patients during non-traditional disasters. PMID:7058968

  15. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  16. Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu{sub 2}O heterojunction

    SciTech Connect

    Kaur, Gurpreet Yadav, K. L.; Mitra, Anirban

    2015-08-03

    Localized surface plasmon induced generation of electron-hole pairs with inclusion of metal islands of noble metal like Ag can enhance the photocurrent. A heterostructure of n-Al:ZnO/p-Cu{sub 2}O with inclusion of Ag metalislands at the junction has been fabricated. I-V characteristic curve of these heterostructures shows a significant enhancement of photocurrent under the illumination (1.5 AMU). This enhancement of photocurrent is attributed to the supply of hot electrons generated in silver metal nanoislands. It has also been shown that inclusion of metal islands increases the absorption of solar spectrum in visible region at 500 nm. Enhancement of photocurrent may also be due to the direct resonance energy transfer from Localized Surface Plasmons of metal islands to Cu{sub 2}O.

  17. Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu2O heterojunction

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Yadav, K. L.; Mitra, Anirban

    2015-08-01

    Localized surface plasmon induced generation of electron-hole pairs with inclusion of metal islands of noble metal like Ag can enhance the photocurrent. A heterostructure of n-Al:ZnO/p-Cu2O with inclusion of Ag metalislands at the junction has been fabricated. I-V characteristic curve of these heterostructures shows a significant enhancement of photocurrent under the illumination (1.5 AMU). This enhancement of photocurrent is attributed to the supply of hot electrons generated in silver metal nanoislands. It has also been shown that inclusion of metal islands increases the absorption of solar spectrum in visible region at 500 nm. Enhancement of photocurrent may also be due to the direct resonance energy transfer from Localized Surface Plasmons of metal islands to Cu2O.

  18. Dinophysis caudata generated lipophilic shellfish toxins in bivalves from the Nanji Islands, East China Sea

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Xu, Yixiao; Li, Yang; Qi, Yuzao; Jiang, Tianjiu; Wu, Feng; Zhang, Fan

    2014-01-01

    A 12-month program of monitoring potentially toxic microalgae (that produce lipophilic shellfish toxins; LSTs) and their toxins in bivalves was conducted from April 2006 to March 2007 in the Nanji Islands, East China Sea. Two Dinophysis species, D. caudata and D. acuminata, were identified, and D. caudata was found to be the dominant species. D. caudata was detected in water samples between April and June 2006, and between February and March 2007. It reached its highest abundances in May, with a mean abundance of 1.38×102 cells/L in surface water and 1.25×102 cells/L in bottom water (<10 m deep). The temporal distribution of D. caudata was associated with the occurrence of LSTs in bivalve samples, which mostly occurred at the same time as D. caudata blooms, between April and July 2006. All of the cultured bivalves sampled between April and June were contaminated with LSTs, with an average toxicity of 85 μg okadaic acid (OA) eq./100 g meat, which was four times higher than the Chinese regulatory limit (20 μg OA eq./100 g meat). Ten out of fifteen wild samples (66.7%) collected during the same period were positive for LSTs, and contained an average LST toxicity of 45 μg OA eq./100 g meat (more than twice the regulatory value). Cultured Patinopecten yessoensis collected on 15 May 2006 had the highest toxicity, 320 μg OA eq./100 g meat, and relatively high toxicities (80 to 160 μg OA eq./100 g meat) were found in bivalves until the end of July.

  19. New Kind of Ellis Island as Second-Generation Immigrants Land on College Campuses

    ERIC Educational Resources Information Center

    Hohn, Marcia Drew; Mohammed, Denzil

    2012-01-01

    Demographics in American higher education are changing dramatically. A recent study by the Migration Policy Institute (MPI) reveals that 11.3 million people ages 16 to 26 (one in four) are first- and second-generation immigrants. Moreover, the report continues, between 1995 and 2010, immigrant-origin youth accounted for half of all growth in the…

  20. Predicting the Use of Campus Counseling Services for Asian/Pacific Islander, Latino/Hispanic, and White Students: Problem Severity, Gender, and Generational Status

    ERIC Educational Resources Information Center

    Sullivan, Kieran T.; Ramos-Sanchez, Lucila; McIver, Stephanie D.

    2007-01-01

    The purpose of the current study was to identify predictors of counseling center use among Asian/Pacific Islander, Latino/Hispanic, and White college students. Findings indicated that female and 2nd-generation students report the most severe difficulties. Problem severity and gender predicted counseling center use for White and Asian/Pacific…

  1. An Introductory Mixed-Methods Intersectionality Analysis of College Access and Equity: An Examination of First-Generation Asian Americans and Pacific Islanders

    ERIC Educational Resources Information Center

    Museus, Samuel D.

    2011-01-01

    In this article, the author discusses how researchers can use mixed-methods approaches and intersectional analyses to understand college access among first-generation Asian American and Pacific Islanders (AAPIs). First, he discusses the utility of mixed-methods approaches and intersectionality research in studying college access. Then, he…

  2. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    SciTech Connect

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized

  3. Effects of the accident at Three Mile Island on the mental health and behavioral responses of the general population and nuclear workers

    SciTech Connect

    Fabrikant, J.I.

    1983-02-01

    On March 28, 1979, an accident occurred at the Three Mile Island nuclear power plant Unit No. 2 near Middletown, PA. A Presidential Commission was established to investigate the incident and was given the responsibility to evaluate the actual and potential impact of the events on the health and safety of the workers and the public. A main conclusion of the investigation was that the most serious health effect was severe, short-lived mental stress. This paper describes the study and the findings for four different study groups: (1) the general population of heads of households located within 20 miles of the plant; (2) mothers of preschool children from the same area; (3) teenagers in the 7th, 9th, and 11th grades from the area; and (4) nuclear workers employed at the Three Mile Island nuclear power plant. (ACR)

  4. Radwaste (DAW) volume reduction cost initiative at the Oyster Creek Nuclear Generation Station

    SciTech Connect

    Wacha, A.H.

    1995-05-01

    Oyster Creek Nuclear Generating Station is a General Electric Mark 1, 620 MWe (Net) Boiling Water Reactor operated by GPU Nuclear Corporation and located in Forked River, New Jersey. The plant began commercial operation on December 23, 1969, and achieved its longest continuous run during cycle 14 (413 days) 2-16-93 to 9-11-94. As part of the industry-wide initiative to reduce nuclear plant O&M costs, the Electric Power Research Institute (EPRI) was asked by GPU Nuclear to assist the Oyster Creek Nuclear Generating Station (OCNGS) in identifying opportunities for reducing the costs associated with its Radwaste Minimization Program for Dry Active Waste (DAW). The purpose of the project was to evaluate the existing generation, minimization, processing and disposal programs and to identify a wide variety of potential mechanisms for reducing waste volumes and associated costs.

  5. A Course Case Study: Nuclear Power Generation and the Environment

    ERIC Educational Resources Information Center

    Schlesinger, Allen B.

    1975-01-01

    Describes a course that uses the Ft. Calhoun nuclear power plant as a case study. The course involves three component parts: physics of fission events, engineering requirements, and economic considerations; environmental impact from radiation and thermal effluents; and the impact of social, political and legal factors. (GS)

  6. Proceedings: Workshop on Thermally Treated Alloy 690 Tubes for Nuclear Steam Generators

    SciTech Connect

    1986-07-01

    Data presented at this workshop confirmed the superior corrosion resistance of thermally treated alloy 690. Pending further testing and optimization procedures, this material appears to be the best choice for manufacture of nuclear steam generator tubes.

  7. Determination of steam wetness in the steam-generating equipment of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Gorburov, V. I.; Gorburov, D. V.; Kuz'min, A. V.

    2012-05-01

    Calculation and experimental methods for determining steam wetness in horizontal steam generators for nuclear power stations equipped with VVER reactors, namely, the classic salt technique and calculations based on operating parameters are discussed considered and compared.

  8. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  9. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  10. 78 FR 77726 - Exelon Generation Company, LLC Three Mile Island Nuclear Station, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... AREVA Non-Proprietary Topical Report (TR) BAW-2308, Revisions 1A and 2A, ``Initial RT NDT [nil... the licensee utilizing the fracture toughness methodology specified in TR BAW-2308, Revisions 1A and... justified based on the licensee utilizing the methodology specified in the NRC staff's SEs regarding TR...

  11. 77 FR 37937 - License Renewal Application for Prairie Island Nuclear Generating Plant Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... the license for the ISFSI would be forty (40) years. On February 16, 2011 (76 FR 8872), revisions to... accordance with the NRC E-Filing rule (72 FR 49139; August 28, 2007). The E-Filing process requires...\\ Requestors should note that the filing requirements of the NRC's E-Filing Rule (72 FR 49139; August 28,...

  12. Measured effects of wind turbine generation at the Block Island Power Company

    NASA Technical Reports Server (NTRS)

    Wilreker, V. F.; Smith, R. F.; Stiller, P. H.; Scot, G. W.; Shaltens, R. K.

    1984-01-01

    Data measurements made on the NASA MOD-OA 200-kw wind-turbine generator (WTG) installed on a utility grid form the basis for an overall performance analysis. Fuel displacement/-savings, dynamic interactions, and WTG excitation (reactive-power) control effects are studied. Continuous recording of a large number of electrical and mechanical variables on FM magnetic tape permit evaluation and correlation of phenomena over a bandwidth of at least 20 Hz. Because the wind-power penetration reached peaks of 60 percent, the impact of wind fluctuation and wind-turbine/diesel-utility interaction is evaluated in a worst-case scenario. The speed-governor dynamics of the diesel units exhibited an underdamped response, and the utility operation procedures were not altered to optimize overall WTG/utility performance. Primary findings over the data collection period are: a calculated 6.7-percent reduction in fuel consumption while generating 11 percent of the total electrical energy; acceptable system voltage and frequency fluctuations with WTG connected; and applicability of WTG excitation schemes using voltage, power, or VARS as the controlled variable.

  13. Next Generation Nuclear Plant Project 2009 Status Report

    SciTech Connect

    Larry Demick; Jim Kinsey; Keith Perry; Dave Petti

    2010-05-01

    The mission of the NGNP Project is to broaden the environmental and economic benefits of nuclear energy technology to the United States and other economies by demonstrating its applicability to market sectors not served by light water reactors (LWRs). Those markets typically use fossil fuels to fulfill their energy needs, and high temperature gas-cooled reactors (HTGRs) like the NGNP can reduce this dependence and the resulting carbon footprint.

  14. 77 FR 135 - Exelon Generation Company, LLC, Oyster Creek Nuclear Generating Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... of this exemption will not have a significant effect on the quality of the human environment (76 FR.... Nuclear Regulatory Commission (NRC or the Commission) now or hereafter in effect. The facility consists...

  15. Databases and tools for nuclear astrophysics applications. BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Goriely, S.; Jorissen, A.; Chen, G. L.; Arnould, M.

    2013-01-01

    An update of a previous description of the BRUSLIB + NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-Hartree-Fock-Bogoliubov model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8 ≤ Z ≤ 110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100 000 Hauser-Feshbach neutron-, proton-, α-, and γ-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer reactions and 19 charged-particle radiative captures on stable targets with mass numbers A < 16. NACRE II features the inclusion of experimental data made available after the publication of NACRE in 1999 and up to 2011. In addition, the extrapolation of the available data to the very low energies of astrophysical relevance is improved through the systematic use of phenomenological potential models. Uncertainties in the rates are also evaluated on this basis. Finally, the latest release v10.0 of the web-based tool NETGEN is presented. In addition to the data already used in the previous NETGEN package, it contains in a fully documented form the new BRUSLIB and NACRE II data, as well as new experiment-based radiative neutron capture cross sections. The full new versions of BRUSLIB, NACRE II, and NETGEN are available electronically from the nuclear database at http://www.astro.ulb.ac.be/NuclearData. The nuclear material is presented in

  16. Seismic risk assessment as applied to the Zion Nuclear Generating Station

    SciTech Connect

    Wells, J.

    1984-08-01

    To assist the US Nuclear Regulatory Commission (NRC) in its licensing and evaluation role, the NRC funded the Seismic Safety Margins Research Program (SSMRP) at Lawrence Livermore National Laboratory (LLNL) with the goal of developing tools and data bases to evaluate the risk of earthquake caused radioactive release from a commercial nuclear power plant. This paper describes the SSMRP risk assessment methodology and the results generated by applying this methodology to the Zion Nuclear Generating Station. In addition to describing the failure probabilities and risk values, the effects of assumptions about plant configuration, plant operation, and dependence will be given.

  17. Raytheon explores thorium for next generation nuclear reactor

    SciTech Connect

    Crawford, M.

    1994-03-08

    Few new orders for nuclear power plants have been placed anywhere in the world in the last 20 years, but that is not discouraging Raytheon Engineers Constructors from making plans to explore new light water reactor technologies for commercial markets. The Lexington, Mass.-based company, which has extensive experience in nuclear power engineering and construction, has a vision for the light water reactor of the future - one that is based on the use of thorium-232, an element that decays over several steps to uranium-233. The use of thorium and a small amount of uranium that is 20 percent enriched is seen as providing operational, environmental, and safety advantages over reactors using the standard fuel mixture of uranium-238 and enriched uranium-235. According to Raytheon, the system could improve the economics of some reactors' operations by reducing fuel costs and lowering related waste volumes. At the same time, reactor safety could be improved by simpler control rod systems and the absence from reactor coolant of corrosive boric acid, which is used to slow neutrons in order to enhance reactions. Using thorium is also attractive because more of the fuel is burned up by the reactor, an estimated 12 percent as compared to about 4 percent for U-235. However, the technology's greatest attraction may well be its implications for nuclear proliferation. Growing plutonium inventories embedded in spent fuel rods from light water reactors have sparked concern worldwide. But according to Raytheon, using a thorium-based fuel core would alleviate this concern because it would produce only small quantities of plutonium. A thorium-based fuel system would produce 12 kilograms of plutonium over a decade versus 2,235 kilograms for an equivalent reactor operating with conventional uranium fuel.

  18. Spectra of nuclear explosions, earthquakes, and noise from Wake Island bottom hydrophones

    SciTech Connect

    McCreery, C.S.; Walker, D.A.; Sutton, G.H.

    1983-01-01

    Spectral characteristics of P phases from 4 shallow focus earthquakes and 8 underground explosions, and of 52 samples of ocean bottom background noise, are examined by using tape recordings of ocean bottom hydrophones near Wake Island from July 1979 through March 1981. Significant differences are found between spectra of large shallow focus earthquakes and explosions (5.7< or =mb< or =6.3) observed at 61/sup 0/ to 77/sup 0/ epicentral distance. For similar magnitudes, explosions were found to have less energy at frequencies below 1.5 Hz and more energy at frequencies above 2.0 Hz. Earthquakes were found to have a spectral slope of -28 dB/octave (relative to pressure) over the band 1 to 6 Hz. Explosions were found to have the same spectral slope over the band 2.2 to 6 Hz, but a different slope of -12 dB/octave over the band 1.1 to 2.2 Hz. High frequencies (>6 Hz) observed in the teleseismic P phases indicate high Q values for the deep mantle. Ambient noise levels on the ocean bottom near Wake are comparable to levels at the quietest continental sites for frequencies between 3 and 15 Hz. Also high levels of coherence (at least as high as 0.85) have been observed for P phases recorded on sensors with 40-km separation.

  19. Performance testing of the environmental TLD system for the Three Mile Island Nuclear Station.

    PubMed

    Toke, L F; Carson, B H; Baker, G G; McBride, M H; Plato, P A; Miklos, J A

    1984-05-01

    Panasonic UD-801 thermoluminescent dosimeters ( TLDs ) containing two calcium sulfate phosphors were tested under Performance Specification 3.1 established by the American National Standard Institute ( ANSI75 ) and in the U.S. Nuclear Regulatory Commission's Regulatory Guide 4.13 ( NRC77 ). The specific qualifying tests included TLD uniformity, reproducibility, energy dependence and directional dependence. The overall measurement uncertainties and associated confidence levels are within the prescribed guidelines defined in the qualifying requirements for environmental TLDs . PMID:6724910

  20. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power,…

  1. The effects of nuclear power generators upon electronic instrumentation

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Truscello, V. C.

    1970-01-01

    Radiation sensitivity of electronic instruments susceptible to neutron and gamma radiation is evaluated by means of a radioisotope thermoelectric generator /RTG/. The gamma field of the RTG affects instrument operation and requires shielding, the neutron field does not affect operation via secondary capture-gamma production.

  2. Cognitive Constraints and Island Effects

    ERIC Educational Resources Information Center

    Hofmeister, Philip; Sag, Ivan A.

    2010-01-01

    Competence-based theories of island effects play a central role in generative grammar, yet the graded nature of many syntactic islands has never been properly accounted for. Categorical syntactic accounts of island effects have persisted in spite of a wealth of data suggesting that island effects are not categorical in nature and that…

  3. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: VOLUME V. A REPORT TO THE PRESIDENT'S COMMISSION ON THE ACCIDENT AT THREE MILE ISLAND

    EPA Science Inventory

    This report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem Steel Corp...

  4. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: VOLUME I. A REPORT TO THE PRESIDENT'S COMMISSION ON THE ACCIDENT AT THREE MILE ISLAND

    EPA Science Inventory

    This report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem Steel Corp...

  5. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: UPDATE. A REPORT TO THE PRESIDENT'S COMMISSION ON THE ACCIDENT AT THREE MILE ISLAND

    EPA Science Inventory

    This report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem Steel Corp...

  6. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: VOLUME IV. A REPORT TO THE PRESIDENT'S COMMISSION ON THE ACCIDENT AT THREE MILE ISLAND

    EPA Science Inventory

    This report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem Steel Corp...

  7. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: VOLUME III. A REPORT TO THE PRESIDENT'S COMMISSION ON THE ACCIDENT AT THREE MILE ISLAND

    EPA Science Inventory

    This report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem Steel Corp...

  8. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: VOLUME VI. A REPORT TO THE PRESIDENT'S COMMISSION ON THE ACCIDENT AT THREE MILE ISLAND

    EPA Science Inventory

    This report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem Steel Corp...

  9. THREE MILE ISLAND NUCLEAR REACTOR ACCIDENT OF MARCH 1979. ENVIRONMENTAL RADIATION DATA: VOLUME II. A REPORT TO THE PRESIDENT'S COMMISSION ON THE ACCIDENT AT THREE MILE ISLAND

    EPA Science Inventory

    This report contains a listing of environmental radiation monitoring data collected in the vicinity of Three Mile Island (TMI) following the March 28, 1979 accident. These data were collected by the EPA, NRC, DOE, HHS, the Commonwealth of Pennsylvania, or the Bethlehem Steel Corp...

  10. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study

    SciTech Connect

    Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

    1987-08-01

    Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators.