Sample records for isolated rat hepatocytes

  1. Comparative cytotoxicity of alachlor, acetochlor, and metolachlor herbicides in isolated rat and cryopreserved human hepatocytes.

    PubMed

    Kale, Vijay M; Miranda, Sonia R; Wilbanks, Mitchell S; Meyer, Sharon A

    2008-02-01

    Noncancerous adverse effects observed at the lowest dose for chloroacetanilide herbicides alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)-acetanilide] and acetochlor [2-chloro-2'-methyl-6'-ethyl-N-(ethoxymethyl)acetanilide], but not metolachlor [2-chloro-2'-ethyl-6'-methyl-N-(1-methyl-2-methoxymethyl)acetanilide], are hepatotoxicity in rats and dogs. Liver microsomal N-dealkylation, a step in the putative activating pathway, of acetochlor exceeds that of alachlor and is negligible for metolachlor. In the present investigation, cytotoxicity of the three chloroacetanilides was ranked using isolated rat and cryopreserved human hepatocytes to correlate this endpoint with CYP3A-dependent metabolism. Chloroacetanilide cytotoxicity in rat hepatocyte suspensions was time dependent (e.g., LC(50 - alachlor/2 h) vs. LC(50 - alachlor/4 h) = 765 vs. 325 muM). Alachlor and acetochlor were more potent than metolachlor after 2 and 4 h, times when N-dealkylated alachlor product 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) formation was readily detectable. Alachlor and acetochlor potencies with cryopreserved human hepatocytes at 2 h were comparable to freshly isolated rat hepatocytes, and alachlor metabolism to CDEPA was likewise detectable. Unlike rat hepatocytes, metolachlor potency was equivalent to acetochlor and alachlor in human hepatocytes. Furthermore, chloroacetanilide cytotoxicity from two sources of human hepatocytes varied inversely with CYP3A4 activity. Collectively, while cytotoxicity in rat hepatocytes was consistent with chloroacetanilide activation by CYP3A, an activating role for CYP3A4 was not supported with human hepatocytes. (c) 2008 Wiley Periodicals, Inc.

  2. Comparative studies on fatty acid synthesis, glycogen metabolism, and gluconeogenesis by hepatocytes isolated from lean and obese Zucker rats.

    PubMed

    McCune, S A; Durant, P J; Jenkins, P A; Harris, R A

    1981-12-01

    Hepatocytes isolated from genetically obese female Zucker rats and lean female Zucker rats were compared. Hepatocytes from fed obese rats exhibited greater rates of fatty acid synthesis, more extensive accumulation of lactate and pyruvate from their glycogen stores, increased rates of net glucose utilization but produced less ketone bodies from exogenous fatty acids and had lower citrate levels than hepatocytes from lean rats. Lipogenesis was not as sensitive to dibutyryl cyclic AMP (DBcAMP) inhibition in hepatocytes from obese rats but glycogenolysis was stimulated to the same extent by this nucleotide in both preparations. Ketogenesis was less sensitive to stimulation by DBcAMP in hepatocytes from obese rats. A difference in sensitivity of lipogenesis to DBcAMP was not found when lactate plus pyruvate was added to the incubation medium, suggesting that a greater rate of glycolysis by hepatocytes from obese rats accounts for their relative insensitivity to DBcAMP. Citrate levels were elevated by DBcAMP to a greater extent in hepatocytes from obese rats. Hepatocytes prepared from lean rats starved for 48 hr were glycogen depleted and lacked significant capacity for lipogenesis and glycogen synthesis. In contrast, hepatocytes isolated from starved obese rats retained considerable amounts of liver glycogen and exhibited detectable rates of lipogenesis and glycogen synthesis. Hepatocytes prepared from starved lean rats gave faster apparent rates of lactate gluconeogenesis than hepatocytes prepared from starved obese rats. Thus, hepatocytes prepared from obese Zucker rats are more glycogenic, glycolytic, and lipogenic but less ketogenic and glucogenic than hepatocytes prepared from lean rats.

  3. Functional assessment of hepatocytes after transplantation into rat spleen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, R.J.; Fuller, B.J.; Attenburrow, V.D.

    1982-02-01

    The retention of structural integrity and metabolic function by isolated hepatocytes after ectopic transplantation has been investigated in autografted rats. Rats were partially hepatectomized and isolated hepatocytes prepared from the excised liver lobes were implanted into their spleens. Histological examination of the spleens 7 or more weeks after implantation revealed aggregates of hepatocytes in the red pulp. Two tests of biochemical function were applied to the hepatocytes after tranplantation. In the first the hepatobiliary imaging agent technetium-99m N-(N'-(2,6-dimethylphenyl)carbamoylmethyl)iminodiacetic acid (/sup 99//sup m/Tc HIDA), which was shown to be avidly taken up by isolated hepatocytes in vitro, was infused into themore » tail veins of autograft and control rats. Radioactivity accumulating in the spleens of autografted rats was markedly greater than that in controls implanted with lethally damaged cells or in nontransplanted rats. In the second the presence of bilirubin metabolites was sought in autograft spleens after intravenous infusion of bilirubin. Both mono- and diglucuronides of bilirubin were recovered from the spleens of autograft rats but no conjugates were recovered from the spleens of unoperated controls. We conclude that after autotransplantation isolated hepatocytes retain their morphology and at least some of their functional activities.« less

  4. Functional assessment of hepatocytes after transplantation into rat spleen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, R.J.; Fuller, B.J.; Attenburrow, V.D.

    1982-02-01

    The retention of structural integrity and metabolic function by isolated hepatocytes after ectopic transplantation has been investigated in autografted rats. Rats were partially hepatectomized and isolated hepatocytes prepared from the excised liver lobes were implanted into their spleens. Histological examination of the spleens 7 or more weeks after implantation revealed aggregates of hepatocytes in the red pulp. Two tests of biochemical function were applied to the hepatocytes after transplantation. In the first the hepatobiliary imaging agent technetium-99m N-(N'-(2, 6-dimethylphenyl)carbamoylmethyl)iminodiacetic acid (99mTc HIDA), which was shown to be avidly taken up by isolated hepatocytes in vitro, was infused into the tailmore » veins of autograft and control rats. Radioactivity accumulating in the spleens of autografted rats was markedly greater than that in controls implanted with lethally damaged cells or in nontransplanted rats. In the second the presence of bilirubin metabolites was sought in autograft spleens after intravenous infusion of bilirubin. Both mono- and diglucuronides of bilirubin were recovered from the spleens of autograft rats but no conjugates were recovered from the spleens of unoperated controls. We conclude that after autotransplantation isolated hepatocytes retain their morphology and at least some of their functional activities.« less

  5. [Crabtree effect caused by ketoses in isolated rat hepatocytes].

    PubMed

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1982-01-01

    Oxygen uptake and glycolytic activity were studied in hepatocytes isolated from fed rats. The addition of fructose or tagatose resulted in a 38% and 31% inhibition of cellular respiration respectively. The addition of 10 mM D-glyceraldehyde caused a slight Crabtree effect. Glucose, L-sorbose, or glycerol failed to modify oxygen consumption. Only incubation in the presence of fructose showed a high aerobic glycolysis measured by lactate production.

  6. Cryopreservation of isolated primary rat hepatocytes: enhanced survival and long-term hepatospecific function.

    PubMed

    Sosef, Meindert N; Baust, John M; Sugimachi, Keishi; Fowler, Alex; Tompkins, Ronald G; Toner, Mehmet

    2005-01-01

    To investigate the long-term effect of cryopreservation on hepatocyte function, as well as attempt to improve cell viability and function through the utilization of the hypothermic preservation solution, HypoThermosol (HTS), as the carrier solution. Advances in the field of bioartificial liver support have led to an increasing demand for successful, efficient means of cryopreservation of hepatocytes. Fresh rat hepatocytes were cryopreserved in suspension in culture media (Media-cryo group) or HTS (HTS-cryo group), both supplemented with 10% DMSO. Following storage up to 2 months in liquid nitrogen, cells were thawed and maintained in a double collagen gel culture for 14 days. Hepatocyte yield and viability were assessed up to 14 days postthaw. Serial measurements of albumin secretion, urea synthesis, deethylation of ethoxyresorufin (CYT P450 activity), and responsiveness to stimulation with interleukin-6 (IL-6) were performed. Immediate postthaw viability was 60% in Media-cryo and 79% in HTS-cryo, in comparison with control (90%). Albumin secretion, urea synthesis and CYT P450 activity yielded 33%, 55%, and 59% in Media-cryo and 71%, 80%, and 88% in HTS-cryo, respectively, compared with control (100%). Assessment of cellular response to IL-6 following cryopreservation revealed a similar pattern of up-regulation in fibrinogen production and suppression of albumin secretion compared with nonfrozen controls. This study demonstrates that isolated rat hepatocytes cryopreserved using HTS showed high viability, long-term hepatospecific function, and response to cytokine challenge. These results may represent an important step forward to the utilization of cryopreserved isolated hepatocytes in bioartificial liver devices.

  7. Molecular perturbations restrict potential for liver repopulation of hepatocytes isolated from non-heart-beating donor rats.

    PubMed

    Enami, Yuta; Joseph, Brigid; Bandi, Sriram; Lin, Juan; Gupta, Sanjeev

    2012-04-01

    Organs from non-heart-beating donors are attractive for use in cell therapy. Understanding the nature of molecular perturbations following reperfusion/reoxygenation will be highly significant for non-heart-beating donor cells. We studied non-heart-beating donor rats for global gene expression with Affymetrix microarrays, hepatic tissue integrity, viability of isolated hepatocytes, and engraftment and proliferation of transplanted cells in dipeptidyl peptidase IV-deficient rats. In non-heart-beating donors, liver tissue was morphologically intact for >24 hours with differential expression of 1, 95, or 372 genes, 4, 16, or 34 hours after death, respectively, compared with heart-beating donors. These differentially expressed genes constituted prominent groupings in ontological pathways of oxidative phosphorylation, adherence junctions, glycolysis/gluconeogenesis, and other discrete pathways. We successfully isolated viable hepatocytes from non-heart-beating donors, especially up to 4 hours after death, although the hepatocyte yield and viability were inferior to those of hepatocytes from heart-beating donors (P < 0.05). Similarly, although hepatocytes from non-heart-beating donors engrafted and proliferated after transplantation in recipient animals, this was inferior to hepatocytes from heart-beating donors (P < 0.05). Gene expression profiling in hepatocytes isolated from non-heart-beating donors showed far greater perturbations compared with corresponding liver tissue, including representation of pathways in focal adhesion, actin cytoskeleton, extracellular matrix-receptor interactions, multiple ligand-receptor interactions, and signaling in insulin, calcium, wnt, Jak-Stat, or other cascades. Liver tissue remained intact over prolonged periods after death in non-heart-beating donors, but extensive molecular perturbations following reperfusion/reoxygenation impaired the viability of isolated hepatocytes from these donors. Insights into molecular changes in

  8. Regulation of ketogenesis during the suckling-weanling transition in the rat. Studies with isolated hepatocytes.

    PubMed Central

    Benito, M; Whitelaw, E; Williamson, D H

    1979-01-01

    The rates of ketogenesis from endogenous substrates, butyrate or oleate, have been measured in isolated hepatocytes from suckling and weanling rats. Ketogenesis from endogenous substrate and from oleate decreased on weaning, whereas the rate from butyrate remained unchanged. It is concluded that the major site of regulation of ketogenesis during this period of development involves the disposal of long-chain fatty acyl-CoA between the esterification and beta-oxidation pathways. Modulators of lipogenesis [dihydroxyacetone and 5-(tetradecyloxy)-2-furoic acid] did not alter the rate of ketogenesis in hepatocytes from suckling rats, and it is suggested that this is due to the low rate of lipogenesis in these cells. Hepatocytes from fed weanling rats have a high rate of lipogenesis and evidence is presented for a reciprocal relationship between ketogenesis and lipogenesis, and ketogenesis, and esterification in these cells. Dibutyryl cyclic AMP stimulated ketogenesis from oleate in hepatocytes from fed weanling rats, even in the presence of an inhibitor of lipogenesis [5-(tetradecyloxy)-2-furoic acid], but not in cells from suckling rats. It is suggested that cyclic AMP may act via inhibition of esterification and that in hepatocytes from suckling rats ketogenesis is already maximally stimulated by the high basal concentrations of cyclic AMP [Beaudry, Chiasson & Exton (1977) Am. J. Physiol. 233, E175--E180]. PMID:226064

  9. Effects of Aronia melanocarpa Fruit Juice on Isolated Rat Hepatocytes.

    PubMed

    Kondeva-Burdina, Magdalena; Valcheva-Kuzmanova, Stefka; Markova, Tsvetelina; Mitcheva, Mitka; Belcheva, Anna

    2015-10-01

    Aronia melanocarpa (Michx.) Elliot fruits are very rich in polyphenols - procyanidins, flavonoids, and phenolic acids. On rat hepatocytes, isolated by two-stepped collagenase perfusion, we investigated the effect of A. melanocarpa fruit juice (AMFJ) in two models of liver toxicity caused by (i) metabolic bioactivation of carbon tetrachloride (CCl4), and (ii) tert-butyl hydroperoxide (t-BuOOH)-induced oxidative stress. Isolated rat hepatocytes are a suitable model for hepatotoxicity studies. We determined the main parameters of the functional and metabolic status of rat hepatocytes: Cell viability (measured by trypan blue exclusion) and the levels of lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA). These parameters were used to investigate the protective effects of AMFJ in the two toxicity models. The effects of AMFJ were compared with those of silymarin. The cells were treated either with AMFJ or silymarin at increasing concentrations of 5 μg/ml, 10 μg/ml, 30 μg/ml, 50 μg/ml, and 100 μg/ml which were used for measuring of IC50. In both toxicity models - CCl4 and t-BuOOH, AMFJ showed statistically significant cytoprotective and antioxidant activities. AMFJ prevented the loss of cell viability and GSH depletion, decreased LDH leakage and MDA production. The effects of AMFJ at the concentrations of 5, 10, 30, and 50 μg/ml were similar to those of the same concentrations of silymarin, while the effect of the highest AMFJ concentration of 100 μg/ml was higher than that of the same silymarin concentration. The effects were concentration-dependent and more prominent in the t-BuOOH model, compared to those in the CCl4 model. The cytoprotective and antioxidant effects of AMFJ established in this study might be due to its polyphenolic ingredients, which could influence the cytochrome P450-mediated metabolism of the experimental hepatotoxic substances (CCl4 and t-BuOOH) and could act as free radical scavengers. The stronger effects of

  10. Effective Hepatocyte Transplantation Using Rat Hepatocytes with Low Asialoglycoprotein Receptor Expression

    PubMed Central

    Ise, Hirohiko; Nikaido, Toshio; Negishi, Naoki; Sugihara, Nobuhiro; Suzuki, Fumitaka; Akaike, Toshihiro; Ikeda, Uichi

    2004-01-01

    Development of a reliable method of isolating highly proliferative potential hepatocytes provides information crucial to progress in the field of hepatocyte transplantation. The aim of this study was to develop reliable hepatocyte transplantation using highly proliferative, eg, progenitor-like hepatocytes, based on asialoglycoprotein receptor (ASGPR) expression levels for hepatocyte transplantation. We have previously reported that mouse hepatocytes with low ASGPR expression levels have highly proliferative potential and can be used as progenitor-like hepatocytes. We therefore fractionated F344 male rat hepatocytes expressing low and high levels of ASGPR and determined the liver repopulation capacity of hepatocytes according to low and high ASGPR expression in the liver. Next, 2 × 105 cells of each type were transplanted into female liver regenerative model dipeptidyl peptidase-deficient rats, and we estimated the rate of liver repopulation by the transplanted hepatocytes in the host liver, as determined by recognition of the Sry gene on the Y-chromosome. At 60 days after hepatocyte transplantation, the transplanted hepatocytes occupied ∼76% of the total hepatocyte mass in the case of the transplantation of hepatocytes with low ASGPR expression, but accounted for ∼12% and 17% of the mass in the case of the transplantation of hepatocytes with high ASGPR expression and unfractionated hepatocytes, respectively. In conclusion, these findings suggest that hepatocytes with low ASGPR expression can result in normal liver function and a high repopulation capacity in vivo. These results provide insight into development of a strategy for effective liver repopulation using transplanted hepatocytes. PMID:15277224

  11. Effective hepatocyte transplantation using rat hepatocytes with low asialoglycoprotein receptor expression.

    PubMed

    Ise, Hirohiko; Nikaido, Toshio; Negishi, Naoki; Sugihara, Nobuhiro; Suzuki, Fumitaka; Akaike, Toshihiro; Ikeda, Uichi

    2004-08-01

    Development of a reliable method of isolating highly proliferative potential hepatocytes provides information crucial to progress in the field of hepatocyte transplantation. The aim of this study was to develop reliable hepatocyte transplantation using highly proliferative, eg, progenitor-like hepatocytes, based on asialoglycoprotein receptor (ASGPR) expression levels for hepatocyte transplantation. We have previously reported that mouse hepatocytes with low ASGPR expression levels have highly proliferative potential and can be used as progenitor-like hepatocytes. We therefore fractionated F344 male rat hepatocytes expressing low and high levels of ASGPR and determined the liver repopulation capacity of hepatocytes according to low and high ASGPR expression in the liver. Next, 2 x 10(5) cells of each type were transplanted into female liver regenerative model dipeptidyl peptidase-deficient rats, and we estimated the rate of liver repopulation by the transplanted hepatocytes in the host liver, as determined by recognition of the Sry gene on the Y-chromosome. At 60 days after hepatocyte transplantation, the transplanted hepatocytes occupied approximately 76% of the total hepatocyte mass in the case of the transplantation of hepatocytes with low ASGPR expression, but accounted for approximately 12% and 17% of the mass in the case of the transplantation of hepatocytes with high ASGPR expression and unfractionated hepatocytes, respectively. In conclusion, these findings suggest that hepatocytes with low ASGPR expression can result in normal liver function and a high repopulation capacity in vivo. These results provide insight into development of a strategy for effective liver repopulation using transplanted hepatocytes.

  12. Age-related decrease in sensitivity to glucagon and dibutyryl cyclic AMP inhibition of fatty acid synthesis in hepatocytes isolated from obese female Zucker rats.

    PubMed

    McCune, S A; Durant, P J; Harris, R A

    1984-02-01

    Hepatocytes were isolated from 3 and 5 month old female genetically obese Zucker rats and their lean littermate controls. An age-dependent loss in sensitivity of fatty acid synthesis to inhibition by both glucagon and dibutyryl cyclic AMP was observed with hepatocytes from the obese rats. Hepatocytes from lean animals were much more sensitive to these agents, regardless of age. Low concentrations of glucagon and dibutyryl cyclic AMP actually produced some stimulation of fatty acid synthesis with hepatocytes prepared from the older obese rats. 5-Tetradecyloxy-2-furoic acid, a compound which inhibits fatty acid synthesis, was a very effective inhibitor of fatty acid synthesis by hepatocytes isolated from all rats used in the study. An inhibition of lactate plus pyruvate accumulation and a strong stimulation of glycogenolysis occurred in response to both glucagon and dibutyryl cyclic AMP with hepatocytes from both age groups of lean and obese rats. The results suggest that with aging of the obese female Zucker rat some step of hepatic fatty acid synthesis becomes progressively less sensitive to inhibition by glucagon and dibutyryl cyclic AMP. This may play an important role in maintenance of obesity in these animals.

  13. Isolated hepatocytes--past, present and future.

    PubMed

    Berry, M N; Grivell, A R; Grivell, M B; Phillips, J W

    1997-07-01

    The first technique for large-scale preparation of isolated hepatocytes was described in 1953 and involved perfusion of rat liver under pressure with a Ca(2+)-free solution containing a chelating agent. Various modifications of this technique were in use over the next ten years, until it was demonstrated that cells prepared in this manner were grossly damaged, losing most of their cytoplasmic enzymes during the preparative procedure. The successful preparation of intact isolated hepatocytes by collagenase-treatment of liver was achieved in 1967, and the widespread use of intact hepatocyte suspensions was accelerated by the development soon after of high-yield preparative techniques involving perfusion of the liver with a medium containing collagenase. The introduction of the isolated hepatocyte preparation has enabled experimental studies that otherwise would not be feasible. Important advances have been the use of cultured hepatocytes, frequently of human origin, for the investigation of the metabolism and toxicology of potential therapeutic agents. Success in this field has been achieved through the steady improvement in techniques for the maintenance in culture of differentiated hepatocytes, and in particular their cytochrome P450 complexes. Another area showing considerable promise is the employment of hepatocytes, generally from a porcine source, in temporary support systems for patients with acute liver failure. Our own studies have concentrated on the demonstration of long-range interactions between hepatocyte compartments which suggest that energy transfer between cell compartments can take place without ATP turnover.

  14. Depressed gluconeogenesis and ureogenesis in isolated hepatocytes after intermittent hypoxia in rats.

    PubMed

    Freminet, A; Megas, P; Puceat, M

    1990-01-01

    1. Rats were exposed to hypobaric hypoxia (equivalent altitude 4500 m), 2 x 2 hr per day, for 5 days. Isolated hepatocytes were prepared on day 6 after 18 hr of fast and also from control normoxic animals. The hepatocytes were incubated (120 min) with various substrates. 2. ATP contents were lower in hepatocytes from exposed as compared to control animals whether at the beginning (14%) or at the end (-6 to -33%) of incubation depending on the substrate. 3. Gluconeogenesis from all precursors (lactate, alanine, pyruvate, glutamine) was significantly reduced (40-50%) in exposed as compared to control animals. 4. Ureogenesis from alanine and from pyruvate + NH4Cl was also markedly depressed in exposed animals but no differences were noticed with glutamine or lactate + NH4Cl and alanine + NH4Cl. 5. Results are discussed in relation to known effects of acute and chronic hypoxia, interrelationship between gluconeogenesis and ureogenesis, taking into account the inhomogeneity of liver and the metabolic properties of periportal and perivenous hepatocytes.

  15. The metabolism of aflatoxin B1 by hepatocytes isolated from rats following the in vivo administration of some xenobiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, S.A.; Neal, G.E.

    Isolated rat hepatocytes, an intact cellular system capable of performing phase I and phase II metabolism, have been used to investigate metabolism of aflatoxin B1. These cells were found to metabolise (/sup 14/C)aflatoxin B1 to aflatoxins M1 and Q1, and to radiolabelled polar material, presumably conjugates, as analysed by h.p.l.c., t.l.c. and radioactive determination. In vivo administration of the mixed function oxidase inducers, phenobarbitone and 3-methylcholanthrene, resulted in enhanced hepatocyte phase I (microsomal) metabolism of aflatoxin B1. In contrast to metabolism of AFB1 by in vitro subcellular systems increased production of polar material (conjugated metabolites) derived from (/sup 14/C)aflatoxin B1more » was also detected in hepatocytes isolated from these pretreated animals. Formation of aflatoxin Q1 by isolated hepatocytes appeared to be mediated by cytochrome P450-linked enzymes whereas cytochrome P448-linked enzymes were apparently involved in aflatoxin M1 production. Chronic feeding of aflatoxin B1 to rats enhanced hepatocyte production of conjugated material only and did not elevate cellular cytochrome P450 levels, thus suggesting that aflatoxin B1 is not an inducer of its own primary metabolism.« less

  16. Effects of Aronia melanocarpa Fruit Juice on Isolated Rat Hepatocytes

    PubMed Central

    Kondeva-Burdina, Magdalena; Valcheva-Kuzmanova, Stefka; Markova, Tsvetelina; Mitcheva, Mitka; Belcheva, Anna

    2015-01-01

    Background: Aronia melanocarpa (Michx.) Elliot fruits are very rich in polyphenols – procyanidins, flavonoids, and phenolic acids. Objective: On rat hepatocytes, isolated by two-stepped collagenase perfusion, we investigated the effect of A. melanocarpa fruit juice (AMFJ) in two models of liver toxicity caused by (i) metabolic bioactivation of carbon tetrachloride (CCl4), and (ii) tert-butyl hydroperoxide (t-BuOOH)-induced oxidative stress. Materials and Methods: Isolated rat hepatocytes are a suitable model for hepatotoxicity studies. We determined the main parameters of the functional and metabolic status of rat hepatocytes: Cell viability (measured by trypan blue exclusion) and the levels of lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA). These parameters were used to investigate the protective effects of AMFJ in the two toxicity models. The effects of AMFJ were compared with those of silymarin. The cells were treated either with AMFJ or silymarin at increasing concentrations of 5 μg/ml, 10 μg/ml, 30 μg/ml, 50 μg/ml, and 100 μg/ml which were used for measuring of IC50. Results: In both toxicity models – CCl4 and t-BuOOH, AMFJ showed statistically significant cytoprotective and antioxidant activities. AMFJ prevented the loss of cell viability and GSH depletion, decreased LDH leakage and MDA production. The effects of AMFJ at the concentrations of 5, 10, 30, and 50 μg/ml were similar to those of the same concentrations of silymarin, while the effect of the highest AMFJ concentration of 100 μg/ml was higher than that of the same silymarin concentration. The effects were concentration-dependent and more prominent in the t-BuOOH model, compared to those in the CCl4 model. Conclusion: The cytoprotective and antioxidant effects of AMFJ established in this study might be due to its polyphenolic ingredients, which could influence the cytochrome P450-mediated metabolism of the experimental hepatotoxic substances (CCl4 and t

  17. [Permeability of isolated rat hepatocyte plasma membranes for molecules of dimethyl sulfoxide].

    PubMed

    Kuleshova, L G; Gordienko, E A; Kovalenko, I F

    2014-01-01

    We have studied permeability of isolated rat hepatocyte membranes for molecules of dimethyl sulfoxide (DMSO) at different hypertonicity of a cryoprotective medium. The permeability coefficient of hepatocyte membranes κ1 for DMSO molecules was shown to be the differential function of osmotic pressure between a cell and an extracellular medium. Ten-fold augmentation of DMSO concentration in the cryoprotective medium causes the decrease of permeability coefficients κ1 probably associated with the increased viscosity in membrane-adjacent liquid layers as well as partial limitations appeared as a result of change in cell membrane shape after hepatocyte dehydration. We have found out that in aqueous solutions of NaCl (2246 mOsm/l) and DMSO (2250 mOsm/l) the filtration coefficient L(p) in the presence of a penetrating cryoprotectant (L(pDMSO) = (4.45 ± 0.04) x 10(-14) m3/Ns) is 3 orders lower compared to the case with electrolyte (L(pNaCl) = (2.25 ± 0.25) x 10(-11) m3/Ns). This phenomenon is stipulated by the cross impact of flows of a cryoprotectant and water at the stage of cell dehydration. Pronounced lipophilicity of DMSO, geometric parameters of its molecule as well as the presence of large aqueous pores in rat hepatocyte membranes allow of suggesting the availability of two ways of penetrating this cryoprotectant into the cells by non-specific diffusion through membrane lipid areas and hydrophilic channels.

  18. V1-receptor mediated GSH efflux by vasopressin from rat hepatocytes.

    PubMed

    Sato, C; Liu, J H; Uchihara, M; Izumi, N; Yauchi, T; Sakaj, Y; Asahina, Y; Fukuma, T; Takano, T; Marumo, F

    1992-01-01

    Vasopression increases sinusoidal efflux of GSH in the perfused rat liver. The mechanism of this effect was studied in the perfused rat liver and in isolated rat hepatocytes. Vasopressin stimulated GSH efflux in both systems and a V1-receptor antagonist (OPC-21268) significantly inhibited the effect of vasopressin suggesting that vasopressin stimulates GSH efflux from rat hepatocytes via V1-receptor.

  19. Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes.

    PubMed

    Moridani, Majid Y; Cheon, Sophia S; Khan, Sumsullah; O'Brien, Peter J

    2003-01-06

    A tyrosinase-directed therapeutic approach for malignant melanoma therapy uses the depigmenting phenolic agents such as 4-hydroxyanisole (4-HA) to form cytotoxic o-quinones. However, renal and hepatic toxicity was reported as side effects in a recent 4-HA clinical trial. In search of novel therapeutics, the cytotoxicity of the isomers 4-HA, 3-HA and 2-HA were investigated. In the following, the order of the HAs induced hepatotoxicity in mice, as measured by increased in vivo plasma transaminase activity, or in isolated rat hepatocytes, as measured by trypan blue exclusion, was 3-HA > 2-HA > 4-HA. Hepatocyte GSH depletion preceded HA induced cytotoxicity and a 4-MC-SG conjugate was identified by LC/MS/MS mass spectrometry analysis when 3-HA was incubated with NADPH/microsomes/GSH. 3-HA induced hepatocyte GSH depletion or GSH depletion when 3-HA was incubated with NADPH/microsomes was prevented by CYP 2E1 inhibitors. Dicumarol (an NAD(P)H: quinone oxidoreductase inhibitor) potentiated 3-HA- or 4-methoxycatechol (4-MC) induced toxicity whereas sorbitol (an NADH generating nutrient) greatly prevented cytotoxicity indicating a quinone-mediated cytotoxic mechanism. Ethylendiamine (an o-quinone trap) largely prevented 3-HA and 4-MC-induced cytotoxicity indicating that o-quinone was involved in cytotoxicity. Dithiothreitol (DTT) greatly reduced 3-HA and 4-MC induced toxicity. The ferric chelator deferoxamine slightly decreased 3-HA and 4-MC induced cytotoxicity whereas the antioxidants pyrogallol or TEMPOL greatly prevented the toxicity suggesting that oxidative stress contributed to 3-HA induced cytotoxicity. In summary, ring hydroxylation but not O-demethylation/epoxidation seems to be the bioactivation pathway for 3-HA in rat liver. The cytotoxic mechanism for 3-HA and its metabolite 4-MC likely consists cellular protein alkylation and oxidative stress. These results suggest that 3-HA is not suitable for treatment of melanoma. Copyright 2002 Elsevier Science B.V.

  20. Protective effects of Sesamum indicum extract against oxidative stress induced by vanadium on isolated rat hepatocytes.

    PubMed

    Hosseini, Mir-Jamal; Shahraki, Jafar; Tafreshian, Saman; Salimi, Ahmad; Kamalinejad, Mohammad; Pourahmad, Jalal

    2016-08-01

    Vanadium toxicity is a challenging problem to human and animal health with no entirely understanding cytotoxic mechanisms. Previous studies in vanadium toxicity showed involvement of oxidative stress in isolated liver hepatocytes and mitochondria via increasing of ROS formation, release of cytochrome c and ATP depletion after incubation with different concentrations (25-200 µM). Therefore, we aimed to investigate the protective effects of Sesamum indicum seed extract (100-300 μg/mL) against oxidative stress induced by vanadium on isolated rat hepatocytes. Our results showed that quite similar to Alpha-tocopherol (100 µM), different concentrations of extract (100-300 μg/mL) protected the isolated hepatocyte against all oxidative stress/cytotoxicity markers induced by vanadium in including cell lysis, ROS generation, mitochondrial membrane potential decrease and lysosomal membrane damage. Besides, vanadium induced mitochondrial/lysosomal toxic interaction and vanadium reductive activation mediated by glutathione in vanadium toxicity was significantly (P < 0.05) ameliorated by Sesamum indicum extracts. These findings suggested a hepato-protective role for extracts against liver injury resulted from vanadium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 979-985, 2016. © 2015 Wiley Periodicals, Inc.

  1. [Changes in the chromatin structure of hepatocyte nuclei of rats trained to hypoxia].

    PubMed

    Domkina, L K; Bresler, V M; Simanovskiĭ, L N

    1976-03-01

    Structure of chromatin in the nuclei of the isolated surviving hepatocytes and in the isolated nuclei of hepatocytes were studied by fluorochroming with acridine orange and by microfluorimetry of fluorescenc connected with the stain chromatin at 530 and 590 nm in intact rats and in the animals trained to hypoxia in a pressure chamber for 60 days. The nuclei of hepatocytes of intact rats were distributed by fluorescence at 530 nm into three classes with the intensity ratio of 1:2:4; as to the nuclei of hepatocytes of the rats trained to hypoxia - they formed a single class corresponding to the second class of control. In intact rats the ratio of the fluorescence intensity at 590 nm to such at 530 nm (alpha coefficient) formed normal distribution; in trained rats - a bimodal distribution with a shift of the maximum in the direction of reduction and increase of alpha in comparison with control. It is supposed that in hypoxia there is a repression of one and depression of other genes in the chromatine of the nuclei of the liver.

  2. Hepatocyte transplantation for enzyme deficiency disease in congenic rats.

    PubMed

    Vroemen, J P; Buurman, W A; Heirwegh, K P; van der Linden, C J; Kootstra, G

    1986-08-01

    Long-term effects of hepatocyte transplantation (HTX) in the treatment of enzyme deficiency disease were studied. Congenic enzyme-deficient (R/APfd-j/j) and non-enzyme-deficient (R/APfd) rats were used as recipients and donors, respectively. The R/APfd-j/j rat strain is congenitally deficient of bilirubin uridyldiphosphate (UDP)-glucuronyl transferase. R/APfd-j/j rats underwent HTX by intrasplenic injection of 10(7) isolated R/APfd hepatocytes (group 1A). Another group of R/APfd-j/j rats was treated similarly, but underwent splenectomy after 11 weeks (group 1B). Controls consisted of R/APfd-j/j rats grafted with 10(7) R/APfd-j/j hepatocytes (group 2), and R/APfd-j/j rats that underwent a sham operation (group 3). Total plasma bilirubin (TB) levels were significantly reduced in groups 1A and 1B during the experiment (both P less than 0.01). In the control groups TB reduction was not observed. Bile analyses at 30 weeks after HTX showed that in group 1A 13.7 +/- 2.7% of total biliary bilirubin was conjugated. In group 1B a significantly lower fraction was conjugated: 6.6 +/- 1.1% (P less than 0.05). Conjugated bilirubin was not found in bile of groups 2 and 3. Histology showed survival of hepatocytes in all spleens of rats of groups 1A, 1B and 2. It is concluded that congenic hepatocytes from R/APfd donors are not rejected after transplantation into the R/APfd-j/j rat, and maintain long-term function. Splenectomy does not abolish, but does reduce, the therapeutic effect significantly, indicating that part of the transplanted hepatocytes maintains function in the enzyme-deficient host liver. The congenic R/APfd-j/j and R/APfd rat strains represent a new animal model for research in metabolic deficiency disease.

  3. Protein phosphorylation in isolated hepatocytes of septic and endotoxemic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deaciuc, I.V.; Spitzer, J.A.

    The purpose of this study was to investigate possible alterations induced by sepsis and endotoxicosis in the late phase of Ca2+-dependent signaling in rat liver. Hepatocytes isolated from septic or chronically endotoxin (ET)-treated rats were labeled with (32P)H3PO4 and stimulated with various agents. Proteins were resolved by one-dimensional polyacrylamide gel electrophoresis and autoradiographed. Vasopressin (VP)- and phenylephrine (PE)-induced responses were attenuated in both septic and ET-treated rats for cytosolic and membrane proteins compared with their respective controls. Glucagon and 12-O-myristate phorbol-13-acetate (TPA) affected only the phosphorylation of membrane proteins. Glucagon-induced changes in the phosphorylation of membrane proteins were affected bymore » both sepsis and endotoxicosis, whereas TPA-stimulated phosphorylation was lowered only in endotoxicosis. Response to the Ca2+ ionophore A23187 was depressed in septic rats for cytosolic proteins. The phosphorylation of two cytosolic proteins, i.e., 93 and 61 kDa (previously identified as glycogen phosphorylase and pyruvate kinase, respectively), in response to VP, PE, and A23187 was severely impaired by endotoxicosis and sepsis. TPA did not affect the phosphorylation state of these two proteins. The results show that sepsis and endotoxicosis produce perturbations of the phosphorylation step in Ca2+ transmembrane signaling. Such changes can explain alterations of glycogenolysis and gluconeogenesis associated with sepsis and endotoxicosis.« less

  4. Hypolipidaemic drugs are activated to acyl-CoA esters in isolated rat hepatocytes. Detection of drug activation by human liver homogenates and by human platelets.

    PubMed Central

    Bronfman, M; Morales, M N; Amigo, L; Orellana, A; Nuñez, L; Cárdenas, L; Hidalgo, P C

    1992-01-01

    The formation of acyl-CoA esters of the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate and nafenopin was studied in isolated rat hepatocytes. The concentration of ciprofibroyl-CoA in the liver of ciprofibrate-treated rats was in the range of 10-30 microM. The three drugs formed acyl-CoA esters when incubated with isolated hepatocytes. Their formation was saturable and reached a plateau after 30 min incubation. Maximal intracellular concentrations of ciprofibroyl-CoA and clofibroyl-CoA (100 microM and 55 microM respectively) were attained at 0.5 mM of the free drugs in the incubation medium, whereas for nafenopin-CoA, the maximal intracellular concentration (9 microM) was reached at 1 mM-nafenopin. At low concentrations of the hypolipidaemic compounds in the incubation medium a significant proportion of the total intracellular drug was present as its acyl-CoA ester (25-35% for ciprofibrate). When isolated hepatocytes were incubated with a ciprofibrate concentration comparable with that observed in the blood of drug-treated rats (0.1 mM), ciprofibroyl-CoA attained an intracellular concentration similar to that previously observed in the liver of treated rats. The formation of ciprofibroyl-CoA by isolated rat hepatocytes was stimulated by the addition of carnitine and partially inhibited by the addition of palmitate. Further, it was shown that human liver homogenates synthesized ciprofibroyl-CoA at a rate similar to that observed for rat liver homogenates. Solubilized human platelets also formed ciprofibroyl-CoA, although at a rate two orders of magnitude lower than that of liver. The results support the view that acyl-CoA esters of hypolipidaemic peroxisome proliferators may be the pharmacologically active species of the drugs. PMID:1599408

  5. Hepatocyte transplants improve liver function and encephalopathy in portacaval shunted rats.

    PubMed

    Fogel, Wieslawa Agnieszka; Stasiak, Anna; Maksymowicz, Michał; Kobos, Jozef; Unzeta, Mercedes; Mussur, Miroslaw

    2014-07-01

    Rats with portacaval shunt (PCS) are useful experimental models of human hepatic encephalopathy in chronic liver dysfunction. We have previously shown that PCS modifies amine neurotransmitter systems in the CNS and increases voluntary alcohol intake by rats. Hepatocyte transplantation, used in acute liver failure, has recently also been applied to chronic liver diseases, which prompted us to investigate whether the altered brain amine system and the drinking behavior in long-term shunted rats could be normalized by hepatocyte transplants. Hepatocytes, isolated from syngeneic donors by collagenase digestion, were injected (3 × 10(6) cells/rat) into the pancreatic tail region, 6 months after PCS. Hepatic function was evaluated by measuring urine urea and plasma L-histidine concentrations. A free choice test with two bottles (tap water and 10% ethyl alcohol) was performed for 3 days to assess the rats' preference for alcohol. The rats were euthanized 2 months posttransplantation. Brain histamine and 5-hydroxyindoleacetic acid (5-HIAA) levels were measured by radioenzymatic assay and by HPLC-EC, respectively, N-tele-methylhistamine by GC/MS while MAOA and MAOB activities by isotopic procedures. Portacaval shunt rats with hepatocyte transplants gave more urea than before transplantation, with lower plasma L-His levels and higher body weight versus the PCS counterparts. Also, those rats consumed less alcohol. The CNS amines and 5-HIAA concentrations, as well as MAO-B activity, being abnormally high in untreated PCS rats, significantly reduced after PCS hepatocyte treatment. The results support the therapeutic values of hepatocyte transplants in chronic liver diseases and the temporary character of PCS-exerted CNS dysfunctions. © 2014 John Wiley & Sons Ltd.

  6. Isolated Rat Hepatocyte Couplets: A Primary Secretory Unit for Electrophysiologic Studies of Bile Secretory Function

    NASA Astrophysics Data System (ADS)

    Graf, J.; Gautam, A.; Boyer, J. L.

    1984-10-01

    Hepatocyte couplets were isolated by collagenase perfusion from rat liver. Between adjacent cells, the bile canaliculus forma a closed space into which secretion occurs. As in intact liver, Mg2+-ATPase is localized at the canalicular lumen, the organic anion fluorescein is excreted, and secretion is modified by osmotic gradients. By passing a microelectrode through one cell into the canalicular vacuole, a transepithelial potential profile was obtained. In 27 cell couplets the steady-state intracellular (-26.3 ± 5.3 mV) and intracanalicular (-5.9 ± 3.3 mV) potentials were recorded at 37 degrees C with reference to the external medium. Input resistances were determined within the cell (86 ± 23 MΩ ) and in the bile canalicular lumen (32 ± 17 MΩ ) by passing current pulses through the microelectrode. These data define electrical driving forces for ion transport across the sinusoidal, canalicular, and paracellular barriers and indicate ion permeation across a leaky paracellular junctional pathway. These findings indicate that the isolated hepatocyte couplet is an effective model for electrophysiologic studies of bile secretory function.

  7. Assessment of cell concentration and viability of isolated hepatocytes using flow cytometry.

    PubMed

    Wigg, Alan J; Phillips, John W; Wheatland, Loretta; Berry, Michael N

    2003-06-01

    The assessment of cell concentration and viability of freshly isolated hepatocyte preparations has been traditionally performed using manual counting with a Neubauer counting chamber and staining for trypan blue exclusion. Despite the simple and rapid nature of this assessment, concerns about the accuracy of these methods exist. Simple flow cytometry techniques which determine cell concentration and viability are available yet surprisingly have not been extensively used or validated with isolated hepatocyte preparations. We therefore investigated the use of flow cytometry using TRUCOUNT Tubes and propidium iodide staining to measure cell concentration and viability of isolated rat hepatocytes in suspension. Analysis using TRUCOUNT Tubes provided more accurate and reproducible measurement of cell concentration than manual cell counting. Hepatocyte viability, assessed using propidium iodide, correlated more closely than did trypan blue exclusion with all indicators of hepatocyte integrity and function measured (lactate dehydrogenase leakage, cytochrome p450 content, cellular ATP concentration, ammonia and lactate removal, urea and albumin synthesis). We conclude that flow cytometry techniques can be used to measure cell concentration and viability of isolated hepatocyte preparations. The techniques are simple, rapid, and more accurate than manual cell counting and trypan blue staining and the results are not affected by protein-containing media.

  8. Quantitative structure toxicity relationships for phenols in isolated rat hepatocytes.

    PubMed

    Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2003-05-06

    Quantitative structure toxicity relationship (QSTR) equations were obtained to predict and describe the cytotoxicity of 31 phenols using logLD(50) as a concentration to induce 50% cytotoxicity of isolated rat hepatocytes in 2 h and logP as octanol/water partitioning: logLD(50) (microM)=-0.588(+/-0.059)logP+4.652(+/-0.153) (n=27, r(2)=0.801, s=0.261, P<1 x 10(-9)). Hydroquinone, catechol, 4-nitrophenol, and 2,4-dinitrophenol were outliers for this equation. When the ionization constant pK(a) was considered as a contributing factor a two-parameter QSTR equation was derived: logLD(50) (microM)=-0.595(+/-0.051)logP+0.197(+/-0.029)pK(a)+2.665(+/-0.281) (n=28, r(2)=0.859, s=0.218, P<1 x 10(-6)). Using sigma+, the Brown variation of the Hammet electronic constant, as a contributing parameter, the cytotoxicity of phenols towards hepatocytes were defined by logLD(50) (microM)=-0.594(+/-0.052)logP-0.552(+/-0.085)sigma+ +4.540(+/-0.132) (n=28, r(2)=0.853, s=0.223, P<1 x 10(-6)). Replacing sigma+ with the homolytic bond dissociation energy (BDE) for (X-PhOH+PhO.-->X-PhO.+PhOH) led to logLD(50) (microM)=-0.601(+/-0.066)logP-0.040(+/-0.018)BDE+4.611(+/-0.166) (n=23, r(2)=0.827, s=0.223, P<0.05). Hydroquinone, catechol and 2-nitrophenol were outliers for the above equations. Using redox potential and logP led to a new correlation: logLD(50) (microM)=-0.529(+/-0.135)logP+2.077(+/-0.892)E(p/2)+2.806(+/-0.592) (n=15, r(2)=0.561, s=0.383, P<0.05) with 4-nitrophenol as an outlier. Our findings indicate that phenols with higher lipophilicity, BDE, or sigma+ values or with lower pK(a) and redox potential were more toxic towards hepatocytes. We also showed that a collapse of hepatocyte mitochondrial membrane potential preceded the cytotoxicity of most phenols. Our study indicates that one or a combination of mechanisms; i.e. mitochondrial uncoupling, phenoxy radicals, or phenol metabolism to quinone methides and quinones, contribute to phenol cytotoxicity towards hepatocytes depending on

  9. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes.

    PubMed

    Van Schaftingen, E; Vandercammen, A

    1989-01-15

    The phosphorylation of glucose was measured by the formation of [3H]H2O from [2-3H]glucose in suspensions of freshly isolated rat hepatocytes. Fructose (0.2 mM) stimulated 2-4-fold the rate of phosphorylation of 5 mM glucose although not of 40 mM glucose, thus increasing the apparent affinity of the glucose phosphorylating system. A half-maximal stimulatory effect was observed at about 50 microM fructose. Stimulation was maximal 5 min after addition of the ketose and was stable for at least 40 min, during which period 60% of the fructose was consumed. The effect of fructose was reversible upon removal of the ketose. Sorbitol and tagatose were as potent as fructose in stimulating the phosphorylation of 5 mM glucose. D-Glyceraldehyde also had a stimulatory effect but at tenfold higher concentrations. In contrast, dihydroxyacetone had no significant effect and glycerol inhibited the detritiation of glucose. Oleate did not affect the phosphorylation of glucose, even in the presence of fructose, although it stimulated the formation of ketone bodies severalfold, indicating that it was converted to its acyl-CoA derivative. These results allow the conclusion that fructose stimulates glucokinase in the intact hepatocyte. They also suggest that this effect is mediated through the formation of fructose 1-phosphate, which presumably interacts with a competitive inhibitor of glucokinase other than long-chain acyl-CoAs.

  10. Metabolic activation of 4-hydroxyanisole by isolated rat hepatocytes.

    PubMed

    Moridani, M Y; Cheon, S S; Khan, S; O'Brien, P J

    2002-10-01

    A tyrosinase-directed therapeutic approach for treating malignant melanoma uses depigmenting phenolic prodrugs such as 4-hydroxyanisole (4-HA) for oxidation by melanoma tyrosinase to form cytotoxic o-quinones. However, in a recent clinical trial, both renal and hepatic toxicity were reported as side effects of 4-HA therapy. In the following, 4-HA (200 mg/kg i.p.) administered to mice caused a 7-fold increase in plasma transaminase toxicity, an indication of liver toxicity. Furthermore, 4-HA induced-cytotoxicity toward isolated hepatocytes was preceded by glutathione (GSH) depletion, which was prevented by cytochrome p450 inhibitors that also partly prevented cytotoxicity. The 4-HA metabolite formed by NADPH/microsomes and GSH was identified as a hydroquinone mono-glutathione conjugate. GSH-depleted hepatocytes were much more prone to cytotoxicity induced by 4-HA or its reactive metabolite hydroquinone (HQ). Dicumarol (an NAD(P)H/quinone oxidoreductase inhibitor) also potentiated 4-HA- or HQ-induced toxicity whereas sorbitol, an NADH-generating nutrient, prevented the cytotoxicity. Ethylenediamine (an o-quinone trap) did not prevent 4-HA-induced cytotoxicity, which suggests that the cytotoxicity was not caused by o-quinone as a result of 4-HA ring hydroxylation. Deferoxamine and the antioxidant pyrogallol/4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (TEMPOL) did not prevent 4-HA-induced cytotoxicity, therefore excluding oxidative stress as a cytotoxic mechanism for 4-HA. A negligible amount of formaldehyde was formed when 4-HA was incubated with rat microsomal/NADPH. These results suggest that the 4-HA cytotoxic mechanism involves alkylation of cellular proteins by 4-HA epoxide or p-quinone rather than involving oxidative stress.

  11. Influence of chain length and unsaturation on the effects of fatty acids on phosphoglyceride biosynthesis in isolated rat and pig hepatocytes.

    PubMed

    Akesson, B; Sundler, R; Nilsson, A

    1976-03-16

    Hepatocytes isolated from rat or pig by collagenase perfusion were incubated with [3H]glcyerol and different albumin-bount fatty acids. Among C22 fatty acids docosahexaenoic acid stimulated phosphatidylethanolamine synthesis in rat hepatocytes most effectively. Addition of docosahexaenoic acid plus either palmitic or stearic acid resulted almost in the same stimulation whereas combinations of this acid with lauric or myristic acid had no effect. Lauric acid and myristic acid alone inhibited phosphatidylethanolamine synthesis. The chain length specificity for monoenoic fatty acids was similar, the hexadecenoic and octadecenoic acids (both cis and trans) being most stimulatory. The addition of 0.2 mM ethanolamine markedly stimulated phosphatidylethanolamine synthesis, but most effects of fatty acids were similar in its presence or absence.

  12. The production of (14C) oxalate during the metabolism of (14C) carbohydrates in isolated rat hepatocytes.

    PubMed

    Rofe, A M; James, H M; Bais, R; Edwards, J B; Conyers, R A

    1980-04-01

    Oxalate (14C) was produced during the metabolism of (U-14C) carbohydrates in hepatocytes isolated from normal rats. At 10 mM, the order of oxalate production was fructose > glycerol > xylitol > sorbitol greater than or equal to glucose in the ratio 10 : 4 : 3 : 1 : 1. This difference between oxalate production from fructose and glucose was reflected in their rates of utilisation, glucose being poorly metabolised in hepatocytes from fasted rats. Fructose was rapidly metabolised, producing glucose, lactate and pyruvate as the major metabolites. Glycerol, xylitol and sorbitol were metabolised at half the rate of fructose, the major metabolites being glucose, lactate and glycerophosphate. The marked similarity in the pattern of intermediary metabolites produced by these polyols was not, however, reflected in the rates of oxalate production. Hepatic polyol metabolism resulted in high levels of cytosolic NADH, as indicated by elevated lactate : pyruvate and glycerophosphate : dihydroxyacetone phosphate ratios. The artificial electron acceptor, phenazine methosulphate (PMS) stimulated oxalate production from the polyols, particularly xylitol. In the presence of PMS, the order of oxalate production was fructose greater than or equal to xylitol > glycerol > sorbitol in the ratio 10 : 10 : 6 : 2. The production of glucose, lactate and pyruvate from the polyols was also stimulated by PMS, whereas the general metabolism of fructose, including oxalate production, was little affected. Oxalate (14C) was produced from (1-14C), (2-14C) and (6-14C) but not (3,4-14C) glucose in hepatocytes isolated from non-fasted, pyridoxine-deficient rats. Whilst this labelling pattern is consistent with oxalate being produced by a number of pathways, it is suggested that metabolism via hydroxypyruvate is a major route for oxalate production from various carbohydrates, with perhaps the exception of xylitol, which appears to have an alternative mechanism for oxalate production. The observation that

  13. Disappearance of GFP-Positive Hepatocytes Transplanted into the Liver of Syngeneic Wild-Type Rats Pretreated with Retrorsine

    PubMed Central

    Maeda, Hiromichi; Shigoka, Masatoshi; Wang, Yongchun; Fu, Yingxin; Wesson, Russell N.; Lin, Qing; Montgomery, Robert A.; Enzan, Hideaki; Sun, Zhaoli

    2014-01-01

    Background and Aim Green fluorescent protein (GFP) is a widely used molecular tag to trace transplanted cells in rodent liver injury models. The differing results from various previously reported studies using GFP could be attributed to the immunogenicity of GFP. Methods Hepatocytes were obtained from GFP-expressing transgenic (Tg) Lewis rats and were transplanted into the livers of wild-type Lewis rats after they had undergone a partial hepatectomy. The proliferation of endogenous hepatocytes in recipient rats was inhibited by pretreatment with retrorsine to enhance the proliferation of the transplanted hepatocytes. Transplantation of wild-type hepatocytes into GFP-Tg rat liver was also performed for comparison. Results All biopsy specimens taken seven days after transplantation showed engraftment of transplanted hepatocytes, with the numbers of transplanted hepatocytes increasing until day 14. GFP-positive hepatocytes in wild-type rat livers were decreased by day 28 and could not be detected on day 42, whereas the number of wild-type hepatocytes steadily increased in GFP-Tg rat liver. Histological examination showed degenerative change of GFP-positive hepatocytes and the accumulation of infiltrating cells on day 28. PCR analysis for the GFP transgene suggested that transplanted hepatocytes were eliminated rather than being retained along with the loss of GFP expression. Both modification of the immunological response using tacrolimus and bone marrow transplantation prolonged the survival of GFP-positive hepatocytes. In contrast, host immunization with GFP-positive hepatocytes led to complete loss of GFP-positive hepatocytes by day 14. Conclusion GFP-positive hepatocytes isolated from GFP-Tg Lewis rats did not survive long term in the livers of retrorsine-pretreated wild-type Lewis rats. The mechanism underlying this phenomenon most likely involves an immunological reaction against GFP. The influence of GFP immunogenicity on cell transplantation models should be

  14. Receptor-Mediated and Fluid-Phase Transcytosis of Horseradish Peroxidase across Rat Hepatocytes

    PubMed Central

    Ellinger, Isabella; Fuchs, Renate

    2010-01-01

    Horseradish peroxidase (HRP) is often used as a fluid-phase marker to characterize endocytic and transcytotic processes. Likewise, it has been applied to investigate the mechanisms of biliary secretion of fluid in rat liver hepatocytes. However, HRP contains mannose residues and thus binds to mannose receptors (MRs) on liver cells, including hepatocytes. To study the role of MR-mediated endocytosis of HRP transport in hepatocytes, we determined the influence of the oligosaccharid mannan on HRP biliary secretion in the isolated perfused rat liver. A 1-minute pulse of HRP was applied followed by marker-free perfusion. HRP appeared in bile with biphasic kinetics: a first peak at 7 minutes and a second peak at 15 minutes after labeling. Perfusion with 0.8 mg/mL HRP in the presence of a twofold excess of mannan reduced the first peak by 41% without effect on the second one. Together with recently published data on MR expression in rat hepatocytes this demonstrates two different mechanisms for HRP transcytosis: a rapid, receptor-mediated transport and a slower fluid-phase transport. PMID:20168981

  15. Stabilization of glucocorticoid receptors in isolated rat hepatocytes by radioprotectants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karle, J.M.; Ridder, W.E.; Wright, N.

    1986-05-01

    Previous work has shown that glucocorticoid receptors in rat liver homogenate can be stabilized by the addition of MoO/sub 4/ plus the sulfhydryl-containing compounds dithiothreitol and WR 1065. The latter is the dephosphorylated, principal metabolite of the radioprotectant WR 2721 (or S-2-(3-aminopropylamino)ethanesphosphorothioic acid). The current work results from applying this knowledge to intact rat hepatocytes. Cells were isolated by collagenase perfusion and incubated in supplemented minimum essential medium at 37/sup 0/C with various concentrations of WR 2721, WR 1065, or vehicle. Samples of these cell suspensions were analyzed at various times for steroid binding capacity by incubating homogenates (27,000 xmore » g supernates) with 50 nM /sup 3/H-triamcinolone acetonide in the presence or absence of excess unlabelled dexamethasone. Concentrations of 10 mM WR 2721 provided marked preservation of the binding capacity (>85% of the initial value at 5 hours) compared to control at <20% by 2 hours. WR 2721 at 1 mM preserved >60% of the binding capacity. WR 1065 at 10 mM provided no such protection. This is consistent with the observation that WR 1065 does not pass cell membranes. The authors propose that supplying reducing equivalents to intracellular components such as the glucocorticoid receptor may be one mechanism of the radioprotection afforded by WR 2721.« less

  16. Lignans from Opuntia ficus-indica seeds protect rat primary hepatocytes and HepG2 cells against ethanol-induced oxidative stress.

    PubMed

    Kim, Jung Wha; Yang, Heejung; Kim, Hyeon Woo; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Bioactivity-guided isolation of Opuntia ficus-indica (Cactaceae) seeds against ethanol-treated primary rat hepatocytes yielded six lignan compounds. Among the isolates, furofuran lignans 4-6, significantly protected rat hepatocytes against ethanol-induced oxidative stress by reducing intracellular reactive oxygen species levels, preserving antioxidative defense enzyme activities, and maintaining the glutathione content. Moreover, 4 dose-dependently induced the heme oxygenase-1 expression in HepG2 cells.

  17. Isolation and characterization of multivesicular bodies from rat hepatocytes: an organelle distinct from secretory vesicles of the Golgi apparatus

    PubMed Central

    1985-01-01

    Hepatocytes of estradiol-treated rats, which express many low density lipoprotein receptors, rapidly accumulate intravenously injected low density lipoprotein in multivesicular bodies (MVBs). We have isolated MVBs and Golgi apparatus fractions from livers of estradiol-treated rats. MVB fractions were composed mainly of large vesicles, approximately 0.55 micron diam, filled with remnantlike very low density lipoproteins, known to be taken up into hepatocytes by receptor- mediated endocytosis. MVBs also contained numerous small vesicles, 0.05- 0.07 micron in diameter, and had two types of appendages: one fingerlike and electron dense and the other saclike and electron lucent. MVBs contained little galactosyltransferase or arylsulfatase activity, and content lipoproteins were largely intact. Very low density lipoproteins from Golgi fractions, which are derived to a large extent from secretory vesicles, were larger than those of MVB fractions and contained newly synthesized triglycerides. Membranes of MVBs contained much more cholesterol and less protein than did Golgi membranes. We conclude that two distinct lipoprotein-filled organelles are located in the bile canalicular pole of hepatocytes. MVBs, a major prelysosomal organelle of low density in the endocytic pathway, contain remnants of triglyceride-rich lipoproteins, whereas secretory vesicles of the Golgi apparatus contain nascent very low density lipoproteins. PMID:3988801

  18. Serum-Free Medium and Mesenchymal Stromal Cells Enhance Functionality and Stabilize Integrity of Rat Hepatocyte Spheroids

    PubMed Central

    Bao, Ji; Fisher, James E.; Lillegard, Joseph B.; Wang, William; Amiot, Bruce; Yu, Yue; Dietz, Allan B.; Nahmias, Yaakov; Nyberg, Scott L.

    2013-01-01

    Long-term culture of hepatocyte spheroids with high ammonia clearance is valuable for therapeutic applications, especially the bioartificial liver. However, the optimal conditions are not well studied. We hypothesized that liver urea cycle enzymes can be induced by high protein diet and maintain on a higher expression level in rat hepatocyte spheroids by serum-free medium (SFM) culture and coculture with mesenchymal stromal cells (MSCs). Rats were feed normal protein diet (NPD) or high protein diet (HPD) for 7 days before liver digestion and isolation of hepatocytes. Hepatocyte spheroids were formed and maintained in a rocked suspension culture with or without MSCs in SFM or 10% serum-containing medium (SCM). Spheroid viability, kinetics of spheroid formation, hepatic functions, gene expression, and biochemical activities of rat hepatocyte spheroids were tested over 14 days of culture. We observed that urea cycle enzymes of hepatocyte spheroids can be induced by high protein diet. SFM and MSCs enhanced ammonia clearance and ureagenesis and stabilized integrity of hepatocyte spheroids compared to control conditions over 14 days. Hepatocytes from high protein diet-fed rats formed spheroids and maintained a high level of ammonia detoxification for over 14 days in a novel SFM. Hepatic functionality and spheroid integrity were further stabilized by coculture of hepatocytes with MSCs in the spheroid microenvironment. These findings have direct application to development of the spheroid reservoir bioartificial liver. PMID:23006214

  19. Oxidative stress triggers cytokinesis failure in hepatocytes upon isolation.

    PubMed

    Tormos, A M; Taléns-Visconti, R; Bonora-Centelles, A; Pérez, S; Sastre, J

    2015-01-01

    Primary hepatocytes are highly differentiated cells and proliferatively quiescent. However, the stress produced during liver digestion seems to activate cell cycle entry by proliferative/dedifferentiation programs that still remain unclear. The aim of this work was to assess whether the oxidative stress associated with hepatocyte isolation affects cell cycle and particularly cytokinesis, the final step of mitosis. Hepatocytes were isolated from C57BL/6 mice by collagenase perfusion in the absence and presence of N-acetyl cysteine (NAC). Polyploidy, cell cycle, and reactive oxygen species (ROS) were studied by flow cytometry (DNA, phospho-histone 3, and CellROX(®) Deep Red) and Western blotting (cyclins B1 and D1, and proliferating cell nuclear antigen). mRNA expression of cyclins A1, B1, B2, D1, and F by reverse transcription (RT)-PCR was also assessed. Glutathione levels were measured by mass spectrometry. Here we show that hepatocyte isolation enhanced cell cycle entry, increased hepatocyte binucleation, and caused marked glutathione oxidation. Addition of 5 mM NAC to the hepatocyte isolation media prevented glutathione depletion, partially blocked ROS production and cell cycle entry of hepatocytes, and avoided the blockade of mitosis progression, abrogating defective cytokinesis and diminishing the formation of binucleated hepatocytes during isolation. Therefore, addition of NAC to the isolation media decreased the generation of polyploid hepatocytes confirming that oxidative stress occurs during hepatocyte isolation and it is responsible, at least in part, for cytokinesis failure and hepatocyte binucleation.

  20. Beta-adrenergic control of phosphatidylcholine synthesis by transmethylation in hepatocytes from juvenile, adult and adrenalectomized rats.

    PubMed Central

    Marin-Cao, D; Alvarez Chiva, V; Mato, J M

    1983-01-01

    Changes in isoprenaline-sensitive phospholipid methyltransferase were studied in hepatocytes isolated from juvenile, mature and adrenalectomized rats. Isoprenaline produced greater stimulation of cyclic AMP accumulation in juvenile and mature adrenalectomized rats than in mature animals. Similarly, isoprenaline stimulated phospholipid methyltransferase in juvenile and mature adrenalectomized rats but had no effect in mature animals. Isoprenaline-mediated activation of phospholipid methyltransferase in adrenalectomized rats was time- and dose-dependent. In hepatocytes isolated from adrenalectomized rats incubated with [Me-3H]methionine or [3H]-ethanolamine the addition of isoprenaline increased the amount of radioactivity incorporated into phosphatidylcholine. The activation by isoprenaline of phospholipid methyltransferase was abolished by the beta-blocker propranolol and by insulin. These results indicate that rat liver the occupation of functional beta-receptors causes a stimulation of phospholipid methylation. It is suggested that, as reported previously, cyclic AMP activates phospholipid methyltransferase. PMID:6320796

  1. Production of thrombopoietin (TPO) by rat hepatocytes and hepatoma cell lines.

    PubMed

    Shimada, Y; Kato, T; Ogami, K; Horie, K; Kokubo, A; Kudo, Y; Maeda, E; Sohma, Y; Akahori, H; Kawamura, K

    1995-12-01

    Recently, we purified rat thrombopoietin (TPO) from plasma of irradiated rats (XRP) by measuring its activity that stimulated the production of megakaryocytes from megakaryocyte progenitor cells (CFU-MK) in vitro. We then cloned the cDNAs for rat and human TPO. In this study, we found the production of TPO by hepatocytes isolated with the collagenase perfusion method from both normal and thrombocytopenic rats, by a two-step fractionation of hepatocyte culture medium (CM). Subsequently, CM of rat hepatoma cell lines was screened for the presence of TPO; three cell lines, H4-II-E, McA-RH8994, and HTC, were found to produce TPO. According to the purification procedure for TPO from XRP, TPO was partially purified from 2 L CM of each of three cell lines with a six-step procedure. In the final reverse-phase column, TPO from each cell line was eluted with the same retention time as that from XRP, and the TPO fraction exhibited megakaryocyte colony-stimulating activity (Meg-CSA). TPO-active fraction eluted from the final reverse-phase column was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), extracted from the gel, and assayed. TPO activity from each cell line was found in the respective molecular weight region, indicating the heterogeneity of the TPO molecule. Using reverse transcriptase-polymerase chain reaction (RT-PCR), we detected the expression of TPO mRNA in hepatocytes, three hepatoma cell lines, normal rat liver, and X-irradiated rat liver. Northern blot analysis showed that TPO mRNA was expressed mainly in liver among the various organs tested. These data demonstrate that TPO is produced by rat hepatocytes and hepatoma cell lines and suggest that liver may be the primary organ that produces TPO.

  2. Metabolism of para-aminophenol by rat hepatocytes.

    PubMed

    Yan, Z; Nikelly, J G; Killmer, L; Tarloff, J B

    2000-08-01

    Autoxidation of para-aminophenol (PAP) has been proposed to account for the selective nephrotoxicity of this compound. However, other studies suggest that hepatic metabolites of PAP rather than the parent compound may be responsible for renal damage. These studies were designed to investigate PAP metabolism in isolated hepatocytes. We synthesized several proposed metabolites for analysis by HPLC/mass spectrometry and compared those results with HPLC/mass spectrometric analyses of metabolites found after incubating hepatocytes with PAP. Hepatocytes prepared from male Sprague-Dawley rats were incubated in Krebs-Henseleit buffer at 37 degrees C for 5 h with 2.3 mM PAP under an atmosphere of 5% CO2/95% O2. Aliquots were withdrawn at 0.1 h of incubation and then hourly through 5 h of incubation. Reactions were terminated by the addition of acetonitrile. Hepatocyte viability was unaltered with PAP present in the incubation medium. We found that hepatocytes converted PAP to two major metabolites (PAP-GSH conjugates and PAP-N-acetylcysteine conjugates) and several minor metabolites [PAP-O-glucuronide, acetaminophen (APAP), APAP-O-glucuronide, APAP-GSH conjugates, and 4-hydroxyformanilide]. Preincubating hepatoyctes with 1-aminobenzotriazole, an inhibitor of cytochromes P450, did not alter the pattern of PAP metabolism. In conclusion, we found that PAP was metabolized in hepatocytes predominantly to PAP-GSH conjugates and PAP-N-acetylcysteine conjugates in sufficient quantities to account for the nephrotoxicity of PAP.

  3. Metabolic Rate Constants for Hydroquinone in F344 Rat and Human Liver Isolated Hepatocytes: Application to a PBPK model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poet, Torka S.; Wu, Hong; English, J C.

    2004-11-15

    Hydroquinone (HQ) is an important industrial chemical that also occurs naturally in foods and in the leaves and bark of a number of plant species. Exposure of laboratory animals to HQ may result in a species-, sex-, and strain-specific nephrotoxicity. The sensitivity of male F344 vs. female F344 and Sprague-Dawley rats or B6C3F1 mice appears to be related to differences in the rates of formation and further metabolism of key nephrotoxic metabolites. Metabolic rate constants for the conversion of HQ through several metabolic steps to the mono-glutathione conjugate and subsequent detoxification via mercapturic acid were measured in suspension cultures ofmore » hepatocytes isolated from male F344 rats and humans. An in vitro mathematic kinetic model was used to analyze each metabolic step by simultaneously fitting the disappearance of each substrate and the appearance of subsequent metabolites. An iterative, nested approach was used whereby downstream metabolites were considered first and the model was constrained by the requirement that rate constants determined during analysis of individual metabolic steps must also satisfy the complete, integrated metabolism scheme, including competitive pathways. The results from this study indicated that the overall capacity for metabolism of HQ and its mono-glutathione conjugate is greater in hepatocytes from humans than those isolated from rats, suggesting a greater capacity for detoxification of the glutathione conjugates. Metabolic rate constants were applied to an existing physiologically based pharmacokinetic model and the model was used to predict total glutathione metabolites produced in the liver. The results showed that body burdens of these metabolites will be much higher in rats than humans.« less

  4. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro.

    PubMed

    Loneker, Abigail E; Faulk, Denver M; Hussey, George S; D'Amore, Antonio; Badylak, Stephen F

    2016-04-01

    Whole organ engineering and cell-based regenerative medicine approaches are being investigated as potential therapeutic options for end-stage liver failure. However, a major challenge of these strategies is the loss of hepatic specific function after hepatocytes are removed from their native microenvironment. The objective of the present study was to determine if solubilized liver extracellular matrix (ECM), when used as a media supplement, can better maintain hepatocyte phenotype compared to type I collagen alone or solubilized ECM harvested from a non-liver tissue source. Liver extracellular matrix (LECM) from four different species was isolated via liver tissue decellularization, solubilized, and then used as a media supplement for primary rat hepatocytes (PRH). The four species of LECM investigated were human, porcine, canine and rat. Cell morphology, albumin secretion, and ammonia metabolism were used to assess maintenance of hepatocyte phenotype. Biochemical and mechanical characterization of each LECM were also conducted. Results showed that PRH's supplemented with canine and porcine LECM maintained their phenotype to a greater extent compared to all other groups. PRH's supplemented with canine and porcine LECM showed increased bile production, increased albumin production, and the formation of multinucleate cells. The findings of the present study suggest that solubilized liver ECM can support in-vitro hepatocyte culture and should be considered for therapeutic and diagnostic techniques that utilize hepatocytes. © 2016 Wiley Periodicals, Inc.

  5. Whole-body γ-irradiation decelerates rat hepatocyte polyploidization.

    PubMed

    Ikhtiar, Adnan M

    2015-07-01

    To characterize hepatocyte polyploidization induced by intermediate dose of γ-ray. Male Wistar strain rats were whole-body irradiated (WBI) with 2 Gy of γ-ray at the age of 1 month, and 5-6 rats were sacrificed monthly at 0-25 months after irradiation. The nuclear DNA content of individual hepatocytes was measured by flow cytometry, then hepatocytes were classified into various ploidy classes. Survival percentage, after exposure up to the end of the study, did not indicate any differences between the irradiated groups and controls. The degree of polyploidization in hepatocytes of irradiated rats, was significantly lower than that for the control after 1 month of exposure, and it continued to be lower after up to 8 months. Thereafter, the degree of polyploidization in the irradiated group slowly returned to the control level when the irradiated rats reached the age of 10 months. Intermediate dose of ionizing radiation, in contrast to high doses, decelerate hepatocyte polyploidization, which may coincides with the hypothesis of the beneficial effects of low doses of ionizing radiation.

  6. Branches of NF-κb signaling pathway regulate hepatocyte proliferation in rat liver regeneration.

    PubMed

    Chang, C F; Zhao, W M; Mei, J X; Zhou, Y; Pan, C Y; Xu, T T; Xu, C S

    2015-07-13

    Previous studies have demonstrated that the nuclear factor κB (NF-κB) pathway is involved in promoting cell proliferation. To further explore the regulatory branches and their sequence in the NF-κB pathway in the promotion of hepatocyte proliferation at the transcriptional level during rat liver regeneration, Rat Genome 230 2.0 array was used to detect the expression changes of the isolated hepatocytes. We found that many genes involved in the NF-κB pathway (including 73 known genes and 19 homologous genes) and cell proliferation (including 484 genes and 104 homologous genes) were associated with liver regeneration. Expression profile function (Ep) was used to analyze the biological processes. It was revealed that the NF-κB pathway promoted hepatocyte proliferation through three branches. Several methods of integrated statistics were applied to extract and screen key genes in liver regeneration, and it indicated that eight genes may play a vital role in rat liver regeneration. To confirm the above predicted results, Ccnd1, Jun and Myc were analyzed using qRT-PCR, and the results were generally consistent with that of microarray data. It is concluded that 3 branches and 8 key genes involved in the NF-κB pathway regulate hepatocyte proliferation during rat liver regeneration.

  7. Cell surface distribution and intracellular fate of asialoglycoproteins: a morphological and biochemical study of isolated rat hepatocytes and monolayer cultures

    PubMed Central

    Zeitlin, PL; Hubbard, AL

    1982-01-01

    A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase

  8. Continuous bioluminescent monitoring of cytoplasmic ATP in single isolated rat hepatocytes during metabolic poisoning.

    PubMed Central

    Koop, A; Cobbold, P H

    1993-01-01

    We have devised a technique for monitoring cytoplasmic ATP continuously in single hepatocytes. Single isolated rat hepatocytes were injected with the ATP-dependent luminescent protein firefly luciferase, and then superfused with 45 microM luciferin in air-equilibrated medium. Signals of approx. 10-200 photoelectron counts per second could be recorded from individual healthy cells for up to 3 h. The response of the luminescent signal to chemical hypoxia (2-5 mM CN- and 5-10 mM 2-deoxyglucose) was monitored. We found a great cell-to-cell variability in the time course of the ATP decline in response to CN-, 2-deoxyglucose or to their combination; the time for the signal to fall to 10% of the original (corresponding to approx. 100 microM ATP) ranged from approx. 20 to 75 min. This resistance of the cytoplasmic ATP concentration to depletion after blockade of oxidative phosphorylation and glycolysis could be abolished by pretreatment of the cells with etomoxir, which blocks mitochondrial beta-oxidation. Etomoxir alone had no effect on the luciferase signal, but etomoxir-pre-treated cells showed a prompt fall in the luciferase signal starting within 1-2 min of application of cyanide and 2-deoxyglucose and falling to 10% of the original signal in approx. 6-10 min. The technique allows cytoplasmic ATP changes to be monitored in single hepatocytes at concentrations of 1 mM or lower, but more precise calibration of the signal will require correction for the effects of cytoplasmic pH changes. PMID:8216212

  9. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes.

    PubMed Central

    Møller, Michael T N; Samari, Hamid R; Fengsrud, Monica; Strømhaug, Per E; øStvold, Anne C; Seglen, Per O

    2003-01-01

    Glycine N-methyltransferase (GNMT) is an abundant cytosolic enzyme that catalyses the methylation of glycine into sarcosine, coupled with conversion of the methyl donor, S -adenosylmethionine (AdoMet), into S -adenosylhomocysteine (AdoHcy). GNMT is believed to play a role in monitoring the AdoMet/AdoHcy ratio, and hence the cellular methylation capacity, but regulation of the enzyme itself is not well understood. In the present study, treatment of isolated rat hepatocytes with the protein phosphatase inhibitor okadaic acid, was found to induce an overphosphorylation of GNMT, as shown by proteomic analysis. The analysis comprised two-dimensional gel electrophoretic separation of (32)P-labelled phosphoproteins and identification of individual protein spots by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry. The identity of GNMT was verified by N-terminal Edman sequencing of tryptic peptides. Chromatographic separation of proteolytic peptides and (32)P-labelled amino acids suggested that GNMT was phosphorylated within a limited region, and only at serine residues. GNMT phosphorylation could be suppressed by naringin, an okadaic acid-antagonistic flavonoid. To assess the possible functional role of GNMT phosphorylation, the effect of okadaic acid on hepatocytic AdoMet and AdoHcy levels was examined, using HPLC separation for metabolite analysis. Surprisingly, okadaic acid was found to have no effect on the basal levels of AdoMet or AdoHcy. An accelerated AdoMet-AdoHcy flux, induced by the addition of methionine (1 mM), was likewise unaffected by okadaic acid. 5-Aminoimidazole-4-carboxamide riboside, an activator of the hepatocytic AMP-activated protein kinase, similarly induced GNMT phosphorylation without affecting AdoMet and AdoHcy levels. Activation of cAMP-dependent protein kinase by dibutyryl-cAMP, reported to cause GNMT phosphorylation under cell-free conditions, also had little effect on hepatocytic AdoMet and AdoHcy levels

  10. LIVER REGENERATION STUDIES WITH RAT HEPATOCYTES IN PRIMARY CULTURE

    EPA Science Inventory

    Adult rat parenchymal hepatocytes in primary culture can be induced to enter into DNA synthesis and mitosis. The optimal conditions for hepatocyte replication are low plating density (less than 10,000 cells/sq cm) and 50% serum from two-thirds partially hepatectomized rats (48 hr...

  11. Differences in the half-lives of some mitochondrial rat liver enzymes may derive partially from hepatocyte heterogeneity.

    PubMed

    Vargas, J L; Roche, E; Knecht, E; Grisolía, S

    1987-11-16

    The different turnover rates of rat liver mitochondrial enzymes make autophagy unlikely to be the main mechanism for degradation of mitochondria. Although alternatives have been presented, hepatocyte heterogeneity has not been considered. Lighter hepatocytes isolated in a discontinuous Percoll gradient contain more glutamate dehydrogenase (GDH) (half-life 1 day) and a more active autophagic system than heavier hepatocytes. The latter contain more carbamoyl phosphate synthase (CPS) and ornithine carbamoyl transferase (OTC) (half-lives 8 days) but less lysosomal activity. As expected, isolated autophagic vacuoles contain, relative to the mitochondrial content, 3-times less OTC and CPS than GDH, probably reflecting a faster lysosomal engulfment of mitochondria in the light hepatocytes (which contain more GDH). These data may explain some of the half-life differences of the enzymes studied.

  12. Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes.

    PubMed

    Maruf, Abdullah Al; Lip, HoYin; Wong, Horace; O'Brien, Peter J

    2015-06-05

    Glyoxal (GO) and methylglyoxal (MGO) cause protein and nucleic acid carbonylation and oxidative stress by forming reactive oxygen and carbonyl species which have been associated with toxic effects that may contribute to cardiovascular disease, complications associated with diabetes mellitus, Alzheimer's and Parkinson's disease. GO and MGO can be formed through oxidation of commonly used reducing sugars e.g., fructose under chronic hyperglycemic conditions. GO and MGO form advanced glycation end products which lead to an increased potential for developing inflammatory diseases. In the current study, we have investigated the protective effects of ferulic acid and related polyphenols e.g., caffeic acid, p-coumaric acid, methyl ferulate, ethyl ferulate, and ferulaldehyde on GO- or MGO-induced cytotoxicity and oxidative stress (ROS formation, protein carbonylation and mitochondrial membrane potential maintenance) in freshly isolated rat hepatocytes. To investigate and compare the protective effects of ferulic acid and related polyphenols against GO- or MGO-induced toxicity, five hepatocyte models were used: (a) control hepatocytes, (b) GSH-depleted hepatocytes, (c) catalase-inhibited hepatocytes, (d) aldehyde dehydrogenase (ALDH2)-inhibited hepatocytes, and (e) hepatocyte inflammation system (a non-toxic H2O2-generating system). All of the polyphenols tested significantly decreased GO- or MGO-induced cytotoxicity, ROS formation and improved mitochondrial membrane potential in these models. The rank order of their effectiveness was caffeic acid∼ferulaldehyde>ferulic acid>ethyl ferulate>methyl ferulate>p-coumaric acid. Ferulic acid was found to decrease protein carbonylation in GSH-depleted hepatocytes. This study suggests that ferulic acid and related polyphenols can be used therapeutically to inhibit or decrease GO- or MGO-induced hepatotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Glutamic Acid Signal Synchronizes Protein Synthesis Kinetics in Hepatocytes from Old Rats for the Following Several Days. Cell Metabolism Memory.

    PubMed

    Brodsky, V Y; Malchenko, L A; Lazarev, D S; Butorina, N N; Dubovaya, T K; Zvezdina, N D

    2018-03-01

    The kinetics of protein synthesis was investigated in primary cultures of hepatocytes from old rats in serum-free medium. The rats were fed mixed fodder supplemented with glutamic acid and then transferred to a regular mixed fodder. The amplitude of protein synthesis rhythm in hepatocytes isolated from these rats increased on average 2-fold in comparison with the rats not receiving glutamic acid supplement. Based on this indicator reflecting the degree of cell-cell interactions, the cells from old rats were not different from those of young rats. The effect was preserved for 3-4 days. These results are discussed in connection with our previous data on preservation of the effect of single administration of gangliosides, noradrenaline, serotonin, and other synchronizers on various cell populations. In contrast to the other investigated factors, glutamic acid is capable of penetrating the blood-brain barrier, which makes its effect possible not only in the case of hepatocytes and other non-brain cells, but also in neurons.

  14. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connelly, P.A.; Sisk, R.B.; Johnson, R.M.

    1987-05-01

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent proteinmore » kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.« less

  15. Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes.

    PubMed

    Woudenberg, Jannes; Rembacz, Krzysztof P; van den Heuvel, Fiona A J; Woudenberg-Vrenken, Titia E; Buist-Homan, Manon; Geuken, Mariska; Hoekstra, Mark; Deelman, Leo E; Enrich, Carlos; Henning, Rob H; Moshage, Han; Faber, Klaas Nico

    2010-05-01

    Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. Caveolin-1

  16. The expression of Apoc3 mRNA is regulated by HNF4α and COUP-TFII, but not acute retinoid treatments, in primary rat hepatocytes and hepatoma cells.

    PubMed

    Howell, Meredith; Li, Rui; Zhang, Rui; Li, Yang; Chen, Wei; Chen, Guoxun

    2014-02-01

    Vitamin A status regulates obesity development, hyperlipidemia, and hepatic lipogenic gene expression in Zucker fatty (ZF) rats. The development of hyperlipidemia in acne patients treated with retinoic acid (RA) has been attributed to the induction of apolipoprotein C-III expression. To understand the role of retinoids in the development of hyperlipidemia in ZF rats, the expression levels of several selected RA-responsive genes in the liver and isolated hepatocytes from Zucker lean (ZL) and ZF rats were compared using real-time PCR. The Rarb and Srebp-1c mRNA levels are higher in the liver and isolated hepatocytes from ZF than ZL rats. The Apoc3 mRNA level is only higher in the isolated hepatocytes from ZF than ZL rats. To determine whether dynamic RA production acutely regulates Apoc3 expression, its mRNA levels in response to retinoid treatments or adenovirus-mediated overexpression of hepatocyte nuclear factor 4 alpha (HNF4α) and chicken ovalbumin upstream-transcription factor II (COUP-TFII) were analyzed. Retinoid treatments for 2-6 h did not induce the expression of Apoc3 mRNA. The overexpression of HNF4α or COUP-TFII induced or inhibited Apoc3 expression, respectively. We conclude that short-term retinoid treatments could not induce Apoc3 mRNA expression, which is regulated by HNF4α and COUP-TFII in hepatocytes.

  17. Interleukin-1β induces tumor necrosis factor-α secretion from rat hepatocytes.

    PubMed

    Yoshigai, Emi; Hara, Takafumi; Inaba, Hiroyuki; Hashimoto, Iwao; Tanaka, Yoshito; Kaibori, Masaki; Kimura, Tominori; Okumura, Tadayoshi; Kwon, A-Hon; Nishizawa, Mikio

    2014-05-01

    Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine involved in various inflammatory diseases. The only production of TNF-α in the liver is thought to be from hepatic macrophages known as Kupffer cells, predominantly in response to bacterial lipopolysaccharide (LPS). Primary cultured rat hepatocytes were used to analyze TNF-α expression in response to the pro-inflammatory cytokine, interleukin-1β (IL-1β). Livers of rats subjected to LPS-induced endotoxemia were analyzed. Immunocytochemistry and enzyme-linked immunosorbent assays demonstrated that IL-1β-treated rat hepatocytes secreted TNF-α, and RNA analyses indicated that TNF-α mRNA was induced specifically by IL-1β. Northern blot analysis showed that not only mRNA, but also a natural antisense transcript (asRNA), was transcribed from the rat Tnf gene in IL-1β-treated hepatocytes. TNF-α was detected in the hepatocytes of LPS-treated rats. Both TNF-α mRNA and asRNA were expressed in the hepatocytes of LPS-treated rats, human hepatocellular carcinoma and human monocyte/macrophage cells. To disrupt the interaction between TNF-α asRNA and TNF-α mRNA, sense oligonucleotides corresponding to TNF-α mRNA were introduced into rat hepatocytes resulting in significantly increased levels of TNF-α mRNA. One of these sense oligonucleotides increased a half-life of TNF-α mRNA, suggesting that the TNF-α asRNA may reduce the stability of TNF-α mRNA. IL-1β-stimulated rat hepatocytes are a newly identified source of TNF-α in the liver. TNF-α mRNA and asRNA are expressed in rats and humans, and the TNF-α asRNA reduces the stability of the TNF-α mRNA. Hepatocytes and TNF-α asRNA may be therapeutic targets to regulate levels of TNF-α mRNA. © 2013 The Japan Society of Hepatology.

  18. Hepatoprotective Flavonoids in Opuntia ficus-indica Fruits by Reducing Oxidative Stress in Primary Rat Hepatocytes.

    PubMed

    Kim, Jung Wha; Kim, Tae Bum; Kim, Hyun Woo; Park, Sang Wook; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Liver disorder was associated with alcohol consumption caused by hepatic cellular damages. Opuntia ficus-indica fruit extracts (OFIEs), which contain betalain pigments and polyphenols including flavonoids, have been introduced as reducing hangover symptoms and liver protective activity. To evaluate hepatoprotective activity of OFIEs and isolated compounds by high-speed countercurrent chromatography (HSCCC). The extract of O. ficus-indica fruits was fractionated into methylene chloride and n -butanol. The n -butanol fraction was isolated by HSCCC separation (methylene chloride-methanol- n -butanol-water, 5:4:3:5, v/v/v/v). The hepatoprotective activity of OFIEs and isolated compounds was evaluated on rat primary hepatocytes against ethanol-induced toxicity. Antioxidative parameters such as glutathione reductase and glutathione peroxidase (GSH-P x ) enzymes and the GSH content were measured. Two flavonoids, quercetin 3- O -methyl ester (1) and (+)-taxifolin, and two flavonoid glycosides, isorhamnetin 3- O -β- d -glucoside (3) and narcissin (4), were isolated from the n -butanol fraction by HSCCC separation. Among them, compound 2 significantly protected rat primary hepatocytes against ethanol exposure by preserving antioxidative properties of GR and GSH-P x . OFIEs and (+)-taxifolin were suggested to reduce hepatic damage by alcoholic oxidative stress. Hepatoprotective Flavonoids were isolated from Opuntia ficus-indica by high -speed countercurrent chromatography (HSCCC).

  19. Hepatotoxin N-nitrosomorpholine-induced carcinogenesis in rat liver: ex vivo exploration of preneoplastic and neoplastic hepatocytes.

    PubMed

    Jeong, Jin Sook; Lee, Sang Hyeung; Jung, Kap Joong; Choi, Yong C; Park, Woong Yang; Kim, In Hoo; Kim, Sang Soon

    2003-02-01

    N-nitrosomorpholine (NNM) is a hepatotoxic and hepatocarcinogenic agent. This agent was administered in the form of drinking water which contained 200 mg of NNM/liter. Its time-dependent intake profile showed four phases over 20 weeks, followed by a fifth phase where only water was supplied. Most frequently, hepatocellular carcinoma appeared between the end of phase IV and the beginning of phase V. At 5 weeks of NNM administration, foci of altered hepatocytes (FAH) containing 100-1000 hepatocytes could be isolated together with free hepatocytes by the collagenase perfusion method. When these foci were grown on the William's Medium E containing hormonally defined medium, they were able to survive approximately twice as long as normal hepatocytes At 10 weeks of NNM administration, few FAH were isolated together with free hepatocytes. The hepatocytes which had been placed under extended chemical stress showed increased heat tolerance (7 to 8 h) at 43 degrees C, while normal hepatocytes could survive 3 to 4 h. At the neoplastic phase spanning the end of the 20 weeks of the NNM administration and water phase, the rats bearing hepatocellular carcinoma entered the terminal stage, where observable tumor masses could be isolated from the tumor bearing liver and tested for ex vivo growth in tissue culture. After stabilization of the isolated primary hepatoma cells through 10 passages of propagation on William's Medium E or minimal Eagle's medium containing 10% FBS, their gene expression profile was analyzed by DNA microarray and compared with the profile of normal hepatocytes. The comparison revealed that upregulation involved ribosome-dependent protein synthesis, including 40S ribosomal proteins (S4, S7, S18, S20), 60S ribosomal proteins (L6, L21, L32, L37, P1), initiation factor 4A, and elongation factor 1alpha.

  20. The effect of phenformin on insulin-stimulated isoaminobutyric acid (AIB) transport by isolated hepatocytes.

    PubMed Central

    Woods, R. J.; Dandona, P.

    1984-01-01

    Hepatocytes isolated from adult rat livers by collagenase perfusion were used to investigate the effect of phenformin on amino acid transport by measuring the uptake of aminoisobutyric acid (AIB). At concentrations between 0.01 and 100 micrograms/ml, phenformin hydrochloride did not affect AIB uptake, but concentrations of 500 and 1000 micrograms/ml were inhibitory. Incubating hepatocytes with insulin increased their accumulation of AIB. Inclusion of up to 100 micrograms/ml, phenformin hydrochloride during maximal and submaximal stimulation by insulin did not affect AIB uptake, but inhibition occurred with 500 and 1000 micrograms/ml. The continued presence of phenformin after addition of AIB was not required in order to produce inhibition. Furthermore, increasing the duration of exposure of hepatocytes to phenformin increased the degree of inhibition, suggesting that it is a non-competitive inhibitor. We conclude that phenformin does not enhance the sensitivity of hepatocytes to insulin and that at higher concentrations it may exert an inhibitory effect on basal and insulin stimulated aminoacid transport. PMID:6370292

  1. Maximising the use of freshly isolated human hepatocytes.

    PubMed

    Evans, Peter J

    2016-01-01

    Freshly isolated human hepatocytes are the best model for predicting adverse drug reactions. However, their preparation and use present the investigator with many variables that are beyond their control. These include operation continuity and timing, size and number of cut surfaces on liver tissue and the prior history of the patient. To exploit the potential of freshly isolated human hepatocytes a method is required to preserve the cells in their initial in vivo like state. This experimental pausing allows experiments to be prioritised at convenient times of the day. A novel approach for selecting viable human hepatocytes by functional attachment to a gelatin gel is described rather than relying on their physical characteristics. The cells are preserved as a monolayer on the semi-solid support at 10°C as single spherical entities. The hepatocytes can be released into suspension, when required, by a temperature transition to 37°C for 20min. The cells can be used in suspension or as a monolayer. The length of preservation depends upon the source tissue. Hepatocytes from normal liver can be maintained for at least 4days and demonstrated to have the same level of CYP3A4 and the enzymes involved in glucuronidation and sulphation as freshly isolated cells. Cells from fatty liver, attached to gelatin, vary in their preservation time but it is at least 24h and so confluent monolayers, that survive at 37°C can be generated the following day. The technique enables freshly isolated human hepatocytes to be used more effectively. They can be preserved in times of plenty so more experimentation is possible. Alternatively, with poorer fatty cells the initial attachment on gelatin enables confluent monolayers of lipid rich cells to be studied. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Impaired mitochondrial functions contribute to 3-bromopyruvate toxicity in primary rat and mouse hepatocytes.

    PubMed

    Sobotka, Ondřej; Endlicher, René; Drahota, Zdeněk; Kučera, Otto; Rychtrmoc, David; Raad, Marjan; Hakeem, Khurum; Červinková, Zuzana

    2016-08-01

    A compound with promising anticancer properties, 3-bromopyruvate (3-BP) is a synthetic derivative of a pyruvate molecule; however, its toxicity in non-malignant cells has not yet been fully elucidated. Therefore, we elected to study the effects of 3-BP on primary hepatocytes in monolayer cultures, permeabilized hepatocytes and isolated mitochondria. After a 1-h treatment with 100 μM 3-BP cell viability of rat hepatocytes was decreased by 30 % as measured by the WST-1 test (p < 0.001); after 3-h exposure to ≥200 μM 3-BP lactate dehydrogenase leakage was increased (p < 0.001). Reactive oxygen species production was increased in the cell cultures after a 1-h treatment at concentrations ≥100 μmol/l (p < 0.01), and caspase 3 activity was increased after a 20-h incubation with 150 μM and 200 μM 3-BP (p < 0.001). This toxic effect of 3-BP was also proved using primary mouse hepatocytes. In isolated mitochondria, 3-BP induced a dose- and time-dependent decrease of mitochondrial membrane potential during a 10-min incubation both with Complex I substrates glutamate + malate or Complex II substrate succinate, although this decrease was more pronounced with the latter. We also measured the effect of 3-BP on respiration of isolated mitochondria. ADP-activated respiration was inhibited by 20 μM 3-BP within 10 min. Similar effects were also found in permeabilized hepatocytes of both species.

  3. Human Hepatocyte Isolation: Does Portal Vein Embolization Affect the Outcome?

    PubMed

    Kluge, Martin; Reutzel-Selke, Anja; Napierala, Hendrik; Hillebrandt, Karl Herbert; Major, Rebeka Dalma; Struecker, Benjamin; Leder, Annekatrin; Siefert, Jeffrey; Tang, Peter; Lippert, Steffen; Sallmon, Hannes; Seehofer, Daniel; Pratschke, Johann; Sauer, Igor M; Raschzok, Nathanael

    2016-01-01

    Primary human hepatocytes are widely used for basic research, pharmaceutical testing, and therapeutic concepts in regenerative medicine. Human hepatocytes can be isolated from resected liver tissue. Preoperative portal vein embolization (PVE) is increasingly used to decrease the risk of delayed postoperative liver regeneration by induction of selective hypertrophy of the future remnant liver tissue. The aim of this study was to investigate the effect of PVE on the outcome of hepatocyte isolation. Primary human hepatocytes were isolated from liver tissue obtained from partial hepatectomies (n = 190) using the two-step collagenase perfusion technique followed by Percoll purification. Of these hepatectomies, 27 isolations (14.2%) were performed using liver tissue obtained from patients undergoing PVE before surgery. All isolations were characterized using parameters that had been described in the literature as relevant for the outcome of hepatocyte isolation. The isolation outcomes of the PVE and the non-PVE groups were then compared before and after Percoll purification. Metabolic parameters (transaminases, urea, albumin, and vascular endothelial growth factor secretion) were measured in the supernatant of cultured hepatocytes for more than 6 days (PVE: n = 4 and non-PVE: n = 3). The PVE and non-PVE groups were similar in regard to donor parameters (sex, age, and indication for surgery), isolation parameters (liver weight and cold ischemia time), and the quality of the liver tissue. The mean initial viable cell yield did not differ between the PVE and non-PVE groups (10.16 ± 2.03 × 10(6) cells/g vs. 9.70 ± 0.73 × 10(6) cells/g, p = 0.499). The initial viability was slightly better in the PVE group (77.8% ± 2.03% vs. 74.4% ± 1.06%). The mean viable cell yield (p = 0.819) and the mean viability (p = 0.141) after Percoll purification did not differ between the groups. PVE had no effect on enzyme leakage and metabolic

  4. Rifampicin exacerbates isoniazid-induced toxicity in human but not in rat hepatocytes in tissue-like cultures

    PubMed Central

    Shen, C; Meng, Q; Zhang, G; Hu, W

    2007-01-01

    Background and purpose: Rifampicin has been extensively reported to exacerbate the hepatotoxicity of isoniazid in patients with tuberculosis. However, this was controversially claimed by previous reports using rat models. This study evaluated the effect of rifampicin on isoniazid-induced hepatocyte toxicity by using human and rat hepatocytes in tissue-like culture. Experimental approach: Hepatocytes in tissue-like gel entrapment were used to examine isoniazid toxicity, as shown by cell viability, intracellular glutathione content and albumin secretion. For demonstration of the differential effects of rifampicin on human and rat hepatocytes, induction by rifampicin of cytochrome P450 (CYP) 2E1, a major enzyme associated with isoniazid hepatotoxicity, was detected by 4-nitrocatechol formation and RT-PCR analysis. Key results: Rifampicin (12 μM) enhanced isoniazid-induced toxicity in human hepatocytes but not in rat hepatocytes. Enhanced CYP 2E1 enzymic activity and mRNA expression were similarly detected in human hepatocytes but not in rat hepatocytes. Both rat and human hepatocytes in gel entrapment were more sensitive to isoniazid treatment compared with the corresponding hepatocytes in a monolayer culture. Conclusions and implications: The difference in induction of CYP 2E1 by rifampicin between rat and human hepatocytes accounted for the difference in exacerbation of isoniazid hepatocyte toxicity by rifampicin, with more significant toxicity in gel entrapment than in monolayer cultures. Thus, human hepatocytes in tissue-like cultures (gel entrapment) could be an effective model for hepatotoxicity research in vitro, closer to the in vivo situation. PMID:18071298

  5. Mitochondrial decay in hepatocytes from old rats: Membrane potential declines, heterogeneity and oxidants increase

    PubMed Central

    Hagen, Tory M.; Yowe, David L.; Bartholomew, James C.; Wehr, Carol M.; Do, Katherine L.; Park, Jin-Y.; Ames, Bruce N.

    1997-01-01

    Mitochondrial function during aging was assessed in isolated rat hepatocytes to avoid the problem of differential lysis when old, fragile mitochondria are isolated. Rhodamine 123, a fluorescent dye that accumulates in mitochondria on the basis of their membrane potential, was used as a probe to determine whether this key function is affected by aging. A marked fluorescent heterogeneity was observed in hepatocytes from old (20–28 months) but not young (3–5 months) rats, suggesting age-associated alterations in mitochondrial membrane potential, the driving force for ATP synthesis. Three distinct cell subpopulations were separated by centrifugal elutriation; each exhibited a unique rhodamine 123 fluorescence pattern, with the largest population from old rats having significantly lower fluorescence than that seen in young rats. This apparent age-associated alteration in mitochondrial membrane potential was confirmed by measurements with radioactive tetraphenylphosphonium bromide. Cells from young rats had a calculated membrane potential of −154 mV, in contrast to that of the three subpopulations from old rats of −70 mV (the largest population), −93 mV, and −154 mV. Production of oxidants was examined using 2′,7′dichlorofluorescin, a dye that forms a fluorescent product upon oxidation. The largest cell subpopulation and a minor one from old animals produced significantly more oxidants than cells from young rats. To investigate the molecular cause(s) for the heterogeneity, we determined the levels of an age-associated mtDNA deletion. No significant differences were seen in the three subpopulations, indicating that the mitochondrial decay is due to other mutations, epigenetic changes, or both. PMID:9096346

  6. Hepatoprotective Flavonoids in Opuntia ficus-indica Fruits by Reducing Oxidative Stress in Primary Rat Hepatocytes

    PubMed Central

    Kim, Jung Wha; Kim, Tae Bum; Kim, Hyun Woo; Park, Sang Wook; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Background: Liver disorder was associated with alcohol consumption caused by hepatic cellular damages. Opuntia ficus-indica fruit extracts (OFIEs), which contain betalain pigments and polyphenols including flavonoids, have been introduced as reducing hangover symptoms and liver protective activity. Objective: To evaluate hepatoprotective activity of OFIEs and isolated compounds by high-speed countercurrent chromatography (HSCCC). Materials and Methods: The extract of O. ficus-indica fruits was fractionated into methylene chloride and n-butanol. The n-butanol fraction was isolated by HSCCC separation (methylene chloride-methanol-n-butanol-water, 5:4:3:5, v/v/v/v). The hepatoprotective activity of OFIEs and isolated compounds was evaluated on rat primary hepatocytes against ethanol-induced toxicity. Antioxidative parameters such as glutathione reductase and glutathione peroxidase (GSH-Px) enzymes and the GSH content were measured. Results: Two flavonoids, quercetin 3-O-methyl ester (1) and (+)-taxifolin, and two flavonoid glycosides, isorhamnetin 3-O-β-d-glucoside (3) and narcissin (4), were isolated from the n-butanol fraction by HSCCC separation. Among them, compound 2 significantly protected rat primary hepatocytes against ethanol exposure by preserving antioxidative properties of GR and GSH-Px. Conclusions: OFIEs and (+)-taxifolin were suggested to reduce hepatic damage by alcoholic oxidative stress. SUMMARY Hepatoprotective Flavonoids were isolated from Opuntia ficus-indica by high -speed countercurrent chromatography (HSCCC). PMID:28839374

  7. Rat hepatocytes transport water mainly via a non-channel-mediated pathway.

    PubMed

    Yano, M; Marinelli, R A; Roberts, S K; Balan, V; Pham, L; Tarara, J E; de Groen, P C; LaRusso, N F

    1996-03-22

    During bile formation by the liver, large volumes of water are transported across two epithelial barriers consisting of hepatocytes and cholangiocytes (i.e. intrahepatic bile duct epithelial cells). We recently reported that a water channel, aquaporin-channel-forming integral protein of 28 kDa, is present in cholangiocytes and suggested that it plays a major role in water transport by these cells. Since the mechanisms of water transport across hepatocytes remain obscure, we performed physiological, molecular, and biochemical studies on hepatocytes to determine if they also contain water channels. Water permeability was studied by exposing isolated rat hepatocytes to buffers of different osmolarity and measuring cell volume by quantitative phase contrast, fluorescence and laser scanning confocal microscopy. Using this method, hepatocytes exposed to hypotonic buffers at 23 degrees C increased their cell volume in a time and osmolarity-dependent manner with an osmotic water permeability coefficient of 66.4 x 10(-4) cm/s. In studies done at 10 degrees C, the osmotic water permeability coefficient decreased by 55% (p < 0.001, at 23 degrees C; t test). The derived activation energy from these studies was 12.8 kcal/mol. After incubation of hepatocytes with amphotericin B at 10 degrees C, the osmotic water permeability coefficient increased by 198% (p < 0.001) and the activation energy value decreased to 3.6 kcal/mol, consistent with the insertion of artificial water channels into the hepatocyte plasma membrane. Reverse transcriptase polymerase chain reaction with hepatocyte RNA as template did not produce cDNAs for three of the known water channels. Both the cholesterol content and the cholesterol/phospholipid ratio of hepatocyte plasma membranes were significantly (p < 0.005) less than those of cholangiocytes; membrane fluidity of hepatocytes estimated by measuring steady-state anisotropy was higher than that of cholangiocytes. Our data suggests that the osmotic flow of

  8. Transport characteristics of three fluorescent conjugated bile acid analogs in isolated rat hepatocytes and couplets.

    PubMed

    Maglova, L M; Jackson, A M; Meng, X J; Carruth, M W; Schteingart, C D; Ton-Nu, H T; Hofmann, A F; Weinman, S A

    1995-08-01

    The transport properties of three different synthetically prepared fluorescent conjugated bile acid analogs (FBA), all with the fluorophore on the side chain, were determined using isolated rat hepatocytes and hepatocyte couplets. The compounds studied were cholylglycylamidofluorescein (CGamF), cholyl(N epsilon-nitrobenzoxadiazolyl [NBD])-lysine (C-NBD-L), and chenodeoxycholyl-(N epsilon-NBD)-lysine (CDC-NBD-L). When hepatocytes were incubated at 37 degrees C with 0.3 mumol/L of FBA and 0.15 mol/L of Na+, cell fluorescence increased linearly with time at a rate (U/min) of 7.8 +/- 0.5 for CGamF, 7.2 +/- 0.3 for C-NBD-L, and 13.7 +/- 1.0 for CDC-NBD-L (mean, +/- SE; n = 40 to 90). Uptake was concentration dependent for concentrations less than 20 mumol/L and was saturable. The Michaelis constant (Km) value (mumol/L) for CGamF was 10.8, for C-NBD-L was 3.8, and for CDC-NBD-L was 3.0. In the absence of Na+, the uptake rate was decreased by 50% for CGamF and by 38% for C-NBD-L; but uptake of CDC-NBD-L was unchanged and thus Na+ independent. Cellular uptake of all three derivatives was specific to hepatocytes and was absent in several nonhepatocyte cell lines. For CGamF and C-NBD-L, both Na(+)-dependent and Na(+)-independent uptake was inhibited by 200-fold excess concentrations of cholyltaurine, dehydrocholyltaurine, and cholate, but for CDC-NBD-L, these nonfluorescent bile acids did not inhibit initial uptake. The intracellular fluorescence of CGamF was strongly pH dependent at an excitation wavelength of 495 nm, but pH independent at 440 nm excitation. In contrast, intracellular fluorescence of C-NBD-L and CDC-NBD-L was pH independent. All three FBA were secreted into the canalicular space of approximately 50% to 60% of couplets. Cellular adenosine triphosphate (ATP) depletion with either CN- or atractyloside inhibited secretion of all three FBA. The multispecific organic anion transporter (MOAT) inhibitor, chlorodinitrobenzene, blocked secretion of fluorescent MOAT

  9. Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.

    PubMed

    Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2017-08-01

    Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

  10. Lipopolysaccharide potentiates the effect of hepatocyte growth factor on hepatocyte replication in rats by augmenting AP-1 activity.

    PubMed

    Gao, C; Jokerst, R; Gondipalli, P; Cai, S R; Kennedy, S; Flye, M W; Ponder, K P

    1999-12-01

    The liver regenerates by replication of differentiated hepatocytes after damage or removal of part of the liver. Although several growth factors and signaling pathways are activated during regeneration, it is unclear as to which of these are essential for hepatocyte replication. We show here that low- (1 mg/kg) and high- (10 mg/kg) dose hepatocyte growth factor (HGF) induced replication of 2.1% and 11.1% of hepatocytes in rats, respectively. Lipopolysaccharide (LPS), an inducer of the acute phase response, augmented hepatocyte replication in response to low- and high-dose HGF by 4- and 2-fold, respectively. HGF alone induced moderate levels of c-Jun-N-terminal kinase (JNK) and p44/p42 mitogen-activated protein kinase (MAPK), resulting in moderate levels of AP-1-DNA binding activity. The combination of LPS + HGF increased JNK and AP-1-DNA binding activity more than levels seen with LPS or HGF alone. The activation of Stat3 that was observed after administration of LPS + HGF, but not HGF alone, could contribute to increased transcription of AP-1 components. Because phosphorylation of the c-Jun component of AP-1 by JNK increases its ability to activate transcription, the AP-1 in hepatocytes from animals treated with LPS + HGF may be more active than in rats treated with LPS or HGF alone. LPS may contribute to hepatocyte replication by potentiating the effect of HGF on the activation of both AP-1-DNA binding and transcriptional activity.

  11. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Sekine, Shuichi, E-mail: ssekine@facult

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and inmore » hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.« less

  12. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  13. Attenuation of alcohol-induced apoptosis of hepatocytes in rat livers by polyenylphosphatidylcholine (PPC).

    PubMed

    Mi, L J; Mak, K M; Lieber, C S

    2000-02-01

    Alcohol consumption increases apoptosis of hepatocytes. This effect appears to be mediated by the induction of hepatic cytochrome P-4502E1(CYP2E1) and its generation of free radicals, which results in an enhanced lipid peroxidation that initiates apoptosis. Because polyenylphosphatidylcholine (PPC), a soybean extract rich in polyunsaturated phosphatidylcholines, decreases the induction of ethanol-specific CYP2E1 and opposes oxidative stress, we hypothesized that PPC supplementation may attenuate hepatocyte apoptosis caused by ethanol ingestion. Twenty-eight male Sprague Dawley rats were pair-fed Lieber-DeCarli liquid diets containing 36% of energy as alcohol or an isocaloric amount of carbohydrate for 28 days. Half of the rats were given PPC (3 g/liter), whereas the other half received the same amount of linoleate (as safflower oil) and of choline as the bitartrate. An additional dose of alcohol (3 g/kg) was given intragastrically 90 min before the livers were removed. We assessed apoptosis in formalin-fixed, paraffin-embedded liver sections by using the TUNEL (terminal transferase dUTP nick end labeling) assay. Apoptotic hepatocytes were identified by positive TUNEL staining in conjunction with condensation of nucleoplasm or margination of chromatin. In each rat, 20,000 to 60,000 hepatocytes were counted by light microscopy by using Image-Pro Plus computer software, and the incidence of apoptosis was expressed as the percentage of total hepatocytes. Alcohol feeding resulted in a 4.5-fold increase in apoptosis of hepatocytes compared to pair-fed control rats; PPC supplementation decreased the alcohol-induced apoptosis to less than half. No difference in the incidence of apoptosis between the control and PPC-supplemented rats was found in the absence of alcohol. Apoptosis was distributed randomly in the liver lobules of the rats fed the control diet, whereas the alcohol-induced apoptosis was significantly increased in the perivenular area. PPC supplementation

  14. [Effects of dietary fibers on hepatocyte apoptosis in rats with alimentary polyhypovitaminosis].

    PubMed

    Trushina, É N; Mustafina, O K; Beketova, N A; Vrzhesinskaia, O A; Kodentsova, V M

    2014-01-01

    The effect of dietary fibers (DF) of wheat bran on hepatocyte apoptosis in rats adequately provided with vitamins or insufficiently supplied with vitamins has been investigated. 48 male Wistar rats (initial body mass--58.1 +/- 0.5 g) were randomly divided into 6 groups and fed with semi-synthetic diet, containing 100% or 20% of vitamin mixture (Vit) with or without addition of DF in the dose corresponding to the upper allowable level of its consumption (5% of diet mass) for 4 weeks. The animals of the 1 group received 100% of vitamin mixture (100% Vit); 2 group--100% Vit + DF; 3 group--20% of vitamin mixture with full exclusion of vitamins E, B1 and B2 (20% Vit); 4 group--20% of vitamin mixture and DF (20% Vit + DF). The next 5 days rats from vitamin-deficient groups were fed with diets supplemented with 80% of vitamins from their content in control group: (5 group--20% Vit + 80% Vit; 6 group--20% Vit + DF + 80% Vit). The suspension of hepatocytes was received by Becton Dickinson Medimachine System (USA). Hepatocyte apoptosis was assessed by the method of flow cytometry using Beckman Coulter FC 500 (USA) cytometer by stained cells with Annexin V-FITC/ 7-Amino-Actinomycin D Kit (Beckman Coulter, USA). In rats fed complete semi-synthetic diet supplemented with DF (100% Vit + DF) the hepatocyte apoptosis was higher by 22% (p < 0.10) than that in rats of control group (4.99 +/- 1.82%). In rats fed diets with low vitamin content (groups: 20% Vit and 20% Vit + DF) the hepatocyte apoptosis was significantly higher (p < 0.05) than that in the control group and reached 7.03 +/- 1.74 and 7.26 +/- 1.13% accordingly. Normalization of vitamin content in the diets of rats from deficient groups during 5 days had no effect on the severity of apoptosis regardless from presence (8.02 +/- 2.18%) or absence of the DF (8.04 +/- 1.66%). Adding DF in dose corresponding to the upper allowable level of consumption, on the background of adequate vitamin content in the diet is accompanied by

  15. In vitro culture of functionally active buffalo hepatocytes isolated by using a simplified manual perfusion method.

    PubMed

    Panda, Santanu; Bisht, Sonu; Malakar, Dhruba; Mohanty, Ashok K; Kaushik, Jai K

    2015-01-01

    In farm animals, there is no suitable cell line available to understand liver-specific functions. This has limited our understanding of liver function and metabolism in farm animals. Culturing and maintenance of functionally active hepatocytes is difficult, since they survive no more than few days. Establishing primary culture of hepatocytes can help in studying cellular metabolism, drug toxicity, hepatocyte specific gene function and regulation. Here we provide a simple in vitro method for isolation and short-term culture of functionally active buffalo hepatocytes. Buffalo hepatocytes were isolated from caudate lobes by using manual enzymatic perfusion and mechanical disruption of liver tissue. Hepatocyte yield was (5.3 ± 0.66)×107 cells per gram of liver tissue with a viability of 82.3 ± 3.5%. Freshly isolated hepatocytes were spherical with well contrasted border. After 24 hours of seeding onto fibroblast feeder layer and different extracellular matrices like dry collagen, matrigel and sandwich collagen coated plates, hepatocytes formed confluent monolayer with frequent clusters. Cultured hepatocytes exhibited typical cuboidal and polygonal shape with restored cellular polarity. Cells expressed hepatocyte-specific marker genes or proteins like albumin, hepatocyte nuclear factor 4α, glucose-6-phosphatase, tyrosine aminotransferase, cytochromes, cytokeratin and α1-antitrypsin. Hepatocytes could be immunostained with anti-cytokeratins, anti-albumin and anti α1-antitrypsin antibodies. Abundant lipid droplets were detected in the cytosol of hepatocytes using oil red stain. In vitro cultured hepatocytes could be grown for five days and maintained for up to nine days on buffalo skin fibroblast feeder layer. Cultured hepatocytes were viable for functional studies. We developed a convenient and cost effective technique for hepatocytes isolation for short-term culture that exhibited morphological and functional characteristics of active hepatocytes for studying gene

  16. Antioxidant Effects of Lycopene and Ubiquinol-10 on the Oxidative Stress in Rat Hepatocytes Induced by Tert-Buthyl Hydroperoxide.

    PubMed

    Safari, Mohammad-Reza

    2010-03-01

    Free radicals especially reactive oxygen metabolites can damage DNA, protein, enzymes, and membrane lipids. Lipid peroxidation in hepatocyte membrane may be involved in hepatic diseases. Antioxidants may inhibit this reaction. Due to oxidant-antioxidant imbalance, free radicals may cause destructive effects. For several years, scientists tried to find antioxidant compounds. In this study, the effects of lycopene and ubiquinol-10 on the oxidative stress in rat hepatocytes induced by t-buthyl hydroperoxide was determined. First, rat hepatocytes were isolated and then incubated in the presence of tert-buthyl hydroperoxide and the amount of malondialdehyde, as a marker of lipid peroxidation, was determined. Then, this reaction was performed in the presence of various concentrations of each lycopene and ubiquinol-10, and the malondialdehyde level was determined. The results of this study showed that in the presence of various concentrations of lycopene and ubiquinol-10 the levels of lipid peroxidation products significantly decreased (P<0.05). Thus, lycopene and ubiquinol-10 have inhibitory effects on lipid peroxidation reaction. This study showed the potential utility of lycopene and ubiquinol-10 in prevention of hepatic dysfunction.

  17. Stimulation of fibrinogen synthesis in cultured rat hepatocytes by fibrinogen degradation product fragment D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaDuca, F.M.; Tinsley, L.A.; Dang, C.V.

    The direct stimulation of fibrinogen biosynthesis by fibrinogen degradation produces (FDPs) was studied in rat hepatocyte cultures. Pure rat FDP fragment D (FDP-D) (Mr 90,000) and FDP fragment E (FDP-E) (Mr 40,000) and mixtures of the two (FDP-DE) were added to rat hepatocytes cultured in serum-free hormonally defined medium. Hydrocortisone (20 microM) significantly increased synthesis of fibrinogen, as determined by incorporation of (35S)methionine. FDP-D and FDP-E did not increase fibrinogen synthesis in the presence of hydrocortisone. However, hepatocytes cultured without hydrocortisone displayed increased fibrinogen synthesis (2.0- to 2.8-fold) with FDP-D (2.6-6.7 microM) but not with FDP-E (5.7 microM). At thesemore » FDP concentrations the synthesis of albumin, haptoglobin, and transferrin was not increased. FDP-D-induced fibrinogen synthesis was inhibited (greater than 90%) by actinomycin D and cycloheximide, indicating that the increase in (35S)methionine incorporation was from de novo protein synthesis. The role of FDP-D was further substantiated by showing that FDP-D, but not FDP-E, bound to the hepatocytes. These data indicate that FDP-D, but not FDP-E, directly and specifically stimulates fibrinogen synthesis in rat hepatocytes; this stimulation does not require any additional serum or protein cofactors.« less

  18. Ferritin expression in rat hepatocytes and Kupffer cells after lead nitrate treatment.

    PubMed

    Fan, Yang; Yamada, Toshiyuki; Shimizu, Takeshi; Nanashima, Naoki; Akita, Miki; Suto, Kohji; Tsuchida, Shigeki

    2009-02-01

    Lead nitrate induces hepatocyte proliferation and subsequent apoptosis in rat livers. Iron is a constituent of heme and is also required for cell proliferation. In this study, the expression of ferritin light-chain (FTL), the major iron storage protein, was investigated in rat livers after a single intravenous injection of lead nitrate. Western blotting and immunohistochemistry revealed that FTL was increased in hepatocytes around the central veins and strongly expressed in nonparenchymal cells. Some FTL-positive nonparenchymal cells were identified as Kupffer cells that were positive for CD68. FTL-positive Kupffer cells occupied about 60% of CD68-positive cells in the periportal and perivenous areas. The relationships between FTL expression and apoptosis induction or the engulfment of apoptotic cells were examined. TUNEL-positive cells were increased in the treatment group, and enhanced expression of milk fat globule EGF-like 8 was demonstrated in some Kupffer cells and hepatocytes, indicating enhanced apoptosis induction and phagocytosis of apoptotic cells. FTL-positive Kupffer cells were not detected without lead nitrate treatment or in rat livers treated with clofibrate, which induces hepatocyte proliferation but not apoptosis. These results suggest that FTL expression in Kupffer cells after lead treatment is dependent on phagocytosis of apoptotic cells.

  19. Nanofabricated Collagen-Inspired Synthetic Elastomers for Primary Rat Hepatocyte Culture

    PubMed Central

    Bettinger, Christopher J.; Kulig, Katherine M.; Vacanti, Joseph P.

    2009-01-01

    Synthetic substrates that mimic the properties of extracellular matrix proteins hold significant promise for use in systems designed for tissue engineering applications. In this report, we designed a synthetic polymeric substrate that is intended to mimic chemical, mechanical, and topological characteristics of collagen. We found that elastomeric poly(ester amide) substrates modified with replica-molded nanotopographic features enhanced initial attachment, spreading, and adhesion of primary rat hepatocytes. Further, hepatocytes cultured on nanotopographic substrates also demonstrated reduced albumin secretion and urea synthesis, which is indicative of strongly adherent hepatocytes. These results suggest that these engineered substrates can function as synthetic collagen analogs for in vitro cell culture. PMID:18847357

  20. Transplant of Hepatocytes, Undifferentiated Mesenchymal Stem Cells, and In Vitro Hepatocyte-Differentiated Mesenchymal Stem Cells in a Chronic Liver Failure Experimental Model: A Comparative Study.

    PubMed

    El Baz, Hanan; Demerdash, Zeinab; Kamel, Manal; Atta, Shimaa; Salah, Faten; Hassan, Salwa; Hammam, Olfat; Khalil, Heba; Meshaal, Safa; Raafat, Inas

    2018-02-01

    Liver transplant is the cornerstone line of treatment for chronic liver diseases; however, the long list of complications and obstacles stand against this operation. Searching for new modalities for treatment of chronic liver illness is a must. In the present research, we aimed to compare the effects of transplant of undifferentiated human mesenchymal stem cells, in vitro differentiated mesenchymal stem cells, and adult hepatocytes in an experimental model of chronic liver failure. Undifferentiated human cord blood mesenchymal stem cells were isolated, pro-pagated, and characterized by morphology, gene expression analysis, and flow cytometry of surface markers and in vitro differentiated into hepatocyte-like cells. Rat hepatocytes were isolated by double perfusion technique. An animal model of chronic liver failure was developed, and undifferentiated human cord blood mesenchymal stem cells, in vitro hepato-genically differentiated mesenchymal stem cells, or freshly isolated rat hepatocytes were transplanted into a CCL4 cirrhotic experimental model. Animals were killed 3 months after transplant, and liver functions and histopathology were assessed. Compared with the cirrhotic control group, the 3 cell-treated groups showed improved alanine aminotransferase, aspartate aminotransferase, albumin, and bilirubin levels, with best results shown in the hepatocyte-treated group. Histopathologic examination of the treated groups showed improved fibrosis, with best results obtained in the undifferentiated mesenchymal stem cell-treated group. Both adult hepatocytes and cord blood mesenchymal stem cells proved to be promising candidates for cell-based therapy in liver regeneration on an experimental level. Improved liver function was evident in the hepatocyte-treated group, and fibrosis control was more evident in the undifferentiated mesenchymal stem cell-treated group.

  1. The energetic cost of protein synthesis in isolated hepatocytes of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Pannevis, M C; Houlihan, D F

    1992-01-01

    To establish the energetic cost of protein synthesis, isolated trout hepatocytes were used to measure protein synthesis and respiration simultaneously at a variety of temperatures. The presence of bovine serum albumin was essential for the viability of isolated hepatocytes during isolation, but, in order to measure protein synthesis rates, oxygen consumption rates and RNA-to-protein ratios, BSA had to be washed from the cells. Isolated hepatocytes were found to be capable of protein synthesis and oxygen consumption at constant rates over a wide range of oxygen tension. Cycloheximide was used to inhibit protein synthesis. Isolated hepatocytes used on average 79.7 +/- 9.5% of their total oxygen consumption on cycloheximide-sensitive protein synthesis and 2.8 +/- 2.8% on maintaining ouabain-sensitive Na+/K(+)-ATPase activity. The energetic cost of protein synthesis in terms of moles of adenosine triphosphate per gram of protein synthesis decreased with increasing rates of protein synthesis at higher temperatures. It is suggested that the energetic cost consists of a fixed (independent of synthesis rate) and a variable component (dependent on synthesis rate).

  2. Antioxidant Effects of Lycopene and Ubiquinol-10 on the Oxidative Stress in Rat Hepatocytes Induced by Tert-Buthyl Hydroperoxide

    PubMed Central

    2010-01-01

    Free radicals especially reactive oxygen metabolites can damage DNA, protein, enzymes, and membrane lipids. Lipid peroxidation in hepatocyte membrane may be involved in hepatic diseases. Antioxidants may inhibit this reaction. Due to oxidant-antioxidant imbalance, free radicals may cause destructive effects. For several years, scientists tried to find antioxidant compounds. In this study, the effects of lycopene and ubiquinol-10 on the oxidative stress in rat hepatocytes induced by t-buthyl hydroperoxide was determined. First, rat hepatocytes were isolated and then incubated in the presence of tert-buthyl hydroperoxide and the amount of malondialdehyde, as a marker of lipid peroxidation, was determined. Then, this reaction was performed in the presence of various concentrations of each lycopene and ubiquinol-10, and the malondialdehyde level was determined. The results of this study showed that in the presence of various concentrations of lycopene and ubiquinol-10 the levels of lipid peroxidation products significantly decreased (P<0.05). Thus, lycopene and ubiquinol-10 have inhibitory effects on lipid peroxidation reaction. This study showed the potential utility of lycopene and ubiquinol-10 in prevention of hepatic dysfunction. PMID:27683352

  3. Comparative Proteomic Analysis of Human Liver Tissue and Isolated Hepatocytes with a Focus on Proteins Determining Drug Exposure.

    PubMed

    Vildhede, Anna; Wiśniewski, Jacek R; Norén, Agneta; Karlgren, Maria; Artursson, Per

    2015-08-07

    Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.

  4. Enantioselective Metabolism and Interference on Tryptophan Metabolism of Myclobutanil in Rat Hepatocytes.

    PubMed

    Wang, Yao; Qiu, Jing; Zhu, Wentao; Wang, Xinru; Zhang, Ping; Wang, Dezhen; Zhou, Zhiqiang

    2015-09-01

    Myclobutanil, (RS)-2-(4-chlorophenyl)-2-(1H-1, 2, 4-triazol-1-ylmethyl) hexanenitrile is a widely used triazole fungicide. In this study, enantioselective metabolism and cytotoxicity were investigated in rat hepatocytes by chiral HPLC-MS/MS and the methyl tetrazolium (MTT) assay, respectively. Furthermore, tryptophan metabolism disturbance in rat hepatocytes after myclobutanil exposure was also evaluated by target metabolomics method. The half-life (t1/2) of (+)-myclobutanil was 10.66 h, whereas that for (-)-myclobutanil was 15.07 h. Such results indicated that the metabolic process of myclobutanil in rat hepatocytes was enantioselective with an enrichment of (-)-myclobutanil. For the cytotoxicity research, the calculated EC50 (12 h) values for rac-myclobutanil, (+)- and (-)-myclobutanil were 123.65, 150.65 and 152.60 µM, respectively. The results of tryptophan metabolites profiling showed that the levels of kynurenine (KYN) and XA were both up-regulated compared to the control, suggesting the activation effect of the KYN pathway by myclobutanil and its enantiomers which may provide an important insight into its toxicity mechanism. The data presented here could be useful for the environmental hazard assessment of myclobutanil. © 2015 Wiley Periodicals, Inc.

  5. [Endoplasmic reticulum stress mediates lipopolysaccharide-induced apoptosis in rat hepatocyte].

    PubMed

    Ji, Ying-Lei; Yan, Jun; Wang, Yan-Sha; Liu, Yi-Chang; Gu, Zhen-Yong

    2014-02-01

    To investigate the role of endoplasmic reticulum stress (ERS) in lipopolysaccharide (LPS)-induced hepatocyte apoptosis. Cells of the rat hepatocyte line BRL were cultured. The hepatocytes were treated with LPS, ERS inducer thapsigargin (TG), and ERS inhibitor 4-phenylbutyric acid (4-PBA), respectively or in their different combination. The cell viability was measured by MTT assay. The cyto-nuclear morphological changes of apoptosis cells were detected by the fluorescent dye Hoechst 33258. The apoptosis rate was assessed by flow cytometry with Annexin V-FITC/PI double-staining. Expressions of GRP78 as ERS marker protein, CHOP, caspase-12 and cleaved-caspase-3 as ERS related protein were detected by Western blotting. LPS could cause a decrease in cell viability and an increase in apoptosis rate in a dose- and time-dependent manner. The expression of GRP78, CHOP, caspase-12 and cleaved-caspase-3 proteins were significantly increased with LPS treatment. TG led to a marked decrease in cell viability and an increase in apoptosis rate, which aggravated the hepatocyte injury induced by LPS; whereas 4-PBA alleviated LPS-induced apoptosis. ERS mediates LPS-induced hepatocyte injuries, indicating that ERS may play a vital role in the pathogenesis of LPS-induced hepatocyte injuries.

  6. The toxicity of N-methyl-alpha-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine.

    PubMed

    Carvalho, Márcia; Remião, Fernando; Milhazes, Nuno; Borges, Fernanda; Fernandes, Eduarda; Carvalho, Félix; Bastos, Maria Lourdes

    2004-08-05

    In the past decade, clinical evidence has increasingly shown that the liver is a target organ for 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") toxicity. The aims of the present in vitro study were: (1) to evaluate and compare the hepatotoxic effects of MDMA and one of its main metabolites, N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA) and (2) to investigate the ability of antioxidants, namely ascorbic acid and N-acetyl-L-cysteine (NAC), to prevent N-Me-alpha-MeDA-induced toxic injury, using freshly isolated rat hepatocytes. Cell suspensions were incubated with MDMA or N-Me-alpha-MeDA in the final concentrations of 0.1, 0.2, 0.4, 0.8, and 1.6 mM for 3 h. To evaluate the potential protective effects of antioxidants, cells were preincubated with ascorbic acid in the final concentrations of 0.1 and 0.5 mM, or NAC in the final concentrations of 0.1 and 1 mM for 15 min before treatment with 1.6 mM N-Me-alpha-MeDA for 3 h (throughout this incubation period the cells were exposed to both compounds). The toxic effects were evaluated by measuring the cell viability, glutathione (GSH) and glutathione disulfide (GSSG), ATP, and the cellular activities of GSH peroxidase (GPX), GSSG reductase (GR), and GSH S-transferase (GST). MDMA induced a concentration- and time-dependent GSH depletion, but had a negligible effect on cell viability, ATP levels, or on the activities of GR, GPX, and GST. In contrast, N-Me-alpha-MeDA was shown to induce not only a concentration- and time-dependent depletion of GSH, but also a depletion of ATP levels accompanied by a loss in cell viability, and decreases in the antioxidant enzyme activities. For both compounds, GSH depletion was not accompanied by increases in GSSG levels, which seems to indicate GSH depletion by adduct formation. Importantly, the presence of ascorbic acid (0.5 mM) or NAC (1 mM) prevented cell death and GSH depletion induced by N-Me-alpha-MeDA. The results provide evidence that MDMA and its metabolite N

  7. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes.

    PubMed

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan; Hao, Qin; Kristiansen, Karsten; Frøyland, Livar; Madsen, Lise

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal adipose tissues. Expressions of inflammation related genes (IL-6, TNF-α, COX-2) were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64) were higher in the stromal vascular fraction (SVF) isolated from inguinal ATE than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1) were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2) was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total levels of IL-6, TNF-α and PGE(2) in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2). Lipolysis, measured as glycerol release, was similar in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs), particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance.

  8. Carcinoma autoantigens T and Tn and their cleavage products interact with Gal/GalNAc-specific receptors on rat Kupffer cells and hepatocytes.

    PubMed

    Schlepper-Schäfer, J; Springer, G F

    1989-10-09

    We studied interactions of isolated Thomsen-Friedenreich (T)- and Tn-specific glycoproteins with the Gal/GalNAc-specific receptors on rat Kupffer cells and compared them to those with rat hepatocytes. Immunoreactive T and Tn are specific pancarcinoma epitopes. Electron microscopy of gold-labelled T and Tn antigens revealed their specific binding to Kupffer cells, followed by their uptake via the coated pit/vesicle pathway of receptor-mediated endocytosis. Preincubation of Kupffer cells with GalNAc and GalNAc-BSA, but not GlcNAc or GlcNAc-BSA specifically inhibited binding of the T and Tn glycoproteins. Desialylated, isologous erythrocytes (T RBC) are known to bind to the Gal/GalNAc receptors of rat Kupffer cells and hepatocytes. This attachment was specifically inhibited by T and Tn in a concentration-dependent manner: 50% T RBC-Kupffer cell contacts were inhibited at 8.5.10(-6) mM T and 8.5.10(-5) mM Tn antigen concentrations, respectively. The corresponding figures for hepatocytes were 6.10(-6) mM T and 1.2.10(-6) mM Tn antigen. Amino-terminal cleavage products of the T glycoprotein, possessing clusters terminating in non-reducing Gal/GalNAc, inhibited T RBC binding to Kupffer cells and hepatocytes usually at 10(-2) to 10(-5) mM concentrations, whereas GalNAc, galactose and galactose glycosides inhibited at millimolar concentrations. Galactose-unrelated carbohydrates were inactive at concentrations greater than or equal to 50 mM.

  9. Pyroglutamic acid stimulates DNA synthesis in rat primary hepatocytes through the mitogen-activated protein kinase pathway.

    PubMed

    Inoue, Shinjiro; Okita, Yoichi; de Toledo, Andreia; Miyazaki, Hiroyuki; Hirano, Eiichi; Morinaga, Tetsuo

    2015-01-01

    We purified pyroglutamic acid from human placental extract and identified it as a potent stimulator of rat primary hepatocyte DNA synthesis. Pyroglutamic acid dose-dependently stimulated DNA synthesis, and this effect was inhibited by PD98059, a dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) inhibitor. Therefore, pyroglutamic acid stimulated DNA synthesis in rat primary hepatocytes via MAPK signaling.

  10. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    PubMed

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  11. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Tao; Luo, Peihua; Zhu, Hong

    2012-06-15

    Dasatinib, a multitargeted inhibitor of BCR–ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague–Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 andmore » cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity. -- Highlights: ►Dasatinib shows potential hepatotoxicity both in vitro and in vivo. ►Apoptosis plays a vital role in

  12. Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes.

    PubMed

    Yanhong, Fan; Chenghua, He; Guofang, Liu; Haibin, Zhang

    2008-10-01

    The aquatic environment is affected by numerous chemical contaminants. There is an increasing need to identify these chemicals and to evaluate their potential toxicity towards aquatic life. In this research we optimized techniques for primary cell culture of Cyprinus carpio hepatocytes as one adjunct model for ecotoxicological evaluation of the potential hazards of xenobiotics in the aquatic environment. In this study, Cyprinus carpio hepatocytes were isolated by mechanical separation, two-step collagenase perfusion, and pancreatin digestion. The hepatocytes or parenchymal cells could be separated from cell debris and from non-parenchymal cells by low-speed centrifugation (Percoll gradient centrifugation). The harvested hepatocytes were suspended in DMEM, M199 (cultured in 5% CO(2)), or L-15 (cultured without 5% CO(2)) medium then cultured at 17, 27, or 37 degrees C. Cell yield was counted by use of a hemocytometer, and the viability of the cells was assessed by use of the Trypan blue exclusion test. Results from these studies showed that the best method of isolation was pancreatin digestion (the cell yield was 2.7 x 10(8) per g (liver weight) and the viability was 98.4%) and the best medium was M199 (cultured in 5% CO(2)) or L-15 (cultured without 5% CO(2)). The optimum culture temperature was 27 degrees C. The primary hepatocytes culture of Cyprimus carpio grew well and satisfied requirements for most toxicological experiments in this condition.

  13. [Hepatocyte apoptosis and mitochondrial permeability transition pore opening in rats with nonalcoholic fatty liver].

    PubMed

    Kang, Min; Li, Sen; Zhong, Dejun; Yang, Zhimin; Li, Peng

    2013-07-01

    To investigate the role of hepatocyte apoptosis and mitochondrial permeability transition pore (MPTP) opening in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Thirty male SD rats were randomized into normal diet group and high-fat diet group. At 4, 8 and 12 week of feeding. The hepatocyte apoptosis index (AI) was measured using flow cytometry, and MPTP opening was evaluated with ultraviolet spectrophotometry. Immunohistochemistry was employed to detect hepatic expressions of Bcl-2 and Bax, and Western blotting was used to detect Bax protein expression changes. High-fat feeding resulted in significantly increased hepatocyte AI at 4-12 weeks and gradually increased MPTP opening. In the high-fat diet group, hepatic Bcl-2 expression was detected but the positive cell number remained stable, whereas Bax-positive cell number increased steadily with time with progressively increased intensity of Bax protein expression, resulting in gradually decreased Bcl-2/Bax ratio. Hepatocyte apoptosis occurs in the rat model of NAFLD in close correlation with mitochondrial damage. Increased MPTP opening as the result of increased Bax expression and aberrant Bcl-2/Bax ratio is an important mechanism of hepatocyte mitochondrial damage in NAFLD.

  14. In vitro metabolism of [14C]-benalaxyl in hepatocytes of rats, dogs and humans.

    PubMed

    Nallani, Gopinath C; ElNaggar, Shaaban F; Shen, Li; Chandrasekaran, Appavu

    2017-03-01

    The in vitro comparative animal metabolism study is now a data requirement under EU Directive 1107/2009 for registration of plant protection products. This type of study helps determine the extent of metabolism of a chemical in each surrogate species and whether any unique human metabolite(s) are formed. In the present study, metabolism of racemic [ 14 C]-benalaxyl, a fungicide was investigated in cryopreserved rat, dog and human hepatocytes. The metabolites generated were identified/characterized by LC/MS/MS with radiometric detection and comparison with reference standards. [ 14 C]-glucuronide conjugates of benalaxyl metabolites in rat, dog and human hepatocytes were confirmed via additional experiments in which known reference standards were incubated with dog liver microsomes in the presence of UDPGA. After 4 h of incubation, benalaxyl was extensively metabolized in all the species with the following trend: dog (100%) > human (86%) > rat (75%). In all species, the major metabolic pathways consisted of hydroxylation of the methyl group in the xylene moiety to 2-hydroxymethyl-benalaxyl, further oxidation to its carboxylic acid analogue (benalaxyl-2-benzoic acid), and hydrolysis of the methyl ester to yield benalaxyl acid or 2-hydroxymethyl benalaxyl acid. In addition, glucuronidation of phase I metabolites occurred in all species, to a higher extent in dog hepatocytes in which 2-hydroxymethyl-benalaxyl-glucuronide conjugate constituted the most significant metabolite. No major unique metabolite was observed in human hepatocytes. Also, benalaxyl did not undergo stereo-selective metabolism in rat or human hepatocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.

    S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...

  16. Relationship between lipogenesis, ketogenesis, and malonyl-CoA content in isolated hepatocytes from the obese Zucker rat adapted to a high-fat diet.

    PubMed

    Malewiak, M I; Griglio, S; Le Liepvre, X

    1985-07-01

    The relationship between lipogenesis and ketogenesis and the concentration of malonyl coenzyme A (CoA) was investigated in hepatocytes from adult obese Zucker rats and their lean littermates fed either a control low-fat diet or a high-fat diet (30% lard in weight). With the control diet, lipogenesis--although strongly inhibited in the presence of either 1 mmol/L oleate, 10(-6) mol/L glucagon or 0.1 mmol/L TOFA (a hypolipidemic drug)--remained about fifteen-fold higher in the obese rats than in the lean rats. In contrast, ketogenesis under some conditions (oleate + TOFA) was not significantly lower (30%) as compared with the lean rats. After adaptation to the high-fat diet, lipogenesis was depressed fourfold in the lean rats and ninefold in the obese ones; however its magnitude remained significantly higher in the latter, namely at a value close to that measured in control-fed lean rats. Ketogenesis was comparable in lean and obese rats and much higher in the presence of 1 mmol/L oleate than of 0.3 mmol/L oleate, whereas lipogenesis did not vary with increasing oleate concentration in the medium. Acetyl-CoA carboxylase activity measured in liver homogenates was higher in the obese group, but was stepwise inhibited by increasing concentrations of oleyl-CoA regardless of the diet for both lean and obese rats, thus showing no abnormality of in vitro responsiveness to this inhibitor. With the control diet, hepatocyte malonyl-CoA levels were significantly higher in the obese rats, both in the basal state and after inhibition of lipogenesis by oleate and TOFA.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Hepatoprotective effects of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] on alcohol-damaged primary rat hepatocyte culture in vitro.

    PubMed

    Jiang, Wenhua; Bian, Yuzhu; Wang, Zhenghui; Chang, Thomas Ming Swi

    2017-02-01

    We have prepared a novel nanobiotherapeutic, Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase], which not only transports both oxygen and carbon dioxide but also a therapeutic antioxidant. Our previous study in a severe sustained 90 min hemorrhagic shock rat model shows that it has a hepatoprotective effect. We investigate its hepatoprotective effect further in this present report using an alcohol-damaged primary hepatocyte culture model. Results show that it significantly reduced ethanol-induced AST release, lipid peroxidation, and ROS production in rat primary hepatocytes culture. It also significantly enhanced the viability of ethanol-treated hepatocytes. Thus, the result shows that Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] also has some hepatoprotective effects against alcohol-induced injury in in vitro rat primary hepatocytes cell culture. This collaborate our previous observation of its hepatoprotective effect in a severe sustained 90-min hemorrhagic shock rat model.

  18. [The influence of hepatoprotector 2-ethylthiobenzimidazole hydrobromide (bemithyl) on the content of glycogen in cirrhotic rat liver hepatocytes located in various microenvironments].

    PubMed

    Kudriavtseva, M V; Bezborodkina, N N; Okovityĭ, S V; Kudriavtsev, B N

    2004-01-01

    Using absorption and fluorescent cytophotometry methods, glycogen contents were studied in hepatocytes located in liver lobules and in hepatocytes, which make the general population of these cells in normal and cirrhotic rat liver. In cirrhosis, the content of glycogen in hepatocytes located in lobules obviously rises in comparison with the norm, but to a lesser degree, than in hepatocytes making the general population of these cells in cirrhotic liver. The content of glycogen in hepatocytes, located in lobules of pathologically changed liver in bemithyl treated rats, did not differ from the norm. At the same time, the glycogen content in hepatocytes, representing the general population of these cells in cirrhotically altered bemithyl injected rat liver, remained higher than in the norm. The data obtained indicate that distinctions in particular cell microinvironment, obviously present in cirrhotic liver, render essential influence on hepatocyte functional activity.

  19. Antioxidant Activity of Extract and Its Major Constituents from Okra Seed on Rat Hepatocytes Injured by Carbon Tetrachloride

    PubMed Central

    Hu, Lianmei; Yu, Wenlan; Li, Ying; Tang, Zhaoxin

    2014-01-01

    The antioxidant activities and protective effects of total phenolic extracts (TPE) and their major components from okra seeds on oxidative stress induced by carbon tetrachloride (CCl4) in rat hepatocyte cell line were investigated. The major phenolic compounds were identified as quercetin 3-O-glucosyl (1 → 6) glucoside (QDG) and quercetin 3-O-glucoside (QG). TPE, QG, and QDG from okra seeds exhibited excellent reducing power and free radical scavenging capabilities including α, α-diphenyl-β-picrylhydrazyl (DPPH), superoxide anions, and hydroxyl radical. Overall, DPPH radical scavenging activity and reducing power of QG and QDG were higher than those of TPE while superoxide and hydroxyl radical scavenging activities of QG and TPE were higher than those of QDG. Furthermore, TPE, QG, and QDG pretreatments significantly alleviated the cytotoxicity of CCl4 on rat hepatocytes, with attenuated lipid peroxidation, increased SOD and CAT activities, and decreased GPT and GOT activities. The protective effects of TPE and QG on rat hepatocytes were stronger than those of QDG. However, the cytotoxicity of CCl4 on rat hepatocytes was not affected by TPE, QG, and QDG posttreatments. It was suggested that the protective effects of TPE, QG, and QDG on rat hepatocyte against oxidative stress were related to the direct antioxidant capabilities and the induced antioxidant enzymes activities. PMID:24719856

  20. Ice formation in isolated human hepatocytes and human liver tissue.

    PubMed

    Bischof, J C; Ryan, C M; Tompkins, R G; Yarmush, M L; Toner, M

    1997-01-01

    Cryopreservation of isolated cells and tissue slices of human liver is required to furnish extracorporeal bioartificial liver devices with a ready supply of hepatocytes, and to create in vitro drug metabolism and toxicity models. Although both the bioartificial liver and many current biotoxicity models are based on reconstructing organ functions from single isolated hepatocytes, tissue slices offer an in vitro system that may more closely resemble the in vivo situation of the cells because of cell-cell and cell-extracellular matrix interactions. However, successful cryopreservation of both cellular and tissue level systems requires an increased understanding of the fundamental mechanisms involved in the response of the liver and its cells to freezing stress. This study investigates the biophysical mechanisms of water transport and intracellular ice formation during freezing in both isolated human hepatocytes and whole liver tissue. The effects of cooling rate on individual cells were measured using a cryomicroscope. Biophysical parameters governing water transport (Lpg = 2.8 microns/min-atm and ELp = 79 kcal/mole) and intracellular heterogeneous ice nucleation (omega het = 1.08 x 10(9) m-2s-1 and kappa het = 1.04 x 10(9) K5) were determined. These parameters were then incorporated into a theoretical Krogh cylinder model developed to simulate water transport and ice formation in intact liver tissue. Model simulations indicated that the cellular compartment of the Krogh model maintained more water than isolated cells under the same freezing conditions. As a result, intracellular ice nucleation occurred at lower cooling rates in the Krogh model than in isolated cells. Furthermore, very rapid cooling rates (1000 degrees C/min) showed a depression of heterogeneous nucleation and a shift toward homogeneous nucleation. The results of this study are in qualitative agreement with the findings of a previous experimental study of the response to freezing of intact human liver.

  1. Accelerated proliferation of hepatocytes in rats with iron overload after partial hepatectomy.

    PubMed

    An, Shucai; Soe, Kyaw; Akamatsu, Maki; Hishikawa, Yoshitaka; Koji, Takehiko

    2012-11-01

    Although iron overload is implicated in hepatocarcinogenesis, the precise mechanism was not known yet. In the present study, we investigated the effect of iron overload upon the induction of hepatocyte proliferation after 70% partial hepatectomy (PH) in rats fed with rat chow with 3% carbonyl iron for 3 months. In normal-diet rats, the increase in Ki-67 labeling index (LI) commenced at 24 h post-PH and the LIs of proliferating cell nuclear antigen (PCNA) incorporated 5-bromo-2'-deoxyuridine (BrdU) and phospho-histone H3 reached maximum values at 36 and 48 h after PH, respectively. In iron-overload rats, the above parameters occurred 12 h earlier compared to that of normal-diet rats, shortening the G0-G1 transition. Interestingly, nuclear staining for metallothionein (MT), which is essential for hepatocyte proliferation, was noted even at 0 h in iron-overload rats, while MT expression occurred at 6 h in the normal rats. Moreover, nuclear factor kappa B (NF-κB) expression, which is an essential early event leading to liver regeneration, was detected in Kupffer cells at 0 h in iron-overload rats. These results may indicate that overloaded iron, maybe through the induction of MT and NF-κB, may keep liver as a state ready to regenerate in response to PH, by bypassing signal transduction cascades involved in the initiation of liver regeneration.

  2. Intracellular pH regulation in hepatocytes isolated from three teleost species.

    PubMed

    Furimsky, M; Moon, T W; Perry, S F

    1999-09-01

    The mechanisms of intracellular pH (pH(i)) regulation were studied in hepatocytes isolated from three species of teleost: rainbow trout (Oncorhynchus mykiss), black bullhead (Ameiurus melas) and American eel (Anguilla rostrata). Intracellular pH was monitored over time using the pH-sensitive fluorescent dye BCECF in response to acid loading under control conditions and in different experimental media containing either low Na(+) or Cl(-) concentrations, the Na(+)-H(+) exchanger blocker amiloride or the blocker of the V-type H(+)-ATPase, bafilomycin A(1). In trout and bullhead hepatocytes, recovery to an intracellular acid load occurred principally by way of a Na(+)-dependent amiloride-sensitive Na(+)-H(+) exchanger. In eel hepatocytes, the Na(+)-H(+) exchanger did not contribute to recovery to an acid load though evidence suggests that it is present on the cell membrane and participates in the maintenance of steady-state pH(i). The V-type H(+)-ATPase did not participate in recovery to an acid load in any species. A Cl(-)-HCO(3)(-) exchanger may play a role in recovery to an acid load in eel hepatocytes by switching off and retaining base that would normally be tonically extruded. Thus, it is clear that hepatocytes isolated from the three species are capable of regulating pH(i), principally by way of a Na(+)-H(+) exchanger and a Cl(-)-HCO(3)(-) exchanger, but do not exploit identical mechanisms for pH(i) recovery. J. Exp. Zool. 284:361-367, 1999. Copyright 1999 Wiley-Liss, Inc.

  3. Therapeutic effect comparison of hepatocyte-like cells and bone marrow mesenchymal stem cells in acute liver failure of rats.

    PubMed

    Li, Dongliang; Fan, Jingjing; He, Xiuhua; Zhang, Xia; Zhang, Zhiqiang; Zeng, Zhiyu; Ruan, Mei; Cai, Lirong

    2015-01-01

    To evaluate the therapeutic efficacy of rat bone marrow mesenchymal stem cells (BMSCs) induced into hepatocyte-like cells and of un-induced BMSCs in acute liver failure rats. BMSCs in highly homogenous passage 3 were cultured using the whole bone marrow adherent culture method. Hepatic-related characters were confirmed with morphology, RT-PCR analysis, glycogen staining and albumin (ALB) immunofluorescence assay. Carbon tetrachloride (CCl4) was injected intraperitoneally to establish an acute rat liver failure model. Hepatocyte-like cells or un-induced BMSCs were respectively injected into the models to examine rats' appearance, liver function assay and liver tissue pathology. Hepatocyte-like morphology, higher expression of cytokeratin 18 (CK18) mRNA and ALB protein, and glycogen accumulation were confirmed in the induced BMSCs. The transplanted DAPI-labeled BMSCs were localized in the liver tissue 3-14 days after transplantation. The levels of liver function indicators (AST, ALT, ALP, and TBIL) from transplanted rats were significant decreased and pathology was improved, indicating the recovery of liver function. However, the differences were statistically insignificant. Both hepatocyte-like cells and un-induced BMSCs had a similarly positively therapeutic efficacy on liver regeneration in rat liver failure model.

  4. Effect of ornithine and lactate on urea synthesis in isolated hepatocytes.

    PubMed Central

    Briggs, S; Freedland, R A

    1976-01-01

    1. In hepatocytes isolated from 24 h-starved rats, urea production from ammonia was stimulated by addition of lactate, in both the presence and the absence of ornithine. The relationship of lactate concentration to the rate of urea synthesis was hyperbolic. 2. Other glucose precursors also stimulated urea production to varying degrees, but none more than lactate. Added oleate and butyrate did not stimulate urea synthesis. 3. Citrulline accumulation was largely dependent on ornithine concentration. As ornithine was increased from 0 to 40 mM, the rate of citrulline accumulation increased hyperbolically, and was half-maximal when ornithine was 8-12 mM. 4. The rate of citrulline accumulation was independent of the presence of lactate, but with pyruvate the rate increased. 5. The rate of urea production continued to increase as ornithine was varied from 0 to 40 mM. 6. It was concluded that intermediates provided by both ornithine and lactate are limiting for urea production from ammonia in isolated liver cells. It was suggested that the stimulatory effect of lactate lies in increased availability of cytosolic aspartate for condensation with citrulline. PMID:1008850

  5. Inflammation-induced synthesis of proteoheparan sulfate: a novel acute-phase reactant in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djovkar, A.; Gressner, A.M.

    1987-03-01

    The synthesis of proteoheparan sulfate in hepatocytes is positively regulated under acute-phase conditions produced either by turpentine or deep back incision. In both cases the incorporation of (/sup 35/S)sulfate and (/sup 14/C)glucosamine is doubled during a 4-h incubation period if compared with control rat hepatocytes. Neither the fractional secretion rate of heparan sulfate into the medium (less than 0.1 of cell-associated glycosaminoglycans) nor the composition of newly formed proteoglycans in hepatocytes are affected during acute phase reaction.

  6. Repopulation of the fibrotic/cirrhotic rat liver by transplanted hepatic stem/progenitor cells and mature hepatocytes

    PubMed Central

    Yovchev, Mladen I.; Xue, Yuhua; Shafritz, David A.; Locker, Joseph; Oertel, Michael

    2013-01-01

    Background & Aim Considerable progress has been made in developing anti-fibrotic agents and other strategies to treat liver fibrosis; however, significant long-term restoration of functional liver mass has not yet been achieved. Therefore, we investigated whether transplanted hepatic stem/progenitor cells can effectively repopulate the liver with advanced fibrosis/cirrhosis. Methods Stem/progenitor cells derived from fetal livers or mature hepatocytes from DPPIV+ F344 rats were transplanted into DPPIV− rats with thioacetamide (TAA)-induced fibrosis/cirrhosis; rats were sacrificed 1, 2, or 4 months later. Liver tissues were analyzed by histochemistry, hydroxyproline determination, RT-PCR, and immunohistochemistry. Results After chronic TAA administration, DPPIV− F344 rats exhibited progressive fibrosis, cirrhosis and severe hepatocyte damage. Besides stellate cell activation, increased numbers of stem/progenitor cells (Dlk-1+, AFP+, CD133+, Sox-9+, FoxJ1+) were observed. In conjunction with partial hepatectomy (PH), transplanted stem/progenitor cells engrafted, proliferated competitively compared to host hepatocytes, differentiated into hepatocytic and biliary epithelial cells, and generated new liver mass with extensive long-term liver repopulation (40.8 ± 10.3%). Remarkably, more than 20% liver repopulation was achieved in the absence of PH, associated with reduced fibrogenic activity (e.g., expression of α-SMA, PDGFRβ, desmin, vimentin, TIMP1) and fibrosis (reduced collagen). Furthermore, hepatocytes can also replace liver mass with advanced fibrosis/cirrhosis, but to a lesser extent than FLSPCs. Conclusions This study is a Proof of Principle demonstration that transplanted epithelial stem/progenitor cells can restore injured parenchyma in a liver environment with advanced fibrosis/cirrhosis and exhibit anti-fibrotic effects. PMID:23840008

  7. Polyploidization delay in rat hepatocytes under liver growth inhibition by hypokinesia

    NASA Technical Reports Server (NTRS)

    Faktor, V. M.; Malyutin, V. F.; Li, S. Y.; Brodskiy, V. Y.

    1981-01-01

    A study of young rats, weighing 55 to 59 g, after being for 10 days in conditions of limited mobility, shows a retardation of body growth as well as that of liver growth. The decrease in the rate of growth is accompanied by a reduction of cell proliferation and by delay polyploidization of hepatocytes in the liver of experimental rats. The materials, methods, and results of research are discussed.

  8. Uptake of Free Choline by Isolated Perfused Rat Liver

    NASA Astrophysics Data System (ADS)

    Zeisel, Steven H.; Story, David L.; Wurtman, Richard J.; Brunengraber, Henri

    1980-08-01

    The uptake of free choline by isolated perfused rat liver was characterized. A saturable uptake mechanism [Ka=0.17± 0.07 mM (SD); Vmax=0.84± 0.16\\ μ mol/min × g dry weight] and a nonsaturable mechanism (through which uptake is proportional to choline concentration in the perfusate) were identified. Most of the choline transported into hepatocytes was converted to betaine, phosphorylcholine, or lecithin. Free choline also accumulated within the intracellular space, suggesting that choline oxidase activity does not always limit choline's uptake by the liver.

  9. Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes

    PubMed Central

    Yanhong, Fan; Chenghua, He; Guofang, Liu

    2008-01-01

    The aquatic environment is affected by numerous chemical contaminants. There is an increasing need to identify these chemicals and to evaluate their potential toxicity towards aquatic life. In this research we optimized techniques for primary cell culture of Cyprinus carpio hepatocytes as one adjunct model for ecotoxicological evaluation of the potential hazards of xenobiotics in the aquatic environment. In this study, Cyprinus carpio hepatocytes were isolated by mechanical separation, two-step collagenase perfusion, and pancreatin digestion. The hepatocytes or parenchymal cells could be separated from cell debris and from non-parenchymal cells by low-speed centrifugation (Percoll gradient centrifugation). The harvested hepatocytes were suspended in DMEM, M199 (cultured in 5% CO2), or L-15 (cultured without 5% CO2) medium then cultured at 17, 27, or 37 °C. Cell yield was counted by use of a hemocytometer, and the viability of the cells was assessed by use of the Trypan blue exclusion test. Results from these studies showed that the best method of isolation was pancreatin digestion (the cell yield was 2.7 × 108 per g (liver weight) and the viability was 98.4%) and the best medium was M199 (cultured in 5% CO2) or L-15 (cultured without 5% CO2). The optimum culture temperature was 27 °C. The primary hepatocytes culture of Cyprimus carpio grew well and satisfied requirements for most toxicological experiments in this condition. PMID:19002769

  10. Mixed microencapsulation of rat primary hepatocytes and Sertoli cells improves the metabolic function in a D-galactosamine and lipopolysaccharide-induced rat model of acute liver failure.

    PubMed

    Zheng, Ming-Hua; Lin, Hai-Long; Qiu, Li-Xin; Cui, Yao-Li; Sun, Qing-Feng; Chen, Yong-Ping

    2009-01-01

    Hepatocyte transplantation is an alternative to transplantation of the whole liver. Compared with xenogeneic hepatocytes, primary hepatocytes have some advantages, such as a more powerful function and a smaller frequency of rejection caused by the host. Cell microencapsulation prevents direct access of host cells to the graft but cannot impede transfer of transplant-derived peptides, which can cross the physical barrier. Sertoli cells are central to the immune privilege demonstrated in the testis, and their actions have been utilized to protect cell transplants. Co-microencapsulating Sertoli cells with HepG2 cells has proved to be a valuable strategy in hepatocyte transplantation. Thus mixed microcapsules of primary rat hepatocytes and primary Sertoli cells may improve metabolic function in a d-galactosamine and lipopolysaccharide-induced rat model of acute liver failure.

  11. The isolation of primary hepatocytes from human tissue: optimising the use of small non-encapsulated liver resection surplus.

    PubMed

    Green, Charlotte J; Charlton, Catriona A; Wang, Lai-Mun; Silva, Michael; Morten, Karl J; Hodson, Leanne

    2017-12-01

    Two-step perfusion is considered the gold standard method for isolating hepatocytes from human liver tissue. As perfusion may require a large tissue specimen, which is encapsulated and has accessible vessels for cannulation, only a limited number of tissue samples may be suitable. Therefore, the aim of this work was to develop an alternative method to isolate hepatocytes from non-encapsulated and small samples of human liver tissue. Healthy tissue from 44 human liver resections were graded for steatosis and tissue weights between 7.8 and 600 g were used for hepatocyte isolations. Tissue was diced and underwent a two-step digestion (EDTA and collagenase). Red cell lysis buffer was used to prevent red blood cell contamination and toxicity. Isolated hepatocyte viability was determined by trypan blue exclusion. Western blot and biochemical analyses were undertaken to ascertain cellular phenotype and function. Liver tissue that weighed ≥50 g yielded significantly higher (P < 0.01) cell viability than tissue <50 g. Viable cells secreted urea and displayed the phenotypic hepatocyte markers albumin and cytochrome P450. Presence of steatosis in liver tissue or intra-hepatocellular triglyceride content had no effect on cell viability. This methodology allows for the isolation of viable primary human hepatocytes from small amounts of "healthy" resected liver tissue which are not suitable for perfusion. This work provides the opportunity to increase the utilisation of resection surplus tissue, and may ultimately lead to an increased number of in vitro cellular studies being undertaken using the gold-standard model of human primary hepatocytes.

  12. The Predictive Value of the Maximal Liver Function Capacity Test for the Isolation of Primary Human Hepatocytes.

    PubMed

    Major, Rebeka D; Kluge, Martin; Jara, Maximilian; Nösser, Maximilian; Horner, Rosa; Gassner, Joseph; Struecker, Benjamin; Tang, Peter; Lippert, Steffen; Reutzel-Selke, Anja; Geisel, Dominik; Denecke, Timm; Stockmann, Martin; Pratschke, Johann; Sauer, Igor M; Raschzok, Nathanael

    2018-03-01

    The need for primary human hepatocytes is constantly growing for basic research, as well as for therapeutic applications. However, the isolation outcome strongly depends on the quality of liver tissue, and we are still lacking a preoperative test that allows the prediction of the hepatocyte isolation outcome. In this study, we evaluated the "maximal liver function capacity test" (LiMAx) as predictive test for the quantitative and qualitative outcome of hepatocyte isolation. This test is already used in clinical routine to measure preoperative and to predict postoperative liver function. The patient's preoperative mean LiMAx was obtained from the patient records, and preoperative computed tomography and magnetic resonance images were used to calculate the whole liver volume to adjust the mean LiMAx. The outcome parameters of the hepatocyte isolation procedures were analyzed in correlation with the adjusted mean LiMAx. Primary human hepatocytes were isolated from partial hepatectomies (n = 64). From these 64 hepatectomies we included 48 to our study and correlated their isolation outcome parameters with volume corrected LiMAx values. From a total of 11 hepatocyte isolation procedures, metabolic parameters (albumin, urea, and aspartate aminotransferase or AST) were assessed during the hepatocyte cultivation period of 5 days. The volume adjusted mean LiMAx showed a significant positive correlation with the total cell yield (p = 0.049; r = 0.242; n = 48). The correlations of volume adjusted LiMAx values with viable cell yield and cell viability did not reach statistical significance. To create a more homogenous study group regarding tumor entities, subgroup analyses were performed. A subgroup analysis of isolations from patients with colorectal metastasis revealed a significant correlation between volume adjusted mean LiMAx and total cell yield (p = 0.012; r = 0.488; n = 21) and viable cell yield (p = 0.034; r = 0.405; n = 21

  13. Influence of Telomere Length in Hepatocytes on Liver Regeneration after Partial Hepatectomy in Rats.

    PubMed

    Andert, Anne; Alizai, Hamid P; Ulmer, Tom Florian; Heidenhain, Christoph; Ziegler, Patrick; Brümmendorf, Tim H; Neumann, Ulf Peter; Beier, Fabian; Klink, Christian D

    2018-06-08

    The aim of this study was to investigate telomere length in hepatocytes as a biomarker for liver regeneration after partial hepatectomy (PH) in rats. Sixty male Wistar rats underwent a 70% PH. One-month-old rats were assigned to group Y (n = 30) and 4-month-old rats were assigned to group O (n = 30). The rats were euthanized, and their livers were then harvested at postoperative day (POD) 1, 2, 3, 4, or 7. Telomere lengths and established parameters for liver regeneration (residual liver weight and levels of proliferating cell nuclear antigen [PCNA], Ki67, and interleukin [IL]-6) were measured. We observed a significant increase in residual liver weight in group Y compared to that in group O (p = 0.001). The levels of Ki67 (p = 0.016), PCNA (p < 0.0001), and IL-6 (p < 0.001) were significantly higher in group Y. Furthermore, the rats in group Y had significantly earlier peak values of Ki67 and PCNA. Telomeres were significantly longer at the time of PH in group Y (p = 0.001). We showed a correlation between telomere length at the day of PH and liver regeneration. Animals with longer telomeres at the time of PH had better liver regeneration (p = 0.015). In group Y, animals with increased liver regeneration (median cut-off: > 122%) did not show any significant difference in telomere length (p = 0.587) compared to rats with regular regeneration (< 122%). However, in the older animals, rats with increased regeneration had significantly longer telomeres (p = 0.019) than rats with regular regeneration. Telomere length in rat hepatocytes depends on age, and animals with long telomeres had earlier and better regeneration of healthy liver tissue than rats with short telomeres. Our data confirms that telomere length in rat hepatocytes could be used as a possible predictive marker for liver regeneration, and could help to identify older individuals with a high capacity for hepatic regeneration. © 2018 S. Karger AG, Basel.

  14. Role of the mitochondrial metabolism of pyruvate on the regulation of ketogenesis in rat hepatocytes.

    PubMed

    Demaugre, F; Buc, H; Girard, J; Leroux, J P

    1983-01-01

    In hepatocytes isolated from fed rats the inhibition of lipogenesis (-80%) by 5-tetradecyloxy-2-furoate (an inhibitor of acetylCoA carboxylase) and alpha-cyano-3-hydroxycinnamate (an inhibitor of pyruvate entry into mitochondria) increases the oxidation of 0.35 mM oleate respectively by 70% and 90%. 5-tetradecyloxy-2-furoate increases ketone body production from oleate only by 30% and has no effect on ketogenesis from octanoate, whereas alpha-cyano-3-hydroxycinnamate mimics the effects of fasting on ketone body production: It increases ketogenesis from 0.35 mM oleate by 90%, from 0.78 mM oleate by 25% and from 1.57 mM butyrate by 37%. alpha-cyano-3-hydroxycinnamate also decreases the activity of tricarboxylic acid cycle and the production of malate and citrate. In hepatocytes from fasted rats, alpha-cyano-3-hydroxycinnamate does not modify ketogenesis from oleate, unless cells are incubated with a mixture of lactate and pyruvate. A lactate and pyruvate mixture decreases ketogenesis from oleate and octanoate and increases citrate and malate production without modifying the uptake of fatty acids. This effect is potentiated by 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase. The results cannot be interpreted only by the effects of malonylCoA on carnitine acyltransferase. They are discussed with respect to the possible involvement of mitochondrial oxaloacetate concentration in the regulation of ketogenesis.

  15. Glycogen content in hepatocytes is related with their size in normal rat liver but not in cirrhotic one.

    PubMed

    Bezborodkina, Natalia N; Chestnova, Anna Yu; Vorobev, Mikhail L; Kudryavtsev, Boris N

    2016-04-01

    Hepatocytes differ from one another by the degree of the ploidy, size, position in the liver lobule, and level of the DNA-synthetic processes. It is believed, that the cell size exerts substantial influence on the metabolism of the hepatocytes and the glycogen content in them. The aim of the present study was to test this hypothesis. Dry weight of hepatocytes, their ploidy and glycogen content were determined in the normal and the cirrhotic rat liver. Liver cirrhosis in rats was produced by chronic inhalation of CCl4 vapours in the course of 6 months. A combined cytophotometric method was used. Dry weight of the cell, its glycogen and DNA content were successively measured on a mapped preparation. Hepatocytes of each ploidy class in the normal and the cirrhotic rat liver accumulated glycogen at the same rate. In the normal liver, there was a distinct correlation between the size of hepatocytes and glycogen content in them. This correlation was observed in each ploidy class, and was especially pronounced in the class of mononucleate tetraploid hepatocytes. In the cirrhotic liver, there was no correlation between the size of the cells and their glycogen content. The impairment of liver lobular structure probably explains the observed lack of correlation between hepatocyte size and their glycogen content in the cirrhotic liver. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  16. Effect of guava (Psidium guajava L.) leaf extract on glucose uptake in rat hepatocytes.

    PubMed

    Cheng, Fang-Chi; Shen, Szu-Chuan; Wu, James Swi-Bea

    2009-06-01

    People in oriental countries, including Japan and Taiwan, boil guava leaves (Psidium guajava L.) in water and drink the extract as a folk medicine for diabetes. The present study investigated the enhancement of aqueous guava leaf extract on glucose uptake in rat clone 9 hepatocytes and searched for the active compound. The extract was eluted with MeOH-H(2)O solutions through Diaion, Sephadex, and MCI-gel columns to separate into fractions with different polarities. The uptake test of 2-[1-(14)C] deoxy-D-glucose in rat clone 9 hepatocytes was performed to evaluate the hypoglycemic effect of these fractions. The active compound was identified by nuclear magnetic resonance analysis and high-performance liquid chromatography (HPLC). The results revealed that phenolics are the principal component of the extract, that high polarity fractions of the guava leaf extract are enhancers to glucose uptake in rat clone 9 hepatocytes, and that quercetin is the major active compound. We suggest that quercetin in the aqueous extract of guava leaves promotes glucose uptake in liver cells, and contributes to the alleviation of hypoglycemia in diabetes as a consequence.

  17. DIFFERENTIATING MECHANISMS OF REACTIVE CHEMICAL TOXICITY IN ISOLATED TROUT HEPATOCYTES

    EPA Science Inventory

    The toxicity of four quinones, 2,3-dimethoxy-1,4-naphthoquinone (DMONQ), 2-methyl 1,4-naphthoquinone (MNQ ),1,4-naphthoquinone (NQ), and 1,4-benzoquinone (BQ), which redox cycle or arlyate in mammalian cells, was determined in isolated trout (Oncorhynchus mykiss) hepatocytes. Mor...

  18. Lack of formic acid production in rat hepatocytes and human renal proximal tubule cells exposed to chloral hydrate or trichloroacetic acid

    PubMed Central

    Lock, Edward A; Reed, Celia J; McMillan, JoEllyn M; Oatis, John R; Schnellmann, Rick G

    2007-01-01

    The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3–3mM CH for 3 days or 0.03–3mM CH for 10 days respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolised CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and 3-fold greater capacity than HRPTC to form TCE-OH and TCA respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days (Lock et al., 2006) supporting the view that glutathione derived metabolites are likely to be responsible for nephrotoxicity. PMID:17161896

  19. Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte.

    PubMed Central

    Blitzer, B L; Boyer, J L

    1978-01-01

    The enzyme Na+,5+-ATPase was cytochemically localized in the rat hepatocyte by a modification of the Ernst potassium-dependent nitrophenyl phosphatase technique. Measurement of nitrophenol release from 50-micrometer liver slices confirmed the presence of ouabain-inhibitable nitrophenyl phosphatase activity that increased over the 30-min incubation period. Electron micrographs demonstrated that sinusoidal and lateral membrane reaction product deposition was K+-dependent, Mg++-dependent, inhibited by ouabain but not by alkaline phosphatase inhibitors, and was localized to the cytoplasmic side of the membrane. In contrast, canalicular reaction product was K+-independent, Mg++-dependent, inhibited by alkaline phosphatase inhibitors but not by ouabain, and was localized to the luminal side of the membrane. These findings indicate that Na+,K+-ATPase is localized to the sinusoidal and lateral portions of the rat hepatocyte plasma membrane and is not detectable on the bile canaliculus where alkaline phosphatase is confined. This basolateral localization of Na+,K+-ATPase is similar to that found in epithelia where secretion is also directed across the apical membrane. Images PMID:213446

  20. Age-dependent activity of the uptake transporters Ntcp and Oatp1b2 in male rat hepatocytes: from birth till adulthood.

    PubMed

    Fattah, Sarinj; Augustijns, Patrick; Annaert, Pieter

    2015-01-01

    Recognition of the role of hepatic drug transporters in elimination of xenobiotics continues to grow. Hepatic uptake transporters, such as hepatic isoforms of the organic anion-transporting polypeptide (Oatp) family as well as the bile acid transporter Na(+)-taurocholate cotransporting polypeptide (Ntcp) have been studied extensively both at the mRNA and protein expression levels in adults. However, in pediatric/juvenile populations, there continues to be a knowledge gap about the functional activity of these transporters. Therefore, the aim of this study was to examine the functional maturation of Ntcp and Oatp isoforms as major hepatic transporters. Hepatocytes were freshly isolated from rats aged between birth and 8 weeks. Transporter activities were assessed by measuring the initial uptake rates of known substrates: taurocholate (TCA) for Ntcp and sodium fluorescein (NaFluo) for Oatp. Relative to adult values, uptake clearance of TCA in hepatocytes from rats aged 0, 1, 2, 3, and 4 weeks reached 19, 43, 22, 46, and 63%, respectively. In contrast, Oatp-mediated NaFluo uptake showed a considerably slower developmental pattern: uptake clearance of NaFluo in hepatocytes from rats aged 0, 1, 2, 3, 4, and 6 weeks were 24, 20, 19, 8, 19, and 64%, respectively. Maturation of NaFluo uptake activity correlated with the previously reported ontogeny of Oatp1b2 mRNA expression, confirming the role of Oatp1b2 for NaFluo uptake in rat liver. The outcome of this project will help in understanding and predicting age-dependent drug exposure in juvenile animals and will eventually support safe and more effective drug therapies for children. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  1. A Modified Protocol for the Isolation of Primary Human Hepatocytes with Improved Viability and Function from Normal and Diseased Human Liver.

    PubMed

    Bartlett, David C; Newsome, Philip N

    2017-01-01

    Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.

  2. Cytotoxic effects of psychotropic benzofuran derivatives, N-methyl-5-(2-aminopropyl)benzofuran and its N-demethylated derivative, on isolated rat hepatocytes.

    PubMed

    Nakagawa, Yoshio; Suzuki, Toshinari; Tada, Yukie; Inomata, Akiko

    2017-03-01

    The novel psychoactive compounds derived from amphetamine have been illegally abused as recreational drugs, some of which are known to be hepatotoxic in humans and experimental animals. The cytotoxic effects and mechanisms of 5-(2-aminopropyl)benzofuran (5-APB) and N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB), both of which are benzofuran analogues of amphetamine, and 3,4-methylenedioxy-N-methamphetamine (MDMA) were studied in freshly isolated rat hepatocytes. 5-MAPB caused not only concentration-dependent (0-4.0 mm) and time-dependent (0-3 h) cell death accompanied by the depletion of cellular ATP and reduced glutathione and protein thiol levels, but also accumulation of oxidized glutathione. Of the other analogues examined at a concentration of 4 mm, 5-MAPB/5-APB-induced cytotoxicity with the production of reactive oxygen species and loss of mitochondrial membrane potential was greater than that induced by MDMA. In isolated rat liver mitochondria, the benzofurans resulted in a greater increase in the rate of state 4 oxygen consumption than did MDMA, with a decrease in the rate of state 3 oxygen consumption. Furthermore, the benzofurans caused more of a rapid mitochondrial swelling dependent on the mitochondrial permeability transition than MDMA. 5-MAPB at a weakly toxic level (1 mm) was metabolized slowly: levels of 5-MAPB and 5-APB were approximately 0.9 mm and 50 μm, respectively, after 3 h incubation. Taken collectively, these results indicate that mitochondria are target organelles for the benzofuran analogues and MDMA, which elicit cytotoxicity through mitochondrial failure, and the onset of cytotoxicity may depend on the initial and/or residual concentrations of 5-MAPB rather than on those of its metabolite 5-APB. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. SELENIUM MODIFIES THE METABOLISM AND TOXICITY OF ARSENIC IN PRIMARY RAT HEPATOCYTES

    EPA Science Inventory

    ABSTRACT
    Selenium Modifies the Metabolism and Toxicity of Arsenic in Primary Rat Hepatocytes. Miroslav Styblo, David J. Thomas (2000) Toxicol. Appl. Pharmacol.
    Arsenic and selenium are metalloids with similar chemical properties and metabolic fates. Inorganic arsenic (iAs...

  4. The differentiation and isolation of mouse embryonic stem cells toward hepatocytes using galactose-carrying substrata.

    PubMed

    Meng, Qingyuan; Haque, Amranul; Hexig, Bayar; Akaike, Toshihiro

    2012-02-01

    A simple culture system to achieve the differentiation of embryonic stem (ES) cells toward hepatocytes with high efficiency is crucial in providing a cell source for the medical application. In this study, we report the effect of a matrix-dependent enrichment of ES cell-derived hepatocytes using immobilized poly(N-p-vinylbenzyl-4-O-β-D-galactopyranosyl-D-gluconamide) (PVLA) with E-cadherin-IgG Fc (E-cad-Fc) as a galactose-carrying substratum. PVLA and E-cad-Fc were confirmed to be stably co-adsorbed onto polystyrene surface by quartz crystal microbalance (QCM). We showed that the E-cad-Fc/PVLA hybrid substratum was efficient in culturing primary hepatocytes and maintaining liver functions, on which the undifferentiated ES cells also maintained high proliferative capability. Furthermore, ES cell-derived hepatocytes on this hybrid matrix expressed elevated level of liver specific genes and functions together with early expression of definitive hepatocyte marker, asialoglycoprotein receptor (ASGPR). Finally, we isolated a high percentage of cells (about 60%) with ASGPR expression after re-seeding onto PVLA-coated surface, and observed the elimination of the poorly differentiated cells (Gata6(+) and Sox17(+)) and the ones toward another cell lineage (brachyury(+) and Pdx1(+)). The system uses a glycopolymer as an extracellular substratum for isolation and enrichment of ES cell-derived hepatocytes with adequate homogeneity and functionality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Enhancement or inhibition of PLCγ2 expression in rat hepatocytes by recombinant adenoviral vectors that contain full-length gene or siRNA.

    PubMed

    Chen, X G; Liu, Y M; Lv, Q X; Ma, J

    2017-01-01

    We investigated the effects of recombinant adenovirus vectors that overexpress or silence PLCγ2 on the expression of this gene during hepatocyte proliferation. Hepatocytes were isolated, identified by immunofluorescent cytochemical staining and infected by previously constructed Ad-PLCγ2 and Ad-PLCγ2 siRNA1, siRNA2 and siRNA3. Green fluorescent protein (GFP) expression was observed by fluorescence microscopy. Infection percentage was calculated by flow cytometry. mRNA and protein levels of PLCγ2 were detected by quantitative reverse transcription-PCR (qRT-PCR) and western blotting, respectively. The viability of the infected hepatocytes was measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. We found that nearly 97% of cells were positive for the hepatocyte marker, CK18. After infection of Ad-PLCγ2 and Ad-PLCγ2 siRNA, more than 99% of hepatocytes expressed GFP significantly, and mRNA and protein expression of PLCγ2 was up-regulated significantly in Ad-PLCγ2 infected hepatocytes, but down-regulated in Ad-PLCγ2 siRNA2 infected cells. The cell proliferation rate decreased in PLCγ2-overexpressing cells, while the rate increased in PLCγ2-silencing cells. We verified that recombinant Ad-PLCγ2 and Ad-PLCγ2 siRNA2 were constructed successfully. These two recombinant vectors promoted or decreased the expression of PLCγ2 in rat hepatocytes and affected the cell proliferation rate, which provides a useful tool for further investigation of the role of PLCγ2 in hepatocyte apoptosis.

  6. Separation of periportal and perivenous rat hepatocytes by fluorescence-activated cell sorting: confirmation with colloidal gold as an exogenous marker.

    PubMed

    Braakman, I; Keij, J; Hardonk, M J; Meijer, D K; Groothuis, G M

    1991-01-01

    Periportal and perivenous hepatocytes are known to display various functional differences. In this study we present a new method to separate periportal and perivenous cells: after selectively loading zone 1 or zone 3 with the fluorescent label acridine orange in an antegrade or retrograde perfusion, respectively, we separated the isolated hepatocytes on a fluorescence-activated cell sorter. The common way to check on proper separation is to estimate activities of enzymes known to exhibit a heterogeneous acinar distribution. Using enzyme histochemistry, however, we found that already on short collagenase perfusion, some enzymes displayed a more shallow gradient than in vivo, making enzyme activities less suitable as zonal markers. We therefore used colloidal gold granules (17 nm) injected intravenously (2.5 mg) into the rat 2 to 3 hr before cell isolation. The gold is taken up predominantly by perivenous hepatocytes, probably because of the efficient removal of gold granules in zone 1 by competing Kupffer cells. We compared acridine orange fluorescence, presence of gold particles and activities of six marker enzymes, three biochemically and three histochemically determined. Acridine orange and gold both pointed to a high enrichment of the fractions, whereas most enzyme activities were more randomly distributed among the cells as a result of the isolation procedure. Our separation procedure yielded fractions highly enriched in either viable periportal or perivenous cells, both from one liver. The use of colloidal gold as a marker to monitor separation is a valuable alternative to the more risky estimation of enzyme activities.

  7. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.

    PubMed

    Li, Ying; Bentzley, Catherine M; Tarloff, Joan B

    2005-04-01

    Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations

  8. Isolation of GMP Grade Human Hepatocytes from Remnant Liver Tissue of Living Donor Liver Transplantation.

    PubMed

    Enosawa, Shin

    2017-01-01

    For the purpose of clinical research of hepatocyte transplantation, procedures for isolation, cryopreservation, thawing, and functional assessment of hepatocytes are described. Although demands for human hepatocytes are increasing in not only cell therapy but also drug development, it is highly difficult to obtain good lots of hepatocytes from human liver tissue. This chapter describes essential issues such as alleviation of warm ischemia, prevention of shear stress, optimization of cryopreservation, and functional assessment, along with securement of quality. All procedures described here are compliant with good manufacturing procedure (GMP) in cell processing facility, approved by the act on measures to ensure safety of regenerative medicine and ethical regulations in Japan.

  9. Ginkgolide A contributes to the potentiation of acetaminophen toxicity by Ginkgo biloba extract in primary cultures of rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajaraman, Ganesh; Chen, Jie; Chang, Thomas K.H.

    2006-12-01

    The present cell culture study investigated the effect of Ginkgo biloba extract pretreatment on acetaminophen toxicity and assessed the role of ginkgolide A and cytochrome P450 3A (CYP3A) in hepatocytes isolated from adult male Long-Evans rats provided ad libitum with a standard diet. Acetaminophen (7.5-25 mM for 24 h) conferred hepatocyte toxicity, as determined by the lactate dehydrogenase (LDH) assay. G. biloba extract alone increased LDH leakage in hepatocytes at concentrations {>=} 75 {mu}g/ml and {>=} 750 {mu}g/ml after a 72 h and 24 h treatment period, respectively. G. biloba extract (25 or 50 {mu}g/ml once every 24 h formore » 72 h) potentiated LDH leakage by acetaminophen (10 mM for 24 h; added at 48 h after initiation of extract pretreatment). The effect was confirmed by a decrease in [{sup 14}C]-leucine incorporation. At the level present in a modulating concentration (50 {mu}g/ml) of the extract, ginkgolide A (0.55 {mu}g/ml), which increased CYP3A23 mRNA levels and CYP3A-mediated enzyme activity, accounted for part but not all of the potentiating effect of the extract on acetaminophen toxicity. This occurred as a result of CYP3A induction by ginkgolide A because triacetyloleandomycin (TAO), a specific inhibitor of CYP3A catalytic activity, completely blocked the effect of ginkgolide A. Ginkgolide B, ginkgolide C, ginkgolide J, quercetin, kaempferol, isorhamnetin, and isorhamnetin-3-O-rutinoside did not alter the extent of LDH leakage by acetaminophen. In summary, G. biloba pretreatment potentiated acetaminophen toxicity in cultured rat hepatocytes and ginkgolide A contributed to this novel effect of the extract by inducing CYP3A.« less

  10. In vitro differentiation of rat bone marrow mesenchymal stem cells into hepatocytes.

    PubMed

    Feng, Zhihui; Li, Changying; Jiao, Shuxian; Hu, Bin; Zhao, Lin

    2011-01-01

    To investigate the mechanism and regulation of differentiation from bone marrow mesenchymal stem cells (BMSCs) into hepatocytes and to find a new source for therapies of hepatic diseases. We isolated BMSCs for subsequent differentiation in the presence of hepatocyte growth factor (HGF) or beta-nerve growth factor (beta-NGF). Cell morphology was observed and cell surface phenotypings were detected by flow cytometry. a1-antitrypsin (AAT) expression of the hepatocytes was confirmed by immunocytochemistry and albumin expression was validated by real time PCR and western blotting. The expression of high-affinity nerve growth factor receptor (TrkA) and the activation of Erk pathway were detected by western blotting. Hepatocyte functional activity was confirmed by uptake of indocyanine green (ICG) assay. Small round cells appeared in the presence of HGF on day 10 or beta-NGF on day 12. Differentiated cells expressed albumin and had functional characteristics of hepatocytes, such as uptake of ICG. BMSCs were positive for TrkA. HGF and beta-NGF significantly upregulated the protein levels of phospho-Erk. BMSCs could differentiate into hepatocytes in the differentiation media including HGF or beta-NGF. Combination of HGF and beta-NGF significantly increased the efficiency of hepatic differentiation.

  11. [Rhythm of protein synthesis in cultures of hepatocytes from rats of different ages. Norm and effect of the peptide livagen].

    PubMed

    Brodskiĭ, V Ia; Khavinson, V Kh; Zolotarev, Iu A; Nechaeva, N V; Malinin, V V; Novikova, T E; Gvazava, I G; Fateeva, V I

    2001-01-01

    The circumhoralian rhythm of protein synthesis was determined in a monolayer culture of hepatocytes from rats at the age of 1 to 24 months and weighing from 45 to 480 g, respectively. The peptide lyvagen (Lys-Glu-Asp-Ala) obtained by directed chemical synthesis on the basis of amino acid analysis of the liver polypeptide preparations increased the level of protein synthesis in the hepatocytes from rats of different ages; the highest effect was observed in the cells of old animals. In old rats, lyvagen increased the amplitude of protein synthesis fluctuations. The peptide epitalon (Ala-Glu-Asp-Gly) constructed on the basis of analysis of the epiphysis peptides did not change the intensity of protein synthesis in the cultured hepatocytes.

  12. A transgenic rat hepatocyte - Kupffer cell co-culture model for evaluation of direct and macrophage-related effect of poly(amidoamine) dendrimers.

    PubMed

    Jemnitz, Katalin; Bátai-Konczos, Attila; Szabó, Mónika; Ioja, Enikő; Kolacsek, Orsolya; Orbán, Tamás I; Török, György; Homolya, László; Kovács, Eszter; Jablonkai, István; Veres, Zsuzsa

    2017-02-01

    Increasing number of papers demonstrate that Kupffer cells (KCs) play a role in the development of drug induced liver injury (DILI). Furthermore, elevated intracellular Ca 2+ level of hepatocytes is considered as a common marker of DILI. Here we applied an in vitro model based on hepatocyte mono- and hepatocyte/KC co-cultures (H/KC) isolated from transgenic rats stably expressing the GCaMP2 fluorescent Ca 2+ sensor protein to investigate the effects of polycationic (G5), polyanionic (G4.5) and polyethylene-glycol coated neutral (G5 Peg) dendrimers known to accumulate in the liver, primarily in KCs. Following dendrimer exposure, hepatocyte homeostasis was measured by MTT cytotoxicity assay and by Ca 2+ imaging, while hepatocyte functions were studied by CYP2B1/2 inducibility, and bilirubin and taurocholate transport. G5 was significantly more cytotoxic than G4.5 for hepatocytes and induced Ca 2+ oscillation and sustained Ca 2+ signals at 1μM and10 μM, respectively both in hepatocytes and KCs. Dendrimer-induced Ca 2+ signals in hepatocytes were attenuated by macrophages. Activation of KCs by lipopolysaccharide and G5 decreased the inducibility of CYP2B1/2, which was restored by depleting the KCs with gadolinium-chloride and pentoxyphylline, suggesting a role of macrophages in the hindrance of CYP2B1/2 induction by G5 and lipopolysaccharide. In the H/KC, but not in the hepatocyte mono-culture, G5 reduced the canalicular efflux of bilirubin and stimulated the uptake and canalicular efflux of taurocholate. In conclusion, H/KC provides a good model for the prediction of hepatotoxic potential of drugs, especially of nanomaterials known to be trapped by macrophages, activation of which presumably contributes to DILI. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Dietary fructose enhances the incidence of precancerous hepatocytes induced by administration of diethylnitrosamine in rat

    PubMed Central

    2013-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is a risk for hepatocellular carcinoma (HCC), but the association between a high-fructose diet and HCC is not fully understood. In this study, we investigated whether a high-fructose diet affects hepatocarcinogenesis induced by administration of diethylnitrosamine (DEN). Methods Seven-week-old male Sprague–Dawley rats were fed standard chow (controls), a high-fat diet (54% fat), or a high-fructose diet (66% fructose) for 8 weeks. All rats were given DEN at 50 μg/L in drinking water during the same period. Precancerous hepatocytes were detected by immunostaining of the placental form of glutathione-S-transferase (GST-P). The number of GST-P-positive hepatocytes was assessed in liver specimens. Results Serum levels of total cholesterol were similar among the three groups, but serum triglyceride, fasting blood glucose, and insulin levels were higher in the high-fructose group compared to the high-fat group. In contrast, hepatic steatosis was more severe in the high-fat group compared with the high-fructose and control groups, but the incidence of GST-P-positive specimens was significantly higher in the high-fructose group compared to the other two groups. The average number of GST-P-positive hepatocytes in GST-P positive specimens in the high-fructose group was also higher than those in the other two groups. This high prevalence of GST-P-positive hepatocytes was accompanied by higher levels of 8-hydroxydeoxyguanosine in serum and liver tissue. Conclusions These results indicate that dietary fructose, rather than dietary fat, increases the incidence of precancerous hepatocytes induced by administration of DEN via insulin resistance and oxidative stress in rat. Thus, excessive fructose intake may be a potential risk factor for hepatocarcinogenesis. PMID:24321741

  14. Transdifferentiated rat pancreatic progenitor cells (AR42J-B13/H) respond to phenobarbital in a rat hepatocyte-specific manner.

    PubMed

    Osborne, M; Haltalli, M; Currie, R; Wright, J; Gooderham, N J

    2016-07-01

    Phenobarbital (PB) is known to produce species-specific effects in the rat and mouse, being carcinogenic in certain mouse strains, but only in rats if treated after a DNA damaging event. PB treatment in the rat and mouse also produces disparate effects on cell signalling and miRNA expression profiles. These responses are induced by short term and prolonged PB exposure, respectively, with the latter treatments being difficult to examine mechanistically in primary hepatocytes due to rapid loss of the original hepatic phenotype and limited sustainability in culture. Here we explore the rat hepatocyte-like B13/H cell line as a model for hepatic response to PB exposure in both short-term and longer duration treatments. We demonstrate that PB with Egf treatment in the B13/H cells resulted in a significant increase in Erk activation, as determined by the ratio of phospho-Erk to total Erk, compared to Egf alone. We also show that an extended treatment with PB in the B13/H cells produces a miRNA response similar to that seen in the rat in vivo, via the time-dependent induction of miR-182/96. Additionally, we confirm that B13/H cells respond to Car activators in a typical rat-specific manner. These data suggest that the B13/H cells produce temporal responses to PB that are comparable to those reported in short-term primary rat hepatocyte cultures and in the longer term are similar to those in the rat in vivo. Finally, we also show that Car-associated miR-122 expression is decreased by PB treatment in B13/H cells, a PB-induced response that is common to the rat, mouse and human. We conclude that the B13/H cell system produces a qualitative response comparable to the rat, which is different to the response in the mouse, and that this model could be a useful tool for exploring the functional consequences of PB-sensitive miRNA changes and resistance to PB-mediated tumours in the rat. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Energetic costs of pyrene metabolism in isolated hepatocytes of rainbow trout, Oncorhynchus mykiss.

    PubMed

    Bains, Onkar S; Kennedy, Christopher J

    2004-04-28

    The respiratory costs of pyrene exposure and biotransformation were examined in isolated hepatocytes of adult rainbow trout, Oncorhynchus mykiss. Baseline oxygen consumption rates measured at an acclimation temperature of 7.5 degrees C and during an acute temperature increase to 15 degrees C were 10.1 +/- 0.1 and 22.6 +/- 0.4 ng O(2)/min/mg cells, respectively. Hepatocytes exposed to pyrene at 1, 5 and 10 microg/ml exhibited concentration-dependent increases in oxygen consumption. Respiration rates of cells exposed to these concentrations at their acclimation temperature were 12.5 +/- 0.1, 14.7 +/- 0.1 and 17.1 +/- 0.2 ng O(2)/min/mg cells, respectively. Exposure of cells to pyrene at 15 degrees C also elevated oxygen consumption to a maximum of 34.4 +/- 0.3 ng O(2)/min/mg cells, however, the relationship with pyrene concentration was biphasic. The major metabolite identified through a series of solvent extractions, acid hydrolysis, and synchronous fluorometric spectroscopy was conjugated 1-hydroxypyrene. At 7.5 degrees C, increased pyrene metabolism correlated with increased hepatocyte respiration rates. At 15 degrees C, however, pyrene metabolism reached a maximum at 5 microg/ml, suggesting saturation of detoxification enzymes, which correlated with maximum respiration rates at this concentration. Measures of respiration by isolated mitochondria indicated that changes in hepatocyte oxygen consumption were not through direct effects of pyrene on mitochondria. This study indicates that significant respiratory costs may be accrued by teleost hepatocytes actively metabolizing and secreting xenobiotic compounds.

  16. Flow Cytometric Analysis of Hepatocytes from Normal, PFDA, and PH/DEN/ PB-Treated Rats

    DTIC Science & Technology

    1989-12-31

    SUB-GROUP’ Perfluorodecanoic acid ( PFDA ); hepatocarcinogenesis; preneoplastic lesions; flow cytometry; imunotoxicitYyc3 1%&STRACT (Continue on...effects of perfluorodecanoic acid ( PFDA ). Flow cytometric evaluation of hepatocytes from PEDA-treated rats revealed an increase in size and granularity...was designed to generate preliminary information regarding the toxic and potential carcinogenic effects of perfluorodecanoic acid ( PFDA ) on rat

  17. Effects of Trichostatin A on drug uptake transporters in primary rat hepatocyte cultures

    PubMed Central

    Ramboer, Eva; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The present study was set up to investigate the effects of Trichostatin A (TSA), a prototypical epigenetic modifier, on the expression and activity of hepatic drug uptake transporters in primary cultured rat hepatocytes. To this end, the expression of the sinusoidal transporters sodium-dependent taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide 4 (Oatp4) was monitored by real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblotting. The activity of the uptake transporters was analyzed using radiolabeled substrates and chemical inhibitors. Downregulation of the expression and activity of Oatp4 and Ntcp was observed as a function of the cultivation time and could not be counteracted by TSA. In conclusion, the epigenetic modifier TSA does not seem to exert a positive effect on the expression and activity of the investigated uptake transporters in primary rat hepatocyte cultures. PMID:26648816

  18. [Effect of Shugan Jianpi Recipe on LXRα/FAS signaling pathway mediated hepatocyte fatty deposits in NAFLD rats].

    PubMed

    Gong, Xiang-Wen; Yang-Qin-He; Yan, Hai-Zhen; Zhang, Yu-Pei; Huang, Jin; Xu, Yong-Jian; Zhang, Jin-Wen; Lin, Chun-Mei

    2014-12-01

    To explore the effect of Shugan Jianpi Recipe (SJR) on LXRα/FAS signaling pathway mediated hepatocyte fatty deposits in nonalcoholic fatty liver disease (NAFLD) rats. Totally 75 SPF grade male SD rats were randomly divided into 5 groups, i.e., the normal control group, the model group, the Shugan Recipe (SR) treatment groups, the Jianpi Recipe (JR) treatment group, and the SJR group. Except rats in the normal control group, the NAFLD rat model was duplicated using high fat diet (HFD). SR (Chaihu Shugan Powder) was administered to rats in the SR group. JR (Shenlin Baizhu Powder) was administered to rats in the JR group. SJR (Chaihu Shugan Powder plus Shenlin Baizhu Powder) was administered to rats in the SJR group. Changes of liver fat were analyzed using automatic biochemical analyzer. Liver cells were separated by low-speed centrifugation. Their activities and purities were identify using Typan blue and flow cytometry (FCM). Expression levels of LXRα and FAS mRNA in hepatocytes detected by Real-time quantitative PCR. Expression levels of LXRα and FAS protein were detected by Western blot. (1) Pathological results showed in the model group, hepatocytes were swollen with nucleus locating at the cell edge after oil red O staining; unequal sized small vacuoles could be seen inside cytoplasm. Some small vacuoles merged big vacuoles. All these indi- cated a NAFLD rat model was successfully established by high fat diet. Pathological structural changes could be impaired to some degree in all medicated groups, especially in the SR group. (2) Compared with the normal control group, expression levels of LXRα and FAS genes and proteins obviously increased in the model group (P < 0.01). Compared with the model group, their expression levels were obviously down-regulated in the JR group and the SR group (P < 0.01, P < 0.05). LXRα/FAS signaling pathway was an important signaling pathway for mediating lipid metabolism disorders of NAFLD rats. SJR could make hepatocyte fatty

  19. Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes.

    PubMed

    Richert, Lysiane; Lamboley, Christelle; Viollon-Abadie, Catherine; Grass, Peter; Hartmann, Nicole; Laurent, Stephane; Heyd, Bruno; Mantion, Georges; Chibout, Salah-Dine; Staedtler, Frank

    2003-09-01

    The mRNA expression profile in control and clofibric acid (CLO)-treated mouse, rat, and human hepatocytes was analyzed using species-specific oligonucleotide DNA microarrays (Affymetrix). A statistical empirical Bayes procedure was applied in order to select the significantly differentially expressed genes. Treatment with the peroxisome proliferator CLO induced up-regulation of genes involved in peroxisome proliferation and in cell proliferation as well as down-regulation of genes involved in apoptosis in hepatocytes of rodent but not of human origin. CLO treatment induced up-regulation of microsomal cytochrome P450 4a genes in rodent hepatocytes and in two of six human hepatocyte cultures. In addition, genes encoding phenobarbital-inducible cytochrome P450s were also up-regulated by CLO in rodent and human hepatocyte cultures. Up-regulation of phenobarbital-inducible UDP-glucuronosyl-transferase genes by CLO was observed in both rat and human but not in mouse hepatocytes. CLO treatment induced up-regulation of L-fatty acid binding protein (L-FABP) gene in hepatocytes of both rodent and human origin. However, while genes of the cytosolic, microsomal, and mitochondrial pathways involved in fatty acid transport and metabolism were up-regulated by CLO in both rodent and human hepatocyte cultures, genes of the peroxisomal pathway of lipid metabolism were up-regulated in rodents only. An up-regulation of hepatocyte nuclear factor 1alpha (HNF1alpha) by CLO was observed only in human hepatocyte cultures, suggesting that this trans-activating factor may play a key role in the regulation of fatty acid metabolism in human liver as well as in the nonresponsiveness of human liver to CLO-induced regulation of cell proliferation and apoptosis.

  20. Protective role of Urtica dioica L. (Urticaceae) extract on hepatocytes morphometric changes in STZ diabetic Wistar rats.

    PubMed

    Golalipour, Mohammad Jafar; Ghafari, Soraya; Afshar, Mohammad

    2010-09-01

    The present investigation was carried out to evaluate the protective effect of the hydroalcoholic extract of Urtica dioica leaves on the quantitative morphometric changes in the liver of streptozotocin-induced diabetic rats. Thirty male Wistar rats were divided into control (G1), diabetic (G2), diabetic + Urtica dioica (G3) groups. The control group received only sham injections of intraperitoneal saline; the diabetic group received intraperitoneal saline for 5 days followed by streptozotocin (80 mg/kg) on the 6th day; and the diabetic + Urtica dioica group received 100 mg/kg Urtica dioica intraperitoneal (7) injections for 5 days and streptozotocin injection on the 6th day. After five weeks, the animals were sacrificed and whole livers removed. Liver specimens were used for quantitative morphometric analysis after hematoxylin and eosin staining. All data were statistically analyzed by one-way ANOVA and expressed as the mean with standard error of means. In the G3 (diabetic + Urtica diocia) group, the mean surface area of hepatocytes in the periportal zone (Z1) was greater than in G2 (diabetic) and G1 (control) groups, but this difference was not significant. No alteration was observed in the surface area of hepatocytes in the perivenous zone (Z3) in the diabetic + Urtica dioica (G3) group compared to the diabetic (G2) group. The mean nuclear area of hepatocytes of the rats in the diabetic + Urtica dioica (G3) group was higher in Z1 and lower in Z3 than that of rats in the diabetic (G2) group. The mean diameter of hepatocyte nuclei in the diabetic + Urtica dioica (G3) group was lower than that of diabetic (G2) and control (G1) groups in both Z1 and Z3. This study revealed that the administration of extract of Urtica dioica leaves before induction of diabetic with streptozotocin has a protective effect on the morphometric alterations of hepatocytes in the periportal and perivenous zones of the liver lobule in rats.

  1. Hepatocyte nuclear factor 4A improves hepatic differentiation of immortalized adult human hepatocytes and improves liver function and survival.

    PubMed

    Hang, Hua-Lian; Liu, Xin-Yu; Wang, Hai-Tian; Xu, Ning; Bian, Jian-Min; Zhang, Jian-Jun; Xia, Lei; Xia, Qiang

    2017-11-15

    Immortalized human hepatocytes (IHH) could provide an unlimited supply of hepatocytes, but insufficient differentiation and phenotypic instability restrict their clinical application. This study aimed to determine the role of hepatocyte nuclear factor 4A (HNF4A) in hepatic differentiation of IHH, and whether encapsulation of IHH overexpressing HNF4A could improve liver function and survival in rats with acute liver failure (ALF). Primary human hepatocytes were transduced with lentivirus-mediated catalytic subunit of human telomerase reverse transcriptase (hTERT) to establish IHH. Cells were analyzed for telomerase activity, proliferative capacity, hepatocyte markers, and tumorigenicity (c-myc) expression. Hepatocyte markers, hepatocellular functions, and morphology were studied in the HNF4A-overexpressing IHH. Hepatocyte markers and karyotype analysis were completed in the primary hepatocytes using shRNA knockdown of HNF4A. Nuclear translocation of β-catenin was assessed. Rat models of ALF were treated with encapsulated IHH or HNF4A-overexpressing IHH. A HNF4A-positive IHH line was established, which was non-tumorigenic and conserved properties of primary hepatocytes. HNF4A overexpression significantly enhanced mRNA levels of genes related to hepatic differentiation in IHH. Urea levels were increased by the overexpression of HNF4A, as measured 24h after ammonium chloride addition, similar to that of primary hepatocytes. Chromosomal abnormalities were observed in primary hepatocytes transfected with HNF4A shRNA. HNF4α overexpression could significantly promote β-catenin activation. Transplantation of HNF4A overexpressing IHH resulted in better liver function and survival of rats with ALF compared with IHH. HNF4A improved hepatic differentiation of IHH. Transplantation of HNF4A-overexpressing IHH could improve the liver function and survival in a rat model of ALF. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro.

    PubMed

    Dash, A; Simmers, M B; Deering, T G; Berry, D J; Feaver, R E; Hastings, N E; Pruett, T L; LeCluyse, E L; Blackman, B R; Wamhoff, B R

    2013-06-01

    In vitro primary hepatocyte systems typically elicit drug induction and toxicity responses at concentrations much higher than corresponding in vivo or clinical plasma C(max) levels, contributing to poor in vitro-in vivo correlations. This may be partly due to the absence of physiological parameters that maintain metabolic phenotype in vivo. We hypothesized that restoring hemodynamics and media transport would improve hepatocyte architecture and metabolic function in vitro compared with nonflow cultures. Rat hepatocytes were cultured for 2 wk either in nonflow collagen gel sandwiches with 48-h media changes or under controlled hemodynamics mimicking sinusoidal circulation within a perfused Transwell device. Phenotypic, functional, and metabolic parameters were assessed at multiple times. Hepatocytes in the devices exhibited polarized morphology, retention of differentiation markers [E-cadherin and hepatocyte nuclear factor-4α (HNF-4α)], the canalicular transporter [multidrug-resistant protein-2 (Mrp-2)], and significantly higher levels of liver function compared with nonflow cultures over 2 wk (albumin ~4-fold and urea ~5-fold). Gene expression of cytochrome P450 (CYP) enzymes was significantly higher (fold increase over nonflow: CYP1A1: 53.5 ± 10.3; CYP1A2: 64.0 ± 15.1; CYP2B1: 15.2 ± 2.9; CYP2B2: 2.7 ± 0.8; CYP3A2: 4.0 ± 1.4) and translated to significantly higher basal enzyme activity (device vs. nonflow: CYP1A: 6.26 ± 2.41 vs. 0.42 ± 0.015; CYP1B: 3.47 ± 1.66 vs. 0.4 ± 0.09; CYP3A: 11.65 ± 4.70 vs. 2.43 ± 0.56) while retaining inducibility by 3-methylcholanthrene and dexamethasone (fold increase over DMSO: CYP1A = 27.33 and CYP3A = 4.94). These responses were observed at concentrations closer to plasma levels documented in vivo in rats. The retention of in vivo-like hepatocyte phenotype and metabolic function coupled with drug response at more physiological concentrations emphasizes the importance of restoring in vivo physiological transport

  3. Endocrine disruption screening by protein and gene expression of vitellogenin in freshly isolated and cryopreserved rainbow trout hepatocytes.

    PubMed

    Markell, Lauren K; Mingoia, Robert T; Peterson, Heather M; Yao, Jianhong; Waters, Stephanie M; Finn, James P; Nabb, Diane L; Han, Xing

    2014-08-18

    Xenobiotics may activate the estrogen receptor, resulting in alteration of normal endocrine functions in animals and humans. Consequently, this necessitates development of assay end points capable of identifying estrogenic xenobiotics. In the present study, we screened the potential estrogenicity of chemicals via their ability to induce vitellogenin (VTG) expression in cultured primary hepatocytes from male trout. A routine method for VTG detection measures the secretion of the protein by enzyme-linked immunosorbent assay (ELISA) in freshly isolated trout hepatocytes. However, this lengthy (6 days) culturing procedure requires that hepatocyte isolation is performed each time the assay is run. We optimized this methodology by investigating the utility of cryopreserved hepatocytes, shortening the incubation time, performing a quantitative real-time PCR (qPCR) method for VTG quantification, and verifying the model system with reference chemicals 17β-estradiol, estrone, diethylstilbestrol, hexestrol, genistein, and a negative control, corticosterone. To test the performance of both freshly isolated and cryopreserved hepatocytes, mRNA was collected from hepatocytes following 24 h treatment for VTG gene expression analysis, whereas cell culture media was collected for a VTG ELISA 96 h post-treatment. EC50 values were obtained for each reference chemical except for corticosterone, which exhibited no induction of VTG gene or protein level. Our results show linear concordance between ELISA and qPCR detection methods. Although there was approximately 50% reduction in VTG inducibility following cryopreservation, linear concordance of EC50 values was found between freshly isolated and cryopreserved hepatocytes, indicating that cryopreservation does not alter the functional assessment of estrogen receptor activation and therefore VTG expression. These studies demonstrate that qPCR is a sensitive and specific method for detecting VTG gene expression that can be used together

  4. An improved ex vivo method of primary porcine hepatocyte isolation for use in bioartificial liver systems.

    PubMed

    Nelson, L J; Newsome, P N; Howie, A F; Hadoke, P W; Dabos, K J; Walker, S W; Hayes, P C; Plevris, J N

    2000-08-01

    Primary porcine hepatocytes are commonly, used in bioartificial liver devices and for in vitro studies of hepatocyte function. Although in vivo isolation of porcine hepatocytes can give high yield and viability, such methods are time-consuming and expensive, requiring specialist surgical facilities. To develop a simple, low-cost, high viability, high yield, reproducible ex vivo method for obtaining functional porcine hepatocytes for use in bioartificial liver systems. Weanling piglets (12 kg) were killed with pentobarbitone sodium, the infra-hepatic inferior vena cava was clamped and the supra-hepatic inferior vena cava cannulated. The whole liver was retrogradely perfused in situ with cold saline and excised, followed by an ex vivo open-loop and re-circulating perfusion method (at 37 degrees C) in five steps. The liver was disrupted, sequentially filtered in washing buffer, purified by centrifugation and resuspended in Williams E medium. Viability and cell number were assessed using trypan blue exclusion. The cells were subsequently cultured in serum-free chemically-defined medium and function was assessed. The time interval from when the animals were killed to the final cell wash was 105+/-5 min (n = 20). Cell viability was 85+/-6% with a yield of (2.4+/-0.5) x 10(10) from 12+/-1 kg piglets using 0.03% (w/v) collagenase (n = 20). Hepatocytes from all isolations were successfully plated and grown in monolayer culture. In freshly isolated hepatocytes (day 0) total protein content (TP) was 1.2+/-0.1 mg/10(6) cells (n = 5) and 1.2+/-0.3 mg/10(6) cells (n = 5) for day 2 monolayer cultures, corresponding to approximately 9x10(6) hepatocytes per dish. The percentage of total LDH released into the medium was 13+/-4% for day 0 and 8+/-4% at day 2; conversely, intracellular LDH activities were 87+/-4% and 92+/-4% of the total, respectively. The urea synthesis rate was 196+/-36 nmol/h/mg total protein at day 0 (n = 5) and 292+/-62 nmol/h/mg protein (n = 9) at day 2. The

  5. Three branches of phospholipase C signaling pathway promote hepatocyte growth in rat liver regeneration.

    PubMed

    Xu, G G; Geng, Z; Zhou, X C; He, Y G; He, T T; Mei, J X; Yang, Y J; Liu, Y Q; Xu, C S

    2015-05-29

    In general, the phospholipase C (PLC) signaling pathway is involved in many physiological activities, including cell growth. However, little is known regarding how the PLC signaling pathway participates in regulating hepatocyte (HC) growth during liver regeneration (LR). To further explore the influence of the PLC signaling pathway on HCs at the cellular level, HCs of high purity and vitality were isolated using Percoll density-gradient centrifugation after partial hepatectomy. The genes of the PLC signaling pathway and target genes of transcription factors in the pathway were obtained by searching the pathways and transcription factor databases, and changes in gene expression of isolated HCs were examined using the Rat Genome 230 2.0 Microarray. The results suggested that various genes involved in the pathway (including 151 known genes and 39 homologous genes) and cell growth (including 262 known genes and 37 homologous genes) were associated with LR. Subsequently, the synergetic effect of these genes in LR was analyzed using a mathematical model (Et) according to their expression profiles. The results showed that the Et values of G protein-coupled receptor/PLC, integrin/PLC, and growth factor receptor/PLC branches of the PLC pathway were all significantly strengthened during the progression and termination phases of LR. The synergetic effect of target genes, in parallel with target gene-related cell growth, was also enhanced during whole rat LR, suggesting the potential positive effect of PLC on HC growth. The present data indicate that the PLC signaling pathway may promote HC growth through 3 mechanisms during rat LR after partial hepatectomy.

  6. Effect of spaceflight on rat hepatocytes - A morphometric study

    NASA Technical Reports Server (NTRS)

    Racine, Richard N.; Cormier, Susan M.

    1992-01-01

    Hepatic tissue from flight, synchronous, vivarium, and tail-suspended rats was examined by light microscopy and computer-assisted image analysis. Glycogen levels in flight rats were found to be significantly elevated over those in controls. Lipid was also higher but not significantly different. Hepatocytes appeared larger in flight animals because of area attributed to increased glycogen. Sinusoids were less prominent in flight animals than in controls. The total Kupffer cell population appeared to be reduced in flight animals and may represent changes in defensive capacity of the liver. Alterations in the storage of glycogen and number of Kupffer cells suggest an important effect of spacefligtht on the function of the liver that may have important implications for long-term spaceflight.

  7. Identification and quantification of the rat hepatocyte asialoglycoprotein receptor.

    PubMed Central

    Schwartz, A L; Marshak-Rothstein, A; Rup, D; Lodish, H F

    1981-01-01

    The asialoglycoprotein receptor from rat liver was purified by solubilization and affinity chromatography on asialoorosomucoid-Sepharose. The preparation yielded four distinct polypeptides of Mr 40,000-120,000. We prepared a monoclonal antibody that both immunoprecipitates solubilized receptor activity and blocks the binding of galactose-terminal glycoproteins to immobilized receptor. The monoclonal antibody and a rabbit antireceptor antiserum immunoprecipitated all four polypeptide species. Peptide analysis by two-dimensional chromatography of the individual 125I-labeled species showed nearly identical patterns, which also suggested that the four polypeptides have a similar primary structure. To identify and quantitate the asialoglycoprotein receptor on the hepatocyte cell surface, intact cells were iodinated with lactoperoxidase, and the solubilized membranes were treated with antireceptor antibody. The Mr 55,000 and Mr 65,000 species were the major species found. Our results suggest that the Mr of the surface receptor is at least 55,000 and that it comprises between 1-2% of the iodinated hepatocyte surface protein. Images PMID:6267585

  8. Enhancement of proliferation in a rat hepatocyte co-culture model after mitogenic stimulation.

    EPA Science Inventory

    Primary mouse and rat hepatocyte cultures have long been the gold standard for assessment of cellular changes following chemical exposure. While helpful for assessing proliferative and responses in vitro, these cultures are limited to 1 or 2 days of incubation. Our motivation was...

  9. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.

    PubMed Central

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of beta-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved-refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty oxidation [Moir and Zammit (1994) Trends Biochem. Sci. 19, 313-317], this is transferred to one or more steps proximal to acylcarnitine synthesis (e.g. decreased delivery of fatty acids to the liver) or to the reaction catalysed by mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase [Hegardt (1995) Biochem. Soc. Trans. 23, 486-490]. Therefore isolated hepatocytes were used in the present study to exclude the involvement of changes in the rate of delivery of non-esterified fatty acids (NEFA) to the liver, such as occur in vivo, and to ascertain whether, under conditions of constant supply of NEFA, CPT I retains control over the relevant fluxes of fatty acid oxidation to ketones and carbon dioxide, or whether control is transferred to another (intrahepatocytic) site. The results clearly show that the Flux Control Coefficients of CPT I with respect to overall beta-oxidation and ketogenesis are very high under all conditions investigated, indicating that control is not lost to another intrahepatic site during the metabolic transitions studied. The control of CPT I over tricarboxylic acid cycle activity was always very low. The significance of these findings for the integration of fatty acid and carbohydrate metabolism in the liver is discussed. PMID:8760364

  10. Free Fatty Acids Shift Insulin-induced Hepatocyte Proliferation towards CD95-dependent Apoptosis*

    PubMed Central

    Sommerfeld, Annika; Reinehr, Roland; Häussinger, Dieter

    2015-01-01

    Insulin is known to induce hepatocyte swelling, which triggers via integrins and c-Src kinase an activation of the epidermal growth factor receptor (EGFR) and subsequent cell proliferation (1). Free fatty acids (FFAs) are known to induce lipoapoptosis in liver cells in a c-Jun-NH2-terminal kinase (JNK)-dependent, but death receptor-independent way (2). As non-alcoholic steatohepatitis (NASH) is associated with hyperinsulinemia and increased FFA-blood levels, the interplay between insulin and FFA was studied with regard to hepatocyte proliferation and apoptosis in isolated rat and mouse hepatocytes. Saturated long chain FFAs induced apoptosis and JNK activation in primary rat hepatocytes, but did not activate the CD95 (Fas, APO-1) system, whereas insulin triggered EGFR activation and hepatocyte proliferation. Coadministration of insulin and FFAs, however, abolished hepatocyte proliferation and triggered CD95-dependent apoptosis due to a JNK-dependent association of the activated EGFR with CD95, subsequent CD95 tyrosine phosphorylation and formation of the death-inducing signaling complex (DISC). JNK inhibition restored the proliferative insulin effect in presence of FFAs and prevented EGFR/CD95 association, CD95 tyrosine phosphorylation and DISC formation. Likewise, in presence of FFAs insulin increased apoptosis in hepatocytes from wild type but not from Alb-Cre-FASfl/fl mice, which lack functional CD95. It is concluded that FFAs can shift insulin-induced hepatocyte proliferation toward hepatocyte apoptosis by triggering a JNK signal, which allows activated EGFR to associate with CD95 and to trigger CD95-dependent apoptosis. Such phenomena may contribute to the pathogenesis of NASH. PMID:25548285

  11. Improved Recovery of Hepatocytes Isolated From Warm Ischemic Rat Liver by Citrate Phosphate Dextrose (CPD)-Supplemented Euro-Collins Solution

    PubMed Central

    Hsu, Huai-Che; Matsuno, Naoto; Machida, Noboru; Enosawa, Shin

    2013-01-01

    Demand for human primary hepatocytes is increasing, particularly for clinical trials of hepatocyte transplantation. However, due to the severe shortage of organ transplant donors, the source of cells for these endeavors is restricted to untransplantable livers, such as those from non-heart-beating donors and surgically resected liver tissues. To improve cell recovery from such sources after warm ischemia, we evaluated the efficacy of applying perfusion solutions, focusing on improvement of hepatocyte recovery. Warm ischemia was induced by clamping both portal vein and hepatic artery for 10 or 15 min in rats. The liver was perfused with either Euro-Collins (EC) or extracellular-type trehalose-containing Kyoto (ETK) solutions supplemented with an anticoagulant, either heparin or citrate phosphate dextrose solution (CPD), compared to Ca2+, Mg2+-free Hanks solution. While the viability of recovered cells was 81.5 ± 4.2% and cell yield was 2.27 ± 0.53 × 108 in nonwarm ischemia controls (n = 11), these values were only 74.7 ± 2.9% and 0.38 ± 0.17 × 108, respectively, in the 10-min warm ischemia group, using the Hanks as the perfusion solution. Although the addition of heparin increased the live cell number only twofold (0.71 ± 0.40 × 108, n = 4), the best improvement was achieved by adding CPD to EC. This resulted in a recovery of 1.41 ± 0.50 × 108 in the 10-min ischemia group (n = 7) and 1.37 ± 0.28 × 108 in the 15-min group (n = 3). Macroscopic observation showed that blood had been completely flushed out by the solution, suggesting good restoration of the microcirculation in ischemic liver. Using ETK instead of EC resulted in a slight decrease in efficacy. These results demonstrate that CPD, as opposed to heparin, is effective in ensuring liver microcirculation and flushing out the blood and that EC is the best perfusion solution for obtaining hepatocytes from ischemic liver. PMID:26858872

  12. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes.

    PubMed Central

    Cawley, D B; Simpson, D L; Herschman, H R

    1981-01-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin and orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialogalactoorsomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated. Images PMID:6167984

  13. Inhibition of prostaglandin D2 clearance in rat hepatocytes by the thromboxane receptor antagonists daltroban and ifetroban and the thromboxane synthase inhibitor furegrelate.

    PubMed

    Pestel, Sabine; Nath, Annegret; Jungermann, Kurt; Schieferdecker, Henrike L

    2003-08-15

    Prostanoids, i.e. prostaglandins and thromboxane, regulate liver-specific functions both in homeostasis and during defense reactions. For example, prostanoids are released from Kupffer cells, the resident liver macrophages, in response to the inflammatory mediator anaphylatoxin C5a, and mediate an enhanced glucose output from hepatocytes as energy supply. In perfused rat livers, the thromboxane receptor antagonist daltroban enhanced C5a-induced prostanoid overflow and reduced glucose output. It was the aim of this study to elucidate whether daltroban interfered with prostanoid release from Kupffer cells or prostanoid clearance by hepatocytes, and/or whether it directly influenced prostanoid-dependent glucose metabolism in these cells. In perfused rat livers, daltroban enhanced prostaglandin (PG)D(2) overflow not only after infusion of C5a (15-fold), but also after PGD(2) (10-fold). Neither daltroban nor another receptor antagonist, ifetroban, or the thromboxane synthase inhibitor furegrelate enhanced prostanoid release from Kupffer cells. In contrast, all inhibitors reduced clearance, i.e. uptake and degradation, of PGD(2) by hepatocytes: within 5 min uptake of 1 nmol/L PGD(2) was reduced from 43+/-5 fmol (controls) to 22+/-6 fmol (daltroban), 24+/-6 fmol (ifetroban) and 21+/-6 fmol (furegrelate). PGD(2) in the medium was reduced to 39+/-7% in the controls, but remained at 93+/-9%, 93+/-11% and 60+/-3% in the presence of the inhibitors. PGD(2)-dependent glucose output in the perfused liver or activation of glycogen phosphorylase in isolated hepatocytes remained unaffected by daltroban. These data clearly demonstrate that the thromboxane-inhibitors reduced PGD(2) clearance by hepatocytes, presumably by inhibition of prostanoid transport into the cells. In contrast, they did not interfere with PGD(2)-dependent glucose metabolism, suggesting an independent mechanism for the inhibition of glucose output from the liver.

  14. Development of a high-throughput in vitro assay using a novel Caco-2/rat hepatocyte system for the prediction of oral plasma area under the concentration versus time curve (AUC) in rats.

    PubMed

    Cheng, K-C; Li, Cheng; Hsieh, Yunsheng; Montgomery, Diana; Liu, Tongtong; White, Ronald E

    2006-01-01

    Previously, we have shown that a novel Caco-2/human hepatocyte system is a useful model for the prediction of oral bioavailability in humans. In this study, we attempted to use a similar system in a high-throughput screening mode for the selection of new compound entities (NCE) in drug discovery. A total of 72 compounds randomly selected from three different chemotypes were dosed orally in rats. In vivo plasma area under the concentration versus time curve (AUC) from 0-6 h of the parent compound was determined. The same compounds were also tested in the Caco-2/rat hepatocyte system. In vitro AUC from 0-3 h in the Caco-2 rat hepatocyte system was determined. The predictive usefulness of the Caco-2/rat hepatocyte system was evaluated by comparing the in vivo plasma AUC and the in vitro AUC. Linear regression analysis showed a reasonable correlation (R2 = 0.5) between the in vivo AUC and the in vitro AUC. Using 0.4 microM h in vivo AUC as a cut-off, compounds were categorized as either low or high AUC. The in vitro AUC successfully matched the corresponding in vivo category for sixty-three out of seventy-two compounds. The results presented in this study suggest that the Caco-2/rat hepatocyte system may be used as a high-throughput screen in drug discovery for pharmacokinetic behaviors of compounds in rats.

  15. Impairment of Host Liver Repopulation by Transplanted Hepatocytes in Aged Rats and the Release by Short-Term Growth Hormone Treatment.

    PubMed

    Stock, Peggy; Bielohuby, Maximilian; Staege, Martin S; Hsu, Mei-Ju; Bidlingmaier, Martin; Christ, Bruno

    2017-03-01

    Hepatocyte transplantation is an alternative to whole liver transplantation. Yet, efficient liver repopulation by transplanted hepatocytes is low in livers of old animals. This restraint might be because of the poor proliferative capacity of aged donor hepatocytes or the regenerative impairment of the recipient livers. The age-dependent liver repopulation by transplanted wild-type hepatocytes was investigated in juvenile and senescent rats deficient in dipeptidyl-peptidase IV. Repopulation was quantified by flow cytometry and histochemical estimation of dipeptidyl-peptidase IV enzyme activity of donor cells in the negative host liver. As a potential pathway involved, expression of cell cycle proteins was assessed. Irrespective of the age of the donor hepatocytes, large cell clusters appeared in juvenile, but only small clusters in senescent host livers. Because juvenile and senescent donor hepatocytes were likewise functional, host-derived factor(s) impaired senescent host liver repopulation. Growth hormone levels were significantly higher in juvenile than in senescent rats, suggesting that growth hormone might promote host liver repopulation. Indeed, short-term treatment with growth hormone augmented senescent host liver repopulation involving the growth hormone-mediated release of the transcriptional blockade of genes associated with cell cycle progression. Short-term growth hormone substitution might improve liver repopulation by transplanted hepatocytes, thus augmenting the therapeutic benefit of clinical hepatocyte transplantation in older patients. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Receptor-mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments

    PubMed Central

    1985-01-01

    The endocytic compartments of the asialoglycoprotein (ASGP) pathway in rat hepatocytes were studied using a combined morphological and biochemical approach in the isolated perfused liver. Use of electron microscopic tracers and a temperature-shift protocol to synchronize ligand entry confirmed the route of ASGP internalization observed in our previous in vivo studies (1) and established conditions under which we could label the contents of successive compartments in the pathway for subcellular fractionation studies. Three endosomal compartments were demonstrated in which ASGPs appear after they enter the cell via coated pits and vesicles but before they reach their site of degradation in lysosomes. These three compartments could be distinguished by their location within the hepatocyte, by their morphological appearance in situ, and by their density in sucrose gradients. The distributions of ASGP receptors, both accessible and latent (revealed by detergent permeabilization), were also examined and compared with that of ligand during subcellular fractionation. Most accessible ASGP receptors co-distributed with conventional plasma membrane markers. However, hepatocytes contain a substantial intracellular pool of latent ASGP binding sites that exceeds the number of cell surface receptors and whose presence is not dependent on ASGP exposure. The distribution of these latent ASGP receptors on sucrose gradients (detected either immunologically or by binding assays) was coincident with that of ligand sequestered within the early endosome compartments. In addition, both early endosomes and the membrane vesicles containing latent ASGP receptors had high cholesterol content, because both shifted markedly in density upon exposure to digitonin. PMID:2866191

  17. Gender differences in methionine accumulation and metabolism in freshly isolated mouse hepatocytes: Potential roles in toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, Joseph T.; Elfarra, Adnan A.

    L-Methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 {sup o}C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increasesmore » in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-D-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-DL-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.« less

  18. Effects of edaravone, a radical scavenger, on hepatocyte transplantation.

    PubMed

    Hayashi, Chihiro; Ito, Masahiro; Ito, Ryoutaro; Murakumo, Akiko; Yamamoto, Naoki; Hiramatsu, Noriko; Fox, Ira J; Horiguchi, Akihiko

    2014-12-01

    Hepatocyte transplantation (HTx) has yielded significant improvements in liver function and survival in experimentally induced acute liver failure and liver-based metabolic disease. However, transplantation is inefficient, and it is thought that transplanted hepatocytes have a shortened lifespan because of inflammation involving excess nitric oxide (NO). The present study aimed to clarify whether edaravone, a free radical scavenger used to treat ischemic stroke, could reduce ischemic changes in hepatocyte-transplanted livers. Edaravone (3 mg/kg) was administered intravenously 24 h before HTx to Nagase analbuminemic rats (NARs). Hepatocytes were isolated, and 30 × 10(6) cells were injected in a 1.0-ml volume directly into the spleens of NARs. All experimental groups studied received FK506 to control rejection. Animals in Group A received medium-only; Group B received HTx only; and Group C received HTx and edaravone. Forty-eight hours after transplantation, the hepatocytes from animals were isolated and analyzed for staining with propidium iodide- and annexin-V using flow cytometry. Liver sections were also studied by immunostaining for albumin, and TUNEL. Peripheral blood serum albumin levels were measured on post-transplant days 0, 3, 5, 7, 10 and 14 using ELISA. The edaravone-treated animals demonstrated an increased number of engrafted donor hepatocytes in the liver. The edaravone-treated liver sections also contained fewer TUNEL-positive cells and animals that received edaravone had higher serum albumin levels post-transplantation. Hepatocytes were also found to have increased in numbers 2 weeks following treatment with edaravone. Edaravone administration during HTx can suppress apoptosis near the transplanted cells, increasing engraftment. These studies indicate its potential usefulness for future clinical application. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  19. Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors.

    PubMed Central

    Rana, B; Mischoulon, D; Xie, Y; Bucher, N L; Farmer, S R

    1994-01-01

    Previous investigations have shown that culture of freshly isolated hepatocytes under conventional conditions, i.e., on dried rat tail collagen in the presence of growth factors, facilitates cell growth but also causes an extensive down-regulation of most liver-specific functions. This dedifferentiation process can be prevented if the cells are cultured on a reconstituted basement membrane gel matrix derived from the Englebreth-Holm-Swarm mouse sarcoma tumor (EHS gel). To gain insight into the mechanisms regulating this response to extracellular matrix, we are analyzing the activities of two families of transcription factors, C/EBP and AP-1, which control the transcription of hepatic and growth-responsive genes, respectively. We demonstrate that isolation of hepatocytes from the normal quiescent rat liver by collagenase perfusion activates the immediate-early growth response program, as indicated by increased expression of c-jun, junB, c-fos, and c-myc mRNAs. Adhesion of these activated cells to dried rat tail collagen augments the elevated levels of these mRNAs for the initial 1 to 2 h postplating; junB and c-myc mRNA levels then drop steeply, with junB returning to normal quiescence and the c-myc level remaining slightly elevated during the 3-day culture period. Levels of c-jun mRNA and AP-1 DNA binding activity, however, remain elevated from the outset, while C/EBP alpha mRNA expression is down-regulated, resulting in a decrease in the steady-state levels of the 42- and 30-kDa C/EBP alpha polypeptides and C/EBP alpha DNA binding activity. In contrast, C/EBP beta mRNA production remains at near-normal hepatic levels for 5 to 8 days of culture, although its DNA binding activity decreases severalfold during this time. Adhesion of hepatocytes to the EHS gel for the same period of time dramatically alters this program: it arrests growth and inhibits AP-1 DNA binding activity and the expression of c-jun, junB, and c-myc mRNAs, but, in addition, it restores C/EBP alpha

  20. CYP isoform induction screening in 96-well plates: use of 7-benzyloxy-4-trifluoromethylcoumarin as a substrate for studies with rat hepatocytes.

    PubMed

    Price, R J; Surry, D; Renwick, A B; Meneses-Lorente, G; Lake, B G; Evans, D C

    2000-08-01

    1. In this study, 7-benzyloxy-4-trifluoromethylcoumarin (BFC) was evaluated as a substrate to assess the induction of cytochrome P450 (CYP) isoform enzyme activities in rat hepatocytes using a 96-well plate format. 2. BFC was metabolized by both untreated and sodium phenobarbitone (NaPB)-treated rat hepatocytes in a time- and concentration-dependent manner to the highly fluorescent product 7-hydroxy-4-trifluoromethylcoumarin (HFC). 3. HFC was extensively conjugated with D-glucuronic acid and/or sulphate in both untreated and NaPB-treated rat hepatocytes, thus necessitating the inclusion of an enzymatic deconjugation step in the assay procedure. 4. The time-course of induction of 7-ethoxyresorufin metabolism by the CYP1A inducer beta-naphthoflavone (BNF), 7-benzyloxyresorufin metabolism by the CYP2B inducer NaPB and BFC metabolism b both BNF and NaPB was studied in rat hepatocytes treated for 24-96 h. The optimal time for induction of metabolism of all three substrates was 72 h, with no medium changes being necessary during this period. 5. The effect of treatment with 0.5-20 microM BNF, 50-2000 microM NaPB, 2-20 microM dexamethasone (DEX), 20-100 microM methylclofenapate (MCP), and 50 and 200 microM isoniazid (ISN) for 72 h on BFC metabolism in cultured rat hepatocytes was studied. BFC metabolism was induced by treatment with BNF, NaPB and MCP, but not with either DEX or ISN. 6. The metabolism of BFC in liver microsomes from the control rat and rat treated with CYP isoform inducers was also studied. BFC metabolism was induced by treatment with NaPB, BNF and DEX. 7. The metabolism of BFC was also studied using microsomes from baculovirus-infected insect cells containing rat cDNA-expressed CYP1A, CYP2B, CYP2C and CYP3A isoforms. Whereas BFC was metabolized to some extent by all the rat cDNA-expressed CYP isoforms examined, at a substrate concentration of 2.5 microM the greatest rates of BFC metabolism were observed with the CYP1A1, CYP1A2 and CYP2B1 preparations. 8

  1. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawley, D.B.; Simpson, D.L.; Herschman, H.R.

    1981-06-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin andmore » orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialoagalactoorosomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated.« less

  2. Mature Hepatocytes Exhibit Unexpected Plasticity by Direct Dedifferentiation into Liver Progenitor Cells in Culture

    PubMed Central

    Chen, Yixin; Wong, Philip P.; Sjeklocha, Lucas; Steer, Clifford J.; Sahin, M. Behnan

    2011-01-01

    Although there have been numerous reports describing the isolation of liver progenitor cells from adult liver, their exact origin has not been clearly defined; and the role played by mature hepatocytes as direct contributors to the hepatic progenitor cell pool has remained largely unknown. Here we report strong evidence that mature hepatocytes in culture have the capacity to dedifferentiate into a population of adult liver progenitors without genetic or epigenetic manipulations. By using highly-purified mature hepatocytes, which were obtained from untreated, healthy rat liver and labeled with fluorescent dye PKH2, we found that hepatocytes in culture gave rise to a population of PKH2-positive liver progenitor cells. These cells, Liver Derived Progenitor Cells or LDPCS, which share phenotypic similarities with oval cells, were previously reported to be capable of forming mature hepatocytes both in culture and in animals. Studies done at various time points during the course of dedifferentiation cultures revealed that hepatocytes rapidly transformed into liver progenitors within one week through a transient oval cell-like stage. This finding was supported by lineage-tracing studies involving double-transgenic AlbuminCreXRosa26 mice expressing β-galactosidase exclusively in hepatocytes. Cultures set up with hepatocytes obtained from these mice resulted in generation of β-galactosidase-positive liver progenitor cells demonstrating that they were a direct dedifferentiation product of mature hepatocytes. Additionally, these progenitors differentiated into hepatocytes in vivo when transplanted into rats that had undergone retrorsine pretreatment and partial hepatectomy. Conclusion Our studies provide strong evidence for the unexpected plasticity of mature hepatocytes to dedifferentiate into progenitor cells in culture; and this may potentially have a significant impact on the treatment of liver diseases requiring liver or hepatocyte transplantation. PMID:21953633

  3. Hepatocytic differentiation of mesenchymal stem cells in cocultures with fetal liver cells.

    PubMed

    Lange, Claudia; Bruns, Helge; Kluth, Dietrich; Zander, Axel-R; Fiegel, Henning-C

    2006-04-21

    To investigate the hepatocytic differentiation of mesenchymal stem cells (MSCs) in co-cultures with fetal liver cells (FLC) and the possibility to expand differentiated hepatocytic cells. MSCs were marked with green fluorescent protein (GFP) by retroviral gene transduction. Clonal marked MSCs were either cultured under liver stimulating conditions using fibronectin-coated culture dishes and medium supplemented with stem cell factor (SCF), hepatocyte growth factor (HGF), epidermal growth factor (EGF), and fibroblast growth factor 4 (FGF-4) alone, or in presence of freshly isolated FLC. Cells in co-cultures were harvested, and GFP+ or GFP- cells were separated using fluorescence activated cell sorting. Reverse transcription-polymerase chain reaction (RT-PCR) for the liver specific markers cytokeratin-18 (CK-18), albumin, and alpha-fetoprotein (AFP) was performed in different cell populations. Under the specified culture conditions, rat MSCs co-cultured with FLC expressed albumin, CK-18, and AFP-RNA over two weeks. At wk 3, MSCs lost hepatocytic gene expression, probably due to overgrowth of the cocultured FLC. FLC also showed a stable liver specific gene expression in the co-cultures and a very high growth potential. The rat MSCs from bone marrow can differentiate hepatocytic cells in the presence of FLC in vitro and the presence of MSCs in co-cultures also provides a beneficial environment for expansion and differentiation of FLC.

  4. Transplantation of Porcine Hepatocytes Cultured with Polylactic Acid-O-Carboxymethylated Chitosan Nanoparticles Promotes Liver Regeneration in Acute Liver Failure Rats

    PubMed Central

    Chen, Zhong; Chang, Renan; Guan, Weijun; Cai, Hongyu; Tang, Fei; Zhu, Wencai; Chen, Jiahui

    2011-01-01

    In this study, free porcine hepatocytes suspension (Group A), porcine hepatocytes embedded in collagen gel (Group B), porcine hepatocytes cultured with PLA-O-CMC nanoparticles and embedded in collagen gel (Group C), and PLA-O-CMC nanoparticles alone (Group D) were transplanted into peritoneal cavity of ALF rats, respectively. The result showed that plasma HGF levels were elevated post-transplantation with a peak at 12 hr. The rats in Group C showed highest plasma HGF levels at 2, 6, 12, 24 and 36 hr post-transplantation and lowest HGF level at 48 hr. Plasma VEGF levels were elevated at 48 hr post-transplantation with a peak at 72 hr. The rats in Group C showed highest plasma HGF levels at 48, 72, and 96 hr post-transplantation. The liver functions in Group C were recovered most rapidly. Compared with Group B, Group C had significant high liver Kiel 67 antigen labeling index (Ki-67 LI) at day 1 post-HTx (P < .05). Ki-67 LI in groups B and C was higher than that in groups A and D at days 5 and 7 post-HTx. In conclusion, intraperitoneal transplantation of porcine hepatocytes cultured with PLA-O-CMC nanoparticles and embedded in collagen gel can promote significantly liver regeneration in ALF rats. PMID:21603218

  5. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of (3H)thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone,more » tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity.« less

  6. A metabolic screening study of trichostatin A (TSA) and TSA-like histone deacetylase inhibitors in rat and human primary hepatocyte cultures.

    PubMed

    Elaut, G; Laus, G; Alexandre, E; Richert, L; Bachellier, P; Tourwé, D; Rogiers, V; Vanhaecke, T

    2007-04-01

    Hydroxamic acid (HA)-based histone deacetylase (HDAC) inhibitors, with trichostatin A (TSA) as the reference compound, are potential antitumoral drugs and show promise in the creation of long-term primary cell cultures. However, their metabolic properties have barely been investigated. TSA is rapidly inactivated in rodents both in vitro and in vivo. We previously found that 5-(4-dimethylaminobenzoyl)aminovaleric acid hydroxyamide or 4-Me2N-BAVAH (compound 1) is metabolically more stable upon incubation with rat hepatocyte suspensions. In this study, we show that human hepatocytes also metabolize TSA more rapidly than compound 1 and that similar pathways are involved. Furthermore, structural analogs of compound 1 (compounds 2-9) are reported to have the same favorable metabolic properties. Removal of the dimethylamino substituent of compound 1 creates a very stable but 50% less potent inhibitor. Chain lengthening (4 to 5 carbon spacer) slightly improves both potency and metabolic stability, favoring HA reduction to hydrolysis. On the other hand, Calpha-unsaturation and spacer methylation not only reduce HDAC inhibition but also increase the rate of metabolic inactivation approximately 2-fold, mainly through HA reduction. However, in rat hepatocyte monolayer cultures, compound 1 is shown to be extensively metabolized by phase II conjugation. In conclusion, this study suggests that simple structural modifications of amide-linked TSA analogs can improve their phase I metabolic stability in both rat and human hepatocyte suspensions. Phase II glucuronidation, however, can compensate for their lower phase I metabolism in rat hepatocyte monolayers and could play a yet unidentified role in the determination of their in vivo clearance.

  7. Hyperinsulinemia is Associated with Increased Soluble Insulin Receptors Release from Hepatocytes

    PubMed Central

    Hiriart, Marcia; Sanchez-Soto, Carmen; Diaz-Garcia, Carlos Manlio; Castanares, Diana T.; Avitia, Morena; Velasco, Myrian; Mas-Oliva, Jaime; Macias-Silva, Marina; González-Villalpando, Clicerio; Delgado-Coello, Blanca; Sosa-Garrocho, Marcela; Vidaltamayo, Román; Fuentes-Silva, Deyanira

    2014-01-01

    It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR) has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration, and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l−1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia, the amount of this soluble receptor increases and this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance. PMID:24995000

  8. Hyperinsulinemia is Associated with Increased Soluble Insulin Receptors Release from Hepatocytes.

    PubMed

    Hiriart, Marcia; Sanchez-Soto, Carmen; Diaz-Garcia, Carlos Manlio; Castanares, Diana T; Avitia, Morena; Velasco, Myrian; Mas-Oliva, Jaime; Macias-Silva, Marina; González-Villalpando, Clicerio; Delgado-Coello, Blanca; Sosa-Garrocho, Marcela; Vidaltamayo, Román; Fuentes-Silva, Deyanira

    2014-01-01

    It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR) has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration, and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l(-1) insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia, the amount of this soluble receptor increases and this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.

  9. Failure of hepatocyte marker-expressing hematopoietic progenitor cells to efficiently convert into hepatocytes in vitro.

    PubMed

    Lian, Gewei; Wang, Chengyan; Teng, Chunbo; Zhang, Cong; Du, Liying; Zhong, Qian; Miao, Chenglin; Ding, Mingxiao; Deng, Hongkui

    2006-03-01

    Whether bone marrow (BM) hematopoietic stem/progenitor cells can directly differentiate into nonhematopoietic cells remains controversial. The aim of this study is to further investigate the potentiality of BM hematopoietic progenitor cells to convert into hepatocytes in vitro. Different subsets of BM cells from C57/BL6 mice were isolated using markers of hematopoietic stem cells by magnetic cell sorting and by flow cytometry. These cells were induced to transdifferentiate to hepatocytes in vitro in the presence of various cytokines or of hepatocytes (or tissue) from damaged liver, which have been reported to stimulate the conversion. Hepatic gene markers in freshly isolated or cultured BM cells were determined by reverse transcriptase polymerase chain reaction and immunofluorescence. Freshly isolated hematopoietic progenitor cells (HPC) expressed a low level of messenger RNAs of hepatic cell-specific markers including albumin and alpha-fetoprotein (AFP), but did not significantly upregulate expression of these markers, even in the presence of cytokines or cocultured hepatocytes (or tissue). HPCs induced in vitro did not express the message of alpha-anti-trypsin-a mature hepatocyte marker. At protein level, the specific staining of AFP was not detected in the HPCs, either freshly isolated or in vitro induced. Albumin protein was detected in freshly isolated albumin mRNA-positive and -negative BM cell subpopulations. Albumin-stained BM cells disappeared after being induced for 5 days, but restained if mouse serum was supplemented in medium for a 24-hour extended culture, suggesting that albumin was absorbed by BM cells instead of de novo expression. HPCs expressed mRNAs of hepatic cell markers, but could not efficiently convert into hepatocytes in vitro under our experimental conditions. Our observation raises a cautionary note in determining whether in vitro transdifferentiation of BM cells to hepatocytes can actually take place.

  10. Preventing hepatocyte oxidative stress cytotoxicity with Mangifera indica L. extract (Vimang).

    PubMed

    Remirez, Diadelis; Tafazoli, Shahrzad; Delgado, Rene; Harandi, Asghar A; O'Brien, Peter J

    2005-01-01

    Vimang is an aqueous extract of Mangifera indica used in Cuba to improve the quality of life in patients suffering from inflammatory diseases. In the present study we evaluated the effects of Vimang at preventing reactive oxygen species (ROS) formation and lipid peroxidation in intact isolated rat hepatocytes. Vimang at 20, 50 and 100 microg/ml inhibited hepatocyte ROS formation induced by glucose-glucose oxidase. Hepatocyte cytotoxicity and lipid peroxidation induced by cumene hydroperoxide was also inhibited by Vimang in a dose and time dependent manner at the same concentration. Vimang also inhibited superoxide radical formation by xanthine oxidase and hypoxanthine. The superoxide radical scavenging and antioxidant activity of the Vimang extract was likely related to its gallates, catechins and mangiferin content. To our knowledge, this is the first report of cytoprotective antioxidant effects of Vimang in cellular oxidative stress models.

  11. Electrophysiological evidence for Na+-coupled bicarbonate transport in cultured rat hepatocytes.

    PubMed

    Fitz, J G; Persico, M; Scharschmidt, B F

    1989-03-01

    Recent observations suggest that hepatocytes exhibit basolateral electrogenic Na+-coupled HCO3- transport. In these studies, we have further investigated this transport mechanism in primary culture of rat hepatocytes using intracellular microelectrodes to measure membrane potential difference (PD) and the pH-sensitive fluorochrome 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein to measure intracellular pH (pHi). In balanced media containing 25 mM HCO3-, PD averaged -32.1 +/- 0.6 (SE) mV and pHi averaged 7.22 +/- 0.03. PD became more negative (hyperpolarized) when extracellular [HCO3-] was increased and less negative (depolarized) when extracellular HCO3- was decreased. Acute replacement of extracellular Na+ by choline also resulted in membrane depolarization of 18.0 +/- 1.6 mV, suggesting net transfer of negative charge. This decrease in PD upon Na+ removal was HCO3- -dependent, amiloride insensitive, and inhibited by the disulfonic stilbene 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS). PD also decreased upon acute exposure to SITS. The degree of depolarization seen with removal of Na+ or HCO3- correlated directly with resting PD (r = 0.81 and 0.95, respectively), suggesting a voltage-dependent mechanism. Removal of extracellular Na+ also decreased pHi to 7.06 +/- 0.02, and this acidification was decreased in the absence of HCO3- or in the presence of SITS or amiloride. These studies provide direct evidence for electrogenic Na+-coupled HCO3- transport in rat hepatocytes. Further, they suggest that it represents a major pathway for conductive movement of Na+ across the membrane and that it contributes, along with Na+-H+ exchange, to the intracellular acidification observed upon removal of extracellular Na+.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways

    PubMed Central

    Botolin, Daniela; Wang, Yun; Christian, Barbara; Jump, Donald B.

    2009-01-01

    Insulin induces and dietary n-3 PUFAs suppress hepatic de novo lipogenesis by controlling sterol-regulatory element binding protein-1 nuclear abundance (nSREBP-1). Our goal was to define the mechanisms involved in this regulatory process. Insulin treatment of rat primary hepatocytes rapidly augments nSREBP-1 and mRNASREBP-1c while suppressing mRNAInsig-2 but not mRNAInsig-1. These events are preceded by rapid but transient increases in Akt and Erk phosphorylation. Removal of insulin from hepatocytes leads to a rapid decline in nSREBP-1 [half-time (T1/2) ~ 10 h] that is abrogated by inhibitors of 26S proteasomal degradation. 22:6,n-3, the major n-3 PUFA accumulating in livers of fish oil-fed rats, suppresses hepatocyte levels of nSREBP-1, mRNASREBP-1c, and mRNAInsig-2 but modestly and transiently induces mRNAInsig-1. More importantly, 22:6,n-3 accelerates the disappearance of hepatocyte nSREBP-1 (T1/2 ~ 4 h) through a 26S proteasome-dependent process. 22:6,n-3 has minimal effects on microsomal SREBP-1 and sterol-regulatory element binding protein cleavage-activating protein or nuclear SREBP-2. 22:6,n-3 transiently inhibits insulin-induced Akt phosphorylation but induces Erk phosphorylation. Inhibitors of Erk phosphorylation, but not overexpressed constitutively active Akt, rapidly attenuate 22:6,n-3 suppression of nSREBP-1. Thus, 22:6,n-3 suppresses hepatocyte nSREBP-1 through 26S proteasome- and Erk-dependent pathways. These studies reveal a novel mechanism for n-3 PUFA regulation of hepatocyte nSREBP-1 and lipid metabolism.—Botolin, D., Y. Wang, B. Christian, and D. B. Jump. Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways. PMID:16222032

  13. Selective Toxicity of Apigenin on Cancerous Hepatocytes by Directly Targeting their Mitochondria.

    PubMed

    Seydi, Enayatollah; Rasekh, Hamid R; Salimi, Ahmad; Mohsenifar, Zhaleh; Pourahmad, Jalal

    2016-01-01

    hepatocellular carcinoma (HCC) is the third cause of mortality due to cancer throughout the world. The main goal of the current research was to evaluate the selective toxicity of apigenin (APG) on hepatocytes and mitochondria obtained from the liver of HCC rats). In this research, HCC induced by a single dose of diethylnitrosamine (DEN); 200 mg/kg, i.p, and 2-acetylaminofluorene (2-AAF) (0.02%, through dietary) for 14 days. For confirmation of HCC, histopathological evaluations and determination of serum concentrations of liver toxicity enzymes and specific liver cancer marker; alpha-fetoprotein (AFP) were performed. Then, cancerous and non- cancerous hepatocytes were isolated by using the collagen perfusion method. Eventually, mitochondria isolated from HCC and normal hepatocytes were tested for every eventual toxic effects of APG. After confirmation of HCC, the results of this research showed that APG (10, 20 and 40 μM) increased mitochondrial parameters such as, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) level, mitochondrial swelling and cytochrome c expulsion only in cancerous hepatocytes. Apoptotic effect of APG on HCC cells was confirmed by caspase-3 activation and Annexin V-FITC and PI double staining analysis. These results propose the eligibility of the flavonoid APG as a complementary therapeutic agent for patients with hepatocellular carcinoma.

  14. Cytoprotective Effects of Hydrophilic and Lipophilic Extracts of Pistacia vera against Oxidative Versus Carbonyl Stress in Rat Hepatocytes

    PubMed Central

    Shahraki, Jafar; Zareh, Mona; Kamalinejad, Mohammad; Pourahmad, Jalal

    2014-01-01

    This study was conducted to evaluate the cytoprotection of various extracts and bioactive compounds found in Pistacia vera againts cytotoxicity, ROS formation, lipid peroxidation, protein carbonylation, mitochondrial and lysosomal membrane damages in cell toxicity models of diabetes related carbonyl (glyoxal) and oxidative stress (hydroperoxide). Methanol, water and ethyl acetate were used to prepare crude pistachios extracts, which were then used to screen for in-vitro cytoprotection of freshly isolated rat hepatocytes against these toxins. The order of protection by Pistacia vera extracts against both hydroperoxide induced oxidative stress (ROS formation) and glyoxal induced protein carbonylation was: pistachio methanolic extract >pistachio water extract, gallic acid, catechin> α-tochoferol and pistachio ethyl acetate extract. Finally due to higher protection achieved by methanolic extract even compared to sole pretreatment of gallic acid, catechin or α-tochoferol, we suggest that cytoprotection depends on the variety of polar and non-polar compounds found in methanolic extract, it is likely that multiple cytoprotective mechanisms are acting against oxidative and carbonyl induced cytotoxicity. To our knowledge, we are the first to report the cytoprotective activity of Pistacia vera extracts against oxidative and carbonyl stress seen in type 2 diabetes hepatocytes model. PMID:25587316

  15. PLCγ2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK MAPK and PKCD/p38 MAPK signalling.

    PubMed

    Chen, Xiaoguang; Lv, Qiongxia; Ma, Jun; Liu, Yumei

    2018-02-11

    The PLCG2 (PLCγ2) gene is a member of PLC gene family encoding transmembrane signalling enzymes involved in various biological processes including cell proliferation and apoptosis. Our earlier study indicated that PLCγ2 may be involved in the termination of regeneration of the liver which is mainly composed of hepatocytes, but its exact biological function and molecular mechanism in liver regeneration termination remains unclear. This study aims to examine the role of PLCγ2 in the growth of hepatocytes. A recombinant adenovirus expressing PLCγ2 was used to infect primary rat hepatocytes. PLCγ2 mRNA and protein levels were detected by qRT-PCR and Western blot. The subcellular location of PLCγ2 protein was tested by an immunofluorescence assay. The proliferation of hepatocytes was measured by MTT assay. The cell cycle and apoptosis were analysed by flow cytometry. Caspase-3, -8 and -9 activities were measured by a spectrophotometry method. Phosphorylation levels of PKCD, JNK and p38 in the infected cells were detected by Western blot. The possible mechanism underlying the role of PLCγ2 in hepatocyte growth was also explored by adding a signalling pathway inhibitor. Hepatocyte proliferation was dramatically reduced, while cell apoptosis was remarkably increased. The results demonstrated that PLCγ2 increased the phosphorylation of PKCD, p38 and JNK in rat hepatocytes. After PKCD activity was inhibited by the inhibitor Go 6983, the levels of both p-p38 and p-JNK MAPKs significantly decreased, and PLCγ2-induced cell proliferation inhibition and cell apoptosis were obviously reversed. This study showed that PLCγ2 regulates hepatocyte growth through PKCD-dependently activating p38 MAPK and JNK MAPK pathways; this result was experimentally based on the further exploration of the effect of PLCγ2 on hepatocyte growth in vivo. © 2018 John Wiley & Sons Ltd.

  16. Isolation and hepatocyte differentiation of mesenchymal stem cells from porcine bone marrow--"surgical waste" as a novel MSC source.

    PubMed

    Brückner, S; Tautenhahn, H-M; Winkler, S; Stock, P; Jonas, S; Dollinger, M; Christ, B

    2013-06-01

    Mesenchymal stem cells (MSC) isolated from bone marrow and differentiated into hepatocyte-like cells have increasingly gained attention for clinical cell therapy of liver diseases because of their high regenerative capacity. They are available from bone marrow aspirates of the os coxae after puncture of the crista iliaca or from bone marrow "surgical waste" gained from amputations or knee and hip operations. Thus, the aim of the study was to demonstrate whether these pBM-MSC (porcine bone marrow-derived mesenchymal stem cells) displayed mesenchymal features and hepatocyte differentiation potential. MSC were isolated either from crista iliaca punctures or after sampling and collagenase digestion of bone marrow from the os femoris. Mesenchymal features were assessed by flow cytometry for specific surface antigens and their ability to differentiate into at least 3 lineages. Functional properties, such as urea or glycogen synthesis and cytochrome P450 activity, as well as the cell morphology were examined during hepatocyte differentiation. pBM-MSC from both sources lacked the hematopoietic markers CD14 and CD45 but expressed the typical mesenchymal markers CD44, CD29, CD90, and CD105. Both cell types could differentiate into adipocyte, osteocyte, and hepatocyte lineages. After hepatocyte differentiation, CD105 expression decreased significantly and cells changed morphology from fibroblastoid into polygonal, displaying significantly increased glycogen storage, urea synthesis, and cytochrome activity. pBM-MSC from various sources were identical in respect to their mesenchymal features and their hepatocyte differentiation potential. Hence, long bones might be a particularly useful resource to isolate bone marrow mesenchymal stem cells for transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Divergent mechanisms of insulin-like growth factor I and II on rat hepatocyte proliferation.

    PubMed

    Raper, S; Kothary, P; Ishoo, E; Dikin, M; Kokudo, N; Hashimoto, M; DeMatteo, R P

    1995-07-21

    Insulin-like growth factors I and II are peptides with a structural homology for proinsulin, and are involved in hepatocyte proliferation. IGF-I and IGF-II, however, have different metabolic roles, and their mechanisms of action are incompletely known. We hypothesized that IGF-I and IGF-II act by different signal transduction pathways. To test this hypothesis, hepatocytes from 200 g male Sprague-Dawley rats were isolated by a two-step collagenase perfusion technique and plated at a density of 10(5) cells/16 mm Primaria plate. Proliferation was measured by [3H]thymidine ([3H]thy) incorporation into DNA, and an autoradiographic nuclear labeling index (LI). To analyze signal transduction, cyclic AMP (cAMP) levels were measured 5 min after addition of reagents by a radioimmunoassay. Reagents (doses) used were: IGF-I (2 nM), IGF-II (2 nM), the inhibitory peptide somatostatin-14 (SS14) (10 nM), and the adenylyl cyclase antagonist dideoxyadenosine (DDA) (10 microM). A summary of the findings is as follows: (1) IGF-I stimulates [3H]thy, LI and cAMP accumulation. (2) IGF-II stimulates [3H]thy and LI but not cAMP; (3) IGF-I but not IGF-II effects are inhibited by SS14 and DDA. We conclude that the hepatotrophic effects of IGF-I and IGF-II occur by different mechanisms: IGF-I is cAMP-dependent, IGF-II is cAMP-independent.

  18. DICHLOROACETIC ACID (DCA) INHIBITS PROLIFERATION AND APOPTOSIS IN NORMAL HEPATOCYTES OF MALE F344 RATS

    EPA Science Inventory

    Dichloroacetic acid (DCA} inhibits proliferation and apoptosis in nonnal hepatocytes of
    male F344 rats.

    Large segments of the population are chronically exposed to dichloroacetic acid (DCA}: DCA is a by product of the chlorine disinfection of drinking water, a metab...

  19. Carbon Tetrachloride at Hepatotoxic Levels Blocks Reversibly Gap Junctions between Rat Hepatocytes

    NASA Astrophysics Data System (ADS)

    Saez, J. C.; Bennett, M. V. L.; Spray, D. C.

    1987-05-01

    Electrical coupling and dye coupling between pairs of rat hepatocytes were reversibly reduced by brief exposure to halogenated methanes (CBrCl3, CCl4, and CHCl3). The potency of different halomethanes in uncoupling hepatocytes was comparable to their hepatotoxicity in vivo, and the rank order was the same as that of their tendency to form free radicals. The effect of carbon tetrachloride (CCl4) on hepatocytes was substantially reduced by prior treatment with SKF 525A, an inhibitor of cytochrome P-450, and by exposure to the reducing reagent β -mercaptoethanol. Halomethane uncoupling occurred with or without extracellular calcium and did not change intracellular concentrations of calcium and hydrogen ions or the phosphorylation state of the main gap-junctional protein. Thus the uncoupling appears to depend on cytochrome P-450 oxidative metabolism in which free radicals are generated and may result from oxidation of the gap-junctional protein or of a regulatory molecule that leads to closure of gap-junctional channels. Decreases in junctional conductance may be a rapid cellular response to injury that protects healthy cells by uncoupling them from unhealthy ones.

  20. Effect of diphenyl ether herbicides and oxadiazon on porphyrin biosynthesis in mouse liver, rat primary hepatocyte culture and HepG2 cells.

    PubMed

    Krijt, J; van Holsteijn, I; Hassing, I; Vokurka, M; Blaauboer, B J

    1993-01-01

    The effects of the herbicides fomesafen, oxyfluorfen, oxadiazon and fluazifop-butyl on porphyrin accumulation in mouse liver, rat primary hepatocyte culture and HepG2 cells were investigated. Ten days of herbicide feeding (0.25% in the diet) increased the liver porphyrins in male C57B1/6J mice from 1.4 +/- 0.6 to 4.8 +/- 2.1 (fomesafen) 16.9 +2- 2.9 (oxyfluorfen) and 25.9 +/- 3.1 (oxadiazon) nmol/g wet weight, respectively. Fluazifop-butyl had no effect on liver porphyrin metabolism. Fomesafen, oxyfluorfen and oxadiazon increased the cellular porphyrin content of rat hepatocytes after 24 h of incubation (control, 3.2 pmol/mg protein, fomesafen, oxyfluorfen and oxadiazon at 0.125 mM concentration 51.5, 54.3 and 44.0 pmol/mg protein, respectively). The porphyrin content of HepG2 cells increased from 1.6 to 18.2, 10.6 and 9.2 pmol/mg protein after 24 h incubation with the three herbicides. Fluazifop-butyl increased hepatic cytochrome P450 levels and ethoxy- and pentoxyresorufin O-dealkylase (EROD and PROD) activity, oxyfluorfen increased PROD activity. Peroxisomal palmitoyl CoA oxidation increased after fomesafen and fluazifop treatment to about 500% of control values both in mouse liver and rat hepatocytes. Both rat hepatocytes and HepG2 cells can be used as a test system for the porphyrogenic potential of photobleaching herbicides.

  1. cAMP inhibits inducible nitric oxide synthase expression and NF-kappaB-binding activity in cultured rat hepatocytes.

    PubMed

    Harbrecht, B G; Taylor, B S; Xu, Z; Ramalakshmi, S; Ganster, R W; Geller, D A

    2001-08-01

    The inducible nitric oxide synthase (iNOS) is strongly expressed following inflammatory stimuli. Adenosine 3',5'-cyclic monophosphate (cAMP) increases iNOS expression and activity in a number of cell types but decreases cytokine-stimulated iNOS expression in hepatocytes. The mechanisms for this effect are unknown. Rat hepatocytes were stimulated with cytokines to induce iNOS and cultured with cAMP agonists dibutyryl-cAMP (dbcAMP), 8-bromo-cAMP, and forskolin (FSK). Nitric oxide synthesis was assessed by supernatant nitrite levels and iNOS expression was measured by Northern and Western blot analyses. Nuclear factor kappaB binding was assessed by electromobility shift assay. Cyclic AMP dose dependently decreased NO synthesis in response to a combination of proinflammatory cytokines or interleukin-1beta (IL-1beta) alone. The adenylate cyclase inhibitor SQ 22,536 increased cytokine- or IL-1beta-stimulated NO synthesis. dbcAMP decreased iNOS mRNA expression and iNOS protein expression. Both dbcAMP and glucagon decreased iNOS promoter activity in rat hepatocytes transfected with the murine iNOS promoter and decreased DNA binding of the transcription factor NF-kappaB. These data suggest that cAMP is important in hepatocyte iNOS expression and agents that alter cAMP levels may profoundly alter the response of hepatocytes to inflammatory stimuli through effects onthe iNOS promoter region and NF-kappaB. Copyright 2001 Academic Press.

  2. Supercooling as a Viable Non-Freezing Cell Preservation Method of Rat Hepatocytes

    PubMed Central

    Usta, O. Berk; Kim, Yeonhee; Ozer, Sinan; Bruinsma, Bote G.; Lee, Jungwoo; Demir, Esin; Berendsen, Tim A.; Puts, Catheleyne F.; Izamis, Maria-Louisa; Uygun, Korkut; Uygun, Basak E.; Yarmush, Martin L.

    2013-01-01

    Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4oC) on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics) to that of static cold storage (CS at +4oC) and cryopreservation. We consider two prominent preservation solutions a) Hypothermosol (HTS-FRS) and b) University of Wisconsin solution (UW) and a range of preservation temperatures (-4 to -10 oC). We find that there exists an optimum temperature (-4oC) for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture). With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%); moreover we also show that the preservation can be performed in large batches (50 million cells) with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells) performed in cryovials. PMID:23874947

  3. Unscheduled DNA synthesis in human hair follicles after in vitro exposure to 11 chemicals: comparison with unscheduled DNA synthesis in rat hepatocytes.

    PubMed

    van Erp, Y H; Koopmans, M J; Heirbaut, P R; van der Hoeven, J C; Weterings, P J

    1992-06-01

    A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.

  4. Prolactin-stimulated ornithine decarboxylase induction in rat hepatocytes: Coupling to diacylglycerol generation and protein kinase C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, A.R.; Buckley, D.J.

    1991-01-01

    The trophic effects of prolactin (PRL) in rat liver have been linked to activation of protein kinase C (PKC). Since alterations in PKC activity imply its activation by 1,2-diacylglycerol (DAG), we tested whether PRL treatment stimulated DAG generation coupled to induction of a growth response in primary hepatocytes. Addition of PRL to hepatocyte cultures significantly increased ({sup 3}H)-glycerol incorporation into DAG within 5 minutes which was followed by a loss of cytosolic PKC activity by 10 minutes. Prolactin also significantly enhanced radiolabel incorporation into triacylglycerol and phospholipids within 10 minutes and induced ODC activity at 6 hours. Therefore, prolactin-stimulated alterationsmore » in PKC activity are preceded by enhanced DAG generation. Moreover, these events appear to be coupled to PRL-stimulated entry of hepatocytes into cell cycle.« less

  5. In vitro Drug Metabolism Investigation of 7-Ethoxycoumarin in Human, Monkey, Dog and Rat Hepatocytes by High Resolution LC-MS/MS.

    PubMed

    Feng, Wan-Yong; Wen, Jenny; Stauber, Kathe

    2018-04-18

    Recently, it has been an increasing concern on the bioactivation and adverse reactions associated with consumption of herbal and nature products such as coumarin family. 7-ethoxycoumarin is one of coumarin family compounds, but little information is available regarding its potential reactive metabolites. In this study, we investigated its metabolism in cryopreserved male/female mixed human, male Cynomolgus monkey, male Beagle dog and male Sprague Dawley rat hepatocytes. Following the incubation of 7-ethoxylcoumarin in the hepatocytes for 2 hr, 28 metabolites were detected and identified using high resolution LC-Q-Exactive system in the positive ion and negative ion modes. O-deethylation, glucuronidation, sulfation, oxygenation, oxidative ring-opening, hydrogenation, glutathionation, dehydrogenation, cysteination, glucosidation, methylation, and hydrolysis were observed. At least sixteen metabolites were newly identified. M1 (O-deethylation, mono-oxygenation and glucuronidation), M3 (O-deethylation and glucuronidation), M5 (hydrolysis and mono-oxygenation), M14 (Odeethylation), M16 (hydrolysis), M22 (oxidative ring-opening and oxygenation) and M27 (mono-oxygenation) appeared to be major metabolites in human hepatocytes. M3, M5, M8, M13 (mono-oxygenation), M14, M16, M18 (O-deethylation and sulfation), M22 and M27 appeared to be major metabolites in monkey hepatocytes. M14, M16, M18, M20 (glutathionation and dehydrogenation) and M27 appeared to be major metabolites in dog hepatocytes. M1 (O-deethylation, mono-oxygenation and glucuronidation), M3, M5, M13, M14, M16, M17 (cysteination), M18, M20, and M22 appeared to be major metabolites in rat hepatocytes. Species differences in metabolism of 7-ethoxylcoumarin in hepatocytes were observed across humans, monkeys, dogs and rats. The analysis of metabolites suggests that 7-ethoxylcoumarin may undergo 3,4-epoxidation responsible for formation of glutathione and its derived cysteine conjugates, and carboxylic acid and its

  6. VLDL metabolism in rats is affected by the concentration and source of dietary protein.

    PubMed

    Madani, Sihem; Prost, Josiane; Narce, Michel; Belleville, Jacques

    2003-12-01

    The present study was designed to determine if changes in dietary protein level and source are related to changes in VLDL lipid concentrations and VLDL binding by hepatic membranes and isolated hepatocytes. Male Wistar rats were fed cholesterol-free diets containing 10, 20 or 30 g/100 g casein or highly purified soybean protein for 4 wk. Hepatic, plasma and VLDL lipids, VLDL apo B-100 and VLDL uptake by isolated hepatocytes and VLDL binding to hepatic membrane were determined. Increasing casein or soybean protein level (from 10 to 30 g/100 g) in the diet increased VLDL apo B-100, indicating an increase in the number of VLDL particles. VLDL uptake by isolated hepatocytes and VLDL binding to hepatic membrane increased when the protein level increased from 10 to 20 g/100 g in the diet and decreased with 30 g/100 g protein, regardless of protein type. The dietary protein source did not affect plasma total cholesterol concentrations at any protein level. Feeding 20 g/100 g soybean protein compared with casein lowered plasma triglyceride concentrations and VLDL number as measured by decreased VLDL-protein, -phospholipid, -triglyceride, -cholesterol and -apo B-100. VLDL uptake by isolated hepatocytes and VLDL binding to hepatic membrane were higher in rats fed soybean protein than those fed casein. The higher VLDL uptake could be responsible for the hypotriglyceridemia in rats fed soybean protein.

  7. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes.

    PubMed Central

    Skorin, C; Necochea, C; Johow, V; Soto, U; Grau, A M; Bremer, J; Leighton, F

    1992-01-01

    Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in mitochondrial oxidation (ketogenesis) affected saturated fatty acids with 12 or more carbon atoms, whereas the increase in peroxisomal oxidation (H2O2 production) affected saturated fatty acids with 8 or more carbon atoms. The peroxisomal increase was sensitive to chlorpromazine, a peroxisomal inhibitor. To study possible mechanisms, palmitoyl-, octanoyl- and acetyl-carnitine acyltransferase activities were measured, in homogenates and in subcellular fractions from control and TDGA-treated cells. The palmitoylcarnitine acyltransferase was inhibited, as expected, but the octanoyltransferase activity also decreased. The CoA derivative of TDGA was synthesized and tentatively identified as being responsible for inhibition of the octanoylcarnitine acyltransferase. These results show that inhibitors of the mitochondrial CPT I may also inhibit the peroxisomal octanoyl transferase; they also support the hypothesis that the octanoyltransferase has the capacity to control or regulate peroxisomal fatty acid oxidation. PMID:1736904

  8. Construction of the Database of Rat Repeated-dose Toxicity Tests of Pesticides for the Toxicological Characterization of Hepatocyte Hypertrophy.

    PubMed

    Masuda, Akane; Masuda, Miyabi; Kawano, Takuya; Kitsunai, Yoko; Nakayama, Haruka; Nakajima, Hiroyuki; Kojima, Hiroyuki; Kitamura, Shigeyuki; Uramaru, Naoto; Hosaka, Takuomi; Sasaki, Takamitsu; Yoshinari, Kouichi

    2017-01-01

    Liver and hepatocyte hypertrophy can be induced by exposure to chemical compounds, but the mechanisms and toxicological characteristics of these phenomena have not yet been investigated extensively. In particular, it remains unclear whether the hepatocyte hypertrophy induced by chemical compounds should be judged as an adaptive response or an adverse effect. Thus, understanding of the toxicological characteristics of hepatocyte hypertrophy is of great importance to the safety evaluation of pesticides and other chemical compounds. To this end, we have constructed a database of potentially toxic pesticides. Using risk assessment reports of pesticides that are publicly available from the Food Safety Commission of Japan, we extracted all observations/findings that were based on 90-day subacute toxicity tests and 2-year chronic toxicity and carcinogenicity tests in rats. Analysis of the database revealed that hepatocyte hypertrophy was observed for 37-47% of the pesticides investigated (varying depending on sex and testing period), and that centrilobular hepatocyte hypertrophy was the most frequent among the various types of hepatocyte hypertrophy in both the 90-day and 2-year studies. The database constructed in this study enables us to investigate the relationships between hepatocyte hypertrophy and other toxicological observations/findings, and thus will be useful for characterizing hepatocyte hypertrophy.

  9. Biochemical characterization of domain-specific glycoproteins of the rat hepatocyte plasma membrane.

    PubMed

    Bartles, J R; Braiterman, L T; Hubbard, A L

    1985-10-15

    Seven integral proteins (CE 9, HA 21, HA 116, HA 16, HA 4, HA 201, and HA 301) were isolated from rat hepatocyte plasma membranes by immunoaffinity chromatography on monoclonal antibody-Sepharose. Six of the proteins (all but HA 16) exhibit domain-specific localizations (either bile canalicular or sinusoidal/lateral) about the hepatocyte surface. We identified three of these protein antigens as leucine aminopeptidase (HA 201), dipeptidyl peptidase IV (HA 301), and the asialoglycoprotein receptor (HA 116). We also developed 125I-lectin blotting procedures that, when used in conjunction with chemical and glycosidase treatments, permitted a comparison of the types of oligosaccharides present on the seven proteins. All seven are sialoglycoproteins, based upon the effects of prior neuraminidase and periodate-aniline-cyanoborohydride treatments of blots on labeling by 125I-wheat germ agglutinin. 125I-labeled Ricinus communis agglutinin I and 125I-peanut agglutinin blotting of the desialylated proteins revealed few if any conventional O-linked oligosaccharides, suggesting that the sialyl residues represent termini of N-linked complex-type oligosaccharides. Depending upon the protein, we estimated the presence of 2-26 N-linked oligosaccharides/polypeptide chain from the Mr reductions accompanying chemical or enzymatic deglycosylation. Three of these mature plasma membrane proteins (HA 21, HA 116, and HA 4) have both high mannose-type and complex-type oligosaccharides on every copy of their polypeptide chains. The labeling of these three proteins by 125I-concanavalin A was sensitive to treatment with endoglycosidase H, and each exhibited a quantitative reduction in Mr after the treatment, as assessed independently by 125I-wheat germ agglutinin blotting. At this level of analysis, we were unable to discern differences in the types of oligosaccharides present on these seven glycoproteins that correlate with their patterns of expression within the plasma membrane domains of

  10. p38 MAPK signal pathway involved in anti-inflammatory effect of Chaihu-Shugan-San and Shen-ling-bai-zhu-San on hepatocyte in non-alcoholic steatohepatitis rats.

    PubMed

    Yang, QinHe; Xu, YongJian; Feng, GaoFei; Hu, ChaoFeng; Zhang, YuPei; Cheng, ShaoBing; Wang, YanPing; Gong, XiangWen

    2014-01-01

    Traditional Chinese Medicine (TCM), has over thousands-of-years history of use. Chaihu-Shugan-San (CSS), and Shen-ling-bai-zhu-San (SLBZS), are famous traditional Chinese herbal medicine formulas, which have been used in China, for the treatment of many chronic diseases. This study investigated the anti-inflammatory effects of CSS and SLBZS on signaling molecules involved in p38 mitogen-activated protein kinase (p38 MAPK), pathway on hepatocytes of non-alcoholic steatohepatitis (NASH), rats induced by high fat diet. SD male rats were randomly divided into 8 groups: negative control group, model control group, high (9.6g/kg/day)/low (3.2g/kg/day)-dose CSS group, high (30g/kg/day)/low (10g/kg/day)-dose SLBZS group, high (39.6g/kg/day)/low (13.2g/kg/day)-dose integrated group. The rats of NASH model were induced by feeding a high-fat diet. After 16, wks, Hepatocytes were isolated from 6, rats in each group by collagenase perfusion. The liver histopathological changes and serum inflammatory cytokines TNF-α, IL-6 were determined. The proteins of TLR4, phosphor-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway were assayed. The statistical data indicated the NASH model rats reproduced typical histopathological features of NASH in human. CSS and SLBZS ameliorated lipid metabolic disturbance, attenuated NASH progression, decreased the levels of TNF-α and IL-6 in serum, as well as inhibited TLR4 protein expression, p38 MAPK phosphorylation, and activation of p38 MAPK. In conclusion, CSS and SLBZS might work as a significant anti-inflammatory effect on hepatocyte of NASH by inhibiting the activation of TLR4, p-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway. To some extent, CSS and SLBZS may be a potential alternative and complementary medicine to protect against liver injury, alleviate the inflammation reaction, moderate NASH progression.

  11. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells

    PubMed Central

    Peters, Derek T.; Henderson, Christopher A.; Warren, Curtis R.; Friesen, Max; Xia, Fang; Becker, Caroline E.; Musunuru, Kiran; Cowan, Chad A.

    2016-01-01

    ABSTRACT Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. PMID:27143754

  12. Effect of endogenous nitric oxide on mitochondrial respiration of rat hepatocytes in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, J.; Curran, R.D.; Ochoa, J.B.

    1991-02-01

    Nitric oxide, a highly reactive radical, was recently identified as an intermediate of L-arginine metabolism in mammalian cells. We have shown that nitric oxide synthesis is induced in vitro in cultured hepatocytes by supernatants from activated Kupffer cells or in vivo by injecting rats with nonviable Corynebacterium parvum. In both cases, nitric oxide biosynthesis in hepatocytes was associated with suppression of total protein synthesis. This study attempts to determine the effect of nitric oxide biosynthesis on the activity of specific hepatocytic mitochondrial enzymes and to determine whether inhibition of protein synthesis is caused by suppression of energy metabolism. Exposure ofmore » hepatocytes to supernatants from activated Kupffer cells led to a 30% decrease of aconitase (Krebs cycle) and complex I (mitochondrial electron transport chain) activity. Using NG-monomethyl-L-arginine, an inhibitor of nitric oxide synthesis, we demonstrated that the inhibition of mitochondrial aconitase activity was due, in part, to the action of nitric oxide. In contrast, in vivo nitric oxide synthesis of hepatocytes from Corynebacterium parvum-treated animals had no effect on mitochondrial respiration. This suggests that inhibition of protein synthesis by nitric oxide is not likely to be mediated by inhibition of energy metabolism.« less

  13. Interactions between macrophage/Kupffer cells and hepatocytes in surgical sepsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, M.A.

    Experiments were performed to investigate the role of Kupffer cell/macrophage interactions with hepatocytes in modulating liver function during infections using direct in vitro cocultivation of rat macrophages or Kupffer cells with rat hepatocytes. Protein synthesis was assayed as a sensitive indicator of integrated hepatocellular function by measuring {sup 3}H-leucine incorporation into hepatocyte protein. Septic stimuli such as lipoploysaccharide and killed bacteria were added to cocultures of hepatocytes and macrophages or Kupffer cells and the responses compared to hepatocytes alone. Information about the types of proteins synthesized by hepatocytes under various culture conditions was determined using polyacrylamide gel electrophoresis and autoradiography.more » These experiments showed that septic stimuli alter the amount and type of protein synthesized by hepatocytes and had no direct effect on hepatocytes in the absence of macrophages or Kupffer cells. The mediator(s) appears to be a heat labile, soluble monokine(s) which is distinct from interleukin-1 or tumor necrosis factor. The important role of Kupffer cells/macrophages in mediating alterations in hepatocellular function in sepsis may ultimately improve patient care.« less

  14. Reactive oxygen species mediate human hepatocyte injury during hypoxia/reoxygenation.

    PubMed

    Bhogal, Ricky Harminder; Curbishley, Stuart M; Weston, Christopher J; Adams, David H; Afford, Simon C

    2010-11-01

    Increasing evidence shows that reactive oxygen species (ROS) may be critical mediators of liver damage during the relative hypoxia of ischemia/reperfusion injury (IRI) associated with transplant surgery or of the tissue microenvironment created as a result of chronic hepatic inflammation or infection. Much work has been focused on Kupffer cells or liver resident macrophages with respect to the generation of ROS during IRI. However, little is known about the contribution of endogenous hepatocyte ROS production or its potential impact on the parenchymal cell death associated with IRI and chronic hepatic inflammation. For the first time, we show that human hepatocytes isolated from nondiseased liver tissue and human hepatocytes isolated from diseased liver tissue exhibit marked differences in ROS production in response to hypoxia/reoxygenation (H-R). Furthermore, several different antioxidants are able to abrogate hepatocyte ROS-induced cell death during hypoxia and H-R. These data provide clear evidence that endogenous ROS production by mitochondria and nicotinamide adenine dinucleotide phosphate oxidase drives human hepatocyte apoptosis and necrosis during hypoxia and H-R and may therefore play an important role in any hepatic diseases characterized by a relatively hypoxic liver microenvironment. In conclusion, these data strongly suggest that hepatocytes and hepatocyte-derived ROS are active participants driving hepatic inflammation. These novel findings highlight important functional/metabolic differences between hepatocytes isolated from normal donor livers, hepatocytes isolated from normal resected tissue obtained during surgery for malignant neoplasms, and hepatocytes isolated from livers with end-stage disease. Furthermore, the targeting of hepatocyte ROS generation with antioxidants may offer therapeutic potential for the adjunctive treatment of IRI and chronic inflammatory liver diseases. © 2010 AASLD.

  15. Modulation of caspase-3 activity and Fas ligand mRNA expression in rat liver cells in vivo by alcohol and lipopolysaccharide.

    PubMed

    Deaciuc, I V; Fortunato, F; D'Souza, N B; Hill, D B; Schmidt, J; Lee, E Y; McClain, C J

    1999-02-01

    The purpose of this study was to determine if exacerbation of apoptosis precedes liver injury during chronic exposure of rats to alcohol. After 7 weeks of feeding an alcohol- or dextrin-containing liquid diet, the animals were treated with gram-negative bacterial lipopolysaccharide (1 mg x kg(-1) body weight, intravenously) or sterile saline and sacrificed 3 hr after the treatment. Alanine:2-oxoglutarate aminotransferase (ALT) and lactate:NAD oxidoreductase [lactate dehydrogenase (LDH)] were measured in plasma. The caudate lobe of the liver was resected for histology, while the rest of the organ was perfused with collagenase to isolate hepatocytes, Kupffer cells (KCs), and sinusoidal endothelial cells (SECs) by centrifugal elutriation. Hepatocyte mitochondria were isolated by differential centrifugation of the cell homogenate. Reduced and oxidized glutathione (GSH and GSSG) in isolated hepatocytes and hepatocyte mitochondria, and malondialdehyde in hepatocytes were assayed. Caspase-3 activity and Fas ligand mRNA expression were determined in hepatocytes, KCs, and SECs. Plasma ALT and LDH activity, liver histology, GSH, GSSG and their ratio, and malondialdehyde content were not affected by alcohol treatment Caspase-3 activity was significantly increased in alcohol-treated rats in all three cell types, with the lowest response observed in hepatocytes and the highest in KCs. Fas ligand mRNA expression, which had the highest level in SECs, followed by KCs and hepatocytes, was not affected by alcohol administration. Lipopolysaccharide had the following effects: an increase in ALT in both pair- and alcohol-fed rats, and LDH only in alcohol-fed rats, a decrease in GSH + GSSG levels in both mitochondria and hepatocytes, an elevation of malondialdehyde content in hepatocytes, a raise in caspase-3 activity in all groups and cell types, and an augmentation of Fas ligand expression in hepatocytes and KCs, but not in SECs. These data suggest that, during chronic alcohol

  16. Effects of adrenalectomy on the alpha-adrenergic regulation of cytosolic free calcium in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freudenrich, C.C.; Borle, A.B.

    1988-06-25

    We have previously published that bilateral adrenalectomy in the rat reduces the Ca2+-mediated alpha-adrenergic activation of hepatic glycogenolysis, while it increases the cellular calcium content of hepatocytes. In the experiments presented here, the concentration of cytosolic free calcium (Ca2+i) at rest and in response to epinephrine was measured in aequorin-loaded hepatocytes isolated from sham and adrenalectomized male rats. We found that in adrenalectomized rats the resting Ca2+i was elevated, the rise in Ca2+i evoked by epinephrine was reduced, and the rise in /sup 45/Ca efflux that follows such stimulation was depressed. Furthermore, the slope of the relationship between Ca2+i andmore » calcium efflux was decreased 60% in adrenalectomized. Adrenalectomy did not change Ca2+ release from intracellular calcium pools in response to IP3 in saponin-permeabilized hepatocytes. The EC50 for inositol 1,4,5-triphosphate and the maximal Ca2+ released were similar in both sham and adrenalectomized animals. Finally, the liver calmodulin content determined by radioimmunoassay was not significantly different between sham and adrenalectomized rats. These results suggest that 1) adrenalectomy reduces calcium efflux from the hepatocyte, probably by an effect on the plasma membrane (Ca2+-Mg2+)-ATPase-dependent Ca2+ pump and thus alters cellular calcium homeostasis; 2) adrenalectomy decreases the rise in Ca2+i in response to epinephrine; 3) this decreased rise in Ca2+i is not due to defects in the intracellular Ca2+ storage and mobilization processes; and 4) the effects of adrenalectomy on cellular calcium metabolism and on alpha-adrenergic activation of glycogenolysis are not caused by a reduction in soluble calmodulin.« less

  17. Cryopreservation of Hepatocyte Microbeads for Clinical Transplantation

    PubMed Central

    Jitraruch, Suttiruk; Hughes, Robin D.; Filippi, Celine; Lehec, Sharon C.; Glover, Leanne; Mitry, Ragai R.

    2017-01-01

    Intraperitoneal transplantation of hepatocyte microbeads is an attractive option for the management of acute liver failure. Encapsulation of hepatocytes in alginate microbeads supports their function and prevents immune attack of the cells. Establishment of banked cryopreserved hepatocyte microbeads is important for emergency use. The aim of this study was to develop an optimized protocol for cryopreservation of hepatocyte microbeads for clinical transplantation using modified freezing solutions. Four freezing solutions with potential for clinical application were investigated. Human and rat hepatocytes cryopreserved with University of Wisconsin (UW)/10% dimethyl sulfoxide (DMSO)/5% (300 mM) glucose and CryoStor CS10 showed better postthawing cell viability, attachment, and hepatocyte functions than with histidine–tryptophan–ketoglutarate/10% DMSO/5% glucose and Bambanker. The 2 freezing solutions that gave better results were studied with human and rat hepatocytes microbeads. Similar effects on cryopreserved microbead morphology (external and ultrastructural), viability, and hepatocyte-functions post thawing were observed over 7 d in culture. UW/DMSO/glucose, as a basal freezing medium, was used to investigate the additional effects of cytoprotectants: a pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone [ZVAD]), an antioxidant (desferoxamine [DFO]), and a buffering and mechanical protectant (human serum albumin [HSA]) on RMBs. ZVAD (60 µM) had a beneficial effect on cell viability that was greater than with DFO (1 mM), HSA (2%), and basal freezing medium alone. Improvements in the ultrastructure of encapsulated hepatocytes and a lower degree of cell apoptosis were observed with all 3 cytoprotectants, with ZVAD tending to provide the greatest effect. Cytochrome P450 activity was significantly higher in the 3 cytoprotectant groups than with fresh microbeads. In conclusion, developing an optimized cryopreservation protocol by adding

  18. Cold storage of rat hepatocyte suspensions for one week in a customized cold storage solution--preservation of cell attachment and metabolism.

    PubMed

    Pless-Petig, Gesine; Singer, Bernhard B; Rauen, Ursula

    2012-01-01

    Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.

  19. Increased activity of CYP3A enzyme in primary cultures of rat hepatocytes treated with docetaxel: comparative evaluation with paclitaxel.

    PubMed

    Nallani, S C; Genter, M B; Desai, P B

    2001-08-01

    Docetaxel, a potent antimicrotubule agent widely used in the treatment of ovarian, breast and lung cancer, is extensively metabolized in various animal species, including humans. The metabolism of docetaxel to its primary metabolite, hydroxydocetaxel, is mediated by cytochrome P450 isozymes CYP3A2 and CYP3A4 in rats and humans, respectively. Several substrates of enzymes belonging to the CYP3A subfamily are known to induce different CYP isozymes, including CYP3A enzymes. Recently, paclitaxel, a compound structurally related to docetaxel, has been shown to significantly elevate the expression of CYP3A in rat and human hepatocytes. In this study we investigated the influence of docetaxel, employed at clinically relevant concentrations, on the level and the activity of cytochrome P450 3A in primary cultures of rat hepatocytes. Rat hepatocytes were treated with different concentrations of docetaxel, paclitaxel and other CYP3A inducers. Testosterone 6beta-hydroxylase activity of intact hepatocytes was used as a marker for CYP3A. The immunoreactive CYP3A levels in the S-9 fractions were determined by Western blot analysis. We observed that by day 3 of drug treatment, docetaxel at concentration in the range of 2.5-10 microM increased the CYP3A enzymatic activity and the immunoreactive CYP3A levels in a concentration-dependent manner. At the 10 microM level, docetaxel caused a twofold increase in the CYP3A activity and a threefold increase in the immunoreactive CYP3A levels. However, the docetaxel-mediated CYP3A activity and enzyme level increase were significantly lower than those mediated by paclitaxel and dexamethasone. A comparison of the testosterone 6beta-hydroxylation activity in hepatocytes treated with these agents at a concentration of 5 microM each yielded the following rank order of induction capacity: dexamethasone > paclitaxel > docetaxel (15-fold, 5-fold, 2.2-fold, respectively). Taken together, our findings raise the possibility that docetaxel at clinically

  20. Liver-enriched transcription factors are critical for the expression of hepatocyte marker genes in mES-derived hepatocyte-lineage cells.

    PubMed

    Kheolamai, Pakpoom; Dickson, Alan J

    2009-04-23

    Induction of stem cell differentiation toward functional hepatocytes is hampered by lack of knowledge of the hepatocyte differentiation processes. The overall objective of this project is to characterize key stages in the hepatocyte differentiation process. We established a mouse embryonic stem (mES) cell culture system which exhibited changes in gene expression profiles similar to those observed in the development of endodermal and hepatocyte-lineage cells previously described in the normal mouse embryo. Transgenic mES cells were established that permitted isolation of enriched hepatocyte-lineage populations. This approach has isolated mES-derived hepatocyte-lineage cells that express several markers of mature hepatocytes including albumin, glucose-6-phosphatase, tyrosine aminotransferase, cytochrome P450-3a, phosphoenolpyruvate carboxykinase and tryptophan 2,3-dioxygenase. In addition, our results show that the up-regulation of the expression levels of hepatocyte nuclear factor-3alpha, -4alpha, -6, and CCAAT-enhancer binding protein-beta might be critical for passage into late-stage differentiation towards functional hepatocytes. These data present important steps for definition of regulatory phenomena that direct specific cell fate determination. The mES cell culture system generated in this study provides a model for studying transition between stages of the hepatocyte development and has significant potential value for studying the molecular basis of hepatocyte differentiation in vitro.

  1. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells.

    PubMed

    Peters, Derek T; Henderson, Christopher A; Warren, Curtis R; Friesen, Max; Xia, Fang; Becker, Caroline E; Musunuru, Kiran; Cowan, Chad A

    2016-05-01

    Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. © 2016. Published by The Company of Biologists Ltd.

  2. Activation of Poly(ADP-Ribose)Polymerase in rat hepatocytes does not contribute to their cell death by oxidative stress.

    PubMed

    Latour, I; Leunda-Casi, A; Denef, J F; Buc Calderon, P

    2000-01-10

    Oxidative stress induced by tert-butyl hydroperoxide (tBOOH) in freshly isolated rat hepatocytes caused DNA damage and loss of membrane integrity. Such DNA lesions are likely to be single strand breaks since neither caryolysis nor chromatine condensation was seen in electron micrographs from tBOOH-treated cells. In addition, pulsed field gel electrophoresis of genomic DNA from both control and tBOOH-treated hepatocytes showed similar profiles, indicating the absence of internucleosomal DNA cleavage, a classical reflection of apoptotic endonuclease activity. The activation of the repair enzyme poly(ADP-ribose)polymerase (PARP) following DNA damage by tBOOH induced a dramatic drop in both NAD(+) and ATP. The inhibition of PARP by 3-aminobenzamide enhanced DNA damage by tBOOH, restored NAD(+) and ATP levels, but did not result in better survival against cell killing by tBOOH. The lack of the protective effect of PARP inhibitor, therefore, does not implicate PARP in the mechanism of tBOOH-induced cytotoxicity. Electron micrographs also show no mitochondrial swelling in cells under oxidative stress, but such organelles were mainly located around the nucleus, a picture already observed in autoschizis, a new suggested kind of cell death which shows both apoptotic and necrotic morphological characteristics. Copyright 2000 Academic Press.

  3. Liver repopulation by c-Met-positive stem/progenitor cells isolated from the developing rat liver.

    PubMed

    Suzuki, Atsushi; Zheng, Yun-wen; Fukao, Katashi; Nakauchi, Hiromitsu; Taniguchi, Hideki

    2004-01-01

    Self-renewing stem cells responsible for tissue or organ development and regeneration have been recently described. To isolate such cells using flow cytometry, it should be required to find molecules expressing on their cell surfaces. We have previously reported that, on cells fulfilling the criteria for hepatic stem cells, the hepatocyte growth factor receptor c-Met is expressed specifically in the developing mouse liver. In this study, to determine whether c-Met is an essential marker for hepatic stem cells in other animal strains, we examined the potential for in vivo liver-repopulation in sorted fetal rat-derived c-Met+ cells using the retrorsine model. Using flow cytometry and monoclonal antibodies for c-Met and leukocyte common antigen CD45, fetal rat liver cells were fractionated according to the expression of these molecules. Then, cells in each cell subpopulation were sorted and transplanted into the retrorsine-treated adult rats with two-third hepatectomy. At 9 months post transplant, frequency of liver-repopulation was examined by qualitative and quantitative analyses. When we transplanted c-Met+ CD45- sorted cells, many donor-derived cells formed colonies that included mature hepatocytes expressing albumin and containing abundant glycogen in their cytoplasm. In contrast, c-Met- cells and CD45+ cells could not repopulate damaged recipient livers. High enrichment of liver-repopulating cells was conducted by sorting of c-Met+ cells from the developing rat liver. This result suggests that c-Met/HGF interaction plays a crucial role for stem cell growth, differentiation, and self-renewal in rat liver organogenesis. Since the c-Met is also expressed in the fetal mouse-derived hepatic stem cells, this molecule could be expected to be an essential marker for such cell population in the various animal strains, including human.

  4. Differing Distribution of Hepatocyte Growth Factor‐positive Cells in the Liver of LEC Rats with Acute Hepatitis, Chronic Hepatitis and Hepatoma

    PubMed Central

    Kashiwazaki, Haruhiko; Kobayashi, Narumi; Hamada, Jun‐ichi; Matsumoto, Kunio; Nakamura, Toshikazu; Takeichi, Noritoshi

    1995-01-01

    Using anti‐rat hepatocyte growth factor (HGF) antibody, we investigated the distribution of HGF‐positive cells in the liver tissues of LEC rats at various phases of liver diseases. During the phase of fulminant hepatitis, HGF‐positive cells increased remarkably, and many of them were localized at the portal triads; these cells were identified from their shape as non‐epithelial cells. A reduced number of HGF‐positive cells was observed during the phase of chronic hepatitis, while no HGF‐positive cells were seen in the tissue of cholangiofibrosis. During the phase of carcinoma, staining revealed that both the hepatocellular carcinoma cells and the non‐epithelial cells in cancerous liver tissue were HGF‐positive. These results suggest that, in LEC rats, HGF may play an important role in the regeneration of hepatocytes as well as in the development of hepatocellular carcinoma. PMID:7737910

  5. Induction of peroxisomal beta-oxidation by a microbial catabolite of cholic acid in rat liver and cultured rat hepatocytes.

    PubMed Central

    Nishimaki-Mogami, T; Takahashi, A; Toyoda, K; Hayashi, Y

    1993-01-01

    The capability of (4R)-4-(2,3,4,6,6a beta,7,8,9,9a alpha,9b beta-decahydro-6a beta-methyl-3-oxo-1H-cyclopental[f]quinolin-7 beta-yl)valeric acid (DCQVA), a catabolite of cholic acid produced by enterobacteria, to induce peroxisome proliferation in vivo and in vitro was studied. Rats given 0.3% DCQVA in the diet for 2 weeks showed marked increases in peroxisomal beta-oxidation, mitochondrial 2,4-dienoyl-CoA reductase and microsomal laurate omega-oxidation activities in the liver compared with control rats given the diet without DCQVA. Cultured rat hepatocytes treated with DCQVA for 72 h also exhibited greatly enhanced beta-oxidation activity. The increased activity was concentration-dependent and the effective concentrations were comparable with those of clofibric acid that produced the same degree of induction in the assay. The results demonstrate that DCQVA is a potent peroxisome proliferator that occurs naturally in rat intestine. PMID:8216219

  6. Preventive effects of fructose and N-acetyl-L-cysteine against cytotoxicity induced by the psychoactive compounds N-methyl-5-(2-aminopropyl)benzofuran and 3,4-methylenedioxy-N-methamphetamine in isolated rat hepatocytes.

    PubMed

    Nakagawa, Yoshio; Suzuki, Toshinari; Inomata, Akiko

    2018-02-01

    Psychoactive compounds, N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB) and 3,4-methylenedioxy-N-methamphetamine (MDMA), are known to be hepatotoxic in humans and/or experimental animals. As previous studies suggested that these compounds elicited cytotoxicity via mitochondrial dysfunction and/or oxidative stress in rat hepatocytes, the protective effects of fructose and N-acetyl-l-cysteine (NAC) on 5-MAPB- and MDMA-induced toxicity were studied in rat hepatocytes. These drugs caused not only concentration-dependent (0-4 mm) and time-dependent (0-3 hours) cell death accompanied by the depletion of cellular levels of adenosine triphosphate (ATP) and glutathione (reduced form; GSH) but also an increase in the oxidized form of GSH. The toxic effects of 5-MAPB were greater than those of MDMA. Pretreatment of hepatocytes with either fructose at a concentration of 10 mm or NAC at a concentration of 2.5 mm prevented 5-MAPB-/MDMA-induced cytotoxicity. In addition, the exposure of hepatocytes to 5-MAPB/MDMA caused the loss of mitochondrial membrane potential, although the preventive effect of fructose was weaker than that of NAC. These results suggest that: (1) 5-MAPB-/MDMA-induced cytotoxicity is linked to mitochondrial failure and depletion of cellular GSH; (2) insufficient cellular ATP levels derived from mitochondrial dysfunction were ameliorated, at least in part, by the addition of fructose; and (3) GSH loss via oxidative stress was prevented by NAC. Taken collectively, these results indicate that the onset of toxic effects caused by 5-MAPB/MDMA may be partially attributable to cellular energy stress as well as oxidative stress. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract.

    PubMed Central

    Housley, R M; Morris, C F; Boyle, W; Ring, B; Biltz, R; Tarpley, J E; Aukerman, S L; Devine, P L; Whitehead, R H; Pierce, G F

    1994-01-01

    Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family, was identified as a specific keratinocyte mitogen after isolation from a lung fibroblast line. Recently, recombinant (r)KGF was found to influence proliferation and differentiation patterns of multiple epithelial cell lineages within skin, lung, and the reproductive tract. In the present study, we designed experiments to identify additional target tissues, and focused on the rat gastrointestinal (GI) system, since a putative receptor, K-sam, was originally identified in a gastric carcinoma. Expression of KGF receptor and KGF mRNA was detected within the entire GI tract, suggesting the gut both synthesized and responded to KGF. Therefore, rKGF was administered to adult rats and was found to induce markedly increased proliferation of epithelial cells from the foregut to the colon, and of hepatocytes, one day after systemic treatment. Daily treatment resulted in the marked selective induction of mucin-producing cell lineages throughout the GI tract in a dose-dependent fashion. Other cell lineages were either unaffected (e.g., Paneth cells), or relatively decreased (e.g., parietal cells, enterocytes) in rKGF-treated rats. The direct effect of rKGF was confirmed by demonstrating markedly increased carcinoembryonic antigen production in a human colon carcinoma cell line, LIM1899. Serum levels of albumin were specifically and significantly elevated after daily treatment. These results demonstrate rKGF can induce epithelial cell activation throughout the GI tract and liver. Further, endogenous KGF may be a normal paracrine mediator of growth within the gut. Images PMID:7962522

  8. Experience of microbiological screening of human hepatocytes for clinical transplantation.

    PubMed

    Lehec, Sharon C; Hughes, Robin D; Mitry, Ragai R; Graver, Michelle A; Verma, Anita; Wade, Jim J; Dhawan, Anil

    2009-01-01

    Hepatocyte transplantation is being used in patients with liver-based metabolic disorders and acute liver failure. Hepatocytes are isolated from unused donor liver tissue under GMP conditions. Cells must be free of microbiological contamination to be safe for human use. The experience of microbiological screening during 72 hepatocyte isolation procedures at one center is reported. Samples were taken at different stages of the process and tested using a blood culture bottle system and Gram stain. Bacterial contamination was detected in 37.5% of the UW organ preservative solutions used to transport the liver tissue to the Cell Isolation Unit. After tissue processing the contamination was reduced to 7% overall in the final hepatocyte product, irrespective of the presence of initial contamination of the transport solution. The most common organisms recovered were coagulase-negative staphylococci, a skin commensal. A total of 41 preparations of fresh or cryopreserved hepatocytes were used for cell transplantation in children with liver-based metabolic disorders without any evidence of sepsis due to infusion of hepatocytes. In conclusion, the incidence of bacterial contamination of the final product was low, confirming the suitability of the organs used, hepatocyte isolation procedure, and the environmental conditions of the clean room.

  9. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse

    PubMed Central

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F.; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2018-01-01

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time– and bile-acid-concentration–dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  10. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    PubMed

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  11. Effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression in primary cultures of normal rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraud, B.; Balavoine, S.; Feldmann, G.

    1996-04-01

    While the effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression have been investigated in various hepatoma cell lines, the individual and combined effects of these components on the expression of this gene have been rarely studied in cultured normal rat hepatocytes. In this cell model, we have shown that mRNA levels of {alpha}{sub 1}-acid glycoprotein were not decreased at least during the first 24 h of culture under basal conditions. During these short-term cultures, the expression of {alpha}{sub 1}-acid glycoprotein in normal hepatocytes showed a high degree of responsiveness to dexamethasone alone (20-fold increase) and tomore » dexamethasone associated with various cytokines (interleukin-1{beta}, interleukin-6 and tumor necrosis factor {alpha}) with a 40 to 100-fold increase depending on the cytokine. Insulin alone did not modify {alpha}{sub 1}-acid glycoprotein mRNA; however, this hormone exerted a positive effect (about 50% increase) in the presence of dexamethasone or dexamethasone with cytokines. These results indicate that the regulation of {alpha}{sub 1}-acid glycoprotein in cultured normal rat hepatocytes presents major differences when compared to reported observations in rat hepatoma cell lines. 49 refs., 2 figs., 2 tabs.« less

  12. Strategies for immortalization of primary hepatocytes

    PubMed Central

    Eva, Ramboer; Bram, De Craene; Joery, De Kock; Tamara, Vanhaecke; Geert, Berx; Vera, Rogiers; Mathieu, Vinken

    2014-01-01

    The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications. PMID:24911463

  13. In vitro evaluation of encapsulated primary rat hepatocytes pre- and post-cryopreservation at -80°C and in liquid nitrogen.

    PubMed

    Durkut, Serap; Elçin, A Eser; Elçin, Y Murat

    2015-02-01

    Encapsulation techniques have the potential to protect hepatocytes from cryoinjury. In this study, we comparatively evaluated the viability and metabolic function of primary rat hepatocytes encapsulated in calcium alginate microbeads, in chitosan tripolyphosphate beads, and in three-layered alginate-chitosan-alginate (ACA) microcapsules, before and after cryopreservation at -80°C and in liquid nitrogen (LN2) for 1 and 3 months. Findings demonstrated that LN2 was atop of -80°C in regard to preservation of viability (> 90%) and hepatic functions. LN2-cryopreserved hepatocytes encapsulated in ACA microcapsules retained metabolic function post-thawing, with > 90% of the albumin, total protein and urea syntheses activities, and > 80% of oxidative function.

  14. Intralipid minimizes hepatocytes injury after anoxia-reoxygenation in an ex vivo rat liver model.

    PubMed

    Stadler, Michaela; Nuyens, Vincent; Boogaerts, Jean G

    2007-01-01

    Ischemia-reperfusion injury is a determinant in liver injury occurring during surgical procedures, ischemic states, and multiple organ failure. The pre-existing nutritional status of the liver, i.e., fasting, might contribute to the extent of tissue injury. This study investigated whether Intralipid, a solution containing soybean oil, egg phospholipids, and glycerol, could protect ex vivo perfused livers of fasting rats from anoxia-reoxygenation injury. The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Isolated livers were perfused with glucose 5.5 and 15 mM, and two different concentrations of Intralipid, i.e., 0.5:100 and 1:100 (v/v) Intralipid 10%:medium (n = 5 in each group). The experiment consisted of perfusion for 15 min, warm anoxia for 60 min, and reoxygenation during 60 min. Hepatic enzymes, potassium, glucose, lactate, bilirubin, dienes, trienes, and cytochrome-c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in biopsies. Intralipid attenuated transaminases, lactate dehydrogenase, potassium, diene, and triene release in the perfusate (dose-dependant) during the reoxygenation phase when compared with glucose-treated groups. The concentration of cytochrome-c in the medium was the highest in the 5.5-mM glucose group. The glycogen content was low in all livers at the start of the experiment. Intralipid presents, under the present experimental conditions, a better protective effect than glucose in anoxia-reoxygenation injury of the rat liver.

  15. Three Dimensional Primary Hepatocyte Culture

    NASA Technical Reports Server (NTRS)

    Yoffe, Boris

    1998-01-01

    Our results demonstrated for the first time the feasibility of culturing PHH in microgravity bioreactors that exceeded the longest period obtained using other methods. Within the first week of culture, isolated hepatocytes started to form aggregates, which continuously increased in size (up to 1 cm) and macroscopically appeared as a multidimensional tissue-like assembly. To improve oxygenation and nutrition within the spheroids we performed experiments with the biodegradable nonwoven fiber-based polymers made from PolyGlycolic Acid (PGA). It has been shown that PGA scaffolds stimulate isolated cells to regenerate tissue with defined sizes and shapes and are currently being studied for various tissue-engineering applications. Our data demonstrated that culturing hepatocytes in the presence of PGA scaffolds resulted in more efficient cell assembly and formations of larger cell spheroids (up to 3 cm in length, see figure). The histology of cell aggregates cultured with PGA showed polymer fibers with attached hepatocytes. We initiated experiments to co-culture primary human hepatocytes with human microvascular endothelial cells in the bioreactor. The presence of endothelial cells in co-cultures were established by immunohistochemistry using anti-CD34 monoclonal Ab. Our preliminary data demonstrated that cultures of purified hepatocytes with human microvascular endothelial cells exhibited better growth and expressed higher levels of albumin MRNA for a longer period of time than cultures of ppfified, primary human hepatocytes cultured alone. We also evaluated microsomal deethylation activity of hepatocytes cultured in the presence of endothelial cells.In summary, we have established liver cell culture, which mimicked the structure and function of the parent tissue.

  16. [Proliferation of hepatocytes after delivery of exogenous hepatocyte growth factor gene].

    PubMed

    Lin, Yong; Xie, Wei fen; Chen, Wei-zhong; Zhang, Xin; Zeng, Xin; Chen, Yue-xiang; Yang, Xiu-jiang; Zhang, Zhong-bing

    2003-06-01

    To explore the proliferation of primary cultured rats hepatocytes after delivery of exogenous hepatocyte growth factor (HGF) gene which was inserted into the genome of replication-deficient recombinant adenovirus vector. The recombinant adenovirus-AdHGF which could express HGF was generated by homologous recombination. After the HGF gene was delivered into the hepatocytes, the expression of both HGF and c-met/HGF receptor mRNA in the cells was detected by RT-PCR and the level of HGF in the culture supernatant was also assayed by ELISA. On the other hand, cell proliferation was compared between before and after delivery of the HGF gene by MTS assay and the percentages of cell cycles were analyzed by flow cytometry. In addition, the expression of proliferating cell nuclear antigen (PCNA) was determined by immunocytofluorescent stain. 4 x 10(10) efu/ml titer of AdHGF was obtained after recombination, RT-PCR indicated that the expression of HGF mRNA in hepatocytes increased on the third day after infected by the viruses and c-met/HGF receptor mRNA was also up-regulated. The HGF level in the culture supernatant assayed by ELISA was (5,939.0+/-414.39) pg/ml, which was much higher than that in the control (208.1pg/ml+/-37.20pg/ml, F=13.661, P<0.01). In addition, the proliferation of hepatocytes infected with AdHGF increased significantly according to MTS method (F>or=15.158, P<0.01) and more hepatocytes in G0/G1 stages changed into S stage (chi2=41.616, P<0.01), accordingly, PCNA index increased from 6.42+/- 1.88 to 14.56+/-2.85 (F=42.122, P<0.01). show that HGF gene delivered into hepatocytes by AdHGF can be expressed with high efficiency in the cells, which can stimulate hepatocytes proliferation. It may be an effective tool for hepatocyte transplantation by gene modified donor hepatocytes.

  17. The importance of physiological oxygen concentrations in the sandwich cultures of rat hepatocytes on gas-permeable membranes.

    PubMed

    Xiao, Wenjin; Shinohara, Marie; Komori, Kikuo; Sakai, Yasuyuki; Matsui, Hitoshi; Osada, Tomoharu

    2014-01-01

    Oxygen supply is a critical issue in the optimization of in vitro hepatocyte microenvironments. Although several strategies have been developed to balance complex oxygen requirements, these techniques are not able to accurately meet the cellular oxygen demand. Indeed, neither the actual oxygen concentration encountered by cells nor the cellular oxygen consumption rates (OCR) was assessed. The aim of this study is to define appropriate oxygen conditions at the cell level that could accurately match the OCR and allow hepatocytes to maintain liver specific functions in a normoxic environment. Matrigel overlaid rat hepatocytes were cultured on the polydimethylsiloxane (PDMS) membranes under either atmospheric oxygen concentration [20%-O2 (+)] or physiological oxygen concentrations [10%-O2 (+), 5%-O2 (+)], respectively, to investigate the effects of various oxygen concentrations on the efficient functioning of hepatocytes. In parallel, the gas-impermeable cultures (polystyrene) with PDMS membrane inserts were used as the control groups [PS-O2 (-)]. The results indicated that the hepatocytes under 10%-O2 (+) exhibited improved survival and maintenance of metabolic activities and functional polarization. The dramatic elevation of cellular OCR up to the in vivo liver rate proposed a normoxic environment for hepatocytes, especially when comparing with PS-O2 (-) cultures, in which the cells generally tolerated hypoxia. Additionally, the expression levels of 84 drug-metabolism genes were the closest to physiological levels. In conclusion, this study clearly shows the benefit of long-term culture of hepatocytes at physiological oxygen concentration, and indicates on an oxygen-permeable membrane system to provide a simple method for in vitro studies. © 2014 American Institute of Chemical Engineers.

  18. Functional expression and regulation of drug transporters in monolayer- and sandwich-cultured mouse hepatocytes.

    PubMed

    Noel, Gregory; Le Vee, Marc; Moreau, Amélie; Stieger, Bruno; Parmentier, Yannick; Fardel, Olivier

    2013-04-11

    Primary hepatocyte cultures are now considered as convenient models for in vitro analyzing liver drug transport. However, if primary human and rat hepatocytes have been well-characterized with respect to drug transporter expression and regulation, much less is known for primary mouse hepatocytes. The present study was therefore designed to gain insights about this point. The profile of sinusoidal and canalicular drug transporter mRNA expression in short time (4h)-cultured mouse hepatocytes was found to be highly correlated with that of freshly isolated hepatocytes; by contrast, those of counterparts cultured for a longer time (until 4 days) either in monolayer configurations on plastic or collagen or in sandwich configuration with matrigel were profoundly altered: uptake drug transporters such as Oct1, Oatps and Oat2 were thus down-regulated, whereas most of efflux transporters such as Mdr1a/b, Mrp3, Mrp4 and Bcrp were induced. Moreover, short time-cultured hepatocytes exhibited the highest levels of sinusoidal influx transporter activities. Transporter-mediated drug secretion into canalicular networks was however only observed in sandwich-cultured hepatocytes. Mouse hepatocytes cultured either in monolayer or sandwich configurations were finally shown to exhibit up-regulation of referent transporters in response to exposure to prototypical activators of the drug sensing receptors pregnane X receptor, aryl hydrocarbon receptor or constitutive androstane receptor. Taken together, these data demonstrate the feasibility of using primary mouse hepatocytes for investigating potential interactions of xenobiotics with hepatic transporter activity or regulation, provided that adequate culture conditions are retained. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effect of chronic administration of mestranol, tamoxifen, and toremifene on hepatic ploidy in rats.

    PubMed

    Dragan, Y P; Shimel, R J; Bahnub, N; Sattler, G; Vaughan, J R; Jordan, V C; Pitot, H C

    1998-06-01

    The nonsteroidal antiestrogen tamoxifen increases the incidence of rat liver cancer through a variety of mechanisms. To compare the effects of tamoxifen (TAM) and a structurally similar analog toremifene (TOR) on rat liver, we determined the ploidy distribution for hepatocytes isolated from rats treated for 18 months with these antiestrogens or the estrogenic compound mestranol (MS). Female Sprague-Dawley rats were subjected to a 70% partial hepatectomy and administered the solvent, trioctanoin, or diethylnitrosamine (10 mg DEN/kg). After a 2-week recovery from the surgery, the rats were administered a basal diet or one containing TAM (250 or 500 ppm), TOR (250, 500, or 750 ppm), or MS (0.2 ppm) for 18 months. Pathologic changes in the liver were examined in the 15-22 rats per treatment group at the 18-month time point. An increased incidence of hepatocellular carcinomas (HCC) was detected in the 500 ppm TAM group, but not with the other treatments that did not include DEN. Both TOR and TAM promoted formation of DEN-initiated HCCs. At sacrifice, four to five rats per group were perfused and the hepatocytes isolated and cultured. Karyotypic analysis was performed on colcemid-blocked cells after 2 days in culture. The hepatic ploidy distribution was characterized in Giemsa-stained metaphase spreads. These studies indicated that chronic treatment with TAM alone resulted in a shift from tetraploid to diploid, as was also observed for rats treated once with DEN. TOR and MS alone did not cause this change in hepatic ploidy at the doses examined. A shift toward an increased content of diploid hepatocytes occurred in all rats treated once with DEN followed by TAM, TOR, or MS. These results indicate that tamoxifen administration results in a shift toward growth of diploid hepatocytes, thus contributing to its carcinogenic action in the rat liver.

  20. Hepatocyte attachment to laminin is mediated through multiple receptors

    PubMed Central

    1990-01-01

    The interaction of hepatocytes with the basement membrane glycoprotein laminin was studied using synthetic peptides derived from laminin sequences. Rat hepatocytes bind to laminin and three different sites within the A and B1 chains of laminin were identified. Active laminin peptides include the PA22-2 peptide (close to the carboxyl end of the long arm in the A chain), the RGD-containing peptide, PA21 (in the short arm of the A chain) and the pentapeptide YIGSR (in the short arm of the B1 chain). PA22-2 was the most potent peptide, whereas the other two peptides had somewhat lower activity. Furthermore, hepatocyte attachment to laminin was inhibited by the three peptides, with PA22-2 being the most active. Various proteins from isolated membranes of cell- surface iodinated hepatocytes bound to a laminin affinity column including three immunologically related binding proteins : Mr = 67,000, 45,000, and 32,000. Several proteins--Mr = 80,000, 55,000, and 38,000- 36,000--with a lower affinity for laminin were also identified. Affinity chromatography on peptide columns revealed that the PA22-2 peptide specifically bound the Mr = 80,000, 67,000, 45,000, and 32,000 proteins, the PA21 peptide bound the Mr = 45,000 and 38,000-36,000 proteins and the YIGSR peptide column bound the 38,000-36,000 protein. Antisera to a bacterial fusion protein of the 32-kD laminin-binding protein (LBP-32) reacted strongly with the three laminin-binding proteins, Mr = 67,000, 45,000, and 32,000, showing that they are immunologically related. Immunoperoxidase microscopy studies confirmed that these proteins are present within the plasma membrane of the hepatocyte. The antisera inhibited the adhesion of hepatocytes to hepatocytes to laminin by 30%, supporting the finding that these receptors and others mediate the attachment of hepatocytes to several regions of laminin. PMID:2136861

  1. Protective effect of the edible brown alga Ecklonia stolonifera on doxorubicin-induced hepatotoxicity in primary rat hepatocytes.

    PubMed

    Jung, Hyun Ah; Kim, Jae-I; Choung, Se Young; Choi, Jae Sue

    2014-08-01

    As part of our efforts to isolate anti-hepatotoxic agents from marine natural products, we screened the ability of 14 edible varieties of Korean seaweed to protect against doxorubicin-induced hepatotoxicity in primary rat hepatocytes. Among the crude extracts of two Chlorophyta (Codium fragile and Capsosiphon fulvescens), seven Phaeophyta (Undaria pinnatifida, Sargassum thunbergii, Pelvetia siliquosa, Ishige okamurae, Ecklonia cava, Ecklonia stolonifera and Eisenia bicyclis), five Rhodophyta (Chondrus ocellatus, Gelidium amansii, Gracilaria verrucosa, Symphycladia latiuscula and Porphyra tenera), and the extracts of Ecklonia stolonifera, Ecklonia cava, Eisenia bicyclis and Pelvetia siliquosa exhibited significant protective effects on doxorubicin-induced hepatotoxicity, with half maximal effective concentration (EC50) values of 2.0, 2.5, 3.0 and 15.0 μg/ml, respectively. Since Ecklonia stolonifera exhibits a significant protective potential and is frequently used as foodstuff, we isolated six phlorotannins, including phloroglucinol (1), dioxinodehydroeckol (2), eckol (3), phlorofucofuroeckol A (4), dieckol (5) and triphloroethol-A (6). Phlorotannins 2 ∼ 6 exhibited potential protective effects on doxorubicin-induced hepatotoxicity, with corresponding EC50 values of 3.4, 8.3, 4.4, 5.5 and 11.5 μg/ml, respectively. The results clearly demonstrated that the anti-hepatotoxic effects of Ecklonia stolonifera and its isolated phlorotannins are useful for further exploration and development of therapeutic modalities for treatment of hepatotoxicity. © 2014 Royal Pharmaceutical Society.

  2. Cerveau isolé and pretrigeminal rats.

    PubMed

    Zernicki, B; Gandolfo, G; Glin, L; Gottesmann, C

    1984-01-01

    Cortical and hippocampal EEG activity was analysed in 14 cerveau isole and 8 pretrigerninal rats. In the acute stage, waking EEG patterns were absent in the cerveau isole, whereas sleep EEG patterns were absent in the pretrigeminal preparations. However, already on the second day the EEG waking-sleep cycle recovered in the majority of rats. Paradoxically, stimuli directed to the caudal part of preparations evoked stronger cortical and hippocampal EEG arousal than olfactory and visual stimuli. The behavior of the caudal part was observed in 25 preparations. Although in abortive form, the rats did show some locomotor and grooming behavior, and could be fed orally. The peripheral events of paradoxical sleep appeared only on the fourth or fifth day of survival of the cerveau isole rats. It is concluded that the activity of the isolated cerebrum of the rat is similar to that of cat preparations, but that functions of the caudal neuraxis are superior in rats.

  3. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1more » (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We

  4. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane.

    PubMed

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M P; Albano, E; Bianchi, F B

    2000-04-01

    Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack. The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confocal laser microscopy of isolated rat hepatocytes probed with 10 LKM1 positive sera (five from patients with AIH and five from patients with chronic HCV infection) and a rabbit polyclonal anti-CYP2D6 serum. Serum from both types of patient stained the plasma membrane of non-permeabilised cells, where the fluorescent signal could be visualised as discrete clumps. Conversely, permeabilised hepatocytes showed diffuse submembranous/cytoplasmic staining. Adsorption with recombinant CYP2D6 substantially reduced plasma membrane staining and LKM1 immunoblot reactivity. Plasma membrane staining of LKM1 colocalised with that of anti-CYP2D6. Immunoprecipitation experiments showed that a single 50 kDa protein recognised by anti-CYP2D6 can be isolated from the plasma membrane of intact hepatocytes. AIH and HCV related LKM1 recognise CYP2D6 exposed on the plasma membrane of isolated hepatocytes. This observation supports the notion that anti-CYP2D6 autoreactivity may be involved in the pathogenesis of liver damage.

  5. New physiologically-relevant liver tissue model based on hierarchically cocultured primary rat hepatocytes with liver endothelial cells.

    PubMed

    Xiao, Wenjin; Perry, Guillaume; Komori, Kikuo; Sakai, Yasuyuki

    2015-11-01

    To develop an in vitro liver tissue equivalent, hepatocytes should be cocultured with liver non-parenchymal cells to mimic the in vivo physiological microenvironments. In this work, we describe a physiologically-relevant liver tissue model by hierarchically organizing layers of primary rat hepatocytes and human liver sinusoidal endothelial cells (TMNK-1) on an oxygen-permeable polydimethylsiloxane (PDMS) membrane, which facilitates direct oxygenation by diffusion through the membrane. This in vivo-mimicking hierarchical coculture was obtained by simply proceeding the overlay of TMNK-1 cells on the hepatocyte layer re-formed on the collagen immobilized PDMS membranes. The comparison of hepatic functionalities was achieved between coculture and sandwich culture with Matrigel, in the presence and absence of direct oxygenation. A complete double-layered structure of functional liver cells with vertical contact between hepatocytes and TMNK-1 was successfully constructed in the coculture with direct oxygen supply and was well-maintained for 14 days. The hepatocytes in this hierarchical culture exhibited improved survival, functional bile canaliculi formation, cellular level polarization and maintenance of metabolic activities including Cyp1A1/2 activity and albumin production. By contrast, the two cell populations formed discontinuous monolayers on the same surfaces in the non-oxygen-permeable cultures. These results demonstrate that (i) the direct oxygenation through the PDMS membranes enables very simple formation of a hierarchical structure consisting of a hepatocyte layer and a layer of TMNK-1 and (ii) we may include other non-parenchymal cells in this format easily, which can be widely applicable to other epithelial organs.

  6. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions.

    PubMed

    Harper, M E; Brand, M D

    1994-08-01

    Thyroid hormones have well-known effects on oxidative phosphorylation, but there is little quantitative information on their important sites of action. We have used top-down elasticity analysis, an extension of metabolic control analysis, to identify the sites of action of thyroid hormones on oxidative phosphorylation in rat hepatocytes. We divided the oxidative phosphorylation system into three blocks of reactions: the substrate oxidation subsystem, the phosphorylating subsystem, and the mitochondrial proton leak subsystem and have identified those blocks of reactions whose kinetics are significantly changed by hyperthyroidism. Our results show significant effects on the kinetics of the proton leak and the phosphorylating subsystems. Quantitative analyses revealed that 43% of the increase in resting respiration rate in hyperthyroid hepatocytes compared with euthyroid hepatocytes was due to differences in the proton leak and 59% was due to differences in the activity of the phosphorylating subsystem. There were no significant effects on the substrate oxidation subsystem. Changes in nonmitochondrial oxygen consumption accounted for -2% of the change in respiration rate. Top-down control analysis revealed that the distribution of control over the rates of mitochondrial oxygen consumption, ATP synthesis and consumption, and proton leak and over mitochondrial membrane potential (delta psi m) was similar in hepatocytes from hyperthyroid and littermate-paired euthyroid controls. The results of this study include the first complete top-down elasticity and control analyses of oxidative phosphorylation in hepatocytes from hyperthyroid rats.

  7. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  8. Bicarbonate-dependent and -independent intracellular pH regulatory mechanisms in rat hepatocytes. Evidence for Na+-HCO3- cotransport.

    PubMed Central

    Gleeson, D; Smith, N D; Boyer, J L

    1989-01-01

    Using the pH-sensitive dye 2,7-bis(carboxyethyl)-5(6)-carboxy-fluorescein and a continuously perfused subconfluent hepatocyte monolayer cell culture system, we studied rat hepatocyte intracellular pH (pHi) regulation in the presence (+HCO3-) and absence (-HCO3-) of bicarbonate. Baseline pHi was higher (7.28 +/- 09) in +HCO3- than in -HCO3- (7.16 +/- 0.14). Blocking Na+/H+ exchange with amiloride had no effect on pHi in +HCO3- but caused reversible 0.1-0.2-U acidification in -HCO3- or in +HCO3- after preincubation in the anion transport inhibitor 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS). Acute Na+ replacement in +HCO3- alos caused acidification which was amiloride independent but DIDS inhibitible. The recovery of pHi from an intracellular acid load (maximum H+ efflux rate) was 50% higher in +HCO3- than in -HCO3-. Amiloride inhibited H+ effluxmax by 75% in -HCO3- but by only 27% in +HCO3-. The amiloride-independent pHi recovery in +HCO3- was inhibited 50-63% by DIDS and 79% by Na+ replacement but was unaffected by depletion of intracellular Cl-, suggesting that Cl-/HCO3- exchange is not involved. Depolarization of hepatocytes (raising external K+ from 5 to 25 mM) caused reversible 0.05-0.1-U alkalinization, which, however, was neither Na+ nor HCO3- dependent, nor DIDS inhibitible, findings consistent with electroneutral HCO3- transport. We conclude that Na+-HCO3- cotransport, in addition to Na+/H+ exchange, is an important regulator of pHi in rat hepatocytes. PMID:2544626

  9. Whey-hydrolyzed peptide-enriched immunomodulating diet prevents progression of liver cirrhosis in rats.

    PubMed

    Jobara, Kanta; Kaido, Toshimi; Hori, Tomohide; Iwaisako, Keiko; Endo, Kosuke; Uchida, Yoichiro; Uemoto, Shinji

    2014-10-01

    Liver fibrosis and subsequent cirrhosis is a major cause of death worldwide, but few effective antifibrotic therapies are reported. Whey-hydrolyzed peptide (WHP), a major peptide component of bovine milk, exerts anti-inflammatory effects in experimental models. A WHP-enriched diet is widely used for immunomodulating diets (IMD) in clinical fields. However, the effects of WHP on liver fibrosis remain unknown. The aim of this study was to investigate the antifibrotic effects of WHP in a rat cirrhosis model. Progressive liver fibrosis was induced by repeated intraperitoneal administration of dimethylnitrosamine (DMN) for 3 wk. Rats were fed either a WHP-enriched IMD (WHP group) or a control enteral diet (control group). The degree of liver fibrosis was compared between groups. Hepatocyte-protective effects were examined using hepatocytes isolated from rats fed a WHP diet. Reactive oxygen species and glutathione in liver tissue were investigated in the DMN cirrhosis model. Macroscopic and microscopic progression of liver fibrosis was remarkably suppressed in the WHP group. Elevated serum levels of liver enzymes and hyaluronic acid, and liver tissue hydroxyproline content were significantly attenuated in the WHP group. Necrotic hepatocyte rates with DMN challenge, isolated from rats fed a WHP-enriched IMD, were significantly lower. In the DMN cirrhosis model, reactive oxygen species were significantly lower, and glutathione was significantly higher in the WHP group's whole liver tissue. A WHP-enriched IMD effectively prevented progression of DMN-induced liver fibrosis in rats via a direct hepatocyte-protective effect and an antioxidant effect through glutathione synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Feasibility of direct oxygenation of primary-cultured rat hepatocytes using polyethylene glycol-decorated liposome-encapsulated hemoglobin (LEH).

    PubMed

    Naruto, Hirosuke; Huang, Hongyun; Nishikawa, Masaki; Kojima, Nobuhiko; Mizuno, Atsushi; Ohta, Katsuji; Sakai, Yasuyuki

    2007-10-01

    We tested the short-term efficacy of liposome-encapsulated hemoglobin (LEH) in cultured rat hepatocytes. Supplementation with LEH (20% of the hemoglobin concentration of blood) did not lower albumin production in static culture, and completely reversed the cell death and deterioration in albumin production caused by an oxygen shortage in 2D flat-plate perfusion bioreactors.

  11. The hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the evaluation of hepatic fibrosis and early liver cirrhosis in a rat model: an experimental study.

    PubMed

    Ma, Chunmei; Liu, Ailian; Wang, Yuanyuan; Geng, Xiaoling; Hao, Li; Song, Qingwei; Sun, Bo; Wang, Heqing; Zhao, Gang

    2014-07-17

    To evaluate the hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the early diagnosis of hepatic fibrosis and cirrhosis and assessment of liver function in a rat model. In 2 groups of SD rats, liver fibrosis was induced in experimental animals by repetitive carbon tetrachloride injections, while the control group received saline injections. Five experimental rats and 2 control rats were randomly selected at weeks 4, 8, 12. One week after carbon tetrachloride administration, MRI (FIRM T1WI) scan was performed. Gd-EOB-DTPA (0.08mL) was injected into the rat's tail vein and hepatocyte phase images were obtained after 20min. The pre-enhanced phase and hepatocyte phase signal intensities (SI) were measured, and the relative contrast enhancement index (RCEI) was calculated. ANOVA analysis (LSD) of RCEI values in controls (n=6), hepatic fibrosis (n=7), and histopathologically-determined early cirrhosis group (n=6) was performed. RECI values showed a decreasing trend in the control group, hepatic fibrosis and early cirrhosis groups (1.11±0.43, 0.96±0.22, and 0.57±0.33, respectively). While the difference between the control and early cirrhosis groups was statistically significant (p=0.013), there was no significant difference in the hepatic fibrosis group vs the control (p=0.416) and the hepatic fibrosis group vs the early cirrhosis group (p=0.054). Hepatocyte phase RCEI values obtained with Gd-EOB-DTPA-enhanced MRI scan indicate liver injury in hepatic fibrosis and early cirrhosis. RCEI values are helpful for early diagnosis of liver cirrhosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. High-Affinity Low-Capacity and Low-Affinity High-Capacity N-Acetyl-2-Aminofluorene (AAF) Macromolecular Binding Sites Are Revealed During the Growth Cycle of Adult Rat Hepatocytes in Primary Culture.

    PubMed

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.

  13. [Effect of Yiguan Decoction on differentiation of bone marrow mesenchymal stem cells into hepatocyte-like cells: an experimental research].

    PubMed

    Ping, Jian; Chen, Hong-Yun; Yang, Zhou; Yang, Cheng; Xu, Lie-Ming

    2014-03-01

    To observe the effect of Yiguan Decoction (YGD) on differentiation of bone marrow mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro. Rat BMSCs were isolated using whole bone marrow adherent method. The properties of BMSCs were identified by analyzing the expression of surface cytokines by flow cytometry. The third passage cells were differentiated into fat cells to identify their features. BMSCs were incubated with hepatocyte growth factor (HGF) plus fibroblast growth factor 4 (FGF4) or YGD containing serum YGD for 21 days. The mRNA expression of alpha-fetoprotein (alphaAFP), albumin (Alb), and hepatocyte nuclear factor 4alpha (HNF4alpha) were detected by real time PCR. Expression of AFP and cytokeratin 18 (CK18) protein was detected by cell immunofluorescence. Glycogen synthesis was observed using periodic acid-Schiff stain (PAS). CK18, Wnt 3alpha, and alphacatenin protein expressions were detected by Western blot. High expression of CD90, CD29, and CD44, and low expression of CD34 and CD11b were observed in BMSCs isolated by whole bone mar- row adherent method, and numerous lipid droplets were observed in BMSCs using oil red O staining. Both YGD containing serum and growth factor stimulated the expression levels of Alb, AFP, HNF4alpha mRNA and CK18 protein. The down-regulated expression of Wnt 3alpha and beta-catenin could be detected at 21 days after induction. The synthesized glycogen granule could be seen. Down-regulated Wnt 3alpha and beta-catenin expression could also be observed. YGD could induce the differentiation of rat BMSCs into hepatocyte-like cells, which was related to down-regulating Wnt/beta-catenin signal pathway.

  14. Diverse effects of FK506 on the apoptosis of hepatocytes and infiltrating lymphocytes in an allografted rat liver.

    PubMed

    Moriuchi, Hiroki; Kamohara, Yukio; Eguchi, Susumu; Gu, Weili; Fujioka, Hikaru; Yamamoto, Takao; Tajima, Yoshitsugu; Kanematsu, Takashi; Koji, Takehiko

    2011-05-01

    The current study investigated whether FK506 (FK) regulates the apoptotic systems in allografted rat liver and the contribution of Fas/Fas-ligand system and Bcl-2 family during acute rejection. The recipients were divided into three groups, the allo, the allo-FK, and the syn group. Rats were euthanized 1, 3, 5, and 7 d after OLT. Apoptotic activity was explored using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. The expression of Fas/Fas-ligand and Bcl-2/Bax in the grafted livers was investigated by Western blotting and immunohistochemistry. The apoptotic index (AI) of hepatocytes in the allo-FK group was less than that in the allo group. Fas in the allo group was more intense than that in the allo-FK group in the periportal areas on day 1 and 3, while Bcl-2 in the allo group was less intense than that in the allo-FK group in the pericaval areas at all time-points after OLT. FK provides beneficial antiapoptotic effects on hepatocytes in the grafted rat livers through both the down-regulation of Fas expression in the periportal areas and the up-regulation of Bcl-2 expression in the pericaval areas. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Potential hepatoprotective effects of new Cuban natural products in rat hepatocytes culture.

    PubMed

    Rodeiro, I; Donato, M T; Martínez, I; Hernández, I; Garrido, G; González-Lavaut, J A; Menéndez, R; Laguna, A; Castell, J V; Gómez-Lechón, M J

    2008-08-01

    The protective effects of five Cuban natural products (Mangifera indica L. (MSBE), Erythroxylum minutifolium, Erythroxylum confusum, Thalassia testudinum and Dictyota pinnatifida extracts and mangiferin) on the oxidative damage induced by model toxicants in rat hepatocyte cultures were studied. Cells were pre-incubated with the natural products (5-200 microg/mL) for 24 h. Then hepatotoxins (tert-butyl hydroperoxide, ethanol, carbon tetrachloride and lipopolysaccharide) were individually added and post-incubated for another 24 h. After treatments, cell viability was determined using the MTT assay. Mangiferin and MSBE exhibited the highest cytoprotective potential (EC50 between 50 and 125 microg/mL), followed by T. testudinum and Erythroxylum extracts, whereas no significant protective effects was produced by Dictyota extract treatment. Antioxidant properties of the natural products against lipid peroxidation and GSH depletion induced by tert-butyl hydroperoxide were then investigated. The results show that at 36 h pre-treatment of cells with mangiferin or MSBE, concentrations of T. testudinum and Erythroxylum extracts ranging from 25 to 100 microg/mL significantly inhibited lipid peroxidation induced by tert-butyl hydroperoxide (100 and 250 microM) and increased the GSH levels reduced by the toxicant. D. pinnatifida inhibited lipid peroxidation, but did not preserve GSH levels. In conclusion, MSBE, E. minutifolium, E. confusum and T. testudinum extracts and mangiferin showed hepatoprotective activity against induced damage in all the experimental series, where mangiferin and the extracts of MSBE and T. testudinum were the best candidates to inhibit "in vitro" damage to rat hepatocytes. This hepatoprotective effect found could be associated with the antioxidant properties observed for the products.

  16. Phosphoinositide 3-kinase regulates maturation of lysosomes in rat hepatocytes.

    PubMed Central

    Mousavi, Seyed Ali; Brech, Andreas; Berg, Trond; Kjeken, Rune

    2003-01-01

    To obtain information about the role of phosphoinositide 3-kinase (PI3K) in the endocytic pathway in hepatocytes, the uptake and intracellular transport of asialo-orosomucoid (ASOR) was followed in cells treated with wortmannin or LY294002. The two inhibitors, at concentrations known to inhibit the enzyme, did not affect internalization or the number of surface asialoglycoprotein receptors, but they caused a paradoxical increase (approx. 50% above control values) in the degradation of ASOR labelled with [(125)I]tyramine cellobiose ([(125)I]TC). Wortmannin or LY204002 inhibited the autophagic sequestration of lactate dehydrogenase very effectively, and the enhanced degradation of [(125)I]TC-ASOR could be an indirect effect of reduced autophagy, as an amino acid mixture known to inhibit autophagy also caused increased degradation of [(125)I]TC-ASOR, and its effect was not additive to that of wortmannin or LY294002. Wortmannin or LY294002 had pronounced effects on the late parts of the endocytic pathway in the hepatocytes: first, dense lysosomes disappeared and were replaced by swollen vesicles; secondly, degradation of [(125)I]TC-ASOR took place in an organelle of lower buoyant density (in a sucrose gradient) than the bulk of lysosomes (identified in the gradient by lysosomal marker enzymes). With increasing length of incubation with wortmannin or LY294002, the density distributions of the lysosomal markers also shifted to lower density and gradually approached that of the labelled degradation products. The labelled degradation products formed from [(125)I]TC-labelled proteins were trapped at the site of formation, because they did not penetrate the vesicle membranes. The results obtained indicate that internalization and intracellular transport of ASOR to lysomes may take place in the absence of PI3K activity in rat hepatocytes. On the other hand, fusion of late endosomes with lysosomes seems to produce 'hybrid organelles' (active lysosomes) that are unable to

  17. Low asialoglycoprotein receptor expression as markers for highly proliferative potential hepatocytes.

    PubMed

    Ise, H; Sugihara, N; Negishi, N; Nikaido, T; Akaike, T

    2001-07-13

    Development of a reliable method to isolate highly proliferative potential hepatocytes will provide insight into the molecular mechanisms of liver regeneration, as well as proving crucial for the development of a biohybrid artificial liver. The aim of this study is to isolate highly proliferative, e.g., progenitor-like, hepatocytes. To this end, we fractionated hepatocytes expressing low and high levels of the asialoglycoprotein receptor (ASGP-R) based on the difference in their adhesion to poly[N-p-vinylbenzyl-O-beta-d-galactopyranosyl-(1-->4)-d-gluconamide] (PVLA), and examined the proliferative activity and gene expression of these fractionated hepatocytes. The results showed that approximately 0.5 to 1% of the total number of hepatocytes, which showed low adhesion to PVLA, expressed low levels of the ASGP-R, while the rest of hepatocyte population with high adhesion to PVLA expressed high levels of the ASGP-R. Interestingly hepatocytes with low ASGP-R expression levels had much higher DNA synthesizing activity (i.e., are much more proliferative) than those with high ASGP-R expression levels. Moreover, hepatocytes with low ASGP-R expression levels expressed higher levels of epidermal growth factor receptor (EGF-R), CD29 (beta1 integrin) and CD49f (alpha6 integrin) and lower levels of glutamine synthetase than those with high ASGP-R expression. These findings suggested that hepatocytes with low adhesion to PVLA due to their low ASGP-R expression could be potential candidates for progenitor-like hepatocytes due to their high proliferative capacity; hence, the low expression of the ASGP-R could be a unique marker for progenitor hepatocytes. The isolation of hepatocytes with different functional phenotypes using PVLA may provide a new research tool for a better understanding of the biology of hepatocytes and the mechanisms regulating their proliferation and differentiation in health and disease. Copyright 2001 Academic Press.

  18. Repolarization of hepatocytes in culture.

    PubMed

    Talamini, M A; Kappus, B; Hubbard, A

    1997-01-01

    We have evaluated the biochemical, morphological, and functional redevelopment of polarity in freshly isolated hepatocytes cultured using a double layer collagen gel sandwich technique. Western blot analysis showed increased cellular levels of the cell adhesion protein uvomorulin as cultured hepatocytes repolarized. Immunofluorescence studies using antibodies against domain-specific membrane proteins showed polarity as early as 48 hours, although the pattern of the polymeric Immunoglobulin-A receptor (pIgA-R) differed from in vivo liver. Electron microscopy showed developing bile canaliculi at 1 day. However, the functional presence of tight junctions was absent at 1 day, but present at 5 days. We further showed functional polarity to be present at 4 days by documenting the ability of cultured hepatocytes to metabolize and excrete fluorescein diacetate into visible bile canaliculi. We conclude that hepatocytes cultured appropriately develop morphological and functional polarity. Hepatocyte culture is therefore a useful tool for the study of mechanisms responsible for the development of polarized function.

  19. Flow cytometric method for scoring rat liver micronuclei with simultaneous assessments of hepatocyte proliferation.

    PubMed

    Avlasevich, Svetlana L; Khanal, Sumee; Singh, Priyanka; Torous, Dorothea K; Bemis, Jeffrey C; Dertinger, Stephen D

    2018-04-01

    The current report describes a newly devised method for automatically scoring the incidence of rat hepatocyte micronuclei (MNHEP) via flow cytometry, with concurrent assessments of hepatocyte proliferation-frequency of Ki-67-positive nuclei, and the proportion of polyploid nuclei. Proof-of-concept data are provided from experiments performed with 6-week old male Crl:CD(SD) rats exposed to diethylnitrosamine (DEN) or quinoline (QUIN) for 3 or 14 consecutive days. Non-perfused liver tissue was collected 4 days after cessation of treatment in the case of 3-day studies, or 1 day after last administration in the case of 14-day studies for processing and flow cytometric analysis. In addition to livers, blood samples were collected one day after final treatment for micronucleated reticulocyte (MN-RET) measurements. Dose-dependent increases in MNHEP, Ki-67-positive nuclei, and polyploidy were observed in 3- and 14-day DEN studies. Both treatment schedules resulted in elevated %MNHEP for QUIN-exposed rats, and while cell proliferation effects were subtle, appreciable increases to normalized liver weights were observed. Whereas DEN caused markedly higher %MNHEP when exposure was extended to two weeks, QUIN-induced MNHEP were slightly increased with protracted dosing. Parallel microscopy-based MNHEP frequencies were highly correlated with flow cytometry-based measurements (four study/aggregate R 2  = 0.80). No increases in MN-RET were seen in any of the four studies. Collectively, these results suggest liver micronuclei are amenable to an automated scoring technique that provides objective analyses and higher information content relative to conventional microscopy. Additional work is needed to expand the number and types of chemicals tested, identify the most advantageous treatment schedules, and test the transferability of the method. Environ. Mol. Mutagen. 59:176-187, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  20. Combining a Laboratory Practical Class with a Computer Simulation: Studies on the Synthesis of Urea in Isolated Hepatocytes.

    ERIC Educational Resources Information Center

    Bender, David A.

    1986-01-01

    Describes how a computer simulation is used with a laboratory experiment on the synthesis of urea in isolated hepatocytes. The simulation calculates the amount of urea formed and the amount of ammonium remaining as the concentrations of ornithine, citrulline, argininosuccinate, arginine, and aspartate are altered. (JN)

  1. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells

    PubMed Central

    Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-01-01

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine1. Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models. PMID:27077489

  2. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells.

    PubMed

    Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-03-30

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.

  3. Comparison of the effects of sodium phenobarbital in wild type and humanized constitutive androstane receptor (CAR)/pregnane X receptor (PXR) mice and in cultured mouse, rat and human hepatocytes.

    PubMed

    Haines, Corinne; Elcombe, Barbara M; Chatham, Lynsey R; Vardy, Audrey; Higgins, Larry G; Elcombe, Clifford R; Lake, Brian G

    2018-03-01

    Phenobarbital (PB), a constitutive androstane receptor (CAR) activator, produces liver tumours in rodents by a mitogenic mode of action involving CAR activation. In this study, the hepatic effects of sodium phenobarbital (NaPB) were compared in male C57BL/6J wild type (WT) mice and in humanized mice, where both the mouse CAR and pregnane X receptor (PXR) have been replaced by their human counterparts (hCAR/hPXR mice). Investigations were also performed in cultured male C57BL/6J and CD-1 mouse, male Sprague-Dawley rat and male and female human hepatocytes. The treatment of WT and hCAR/hPXR mice with 186-984 ppm NaPB in the diet for 7 days resulted in increased relative liver weight, hypertrophy and induction of cytochrome P450 (CYP) enzyme activities. Treatment with NaPB also produced dose-dependent increases in hepatocyte replicative DNA synthesis (RDS), with the effect being more marked in WT than in hCAR/hPXR mice. While the treatment of cultured C57BL/6J and CD-1 mouse, Sprague-Dawley rat and human hepatocytes with 100 and/or 1000 μM NaPB for 4 days induced CYP enzyme activities, increased RDS was only observed in mouse and rat hepatocytes. However, as a positive control, epidermal growth factor increased RDS in hepatocytes from all three species. In summary, although human hepatocytes are refractory to the mitogenic effects of NaPB, treatment with NaPB induced RDS in vivo in hCAR/hPXR mice, which is presumably due to the human CAR and PXR receptors operating in a mouse hepatocyte regulatory environment. As the response of the hCAR/hPXR mouse to the CAR activator NaPB differs markedly from that of human hepatocytes, the hCAR/hPXR mouse is thus not a suitable animal model for studies on the hepatic effects of nongenotoxic rodent CAR activators. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions

    PubMed Central

    Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja

    2018-01-01

    Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/106 cells after cold storage, 5 ± 3 nmol/106 cells after rewarming vs. control 29 ± 6 nmol/106 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec−1 per 106 cells after rewarming vs. control 232 ± 83 pmol sec−1 per 106 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/106 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production—as elicited by an inhibitor of the respiratory chain, antimycin A—can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment

  5. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions.

    PubMed

    Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja; Rauen, Ursula

    2017-12-01

    Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/10 6 cells after cold storage, 5 ± 3 nmol/10 6 cells after rewarming vs. control 29 ± 6 nmol/10 6 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec -1 per 10 6 cells after rewarming vs. control 232 ± 83 pmol sec -1 per 10 6 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/10 6 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production-as elicited by an inhibitor of the respiratory chain, antimycin A-can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment

  6. Cerveau isolé and pretrigeminal rat preparations.

    PubMed

    Zernicki, B; Gandolfo, G; Glin, L; Gottesmann, C

    1985-01-01

    Cortical and hippocampal EEG activity was analysed in cerveau isolé and and pretrigeminal rats. In the acute stage, waking EEG patterns were absent in the cerveau isolé, whereas sleep EGG patterns were absent in the preparations. However, already on the second day the EEG waking sleep cycle recovered in the majority of rats. Paradoxically, stimuli directed to the caudal part of the preparations evoked stronger cortical and hippocampal EEG arousal than olfactory and visual stimuli. The rats exhibited some locomotor and grooming behaviour and could be fed orally. It is concluded that the activity of the isolated cerebrum of the rat is similar to that of cat preparations, but that functions of the caudal neuraxis are superior in rats.

  7. Use of Mechanistic Modeling to Assess Interindividual Variability and Interspecies Differences in Active Uptake in Human and Rat Hepatocytes

    PubMed Central

    Ménochet, Karelle; Kenworthy, Kathryn E.; Houston, J. Brian

    2012-01-01

    Interindividual variability in activity of uptake transporters is evident in vivo, yet limited data exist in vitro, confounding in vitro-in vivo extrapolation. The uptake kinetics of seven organic anion-transporting polypeptide substrates was investigated over a concentration range in plated cryopreserved human hepatocytes. Active uptake clearance (CLactive, u), bidirectional passive diffusion (Pdiff), intracellular binding, and metabolism were estimated for bosentan, pitavastatin, pravastatin, repaglinide, rosuvastatin, telmisartan, and valsartan in HU4122 donor using a mechanistic two-compartment model in Matlab. Full uptake kinetics of rosuvastatin and repaglinide were also characterized in two additional donors, whereas for the remaining drugs CLactive, u was estimated at a single concentration. The unbound affinity constant (Km, u) and Pdiff values were consistent across donors, whereas Vmax was on average up to 2.8-fold greater in donor HU4122. Consistency in Km, u values allowed extrapolation of single concentration uptake activity data and assessment of interindividual variability in CLactive across donors. The maximal contribution of active transport to total uptake differed among donors, for example, 85 to 96% and 68 to 87% for rosuvastatin and repaglinide, respectively; however, in all cases the active process was the major contributor. In vitro-in vivo extrapolation indicated a general underprediction of hepatic intrinsic clearance, an average empirical scaling factor of 17.1 was estimated on the basis of seven drugs investigated in three hepatocyte donors, and donor-specific differences in empirical factors are discussed. Uptake Km, u and CLactive, u were on average 4.3- and 7.1-fold lower in human hepatocytes compared with our previously published rat data. A strategy for the use of rat uptake data to facilitate the experimental design in human hepatocytes is discussed. PMID:22665271

  8. Effects of Mangifera indica L. aqueous extract (Vimang) on primary culture of rat hepatocytes.

    PubMed

    Rodeiro, I; Donato, M T; Jiménez, N; Garrido, G; Delgado, R; Gómez-Lechón, M J

    2007-12-01

    Vimang is an aqueous extract from stem bark of Mangifera indica L. (Mango) with pharmacological properties. It is a mixture of polyphenols (as main components), terpenoids, steroids, fatty acids and microelements. In the present work we studied the cytotoxic effects of Vimang on rat hepatocytes, possible interactions of the extract with drug-metabolizing enzymes and its effects on GSH levels and lipid peroxidation. No cytotoxic effects were observed after 24 h exposure to Vimang of up to 1000 microg/mL, while a moderate cytotoxicity was observed after 48 and 72 h of exposure at higher concentrations (500 and 1000 microg/mL). The effect of the extract (50-400 microg/mL) on several P450 isozymes was evaluated. Exposure of hepatocytes to Vimang at concentrations of up to 100 microg/mL produced a significant reduction (60%) in 7-methoxyresorufin-O-demethylase (MROD; CYP1A2) activity, an increase (50%) in 7-penthoxyresorufin-O-depentylase (PROD; CYP2B1) activity, while no significant effect was observed with other isozymes. To our knowledge, this is the first report regarding the modulation of the activity of the P450 system by an extract of Mangifera indica L. The antioxidant properties of Vimang were also evaluated in t-butyl-hydroperoxide-treated hepatocytes. A 36-h pre-treatment of cells with Vimang (25-200 microg/mL) strongly inhibited the decrease of GSH levels and lipid peroxidation induced by t-butyl-hydroperoxide dose- and time-dependently.

  9. Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

    PubMed Central

    Ghasemi, Maedeh; Khodaei, Naser; Salari, Sajjad; Eliassi, Afsaneh; Saghiri, Reza

    2014-01-01

    Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic channel in endoplasmic reticulum. Therefore, in this study, we examined and compared the activities of this channel in control and diabetic rats using single-channel recording techniques. Method: Male Wistar rats were made diabetic for 2 weeks with a single dose injection of streptozotocin (45 mg/kg). Ion channel incorporation of rough endoplasmic reticulum of diabetic hepatocytes into the bilayer lipid membrane allowed the characterization of K+ channel. Results: Ion channel incorporation of rough endoplasmic reticulum vesicles into the bilayer lipid revealed that the channel current-voltage (I-V) relation with a mean slope conductance of 520 ± 19 pS was unaffected in diabetes. Interestingly, the channel Po-voltage relation was significantly lower in diabetic rats at voltages above +30 mV. Conclusion: We concluded that the endoplasmic reticulum cationic channel is involved in diabetes. Also, this finding could be considered as a goal for further therapeutic plans. PMID:24842143

  10. Gating behavior of endoplasmic reticulum potassium channels of rat hepatocytes in diabetes.

    PubMed

    Ghasemi, Maedeh; Khodaei, Naser; Salari, Sajjad; Eliassi, Afsaneh; Saghiri, Reza

    2014-07-01

    Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic channel in endoplasmic reticulum. Therefore, in this study, we examined and compared the activities of this channel in control and diabetic rats using single-channel recording techniques. Male Wistar rats were made diabetic for 2 weeks with a single dose injection of streptozotocin (45 mg/kg). Ion channel incorporation of rough endoplasmic reticulum of diabetic hepatocytes into the bilayer lipid membrane allowed the characterization of K+ channel. Ion channel incorporation of rough endoplasmic reticulum vesicles into the bilayer lipid revealed that the channel current-voltage (I-V) relation with a mean slope conductance of 520 ± 19 pS was unaffected in diabetes. Interestingly, the channel Po-voltage relation was significantly lower in diabetic rats at voltages above +30 mV. We concluded that the endoplasmic reticulum cationic channel is involved in diabetes. Also, this finding could be considered as a goal for further therapeutic plans.

  11. Conditional immortalization of Gunn rat hepatocytes: an ex vivo model for evaluating methods for bilirubin-UDP-glucuronosyltransferase gene transfer.

    PubMed

    Fox, I J; Chowdhury, N R; Gupta, S; Kondapalli, R; Schilsky, M L; Stockert, R J; Chowdhury, J R

    1995-03-01

    Viral vectors and protein carriers utilizing asialoglycoprotein receptor (ASGR)-mediated endocytosis are being developed to transfer genes for the correction of bilirubin-UDP-glucuronosyltransferase (bilirubin-UGT) deficiency. Ex vivo evaluation of these gene transfer vectors would be facilitated by a cell system that lacks bilirubin-UGT, but expresses differentiated liver functions, including ASGR. We immortalized primary Gunn rat hepatocytes by transduction with a recombinant Moloney murine leukemia virus expressing a thermolabile mutant SV40 large T antigen (tsA58). At 33 degrees C, the immortalized hepatocyte clones expressed SV40 large T antigen, synthesized DNA, and doubled in number every 2 to 3 days. At this temperature, differentiated hepatocyte markers, e.g., albumin, ASGR, and androsterone-UGT, were expressed at 5% to 10% of the levels found in primary hepatocytes maintained in culture for 24 hours. Glutathione-S-transferase Yp (GST-Yp), an oncofetal protein, was expressed in these cells at 33 degrees C, but was undetectable in primary hepatocytes. In contrast, when the cells were cultured at 39 degrees C or 37 degrees C, the large T antigen was degraded, DNA synthesis and cell growth stopped, and morphologic characteristics of differentiated hepatocytes were observed. The expression of albumin, ASGR, and androsterone-UGT, and their corresponding mRNAs, increased to 25% to 40% of the level in primary hepatocytes, whereas GST-Yp expression decreased. Functionality of ASGR was demonstrated by internalization of Texas red-labeled asialoorosomucoid, and binding and degradation of 125I-asialoorosomucoid. After liposome-mediated transfer of a plasmid containing the coding region of human bilirubin-UGT1, driven by the SV40 large T promoter, active human bilirubin-UGT1 was expressed in these cells. The immortalized cells were not tumorigenic after transplantation into severe combined immunodeficiency mice. These conditionally immortalized cells will be useful

  12. DEPLETION OF CELLULAR PROTEIN THIOLS AS AN INDICATOR OF ARYLATION IN ISOLATED TROUT HEPATOCYTES EXPOSED TO 1,4-BENZOQUINONE

    EPA Science Inventory

    A method for the measurement of protein thiols (PrSH), un-reacted as well as oxidized, i.e. dithiothreitol recoverable, was adapted for the determination of PrSH depletion in isolated rainbow trout hepatocytes exposed to an arylating agent, 1,4-benzoquinone (BQ). Toxicant analysi...

  13. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation bymore » n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.« less

  14. Liver function and DNA integrity in hepatocytes of rats evaluated after treatments with strawberry tree (Arbutus unedo L.) water leaf extract and arbutin.

    PubMed

    Jurica, Karlo; Benković, Vesna; Sikirić, Sunčana; Kopjar, Nevenka; Brčić Karačonji, Irena

    2018-06-07

    Due to their beneficial health effects, strawberry tree (Arbutus unedo L.) leaves have for decades been used as herbal remedy in countries of the Mediterranean region. This pilot study is the first to investigate the liver function and DNA integrity in rat hepatocytes evaluated after 14 and 28 day treatments with strawberry tree water leaf extract and arbutin, administered per os to Lewis rats of both genders at a daily dose 200 mg/kg b.w. We focused on two types of biomarkers: enzyme serum markers of liver function (AST, ALT, and LDH), and primary DNA damage in the liver cells, which was estimated using the alkaline comet assay. At the tested dose, strawberry tree water leaf extract showed acceptable biocompatibility with liver tissue both in male and female rats, especially after shorter exposure. Our results also suggest that oral administration of single arbutin to rats was not associated with significant impairments either in the liver function or DNA integrity in hepatocytes. Considering that prolonged exposure to the tested compounds revealed minor changes in the studied biomarkers, future in vivo studies have to further clarify the biological and physiological relevance of these findings.

  15. Effects of D-glucose upon D-fructose metabolism in rat hepatocytes: A 13C NMR study.

    PubMed

    Malaisse, W J; Ladrière, L; Verbruggen, I; Willem, R

    2002-12-01

    Isolated hepatocytes from fed rats were exposed for 120 min to D-glucose (10 mM) and either D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]fructose (also 10 mM) in the presence of D2O. The identification and quantification of 13C-enriched D-fructose and its metabolites (D-glucose, L-lactate, L-alanine) in the incubation medium and the measurement of their deuterated isotopomers indicated, by comparison with a prior study conducted in the absence of exogenous D-glucose, that the major effects of the aldohexose were to increase the recovery of 13C-enriched D-fructose, decrease the production of 13C-enriched D-glucose, restrict the deuteration of the 13C-enriched isotopomers of D-glucose to those generated by cells exposed to D-[2-13C]fructose, and to accentuate the lesser deuteration of the C, (as compared to C5) of 13C-enriched D-glucose derived from D-[2-13C]fructose. The ratio between C2-deuterated and C2-hydrogenated L-lactate, as well as the relative amounts of the CH3-, CH2D-, CHD, and CD3- isotopomers of 13C-enriched L-lactate were not significantly different, however, in the absence or presence of exogenous D-glucose. These findings indicate that exogenous D-glucose suppressed the deuteration of the C1 of D-[I-13C]glucose generated by hepatocytes exposed to D-[1-13C]fructose or D-[6-13C]fructose, as otherwise attributable, in part at least, to gluconeogenesis from fructose-derived [3-13C]pyruvate, and apparently favoured the phosphorylation of D-fructose by hexokinase isoenzymes, probably through stimulation of D-fructose phosphorylation by glucokinase.

  16. The use of primary rat hepatocytes to achieve metabolic activation of promutagens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase mutational assay.

    PubMed

    Bermudez, E; Couch, D B; Tillery, D

    1982-01-01

    A method is described in which primary rat hepatocytes have been cocultured with Chinese hamster ovary (CHO) cells to provide metabolic activation of promutagens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) mutational assay. Single cell hepatocyte suspensions were prepared from male Fischer-344 rats using the in situ collagenase perfusion technique. Hepatocytes were allowed to attach for 1.5 hours in tissue culture dishes containing an approximately equal number of CHO cells in log growth. The cocultures were exposed to promutagens for up to 20 hours in serum-free medium. The survival and 6-thioguanine-resistant fraction of treated CHO cells were then determined as in the standard CHO/HGPRT assay. Aflatoxin B1 (AFB1) 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(A)P) were found to produce increases in the mutant fractions of treated CHO cells as a function of concentration. The time required for optimum expression of the mutant phenotype following exposure to DMBA and AFB1 was approximately 8 days. Primary cell-mediated mutagenesis may be useful in elucidating metabolic pathways important in the production and detoxification of genotoxic products in vivo.

  17. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drobna, Zuzana; Walton, Felecia S.; Harmon, Anne W.

    2010-05-15

    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAsmore » methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [{sup 73}As]arsenite (iAs{sup III}; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs{sup III} to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs{sup III} than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs{sup III} was associated with inhibition of DMAs production by moderate concentrations of iAs{sup III} and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also

  18. Effects of analogues of ethanolamine and choline on phospholipid metabolism in rat hepatocytes

    PubMed Central

    Åkesson, Björn

    1977-01-01

    1. Analogues of ethanolamine and choline were incubated with different labelled precursors of phospholipids and isolated hepatocytes and the effects on phospholipid synthesis were studied. 2. 2-Aminopropan-1-ol and 2-aminobutan-1-ol were the most efficient inhibitors of [14C]ethanolamine incorporation into phospholipids, whereas the incorporation of [3H]choline was inhibited most extensively by NN-diethylethanolamine and NN-dimethylethanolamine. 3. When the analogues were incubated with [3H]glycerol and hepatocytes, the appearance of 3H in unnatural phospholipids indicated that they were incorporated, at least in part, via CDP-derivatives. The distribution of [3H]glycerol among molecular species of phospholipids containing 2-aminopropan-1-ol and 1-aminopropan-2-ol was the same as in phosphatidylethanolamine. In other phospholipid analogues the distribution of 3H was more similar to that in phosphatidylcholine. 4. NN-Diethylethanolamine stimulated both the conversion of phosphatidylethanolamine into phosphatidylcholine and the incorporation of [Me-14C]methionine into phospholipids. Other N-alkyl- or NN-dialkyl-ethanolamines also stimulated [14C]methionine incorporation, but inhibited the conversion of phosphatidylethanolamine into phosphatidylcholine. This indicates that phosphatidyl-NN-diethylethanolamine is a poor methyl acceptor, in contrast with other N-alkylated phosphatidylethanolamines. 5. These results on the regulation of phospholipid metabolism in intact cells are discussed with respect to the possible control points. They also provide guidelines for future experiments on the manipulation of phospholipid polar-headgroup composition in primary cultures of hepatocytes. PMID:606244

  19. Effects of analogles of ethanolamine and choline on phospholipid metabolism in rat hepatocytes.

    PubMed

    Akesson, B

    1977-12-15

    1. Analogues of ethanolamine and choline were incubated with different labelled precursors of phospholipids and isolated hepatocytes and the effects on phospholipid synthesis were studied. 2. 2-Aminopropan-1-ol and 2-aminobutan-1-ol were the most efficient inhibitors of [(14)C]ethanolamine incorporation into phospholipids, whereas the incorporation of [(3)H]choline was inhibited most extensively by NN-diethylethanolamine and NN-dimethylethanolamine. 3. When the analogues were incubated with [(3)H]glycerol and hepatocytes, the appearance of (3)H in unnatural phospholipids indicated that they were incorporated, at least in part, via CDP-derivatives. The distribution of [(3)H]glycerol among molecular species of phospholipids containing 2-aminopropan-1-ol and 1-aminopropan-2-ol was the same as in phosphatidylethanolamine. In other phospholipid analogues the distribution of (3)H was more similar to that in phosphatidylcholine. 4. NN-Diethylethanolamine stimulated both the conversion of phosphatidylethanolamine into phosphatidylcholine and the incorporation of [Me-(14)C]methionine into phospholipids. Other N-alkyl- or NN-dialkyl-ethanolamines also stimulated [(14)C]methionine incorporation, but inhibited the conversion of phosphatidylethanolamine into phosphatidylcholine. This indicates that phosphatidyl-NN-diethylethanolamine is a poor methyl acceptor, in contrast with other N-alkylated phosphatidylethanolamines. 5. These results on the regulation of phospholipid metabolism in intact cells are discussed with respect to the possible control points. They also provide guidelines for future experiments on the manipulation of phospholipid polar-headgroup composition in primary cultures of hepatocytes.

  20. Selective protection of normal hepatocytes by indocyanine green in photodynamic therapy for the hepatoma of rat

    NASA Astrophysics Data System (ADS)

    Gu, Ying; Li, Junheng; Guo, Zhong-He

    1993-03-01

    Using hepatocarcinoma transplanted rats, the present study made consecutive observation for the color change and indocyanine green (ICG) absorption peak of the normal liver and tumor tissues after intravenous injection of ICG. The normal liver tissue of the rat was found to turn violet-green soon after ICG injection and the optic density (OD) of ICG-characteristic spectral peak of the tissue homogenate reached its maximum value at 35 minutes post-injection, while neither color change nor OD value increase was noticed in the tissue of transplanted hepatocarcinoma, suggesting that there is a specific absorption of ICG by the normal liver tissue. Chemiluminescentoassay revealed inhibited luminal chemiluminescence by ICG, indicating the depression of singlet oxygen and reactive oxygen species (ROS) oxidation during HPD photosensitization by ICG. In PDT of the hepatocarcinoma, the irradiated area was examined under microscope and auto-microimage analysis system after ICG administration. For tumor-free tissue, the photosensitization induced necrotic area was found smaller in those with than those without ICG administration, whereas the tumor killing effect was almost the same of the two. It is suggested that ICG may offer selective protection for healthy hepatocytes without diminishing the destruction of tumor cells. The protection of healthy hepatocytes by ICG is thought to be in accordance with the amount of ICG in the cell and the distribution of light energy.

  1. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane

    PubMed Central

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M; Albano, E; Bianchi, F

    2000-01-01

    BACKGROUND—Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack.
METHODS—The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confocal laser microscopy of isolated rat hepatocytes probed with 10 LKM1 positive sera (five from patients with AIH and five from patients with chronic HCV infection) and a rabbit polyclonal anti-CYP2D6 serum.
RESULTS—Serum from both types of patient stained the plasma membrane of non-permeabilised cells, where the fluorescent signal could be visualised as discrete clumps. Conversely, permeabilised hepatocytes showed diffuse submembranous/cytoplasmic staining. Adsorption with recombinant CYP2D6 substantially reduced plasma membrane staining and LKM1 immunoblot reactivity. Plasma membrane staining of LKM1 colocalised with that of anti-CYP2D6. Immunoprecipitation experiments showed that a single 50 kDa protein recognised by anti-CYP2D6 can be isolated from the plasma membrane of intact hepatocytes.
CONCLUSIONS—AIH and HCV related LKM1 recognise CYP2D6 exposed on the plasma membrane of isolated hepatocytes. This observation supports the notion that anti-CYP2D6 autoreactivity may be involved in the pathogenesis of liver damage.


Keywords: liver/kidney microsomal antibody type 1; autoimmunity; autoimmune hepatitis; hepatitis C virus infection; confocal microscopy PMID:10716687

  2. Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures.

    PubMed Central

    Joaquin, M; Rosa, J L; Salvadó, C; López, S; Nakamura, T; Bartrons, R; Gil, J; Tauler, A

    1996-01-01

    Hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta) are believed to be of major importance for hepatic regeneration after liver damage. We have studied the effect of these growth factors on fructose 2,6-bisphosphate (Fru-2,6-P2) levels and the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/Fru-2,6-BPase) in rat hepatocyte primary cultures. Our results demonstrate that HGF activates the expression of the 6PF2K/Fru-2,6-BPase gene by increasing the levels of its mRNA. As a consequence of this activation, the amount of 6PF2K/Fru-2,6-BPase protein and 6-phosphofructo-2-kinase activity increased, which was reflected by a rise in Fru-2,6-P2 levels. In contrast, TGF-beta decreased the levels of 6PF2K/Fru-2,6-BPase mRNA, which led to a decrease in the amount of 6PF2K/Fru-2,6-BPase protein and Fru-2,6-P2. The different actions of HGF and TGF-beta on 6PF2K/Fru-2,6-BPase gene expression are concomitant with their effect on cell proliferation. Here we show that, in the absence of hormones, primary cultures of hepatocytes express the F-type isoenzyme. In addition, HGF increases the expression of this isoenzyme, and dexamethasone activates the L-type isoform. HGF and TGF-beta were able to inhibit this activation. PMID:8660288

  3. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes.

    PubMed Central

    Edlund, G L; Halestrap, A P

    1988-01-01

    Time courses of L-lactate and pyruvate uptake into isolated rat hepatocytes were measured in a citrate-based medium to generate a pH gradient (alkaline inside), by using the silicone-oil-filtration technique at 0 degrees C to minimize metabolism. At low concentrations of lactate and pyruvate (0.5 mM), transport was inhibited by over 95% by 5 mM-alpha-cyano-4-hydroxycinnamate, whereas at higher concentrations (greater than 10 mM) a significant proportion of transport could not be inhibited. The rate of this non-inhibitable transport was linearly related to the substrate concentration, was less with pyruvate than with L-lactate, and appeared to be due to diffusion of undissociated acid. Uptake of D-lactate was not inhibited by alpha-cyano-4-hydroxycinnamate and occurred only by diffusion. Kinetic parameters for the carrier-mediated transport process were obtained after correction of the initial rates of uptake of lactate and pyruvate in the absence of 5 mM-alpha-cyano-4-hydroxycinnamate by that in the presence of inhibitor. Under the conditions used, the Km values for L-lactate and pyruvate were 2.4 and 0.6 mM respectively and the Ki for alpha-cyano-4-hydroxycinnamate as a competitive inhibitor was 0.11 mM. Km values for the transport of L-lactate and pyruvate into rat erythrocytes under similar conditions were 3.0 and 0.96 mM. The Vmax. of lactate and pyruvate transport into hepatocytes at 0 degrees C was 3 nmol/min per mg of protein. Carrier-mediated transport of 0.5 mM-L-lactate was inhibited by 0.2 mM-p-chloromercuribenzenesulphonate (greater than 90%), 0.5 mM-quercetin (80%), 0.6 mM-isobutylcarbonyl-lactyl anhydride (70%) and 0.5 mM-4,4'-di-isothiocyanostilbene-2,2'-disulphonate (50%). A similar pattern of inhibition of lactate transport is seen in erythrocytes. It is suggested that the same or a similar carrier protein exists in both tissues. The results also show that L-lactate transport into rat hepatocytes is very rapid at physiological temperatures and is

  4. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  5. Comparative metabolism of honokiol in mouse, rat, dog, monkey, and human hepatocytes.

    PubMed

    Jeong, Hyeon-Uk; Kim, Ju-Hyun; Kong, Tae Yeon; Choi, Won Gu; Lee, Hye Suk

    2016-04-01

    Honokiol has antitumor, antioxidative, anti-inflammatory, and antithrombotic effects. Here we aimed to identify the metabolic profile of honokiol in mouse, rat, dog, monkey, and human hepatocytes and to characterize the enzymes responsible for the glucuronidation and sulfation of honokiol. Honokiol had a high hepatic extraction ratio in all five species, indicating that it was extensively metabolized. A total of 32 metabolites, including 17 common and 15 different metabolites, produced via glucuronidation, sulfation, and oxidation of honokiol allyl groups were tentatively identified using liquid chromatography-high resolution quadrupole Orbitrap mass spectrometry. Glucuronidation of honokiol to M8 (honokiol-4-glucuronide) and M9 (honokiol-2'-glucuronide) was the predominant metabolic pathway in hepatocytes of all five species; however, interspecies differences between 4- and 2'-glucuronidation of honokiol were observed. UGT1A1, 1A8, 1A9, 2B15, and 2B17 played major roles in M8 formation, whereas UGT1A7 and 1A9 played major roles in M9 formation. Human cDNA-expressed SULT1C4 played a major role in M10 formation (honokiol-2'-sulfate), whereas SULT1A1*1, 1A1*2, and 1A2 played major roles in M11 formation (honokiol-4-sulfate). In conclusion, honokiol metabolism showed interspecies differences.

  6. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes

    PubMed Central

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D.

    2010-01-01

    The relationship between ethanol induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. When hepatocytes were exposed to ethanol (50 mM, 24 hr) in the presence of N-acetyl cystein (ROS reducer) or dietary antioxidants (quercetin, resveratrol), or NADPH oxidase inhibitor apocynin, ethanol induced increases in ROS and H3AcK9, both were significantly reduced. On the other hand, l-buthionine-sulfoximine (ROS inducer) and inhibitor of mitochondrial complex I (rotenone) and III (antimycin) increased ethanol induced H3AcK9 (p<0.01). Oxidative stress also affected ethanol induced alcohol dehydrogenase 1 (ADH1) mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol induced histone H3 acetylation in hepatocytes. PMID:20705415

  7. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes.

    PubMed

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D

    2010-09-01

    The relationship between ethanol-induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol, and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. Pretreatment of hepatocytes with N-acetyl cystein (ROS reducer), or dietary antioxidants (quercetin, reserveratrol), or NADPH (reduced nicotinamide adenine dinucleotide phosphate) oxidase inhibitor apocynin, significantly reduced ethanol (50 mM, 24 h) induced increases in ROS and H3AcK9. In contrast, l-buthionine sulfoximine (ROS inducer) and inhibitor of mitochondrial complexes I (rotenone) and III (antimycin) increased ethanol-induced H3AcK9 (P<.01). Oxidative stress also affected ethanol-induced alcohol dehydrogenase 1 mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol-induced histone H3 acetylation in hepatocytes. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Cytosol-nucleus traffic and colocalization with FXR of conjugated bile acids in rat hepatocytes.

    PubMed

    Monte, Maria J; Rosales, Ruben; Macias, Rocio I R; Iannota, Valeria; Martinez-Fernandez, Almudena; Romero, Marta R; Hofmann, Alan F; Marin, Jose J G

    2008-07-01

    Bile acids (BAs) are natural ligands of nuclear receptors, in particular farnesoid X receptor (FXR). Whether, in addition to protein-mediated cytosolic-nuclear BA translocation, other mechanisms are involved in the access of BAs to nuclear FXR was investigated. When rat hepatocytes were incubated with radiolabeled taurocholic acid, taurodeoxycholic acid, taurochenodeoxycholic acid, and tauroursodeoxycholic acid, their nuclear accumulation was proportional to their intracellular levels. With the use of flow cytometry analysis, the accumulation by nuclei isolated from rat liver cells was found to differ for several fluorescent compounds of similar molecular weight and different charge, including fluorescein-tagged BAs [cholylglycyl amidofluorescein (CGamF), ursodeoxycholylglycyl amidofluorescein, or chenodeoxycholylglycyl amidofluorescein]. When we varied nuclear volume by incubation with different sucrose concentrations, a similar relationship between nuclear volume and content of FITC and 4-kDa FITC-dextran was found. In contrast, this relationship was markedly lower for CGamF. Confocal microscopy studies revealed that fluorescein-tagged BAs, but also FITC or 10-kDa FITC-dextran were found in the nuclear envelope and concentrated in regions where DNA was less densely packed. In contrast to the cytosolic subcellular localization of peroxisome proliferator-activated receptor-alpha, FXR and nucleolin (a marker of transcriptional active chromatin) were also localized by immunoreactivity in these intranuclear regions. In conclusion, although intranuclear levels of small organic molecules including conjugated BAs depend on their concentrations in the extranuclear space, the existence of certain molecular selectivity (not strictly dependent on molecular weight or charge) suggests that, in addition to simple diffusional exchange, other mechanisms may be also involved in determining their overall nuclear content in regions where these compounds coincide and may interact

  9. Phenobarbital Induces Alterations in the Proteome of Hepatocytes and Mesenchymal Cells of Rat Livers

    PubMed Central

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme. PMID:24204595

  10. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Isolation of rat liver peroxisomes by vertical-rotor centrifugation by using a self-generated, iso-osmotic, Percoll gradient.

    PubMed Central

    Neat, C E; Thomassen, M S; Osmundsen, H

    1981-01-01

    1. Rat liver peroxisomal fractions were isolated in iso-osmotic Percoll gradients by using vertical-rotor centrifugation. The fractions obtained with rats given various dietary treatments were characterized. 2. The effect on peroxisomal beta-oxidation of feeding 15% by wt. of dietary fat for 3 weeks was investigated. High-fat diets caused induction of peroxisomal beta-oxidation, but diets rich in very-long-chain mono-unsaturated fatty acids produced a more marked induction. 3. Peroxisomal beta-oxidation induced by diets rich in very-long-chain mono-unsaturated fatty acids can oxidize such acids. Trans-isomers of mono-unsaturated fatty acids are oxidized at rates that are faster than, or similar to, those obtained with corresponding cis-isomers. 4. Rates of oxidation of [14-14C]erucic acid by isolated rat hepatocytes isolated from rats fed on high-fat diets increased with the time on those diets in a fashion very similar to that previously reported for peroxisomal beta-oxidation [see Neat, Thomassen & Osmundsen (1980) Biochem, J. 186, 369-371]. 5. Total liver capacities for peroxisomal beta-oxidation (expressed as acetyl groups produced per min) were estimated to range from 10 to 30% of mitochondrial capacities, depending on dietary treatment and fatty acid substrate. A role is proposed for peroxisomal beta-oxidation in relation to the metabolism of fatty acids that are poorly oxidized by mitochondrial beta-oxidation, and, in general, as regards oxidation of fatty acids during periods of sustained high hepatic influx of fatty acids. PMID:6272750

  11. Alterations of hepatocyte function with free radical generators and reparation or prevention with coffee polyphenols.

    PubMed

    Saidi Merzouk, Amel; Hafida, Merzouk; Medjdoub, Amel; Loukidi, Bouchra; Cherrak, Sabri; Merzouk, Sid Ahmed; Elhabiri, Mourad

    2017-03-01

    Liver diseases are linked in the majority of cases to oxidative stress that antioxidants could neutralize with reducing liver injury. Chlorogenic acid, a coffee polyphenol, possesses antioxidant prosperities. The aim of this study was to evaluate in vitro preventive and corrective effects of cholorogenic acid in hepatocyte toxicity induced by free radicals. Hepatocytes were isolated from adult male Wistar rats. To determine corrective effects and reparation, cells were first exposed to two free radical generators (hydrogen peroxide/iron sulfate for hydroxyl radical formation, and phenazine methosulfate/nicotinamide adenine dinucleotide for superoxide anion formation) for 12H and thereafter treated by chlorogenic acid (1 and 10 μM final concentration) for another 12H. To show preventive effects, cells were pretreated by chlorogenic acid and thereafter exposed to free radical generators. Hepatocyte proliferation, glucose uptake, ATP contents, membrane fluidity and integrity, and intracellular redox status were investigated after 24H culture. The results showed that chlorogenic acid reversed the decrease in cell proliferation, glucose uptake and ATP levels, the increased LDH release and the reduced membrane fluidity and restored the oxidant/antioxidant status under oxidative stress. When pre-treated with chlorogenic acid, hepatocytes became very resistant to oxidative conditions and cellular homeostasis was maintained. In conclusion, chlorogenic acid displayed not only corrective but also preventive effects in hepatocytes exposed to oxidative stress and could be beneficial in patients with or at risk of liver diseases.

  12. A role for microtubules in sorting endocytic vesicles in rat hepatocytes.

    PubMed Central

    Goltz, J S; Wolkoff, A W; Novikoff, P M; Stockert, R J; Satir, P

    1992-01-01

    The vectorial nature of hepatocyte receptor-mediated endocytosis (RME) and its susceptibility to cytoskeletal disruptors has suggested that a polarized network of microtubules plays a vital role in directed movement during sorting. Using as markers a well-known ligand, asialoorosomucoid, and its receptor, we have isolated endocytic vesicles that bind directly to and interact with stabilized endogenous hepatocyte microtubules at specific times during a synchronous, experimentally initiated, single wave of RME. Both ligand- and receptor-containing vesicles copelleted with microtubules in the absence of ATP but did not pellet under similar conditions when microtubules were not polymerized. When 5 mM ATP was added to preparations of microtubule-bound vesicles, ligand-containing vesicles were released into the supernatant, while receptor-containing vesicles remained immobilized on the microtubules. Release of ligand-containing vesicles from microtubules was prevented by monensin treatment during the endocytic wave. Several proteins, including the microtubule motor protein cytoplasmic dynein, were present in these preparations and were released from microtubule pellets by ATP addition concomitantly with ligand. These results suggest that receptor domains within the endosome can be immobilized by attachment to microtubules so that, following monensin-sensitive dissociation of ligand from receptor, ligand-containing vesicles can be pulled along microtubules away from the receptor domains by a motor molecule, such as cytoplasmic dynein, thereby delineating sorting. Images PMID:1353884

  13. MicroRNA-21 promotes proliferation of rat hepatocyte BRL-3A by targeting FASLG.

    PubMed

    Li, J J; Chan, W H; Leung, W Y; Wang, Y; Xu, C S

    2015-04-27

    Rat liver regeneration (RLR) induced by partial hepatectomy involves cell proliferation regulated by numerous factors, including microRNAs (miRNAs). miRNA high-throughput sequencing has been established and used to analyze miRNA expression profiles. This study showed that 39 miRNAs were related to RLR through the analysis of miRNA high-throughput sequencing. Their role toward rat normal hepatocyte line BRL-3A was studied by gain- and loss-of-function analyses, and one of them, microRNA-21 (miR-21), obviously upregulated and promoted BRL-3A cell proliferation. Using bioinformatics to search for miR-21 targets revealed that Fas ligand (FASLG) is one of miR-21's target genes. A dual-luciferase report assay and Western blot assay showed that miR-21 directly targeted the 3'-untranslated region of FASLG and inhibited the expression of FASLG, which suggests that miR-21 promoted BRL-3A cell proliferation by reducing FASLG expression.

  14. Genotoxic and enzymatic effects of fluoranthene in microsomes and freshly isolated hepatocytes from sole (Solea solea).

    PubMed

    Wessel, N; Ménard, D; Pichavant-Rafini, K; Ollivier, H; Le Goff, J; Burgeot, T; Akcha, F

    2012-02-01

    The fluoranthene (Fluo) is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) in human food and in marine compartments. However, the existing data on its genotoxicity is poor and controversial. The aim of this study was to assess in vitro the potential genotoxicity of Fluo in sole and its possible effect on CYP450 modulation. Freshly isolated hepatocytes were exposed for 24 h to a range of Fluo concentrations from 0.5 to 50 μM in both culture flasks and microplate wells. The ethoxyresorufin-O-deethylase (EROD) activity was measured as an indicator of the activity of the cytochrome P450 1A1 (CYP1A1). The genotoxic effects were evaluated by measuring both DNA strand breaks and DNA adducts by the alkaline comet assay and the postlabeling technique respectively. Calf thymus DNA was also exposed to Fluo in the presence of sole liver microsomes in order to check for Fluo DNA adduct formation. In sole hepatocytes, Fluo was shown to induce a decrease in the EROD activity in a concentration-dependent manner. A significant genotoxic effect was observed in terms of DNA strand breakage from an exposure concentration of 5 μM: despite a concentration-dependent effect was observed, it did not follow a linear dose-response. The response was similar whatever the way of exposure in flasks or in wells. One reproducible adduct was detected in the hepatocytes exposed to the highest concentrations of Fluo. The formation of Fluo adducts was confirmed by the detection of one reproducible adduct following in vitro exposure of calf thymus DNA to 100 and 200 μM of Fluo in the presence of sole microsomes. These results demonstrate the potential of sole hepatocytes to metabolize Fluo in 24 h into reactive species, able to induce genotoxicity by DNA strand breakage and DNA adduct formation. Moreover, a miniaturized cell exposure system was validated for further experiments using fewer amounts of hepatocytes and contaminants, and allowing exposure to PAH metabolites. Copyright

  15. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles wasmore » confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload.« less

  16. Formation of human hepatocyte-like cells with different cellular phenotypes by human umbilical cord blood-derived cells in the human-rat chimeras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang

    2007-06-15

    We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver.more » More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future.« less

  17. Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells.

    PubMed

    Choi, Seon-A; Choi, Hoon-Sung; Kim, Keun Jung; Lee, Dong-Soo; Lee, Ji Hey; Park, Jie Yeun; Kim, Eun Young; Li, Xiaoxia; Oh, Hyun-Yang; Lee, Dong-Seok; Kim, Min Kyu

    2013-01-01

    Recent findings have demonstrated that amniotic fluid cells are an interesting and potential source of mesenchymal stem cells (MSCs). In this study, we isolated MSCs from canine amniotic fluid and then characterized their multilineage differentiation ability. Canine amniotic fluid stem (cAFS) cells at passage 5 had a fibroblast-like morphology instead of forming colonies and were positive for pluripotent stem cell markers such as OCT4, NANOG, and SOX2. Flow cytometry analysis showed the expression of MSC surface markers CD44, CD29, and CD90 on the cAFS cells. In addition, these cells were cultured under conditions favorable for adipogenic, chondrogenic, and osteogenic induction. The results of this experiment confirmed the mesenchymal nature of cAFS cells and their multipotent potential. Interestingly, although the cells exhibited a fibroblast-like morphology after hepatogenic induction, reverse transcription-polymerase chain reaction revealed that the expression of several hepatic genes, such as albumin, tyrosine aminotransferase, and alpha-1 antiproteinase, increased following maturation and differentiation. These findings indicated that cAFS cells have functional properties similar to those of hepatocytes. Taken together, the results of our study demonstrated that cAFS cells with mesenchymal characteristics can be successfully isolated from canine amniotic fluid and possess functional properties characteristic of hepatocytes. The findings of our work suggest that cAFS cells have the potential to be a resource for cell-based therapies in a canine model of hepatic disease.

  18. Isolation of rat adrenocortical mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solinas, Paola; Department of Medicine, Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; Fujioka, Hisashi

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A method for isolation of adrenocortical mitochondria from the adrenal gland of rats is described. Black-Right-Pointing-Pointer The purified isolated mitochondria show excellent morphological integrity. Black-Right-Pointing-Pointer The properties of oxidative phosphorylation are excellent. Black-Right-Pointing-Pointer The method increases the opportunity of direct analysis of adrenal mitochondria from small animals. -- Abstract: This report describes a relatively simple and reliable method for isolating adrenocortical mitochondria from rats in good, reasonably pure yield. These organelles, which heretofore have been unobtainable in isolated form from small laboratory animals, are now readily accessible. A high degree of mitochondrial purity is shown by the electronmore » micrographs, as well as the structural integrity of each mitochondrion. That these organelles have retained their functional integrity is shown by their high respiratory control ratios. In general, the biochemical performance of these adrenal cortical mitochondria closely mirrors that of typical hepatic or cardiac mitochondria.« less

  19. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes.

    PubMed

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; McCullough, Sandra S; James, Laura P; Hinson, Jack A

    2017-01-01

    The hepatotoxicity of acetaminophen (APAP) occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO) and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1) inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP), a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo . In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein), reactive oxygen formation (superoxide), loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction.

  20. Hepatocyte transplantation for liver-based metabolic disorders.

    PubMed

    Dhawan, Anil; Mitry, Ragai R; Hughes, Robin D

    2006-01-01

    Hepatocyte transplantation is being investigated as an alternative to orthotopic liver transplantation in patients with liver-based metabolic disorders. The progress made in this field to date is reviewed. Protocols have been developed using collagenase perfusion to isolate human hepatocytes from unused donor liver tissue. Hepatocytes with a high viability can often be obtained and can be cryopreserved for later use, though with loss of function on thawing. For clinical use, hepatocytes must be prepared in clean GMP conditions with cells meeting criteria of function and lack of microbial contamination before patient use. Hepatocytes are infused intraportally into the patient's liver, where a proportion of cells will engraft and replace the deficient metabolic function without the need for major surgery. Twenty patients have now received hepatocyte transplantation, including eight children at King's College Hospital. There was a range of aetiologies of liver disease: familial hypercholesterolaemia, Crigler-Najjar syndrome type 1, urea cycle defects, infantile Refsum disease, glycogen storage disease type Ia, inherited factor VII deficiency and progressive familial intrahepatic cholestasis type 2. Clinical improvement and partial correction of the metabolic abnormality was observed in most cases. Considerable progress has been made in developing the technique, but hepatocyte transplantation is limited by the available supply of liver tissue. Hepatocytes derived from stem cells could provide alternative sources of cells in the future.

  1. Location of rRNA transcription to the nucleolar components: disappearance of the fibrillar centers in nucleoli of regenerating rat hepatocytes.

    PubMed

    Montanaro, Lorenzo; Govoni, Marzia; Orrico, Catia; Treré, Davide; Derenzini, Massimo

    2011-01-01

    The precise location of rDNA transcription to the components of mammalian cell nucleolus is still debated. This was due to the fact that all the molecules necessary for rRNA synthesis are located in two of the three components, the fibrillar centers (FCs) and the dense fibrillar component (DFC), which together with the granular component (GC) are considered to be constantly present in mammalian cell nucleoli. In the present study we demonstrated that in nucleoli of many regenerating rat hepatocytes at 15 h after partial hepatectomy the FCs were no longer present, only the DFC and the GC being detected. At this time of regeneration the rRNA transcriptional activity was three fold that of resting hepatocytes, while the synthesis of DNA was not yet significantly increased, indicating that these nucleolar changes were due to the rRNA synthesis up-regulation. The DFC appeared to be organized in numerous, small, roundish tufts of fibrils. The silver staining procedure for AgNOR proteins, which are associated with the ribosomal genes, selectively and homogeneously stained these fibrillar tufts. Immuno-gold visualization of the Upstream Binding Factor (UBF), which is associated with the promoter region and the transcribed portion of the rRNA 45S gene, demonstrated that UBF was selectively located in the fibrillar tufts. We concluded that in proliferating rat hepatocytes the increased synthesis of rRNA induced an activation of the rRNA transcription machinery located in the fibrillar centers which, by becoming associated with the ribonucleoprotein transcripts, assumed the morphological pattern of the DFC.

  2. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiang, Tony K.L.; Teng Xiaowei; Surendradoss, Jayakumar

    2011-05-01

    The present study was conducted in sandwich-cultured rat hepatocytes to investigate the chemical basis of glutathione (GSH) depletion by valproic acid (VPA) and evaluate the role of GSH depletion in VPA toxicity. Among the synthetic metabolites of VPA investigated, 4-ene-VPA and (E)-2,4-diene-VPA decreased cellular levels of total GSH, but only (E)-2,4-diene-VPA was more effective and more potent than the parent drug. The in situ generated, cytochrome P450-dependent 4-ene-VPA did not contribute to GSH depletion by VPA, as suggested by the experiment with a cytochrome P450 inhibitor, 1-aminobenzotriazole, to decrease the formation of this metabolite. In support of a role formore » metabolites, alpha-F-VPA and octanoic acid, which do not undergo biotransformation to form a 2,4-diene metabolite, CoA ester, or glucuronide, did not deplete GSH. A time course experiment showed that GSH depletion did not occur prior to the increase in 2',7'-dichlorofluorescein (a marker of oxidative stress), the decrease in [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (WST-1) product formation (a marker of cell viability), or the increase in lactate dehydrogenase (LDH) release (a marker of necrosis) in VPA-treated hepatocytes. In conclusion, the cytochrome P450-mediated 4-ene-VPA pathway does not play a role in the in situ depletion of GSH by VPA, and GSH depletion is not an initiating event in VPA toxicity in sandwich-cultured rat hepatocytes.« less

  3. Metabolism and disposition of 2-ethylhexyl-p-methoxycinnamate following oral gavage and dermal exposure in Harlan Sprague Dawley rats and B6C3F1/N mice and in hepatocytes in vitro.

    PubMed

    Fennell, Timothy R; Mathews, James M; Snyder, Rodney W; Hong, Yan; Watson, Scott L; Black, Sherry R; McIntyre, Barry S; Waidyanatha, Suramya

    2017-11-23

    1. 2-Ethylhexyl-p-methoxycinnamate (EHMC) is commonly used as an ingredient in sunscreens, resulting in potential oral and dermal exposure in humans. 2. Clearance and metabolism of EHMC in hepatocytes and disposition and metabolism of EHMC in rodents following oral (8-800 mg/kg) intravenous (IV) (8 mg/kg) or dermal (0.8-80 mg/kg representing 0.1-10% formulation concentration) exposure to [ 14 C]EHMC were investigated in rats and mice. 3. EHMC was rapidly cleared from rat and mouse hepatocytes (half-life ≤3.16 min) and less rapidly (half-life ≤48 min) from human hepatocytes. 4. [ 14 C]EHMC was extensively absorbed and excreted primarily in urine by 72 h after oral administration to rats (65-80%) and mice (63-72%). Oral doses to rats were excreted to a lesser extent (3-8%) in feces and as CO 2 (1-4%). Radioactive residues in tissues were <1% of the dose. There were no sex or species differences in disposition in rats. 5. Following dermal application, 34-42% of an 8-mg/kg dose was absorbed in rats, and 54-62% in mice in 72-h. 6. Among numerous urinary metabolites associated with hydrolysis of the ester, two potential reproductive and developmental toxicants, 2-ethylhexanol and 2-ethylhexanoic acid were produced by metabolism of EHMC.

  4. Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadanaciva, Sashi; Aleo, Michael D.; Strock, Christopher J.

    To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs)more » as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary.« less

  5. GENE EXPRESSION ALTERATIONS OBSERVED IN PRIMARY CULTURED RAT HEPATOCYTES AFTER TREATMENT WITH CHLORINATED OR CHLORINATED AND OZONATED DRINKING WATER FROM EAST FORK LAKE, OHIO

    EPA Science Inventory

    Drinking water from East Fork Lake was spiked with iodide and bromide, disinfected with chlorine or ozone + chlorine, concentrated ~100-fold using reverse osmosis, and volatile disinfection by-products (DBPs) added back. Primary rat hepatocytes were exposed to full-strength, 1:10...

  6. The importance of alcohol dehydrogenase in regulation of ethanol metabolism in rat liver cells.

    PubMed Central

    Page, R A; Kitson, K E; Hardman, M J

    1991-01-01

    We used titration with the inhibitors tetramethylene sulphoxide and isobutyramide to assess quantitatively the importance of alcohol dehydrogenase in regulation of ethanol oxidation in rat hepatocytes. In hepatocytes isolated from starved rats the apparent Flux Control Coefficient (calculated assuming a single-substrate irreversible reaction with non-competitive inhibition) of alcohol dehydrogenase is 0.3-0.5. Adjustment of this coefficient to allow for alcohol dehydrogenase being a two-substrate reversible enzyme increases the value by 1.3-1.4-fold. The final value of the Flux Control Coefficient of 0.5-0.7 indicates that alcohol dehydrogenase is a major rate-determining enzyme, but that other factors also have a regulatory role. In hepatocytes from fed rats the Flux Control Coefficient for alcohol dehydrogenase decreases with increasing acetaldehyde concentration. This suggests that, as acetaldehyde concentrations rise, control of the pathway shifts from alcohol dehydrogenase to other enzymes, particularly aldehyde dehydrogenase. There is not a single rate-determining step for the ethanol metabolism pathway and control is shared among several steps. PMID:1898355

  7. Autologous bone marrow stem cell transplantation attenuates hepatocyte apoptosis in a rat model of ex vivo liver resection and liver autotransplantation.

    PubMed

    Xu, Tubing; Wang, Xiaojun; Chen, Geng; He, Yu; Bie, Ping

    2013-10-01

    To investigate the efficacy of autologous bone marrow stem cell (BMSC) transplantation in the treatment of hepatic injury in ex vivo liver resection and liver autotransplantation (ELRLA). Rat hepatic fibrosis was induced by intraperitoneal injection of 50% CCl4-olive oil solution at a dose of 2 mL/kg twice weekly for 4 wk. ELRLA was performed 3 d post the last injection of CCl4. Six rats in each group were killed 12, 24, 48, 72, and 168 h after the operation. Hepatocyte apoptosis was determined by TUNEL assay. The expression of Bcl-2, Bax, transforming growth factor (TGF) β1, TGFβ1 receptor1/2, and phosphorylated p38 MAPK were determined by Western blot. Autologous BMSC transplantation significantly inhibited the increase of alanine aminotransferease and aspartate aminotransferase at 12, 24, and 48 h post operation and attenuated ELRLA-induced hepatocyte apoptosis. In BMSC-treated rats, the expression of Bcl-2 was significantly upregulated, whereas there were no obvious changes in Bax level. The expression of TGFβ1 was significantly upregulated in the rat liver after the surgery. Autologous BMSC transplantation significantly downregulated the TGFβ1 levels at 48, 72, and 168 h post surgery. However, autologous BMSC transplantation showed little effect on the levels of TGFβ receptor 1/2 at all the time points observed. Furthermore, autologous BMSC transplantation significantly inhibited the activation of p38 MAPK. Autologous BMSC transplantation may reduce ELRLA-induced liver injury and improve survival rates in hepatic fibrosis rats. Autologous BMSC transplantation may be useful to improve the outcome of patients who undergo ELRLA. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    PubMed

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Mitochondrial dysfunction in choline deficiency-induced apoptosis in cultured rat hepatocytes.

    PubMed

    Guo, Wei-Xing; Pye, Quentin N; Williamson, Kelly S; Stewart, Charles A; Hensley, Kenneth L; Kotake, Yashige; Floyd, Robert A; Broyles, Robert H

    2005-09-01

    Our recent studies have demonstrated that generation of ROS is associated with choline deficiency (CD)-induced apoptosis in CWSV-1 cells, an immortalized rat hepatocyte that becomes tumorigenic by stepwise culturing in decreasing levels of choline. In the present study, we investigated the effect of CD on loss of mitochondrial membrane potential (MMP), using the JC-1 probe by FASCAN assay. Our data demonstrate that MMP in CD-cultured cells was decreased in a time- and dose-dependent manner and that significant disruption occurred at 24 h, relative to high choline (HC, 70 microM) cultured cells. In order to investigate further the relationship among the CD-induced ROS, MMP collapse, and apoptosis, we examined the effects of different inhibitors on ROS production, MMP disruption, and apoptosis in CD or HC-cultured CWSV-1 cells. These data indicate that the disruption of MMP is an upstream event in CD-induced apoptosis, and mitochondrial dysfunction plays a key role in mediating CD-induced apoptosis in CWSV-1 cells.

  10. [Study on the hepatocytic cell targetability of liposomes].

    PubMed

    Hou, Xin-pu; Wang, Li; Wang, Xiang-tao; Li, Sha

    2003-02-01

    To target for hepatocytic cell, liposomes was modified by special ligand. Sterically stabilized liposomes (SSL) was conjugated with asialofeticin (AF), the ligand of asialoglycoprotein receptor (ASGP-R) of hepatocyte. ASGP-R-BLM is the ASGP-R reconstructed on bilayer lipid membrane (BLM). The recognition reaction between AF-SSL and ASGP-R-BLM can be monitored by the varieties of membrane electrical parameters. The targetability of AF-SSL mediated to hepatocyte was detected by radioisotopic labeled in vitro and in vivo. The therapeutic effect of antihepatocarcinoma was observed also. The lifetime of ASGP-R-BLM decreased with the added amount of AF-SSL. It was demonstrated that there was recognition reaction between AF-SSL and ASGP-R-BLM. The combination of AF-SSL with hepatocyte was significantly higher than that of SSL without AF-modified in vitro and in vivo. The survival time of rat for AF-SSL carriered ADM (adriamycin) group was much longer and the toxicities on heart, kidney and lung were lower than those SSL carried ADM group. It is possible to actively target the cell with specific receptor by ligand modified liposomes. The result prvide scientific basis of hepatocyte targeted liposomes.

  11. Advanced Method for Isolation of Mouse Hepatocytes, Liver Sinusoidal Endothelial Cells, and Kupffer Cells.

    PubMed

    Liu, Jia; Huang, Xuan; Werner, Melanie; Broering, Ruth; Yang, Dongliang; Lu, Mengji

    2017-01-01

    Separation of pure cell populations from the liver is a prerequisite to study the role of hepatic parenchymal and non-parenchymal cells in liver physiology, pathophysiology, and immunology. Traditional methods for hepatic cell separation usually purify only single cell types from liver specimens. Here, we describe an efficient method that can simultaneously purify populations of hepatocytes (HCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs) from a single mouse liver specimen. A liberase-based perfusion technique in combination with a low-speed centrifugation and magnetic-activated cell sorting (MACS) led to the isolation and purification of HCs, KCs, and LSECs with high yields and purity.

  12. Phenobarbital induction of cytochromes P-450. High-level long-term responsiveness of primary rat hepatocyte cultures to drug induction, and glucocorticoid dependence of the phenobarbital response.

    PubMed Central

    Waxman, D J; Morrissey, J J; Naik, S; Jauregui, H O

    1990-01-01

    The induction of hepatic cytochromes P-450 by phenobarbital (PB) was studied in rat hepatocytes cultured for up to 5 weeks on Vitrogen-coated plates in serum-free modified Chee's medium then exposed to PB (0.75 mM) for an additional 4 days. Immunoblotting analysis indicated that P-450 forms PB4 (IIB1) and PB5 (IIB2) were induced dramatically (greater than 50-fold increase), up to levels nearly as high as those achieved in PB-induced rat liver in vivo. The newly synthesized cytochrome P-450 was enzymically active, as shown by the major induction of the P-450 PB4-dependent steroid 16 beta-hydroxylase and pentoxyresorufin O-dealkylase activities in the PB-induced hepatocyte microsomes (up to 90-fold increase). PB induction of these P-450s was markedly enhanced by the presence of dexamethasone (50 nM-1 microM), which alone was not an affective inducing agent, and was inhibited by greater than 90% by 10% fetal bovine serum. The PB response was also inhibited (greater than 85%) by growth hormone (250 ng/ml), indicating that this hormone probably acts directly on the hepatocyte when it antagonizes the induction of P-450 PB4 in intact rats. In untreated hepatocytes, P-450 RLM2 (IIA2), P-450 3 (IIA1) and NADPH P-450 reductase levels were substantially maintained in the cultures for 10-20 days. The latter two enzymes were also inducible by PB to an extent (3-4 fold elevation) that is comparable with that observed in the liver in vivo. Moreover, P-450c (IA1) and P-450 3 (IIA1) were highly inducible by 3-methylcholanthrene (5 microM; 48 h exposure) even after 3 weeks in culture. In contrast, the male-specific pituitary-regulated P-450 form 2c (IIC11) was rapidly lost upon culturing the hepatocytes, suggesting that supplementation of appropriate hormonal factors may be necessary for its expression. The present hepatocyte culture system exhibits a responsiveness to drug inducers that is qualitatively and quantitatively comparable with that observed in vivo, and should prove

  13. Protective effect of black garlic extracts on tert-Butyl hydroperoxide-induced injury in hepatocytes via a c-Jun N-terminal kinase-dependent mechanism

    PubMed Central

    Lee, Ko-Chao; Teng, Chih-Chuan; Shen, Chien-Heng; Huang, Wen-Shih; Lu, Chien-Chang; Kuo, Hsing-Chun; Tung, Shui-Yi

    2018-01-01

    Black garlic has been reported to show multiple bioactivities against the development of different diseases. In the present study, the hepatoprotective effect of black garlic on injured liver cells was investigated. Rat clone-9 hepatocytes were used for all experiments; tert-Butyl hydroperoxide (tBHP) was used to induce injury of rat clone-9 hepatocytes. The contents of malondialdehyde (MDA) and glutathione (GSH); anti-oxidative enzyme activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx); and mRNA expression levels of interleukin (IL)-6 and IL-8 in rat clone-9 hepatocytes were determined to evaluate the level of cell damage. Black garlic extracts were demonstrated to significantly attenuate tBHP-induced cell death of rat clone-9 hepatocytes (P<0.05). Pretreatment with black garlic extracts antagonized GSH depletion, tBHP-increased MDA accumulation and the mRNA expression level of IL-6/IL-8, and tBHP-decreased antioxidative enzyme activities (all P<0.05). Moreover, the present study revealed that c-Jun N-terminal kinase signaling regulated black garlic-inhibited tBHP effects in rat clone-9 hepatocytes. Our findings demonstrate that black garlic has the hepatoprotective potential to block tBHP-damaged effects on cell death, lipid peroxidation, oxidative stress, and inflammation in rat clone-9 hepatocytes. Thus, the present study indicates that black garlic may be an excellent natural candidate in the development of adjuvant therapy and healthy foods for liver protection. PMID:29456651

  14. Determination of metabolic stability using cryopreserved hepatocytes from rainbow trout (Oncorhynchus mykiss)

    EPA Science Inventory

    Standard protocols for isolating, cryopreserving, and thawing rainbow trout hepatocytes are described, along with procedures for using fresh or cryopreserved hepatocytes to assess chemical metabolic stability in fish by means of a substrate depletion approach. Variations on thes...

  15. Low-molecular-weight lignin-rich fraction in the extract of cultured Lentinula edodes mycelia attenuates carbon tetrachloride-induced toxicity in primary cultures of rat hepatocytes.

    PubMed

    Yoshioka, Yasuko; Kojima, H; Tamura, A; Tsuji, K; Tamesada, M; Yagi, K; Murakami, N

    2012-01-01

    The extract of cultured Lentinula edodes mycelia (LEM) is a medicinal food ingredient that has hepatoprotective effects. In this study, we fractionated the LEM extract to explore novel active compounds related to hepatoprotection by using primary cultures of rat hepatocytes exposed to carbon tetrachloride (CCl(4)). The LEM extract and the fractions markedly inhibited the release of alanine aminotransferase (ALT) from hepatocytes damaged by CCl(4) into the culture medium. The strongest hepatocyte-protective activity was seen in a fraction (Fr. 2) in which a 50% ethanol extract was further eluted with 50% methanol and separated using reverse-phase HPLC. Fr. 2 had an average molecular weight of 2753, and the main components are lignin (49%) and saccharides (36%, of which xylose comprises 41%). Therefore, Fr. 2 was presumed to be a low-molecular-weight compound consisting mainly of lignin and xylan-like polysaccharides. The hepatocyte-protective activity was observed even after digestion of xylan-like polysaccharides in Fr.2 and confirmed with low-molecular-weight lignin (LM-lignin) alone. In addition, Fr. 2, the xylan-digested Fr. 2 and LM-lignin showed higher superoxide dismutase (SOD)-like activity than the LEM extract. These results suggested that the effective fraction in the LEM extract related to hepatocyte protection consisted mainly of LM-lignin, and its antioxidant activity partially contributes to the hepatocyte-protective activity of the LEM extract.

  16. Epidermal growth factor (EGF) stimulated Ca/sup 2 +/ mobilization in hepatocytes is abolished by phorbol esters, pertussis toxin and partial hepatectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.M.; Garrison, J.C.

    1986-05-01

    EGF has been demonstrated to increase free intracellular Ca/sup 2 +/ levels in isolated hepatocytes putatively by generation of the second messenger inositol trisphosphate (IP/sub 3/). Pretreatment of cells with phorbol 12-myristate 13-acetate (PMA) inhibited the EGF (66 nM) stimulated Ca/sup 2 +/ response as measured by quin2. Inhibition by PMA was maximal within 3 min and was concentration dependent (IC/sub 50/ = 13.5 nM). Four other active phorbol ester analogues blocked the Ca/sup 2 +/ response while inactive analogues did not. EGF was unable to increase intracellular Ca/sup 2 +/ levels in hepatocytes isolated from rats treated with pertussismore » toxin for 72 hrs. Neither PMA nor toxin pretreatment was able to inhibit the Ca/sup 2 +/ response to angiotensin II (Ang II). In hepatocytes isolated 24 hrs after partial hepatectomy, the Ca/sup 2 +/ response to EGF (as measured by phosphorylase activity, EC/sub 50/ = 5 nM) was completely abolished and remained attenuated for 7 days post-hepatectomy. The Ca/sup 2 +/ response to Ang II in this model system was also blunted but required 3 days for development of the full effect and within 7 days full activity is nearly restored. The results suggest that fundamental differences exist in the transduction mechanisms used by these two Ca/sup 2 +/-linked hormones to mobilize intracellular Ca/sup 2 +/ (and putatively increase IP/sub 3/ formation).« less

  17. Long-Term Selenium-Deficient Diet Induces Liver Damage by Altering Hepatocyte Ultrastructure and MMP1/3 and TIMP1/3 Expression in Growing Rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wang, Sen; Li, Feng; Wu, Xiaofang; Ma, Jing; Shi, Xiaowei; Guo, Xiong; Bai, Chuanyi

    2017-02-01

    The effects of selenium (Se)-deficient diet on the liver were evaluated by using growing rats which were fed with normal and Se-deficient diets, respectively, for 109 days. The results showed that rats fed with Se-deficient diet led to a decrease in Se concentration in the liver, particularly among male rats from the low-Se group. This causes alterations to the ultrastructure of hepatocytes with condensed chromatin and swelling mitochondria observed after low Se intake. Meanwhile, pathological changes and increased fibrosis in hepatic periportal were detected by hematoxylin and eosin and Masson's trichrome staining in low-Se group. Furthermore, through immunohistochemistry (IHC) staining, higher expressions of metalloproteinases (MMP1/3) and their tissue inhibitors of metalloproteinases (TIMP1/3) were observed in the hepatic periportal of rats from the low-Se group. However, higher expressions of MMP1/3 and lower expressions of TIMP1/3 were detected in hepatic central vein and hepatic sinusoid. In addition, upregulated expressions of MMP1/3 and downregulated expressions of TIMP1/3 at the messenger RNA (mRNA) and protein levels also appeared to be relevant to low Se intake. In conclusion, Se-deficient diet could cause low Se concentration in the liver, alterations of hepatocyte ultrastructure, differential expressions of MMP1/3 and TIMP1/3 as well as fibrosis in the liver hepatic periportal.

  18. Oxidation of Hepatic Carnitine Palmitoyl Transferase-I (CPT-I) Impairs Fatty Acid Beta-Oxidation in Rats Fed a Methionine-Choline Deficient Diet

    PubMed Central

    Bellanti, Francesco; Priore, Paola; Rollo, Tiziana; Tamborra, Rosanna; Siculella, Luisa; Vendemiale, Gianluigi; Altomare, Emanuele; Gnoni, Gabriele V.

    2011-01-01

    There is growing evidence that mitochondrial dysfunction, and more specifically fatty acid β-oxidation impairment, is involved in the pathophysiology of non-alcoholic steatohepatitis (NASH). The goal of the present study was to achieve more understanding on the modification/s of carnitinepalmitoyltransferase-I (CPT-I), the rate-limiting enzyme of the mitochondrial fatty acid β-oxidation, during steatohepatitis. A high fat/methionine-choline deficient (MCD) diet, administered for 4 weeks, was used to induce NASH in rats. We demonstrated that CPT-Iactivity decreased, to the same extent, both in isolated liver mitochondria and in digitonin-permeabilized hepatocytes from MCD-diet fed rats. At the same time, the rate of total fatty acid oxidation to CO2 and ketone bodies, measured in isolated hepatocytes, was significantly lowered in treated animals when compared to controls. Finally, an increase in CPT-I mRNA abundance and protein content, together with a high level of CPT-I protein oxidation was observed in treated rats. A posttranslational modification of rat CPT-I during steatohepatitis has been here discussed. PMID:21909411

  19. Dicarbonyls stimulate cellular protection systems in primary rat hepatocytes and show anti-inflammatory properties.

    PubMed

    Buetler, Timo M; Latado, Hélia; Baumeyer, Alexandra; Delatour, Thierry

    2008-04-01

    Advanced glycation endproducts (AGEs) and their precursor dicarbonyls are generally perceived as having adverse health effects. They are also considered to be initiators and promoters of disease and aging. However, proof for a causal relationship is lacking. On the other hand, it is known that AGEs and melanoidins possess beneficial properties, such as antioxidant and metal-chelating activities. Furthermore, some AGEs may stimulate the cellular detoxification system, generally known as the phase II drug metabolizing system. We show here that several reactive dicarbonyl intermediates have the capability to stimulate the cellular phase II detoxification systems in both a reporter cell line and primary rat hepatocytes. In addition, we demonstrate that dicarbonyls can attenuate the inflammatory signaling induced by tumor necrosis factor-alpha in a reporter cell system.

  20. Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes

    PubMed Central

    Basma, Hesham; Soto-Gutiérrez, Alejandro; Yannam, Govardhana Rao; Liu, Liping; Ito, Ryotaro; Yamamoto, Toshiyuki; Ellis, Ewa; Carson, Steven D.; Sato, Shintaro; Chen, Yong; Muirhead, David; Navarro-Álvarez, Nalu; Wong, Ron; Roy-Chowdhury, Jayanta; Platt, Jeffrey L.; Mercer, David F.; Miller, John D.; Strom, Stephen C.; Kobayashi, Noaya; Fox, Ira J.

    2009-01-01

    Background & Aims The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes. Methods To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human Activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein receptor expression. Characterization was performed by real-time PCR, imunohistochemistry, immunoblot, functional assays and transplantation. Results Embryonic stem cell-derived hepatocytes expressed liver-specific genes but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes and demonstrated human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha-1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. Conclusion Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein receptor expression and could potentially be used in drug discovery research and developed as therapeutics. PMID:19026649

  1. Effect of tamoxifen on cholesterol synthesis in HepG2 cells and cultured rat hepatocytes.

    PubMed

    Holleran, A L; Lindenthal, B; Aldaghlas, T A; Kelleher, J K

    1998-12-01

    The objective of this study was to investigate the mechanisms by which tamoxifen modifies cholesterol metabolism in cellular models of liver metabolism, HepG2 cells and rat hepatocytes. The effect of tamoxifen on cholesterol and triglyceride-palmitate synthesis was measured using isotopomer spectral analysis (ISA) and gas chromatography-mass spectrometry (GC-MS) and compared with the effects of progesterone, estradiol, the antiestrogen ICI 182,780, and an oxysterol, 25-hydroxycholesterol (25OHC). Cholesterol synthesis in cells incubated in the presence of either [1-(13)C]acetate, [U-13C]glucose, or [4,5-(13)C]mevalonate for 48 hours was reduced in the presence of 10 micromol/L tamoxifen and 12.4 micromol/L 25OHC in both HepG2 cells and rat hepatocytes. The ISA methodology allowed a clear distinction between effects on synthesis and effects on precursor enrichment, and indicated that these compounds did not affect enrichment of the precursors of squalene. Progesterone was effective in both cell types at 30 micromol/L and only in HepG2 cells at 10 micromol/L. Estradiol and ICI 182,780 at 10 micromol/L did not inhibit cholesterol synthesis. None of the compounds altered the synthesis of triglyceride-palmitate in either cell type. Treatment of cells with tamoxifen produced accumulation of three sterol precursors of cholesterol, zymosterol, desmosterol, and delta8 cholesterol. This pattern of precursors indicates inhibition of delta24,25 reduction in addition to the previously described inhibition of delta8 isomerase. We conclude that tamoxifen is an effective inhibitor of the conversion of lanosterol to cholesterol in cellular models at concentrations comparable to those present in the plasma of tamoxifen-treated individuals. Our findings indicate that this mechanism may contribute to the effect of tamoxifen in reducing plasma cholesterol in humans.

  2. Carbon Tetrachloride Increases Intracellular Calcium in Rat Liver and Hepatocyte Cultures

    DTIC Science & Technology

    1986-05-12

    to Phenyl- ephrine Figure 21 . Quin2-loaded Hepatocyte& Exposed to Carbon Tetrachloride or Phenylephrine Figure 22. Quin2-loaded Hepatocyte...HEPATOTOXIN Carbon tetrachloride (CC14 ) is an historically important hepato- toxin that has been investigated since before the turn of the century ...through phosphory- lation by phosphorylase kinase. Phosphorylase kinase can be st ~mulated by increased intracellular Ca++ via calmodulin, or by

  3. Ketose induced respiratory inhibition in isolated hepatocytes.

    PubMed

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1987-06-01

    The addition of 10 mM fructose or 10 mM tagatose to a suspension of hepatocytes caused respiratory inhibition, whereas no change in oxygen uptake was observed following the addition of glucose. However, incubations in the presence of fructose showed a high, aerobic glycolytic activity. Tagatose is phosphorylated to tagatose 1-phosphate but is not further metabolized by cell free liver extract. Moreover, the addition of fructose to glucagon treated cells also caused the Crabtree-like effect. The concentration of adenine nucleotides and inorganic phosphate (Pi) in the mitochondrial and cytosolic compartments during incubation (time 30 min) was determined by the digitonin fractionation procedure. In the presence of 10 mM fructose or tagatose, the total adenine nucleotide pools decreased by 40%; however, glucose produced no change. The addition of ketoses diminished the asymmetric distribution of extramitochondrial (ATP/ADP)e ratio and intramitochondrial (ATP/ADP)i ratio. At the same time the total mitochondrial Pi fell from 17 mM to 6-7 mM. The mitochondrial membrane potential (-161 mV) in the presence of fructose showed no changes during the 30 min experimental period. An increase in the NADH/NAD+ ratio was observed. These results suggest that in hepatocytes the inhibition of respiration is not necessarily linked with the enhanced aerobic glycolysis, by competition for common substrates.

  4. Differential Lectin Agglutination of Fetal, Dividing-Postnatal, and Malignant Hepatocytes

    PubMed Central

    Becker, F. F.

    1974-01-01

    Numerous studies have reported the capacity of the lectin, concanavalin A, to agglutinate selected cell-types. The finding that cells transformed in culture, embryonic cells, and malignant cells are all agglutinated by this substance, may contribute to our understanding of the oncogenic process. The present study compared the response to concanavalin A of rat hepatocytes derived from livers of differing developmental and mitotic-status as well as those derived from malignant liver tumors (hepatomas). Fetal hepatocytes and hepatoma cells were highly susceptible to agglutination while hepatocytes from post-natal livers, whether dividing or quiescent, were not. Treatment with protease(s) did not make the interphase hepatocyte agglutinable. These data emphasize the importance of examining a wide variety of cells in attempting to understand the interaction of lectins on cell surfaces, and further, demonstrate the value of obtaining cells directly from tissue(s) during differing physiologic and pathologic states. Images PMID:4373708

  5. β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure.

    PubMed

    Schott, Micah B; Rasineni, Karuna; Weller, Shaun G; Schulze, Ryan J; Sletten, Arthur C; Casey, Carol A; McNiven, Mark A

    2017-07-14

    In liver steatosis ( i.e. fatty liver), hepatocytes accumulate many large neutral lipid storage organelles known as lipid droplets (LDs). LDs are important in the maintenance of energy homeostasis, but the signaling mechanisms that stimulate LD metabolism in hepatocytes are poorly defined. In adipocytes, catecholamines target the β-adrenergic (β-AR)/cAMP pathway to activate cytosolic lipases and induce their recruitment to the LD surface. Therefore, the goal of this study was to determine whether hepatocytes, like adipocytes, also undergo cAMP-mediated lipolysis in response to β-AR stimulation. Using primary rat hepatocytes and human hepatoma cells, we found that treatment with the β-AR agent isoproterenol caused substantial LD loss via activation of cytosolic lipases adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). β-Adrenergic stimulation rapidly activated PKA, which led to the phosphorylation of ATGL and HSL and their recruitment to the LD surface. To test whether this β-AR-dependent lipolysis pathway was altered in a model of alcoholic fatty liver, primary hepatocytes from rats fed a 6-week EtOH-containing Lieber-DeCarli diet were treated with cAMP agonists. Compared with controls, EtOH-exposed hepatocytes showed a drastic inhibition in β-AR/cAMP-induced LD breakdown and the phosphorylation of PKA substrates, including HSL. This observation was supported in VA-13 cells, an EtOH-metabolizing human hepatoma cell line, which displayed marked defects in both PKA activation and isoproterenol-induced ATGL translocation to the LD periphery. In summary, these findings suggest that β-AR stimulation mobilizes cytosolic lipases for LD breakdown in hepatocytes, and perturbation of this pathway could be a major consequence of chronic EtOH insult leading to fatty liver.

  6. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics.

    PubMed

    Sanoh, Seigo; Ohta, Shigeru

    2014-03-01

    Preclinical studies in animal models are used routinely during drug development, but species differences of pharmacokinetics (PK) between animals and humans have to be taken into account in interpreting the results. Human hepatocytes are also widely used to examine metabolic activities mediated by cytochrome P450 (P450) and other enzymes, but such in vitro metabolic studies also have limitations. Recently, chimeric mice with humanized liver (h-chimeric mice), generated by transplantation of human donor hepatocytes, have been developed as a model for the prediction of metabolism and PK in humans, using both in vitro and in vivo approaches. The expression of human-specific metabolic enzymes and metabolic activities was confirmed in humanized liver of h-chimeric mice with high replacement ratios, and several reports indicate that the profiles of P450 and non-P450 metabolism in these mice adequately reflect those in humans. Further, the combined use of h-chimeric mice and r-chimeric mice, in which endogenous hepatocytes are replaced with rat hepatocytes, is a promising approach for evaluation of species differences in drug metabolism. Recent work has shown that data obtained in h-chimeric mice enable the semi-quantitative prediction of not only metabolites, but also PK parameters, such as hepatic clearance, of drug candidates in humans, although some limitations remain because of differences in the metabolic activities, hepatic blood flow and liver structure between humans and mice. In addition, fresh h-hepatocytes can be isolated reproducibly from h-chimeric mice for metabolic studies. Copyright © 2013 John Wiley & Sons, Ltd.

  7. INTEGRATED DISINFECTION BY-PRODUCTS (DBP) MIXTURES RESEARCH: GENE EXPRESSION ALTERATIONS IN PRIMARY RAT HEPATOCYTE CULTURES EXPOSED TO DBP MIXTURES FORMED BY CHLORINATION AND OZONATION/POSTCHLORINATION

    EPA Science Inventory

    What is the study?
    This study was designed to provide data on the in vitro toxicity of water concentrates containing complex mixtures of DBPs. Rat hepatocytes in primary culture were exposed for 24 hr to full strength, 1:10 or 1:20 dilutions of chlorination or ozonation/chl...

  8. Heterogeneous accumulation of fluorescent bile acids in primary rat hepatocytes does not correlate with their homogenous expression of ntcp.

    PubMed

    Murray, John W; Thosani, Amar J; Wang, Pijun; Wolkoff, Allan W

    2011-07-01

    Sodium taurocholate-cotransporting polypeptide (ntcp) is considered to be a major determinant of bile acid uptake into hepatocytes. However, the regulation of ntcp and the degree that it participates in the accumulation of specific substrates are not well understood. We utilized fluorescent bile acid derivatives and direct quantitation of fluorescent microscopy images to examine the regulation of ntcp and its role in the cell-to-cell variability of fluorescent bile acid accumulation. Primary-cultured rat hepatocytes rapidly accumulated the fluorescent bile acids, chenodeoxycholylglycylamidofluorescein (CDCGamF), 7-β- nitrobenzoxadiazole 3-α hydroxy 5-β cholan-24-oic acid (NBD-CA), and cholyl-glycylamido-fluorescein (CGamF). However, in stably transfected HeLa cells, ntcp preferred CDCGamF, whereas the organic anion transporter, organic anion transporting polypeptide 1 (oatp1a1), preferred NBD-CA, and neither ntcp nor oatp1a1 showed strong accumulation of CGamF by these methods. Ntcp-mediated transport of CDCGamF was inhibited by taurocholate, cyclosporin, actin depolymerization, and an inhibitor of atypical PKC-ζ. The latter two agents altered the cellular distribution of ntcp as visualized in ntcp-green fluorescent protein-transfected cells. Although fluorescent bile acid accumulation was reproducible by the imaging assays, individual cells showed variable accumulation that was not attributable to changes in membrane permeability or cell viability. In HeLa cells, this was accounted for by variable levels of ntcp, whereas, in hepatocytes, ntcp expression was uniform, and low accumulation was seen in a large portion of cells despite the presence of ntcp. These studies indicate that single-cell imaging can provide insight into previously unrecognized details of anion transport in the complex environment of polarized hepatocytes.

  9. Heterogeneous accumulation of fluorescent bile acids in primary rat hepatocytes does not correlate with their homogenous expression of ntcp

    PubMed Central

    Thosani, Amar J.; Wang, Pijun; Wolkoff, Allan W.

    2011-01-01

    Sodium taurocholate-cotransporting polypeptide (ntcp) is considered to be a major determinant of bile acid uptake into hepatocytes. However, the regulation of ntcp and the degree that it participates in the accumulation of specific substrates are not well understood. We utilized fluorescent bile acid derivatives and direct quantitation of fluorescent microscopy images to examine the regulation of ntcp and its role in the cell-to-cell variability of fluorescent bile acid accumulation. Primary-cultured rat hepatocytes rapidly accumulated the fluorescent bile acids, chenodeoxycholylglycylamidofluorescein (CDCGamF), 7-β- nitrobenzoxadiazole 3-α hydroxy 5-β cholan-24-oic acid (NBD-CA), and cholyl-glycylamido-fluorescein (CGamF). However, in stably transfected HeLa cells, ntcp preferred CDCGamF, whereas the organic anion transporter, organic anion transporting polypeptide 1 (oatp1a1), preferred NBD-CA, and neither ntcp nor oatp1a1 showed strong accumulation of CGamF by these methods. Ntcp-mediated transport of CDCGamF was inhibited by taurocholate, cyclosporin, actin depolymerization, and an inhibitor of atypical PKC-ζ. The latter two agents altered the cellular distribution of ntcp as visualized in ntcp-green fluorescent protein-transfected cells. Although fluorescent bile acid accumulation was reproducible by the imaging assays, individual cells showed variable accumulation that was not attributable to changes in membrane permeability or cell viability. In HeLa cells, this was accounted for by variable levels of ntcp, whereas, in hepatocytes, ntcp expression was uniform, and low accumulation was seen in a large portion of cells despite the presence of ntcp. These studies indicate that single-cell imaging can provide insight into previously unrecognized details of anion transport in the complex environment of polarized hepatocytes. PMID:21474652

  10. Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.

    PubMed

    Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F

    1993-06-01

    LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal

  11. Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.

    PubMed Central

    Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F

    1993-01-01

    LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal

  12. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sagnik, E-mail: Sagnik.Chatterjee@pharm.kuleuven.be; Richert, Lysiane, E-mail: l.richert@kaly-cell.com; Augustijns, Patrick, E-mail: Patrick.Augustijns@pharm.kuleuven.be

    Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation bymore » hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids

  13. Cryopreservation and gel collagen culture of porcine hepatocytes

    PubMed Central

    Liu, Hong-Ling; Wang, Ying-Jie; Guo, Hai-Tao; Wang, Yu-Ming; Liu, Jun; Yu, Yue-Cheng

    2004-01-01

    AIM: To study the method of cryopreserving porcine hepatocytes and gel collagen culture measure after its cryopreservation. METHODS: Hepatocytes, isolated from Chinese experimental suckling mini-pigs by two-step perfusion with collagenase using an extra corporeal perfusion apparatus, were cryopreserved with 50 mL/L to 200 mL/L DMSO in liquid nitrogen for 4 mo, then thawed and seeded in 1 or between 2 layers of gel collagen. The expression of porcine albumin message RNA, cellular morphology and content of aspartate aminotransferase (AST) and urea nitrogen (UN) were examined during culture in gel. RESULTS: Viability of 150 mL/L DMSO group thawed hepatocytes was (83 ± 4)%, but after purification, its viability was (90 ± 5)%, attachment efficiency was (86 ± 7)%, the viability of thawed hepatocytes was near to fresh cells. When the thawed hepatocytes were cultivated in gel collagen with culture medium adding epidermal growth factor, the hepatocytes grew in various administrative levels in mixed collagen gel, and bunchy in the sandwich configuration cultures. For up to 10 days’ culture, the typical cellular morphological characteristics of cultivated hepatocytes could be observed. The leakage of AST was lower during culture in gel than that in common culture. At the same time, the UN synthesized by cells cultivated in mixed gel collagen was higher than that in other groups. CONCLUSION: Storage in liquid nitrogen can long keep hepatocytes’ activities, the concentration of 150 mL/L DMSO is fit for porcine hepatocytes’ cryopreservation. Thawed hepatocytes can be cultivated with collagenous matrix, which provides an environment that more closely resembles that in vivo and maintain the expression of certain liver-specific function of hepatocytes. PMID:15052684

  14. DNA damage in lead-exposed hepatocytes: coexistence of apoptosis and necrosis?

    PubMed

    Narayana, Kilarkaje; Raghupathy, Raj

    2012-04-01

    The aim of the present study was to investigate the coexistence of oxidative DNA damage and apoptosis- and necrosis-related DNA damage, and to correlate with ultrastructural changes in hepatocyte nuclei in the lead-nitrate-exposed liver. Adult male Wistar rats were exposed to 0, 0.5, and 1% lead nitrate for 60 days, and the livers were sampled the next day. Ultrastructurally, hepatocyte nuclei showed no apoptosis-related morphological changes, but showed necrotic changes. Competitive enzyme-linked immunosorbent assay showed no change in 8-oxo-dG activity (P > 0.05), but immunohistochemistry showed its localization in hepatocytes, Kupffer cells, endothelium, and bile ductule epithelium. TUNEL-labeled DNA breaks presenting 3'-OH ends increased in hepatocytes in all functional zones of the portal acini and bile ductule epithelium (zones I>III>II). In situ oligo ligation revealed the existence of DNA breaks bearing duplex 3' overhangs and 5' P-blunt ends in hepatocytes of all functional zones and bile ductule epithelium. In conclusion, both apoptosis- and necrosis-related DNA damage coexist without significant oxidative DNA damage. Hepatocytes display changes related to necrosis, but not those related to apoptosis.

  15. Lipid-induced Signaling Causes Release of Inflammatory Extracellular Vesicles from Hepatocytes

    PubMed Central

    Hirsova, Petra; Ibrahim, Samar H.; Krishnan, Anuradha; Verma, Vikas K.; Bronk, Steven F.; Werneburg, Nathan W.; Charlton, Michael R.; Shah, Vijay H.; Malhi, Harmeet; Gores, Gregory J.

    2016-01-01

    BACKGROUND & AIMS Hepatocyte cellular dysfunction and death induced by lipids, and macrophage-associated inflammation are characteristics of nonalcoholic steatohepatitis (NASH). The fatty acid palmitate can activate death receptor 5 (DR5) on hepatocytes, leading to their death, but little is known about how this process contributes to macrophage-associated inflammation. We investigated whether lipid-induced DR5 signaling results in release of extracellular vesicles (EV) from hepatocytes, and whether these can induce an inflammatory macrophage phenotype. METHODS Primary mouse and human hepatocytes and Huh7 cells were incubated with palmitate, its metabolite lysophosphatidylcholine, or diluent (control). The released EV were isolated, characterized, quantified, and applied to macrophages. C57BL/6 mice were placed on chow or a diet high in fat, fructose, and cholesterol to induce NASH. Some mice were also given the ROCK1 inhibitor fasudil; 2 weeks later, serum EVs were isolated and characterized by immunoblot and nanoparticle-tracking analyses. Livers were collected and analyzed by histology, immunohistochemistry, and quantitative PCR. RESULTS Incubation of primary hepatocytes and Huh7 cells with palmitate or lysophosphatidylcholine increased their release of EV, compared with control cells. This release was reduced by inactivating mediators of the DR5 signaling pathway or ROCK1 inhibition. Hepatocyte-derived EV contained TRAIL and induced expression of interleukin-1, beta (Il1b) and Il6 mRNAs in mouse bone marrow-derived macrophages. Activation of macrophages required DR5 and RIP1. Administration of the ROCK1 inhibitor fasudil to mice with NASH reduced serum levels of EV; this reduction was associated with decreased liver injury, inflammation, and fibrosis. CONCLUSIONS Lipids, which stimulate DR5, induce release of hepatocyte EV, which activate an inflammatory phenotype in macrophages. Strategies to inhibit ROCK1-dependent release of EV by hepatocytes might be

  16. Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.

    PubMed

    Agius, L

    1994-02-15

    In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase

  17. Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.

    PubMed Central

    Agius, L

    1994-01-01

    In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase

  18. Natural and synthetic STAT3 inhibitors reduce hepcidin expression in differentiated mouse hepatocytes expressing the active phosphorylated STAT3 form.

    PubMed

    Fatih, Nadia; Camberlein, Emilie; Island, Marie Laure; Corlu, Anne; Abgueguen, Emmanuelle; Détivaud, Lénaïck; Leroyer, Patricia; Brissot, Pierre; Loréal, Olivier

    2010-05-01

    During the inflammatory process, hepcidin overexpression favours the development of anaemia of chronic diseases which represents the second most common form of anaemia worldwide. The identification of therapeutic agents decreasing hepcidin expression is therefore an important goal. The aim of this study was to target the STAT3 signalling involved in the development of increased hepcidin expression related to chronic inflammation. In a co-culture model associating mouse hepatocytes and rat liver epithelial cells, the mRNA levels of hepcidin1, albumin, aldolase B, Cyp3a4, Stat3, Smad4 and iron regulatory genes were measured by real-time PCR. STAT3 and phosphorylated SMAD1/5/8 proteins were analysed by Western blot. At variance of hepatocyte pure culture, co-culture provided high levels of hepcidin1 mRNA, reaching 400% of the freshly isolated hepatocyte values after 6 days of culture. Hepcidin expression was associated with the maintenance of hepatocyte phenotype, STAT3 phosphorylation and functional BMP/SMAD pathway. Stat3 siRNAs inhibited the hepcidin1 mRNA expression. STAT3 inhibitors, including curcumin, AG490 and a peptide (PpYLKTK), reduced hepcidin1 mRNA expression even when cells were additionally exposed to IL-6. Hepcidin1 mRNA was expressed at high levels by hepatocytes in the co-culture model, and STAT3 pathway activation was controlled through STAT3 inhibitors. Such inhibitors could be useful to prevent anaemia related to hepcidin overexpression during chronic inflammation.

  19. Isolation Rearing Effects on Probabilistic Learning and Cognitive Flexibility in Rats

    PubMed Central

    AMITAI, Nurith; YOUNG, Jared W.; HIGA, Kerin; SHARP, Richard F.; GEYER, Mark A.; POWELL, Susan B.

    2013-01-01

    Isolation rearing is a neurodevelopmental manipulation that produces neurochemical, structural, and behavioral alterations in rodents that have consistencies with schizophrenia. Symptoms induced by isolation rearing that mirror clinically relevant aspects of schizophrenia, such as cognitive deficits, open up the possibility of testing putative therapeutics in isolation-reared animals prior to clinical development. We investigated what effect isolation rearing would have on cognitive flexibility, a cognitive function characteristically disrupted in schizophrenia. For this purpose, we assessed cognitive flexibility using between- and within-session probabilistic reversal-learning tasks based on clinical tests. Isolation-reared rats required more sessions, though not more task trials, to acquire criterion performance in the reversal phase of the task and were slower to adjust their task strategy after reward contingencies were switched. Isolation-reared rats also completed fewer trials and exhibited lower levels of overall activity in the probabilistic reversal-learning task compared to socially reared rats. This finding contrasted with the elevated levels of unconditioned investigatory activity and reduced levels of locomotor habituation that isolation-reared rats displayed in the behavioral pattern monitor. Finally, isolation-reared rats also exhibited sensorimotor gating deficits, reflected by decreased prepulse inhibition of the startle response, consistent with previous studies. We conclude that isolation rearing constitutes a valuable, noninvasive manipulation for modeling schizophrenia-like cognitive deficits and assessing putative therapeutics. PMID:23943516

  20. Effect of Microenvironment on Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Hepatocytes In Vitro and In Vivo

    PubMed Central

    Xue, Gai; Han, Xiaolei; Ma, Xin; Wu, Honghai; Qin, Yabin; Liu, Jianfang; Hu, Yuqin; Hong, Yang; Hou, Yanning

    2016-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are considered to be an ideal cell source for cell therapy of many diseases. The aim of this study was to investigate the contribution of the microenvironment to the hepatic differentiation potential of hUCMSCs in vitro and in vivo and to explore their therapeutic use in acute liver injury in rats. We established a new model to simulate the liver tissue microenvironment in vivo using liver homogenate supernatant (LHS) in vitro. This induced environment could drive hUCMSCs to differentiate into hepatocyte-like cells within 7 days. The differentiated cells expressed hepatocyte-specific markers and demonstrated hepatocellular functions. We also injected hUCMSCs into rats with CCl4-induced acute hepatic injury. The hUCMSCs were detected in the livers of recipient rats and expressed the human hepatocyte-specific markers, suggesting that hUCMSCs could differentiate into hepatocyte-like cells in vivo in the liver tissue microenvironment. Levels of biochemistry markers improved significantly after transplantation of hUCMSCs compared with the nontransplantation group (P < 0.05). In conclusion, this study demonstrated that the liver tissue microenvironment may contribute to the differentiation of hUCMSCs into hepatocytes both in vitro and in vivo. PMID:27088093

  1. Zea mays, Stigma maydis prevents and extenuates acetaminophen-perturbed oxidative onslaughts in rat hepatocytes.

    PubMed

    Saheed, Sabiu; Frans Hendrik, O'Neill; Tom, Ashafa Anofi Omotayo

    2016-11-01

    Zea mays L. (Poaceae) Stigma maydis is an underutilized product of corn cultivation finding therapeutic applications in oxidative stress-related disorders. This study investigated its aqueous extract against acetaminophen (APAP)-perturbed oxidative insults in rat hepatocytes. Hepatotoxic rats were orally pre- and post-treated with the extract (at 200 and 400 mg/kg body weight) and vitamin C (200 mg/kg body weight), respectively, for 14 days. Liver function, antioxidative and histological analyses were thereafter evaluated. The APAP-induced marked (p < 0.05) increases in the activities of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase and the concentrations of bilirubin, oxidized glutathione, protein carbonyls, malondialdehyde, conjugated dienes, lipid hydroperoxides and fragmented DNA were dose-dependently extenuated in the extract-treated animals. The extract also significantly (p < 0.05) improved the reduced activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase as well as total protein, albumin and glutathione concentrations in the hepatotoxic rats. These improvements may be attributed to the bioactive constituents as revealed by the gas chromatography-mass spectrometric chromatogram of the extract. The observed effects compared favourably with vitamin C and are informative of hepatoprotective and antioxidative attributes of the extract and were further supported by the histological analysis. The data from the present findings suggest that Stigma maydis aqueous extract is capable of preventing and ameliorating APAP-mediated oxidative hepatic damage via enhancement of antioxidant defence systems.

  2. Tickling during adolescence alters fear-related and cognitive behaviors in rats after prolonged isolation.

    PubMed

    Hori, Miyo; Yamada, Kazuo; Ohnishi, Junji; Sakamoto, Shigeko; Furuie, Hiroki; Murakami, Kazuo; Ichitani, Yukio

    2014-05-28

    Social interactions during adolescence are important especially for neuronal development and behavior. We recently showed that positive emotions induced by repeated tickling could modulate fear-related behaviors and sympatho-adrenal stress responses. In the present study, we examined whether tickling during early to late adolescence stage could reverse stress vulnerability induced by socially isolated rearing. Ninety-five male Fischer rats were reared under different conditions from postnatal day (PND) 21 to 53: group-housed (three rats/cage), isolated-nontickled (one rat/cage) and isolated-tickled (received tickling stimulation for 5min a day). Auditory fear conditioning was then performed on the rats at PND 54. Isolated-tickled rats exhibited significantly lower freezing compared with group-housed rats in the first retention test performed 48h after conditioning and compared with isolated-nontickled rats in the second retention test performed 96h after conditioning. Moreover, group-housed and isolated-tickled rats tended to show a significant decrease in freezing responses in the second retention test; however, isolated-nontickled rats did not. In the Morris water maze task that was trained in adulthood (PND 88), but not in adolescence (PND 56), isolated-nontickled rats showed slower decrease of escape latency compared to group-housed rats; however, tickling treatment significantly improved this deficit. These results suggest that tickling stimulation can alleviate the detrimental effects of isolated rearing during adolescence on fear responses and spatial learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Primary hepatocytes and their cultures in liver apoptosis research

    PubMed Central

    Vinken, Mathieu; Maes, Michaël; Oliveira, André G.; Cogliati, Bruno; Marques, Pedro E.; Menezes, Gustavo B.; Dagli, Maria Lúcia Zaidan; Vanhaecke, Tamara; Rogiers, Vera

    2014-01-01

    Apoptosis not only plays a key role in physiological demise of defunct hepatocytes, but is also associated with a plethora of acute and chronic liver diseases as well as with hepatotoxicity. The present paper focuses on the modelling of this mode of programmed cell death in primary hepatocyte cultures. Particular attention is paid to the activation of spontaneous apoptosis during the isolation of hepatocytes from the liver, its progressive manifestation upon the subsequent establishment of cell cultures and simultaneously to strategies to counteract this deleterious process. In addition, currently applied approaches to experimentally induce controlled apoptosis in this in vitro setting for mechanistic research purposes and thereby its detection using relevant biomarkers are reviewed. PMID:24013573

  4. FR258900, a novel glycogen phosphorylase inhibitor isolated from Fungus No. 138354. I. Taxonomy, fermentation, isolation and biological activities.

    PubMed

    Furukawa, Shigetada; Tsurumi, Yasuhisa; Murakami, Kana; Nakanishi, Tomoko; Ohsumi, Keisuke; Hashimoto, Michizane; Nishikawa, Motoaki; Takase, Shigehiro; Nakayama, Osamu; Hino, Motohiro

    2005-08-01

    FR258900 is a novel glycogen synthesis activator produced by Fungus No. 138354. This compound was isolated from the culture broth by solvent extraction and reverse-phase column chromatography. FR258900 stimulated glycogen synthesis and glycogen synthase activity in primary rat hepatocytes. FR258900 exhibited a potent inhibitory effect on the activity of liver glycogen phosphorylase, suggesting that this compound may activate hepatic glycogen synthesis via glycogen phosphorylase inhibition. Thus, this glycogen phosphorylase inhibitor may be useful in the treatment of postprandial hyperglycemia in type 2 diabetes.

  5. Improvement of Liver Cell Therapy in Rats by Dietary Stearic Acid

    PubMed Central

    Goradel, Nasser Hashemi; Eghbal, Mohammad Ali; Darabi, Masoud; Roshangar, Leila; Asadi, Maryam; Zarghami, Nosratollah; Nouri, Mohammad

    2016-01-01

    Background: Stearic acid is known as a potent anti-inflammatory lipid. This fatty acid has profound and diverse effects on liver metabolism. The aim of this study was to investigate the effect of stearic acid on markers of hepatocyte transplantation in rats with acetaminophen (APAP)-induced liver damage. Methods: Wistar rats were randomly assigned to 10-day treatment. Stearic acid was administered to the rats with APAP-induced liver damage. The isolated liver cells were infused intraperitoneally into rats. Blood samples were obtained to evaluate the changes in the serum liver enzymes, including activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) and the level of serum albumin. To assess the engraftment of infused hepatocytes, rats were euthanized, and the liver DNA was used for PCR using sex-determining region Y (SRY) primers. Results: The levels of AST, ALT and ALP in the serum of rats with APAP-induced liver injury were significantly increased and returned to the levels in control group by day six. The APAP-induced decrease in albumin was significantly improved in rats through cell therapy, when compared with that in the APAP-alone treated rats. SRY PCR analysis showed the presence of the transplanted cells in the liver of transplanted rats. Conclusion: Stearic acid-rich diet in combination with cell therapy accelerates the recovering of hepatic dysfunction in a rat model of liver injury. PMID:27090202

  6. [State of hepatocyte transplantation: a risk or a chance?].

    PubMed

    Leckel, K; Blaheta, R A; Markus, B H

    2003-04-01

    Over the past few years, hepatocyte transplantation has been considered as an alternative method for orthotopic liver transplantation for the treatment of various liver diseases. Beside curative approach for genetic metabolic deficiencies (familial hypercholesterolemia, hemophilia, etc.), it could be a useful tool for bridging the waiting period until an appropriate donor organ is obtained. In preclinical animal studies, hepatocytes injected intraperitoneally, intraportally or into the spleen settle down in the diseased liver. This enables genetic modification to correct inborn metabolic deficiencies and improves survival in acute liver failure. In 1992, the first clinical transplantation of isolated hepatocytes in 10 patients was performed. In 1998, Fox and coworkers described the successful transplantation of allogeneic liver cells in a child with Crigler-Najjar syndrome. Accomplished studies of Strom et al. resp. Bilir et al. of the same year proved the effectiveness of liver cell transplantation for transient treatment of acute liver failure. Prerequisite of this cell-based therapeutic strategy is a sufficient amount of highly differentiated hepatocytes, hence, a well established in-vitro cell-culture technique is necessary to yield a reproducible number of proliferating hepatocytes and to preserve the physiological cell function. This review discusses the different experimental approaches regarding the cultivation of human hepatocytes and also the use of alternative cell sources (like animal hepatocytes, immortalized cells of human origin, progenitor cells from fetal human liver/liver stem cells) for hepatocyte transplantation.

  7. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats.

    PubMed

    Aktas, Cevat; Kanter, Mehmet; Erboga, Mustafa; Mete, Rafet; Oran, Mustafa

    2014-10-01

    The goal of this study was to evaluate the possible protective effects of melatonin against cholestatic oxidative stress, liver damage and hepatocyte apoptosis in the common rats with bile duct ligation (BDL). A total of 24 male Wistar albino rats were divided into three groups: control, BDL and BDL + received melatonin; each group contains eight animals. Melatonin-treated BDL rats received daily melatonin 100 mg/kg/day via intraperitoneal injection. The application of BDL clearly increased the malondialdehyde (MDA) levels and decreased the superoxide dismutase (SOD) and glutathione (GSH) activities. Melatonin treatment significantly decreased the elevated tissue MDA levels and increased the reduced SOD and GSH enzyme levels in the tissues. The changes demonstrate that the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells and neutrophil infiltration into the widened portal areas as observed in the BDL group. The data indicate that melatonin attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis. The α-smooth muscle actin (α-SMA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the BDL were observed to be reduced with the melatonin treatment. These results suggest that administration of melatonin is a potentially beneficial agent to reduce liver damage in BDL by decreasing oxidative stress. © The Author(s) 2012.

  8. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure.

    PubMed

    Kim, Yohan; Kang, Kyojin; Jeong, Jaemin; Paik, Seung Sam; Kim, Ji Sook; Park, Su A; Kim, Wan Doo; Park, Jisun; Choi, Dongho

    2017-02-01

    The major problem in producing artificial livers is that primary hepatocytes cannot be cultured for many days. Recently, 3-dimensional (3D) printing technology draws attention and this technology regarded as a useful tool for current cell biology. By using the 3D bio-printing, these problems can be resolved. To generate 3D bio-printed structures (25 mm × 25 mm), cells-alginate constructs were fabricated by 3D bio-printing system. Mouse primary hepatocytes were isolated from the livers of 6-8 weeks old mice by a 2-step collagenase method. Samples of 4 × 10 7 hepatocytes with 80%-90% viability were printed with 3% alginate solution, and cultured with well-defined culture medium for primary hepatocytes. To confirm functional ability of hepatocytes cultured on 3D alginate scaffold, we conducted quantitative real-time polymerase chain reaction and immunofluorescence with hepatic marker genes. Isolated primary hepatocytes were printed with alginate. The 3D printed hepatocytes remained alive for 14 days. Gene expression levels of Albumin , HNF-4α and Foxa3 were gradually increased in the 3D structures. Immunofluorescence analysis showed that the primary hepatocytes produced hepatic-specific proteins over the same period of time. Our research indicates that 3D bio-printing technique can be used for long-term culture of primary hepatocytes. It can therefore be used for drug screening and as a potential method of producing artificial livers.

  9. Hepatic iron overload is associated with hepatocyte apoptosis during Clonorchis sinensis infection.

    PubMed

    Han, Su; Tang, Qiaoran; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli

    2017-08-01

    Hepatic iron overload has been implicated in many liver diseases; however, whether it is involved in clonorchiasis remains unknown. The purpose of this study is to investigate whether Clonorchis sinensis (C. sinensis) infection causes hepatic iron overload, analyze the relationship between the iron overload and associated cell apoptosis, so as to determine the role of excess iron plays in C. sinensis-induced liver injury. The Perls' Prussian staining and atomic absorption spectrometry methods were used to investigate the iron overload in hepatic sections of wistar rats and patients infected with C. sinensis. The hepatic apoptosis was detected by transferase uridyl nick end labeling (TUNEL) methods. Spearman analysis was used for determining the correlation of the histological hepatic iron index and the apoptotic index. Blue iron particles were deposited mainly in the hepatocytes, Kupffer cells and endothelial cells, around the liver portal and central vein area of both patients and rats. The total iron score was found to be higher in the infected groups than the respective control from 8 weeks. The hepatic iron concentration was also significantly higher in treatment groups than in control rats from 8 weeks. The hepatocyte apoptosis was found to be significantly higher in the portal area of the liver tissue and around the central vein. However, spearman's rank correlation coefficient revealed that there was a mildly negative correlation between the iron index and hepatocyte apoptosis. This present study confirmed that hepatic iron overload was found during C. sinensis infection. This suggests that iron overload may be associated with hepatocyte apoptosis and involved in liver injury during C. sinensis infection. Further studies are needed to investigate the molecular mechanism involved here.

  10. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Helinor J., E-mail: h.johnston@napier.ac.u; Semmler-Behnke, Manuela; Brown, David M.

    2010-01-01

    Nanoparticles (NPs) are being used within diverse applications such as medicines, clothing, cosmetics and food. In order to promote the safe development of such nanotechnologies it is essential to assess the potential adverse health consequences associated with human exposure. The liver is recognised as a target site for NP toxicity, due to NP accumulation within this organ subsequent to injection, inhalation or instillation. The uptake of fluorescent polystyrene carboxylated particles (20 nm or 200 nm diameter) by hepatocytes was determined using confocal microscopy; with cells imaged 'live' during particle exposure or after exposure within fixed cells. Comparisons between the uptakemore » of polystyrene particles by primary rat hepatocytes, and human hepatocyte cell lines (C3A and HepG2) were made. Uptake of particles by hepatocytes was size, time, and serum dependent. Specifically, the uptake of 200 nm particles was limited, but 20 nm NPs were internalised by all cell types from 10 min onwards. At 10 min, 20 nm NP fluorescence co-localised with the tubulin cytoskeleton staining; after 30 min NP fluorescence compartmentalised into structures located within and/or between cells. The fate of internalised NPs was considered and they were not contained within early endosomes or lysosomes, but within mitochondria of cell lines. NPs accumulated within bile canaliculi to a limited extent, which suggests that NPs can be eliminated within bile. This is in keeping with the finding that gold NPs were eliminated in bile following intravenous injection into rats. The findings were, in the main, comparable between primary rat hepatocytes and the different human hepatocyte cell lines.« less

  11. Differential entry of ricin into malignant and normal rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decastel, M.; Haentjens, G.; Aubery, M.

    1989-02-01

    The authors have compared the mechanisms of ricin binding to and entry into Zajdela hepatoma cells (ZHC) and normal rat hepatocytes (HyC). Lactose but not mannan was found to inhibit ricin binding to and toxicity on ZHC and HyC. This finding suggests that ricin binding, entry, and toxicity are expressed only through the galactose binding sites on ZHC and HyC. Nevertheless, the characteristics of ricin binding and its entry pathway appeared to be different in several respects in ZHC and HyC. Scatchard analysis of equilibrium data determined over a wide range of {sup 125}I-labeled ricin concentrations yielded a curvilinear plotmore » for ZHC, while a straight line was obtained for HyC. These results indicate that only ZHC possess high-affinity receptors for ricin. Analysis of ricin toxicity of ZHC and HyC, in the presence of ammonium chloride or after K{sup +}-depletion in both cell types, suggests that the ricin bound to galactose receptors entered through neutral vesicles in ZHC, and through both neutral and acidic vesicles in HyC. The qualitative and quantitative differences found between the process of receptor-mediated endocytosis of ricin in ZHC and HyC might explain the differential sensitivity of the two cell types toward the toxin.« less

  12. Isolated Flinders Sensitive Line rats have decreased dopamine D2 receptor mRNA.

    PubMed

    Bjørnebekk, Astrid; Mathé, Aleksander A; Brené, Stefan

    2007-07-02

    Social isolation has profound effects on animal behavior and dopamine systems. We investigated the effect of social isolation on the dopamine receptor and neuropeptide mRNAs in the brain reward system in an animal model of depression, the Flinders Sensitive Line rats and Sprague-Dawley controls. We demonstrate that socially isolated but not group housed Flinders sensitive line rats had lower dopamine D2 receptor mRNA levels compared with Sprague-Dawley rats. Isolated and group housed Flinders Sensitive Line rats had higher levels of dopamine D1 receptor and substance P and enkephalin but not dynorphin mRNAs when compared with Sprague-Dawley rats. Our findings of decreased dopamine D2 receptor levels in socially isolated Flinders Sensitive Line rats suggest that low D2 receptor expression may play a role in pathophysiology of depression.

  13. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grondin, Melanie; Marion, Michel; Denizeau, Francine

    2007-07-01

    Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad frommore » the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl{sup -}/HCO{sub 3} {sup -} exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes.« less

  14. Effect of cyanamide on toxicity and glutathione depletion in rat hepatocyte cultures: differences between two dichloropropanol isomers.

    PubMed

    Hammond, A H; Fry, J R

    1999-09-30

    The effect of aldehyde dehydrogenase inhibition by cyanamide pre-treatment in vitro on dichloropropanol-dependent toxicity and glutathione depletion was investigated in 24 h rat hepatocyte cultures. Cyanamide pre-treatment had no effect on nitrophenol hydroxylase, 7-methoxy-, 7-ethoxy- or 7-benzyloxyresorufin O-dealkylase activities in 24 h cultures from untreated rats, and had no effect on intracellular glutathione content in cultures from untreated rats, or in cultures from isoniazid-treated rats in which cytochrome P4502E1 (CYP2E1) is increased. In cultures from untreated animals the primary alcohol, 2,3-dichloropropanol, was not toxic and did not significantly deplete glutathione. Cyanamide pre-treatment however, potentiated both toxicity and glutathione depletion. Induction of CYP2E1 also potentiated the toxicity of 2,3-dichloropropanol, and in these cultures cyanamide pre-treatment significantly increased both toxicity and glutathione depletion. Cyanamide did not alter the toxicity or glutathione depletion due to the secondary alcohol, 1,3-dichloropropanol, irrespective of CYP2E1 induction. These results indicate that the primary alcohol isomer is metabolised to an aldehyde intermediate which depletes glutathione. Under basal conditions this metabolite appears to be effectively detoxified, but increased CYP2E1 activity and/or decreased aldehyde dehydrogenase activity promotes accumulation of metabolite, and therefore increases glutathione depletion and toxicity.

  15. Glucose induces the translocation and the aggregation of glycogen synthase in rat hepatocytes.

    PubMed Central

    Fernández-Novell, J M; Ariño, J; Vilaró, S; Guinovart, J J

    1992-01-01

    Incubation of rat hepatocytes with glucose results in a decrease in the amount of glycogen synthase activity found in supernatants obtained after centrifugation of cell homogenates at 9200 g. The enzymic activity was quantitatively recovered in the sediments. This effect of translocation was dose- and time-dependent and correlated with the amount of immunoreactive enzyme determined by immunoblotting in both fractions. Hydrolysis by alpha-amylase of glycogen accumulated upon incubation with the sugar did not affect the translocation pattern. Translocation was also observed when cells were incubated with 2-deoxyglucose, which did not result in accumulation of glycogen. Immunocytochemical evidence indicates that glucose induces the aggregation of glycogen synthase molecules into clusters which are recovered in the sediments. These results indicate that glucose, in addition to activating glycogen synthase, may trigger changes in the localization of the enzyme in the cell. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:1736893

  16. Influence of branched-chain amino acid composition of culture media on the synthesis of plasma proteins by serum-free cultured rat hepatocytes.

    PubMed

    Montoya, A; Gómez-Lechón, M J; Castell, J V

    1989-04-01

    Supplementation of Ham's F12 culture medium with essential amino acids (EAA) up to the rat plasma levels increased the rates of synthesis of albumin and transferrin by cultured rat hepatocytes by 1.3 and 1.7, respectively. Fifty percent of this increase could be attributed to three of the EAA: the branched-chain amino acids (BCAA: Leu Ile and Val). Non-branched-chain essential amino acids (non-BC-EAA) stimulated only 25% of the increase produced by the whole EAA mixture. When each EAA was tested individually, none of them caused an appreciable increase in albumin and transferrin in culture medium. When the concentrations of all EAA were raised to rat postprandial portal levels, albumin and transferrin synthesis rates reached a maximum, increasing by 3.2 and 3.5, respectively. Supplementation with BCAA at postprandial portal concentrations increased albumin and transferrin synthesis rates by 2.2 and 2.0, respectively, and had no noteworthy effect on the synthesis of cellular proteins. Non-BC-EAA at their postprandial portal concentrations increased albumin and transferrin synthesis rates by 1.7 and 1.9, respectively. Supplementation with alanine to reach a nitrogen content equal to that of the modified EAA-enriched medium had no stimulatory effect. Our results show that EAA have a specific effect on the synthesis of plasma proteins by cultured hepatocytes, and that BCAA at physiologic concentrations account for the major part of this stimulatory effect. Consequently, EAA and particularly BCAA concentration should be elevated in serum-free nutrient media to sustain maximum plasma protein synthesis.

  17. Oncostatin M induces upregulation of claudin-2 in rodent hepatocytes coinciding with changes in morphology and function of tight junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, Masafumi; Department of Pathology, Sapporo Medical University School of Medicine, S1. W17. Sapporo 060-8556; Kojima, Takashi

    2007-05-15

    In rodent livers, integral tight junction (TJ) proteins claudin-1, -2, -3, -5 and -14 are detected and play crucial roles in the barrier to keep bile in bile canaculi away from the blood circulation. Claudin-2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, whereas claudin-1 and -3 are expressed in the whole liver lobule. Although claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, the physiological functions and regulation of claudin-2 in hepatocytes remain unclear. Oncostatin M (OSM) is a multifunctional cytokine implicated in the differentiation of hepatocytes that induces formation of E-cadherin-based adherens junctions inmore » fetal hepatocytes. In this study, we examined whether OSM could induce expression and function of claudin-2 in rodent hepatocytes, immortalized mouse and primary cultured proliferative rat hepatocytes. In the immortalized mouse and primary cultured proliferative rat hepatocytes, treatment with OSM markedly increased mRNA and protein of claudin-2 together with formation of developed networks of TJ strands. The increase of claudin-2 enhanced the paracellular barrier function which depended on molecular size. The increase of claudin-2 expression induced by OSM in rodent hepatocytes was regulated through distinct signaling pathways including PKC. These results suggest that expression of claudin-2 in rodent hepatocytes may play a specific role as controlling the size of paracellular permeability in the barrier to keep bile in bile canaculi.« less

  18. Variable responses of small and large human hepatocytes to hypoxia and hypoxia/reoxygenation (H–R)

    PubMed Central

    Bhogal, Ricky H.; Weston, Christopher J.; Curbishley, Stuart M.; Bhatt, Anand N.; Adams, David H.; Afford, Simon C.

    2011-01-01

    Hypoxia and hypoxia–reoxygenation (H–R) regulate human hepatocyte cell death by mediating the accumulation of reactive oxygen species (ROS). Hepatocytes within the liver are organised into peri-portal (PP) and peri-venous (PV) subpopulations. PP and PV hepatocytes differ in size and function. We investigated whether PP and PV human hepatocytes exhibit differential susceptibility to hypoxic stress. Isolated hepatocytes were used in an in vitro model of hypoxia and H–R. ROS production and cell death were assessed using flow cytometry. PV, and not PP hepatocytes, accumulate intracellular ROS in a mitochondrial dependent manner during hypoxia and H–R. This increased ROS regulates hepatocyte apoptosis and necrosis via a mitochondrial pathway. These findings have implications on the understanding of liver injury and application of potential therapeutic strategies. PMID:21356211

  19. Wheat extracts as an efficient cryoprotective agent for primary cultures of rat hepatocytes.

    PubMed

    Hamel, Francine; Grondin, Mélanie; Denizeau, Francine; Averill-Bates, Diana A; Sarhan, Fathey

    2006-11-05

    Hepatocytes are an important physiological model for evaluation of metabolic and biological effects of xenobiotics. They do not proliferate in culture and are extremely sensitive to damage during freezing and thawing, even after the addition of classical cryoprotectants. Thus improved cryopreservation techniques are needed to reduce cell injury and functional impairment. Here, we describe a new and efficient cryopreservation method, which permits long-term storage and recovery of large quantities of healthy cells that maintain high hepatospecific functions. In culture, the morphology of hepatocytes cryopreserved with wheat protein extracts (WPE) was similar to that of fresh cells. Furthermore, hepatospecific functions such as albumin secretion and biotransformation of ammonium to urea were well maintained during 4 days in culture. Inductions of CYP1A1 and CYP2B in hepatocytes cryopreserved with WPEs were similar to those in fresh hepatocytes. These findings clearly show that WPEs are an excellent cryopreservant for primary hepatocytes. The extract was also found to cryopreserve other human and animal cell types such as lung carcinoma, colorectal adenocarcinoma, Chinese hamster ovary transfected with TGF-b1 cDNA, cervical cancer taken from Henrietta Lacks, intestinal epithelium, and T cell leukemia. WPEs have potential as a universal cryopreservant agent of mammalian cells. It is an economic, efficient and non-toxic agent. (c) 2006 Wiley Periodicals, Inc.

  20. Absolute measurement of species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) and its modulation in cultured hepatocytes.

    PubMed

    Qiu, Xi; Bi, Yi-An; Balogh, Larissa M; Lai, Yurong

    2013-09-01

    Species differences among membrane transporters can be remarkable and difficult to properly assess by conventional methods. Herein, we employed the first use of stable isotope labeling in mammals or stable isotope-labeled peptides combined with mass spectrometry to identify species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) protein expression in liver tissue and to characterize the modulation of protein expression in sandwich-cultured human (SCHH) and rat hepatocytes (SCRH). The lower limit of quantification was established to be 5 fmol on column with a standard curve that was linear up to 2000 fmol. The accuracy and precision were evaluated with three quality control samples and known amounts of synthetic proteotypic peptides that were spiked into the membrane protein extracts. The overall relative error and coefficient of variation were less than 10%. The expression of Ntcp in mouse and rat was significant higher than that in human (five-fold) and monkey (two-fold) and ranked as mouse > rat > monkey > human. In the cultured hepatocytes, although significant downregulation of Ntcp expression in SCRH at day 5 after the culture was detected, NTCP expression in SCHH was comparable to the suspension hepatocytes. The results suggested that NTCP/Ntcp modulation in cultured hepatocytes is species specific. Copyright © 2013 Wiley Periodicals, Inc.

  1. Source-Related Effects of Wastewater on Transcription Factor (AhR, CAR and PXR)-Mediated Induction of Gene Expression in Cultured Rat Hepatocytes and Their Association with the Prevalence of Antimicrobial-Resistant Escherichia coli

    PubMed Central

    Guruge, Keerthi S.; Yamanaka, Noriko; Sonobe, Miyuki; Fujizono, Wataru; Yoshioka, Miyako; Akiba, Masato; Yamamoto, Takehisa; Joshua, Derrick I.; Balakrishna, Keshava; Yamashita, Nobuyoshi; Kannan, Kurunthachalam; Tsutsui, Toshiyuki

    2015-01-01

    Extracts of wastewater collected from 4 sewage treatment plants (STPs) receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli) in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP) genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic) physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and prevalence of

  2. Global Phosphoproteomic Analysis of Insulin/Akt/mTORC1/S6K Signaling in Rat Hepatocytes.

    PubMed

    Zhang, Yuanyuan; Zhang, Yajie; Yu, Yonghao

    2017-08-04

    Insulin resistance is a hallmark of type 2 diabetes. Although multiple genetic and physiological factors interact to cause insulin resistance, deregulated signaling by phosphorylation is a common underlying mechanism. In particular, the specific phosphorylation-dependent regulatory mechanisms and signaling outputs of insulin are poorly understood in hepatocytes, which represents one of the most important insulin-responsive cell types. Using primary rat hepatocytes as a model system, we performed reductive dimethylation (ReDi)-based quantitative mass spectrometric analysis and characterized the phosphoproteome that is regulated by insulin as well as its key downstream kinases including Akt, mTORC1, and S6K. We identified a total of 12 294 unique, confidently localized phosphorylation sites and 3805 phosphorylated proteins in this single cell type. Detailed bioinformatic analysis on each individual data set identified both known and previously unrecognized targets of this key insulin downstream effector pathway. Furthermore, integrated analysis of the hepatic Akt/mTORC1/S6K signaling axis allowed the delineation of the substrate specificity of several close-related kinases within the insulin signaling pathway. We expect that the data sets will serve as an invaluable resource, providing the foundation for future hypothesis-driven research that helps delineate the molecular mechanisms that underlie the pathogenesis of type 2 diabetes and related metabolic syndrome.

  3. Rapid generation of functional hepatocyte-like cells from human adipose-derived stem cells.

    PubMed

    Fu, Yanli; Deng, Jie; Jiang, Qingyuan; Wang, Yuan; Zhang, Yujing; Yao, Yunqi; Cheng, Fuyi; Chen, Xiaolei; Xu, Fen; Huang, Meijuan; Yang, Yang; Zhang, Shuang; Yu, Dechao; Zhao, Robert Chunhua; Wei, Yuquan; Deng, Hongxin

    2016-08-05

    Liver disease is a major cause of death worldwide. Orthotropic liver transplantation (OLT) represents the only effective treatment for patients with liver failure, but the increasing demand for organs is unfortunately so great that its application is limited. Hepatocyte transplantation is a promising alternative to OLT for the treatment of some liver-based metabolic disorders or acute liver failure. Unfortunately, the lack of donor livers also makes it difficult to obtain enough viable hepatocytes for hepatocyte-based therapies. Currently, a fundamental solution to this key problem is still lacking. Here we show a novel non-transgenic protocol that facilitates the rapid generation of functional induced hepatocytes (iHeps) from human adipose-derived stem cells (hADSCs), providing a source of available cells for autologous hepatocytes to treat liver disease. We used collagenase digestion to isolate hADSCs. The surface marker was detected by flow cytometry. The multipotential differentiation potency was detected by induction into adipocytes, osteocytes, and chondrocytes. Passage 3-7 hADSCs were induced into iHeps using an induction culture system composed of small molecule compounds and cell factors. Primary cultured hADSCs presented a fusiform or polygon appearance that became fibroblast-like after passage 3. More than 95 % of the cells expressed the mesenchymal cell markers CD29, CD44, CD166, CD105, and CD90. hADSCs possessed multipotential differentiation towards adipocytes, osteocytes, and chondrocytes. We rapidly induced hADSCs into iHeps within 10 days in vitro; the cellular morphology changed from fusiform to close-connected cubiform, which was similar to hepatocytes. After induction, most of the iHeps co-expressed albumin and alpha-1 antitrypsin; they also expressed mature hepatocyte special genes and achieved the basic functions of hepatocyte. Moreover, iHep transplantation could improve the liver function of acute liver-injured NPG mice and prolong life. We

  4. The effect of dimethylsulfoxide on the water transport response of rat hepatocytes during freezing.

    PubMed

    Smith, D J; Schulte, M; Bischof, J C

    1998-10-01

    Successful improvement of cryopreservation protocols for cells in suspension requires knowledge of how such cells respond to the biophysical stresses of freezing (intracellular ice formation, water transport) while in the presence of a cryoprotective agent (CPA). This work investigates the biophysical water transport response in a clinically important cell type--isolated hepatocytes--during freezing in the presence of dimethylsulfoxide (DMSO). Sprague-Dawley rat liver hepatocytes were frozen in Williams E media supplemented with 0, 1, and 2 M DMSO, at rates of 5, 10, and 50 degrees C/min. The water transport was measured by cell volumetric changes as assessed by cryomicroscopy and image analysis. Assuming that water is the only species transported under these conditions, a water transport model of the form dV/dT = f(Lpg([CPA]), ELp([CPA]), T(t)) was curve-fit to the experimental data to obtain the biophysical parameters of water transport--the reference hydraulic permeability (Lpg) and activation energy of water transport (ELp)--for each DMSO concentration. These parameters were estimated two ways: (1) by curve-fitting the model to the average volume of the pooled cell data, and (2) by curve-fitting individual cell volume data and averaging the resulting parameters. The experimental data showed that less dehydration occurs during freezing at a given rate in the presence of DMSO at temperatures between 0 and -10 degrees C. However, dehydration was able to continue at lower temperatures (< -10 degrees C) in the presence of DMSO. The values of Lpg and ELp obtained using the individual cell volume data both decreased from their non-CPA values--4.33 x 10(-13) m3/N-s (2.69 microns/min-atm) and 317 kJ/mol (75.9 kcal/mol), respectively--to 0.873 x 10(-13) m3/N-s (0.542 micron/min-atm) and 137 kJ/mol (32.8 kcal/mol), respectively, in 1 M DMSO and 0.715 x 10(-13) m3/N-s (0.444 micron/min-atm) and 107 kJ/mol (25.7 kcal/mol), respectively, in 2 M DMSO. The trends in the pooled

  5. Glycyrrhetinic acid suppressed NF-κB activation in TNF-α-induced hepatocytes.

    PubMed

    Chen, Hong-Jhang; Kang, Shih-Pei; Lee, I-Jung; Lin, Yun-Lian

    2014-01-22

    Tumor necrosis factor-alpha (TNF-α) is a crucial inflammatory cytokine when hepatocytes are damaged. Glycyrrhiza uralensis Fisch. (Chinese licorice) has been widely used in Chinese herbal prescriptions for the treatment of liver diseases and as a food additive. Nuclear factor-kappa B (NF-κB) reporter gene assay in TNF-α-induced HepG2 was used as a screening platform. IκBα phosphorylation and p65 translocation were measured by Western blotting, and nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression were further confirmed in rat primary hepatocytes. Results showed that TNF-α enhanced NF-κB activity was significantly attenuated by glycyrrhetinic acid in a concentration-dependent manner in the NF-κB reporter gene assay. Glycyrrhetinic acid decreased the gene expression of iNOS through inhibited IκBα phosphorylation and p65 translocation in protein level. Furthermore, NO production and iNOS expression were reduced by glycyrrhetinic acid in TNF-α-induced rat primary hepatocytes. These results suggest that glycyrrhetinic acid may provide hepatoprotection against chronic liver inflammation through attenuating NF-κB activation to alleviate the inflammation.

  6. Hepatocyte-specific deletion of hepatocyte nuclear factor-4α in adult mice results in increased hepatocyte proliferation.

    PubMed

    Walesky, Chad; Gunewardena, Sumedha; Terwilliger, Ernest F; Edwards, Genea; Borude, Prachi; Apte, Udayan

    2013-01-01

    Hepatocyte nuclear factor-4α (HNF4α) is known as the master regulator of hepatocyte differentiation. Recent studies indicate that HNF4α may inhibit hepatocyte proliferation via mechanisms that have yet to be identified. Using a HNF4α knockdown mouse model based on delivery of inducible Cre recombinase via an adeno-associated virus 8 viral vector, we investigated the role of HNF4α in the regulation of hepatocyte proliferation. Hepatocyte-specific deletion of HNF4α resulted in increased hepatocyte proliferation. Global gene expression analysis showed that a majority of the downregulated genes were previously known HNF4α target genes involved in hepatic differentiation. Interestingly, ≥500 upregulated genes were associated with cell proliferation and cancer. Furthermore, we identified potential negative target genes of HNF4α, many of which are involved in the stimulation of proliferation. Using chromatin immunoprecipitation analysis, we confirmed binding of HNF4α at three of these genes. Furthermore, overexpression of HNF4α in mouse hepatocellular carcinoma cells resulted in a decrease in promitogenic gene expression and cell cycle arrest. Taken together, these data indicate that, apart from its role in hepatocyte differentiation, HNF4α actively inhibits hepatocyte proliferation by repression of specific promitogenic genes.

  7. Experimental Model for Successful Liver Cell Therapy by Lenti TTR-YapERT2 Transduced Hepatocytes with Tamoxifen Control of Yap Subcellular Location

    PubMed Central

    Yovchev, Mladen; Jaber, Fadi L.; Lu, Zhonglei; Patel, Shachi; Locker, Joseph; Rogler, Leslie E.; Murray, John W.; Sudol, Marius; Dabeva, Mariana D.; Zhu, Liang; Shafritz, David A.

    2016-01-01

    Liver repopulation by transplanted hepatocytes has not been achieved previously in a normal liver microenvironment. Here we report that adult rat hepatocytes transduced ex vivo with a lentivirus expressing a human YapERT2 fusion protein (hYapERT2) under control of the hepatocyte-specific transthyretin (TTR) promoter repopulate normal rat liver in a tamoxifen-dependent manner. Transplanted hepatocytes expand very slowly but progressively to produce 10% repopulation at 6 months, showing clusters of mature hepatocytes that are fully integrated into hepatic parenchyma, with no evidence for dedifferentiation, dysplasia or malignant transformation. Thus, we have developed the first vector designed to regulate the growth control properties of Yap that renders it capable of producing effective cell therapy. The level of liver repopulation achieved has significant translational implications, as it is 2-3x the level required to cure many monogenic disorders of liver function that have no underlying hepatic pathology and is potentially applicable to diseases of other tissues and organs. PMID:26763940

  8. DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes

    PubMed Central

    Nauwelaers, Gwendoline; Bessette, Erin E.; Gu, Dan; Tang, Yijin; Rageul, Julie; Fessard, Valérie; Yuan, Jian-Min; Yu, Mimi C.; Langouët, Sophie; Turesky, Robert J.

    2011-01-01

    DNA adduct formation of the aromatic amine, 4-aminobiphenyl (4-ABP), a known human carcinogen present in tobacco smoke, and the heterocyclic aromatic amines (HAAs), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), potential human carcinogens, which are also present in tobacco smoke or formed during the high-temperature cooking of meats, was investigated in freshly cultured human hepatocytes. The carcinogens (10 μM) were incubated with hepatocytes derived from eight different donors for time periods up to 24 h. The DNA adducts were quantified by liquid chromatography-electrospray ionization mass spectrometry with a linear quadrupole ion trap mass spectrometer. The principal DNA adducts formed for all of the carcinogens were N-(deoxyguanosin-8-yl) (dG-C8) adducts. The levels of adducts ranged from 3.4 to 140 adducts per 107 DNA bases. The highest level of adduct formation occurred with AαC, followed by 4-ABP, then by PhIP, MeIQx, and IQ. Human hepatocytes formed dG-C8-HAA-adducts at levels that were up to 100-fold greater than the amounts of adducts produced in rat hepatocytes. In contrast to HAA adducts, the levels of dG-C8-4-ABP adduct formation were similar in human and rat hepatocytes. These DNA binding data demonstrate that the rat, an animal model that is used for carcinogenesis bioassays, significantly underestimates the potential hepatic genotoxicity of HAAs in humans. The high level of DNA adducts formed by AαC, a carcinogen produced in tobacco smoke at levels that are up to 100-fold higher than the amounts of 4-ABP, is noteworthy. The possible causal role of AαC in tobacco-associated cancers warrants investigation. PMID:21456541

  9. Characterization of cell types during rat liver development.

    PubMed

    Fiegel, Henning C; Park, Jonas J h; Lioznov, Michael V; Martin, Andreas; Jaeschke-Melli, Stefan; Kaufmann, Peter M; Fehse, Boris; Zander, Axel R; Kluth, Dietrich

    2003-01-01

    Hepatic stem cells have been identified in adult liver. Recently, the origin of hepatic progenitors and hepatocytes from bone marrow was demonstrated. Hematopoietic and hepatic stem cells share the markers CD 34, c-kit, and Thy1. Little is known about liver stem cells during liver development. In this study, we investigated the potential stem cell marker Thy1 and hepatocytic marker CK-18 during liver development to identify putative fetal liver stem cell candidates. Livers were harvested from embryonic and fetal day (ED) 16, ED 18, ED 20, and neonatal ED 22 stage rat fetuses from Sprague-Dawley rats. Fetal livers were digested by collagenase-DNAse solution and purified by percoll centrifugation. Magnetic cell sorting (MACS) depletion of fetal liver cells was performed using OX43 and OX44 antibodies. Cells were characterized by immunocytochemistry for Thy1, CK-18, and proliferating cell antigen Ki-67 and double labeling for Thy1 and CK-18. Thy1 expression was found at all stages of liver development before and after MACS in immunocytochemistry. Thy1 positive cells were enriched after MACS only in early developmental stages. An enrichment of CK-18 positive cells was found after MACS at all developmental stages. Cells coexpressing Thy1 and CK-18 were identified by double labeling of fetal liver cell isolates. In conclusion, hepatic progenitor cells (CK-18 positive) in fetal rat liver express Thy1. Other progenitors express only CK-18. This indicates the coexistence of different hepatic cell compartments. Isolation and further characterization of such cells is needed to demonstrate their biologic properties.

  10. Saw palmetto is an indirectly acting sympathomimetic in the rat-isolated prostate gland.

    PubMed

    Cao, Nga; Haynes, John M; Ventura, Sabatino

    2006-02-01

    To investigate whether saw palmetto that inhibits alpha1-adrenoceptor binding in vitro affects contractility of the rat prostate gland. The effects of a commercially available saw palmetto extract were examined on the contractility of rat-isolated prostate glands. The extract was tested in the presence and absence of phentolamine, prazosin, yohimbine, propranolol, hexamethonium, cocaine, desipramine, nifedipine, guanethidine, atropine, and alpha,beta-methylene ATP to evaluate the mechanism of action. Isolated preparations of rat vas deferens and bladder were used for comparison. Unexpectedly, saw palmetto extract caused contractions of the rat prostate gland that could be attenuated by prazosin, phentolamine, nifedipine, guanethidine, cocaine, and desipramine but not by any of the other pharmacological tools. Similar contractile effects were observed in rat-isolated vas deferens preparations but not in rat-isolated bladder preparations. In the rat prostate gland, saw palmetto extract causes indirect alpha1-adrenoceptor-mediated contractions via the release of noradrenaline from sympathetic neurons. Copyright 2005 Wiley-Liss, Inc.

  11. Chronic alcohol feeding potentiates hormone‐induced calcium signalling in hepatocytes

    PubMed Central

    Bartlett, Paula J.; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L.; Combettes, Laurent; Hoek, Jan B.

    2017-01-01

    Key points Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined.We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca2+‐mobilizing hormones resulting in a leftward shift in the concentration–response relationship and the transition from oscillatory to more sustained and prolonged Ca2+ increases.Our data demonstrate that alcohol‐dependent adaptation in the Ca2+ signalling pathway occurs at the level of hormone‐induced inositol 1,4,5 trisphosphate (IP3) production and does not involve changes in the sensitivity of the IP3 receptor or size of internal Ca2+ stores.We suggest that prolonged and aberrant hormone‐evoked Ca2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol‐induced hepatocyte injury. Abstract ‘Adaptive’ responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide‐dependent cytosolic calcium ([Ca2+]i) increases, which can adversely affect mitochondrial Ca2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose–response for Ca2+‐mobilizing hormones resulting in more sustained and prolonged [Ca2+]i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone‐induced calcium increases in control livers, but not after chronic alcohol‐feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone‐induced inositol 1,4,5 trisphosphate (IP3) accumulation and

  12. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.

    PubMed

    Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D

    2017-05-15

    Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C

  13. Isolating Lysosomes from Rat Liver.

    PubMed

    Pryor, Paul R

    2016-04-01

    This protocol describes the generation of a fraction enriched in lysosomes from rat liver. The lysosomes are rapidly isolated using density-gradient centrifugation with gradient media that retain the osmolarity of the lysosomes such that they are functional and can be used in in vitro assays. © 2016 Cold Spring Harbor Laboratory Press.

  14. Ethanol causes desensitization of receptor-mediated phospholipase C activation in isolated hepatocytes.

    PubMed

    Higashi, K; Hoek, J B

    1991-02-05

    The effect of ethanol on receptor-mediated phospholipase C-linked signal transduction processes was investigated in isolated rat hepatocytes. Pretreatment of the cells with ethanol (6-300 mM) markedly inhibited a subsequent stimulation of phospholipase C by vasopressin, angiotensin II, or epidermal growth factor. By contrast, the effects of the alpha 1-adrenergic agonist phenylephrine and of glucagon were not affected by ethanol pretreatment. Ethanol inhibited the agonist-induced decrease in polyphosphoinositides, the formation of inositol phosphates, and the increase in cytosolic free Ca2+ levels, as detected with the intracellular Ca2+ indicator indo-1. The effects of ethanol were concentration dependent and were pronounced at low concentrations of agonists but were not significant at saturating levels. Pretreatment of the cells with the protein kinase C inhibitor H7 partly prevented the inhibition by ethanol of vasopressin-induced phospholipase C activation. By contrast, pretreatment of the cells with (Rp)-adenosine cyclic 3':5'-phosphorothioate [Rp)-cAMP-S), a competitive inhibitor of protein kinase A, potentiated the inhibitory effect of ethanol on the Ca2+ mobilization by vasopressin. (Rp)-cAMP-S similarly potentiated the inhibition of phospholipase C by the protein kinase C-activating phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The kinase A inhibitor also made the Ca2+ mobilization by phenylephrine sensitive to ethanol, indicating that the formation of cAMP in the cells played a role in suppressing the sensitivity to ethanol. Pretreatment of the cells with ethanol enhanced the inhibitory effects of TPA on the vasopressin-induced phospholipase C activation at all concentrations of the hormone; however, these synergistic effects were prevented when TPA was added prior to ethanol, a condition that prevents the activation of phospholipase C by ethanol. The data indicate that ethanol causes desensitization of the receptor-mediated phospholipase C

  15. Clearance Prediction Methodology Needs Fundamental Improvement: Trends Common to Rat and Human Hepatocytes/Microsomes and Implications for Experimental Methodology.

    PubMed

    Wood, F L; Houston, J B; Hallifax, D

    2017-11-01

    Although prediction of clearance using hepatocytes and liver microsomes has long played a decisive role in drug discovery, it is widely acknowledged that reliably accurate prediction is not yet achievable despite the predominance of hepatically cleared drugs. Physiologically mechanistic methodology tends to underpredict clearance by several fold, and empirical correction of this bias is confounded by imprecision across drugs. Understanding the causes of prediction uncertainty has been slow, possibly reflecting poor resolution of variables associated with donor source and experimental methods, particularly for the human situation. It has been reported that among published human hepatocyte predictions there was a tendency for underprediction to increase with increasing in vivo intrinsic clearance, suggesting an inherent limitation using this particular system. This implied an artifactual rate limitation in vitro, although preparative effects on cell stability and performance were not yet resolved from assay design limitations. Here, to resolve these issues further, we present an up-to-date and comprehensive examination of predictions from published rat as well as human studies (where n = 128 and 101 hepatocytes and n = 71 and 83 microsomes, respectively) to assess system performance more independently. We report a clear trend of increasing underprediction with increasing in vivo intrinsic clearance, which is similar both between species and between in vitro systems. Hence, prior concerns arising specifically from human in vitro systems may be unfounded and the focus of investigation in the future should be to minimize the potential in vitro assay limitations common to whole cells and subcellular fractions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Taurine transport across hepatocyte plasma membranes: analysis in isolated rat liver sinusoidal plasma membrane vesicles.

    PubMed

    Inoue, M; Arias, I M

    1988-07-01

    To elucidate the mechanism of taurine transport across the hepatic plasma membranes, rat liver sinusoidal plasma membrane vesicles were isolated and the transport process was analyzed. In the presence of a sodium gradient across the membranes (vesicle inside less than vesicle outside), an overshooting uptake of taurine occurred. In the presence of other ion gradients (K+, Li+, and choline+), taurine uptake was very small and no such overshoot was observed. Sodium-dependent uptake of taurine occurred into an osmotically active intravesicular space. Taurine uptake was stimulated by preloading vesicles with unlabeled taurine (transstimulation) in the presence of NaCl, but not in the presence of KCl. Sodium-dependent transport followed saturation kinetics with respect to taurine concentration; double-reciprocal plots of uptake versus taurine concentration gave a straight line from which an apparent Km value of 0.38 mM and Vmax of 0.27 nmol/20 s x mg of protein were obtained. Valinomycin-induced K+-diffusion potential failed to enhance the rate of taurine uptake, suggesting that taurine transport does not depend on membrane potential. Taurine transport was inhibited by structurally related omega-amino acids, such as beta-alanine and gamma-aminobutyric acid, but not by glycine, epsilon-aminocaproic acid, or other alpha-amino acids, such as L-alanine. These results suggest that Na+-dependent uptake of taurine might occur across the hepatic sinusoidal plasma membranes via a transport system that is specific for omega-amino acids having 2-3 carbon chain length.

  17. Cytochrome P450 peroxidase/peroxygenase mediated xenobiotic metabolic activation and cytotoxicity in isolated hepatocytes.

    PubMed

    Anari, M R; Khan, S; Liu, Z C; O'Brien, P J

    1995-12-01

    Cytochrome P450 (P450) can utilize organic hydroperoxides and peracids to support hydroxylation and dealkylation of various P450 substrates. However, the biological significance of this P450 peroxygenase/peroxidase activity in the bioactivation of xenobiotics in intact cells has not been demonstrated. We have shown that tert-butyl hydroperoxide (tBHP) markedly enhances 3-20-fold the cytotoxicity of various aromatic hydrocarbons and their phenolic metabolites. The tBHP-enhanced hepatocyte cytotoxicity of 4-nitroanisole (4-NA) and 4-hydroxyanisole (4-HA) was also accompanied by an increase in the hepatocyte O-demethylation of 4-NA and 4-HA up to 7.5- and 21-fold, respectively. Hepatocyte GSH conjugation by 4-HA was also markedly increased by tBHP. An LC/MS analysis of the GSH conjugates identified hydroquinone-GSH and 4-methoxy-catechol:GSH conjugates as the predominant adducts. Pretreatment of hepatocytes with P450 inhibitors, e.g., phenylimidazole, prevented tBHP-enhanced 4-HA metabolism, GSH depletion, and cytotoxicity. In conclusion, hydroperoxides can therefore be used by intact cells to support the bioactivation of xenobiotics through the P450 peroxidase/peroxygenase system.

  18. Zonal hierarchy of differentiation markers and nestin expression during oval cell mediated rat liver regeneration.

    PubMed

    Koenig, Sarah; Probst, Irmelin; Becker, Heinz; Krause, Petra

    2006-12-01

    Oval cells constitute a heterogeneous population of proliferating progenitors found in rat livers following carcinogenic treatment (2-acetylaminofluorene and 70% hepatectomy). The aim of this study was to investigate the cellular pattern of various differentiation and cell type markers in this model of liver regeneration. Immunophenotypic characterisation revealed at least two subtypes emerging from the portal field. First, a population of oval cells formed duct-like structures and expressed bile duct (CD49f) as well as hepatocytic markers (alpha-foetoprotein, CD26). Second, a population of non-ductular oval cells was detected between and distally from the ductules expressing the neural marker nestin and the haematopoietic marker Thy1. Following oval cell isolation, a subset of the nestin-positive cells was shown to co-express hepatocytic and epithelial markers (albumin, CD26, pancytokeratin) and could be clearly distinguished from anti-desmin reactive hepatic stellate cells. The gene expression profiles (RT-PCR) of isolated oval cells and oval cell liver tissue were found to be similar to foetal liver (ED14). The present results suggest that the two oval cell populations are organised in a zonal hierarchy with a marker gradient from the inner (displaying hepatocytic and biliary markers) to the outer zone (showing hepatocytic and extrahepatic progenitor markers) of the proliferating progeny clusters.

  19. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system.

    PubMed

    Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A

    2004-08-01

    In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.

  20. Variable responses of small and large human hepatocytes to hypoxia and hypoxia/reoxygenation (H-R).

    PubMed

    Bhogal, Ricky H; Weston, Christopher J; Curbishley, Stuart M; Bhatt, Anand N; Adams, David H; Afford, Simon C

    2011-03-23

    Hypoxia and hypoxia-reoxygenation (H-R) regulate human hepatocyte cell death by mediating the accumulation of reactive oxygen species (ROS). Hepatocytes within the liver are organised into peri-portal (PP) and peri-venous (PV) subpopulations. PP and PV hepatocytes differ in size and function. We investigated whether PP and PV human hepatocytes exhibit differential susceptibility to hypoxic stress. Isolated hepatocytes were used in an in vitro model of hypoxia and H-R. ROS production and cell death were assessed using flow cytometry. PV, and not PP hepatocytes, accumulate intracellular ROS in a mitochondrial dependent manner during hypoxia and H-R. This increased ROS regulates hepatocyte apoptosis and necrosis via a mitochondrial pathway. These findings have implications on the understanding of liver injury and application of potential therapeutic strategies. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Transformation of primary human hepatocytes in hepatocellular carcinoma.

    PubMed

    Montalbano, Mauro; Rastellini, Cristiana; Wang, Xiaofu; Corsello, Tiziana; Eltorky, Mahmoud A; Vento, Renza; Cicalese, Luca

    2016-03-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Currently, there is limited knowledge of neoplastic transformation of hepatocytes in HCC. In clinical practice, the high rate of HCC local recurrence suggests the presence of different hepatocyte populations within the liver and particularly in the tumor proximity. The present study investigated primary human hepatocyte cultures obtained from liver specimens of patients affected by cirrhosis and HCC, their proliferation and transformation. Liver samples were obtained from seven HCC cirrhotic patients and from three patients with normal liver (NL). Immediately after surgery, cell outgrowth and primary cultures were obtained from the HCC lesion, the cirrhotic tissue proximal (CP, 1-3 cm) and distal (CD, >5 cm) to the margin of the neoplastic lesion, or from NL. Cells were kept in culture for 16 weeks. Morphologic analyses were performed and proliferation rate of the different cell populations compared over time. Glypican-3, Heppar1, Arginase1 and CD-44 positivity were tested. The degree of invasiveness of cells acquiring neoplastic characteristics was studied with a transwell migration assay. We observed that HCC cells maintained their morphology and unmodified neoplastic characteristics when cultured. Cells isolated from CP, showed a progressive morphologic transformation in HCC-like cells accompanied by modification of markers expression with signs of invasiveness. Absence of HCC contamination in the CP isolates was confirmed. In CD samples some of these characteristics were present and at significantly lower levels. With the present study, we are the first to have identified and describe the existence of human hepatocytes near the cancerous lesion that can transform in HCC in vitro.

  2. Entrapment of hepatocyte spheroids in a hollow fiber bioreactor as a potential bioartificial liver.

    PubMed

    Wu, F J; Peshwa, M V; Cerra, F B; Hu, W S

    1995-01-01

    A bioartificial liver (BAL) employing xenogeneic hepatocytes has been developed as a potential interim support for patients in hepatic failure. For application in human therapy, the BAL requires a substantial increase in liver-specific functions. Cultivation of hepatocytes as spheroids leads to enhanced liver specific functions. We explored the possibility of entrapping spheroids into the BAL in order to improve device performance. Rat hepatocyte spheroids were entrapped in collagen gel within the lumen fibers of the BAL. The morphology and ultrastructure of collagen-entrapped spheroids resembled those of suspended spheroids formed on petri dishes. Albumin synthesis and P-450 enzyme activity were measured as markers of liver specific functions of spheroids entrapped in the BAL. At least a 4-fold improvement in these functions was observed compared to BAL devices entrapped with dispersed hepatocytes in collagen gels.

  3. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation

    PubMed Central

    1987-01-01

    We have used pulse-chase metabolic radiolabeling with L-[35S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates. Approximate half-times for arrival are in the range of 90-120 min for aminopeptidase N and dipeptidylpeptidase IV whereas only 15-20% of the mature

  4. Characterization of the swelling-induced alkalinization of endocytotic vesicles in fluorescein isothiocyanate-dextran-loaded rat hepatocytes.

    PubMed Central

    Schreiber, R; Häussinger, D

    1995-01-01

    Short-term cultivated rat hepatocytes were allowed to endocytose fluorescein isothiocyanate (FITC)-coupled dextran and the apparent vesicular pH (pHves) was measured by single-cell fluorescence. After 2 h of exposure to FITC-dextran, the apparent pH in the vesicular compartments accessible to endocytosed FITC-dextran was 6.01 +/- 0.05 (n = 39) in normo-osmotic media. Hypo-osmotic exposure increased, whereas hyper-osmotic exposure decreased apparent pHves. by 0.18 +/- 0.02 (n = 26) and 0.12 +/- 0.01 (n = 23) respectively. Incubation of the cells with unlabelled dextran for 2h before a 2-h FITC-dextran exposure had no effect on apparent pHves and its osmosensitivity. When, however, hepatocytes were exposed to unlabelled dextran for 5 h after a 2 h exposure to FITC-dextran, in order to allow transport of endocytosed FITC-dextran to late endocytotic/lysosomal compartments, apparent pHves. decreased to 5.38 +/- 0.04 (n = 12) and the apparent pH in the vesicular compartment containing the dye was no longer sensitive to aniso-osmotic exposure. These findings indicate that the osomosensitivity of pHves. is apparently restricted to early endocytotic compartments. Aniso-osmotic regulation of apparent pHves. in freshly FITC-loaded hepatocytes was not accompanied by aniso-osmolarity-induced changes of the cytosolic free calcium concentration, and neither vasopressin nor extracellular ATP, which provoked a marked Ca2+ signal, affected apparent pHves. Dibutyryl-cyclic AMP (cAMP) or vanadate (0.5 mmol/l) were without effect on apparent pHves. and its osmosensitivity. However, pertussis toxin-treatment or genistein (but not daidzein) or the erbstatin analogue methyl 2,5-dihydroxycinnamate fully abolished the osmo-sensitivity of apparent pHves., but did not affect apparent pHves. It is concluded that regulation of pHves. by cell volume occurs in early endocytotic compartments, but probably not in lysosomes, and is mediated by a G-protein and tyrosine kinase-dependent, but Ca2+- and

  5. Isoflavones isolated from red clover (Trifolium pratense) inhibit smooth muscle contraction of the isolated rat prostate gland.

    PubMed

    Brandli, A; Simpson, J S; Ventura, S

    2010-09-01

    This study investigated whether red clover contains any bioactive constituents which may affect contractility of rat prostatic smooth muscle in an attempt to determine whether its medicinal use in the treatment of benign prostatic hyperplasia is supported by pharmacological effects. A commercially available red clover extract was chemically fractionated and various isoflavones (genistein, formononetin and biochanin A) were isolated from these fractions and their effects on contractility were examined on preparations of the isolated rat prostate gland. Contractile effects of the isolated fractions were compared with commercially available isoflavones (genistein, formononetin and biochanin A). Pharmacological tools were used to investigate the mechanism of action modifying smooth muscle contraction. Crude red clover extract (Trinovin) inhibited electrical field stimulation induced contractions of the rat prostate across a range of frequencies with an IC(50) of approximately 68 microg/ml. Contractions of the rat prostate elicited by exogenous administration of acetylcholine, noradrenaline or adenosine 5'-triphosphate (ATP) were also inhibited. Chromatographic separation, and final purification by high performance liquid chromatography (HPLC) permitted the isolation of the isoflavones: daidzein, calycosin, formononetin, prunetin, pratensin, biochanin A and genistein. Genistein, formononetin and biochanin A (100 microM) from either commercial sources or isolated from red clover extract inhibited electrical field stimulation induced contractions of the isolated rat prostate. It is concluded that isoflavones contained in red clover are able to inhibit prostatic smooth muscle contractions in addition to their antiproliferative effects. However, the high concentrations required to observe these smooth muscle relaxant effects mean that a therapeutic benefit from this mechanism is unlikely at doses used clinically. Crown Copyright 2010. Published by Elsevier GmbH. All rights

  6. [Fisetin alleviates hypoxia/reoxygenation injury in rat hepatocytes via modulation of TLR4/NF-κB signaling pathway].

    PubMed

    Pu, Junliang; Wan, Lei; Zheng, Daofeng; Wei, Xufu; Wu, Zhongjun; Tang, Chengyong

    2017-07-01

    Objective To investigate the protective effect of fisetin (FIS) against hypoxia/reoxygenation (H/R) injury in rat hepatocytes and its mechanism. Methods H/R injury model of BRL-3A cells was established and the cells were pretreated with FIS. Survival rate was detected by CCK-8 assay. Cell apoptosis was measured by flow cytometry. The levels of ALT and AST were determined by microplate assay. The production of TNF-α and IL-1β were detected by ELISA. The mRNA and protein levels of TLR4 and NF-κBp65 were analyzed by quantitative real-time PCR and Western blotting, respectively. Results After subjected to H/R, cell survival rate decreased and the apoptosis level increased. The levels of ALT and AST in cell supernatant were elevated, so were the production of TNF-α and IL-1β. FIS pretreatment increased the cell survival rate and inhibited apoptosis. The levels of ALT, AST and the production of TNF-α and IL-1β were reduced significantly. Moreover, FIS inhibited the increasing expression levels of TLR4 and NF-κBp65 induced by H/R. Conclusion FIS alleviates the hepatocyte injury induced by H/R via modulation of TLR4/NF-κB signaling pathway.

  7. Increased reprogramming of human fetal hepatocytes compared with adult hepatocytes in feeder-free conditions.

    PubMed

    Hansel, Marc C; Gramignoli, Roberto; Blake, William; Davila, Julio; Skvorak, Kristen; Dorko, Kenneth; Tahan, Veysel; Lee, Brian R; Tafaleng, Edgar; Guzman-Lepe, Jorge; Soto-Gutierrez, Alejandro; Fox, Ira J; Strom, Stephen C

    2014-01-01

    Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions. Of these, 37 hiPSC lines were generated from fetal hepatocytes, 2 hiPSC lines from normal hepatocytes, and 1 hiPSC line from hepatocytes of a patient with Crigler-Najjar syndrome, type 1. All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunocytochemistry, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with six factors, while fetal hepatocytes could be reprogrammed with three (OCT4, SOX2, NANOG) or four factors (OCT4, SOX2, NANOG, LIN28 or OCT4, SOX2, KLF4, C-MYC). The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity. These studies confirm that hiPSCs can be generated from adult and fetal hepatocytes including those with genetic diseases. Fetal hepatocytes reprogram much more efficiently than adult hepatocytes, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation.

  8. Glycogen synthase activation by sugars in isolated hepatocytes.

    PubMed

    Ciudad, C J; Carabaza, A; Bosch, F; Gòmez I Foix, A M; Guinovart, J J

    1988-07-01

    We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.

  9. Evaluation of drug-metabolizing and functional competence of human hepatocytes incubated under hypothermia in different media for clinical infusion.

    PubMed

    Gómez-Lechón, María José; Lahoz, Agustín; Jiménez, Nuria; Bonora, Ana; Castell, José V; Donato, María Teresa

    2008-01-01

    Hepatocyte transplantation has been proposed as a method to support patients with liver insufficiency. Key factors for clinical cell transplantation to progress is to prevent hepatocyte damage, loss of viability and cell functionality, factors that depend on the nature of the tissue used for isolation to a large extent. The main sources of tissue for hepatocyte isolation are marginal livers that are unsuitable for transplantation, and segments from reduced cadaveric grafts. Hepatocellular transplantation requires infusing human hepatocytes in suspension over a period of minutes to hours. The beneficial effect of hypothermic preservation of hepatocytes in infusion medium has been reported, but how critical issues towards the success of cell transplantation, such as the composition of infusion medium and duration of hepatocyte storage will affect hepatocyte quality for clinical cell infusion has not been systematically investigated. Infusion media composition is phosphate-buffered saline containing anticoagulants and human serum albumin. The supplementation of infusion media with glucose or N-acetyl-cystein, or with both components at the same time, has been investigated. After isolation, hepatocytes were suspended in each infusion medium and a sample at the 0 time point was harvested for cell viability and functional assessment. Thereafter, cells were incubated in different infusion media agitated on a rocker platform to simulate the clinical infusion technique. The time course of hepatocyte viability, funtionality (drug-metabolizing enzymes, ureogenic capability, ATP, glycogen, and GSH levels), apoptosis (caspase-3 activation), and attachment and monolayer formation were analyzed. The optimal preservation of cell viability, attaching capacity, and functionality, particularly GSH and glycogen levels, as well as drug-metabolizing cytochrome P450 enzymes, was found in infusion media supplemented with 2 mM N-acetyl-cystein and 15 mM glucose.

  10. Overexpression of insulin-like growth factor-I receptor as a pertinent biomarker for hepatocytes malignant transformation

    PubMed Central

    Yan, Xiao-Di; Yao, Min; Wang, Li; Zhang, Hai-Jian; Yan, Mei-Juan; Gu, Xing; Shi, Yun; Chen, Jie; Dong, Zhi-Zhen; Yao, Deng-Fu

    2013-01-01

    AIM: To investigate the dynamic features of insulin-like growth factor-I receptor (IGF-IR) expression in rat hepatocarcinogenesis, and the relationship between IGF-IR and hepatocytes malignant transformation at mRNA or protein level. METHODS: Hepatoma models were made by inducing with 2-fluorenylacetamide (2-FAA) on male Sprague-Dawley rats. Morphological changes of hepatocytes were observed by pathological Hematoxylin and eosin staining, the dynamic expressions of liver and serum IGF-IR were quantitatively analyzed by an enzyme-linked immunosorbent assay. The distribution of hepatic IGF-IR was located by immunohistochemistry. The fragments of IGF-IR gene were amplified by reverse transcription-polymerase chain reaction, and confirmed by sequencing. RESULTS: Rat hepatocytes after induced by 2-FAA were changed dynamically from granule-like degeneration, precancerous to hepatoma formation with the progressing increasing of hepatic mRNA or IGF-IR expression. The incidences of liver IGF-IR, IGF-IR mRNA, specific IGF-IR concentration (ng/mg wet liver), and serum IGF-IR level (ng/mL) were 0.0%, 0.0%, 0.63 ± 0.17, and 1.33 ± 0.47 in the control; 50.0%, 61.1%, 0.65 ± 0.2, and 1.51 ± 0.46 in the degeneration; 88.9%, 100%, 0.66 ± 0.14, and 1.92 ± 0.29 in the precancerosis; and 100%, 100%, 0.96 ± 0.09, and 2.43 ± 0.57 in the cancerous group, respectively. IGF-IR expression in the cancerous group was significantly higher (P < 0.01) than that in any of other groups at mRNA or protein level. The closely positive IGF-IR relationship was found between livers and sera (r = 0.91, t = 14.222, P < 0.01), respectively. CONCLUSION: IGF-IR expression may participate in rat hepatocarcinogenesis and its abnormality should be an early marker for hepatocytes malignant transformation. PMID:24106410

  11. Comparison of trout hepatocytes and liver S9 fractions as in ...

    EPA Pesticide Factsheets

    Isolated hepatocytes and liver S9 fractions have been used to collect in vitro biotransformation data for fish as a means of improving modeled estimates of chemical bioaccumulation. To date, however, there have been few direct comparisons of these two methods. In the present study, cryopreserved trout hepatocytes were used to measure in vitro intrinsic clearance rates for 6 polycyclic aromatic hydrocarbons (PAHs). These rates were extrapolated to estimates of in vivo intrinsic clearance and used as inputs to a well-stirred liver model to predict hepatic clearance. Predicted rates of hepatic clearance were then evaluated by comparison to measured rates determined previously using isolated perfused livers. Hepatic clearance rates predicted using hepatocytes were in good agreement with measured values (< 2.1 fold difference for 5 of 6 compounds) under two competing binding assumptions. These findings, which may be attributed in part to high rates of PAH metabolism, are similar to those obtained previously using data from liver S9 fractions. For one compound (benzo[a]pyrene), the in vivo intrinsic clearance rate calculated using S9 data was 10-fold higher than that determined using hepatocytes, possibly due to a diffusion limitation on cellular uptake. Generally, however, there was good agreement between calculated in vivo intrinsic clearance rates obtained using either in vitro test system. These results suggest that both systems can be used to improve

  12. The central responsiveness of the acute cerveau isolé rat.

    PubMed

    User, P; Gottesmann, C

    1982-01-01

    The electrophysiological patterns of the frontal cortex and dorsal hippocampus were studied in the acute cerveau isolé rat. Central and peripheral stimulations were performed in order to modulate these patterns. The results showed that the permanent alternation of high amplitude spindle bursts and low voltage activity in the anterior neocortex of the acute cerveau isolé was influenced neither by olfactory nor by posterior hypothalamic stimulation. In contrast, these two kinds of stimulation easily modulated the continuous low frequency theta rhythm, recorded in the dorsal hippocampus, in terms of amplitude and in overall frequency. This modulation of the theta rhythm in the acute cerveau isolé rat mimics the changes observed when the normal rat comes from the intermediate stage of sleep (as characterized in the the acute intercollicular transected rat by high amplitude spindle bursts at frontal cortex level and low frequency theta activity in the dorsal hippocampus) to rapid sleep. These results further suggest that, during the intermediate stage (as in the cerveau isolé preparation), the hippocampus montonous theta activity appears through a brainstem disinhibitory process releasing the forebrain limbic pacemaker(s). During the following rapid sleep phase, the theta rhythm would be modulated by pontine activity influences acting on the theta generators.

  13. The instant blood-mediated inflammatory reaction characterized in hepatocyte transplantation.

    PubMed

    Gustafson, Elisabet K; Elgue, Graciela; Hughes, Robin D; Mitry, Ragai R; Sanchez, Javier; Haglund, Ulf; Meurling, Staffan; Dhawan, Anil; Korsgren, Olle; Nilsson, Bo

    2011-03-27

    Hepatocyte transplantation (HcTx) has proven to be a safe procedure, although the functional results have been unsatisfactory, probably due to insufficient engraftment or a loss of transplanted mass or function. In this study, we investigate whether hepatocytes in contact with blood induce an inflammatory reaction leading to, similar to what happens in clinical islet transplantation, an instant blood-mediated inflammatory reaction (IBMIR) resulting in an early loss of transplanted cells. By using an experimental model that mimics the portal vein blood flow, we could study different parameters reflecting the effects on the innate immunity elicited by hepatocytes in contact with ABO-matched human blood. We report that all aspects of the IBMIR such as platelet and granulocyte consumption, coagulation, and complement activation were demonstrated. Addition of various specific inhibitors of coagulation allowed us to clearly delineate the various stages of the hepatocyte-triggered IBMIR and show that the reaction was triggered by tissue factor. Analysis of a case of clinical HcTx showed that hepatocyte-induced IBMIR also occurs in vivo. Both the inflammatory and the coagulation aspects were controlled by low-molecular-weight dextran sulfate. Isolated hepatocytes in contact with blood induce the IBMIR in vitro, and there are indications that these events are also relevant in vivo. According to these findings, HcTx would benefit from controlling a wider range of signals from the innate immune system.

  14. [Effect of inducible nitric oxide on intracellular homeostasis of hepatocytes].

    PubMed

    Tang, Xi-Feng; Zhou, Dong-Yao; Kang, Ge-Fei

    2002-02-01

    To investigate the effects of inducible nitric oxide (NO) and exogenous NO on the intracellular homeostasis of the hepatocytes. Endogenous NO was induced by combined action of lipopolysaccharide (LPS) and cytokines in cultured rat hepatocytes, and exogenous NO was supplied by sodium nitroprusside (SNP) to stimulate the hepatocytes. The changes in intracellular malondialdehyde (MDA), reduced glutathione(GSH) and free calcium ([Ca2+]i) were observed. substantial increase by 7.97 times in intracellular MDA level and a decrease by 57.9% in GSH occurred in the hepatocytes after the cells had been incubated with LPS and cytokines for 24 h, which were reversed by 43.5% and 98.4% respectively by treatment with N(G)-monomethyl-L-arginine (NMMA), a competitive nitric oxide synthase (NOS) inhibitor. Verapamil significantly reduced both endogenous NO production and oxidative stress, while the effect of A23187 was not conspicuous. Incubation with chlorpromazine and Vitamine E (VitE), however, did not result in decreased release of NO by LPS- and cytokines-induced hepatocytes. After SNP exposure of the hepatocytes, the oxidative status was reversibly enhanced in a time-dependent manner. Short exposure to SNP led to a concentration-dependent inhibition of the rapid and transient increase in free calcium induced by K(+) depolarization and hepatopoietin-coupled calcium mobilization. Inducible NO may initiate and play a key role in the latter stages of metabolic and functional stress responses of hepatocytes against endotoxin and cytokines, when the reduction occurs in the capacity of NO to independently mediate lipid peroxidation and counteract oxidation. The inhibitory effect of NO on [Ca2+]i mobilization may be an important autoregulatory mechanism by means of negative feedback on protein kinase C-associated NOS induction.

  15. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes.

    PubMed Central

    Mangiapane, E H; Brindley, D N

    1986-01-01

    Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the hepatocytes for the total 42 h period with 36 nM-insulin decreased the amount of triacylglycerol in the medium and in the cells after the final incubation for 23 h with radioactive substrates. However, insulin had no significant effect on the triacylglycerol content of the cell and medium when it was present only in the final 23 h incubation. Insulin antagonized the effects of dexamethasone in stimulating the secretion of triacylglycerol from the hepatocytes, especially when it was present throughout the total 42 h period. The labelling of lysophosphatidylcholine in the medium when hepatocytes were incubated with [14C]oleate and [3H]glycerol was greater than that of phosphatidylcholine. The appearance of this lipid in the medium, unlike that of triacylglycerol and phosphatidylcholine, was not stimulated by dexamethasone, or inhibited by colchicine. However, the presence of lysophosphatidylcholine in the medium was decreased when the hepatocytes were incubated with both dexamethasone and insulin. These findings are discussed in relation to the control of the synthesis of glycerolipids and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by the liver, particularly in relation to the interactions of glucocorticoids and insulin. PMID:3513755

  16. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    PubMed

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Treadmill exercise ameliorates social isolation-induced depression through neuronal generation in rat pups.

    PubMed

    Cho, Jung-Wan; Jung, Sun-Young; Lee, Sang-Won; Lee, Sam-Jun; Seo, Tae-Beom; Kim, Young-Pyo; Kim, Dae-Young

    2017-12-01

    Social isolation is known to induce emotional and behavioral changes in animals and humans. The effect of treadmill exercise on depression was investigated using social isolated rat pups. The rat pups in the social isolation groups were housed individually. The rat pups in the exercise groups were forced to run on treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. In order to evaluate depression state of rat pups, forced swimming test was performed. Newly generated cells in the hippocampal dentate gyrus were determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. We examined the expression of 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe using immunofluorescence. The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was detected by Western blot analysis. The present results demonstrated that social isolation increased resting time and decreased mobility time. Expression of 5-HT and TPH in the dorsal raphe and expression of BDNF and TrkB in the hippocampus were decreased by social isolation. The number of BrdU-positive cells in the hippocampal dentate gyrus was suppressed by social isolation. Treadmill exercise decreased resting time and increased mobility in the social isolated rat pups. Expression of 5-HT, TPH, BDNF, and TrkB was increased by treadmill exercise. The present results suggested that treadmill exercise may ameliorates social isolation-induced depression through increasing neuronal generation.

  18. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    PubMed

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. TRANSPLANTATION OF HEPATOCYTES FROM GENETICALLY-ENGINEERED PIGS IN BABOONS

    PubMed Central

    Iwase, Hayato; Liu, Hong; Schmelzer, Eva; Ezzelarab, Mohamed; Wijkstrom, Martin; Hara, Hidetaka; Lee, Whayoung; Singh, Jagjit; Long, Cassandra; Lagasse, Eric; Gerlach, Jörg C.; Cooper, David K.C.; Gridelli, Bruno

    2017-01-01

    result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient’s intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically-engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken. PMID:28130881

  20. Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures.

    PubMed

    Kim, Yohan; Kang, Kyojin; Yoon, Sangtae; Kim, Ji Sook; Park, Su A; Kim, Wan Doo; Lee, Seung Bum; Ryu, Ki-Young; Jeong, Jaemin; Choi, Dongho

    2018-01-02

    Isolated primary hepatocytes from the liver are very similar to in vivo native liver hepatocytes, but they have the disadvantage of a limited lifespan in 2D culture. Although a sandwich culture and 3D organoids with mesenchymal stem cells (MSCs) as an attractive assistant cell source to extend lifespan can be used, it cannot fully reproduce the in vivo architecture. Moreover, long-term 3D culture leads to cell death because of hypoxic stress. Therefore, to overcome the drawback of 2D and 3D organoids, we try to use a 3D printing technique using alginate hydrogels with primary hepatocytes and MSCs. The viability of isolated hepatocytes was more than 90%, and the cells remained alive for 7 days without morphological changes in the 3D hepatic architecture with MSCs. Compared to a 2D system, the expression level of functional hepatic genes and proteins was higher for up to 7 days in the 3D hepatic architecture. These results suggest that both the 3D bio-printing technique and paracrine molecules secreted by MSCs supported long-term culture of hepatocytes without morphological changes. Thus, this technique allows for widespread expansion of cells while forming multicellular aggregates, may be applied to drug screening and could be an efficient method for developing an artificial liver.

  1. Miniature enzyme-based electrodes for detection of hydrogen peroxide release from alcohol-injured hepatocytes.

    PubMed

    Matharu, Zimple; Enomoto, James; Revzin, Alexander

    2013-01-15

    Alcohol insult to the liver sets off a complex sequence of inflammatory and fibrogenic responses. There is increasing evidence that hepatocytes play a key role in triggering these responses by producing inflammatory signals such as cytokines and reactive oxygen species (ROS). In the present study, we employed a cell culture/biosensor platform consisting of electrode arrays integrated with microfluidics to monitor extracellular H(2)O(2), one of the major ROS types, produced by primary rat hepatocytes during alcohol injury. The biosensor consisted of hydrogel microstructures with entrapped horseradish peroxidase (HRP) immobilized on an array of miniature gold electrodes. These arrays of sensing electrodes were integrated into microfluidic devices and modified with collagen (I) to promote hepatocyte adhesion. Once seeded into the microfluidic devices, hepatocytes were exposed to 100 mM ethanol and the signal at the working electrode was monitored by cyclic voltammetry (CV) over the course of 4 h. The CV experiments revealed that hepatocytes secreted up to 1.16 μM H(2)O(2) after 3 h of stimulation. Importantly, when hepatocytes were incubated with antioxidants or alcohol dehydrogenase inhibitor prior to alcohol exposure, the H(2)O(2) signal was decreased by ~5-fold. These experiments further confirmed that the biosensor was indeed monitoring oxidative stress generated by the hepatocytes and also pointed to one future use of this technology for screening hepatoprotective effects of antioxidants.

  2. Epidermal growth factor-induced phosphatidylinositol 3-kinase activation and DNA synthesis. Identification of Grb2-associated binder 2 as the major mediator in rat hepatocytes.

    PubMed

    Kong, M; Mounier, C; Wu, J; Posner, B I

    2000-11-17

    In previous work we showed that the phosphatidylinositol 3-kinase (PI3-kinase), not the mitogen-activated protein kinase, pathway is necessary and sufficient to account for insulin- and epidermal growth factor (EGF)-induced DNA synthesis in rat hepatocytes. Here, using a dominant-negative p85, we confirmed the key role of EGF-induced PI3-kinase activation and sought to identify the mechanism by which this is effected. Our results show that EGF activates PI3-kinase with a time course similar to that of the association of p85 with three principal phosphotyrosine proteins (i. e. PY180, PY105, and PY52). We demonstrated that each formed a distinct p85-associated complex. PY180 and PY52 each constituted about 10% of EGF-activated PI3-kinase, whereas PY105 was responsible for 80%. PY105 associated with Grb2 and SHP-2, and although it behaved like Gab1, none of the latter was detected in rat liver. We therefore cloned a cDNA from rat liver, which was found to be 95% homologous to the mouse Grb2-associated binder 2 (Gab2) cDNA sequence. Using a specific Gab2 antibody, we demonstrated its expression in and association with p85, SHP-2, and Grb2 upon EGF treatment of rat hepatocytes. Gab2 accounted for most if not all of the PY105 species, since immunoprecipitation of Gab2 with specific antibodies demonstrated parallel immunodepletion of Gab2 and PY105 from the residual supernatants. We also found that the PI3-kinase activity associated with Gab2 was totally abolished by dominant negative p85. Thus, Gab2 appears to be the principal EGF-induced PY protein recruiting and activating PI3-kinase and mitogenesis.

  3. Dose Response of Endotoxin on Hepatocyte and Muscle Mitochondrial Respiration In Vitro

    PubMed Central

    Brandt, Sebastian; Porta, Francesca; Jakob, Stephan M.; Takala, Jukka; Djafarzadeh, Siamak

    2015-01-01

    Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner. PMID:25649304

  4. Activated protein kinase C binds to intracellular receptors in rat hepatocytes.

    PubMed

    Robles-Flores, M; García-Sáinz, J A

    1993-12-01

    The aim of this study was to identify in rat hepatocytes cellular polypeptides that bind protein kinase C (PKC) and may influence its activity and its compartmentation. At least seven proteins, with apparent M(r) values between 12,000 and 36,000, that behave like Receptors for Activated C-Kinase (RACKs) were found in the Triton-X-100-insoluble fraction of these cells; i.e. PKC bound to these polypeptides when it was in its active form. RACKS seem to be PKC substrates. Studies using isotype-specific PKC antibodies suggested some selectivity of RACKs, i.e. RACKs in the M(r) approximately 28,000-36,000 region bound PKC-alpha and PKC-beta in the presence of phosphatidylserine, diolein and Ca2+, whereas those of M(r) approximately 12,000-14,000 bound all isoforms studied, and, in contrast with the other RACKs, they did this even in the absence of Ca2+. Peptide I (KGDYEKILVALCGGN), which has a sequence suggested to be involved in the PKC-RACKs interaction [Mochly-Rosen, Khaner, Lopez and Smith (1991) J. Biol. Chem. 266, 14866-14868], inhibited PKC activity. Preincubation of RACKs with antisera directed against peptide I prevented PKC binding to them. The data suggest that peptide I blocks PKC binding to RACKs by two mechanisms: inhibition of PKC activity and competition with a putative binding site.

  5. Genistein as a potential inducer of the anti-atherogenic enzyme paraoxonase-1: studies in cultured hepatocytes in vitro and in rat liver in vivo

    PubMed Central

    Schrader, Charlotte; Ernst, Insa M A; Sinnecker, Heike; Soukup, Sebastian T; Kulling, Sabine E; Rimbach, Gerald

    2012-01-01

    A number of cardioprotective effects, including the reduced oxidation of the low-density lipoprotein (LDL) particles, have been attributed to dietary soy isoflavones. Paraoxonase 1 (PON1), an enzyme mainly synthesized in the liver, may exhibit anti-atherogenic activity by protecting LDL from oxidation. Thus, dietary and pharmacological inducers of PON1 may decrease cardiovascular disease risk. Using a luciferase reporter gene assay we screened different flavonoids for their ability to induce PON1 in Huh7 hepatocytes in culture. Genistein was the most potent flavonoid with regard to its PON1-inducing activity, followed by daidzein, luteolin, isorhamnetin and quercetin. Other flavonoids such as naringenin, cyanidin, malvidin and catechin showed only little or no PON1-inducing activity. Genistein-mediated PON1 transactivation was partly inhibited by the oestrogen-receptor antagonist fulvestrant as well as by the aryl hydrocarbon receptor antagonist 7-ketocholesterol. In contrast to genistein, the conjugated genistein metabolites genistein-7-glucuronide, genistein-7-sulfate and genistein-7,4′-disulfate were only weak inducers of PON1 transactivation. Accordingly, dietary genistein supplementation (2 g/kg diet over three weeks) in growing rats did not increase hepatic PON1 mRNA and protein levels as well as plasma PON1 activity. Thus, genistein may be a PON1 inducer in cultured hepatocytes in vitro, but not in rats in vivo. PMID:22304296

  6. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    PubMed

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  7. Impaired glucocorticoid-mediated HPA axis negative feedback induced by juvenile social isolation in male rats.

    PubMed

    Boero, Giorgia; Pisu, Maria Giuseppina; Biggio, Francesca; Muredda, Laura; Carta, Gianfranca; Banni, Sebastiano; Paci, Elena; Follesa, Paolo; Concas, Alessandra; Porcu, Patrizia; Serra, Mariangela

    2018-05-01

    We previously demonstrated that socially isolated rats at weaning showed a significant decrease in corticosterone and adrenocorticotropic hormone (ACTH) levels, associated with an enhanced response to acute stressful stimuli. Here we shown that social isolation decreased levels of total corticosterone and of its carrier corticosteroid-binding globulin, but did not influence the availability of the free active fraction of corticosterone, both under basal conditions and after acute stress exposure. Under basal conditions, social isolation increased the abundance of glucocorticoid receptors, while it decreased that of mineralocorticoid receptors. After acute stress exposure, socially isolated rats showed long-lasting corticosterone, ACTH and corticotrophin releasing hormone responses. Moreover, while in the hippocampus and hypothalamus of group-housed rats glucocorticoid receptors expression increased with time and reached a peak when corticosterone levels returned to basal values, in socially isolated rats expression of glucocorticoid receptors did not change. Finally, social isolation also affected the hypothalamic endocannabinoid system: compared to group-housed rats, basal levels of anandamide and cannabinoid receptor type 1 were increased, while basal levels of 2-arachidonoylglycerol were decreased in socially isolated rats and did not change after acute stress exposure. The present results show that social isolation in male rats alters basal HPA axis activity and impairs glucocorticoid-mediated negative feedback after acute stress. Given that social isolation is considered an animal model of several neuropsychiatric disorders, such as generalized anxiety disorder, depression, post-traumatic stress disorder and schizophrenia, these data could contribute to better understand the alterations in HPA axis activity observed in these disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effects of adrenalectomy on the control and adrenergic regulation of cytosolic free calcium in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freudenrich, C.C.

    1987-01-01

    The purpose of this study was to investigate the effects of adrenalectomy on the control and ..cap alpha..-adrenergic regulation of the concentration of cytosolic free calcium (Ca/sub i/) in hepatocytes. In hepatocytes isolated from adrenalectomized (adx) and sham-operated male rats 7-1 days after surgery, Ca/sub i/ at rest and in response to epinephrine (EPI) was measured with the calcium-sensitive photoprotein aequorin, /sup 45/Ca efflux was measured, and Ca/sup 2 +/ release from intracellular stores in response to inositol triphosphate (IP/sub 3/) was measured in saponin-permeabilized cells. Liver calmodulin content was also assayed by radioimmunoassay. It was found in adx ratsmore » that the resting Ca/sub i/ was elevated, the rise in Ca/sub i/ during EPI stimulation was reduced at physiological EPI concentrations, and the rise in calcium efflux evoked by EPI was reduced. Furthermore, the slope of the relationship between Ca/sub i/ and calcium efflux was reduced 60% in adx. Adx did not alter the characteristics of Ca/sup 2 +/ release from intracellular calcium pools in response to IP/sub 3/ in permeabilized cells. Finally, the liver calmodulin contents were not significantly different between the 2 groups.« less

  9. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats.

    PubMed

    Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S

    2015-01-01

    Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.

  10. Hepatocyte growth factor fusion protein having collagen-binding activity (CBD-HGF) accelerates re-endothelialization and intimal hyperplasia in balloon-injured rat carotid artery.

    PubMed

    Ohkawara, Nana; Ueda, Hiroki; Shinozaki, Shohei; Kitajima, Takashi; Ito, Yoshihiro; Asaoka, Hiroshi; Kawakami, Akio; Kaneko, Eiji; Shimokado, Kentaro

    2007-08-01

    Hepatocyte growth factor (HGF) is known to stimulate endothelial cell proliferation. However, re-endothelialization is not enhanced when the native protein is administered to the injured artery, probably due to the short half-life of HGF at the site of injury. Therefore, the effects of an HGF fusion protein having collagen-binding activity (CBD-HGF) on re-endothelialization and neointimal formation was studied in the balloon-injured rat carotid artery. The left common carotid artery of male Sprague-Dawley rats was injured with an inflated balloon catheter, and then treated with CBD-HGF 10 microg/mL), HGF (10 micro g/mL) or saline (control) for 15 min. After 14 days, the rats were injected with Evans blue and sacrificed. The re-endothelialized area was significantly greater in the CBD-HGF- treated rats than in the control or HGF -treated rats. Neointimal formation was significantly more pronounced in the CBD-HGF treated rats than in other rat groups. Both HGF and CBD-HGF stimulated proliferation of vascular smooth muscle cells as well as endothelial cells in vitro. Consistent with this, cultured smooth muscle cells were shown to express the HGF receptor (c-Met). CBD-HGF accelerates re-endothelialization and neointimal formation in vivo. CBD fusion protein is a useful vehicle to deliver vascular growth factors to injured arteries.

  11. Effects of parsley (Petroselinum crispum) on the liver of diabetic rats: a morphological and biochemical study.

    PubMed

    Bolkent, S; Yanardag, R; Ozsoy-Sacan, O; Karabulut-Bulan, O

    2004-12-01

    Parsley is used by diabetics in Turkey to reduce blood glucose. The present study aims to investigate both the morphological and biochemical effects of parsley on liver tissue. Rat hepatocytes were examined by light and electron microscopy. Degenerative changes were observed in the hepatocytes of diabetic rats. These degenerative changes were significantly reduced or absent in the hepatocytes of diabetic rats treated with parsley. Blood glucose levels, alanine transaminase and alkaline phosphatase were observed to be raised in diabetic rats. Diabetic rats treated with parsley demonstrated significantly lower levels of blood glucose, alanine transaminase and alkaline phosphatase. The present study suggests that parsley demonstrates a significant hepatoprotective effect in diabetic rats. 2004 John Wiley & Sons, Ltd.

  12. CD24-Positive Cells from Normal Adult Mouse Liver Are Hepatocyte Progenitor Cells

    PubMed Central

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M.; Rao, Pulivarthi H.

    2011-01-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45−, Ter119−) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes. PMID:21361791

  13. CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells.

    PubMed

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M; Rao, Pulivarthi H; Darlington, Gretchen J

    2011-12-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.

  14. Ursodeoxycholic acid increases low-density lipoprotein binding, uptake and degradation in isolated hamster hepatocytes.

    PubMed Central

    Bouscarel, B; Fromm, H; Ceryak, S; Cassidy, M M

    1991-01-01

    Ursodeoxycholic acid (UDCA), in contrast to both chenodeoxycholic acid (CDCA), its 7 alpha-epimer, and lithocholic acid, enhanced receptor-dependent low-density lipoprotein (LDL) uptake and degradation in isolated hamster hepatocytes. The increase in cell-associated LDL was time- and concentration-dependent, with a maximum effect observed at approx. 60 min with 1 mM-UDCA. This increase was not associated with a detergent effect of UDCA, as no significant modifications were observed either in the cellular release of lactate dehydrogenase or in Trypan Blue exclusion. The effect of UDCA was not due to a modification of the LDL particle, but rather was receptor-related. UDCA (1 mM) maximally increased the number of 125I-LDL-binding sites (Bmax.) by 35%, from 176 to 240 ng/mg of protein, without a significant modification of the binding affinity. Furthermore, following proteolytic degradation of the LDL receptor with Pronase, specific LDL binding decreased to the level of non-specific binding, and the effect of UDCA was abolished. Conversely, the trihydroxy 7 beta-hydroxy bile acid ursocholic acid and its 7 alpha-epimer, cholic acid, induced a significant decrease in LDL binding by approx. 15%. The C23 analogue of UDCA (nor-UDCA) and CDCA did not affect LDL binding. On the other hand, UDCA conjugated with either glycine (GUDCA) or taurine (TUDCA), increased LDL binding to the same extent as did the free bile acid. The half maximum time (t1/2) to reach the full effect was 1-2 min for UDCA and TUDCA, while GUDCA had a much slower t1/2 of 8.3 min. Ketoconazole (50 microM), an antifungal agent, increased LDL binding, but this effect was not additive when tested in the presence of 0.7 mM-UDCA. The results of the studies indicate that, in isolated hamster hepatocytes, the UDCA-induced increase in receptor-dependent LDL binding and uptake represents a direct effect of this bile acid. The action of the bile acid is closely related to its specific structural conformation, since

  15. MicroRNA-30e promotes hepatocyte proliferation and inhibits apoptosis in cecal ligation and puncture-induced sepsis through the JAK/STAT signaling pathway by binding to FOSL2.

    PubMed

    Ling, Lan; Zhang, Shan-Hong; Zhi, Li-Da; Li, Hong; Wen, Qian-Kuan; Li, Gang; Zhang, Wen-Jia

    2018-05-19

    Hepatocyte proliferation and apoptosis are critical cellular behaviors in rat liver as a result of a liver injury. Herein, we performed this study in order to evaluate the role of miR-30e and its target Fos-Related Antigen-2 (FOSL2) in septic rats through the JAK/STAT signaling pathway. Rat models of sepsis were induced by cecal ligation and puncture. Enzyme-linked immunosorbent assay (ELISA) was performed to access serum levels of lipopolysaccharide (LPS), inflammatory factors, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to confirm the successful establishment of the model. The hepatocytes were subject to miR-30e mimics, miR-30e inhibitors or siRNA-FOSL2. The expressions of miR-30e, FOSL2, apoptosis- and, JAK/STAT signaling pathway-related genes in liver tissues and hepatocytes were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. MTT assay and flow cytometry were performed to evaluate hepatocyte viability and apoptosis, respectively. The results obtained revealed that in the septic rats, serum levels of inflammatory factors, LPS, ALT and AST, as well as the expression of FOSL2 were elevated and the JAK/STAT signaling pathway was activated, while there was a reduction in the expression of miR-30e. An initial bioinformatics prediction followed by a confirmatory dual-luciferase reporter assay determined that miR-30e targeted and negatively regulated FOSL2 expression. MiR-30e inhibited the activation of JSK2/STAT3 signaling pathway by reducing FOSL2 expression, while miR-30e enhanced hepatocyte proliferation and decreased hepatocyte cell apoptosis in septic rats. These findings indicated that miR-30e may serve as an independent therapeutic target for sepsis, due to its ability to inhibit apoptosis and induce proliferation of hepatocytes by targeted inhibition of FOSL2 through the JAK/STAT signaling pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Hepatocytes express functional NOD1 and NOD2 receptors: A role for NOD1 in hepatocyte CC and CXC chemokine production

    PubMed Central

    Scott, Melanie J.; Chen, Christine; Sun, Qian; Billiar, Timothy R.

    2010-01-01

    Background & Aims NOD-like receptors are recently described cytosolic pattern recognition receptors. NOD1 and NOD2 are members of this family that recognize bacterial cell wall components, diaminopimelic acid and muramyl dipeptide, respectively. Both NOD1 and NOD2 have been associated with many inflammatory diseases, although their role in liver inflammation and infection has not been well studied. Materials and Methods We investigated the role of NOD receptors in mouse liver by assessing expression and activation of NOD1 and NOD2 in liver and primary isolated hepatocytes from C57BL/6 mice. Results Both NOD1 and NOD2 mRNA and protein were highly expressed in hepatocytes and liver. RIP2, the main signaling partner for NODs, was also expressed. Stimulation of hepatocytes with NOD1 ligand (C12-iEDAP) induced NFκB activation, activation of MAP kinases and expression of chemokines CCL5 (RANTES) and CXCL1 (KC). C12-iEDAP also synergized with interferon (IFN)γ to increase iNOS expression and production of nitric oxide. Despite activating NFκB, NOD1 ligand did not upregulate hepatocyte production of the acute phase proteins lipopolysaccharide binding protein, serum amyloid A, or soluble CD14 in cell culture supernatants, or upregulate mRNA expression of lipopolysaccharide binding protein, serum amyloid A, C-reactive protein, or serum amyloid P. NOD2 ligand (MDP) did not activate hepatocytes when given alone, but did synergize with Toll-like receptor ligands, lipopolysaccharide (LPS), and polyI:C to activate NFκB and MAPK. Conclusions All together these data suggest an important role for hepatocyte NOD1 in attracting leukocytes to the liver during infection and for hepatic NLRs to augment innate immune responses to pathogens. PMID:20615568

  17. Liver tissue fragments obtained from males are the most promising source of human hepatocytes for cell-based therapies - Flow cytometric analysis of albumin expression.

    PubMed

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wencel, Agnieszka; Dudek, Krzysztof; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2017-01-01

    Cell-based therapies that could provide an alternative treatment for the end-stage liver disease require an adequate source of functional hepatocytes. There is little scientific evidence for the influence of patient's age, sex, and chemotherapy on the cell isolation efficiency and metabolic activity of the harvested hepatocytes. The purpose of this study was to investigate whether hepatocytes derived from different sources display differential viability and biosynthetic capacity. Liver cells were isolated from 41 different human tissue specimens. Hepatocytes were labeled using specific antibodies and analyzed using flow cytometry. Multiparametric analysis of the acquired data revealed statistically significant differences between some studied groups of patients. Generally, populations of cells isolated from the male specimens had greater percentage of biosynthetically active hepatocytes than those from the female ones regardless of age and previous chemotherapy of the patient. Based on the albumin staining (and partially on the α-1-antitrypsin labeling) after donor liver exclusion (6 out of 41 samples), our results indicated that: 1. samples obtained from males gave a greater percentage of active hepatocytes than those from females (p = 0.034), and 2. specimens from the males after chemotherapy greater than those from the treated females (p = 0.032).

  18. Changes in isoprenoid lipid synthesis by gemfibrozil and clofibric acid in rat hepatocytes.

    PubMed

    Hashimoto, F; Taira, S; Hayashi, H

    2000-05-15

    We studied whether gemfibrozil and clofibric acid alter isoprenoid lipid synthesis in rat hepatocytes. After incubation of the cells with the agent for 74 hr, [(14)C]acetate or [(3)H]mevalonate was added, and the cells were further incubated for 4 hr. Gemfibrozil and clofibric acid increased ubiquinone synthesis from [(14)C]acetate and [(3)H]mevalonate. The effect of gemfibrozil was greater than that of clofibric acid. Also, gemfibrozil decreased dolichol synthesis from [(14)C]acetate and [(3)H]mevalonate. However, clofibric acid increased dolichol synthesis from [(3)H]mevalonate. Gemfibrozil decreased cholesterol synthesis from [(14)C]acetate and [(3)H]mevalonate. Clofibric acid decreased cholesterol synthesis from [(14)C]acetate, but did not affect synthesis from [(3)H]mevalonate. These results suggest that both agents, at different rates, activate the synthetic pathway of ubiquinone, at least from mevalonate. Gemfibrozil may inhibit the synthetic pathway of dolichol, at least from mevalonate. Contrary to gemfibrozil, clofibric acid may activate the synthetic pathway of dolichol from mevalonate. Gemfibrozil may inhibit the synthetic pathway of cholesterol from mevalonate in addition to the pathway from acetate to mevalonate inhibited by both agents.

  19. Hepatocyte Polarity

    PubMed Central

    Treyer, Aleksandr; Müsch, Anne

    2013-01-01

    Hepatocytes, like other epithelia, are situated at the interface between the organism’s exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes. PMID:23720287

  20. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats

    PubMed Central

    Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S.

    2015-01-01

    Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP–GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure. PMID:26617573

  1. Transplantation of hepatocytes from genetically engineered pigs into baboons.

    PubMed

    Iwase, Hayato; Liu, Hong; Schmelzer, Eva; Ezzelarab, Mohamed; Wijkstrom, Martin; Hara, Hidetaka; Lee, Whayoung; Singh, Jagjit; Long, Cassandra; Lagasse, Eric; Gerlach, Jörg C; Cooper, David K C; Gridelli, Bruno

    2017-03-01

    need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient's intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Effect of swainsonine on the processing of the asparagine-linked carbohydrate chains of alpha 1-antitrypsin in rat hepatocytes. Evidence for the formation of hybrid oligosaccharides.

    PubMed

    Gross, V; Tran-Thi, T A; Vosbeck, K; Heinrich, P C

    1983-03-25

    The biosynthesis of the proteinase inhibitor alpha 1-antitrypsin has been studied in rat hepatocyte primary cultures. Newly synthesized alpha 1-antitrypsin was found in hepatocytes as a glycoprotein of an apparent molecular weight of 49,000 carrying oligosaccharide side chains of the high mannose type. In the hepatocyte medium a secreted alpha 1-antitrypsin of an apparent molecular weight of 54,000 could be identified as a glycoprotein with carbohydrate chains of the complex type. Pulse-chase experiments revealed a precursor-product relationship for the two forms of alpha 1-antitrypsin. When the hepatocytes were treated with swainsonine, an intracellular form of alpha 1-antitrypsin with an apparent molecular weight of 49,000 indistinguishable from that of control cells was found. However, the alpha 1-antitrypsin secreted from swainsonine-treated hepatocytes was different from that present in control media. It was characterized by a lower apparent molecular weight (51,000), a higher amount of [3H]mannose incorporation, half as much incorporation of [3H]galactose, and the same amount of [3H]fucose incorporation compared to alpha 1-antitrypsin of control media. In contrast to the 54,000 complex type alpha 1-antitrypsin from control media the 51,000 alpha 1-antitrypsin from the medium of swainsonine-treated cells was found to be susceptible to the action of endoglucosaminidase H, even when fucose was attached to the proximal GlcNAc residue. alpha 1-Antitrypsin secreted from swainsonine-treated cells combines features usually associated with either high mannose or complex type oligosaccharides and therefore represents a hybrid structure. In spite of its effect on the carbohydrate part of alpha 1-antitrypsin swainsonine did not impair the secretion of the incompletely processed glycoprotein.

  3. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells.

    PubMed

    Miccadei, Stefania; Di Venere, Donato; Cardinali, Angela; Romano, Ferdinando; Durazzo, Alessandra; Foddai, Maria Stella; Fraioli, Rocco; Mobarhan, Sohrab; Maiani, Giuseppe

    2008-01-01

    Cultured rat hepatocytes and human hepatoma HepG2 cells were used to evaluate the hepatoprotective properties of polyphenolic extracts from the edible part of artichoke (AE). The hepatocytes were exposed to H2O2generated in situ by glucose oxidase and were treated with either AE, or pure chlorogenic acid (ChA) or with the well known antioxidant, N, N'-diphenyl-p-phenilenediamine (DPPD). Addition of glucose oxidase to the culture medium caused depletion of intracellular glutathione (GSH) content, accumulation of malondialdehyde (MDA) in the cultures, as a lipid peroxidation indicator, and cell death. These results demonstrated that AE protected cells from the oxidative stress caused by glucose oxidase, comparable to DPPD. Furthermore, AE, as well as ChA, prevented the loss of total GSH and the accumulation of MDA. Treatment of HepG2 cells for 24 h with AE reduced cell viability in a dose-dependent manner, however, ChA had no prominent effects on the cell death rate. Similarly, AE rather than ChA induced apoptosis, measured by flow cytometric analysis of annexin and by activation of caspase-3, in HepG2 cells. Our findings indicate that AE had a marked antioxidative potential that protects hepatocytes from an oxidative stress. Furthermore, AE reduced cell viability and had an apoptotic activity on a human liver cancer cell line.

  4. Role of Na+ conductance, Na+-H+ exchange, and Na+-K+-2Cl− symport in the regulatory volume increase of rat hepatocytes

    PubMed Central

    Wehner, Frank; Tinel, Hanna

    1998-01-01

    In rat hepatocytes under hypertonic stress, the entry of Na+ (which is thereafter exchanged for K+ via Na+-K+-ATPase) plays the key role in regulatory volume increase (RVI).In the present study, the contributions of Na+ conductance, Na+-H+ exchange and Na+-K+-2Cl− symport to this process were quantified in confluent primary cultures by means of intracellular microelectrodes and cable analysis, microfluorometric determinations of cell pH and buffer capacity, and measurements of frusemide (furosemide)/bumetanide-sensitive 86Rb+ uptake, respectively. Osmolarity was increased from 300 to 400 mosmol l−1 by addition of sucrose.The experiments indicate a relative contribution of approximately 4:1:1 to hypertonicity-induced Na+ entry for the above-mentioned transporters and the overall Na+ yield equalled 51 mmol l−1 (10 min)−1.This Na+ gain is in good agreement with the stimulation of Na+ extrusion via Na+-K+-ATPase plus the actual increase in cell Na+, namely 55 mmol l−1 (10 min)−1, as was determined on the basis of ouabain-sensitive 86Rb+ uptake and by means of Na+-sensitive microelectrodes, respectively.The overall increase in Na+ and K+ activity plus the expected concomitant increase in cell Cl− equalled 68 mmol l−1, which fits well with the increase in osmotic activity expected to occur from an initial cell shrinkage to 87.5 % and a RVI to 92.6 % of control, namely 53 mosmol l−1.The prominent role of Na+ conductance in the RVI of rat hepatocytes could be confirmed on the basis of the pharmacological profile of this process, which was characterized by means of confocal laser-scanning microscopy. PMID:9481677

  5. In vitro and in vivo metabolism of verproside in rats.

    PubMed

    Kim, Min Gi; Hwang, Deok-Kyu; Jeong, Hyeon-Uk; Ji, Hye Young; Oh, Sei-Ryang; Lee, Yongnam; Yoo, Ji Seok; Shin, Dae Hee; Lee, Hye Suk

    2012-10-12

    Verproside, a catalpol derivative iridoid glycoside isolated from Pseudolysimachion rotundum var. subintegrum, is a biologically active compound with anti-inflammatory, antinociceptic, antioxidant, and anti-asthmatic properties. Twenty-one metabolites were identified in bile and urine samples obtained after intravenous administration of verproside in rats using liquid chromatography-quadrupole Orbitrap mass spectrometry. Verproside was metabolized by O-methylation, glucuronidation, sulfation, and hydrolysis to verproside glucuronides (M1 and M2), verproside sulfates (M3 and M4), picroside II (M5), M5 glucuronide (M7), M5 sulfate (M9), isovanilloylcatalpol (M6), M6 glucuronide (M8), M6 sulfate (M10), 3,4-dihydroxybenzoic acid (M11), M11 glucuronide (M12), M11 sulfates (M13 and M14), 3-methyoxy-4-hydroxybenzoic acid (M15), M15 glucuronides (M17 and M18), M15 sulfate (M20), 3-hydroxy-4-methoxybenzoic acid (M16), M16 glucuronide (M19), and M16 sulfate (M21). Incubation of verproside with rat hepatocytes resulted in thirteen metabolites (M1-M11, M13, and M14). Verproside sulfate, M4 was a major metabolite in rat hepatocytes. After intravenous administration of verproside, the drug was recovered in bile (0.77% of dose) and urine (4.48% of dose), and O-methylation of verproside to picroside II (M5) and isovanilloylcatalpol (M6) followed by glucuronidation and sulfation was identified as major metabolic pathways compared to glucuronidation and sulfation of verproside in rats.

  6. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.

    PubMed

    Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as alpha-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  7. Effect of hepatocyte growth factor on endogenous hepatocarcinogenesis in rats fed a choline-deficient L-amino acid-defined diet.

    PubMed

    Nakanishi, Chihiro; Moriuchi, Akihiro; Ido, Akio; Numata, Masatsugu; Kim, Il-Deok; Kusumoto, Kazunori; Hasuike, Satoru; Abe, Hiroo; Nagata, Kenji; Akiyama, Yutaka; Uto, Hirofumi; Kataoka, Hiroaki; Tsubouchi, Hirohito

    2006-07-01

    Hepatocyte growth factor (HGF) is a promising agent for the treatment of intractable liver disease, due to its mitogenic, anti-apoptotic, and anti-fibrotic effects. We investigated the effect of recombinant human HGF (rh-HGF) on the development of both hepatocellular carcinoma (HCC) and preneoplastic nodules in rats fed a choline-deficient L-amino acid-defined (CDAA) diet, an animal model of hepatocarcinogenesis resembling human development of HCC with cirrhosis. From weeks 13 to 48 of the CDAA diet, rh-HGF (0.1 or 0.5 mg/kg/day) was administered intravenously to rats in four-week cycles, with treatment for five consecutive days of each week for two weeks, followed by a two-week washout period. Treatment with rh-HGF significantly inhibited the development of preneoplastic nodules in a dose-dependent manner at 24 weeks. Although the numbers and areas of the preneoplastic nodules in rats treated with rh-HGF were equivalent to those in mock-treated rats by 60 weeks, the incidence of HCC was reduced by HGF treatment. Although one rat treated with low-dose rh-HGF exhibited a massive HCC, which occupied almost the whole liver, and lung metastases, HGF treatment did not increase the overall frequency of HCC. Administration of high-dose rh-HGF, however, induced an increase in the urinary excretion of albumin, leading to decreased serum albumin at 60 weeks. These results indicate that long-term administration of rh-HGF does not accelerate hepatocarcinogenesis in rats fed a CDAA diet. However, these findings do not completely exclude the potential of HGF-induced hepatocarcinogenesis; this issue must be resolved before rh-HGF can be used for patients with intractable liver diseases, especially those with cirrhosis.

  8. The synthesis of [14 C]4-acetylphenylalanine, effect on cell viability, and assessment of protein incorporation in male rat hepatocytes.

    PubMed

    Maxwell, Brad D; Ly, Van; Brock, Barry; Dodge, Robert; Tirmenstein, Mark; Calvano, Jacqueline

    2017-06-30

    PEGylation is a proven approach to prolonging the duration of action and enhancing biophysical solubility and stability of peptides. 4-Acetylphenylalanine is a novel amino acid with a ketone side chain that is uniquely reactive in proteins. The ketone functionality can react with an aminooxy functionalized polyethyleneglycol polymer to form a stable oxime adduct of the protein. One concern with using unnatural amino acids, such as 4-acetylphenylalanine, is the possibility of it being cleaved from the peptide and becoming incorporated into endogenous proteins. To determine whether this occurs, an in vitro experiment to assess the cell viability and amino acid incorporation into endogenous proteins using primary male rat hepatocytes in the presence of [ 14 C]4-acetylphenylalanine, 4 or [ 14 C(U)]L-phenylalanine was conducted. [ 14 C]4-acetylphenylalanine, 4 was prepared in 2 radiochemical steps from [1- 14 C]acetyl chloride in an overall 8% radiochemical yield and in 99.9% radiochemical purity. The results showed that there was no evidence of carbon-14 incorporation into hepatocyte endogenous proteins with [ 14 C]pAcF and there was no difference between it and L-phenylalanine in cell viability assessments at any of the concentrations studied between 0.1 and 1000 μM. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Autocrine stimulation of human hepatocytes triggers late DNA synthesis and stabilizes long-term differentiation in vitro.

    PubMed

    Leckel, Kerstin; Strey, Christoph; Bechstein, Wolf O; Boost, Kim A; Auth, Marcus K H; El Makhfi, Amal; Juengel, Eva; Wedel, Steffen; Jones, Jon; Jonas, Dietger; Blaheta, Roman A

    2008-05-01

    Isolated human hepatocytes are of great value in investigating cell transplantation, liver physiology, pathology, and drug metabolism. Though hepatocytes possess a tremendous proliferative capacity in vivo, their ability to grow in culture is severely limited. We postulated that repeated medium change, common to most in vitro systems, may prevent long-term maintenance of hepato-specific functions and growth capacity. To verify our hypotheses we compared the DNA synthesis and differentiation status of isolated human hepatocytes, cultured in medium which was renewed every day or was not changed for 3 weeks ('autocrine' setting). Daily medium change led to rapid hepatocellular de-differentiation without any signs of DNA replication. In contrast, the autocrine setting allowed hepatocytes to become highly differentiated, demonstrated by an elevated ASGPr expression level, and increased albumin and fibrinogen synthesis and release. Cytokeratin 18 filaments were stably expressed, whereas cytokeratin 19 remained undetectable. Hepatocytes growing in an autocrine fashion were activated in the presence of hepatocyte growth factor (HGF), evidenced by c-Met phosphorylation. However, HGF response was not achieved when the culture medium was renewed daily. Furthermore, the autocrine setting evoked a late but strong interleukin 6 release into the culture supernatant, reaching maximum values after a 10-day cultivation period, and intense BrdU incorporation after a further 5-day period. Our data suggest that preservation of the same medium creates environmental conditions which allow hepatocytes to control their differentiation status and DNA synthesis in an autocrine fashion. Further studies are necessary to identify the key mediators involved in autocrine communication and to design the optimal culture configuration for clinical application.

  10. Post-weaning social isolation of female rats, anxiety-related behavior, and serotonergic systems

    PubMed Central

    Lukkes, Jodi L.; Engelman, Glenn H.; Zelin, Naomi S.; Hale, Matthew W.; Lowry, Christopher A.

    2012-01-01

    Our previous studies have shown that post-weaning social isolation of male rats leads to sensitization of serotonergic systems and increases in anxiety-like behavior in adulthood. Although studies in humans suggest that females have an increased sensitivity to stress and risk for the development of neuropsychiatric illnesses, most studies involving laboratory rats have focused on males while females have been insufficiently studied. The objective of this study was to investigate the effects of post-weaning social isolation on subsequent responses of an anxiety-related dorsal raphe nucleus (DR)-basolateral amygdala system to pharmacological challenge with the anxiogenic drug, N-methyl-beta-carboline-3-carboxamide (FG-7142; a partial inverse agonist at the benzodiazepine allosteric site on the γ-aminobutyric acid (GABA)A receptor). Juvenile female rats were reared in isolation or in groups of three for a 3-week period from weaning to mid-adolescence, after which all rats were group-reared for an additional 2 weeks. We then used dual immunohistochemical staining for c-Fos and tryptophan hydroxylase in the DR or single immunohistochemical staining for c-Fos in the basolateral amygdala. Isolation-reared rats, but not group-reared rats, injected with FG-7142 had increased c-Fos expression within the basolateral amygdala and in serotonergic neurons in the dorsal, ventrolateral, caudal and interfascicular parts of the DR relative to appropriate vehicle-injected control groups. These data suggest that post-weaning social isolation of female rats sensitizes a DR-basolateral amygdala system to stress-related stimuli, which may lead to an increased sensitivity to stress- and anxiety-related responses in adulthood. PMID:22297173

  11. Tungstate Reduces the Expression of Gluconeogenic Enzymes in STZ Rats

    PubMed Central

    Calbó, Joaquim; Domínguez, Jorge; Guinovart, Joan J.

    2012-01-01

    Aims Oral administration of sodium tungstate has shown hyperglycemia-reducing activity in several animal models of diabetes. We present new insights into the mechanism of action of tungstate. Methods We studied protein expression and phosphorylation in the liver of STZ rats, a type I diabetes model, treated with sodium tungstate in the drinking water (2 mg/ml) and in primary cultured-hepatocytes, through Western blot and Real Time PCR analysis. Results Tungstate treatment reduces the expression of gluconeogenic enzymes (PEPCK, G6Pase, and FBPase) and also regulates transcription factors accountable for the control of hepatic metabolism (c-jun, c-fos and PGC1α). Moreover, ERK, p90rsk and GSK3, upstream kinases regulating the expression of c-jun and c-fos, are phosphorylated in response to tungstate. Interestingly, PKB/Akt phosphorylation is not altered by the treatment. Several of these observations were reproduced in isolated rat hepatocytes cultured in the absence of insulin, thereby indicating that those effects of tungstate are insulin-independent. Conclusions Here we show that treatment with tungstate restores the phosphorylation state of various signaling proteins and changes the expression pattern of metabolic enzymes. PMID:22905122

  12. Tungstate reduces the expression of gluconeogenic enzymes in STZ rats.

    PubMed

    Nocito, Laura; Zafra, Delia; Calbó, Joaquim; Domínguez, Jorge; Guinovart, Joan J

    2012-01-01

    Oral administration of sodium tungstate has shown hyperglycemia-reducing activity in several animal models of diabetes. We present new insights into the mechanism of action of tungstate. We studied protein expression and phosphorylation in the liver of STZ rats, a type I diabetes model, treated with sodium tungstate in the drinking water (2 mg/ml) and in primary cultured-hepatocytes, through Western blot and Real Time PCR analysis. Tungstate treatment reduces the expression of gluconeogenic enzymes (PEPCK, G6Pase, and FBPase) and also regulates transcription factors accountable for the control of hepatic metabolism (c-jun, c-fos and PGC1α). Moreover, ERK, p90rsk and GSK3, upstream kinases regulating the expression of c-jun and c-fos, are phosphorylated in response to tungstate. Interestingly, PKB/Akt phosphorylation is not altered by the treatment. Several of these observations were reproduced in isolated rat hepatocytes cultured in the absence of insulin, thereby indicating that those effects of tungstate are insulin-independent. Here we show that treatment with tungstate restores the phosphorylation state of various signaling proteins and changes the expression pattern of metabolic enzymes.

  13. Human Hepatocyte Growth Factor (hHGF)-Modified Hepatic Oval Cells Improve Liver Transplant Survival

    PubMed Central

    Li, Li; Ran, Jiang-Hua; Li, Xue-Hua; Liu, Zhi-Heng; Liu, Gui-Jie; Gao, Yan-Chao; Zhang, Xue-Li; Sun, Hiu-Dong

    2012-01-01

    Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF) in modifying hepatic oval cells (HOCs) administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05). Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) levels while increasing the production of IL-10 and TGF-β1 (P<0.05). HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only). Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver injuries. PMID

  14. Effect of social isolation on 24-h pattern of stress hormones and leptin in rats.

    PubMed

    Perelló, Mario; Chacon, Fernando; Cardinali, Daniel P; Esquifino, Ana I; Spinedi, Eduardo

    2006-03-13

    This work analyzes the effect of social isolation of growing male rats on 24-h changes of plasma prolactin, growth hormone, ACTH and leptin, and on plasma and adrenal corticosterone concentrations. At 35 days of life, rats were either individually caged or kept in groups (6-8 animals per cage) under a 12:12 h light/dark schedule (lights on at 08:00 h). A significant arrest of body weight gain regardless of unchanged daily food intake was found in isolated rats after 2 weeks of isolation. On the 4th week, rats were killed at 6 time intervals during a 24-h cycle, beginning at 09:00 h. In isolated rats the 24-h pattern of all parameters tested became distorted, as assessed by Cosinor analysis. When analyzed as a main factor in a factorial analysis of variance, isolation decreased plasma prolactin and growth hormone, increased plasma leptin and corticosterone while decreased adrenal corticosterone. Plasma corticosterone levels correlated significantly with plasma ACTH and with adrenal corticosterone levels in group-caged rats only. These changes can be attributed to an effect of mild stress on the endogenous clock that modulates the circadian hormone release.

  15. INTERINDIVIDUAL VARIATION IN THE METABOLISM OF ARSENIC IN HUMAN HEPATOCYTES

    EPA Science Inventory


    The liver is the major site for the enzymatic methylation of inorganic arsenic (iAs) in humans. Primary cultures of normal human hepatocytes isolated from tissue obtained at surgery or from donor livers have been used to study interindividual variation in the capacity of live...

  16. Isolation and molecular identification of Bartonellae from wild rats (Rattus species) in Malaysia.

    PubMed

    Tay, Sun Tee; Mokhtar, Aida Syafinaz; Zain, Siti Nursheena Mohd; Low, Kiat Cheong

    2014-06-01

    This study describes our investigation on the prevalence and molecular identification of bartonellae from Rattus diardii and R. norvegicus in the urban areas of Malaysia. Of 95 rats investigated, Bartonella tribocorum, B. rattimassiliensis, B. coopersplainsensis, B. elizabethae, and B. queenslandensis were isolated from kidney and spleen homogenates of four rats. Bartonellae DNA was amplified from the rat organ tissues by using primers specific for the bartonellae RNA polymerase beta subunit (rpoB) gene in nine other rats. Sequence analysis of the rpoB gene fragments shows the identification of B. queenslandensis in five rats, B. elizabethae in three rats, and B. tribocorum in one rat. Combining the results of isolation and molecular detection of bartonellae, we found that the prevalence of Bartonella infection in the Rattus spp. investigated in this study was 13.7%. Implementation of effective rat control program in the urban areas is necessary to prevent the spillover of bartonellosis from rats to humans. © The American Society of Tropical Medicine and Hygiene.

  17. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish.

    PubMed

    Choi, Tae-Young; Ninov, Nikolay; Stainier, Didier Y R; Shin, Donghun

    2014-03-01

    Biliary epithelial cells (BECs) are considered to be a source of regenerating hepatocytes when hepatocyte proliferation is compromised. However, there is still controversy about the extent to which BECs can contribute to the regenerating hepatocyte population, and thereby to liver recovery. To investigate this issue, we established a zebrafish model of liver regeneration in which the extent of hepatocyte ablation can be controlled. Hepatocytes were depleted by administration of metronidazole to Tg(fabp10a:CFP-NTR) animals. We traced the origin of regenerating hepatocytes using short-term lineage-tracing experiments, as well as the inducible Cre/loxP system; specifically, we utilized both a BEC tracer line Tg(Tp1:CreER(T2)) and a hepatocyte tracer line Tg(fabp10a:CreER(T2)). We also examined BEC and hepatocyte proliferation and liver marker gene expression during liver regeneration. BECs gave rise to most of the regenerating hepatocytes in larval and adult zebrafish after severe hepatocyte depletion. After hepatocyte loss, BECs proliferated as they dedifferentiated into hepatoblast-like cells; they subsequently differentiated into highly proliferative hepatocytes that restored the liver mass. This process was impaired in zebrafish wnt2bb mutants; in these animals, hepatocytes regenerated but their proliferation was greatly reduced. BECs contribute to regenerating hepatocytes after substantial hepatocyte depletion in zebrafish, thereby leading to recovery from severe liver damage. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Mechanisms for Hepatobiliary Toxicity in Rats Treated with an Antagonist of Melanin Concentrating Hormone Receptor 1 (MCHR1).

    PubMed

    Otieno, Monicah A; Bhaskaran, Vasanthi; Janovitz, Evan; Callejas, Yimer; Foster, William B; Washburn, William; Megill, John R; Lehman-McKeeman, Lois; Gemzik, Brian

    2017-02-01

    The objective of this work was to investigate the mechanisms of hepatobiliary toxicity caused by thienopyrimidone MCHR1 antagonists using BMS-773174 as a tool molecule. Co-administration of the pan CYP inhibitor 1-aminobenzotriazole with BMS-773174 prevented hepatobiliary damage, and direct delivery of the diol metabolite BMS-769750 caused hepatobiliary toxicity, identifying the diol and possibly its downstream hydroxyacid (BMS-800754) metabolite as the toxic species. Rat liver gene expression revealed treatment-related changes in hepatic transporters and induction of oval cell-specific genes including deleted malignant tumor 1 (Dmbt1). The metabolites did not alter hepatic transporter activities, suggesting that transporter-mediated cholestasis was not involved. Because injury to biliary epithelium can result in adaptive hyperplasia, rat biliary epithelial cells (BECs) were isolated and exposed to the oxidative metabolites. BMS-769750 was cytotoxic to BECs, but not rat hepatocytes, suggesting a role of the diol in biliary epithelial injury. BMS-800754 was cytotoxic to rat hepatocytes therefore its contribution to hepatocyte injury in rats is a possibility. Induction of Dmbt1 in rat BECs was investigated because of its role in hepatic progenitor cell differentiation/proliferation during injury. Dmbt1 mRNA was induced by BMS-769750, but not BMS-800754 in BECs; this induction and cellular injury was confirmed with diol metabolites formed by other compounds with the same hepatobiliary liability. In conclusion, hepatobiliary injury by thienopyrimidinone MCHR1 antagonists was driven through a CYP-mediated bioactivation pathway. Induction of Dmbt1 mRNA coupled with cellular injury suggests that injury of biliary epithelium may be the first step toward an adaptive proliferative response causing BDH by these compounds. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e

  19. Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes.

    PubMed

    Petit, Elise; Langouet, Sophie; Akhdar, Hanane; Nicolas-Nicolaz, Christophe; Guillouzo, André; Morel, Fabrice

    2008-04-01

    Thiopurines (azathioprine, 6-mercaptopurine and 6-thioguanine) are therapeutic compounds widely administered in the clinic for their multiple uses (autoimmune diseases, post-transplant immunosuppression and cancer). Despite these advantages, their therapeutic potential is limited by occasional adverse effects (myelotoxicity and hepatotoxicity) and by a relatively frequent lack of efficacy. Previous studies have demonstrated that azathioprine decreased the viability of rat hepatocytes. In order to investigate cytotoxic effects of thiopurines in human liver, we used primary human hepatocytes and a highly differentiated human hepatoma cell line, HepaRG, treated or not with azathioprine, 6-mercaptopurine and 6-thioguanine. In parallel, expression of the genes involved in the metabolism of thiopurines, glutathione synthesis and antioxidant defences was measured by quantitative PCR. We clearly demonstrate that human liver parenchymal cells were much less sensitive than rat hepatocytes to thiopurine treatments. The toxic effects appeared after 96 h of treatment while ATP depletion was observed after a 24 h incubation with azathioprine and 6-mercaptopurine. Toxic effects were more pronounced for azathioprine and 6-mercaptopurine, when compared to 6-thioguanine, and might explain glutathione synthesis and antioxidant enzyme induction only by these two drugs. Finally, we also demonstrate for the first time an up-regulation by azathioprine and 6-mercaptopurine of inosine monophosphate dehydrogenase which might have consequences on the de novo biosynthesis of guanine nucleotides and thiopurines metabolism.

  20. Negative visuospatial priming in isolation-reared rats: Evidence of resistance to the disruptive effects of amphetamine

    PubMed Central

    Amitai, Nurith; Powell, Susan; Weber, Martin; Swerdlow, Neal R.

    2015-01-01

    Negative visuospatial priming (NP) represents a quantifiable measure of inhibitory information processing that is disrupted in several neurodevelopmental and psychiatric disorders, including schizophrenia. We developed a novel rodent NP task to investigate mechanisms underlying NP and its role in various disorders, and to test potential therapeutics. In the present studies, we further characterized this novel paradigm by investigating whether NP is disrupted in rats reared in isolation, a developmental manipulation that produces a range of abnormalities in behavior, neurochemistry, and brain structure that mirror aspects of schizophrenia pathology. We also further explored the role of monoaminergic signaling in NP and the effects of isolation rearing by challenging both socially reared and isolation-reared rats with D-amphetamine during the NP task. Although fewer isolation-reared animals learned the complex NP task, those that learned exhibited unaffected NP compared with socially reared rats. Consistent with previous reports, D-amphetamine impaired NP and increased motor impulsivity in socially reared rats. In contrast, D-amphetamine did not affect NP or motor impulsivity in isolation-reared rats. These data confirm a monoaminergic influence on NP behavior and indicate that rats reared in isolation have altered dopaminergic sensitivity. PMID:26220402

  1. DISTINCT FUNCTIONS OF JNK AND C-JUN IN OXIDANT-INDUCED HEPATOCYTE DEATH

    PubMed Central

    Amir, Muhammad; Liu, Kun; Zhao, Enpeng; Czaja, Mark J.

    2013-01-01

    Overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling is a central mechanism of hepatocyte injury and death including that from oxidative stress. However, the functions of JNK and c-Jun are still unclear, and this pathway also inhibits hepatocyte death. Previous studies of menadione-induced oxidant stress demonstrated that toxicity resulted from sustained JNK/c-Jun activation as death was blocked by the c-Jun dominant negative TAM67. To further delineate the function of JNK/c-Jun signaling in hepatocyte injury from oxidant stress, the effects of direct JNK inhibition on menadione-induced death were examined. In contrast to the inhibitory effect of TAM67, pharmacological JNK inhibition by SP600125 sensitized the rat hepatocyte cell line RALA255-10G to death from menadione. SP600125 similarly sensitized mouse primary hepatocytes to menadione toxicity. Death from SP600125/menadione was c-Jun dependent as it was blocked by TAM67, but independent of c-Jun phosphorylation. Death occurred by apoptosis and necrosis and activation of the mitochondrial death pathway. Short hairpin RNA knockdowns of total JNK or JNK2 sensitized to death from menadione, whereas a jnk1 knockdown was protective. Jnk2 null mouse primary hepatocytes were also sensitized to menadione death. JNK inhibition magnified decreases in cellular ATP content and β-oxidation induced by menadione. This effect mediated cell death as chemical inhibition of β-oxidation also sensitized cells to death from menadione, and supplementation with the β-oxidation substrate oleate blocked death. Components of the JNK/c-Jun signaling pathway have opposing functions in hepatocyte oxidant stress with JNK2 mediating resistance to cell death and c-Jun promoting death. PMID:22644775

  2. Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation

    PubMed Central

    Weerasinghe, Sujith V.W.; Singla, Amika; Leonard, Jessica M.; Hanada, Shinichiro; Andrews, Philip C.; Lok, Anna S.; Omary, M. Bishr

    2011-01-01

    Genetic factors impact liver injury susceptibility and disease progression. Prominent histological features of some chronic human liver diseases are hepatocyte ballooning and Mallory-Denk bodies. In mice, these features are induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in a strain-dependent manner, with the C57BL and C3H strains showing high and low susceptibility, respectively. To identify modifiers of DDC-induced liver injury, we compared C57BL and C3H mice using proteomic, biochemical, and cell biological tools. DDC elevated reactive oxygen species (ROS) and oxidative stress enzymes preferentially in C57BL livers and isolated hepatocytes. C57BL livers and hepatocytes also manifested significant down-regulation, aggregation, and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). GAPDH knockdown depleted bioenergetic and antioxidant enzymes and elevated hepatocyte ROS, whereas GAPDH overexpression decreased hepatocyte ROS. On the other hand, C3H livers had higher expression and activity of the energy-generating nucleoside-diphosphate kinase (NDPK), and knockdown of hepatocyte NDPK augmented DDC-induced ROS formation. Consistent with these findings, cirrhotic, but not normal, human livers contained GAPDH aggregates and NDPK complexes. We propose that GAPDH and NDPK are genetic modifiers of murine DDC-induced liver injury and potentially human liver disease. PMID:22006949

  3. Long term highly saturated fat diet does not induce NASH in Wistar rats

    PubMed Central

    Romestaing, Caroline; Piquet, Marie-Astrid; Bedu, Elodie; Rouleau, Vincent; Dautresme, Marianne; Hourmand-Ollivier, Isabelle; Filippi, Céline; Duchamp, Claude; Sibille, Brigitte

    2007-01-01

    Background Understanding of nonalcoholic steatohepatitis (NASH) is hampered by the lack of a suitable model. Our aim was to investigate whether long term high saturated-fat feeding would induce NASH in rats. Methods 21 day-old rats fed high fat diets for 14 weeks, with either coconut oil or butter, and were compared with rats feeding a standard diet or a methionine choline-deficient (MCD) diet, a non physiological model of NASH. Results MCDD fed rats rapidly lost weight and showed NASH features. Rats fed coconut (86% of saturated fatty acid) or butter (51% of saturated fatty acid) had an increased caloric intake (+143% and +30%). At the end of the study period, total lipid ingestion in term of percentage of energy intake was higher in both coconut (45%) and butter (42%) groups than in the standard (7%) diet group. No change in body mass was observed as compared with standard rats at the end of the experiment. However, high fat fed rats were fattier with enlarged white and brown adipose tissue (BAT) depots, but they showed no liver steatosis and no difference in triglyceride content in hepatocytes, as compared with standard rats. Absence of hepatic lipid accumulation with high fat diets was not related to a higher lipid oxidation by isolated hepatocytes (unchanged ketogenesis and oxygen consumption) or hepatic mitochondrial respiration but was rather associated with a rise in BAT uncoupling protein UCP1 (+25–28% vs standard). Conclusion Long term high saturated fat feeding led to increased "peripheral" fat storage and BAT thermogenesis but did not induce hepatic steatosis and NASH. PMID:17313679

  4. Pigment Epithelium Derived Factor Peptide Protects Murine Hepatocytes from Carbon Tetrachloride-Induced Injury

    PubMed Central

    Shih, Shou-Chuan; Ho, Tsung-Chuan; Chen, Show-Li; Tsao, Yeou-Ping

    2016-01-01

    Fibrogenesis is induced by repeated injury to the liver and reactive regeneration and leads eventually to liver cirrhosis. Pigment epithelium derived factor (PEDF) has been shown to prevent liver fibrosis induced by carbon tetrachloride (CCl4). A 44 amino acid domain of PEDF (44-mer) was found to have a protective effect against various insults to several cell types. In this study, we investigated the capability of synthetic 44-mer to protect against liver injury in mice and in primary cultured hepatocytes. Acute liver injury, induced by CCl4, was evident from histological changes, such as cell necrosis, inflammation and apoptosis, and a concomitant reduction of glutathione (GSH) and GSH redox enzyme activities in the liver. Intraperitoneal injection of the 44-mer into CCl4-treated mice abolished the induction of AST and ALT and markedly reduced histological signs of liver injury. The 44-mer treatment can reduce hepatic oxidative stress as evident from lower levels of lipid hydroperoxide, and higher levels of GSH. CCl4 caused a reduction of Bcl-xL, PEDF and PPARγ, which was markedly restored by the 44-mer treatment. Consequently, the 44-mer suppressed liver fibrosis induced by repeated CCl4 injury. Furthermore, our observations in primary culture of rat hepatocytes showed that PEDF and the 44-mer protected primary rat hepatocytes against apoptosis induced by serum deprivation and TGF-β1. PEDF/44-mer induced cell protective STAT3 phosphorylation. Pharmacological STAT3 inhibition prevented the antiapoptotic action of PEDF/44-mer. Among several PEDF receptor candidates that may be responsible for hepatocyte protection, we demonstrated that PNPLA2 was essential for PEDF/44-mer-mediated STAT3 phosphorylation and antiapoptotic activity by using siRNA to selectively knockdown PNPLA2. In conclusion, the PEDF 44-mer protects hepatocytes from single and repeated CCl4 injury. This protective effect may stem from strengthening the counter oxidative stress capacity and

  5. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    PubMed Central

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  6. Nonsterol Isoprenoids Activate Human Constitutive Androstane Receptor in an Isoform-Selective Manner in Primary Cultured Mouse Hepatocytes.

    PubMed

    Rondini, Elizabeth A; Duniec-Dmuchowski, Zofia; Kocarek, Thomas A

    2016-04-01

    Our laboratory previously reported that accumulation of nonsterol isoprenoids following treatment with the squalene synthase inhibitor, squalestatin 1 (SQ1) markedly induced cytochrome P450 (CYP)2B1 mRNA and reporter activity in primary cultured rat hepatocytes, which was dependent on activation of the constitutive androstane receptor (CAR). The objective of the current study was to evaluate whether isoprenoids likewise activate murine CAR (mCAR) or one or more isoforms of human CAR (hCAR) produced by alternative splicing (SPTV, hCAR2; APYLT, hCAR3). We found that SQ1 significantly induced Cyp2b10 mRNA (∼3.5-fold) in primary hepatocytes isolated from both CAR-wild-type and humanized CAR transgenic mice, whereas the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin had no effect. In the absence of CAR, basal Cyp2b10 mRNA levels were reduced by 28-fold and the effect of SQ1 on Cyp2b10 induction was attenuated. Cotransfection with an expression plasmid for hCAR1, but not hCAR2 or hCAR3, mediated SQ1-induced CYP2B1 and CYP2B6 reporter activation in hepatocytes isolated from CAR-knockout mice. This effect was also observed following treatment with the isoprenoid trans,trans-farnesol. The direct agonist CITCO increased interaction of hCAR1, hCAR2, and hCAR3 with steroid receptor coactivator-1. However, no significant effect on coactivator recruitment was observed with SQ1, suggesting an indirect activation mechanism. Further results from an in vitro ligand binding assay demonstrated that neither farnesol nor other isoprenoids are direct ligands for hCAR1. Collectively, our findings demonstrate that SQ1 activates CYP2B transcriptional responses through farnesol metabolism in an hCAR1-dependent manner. Further, this effect probably occurs through an indirect mechanism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Nonsterol Isoprenoids Activate Human Constitutive Androstane Receptor in an Isoform-Selective Manner in Primary Cultured Mouse Hepatocytes

    PubMed Central

    Rondini, Elizabeth A.; Duniec-Dmuchowski, Zofia

    2016-01-01

    Our laboratory previously reported that accumulation of nonsterol isoprenoids following treatment with the squalene synthase inhibitor, squalestatin 1 (SQ1) markedly induced cytochrome P450 (CYP)2B1 mRNA and reporter activity in primary cultured rat hepatocytes, which was dependent on activation of the constitutive androstane receptor (CAR). The objective of the current study was to evaluate whether isoprenoids likewise activate murine CAR (mCAR) or one or more isoforms of human CAR (hCAR) produced by alternative splicing (SPTV, hCAR2; APYLT, hCAR3). We found that SQ1 significantly induced Cyp2b10 mRNA (∼3.5-fold) in primary hepatocytes isolated from both CAR–wild-type and humanized CAR transgenic mice, whereas the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin had no effect. In the absence of CAR, basal Cyp2b10 mRNA levels were reduced by 28-fold and the effect of SQ1 on Cyp2b10 induction was attenuated. Cotransfection with an expression plasmid for hCAR1, but not hCAR2 or hCAR3, mediated SQ1-induced CYP2B1 and CYP2B6 reporter activation in hepatocytes isolated from CAR-knockout mice. This effect was also observed following treatment with the isoprenoid trans,trans-farnesol. The direct agonist CITCO increased interaction of hCAR1, hCAR2, and hCAR3 with steroid receptor coactivator-1. However, no significant effect on coactivator recruitment was observed with SQ1, suggesting an indirect activation mechanism. Further results from an in vitro ligand binding assay demonstrated that neither farnesol nor other isoprenoids are direct ligands for hCAR1. Collectively, our findings demonstrate that SQ1 activates CYP2B transcriptional responses through farnesol metabolism in an hCAR1-dependent manner. Further, this effect probably occurs through an indirect mechanism. PMID:26798158

  8. Mechanistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedifferentiation profile.

    PubMed

    Heslop, James A; Rowe, Cliff; Walsh, Joanne; Sison-Young, Rowena; Jenkins, Roz; Kamalian, Laleh; Kia, Richard; Hay, David; Jones, Robert P; Malik, Hassan Z; Fenwick, Stephen; Chadwick, Amy E; Mills, John; Kitteringham, Neil R; Goldring, Chris E P; Kevin Park, B

    2017-01-01

    The application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells. We have therefore carried out the first proteomic comparison of primary human hepatocyte differentiation. Cells were cultured for 0, 24, 72 and 168 h as a monolayer in order to permit unrestricted hepatocyte dedifferentiation, so as to reveal the causative signalling pathways and factors in this process, by pathway analysis. A total of 3430 proteins were identified with a false detection rate of <1 %, of which 1117 were quantified at every time point. Increasing numbers of significantly differentially expressed proteins compared with the freshly isolated cells were observed at 24 h (40 proteins), 72 h (118 proteins) and 168 h (272 proteins) (p < 0.05). In particular, cytochromes P450 and mitochondrial proteins underwent major changes, confirmed by functional studies and investigated by pathway analysis. We report the key factors and pathways which underlie the loss of hepatic phenotype in vitro, particularly those driving the large-scale and selective remodelling of the mitochondrial and metabolic proteomes. In summary, these findings expand the current understanding of dedifferentiation should facilitate further development of simple and complex hepatic culture systems.

  9. Enhancement of Gastric Ulcer Healing and Angiogenesis by Hepatocyte Growth Factor Gene Mediated by Attenuated Salmonella in Rats.

    PubMed

    Ha, Xiaoqin; Peng, Junhua; Zhao, Hongbin; Deng, Zhiyun; Dong, Juzi; Fan, Hongyan; Zhao, Yong; Li, Bing; Feng, Qiangsheng; Yang, Zhihua

    2017-02-01

    The present study developed an oral hepatocyte growth factor (HGF) gene therapy strategy for gastric ulcers treatment. An attenuated Salmonella typhimurium that stably expressed high HGF (named as TPH) was constructed, and the antiulcerogenic effect of TPH was evaluated in a rat model of gastric ulcers that created by acetic acid subserosal injection. From day 5 after injection, TPH (1 × 10⁹ cfu), vehicle (TP, 1 × 10⁹ cfu), or sodium bicarbonate (model control) was administered orally every alternate day for three times. Then ulcer size was measured at day 21 after ulcer induction. The ulcer area in TPH-treated group was 10.56 ± 3.30 mm², which was smaller when compared with those in the TP-treated and model control groups (43.47 ± 4.18 and 56.25 ± 6.38 mm², respectively). A higher level of reepithelialization was found in TPH-treated group and the crawling length of gastric epithelial cells was significantly longer than in the other two groups (P < 0.05). The microvessel density in the ulcer granulation tissues of the TPH-treated rats was 39.9 vessels/mm², which was greater than in the TP-treated and model control rats, with a significant statistical difference. These results suggest that TPH treatment significantly accelerates the healing of gastric ulcers via stimulating proliferation of gastric epithelial cells and enhancing angiogenesis on gastric ulcer site.

  10. Enhancement of Gastric Ulcer Healing and Angiogenesis by Hepatocyte Growth Factor Gene Mediated by Attenuated Salmonella in Rats

    PubMed Central

    2017-01-01

    The present study developed an oral hepatocyte growth factor (HGF) gene therapy strategy for gastric ulcers treatment. An attenuated Salmonella typhimurium that stably expressed high HGF (named as TPH) was constructed, and the antiulcerogenic effect of TPH was evaluated in a rat model of gastric ulcers that created by acetic acid subserosal injection. From day 5 after injection, TPH (1 × 109 cfu), vehicle (TP, 1 × 109 cfu), or sodium bicarbonate (model control) was administered orally every alternate day for three times. Then ulcer size was measured at day 21 after ulcer induction. The ulcer area in TPH-treated group was 10.56 ± 3.30 mm2, which was smaller when compared with those in the TP-treated and model control groups (43.47 ± 4.18 and 56.25 ± 6.38 mm2, respectively). A higher level of reepithelialization was found in TPH-treated group and the crawling length of gastric epithelial cells was significantly longer than in the other two groups (P < 0.05). The microvessel density in the ulcer granulation tissues of the TPH-treated rats was 39.9 vessels/mm2, which was greater than in the TP-treated and model control rats, with a significant statistical difference. These results suggest that TPH treatment significantly accelerates the healing of gastric ulcers via stimulating proliferation of gastric epithelial cells and enhancing angiogenesis on gastric ulcer site. PMID:28049228

  11. Active chemical fractions of stem bark extract of Khaya grandifoliola C.DC and Entada africana Guill. et Perr. synergistically protect primary rat hepatocytes against paracetamol-induced damage.

    PubMed

    Njayou, Frédéric Nico; Kouam, Arnaud Fondjo; Simo, Brice Fredy Nemg; Tchana, Angèle Nkouatchoua; Moundipa, Paul Fewou

    2016-07-07

    Khaya grandifoliola (Meliaceae) and Entada africana (Fabaceae) are traditionally used in Bamun (a western tribe of Cameroon) traditional medicine for the treatment of liver related diseases. In this study, the synergistic hepatoprotective effect of respective active fractions of the plants were investigated against paracetamol-induced toxicity in primary cultures of rat hepatocytes. Paracetamol conferred hepatocyte toxicity, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay, alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT) activities, malondialdehyde (MDA) and glutathione (GSH) content assays. The crude extracts were fractionated by flash chromatography and fractions were tested for hepato-(protective and curative) activities. The most active fractions of both plants were tested individually, and in combination based on their respective half effective concentration (EC50). The methylene chloride/methanol fractions of K. grandifoliola (75:25 v/v) (KgF25) and E. africana (90:10 v/v) (EaF10) were found to be the most hepato-protective with EC50 values of 10.30 ± 1.66 μg/ml and 13.47 ± 2.06 μg/ml respectively, comparable with that of silymarin (13.71 ± 3.87 μg/ml). These fractions and their combination significantly (P <0.05) improved cell viability, inhibited ALT leakage and MDA formation, and restored cellular CAT, SOD activities and GSH content. The combination was more effective in restoring biochemical parameters with coefficients of drugs interaction (CDI) less than 1. These findings demonstrate that the active fractions have synergistic action in the protection of rat hepatocytes against paracetamol-induced damage and suggest that their hepatoprotective properties may be maximized by using them in combination.

  12. The novel gluconeogenesis inhibitors FR225659 and related compounds that originate from Helicomyces sp. No. 19353. I. Taxonomy, fermentation, isolation and physico-chemical properties.

    PubMed

    Ohtsu, Yoshihiro; Sasamura, Hiromi; Tsurumi, Yasuhisa; Yoshimura, Seiji; Takase, Shigehiro; Hashimoto, Michizane; Shibata, Toshihiro; Hino, Motohiro; Fujii, Takashi

    2003-08-01

    FR225659 and four related compounds are novel gluconeogenesis inhibitors that consist of a novel acyl-group and three abnormal amino acids. They were isolated from the culture broth of Helicomyces sp. No. 19353 and can be purified by absorptive resin and reverse-phase column chromatography. They are potent inhibitors of gluconeogenesis in primary cultured rat hepatocytes and thus may be useful as anti-diabetic agents.

  13. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1more » plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.« less

  14. Long-term voluntary exercise prevents post-weaning social isolation-induced cognitive impairment in rats.

    PubMed

    Okudan, Nilsel; Belviranlı, Muaz

    2017-09-30

    This study aimed to determine the effect of exercise on locomotion, anxiety-related behavior, learning, and memory in socially isolated post-weaning rats, as well as the correlation between exercise and the concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the hippocampus. Rats were randomly assigned to three groups: the control group; the social isolation group; the social isolation plus exercise (SIE) group. Social isolation conditions, with or without exercise were maintained for 90d, and then multiple behavioral tests, including the open-field test, elevated plus maze test, and Morris water maze (MWM) test were administered. Following behavioral assessment, hippocampal tissue samples were obtained for measurement of BDNF and NGF. There wasn't a significant difference in locomotor activity between the groups (P>0.05). Anxiety scores were higher in the socially isolated group (P<0.05) than in the SIE group (P<0.05). According to the probe trial session of the MWM test results, exercise training improved platform crossings' number in the socially isolated rats (P<0.05). Exercise training ameliorated social isolation-induced reduction in hippocampal BDNF and NGF content (P<0.05). These findings suggest that exercise training improves cognitive functions via increasing hippocampal BDNF and NGF concentrations in socially isolated post-weaning rats. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Effects of simvastatin on cardiohemodynamic responses to ischemia-reperfusion in isolated rat hearts.

    PubMed

    Zheng, Xia; Hu, Shen-Jiang

    2006-03-01

    Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has long been thought to exert its benefits by reducing cholesterol synthesis, and has been shown to significantly reduce cardiovascular events and mortality in patients with or without coronary artery disease. However, it is still unknown whether acute administration of simvastatin beneficially affects the cardiac function prior or during ischemia-reperfusion. The aim of this study is to evaluate the cardioprotective effect of acute simvastatin treatment on isolated rat hearts or isolated ischemia-reperfusion hearts. Hearts were isolated from male Sprague-Dawley rats and attached to a Langendorff apparatus. The isolated hearts with or without ischemia (15 min) and reperfusion (60 min) were perfused with different concentrations of simvastatin. The parameters of cardiac function (such as left ventricular developed pressure [LVDP], +dp/dt max, and -dp/dt max), heart rate, and coronary flow were recorded. Simvastatin (3-30 micromol/l) significantly increased LVDP, +dp/dt max, and -dp/dt max in isolated rat hearts perfused for 60 min. Heart rate was depressed by 30 micromol/l simvastatin and the coronary flow was increased by 10 and 30 micromol/l simvastatin. At a concentration of 100 micromol/l simvastatin, worsening of heart function and subsequent cardiac arrest occurred. Administration of simvastatin (3-30 micromol/l) significantly preserved cardiac function detected by LVDP, +dp/dt max, and -dp/dt max in the isolated ischemia/reperfused (15/60 min) rat hearts. Simvastatin also significantly decreased heart rate at 30 micromol/l, and increased coronary flow at 10 and 30 micromol/l in these rat hearts. However, the protective effect of simvastatin reverted to increased damage at 100 micromol/l. Only 3 micromol/l simvastatin pretreatment before 15/60 min ischemia-reperfusion altered LVDP, +dp/dt max, and -dp/dt max. Both heart rate and coronary flow were unaltered after simvastatin

  16. Ultrastructure of the hepatocytes in a vertebrate liver without bile ducts.

    PubMed Central

    Youson, J H; Sidon, E W; Peek, W D; Shivers, R R

    1985-01-01

    Thin sections and freeze fracture replicas were used to study the structure of the hepatocytes of the parasitic adult lamprey (Petromyzon marinus L.). Despite the absence of bile ducts and bile canaliculi, the hepatocytes have some features which resemble those of cells in the livers of other vertebrates. Hepatocytes are characterised by large gap junctions, many cytoplasmic inclusions, and large deposits of iron. The latter is present throughout the cytoplasmic matrix and within large inclusion bodies which may arise through sequestration of parts of the cytoplasm by membrane isolation. There is no evidence for the involvement of hepatocytes in glucose metabolism but their fine structure reflects the production of bile products and the processing of lipoproteins. The accumulation of bile products within cytoplasmic inclusions resembles the situation resulting from biliary atresia or other cholestatic conditions in higher organisms. There is little folding of the plasma membrane facing the perivascular space (of Dissé), perhaps indicating limited involvement of this surface in the transport of bile products. Nerve endings in close apposition to hepatocytes suggest possible nervous control or metabolic function or the presence of sensory receptors in lamprey liver. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:2999046

  17. Comparative Metabolism of Furan in Rodent and Human Cryopreserved Hepatocytes

    PubMed Central

    Gates, Leah A.; Phillips, Martin B.; Matter, Brock A.

    2014-01-01

    Furan is a liver toxicant and carcinogen in rodents. Although humans are most likely exposed to furan through a variety of sources, the effect of furan exposure on human health is still unknown. In rodents, furan requires metabolism to exert its toxic effects. The initial product of the cytochrome P450 2E1-catalyzed oxidation is a reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). BDA is toxic and mutagenic and consequently is considered responsible for the toxic effects of furan. The urinary metabolites of furan in rats are derived from the reaction of BDA with cellular nucleophiles, and precursors to these metabolites are detected in furan-exposed hepatocytes. Many of these precursors are 2-(S-glutathionyl)butanedial-amine cross-links in which the amines are amino acids and polyamines. Because these metabolites are derived from the reaction of BDA with cellular nucleophiles, their levels are a measure of the internal dose of this reactive metabolite. To compare the ability of human hepatocytes to convert furan to the same metabolites as rodent hepatocytes, furan was incubated with cryopreserved human and rodent hepatocytes. A semiquantitative liquid chromatography with tandem mass spectrometry assay was developed for a number of the previously characterized furan metabolites. Qualitative and semiquantitative analysis of the metabolites demonstrated that furan is metabolized in a similar manner in all three species. These results indicate that humans may be susceptible to the toxic effects of furan. PMID:24751574

  18. Phenotype of hepatocyte spheroids in Arg-GLY-Asp (RGD) containing a thermo-reversible extracellular matrix.

    PubMed

    Park, Keun-Hong; Bae, You Han

    2002-07-01

    The spheroid of specific cells is often regarded as the better form in artificial organs and mammalian cell bioreactors for improved cell-specific functions. In this study, freshly harvested primary rat hepatocytes, which had been cultivated as spheroids and entrapped in a synthetic thermo-reversible extracellular matrix, were examined for differentiated morphology and enhanced liver-specific functions as compared to a control set (hepatocytes in single-cell form). A copolymer of N-isopropylacrylamide (98 mole % in the feed) and acrylic acid (poly(NiPAAm-co-AAc)), and the adhesion molecule, an Arg-Gly-Asp (RGD)-incorporated thermo-reversible matrix, were used to entrap hepatocytes in the form of either spheroids or single cells. In a 28-day culture period, the spheroids in the RGD-incorporated gel maintained higher viability and produced albumin and urea at constant rates, while there was lower cell viability and less albumin secretion by the spheroids in p(NiPAAm-co-AAc). Hepatocytes cultured as spheroids in the RGD-incorporated gel would constitute a potentially useful three-dimensional cell system for application in a bio-artificial liver device.

  19. Three-Week Isolation Does Not Lead to Depressive-Like Disorders in Rats.

    PubMed

    Gorlova, A V; Pavlov, D A; Zubkov, E A; Morozova, A Yu; Inozemtsev, A N; Chekhonin, V P

    2018-06-19

    We studied the effects of social isolation for 1, 2 or 3 weeks on behavioral reactions of male rats. As social isolation is a common model for inducing depressive-like state in rodents, classical tests for depressive-like behavioral features were conducted: Porsolt forced swimming test and tests for anhedonia and social interest. None of the experimental groups showed statistically significant disorders in comparison with the control group kept under standard conditions. Thus, social isolation for up to 3 weeks did not cause behavioral abnormalities in male rats. Single housing can be used in other models of induction of depressive-like states, but the use of this paradigm as an independent model for the development of depressive-like behavior requires longer period of social isolation.

  20. Mechanisms of canalicular transporter endocytosis in the cholestatic rat liver.

    PubMed

    Miszczuk, Gisel S; Barosso, Ismael R; Larocca, María Cecilia; Marrone, Julieta; Marinelli, Raúl A; Boaglio, Andrea C; Sánchez Pozzi, Enrique J; Roma, Marcelo G; Crocenzi, Fernando A

    2018-04-01

    Impaired canalicular secretion due to increased endocytosis and intracellular retention of canalicular transporters such as BSEP and MRP2 is a main, common pathomechanism of cholestasis. Nevertheless, the mechanisms governing this process are unknown. We characterized this process in estradiol 17 β-d-glucuronide (E17G)-induced cholestasis, an experimental model which partially mimics pregnancy-induced cholestasis. Inhibitors of clathrin-mediated endocytosis (CME) such as monodansylcadaverine (MDC) or K + depletion, but not the caveolin-mediated endocytosis inhibitors filipin and genistein, prevented E17G-induced endocytosis of BSEP and MRP2, and the associated impairment of activity of these transporters in isolated rat hepatocyte couplets (IRHC). Immunofluorescence and confocal microscopy studies showed that, in E17G-treated IRHC, there was a significant increase in the colocalization of MRP2 with clathrin, AP2, and Rab5, three essential members of the CME machinery. Knockdown of AP2 by siRNA in sandwich-cultured rat hepatocytes completely prevented E17G-induced endocytosis of BSEP and MRP2. MDC significantly prevented this endocytosis, and the impairment of bile flow and biliary secretion of BSEP and MRP2 substrates, in isolated and perfused livers. BSEP and MRP2, which were mostly present in raft (caveolin-enriched) microdomains in control rats, were largely found in non-raft (clathrin-enriched) microdomains in livers from E17G-treated animals, from where they can be readily recruited for CME. In conclusion, our findings show that CME is the mechanism responsible for the internalization of the canalicular transporters BSEP and MRP2 in E17G-induced cholestasis. The shift of these transporters from raft to non-raft microdomains could be a prerequisite for the transporters to be endocytosed under cholestatic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Promotion of bone growth by dietary soy protein isolate: Comparision with dietary casein, whey hydrolysate and rice protein isolate in growing female rats

    USDA-ARS?s Scientific Manuscript database

    The effects of different dietary protein sources(casein (CAS), soy protein isolate (SPI), whey protein hydrolysate (WPH) and rice protein isolate (RPI)) on bone were studied in intact growing female rats and in ovarectomized (OVX) rats showing sex steroid deficiency-induced bone loss. In addition, S...

  2. Killing of cultured hepatocytes by conjugates of asialofetuin and EGF linked to the A chains of ricin or diphtheria toxin.

    PubMed

    Simpson, D L; Cawley, D B; Herschman, H R

    1982-06-01

    A disulfide-linked conjugate between asialofetuin (ASF) and the toxic A chain (RTA) of ricin is as potent a toxin for cultured rat hepatocytes as our previously described conjugate between ASF and fragment A of diphtheria toxin (DTA). An RTA conjugate of epidermal growth factor (EGF) was a potent toxin for 3T3 cells. In contrast, EGF-DTA was essentially nontoxic for 3T3 cells. We have now examined the toxicity of EGF-RTA and EGF-DTA on cultured hepatocytes. The EGF-DTA conjugate, nontoxic to 3T3 cells, is also a potent toxin for hepatocytes. We also observed a decrease with time of culture in the sensitivity of hepatocytes to the ASF and EGF conjugates. This decrease is not a result of a decrease in EGF or asialoglycoprotein receptors.

  3. Differences in betaine-homocysteine methyltransferase expression, ER stress response and liver injury between alcohol-fed mice and rats

    PubMed Central

    Shinohara, Masao; Ji, Cheng; Kaplowitz, Neil

    2009-01-01

    Chronic ethanol infusion resulted in greater serum ALT elevation, lipid accumulation, necroinflammation, and focal hepatic cell death in mice than rats. Mice exhibited a remarkable hyperhomocysteinemia but no increase was seen in rats. Similarly, a high methionine low folate diet (HMLF) induced less steatosis, serum ALT increase, and hyperhomocysteinemia in rats than in mice. Western blot analysis of betaine homocysteine methyltransferase (BHMT) expression showed that rats fed either ethanol or HMLF had significantly increased BHMT expression which did not occur in mice. Nuclear NFκB p65 was increased in mouse in response to alcohol feeding. The human BHMT promoter was repressed by homocysteine in mouse hepatocytes but not rat hepatocytes. BHMT induction was faster and greater in primary rat hepatocytes than mouse hepatocytes in response to exogenous homocysteine exposure. Mice fed ethanol i.g. exhibited an increase in GRP78 and IRE1 which was not seen in the rat and SREBP-1 was increased to a greater extent in mice than rats. Thus, rats are more resistant to ethanol induced steatosis, ER stress and hyperhomocysteinemia and this correlates with induction of BHMT in rats. These findings support the hypothesis that a critical factor in the pathogenesis of alcoholic liver injury is the enhanced ability of rat or impaired ability of mouse to up-regulate BHMT which prevents hyperhomocysteinemia, ER stress and liver injury. PMID:20069651

  4. Human hepatocytes support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogen sodium phenobarbital in an in vivo study using a chimeric mouse with humanized liver.

    PubMed

    Yamada, Tomoya; Okuda, Yu; Kushida, Masahiko; Sumida, Kayo; Takeuchi, Hayato; Nagahori, Hirohisa; Fukuda, Takako; Lake, Brian G; Cohen, Samuel M; Kawamura, Satoshi

    2014-11-01

    High doses of sodium phenobarbital (NaPB), a constitutive androstane receptor (CAR) activator, have been shown to produce hepatocellular tumors in rodents by a mitogenic mode of action (MOA) involving CAR activation. The effect of 1-week dietary treatment with NaPB on liver weight and histopathology, hepatic CYP2B enzyme activity and CYP2B/3A mRNA expression, replicative DNA synthesis and selected genes related to cell proliferation, and functional transcriptomic and metabolomic analyses was studied in male CD-1 mice, Wistar Hannover (WH) rats, and chimeric mice with human hepatocytes. The treatment of chimeric mice with 1000-1500-ppm NaPB resulted in plasma levels around 3-5-fold higher than those observed in human subjects given therapeutic doses of NaPB. NaPB produced dose-dependent increases in hepatic CYP2B activity and CYP2B/3A mRNA levels in all animal models. Integrated functional metabolomic and transcriptomic analyses demonstrated that the responses to NaPB in the human liver were clearly different from those in rodents. Although NaPB produced a dose-dependent increase in hepatocyte replicative DNA synthesis in CD-1 mice and WH rats, no increase in replicative DNA synthesis was observed in human hepatocyte-originated areas of chimeric mice. In addition, treatment with NaPB had no effect on Ki-67, PCNA, GADD45β, and MDM2 mRNA expression in chimeric mice, whereas significant increases were observed in CD-1 mice and/or WH rats. However, increases in hepatocyte replicative DNA synthesis were observed in chimeric mice both in vivo and in vitro after treatment epidermal growth factor. Thus, although NaPB could activate CAR in both rodent and human hepatocytes, NaPB did not increase replicative DNA synthesis in human hepatocytes of chimeric mice, whereas it was mitogenic to rat and mouse hepatocytes. As human hepatocytes are refractory to the mitogenic effects of NaPB, the MOA for NaPB-induced rodent liver tumor formation is thus not relevant for humans. © The

  5. Microtubule antagonists activate programmed cell death (apoptosis) in cultured rat hepatocytes.

    PubMed Central

    Tsukidate, K.; Yamamoto, K.; Snyder, J. W.; Farber, J. L.

    1993-01-01

    We investigated the mechanism of lethal injury following the disruption of microtubules in cultured hepatocytes treated with vinblastine (VBL) or colchicine (COL). These agents kill hepatocytes by a process readily distinguished from two well-known pathways that lead to a loss of viability, namely, oxidative stress and inhibition of mitochondrial electron transport. Cell killing with VBL and COL was accompanied by fragmentation of DNA. Both the loss of viability and the fragmentation of DNA were prevented by the inhibition of protein synthesis within 6 hours following exposure to VBL or COL. Cell death and the fragmentation of DNA were also prevented when Ca2+ was removed from the culture medium. By contrast, the inhibition of protein kinase C prevented cell killing by VBL or COL, but did not alter the extent of DNA fragmentation. The requirements here for protein synthesis, extracellular Ca2+, and protein kinase C activity define a model of apoptosis, or programmed cell death, that seems to involve mechanisms that can be dissociated from the fragmentation of DNA. Images Figure 2 PMID:8362985

  6. Neural activity in the prelimbic and infralimbic cortices of freely moving rats during social interaction: Effect of isolation rearing.

    PubMed

    Minami, Chihiro; Shimizu, Tomoko; Mitani, Akira

    2017-01-01

    Sociability promotes a sound daily life for individuals. Reduced sociability is a central symptom of various neuropsychiatric disorders, and yet the neural mechanisms underlying reduced sociability remain unclear. The prelimbic cortex (PL) and infralimbic cortex (IL) have been suggested to play an important role in the neural mechanisms underlying sociability because isolation rearing in rats results in impairment of social behavior and structural changes in the PL and IL. One possible mechanism underlying reduced sociability involves dysfunction of the PL and IL. We made a wireless telemetry system to record multiunit activity in the PL and IL of pairs of freely moving rats during social interaction and examined the influence of isolation rearing on this activity. In group-reared rats, PL neurons increased firing when the rat showed approaching behavior and also contact behavior, especially when the rat attacked the partner. Conversely, IL neurons increased firing when the rat exhibited leaving behavior, especially when the partner left on its own accord. In social interaction, the PL may be involved in active actions toward others, whereas the IL may be involved in passive relief from cautionary subjects. Isolation rearing altered social behavior and neural activity. Isolation-reared rats showed an increased frequency and decreased duration of contact behavior. The increased firing of PL neurons during approaching and contact behavior, observed in group-reared rats, was preserved in isolation-reared rats, whereas the increased firing of IL neurons during leaving behavior, observed in group-reared rats, was suppressed in isolation-reared rats. This result indicates that isolation rearing differentially alters neural activity in the PL and IL during social behavior. The differential influence of isolation rearing on neural activity in the PL and IL may be one of the neural bases of isolation rearing-induced behavior.

  7. L-cysteine supplementation upregulates glutathione (GSH) and vitamin D binding protein (VDBP) in hepatocytes cultured in high glucose and in vivo in liver, and increases blood levels of GSH, VDBP, and 25-hydroxy-vitamin D in Zucker diabetic fatty rats.

    PubMed

    Jain, Sushil K; Kanikarla-Marie, Preeti; Warden, Cassandra; Micinski, David

    2016-05-01

    Vitamin D binding protein (VDBP) status has an effect on and can potentially improve the status of 25(OH) vitamin D and increase the metabolic actions of 25(OH) vitamin D under physiological and pathological conditions. Diabetes is associated with lower levels of glutathione (GSH) and 25(OH) vitamin D. This study examined the hypothesis that upregulation of GSH will also upregulate blood levels of VDBP and 25(OH) vitamin D in type 2 diabetic rats. L-cysteine (LC) supplementation was used to upregulate GSH status in a FL83B hepatocyte cell culture model and in vivo using Zucker diabetic fatty (ZDF) rats. Results show that LC supplementation upregulates both protein and mRNA expression of VDBP and vitamin D receptor (VDR) and GSH status in hepatocytes exposed to high glucose, and that GSH deficiency, induced by glutamate cysteine ligase knockdown, resulted in the downregulation of GSH, VDBP, and VDR and an increase in oxidative stress levels in hepatocytes. In vivo, LC supplementation increased GSH and protein and mRNA expression of VDBP and vitamin D 25-hydroxylase (CYP2R1) in the liver, and simultaneously resulted in elevated blood levels of LC and GSH, as well as increases in VDBP and 25(OH) vitamin D levels, and decreased inflammatory biomarkers in ZDF rats compared with those in placebo-supplemented ZDF rats consuming a similar diet. LC supplementation may provide a novel approach by which to raise blood levels of VDBP and 25(OH) vitamin D in type 2 diabetes. © 2016 The Authors. Molecular Nutrition & Food Research Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME.

    PubMed

    Godoy, Patricio; Hewitt, Nicola J; Albrecht, Ute; Andersen, Melvin E; Ansari, Nariman; Bhattacharya, Sudin; Bode, Johannes Georg; Bolleyn, Jennifer; Borner, Christoph; Böttger, Jan; Braeuning, Albert; Budinsky, Robert A; Burkhardt, Britta; Cameron, Neil R; Camussi, Giovanni; Cho, Chong-Su; Choi, Yun-Jaie; Craig Rowlands, J; Dahmen, Uta; Damm, Georg; Dirsch, Olaf; Donato, María Teresa; Dong, Jian; Dooley, Steven; Drasdo, Dirk; Eakins, Rowena; Ferreira, Karine Sá; Fonsato, Valentina; Fraczek, Joanna; Gebhardt, Rolf; Gibson, Andrew; Glanemann, Matthias; Goldring, Chris E P; Gómez-Lechón, María José; Groothuis, Geny M M; Gustavsson, Lena; Guyot, Christelle; Hallifax, David; Hammad, Seddik; Hayward, Adam; Häussinger, Dieter; Hellerbrand, Claus; Hewitt, Philip; Hoehme, Stefan; Holzhütter, Hermann-Georg; Houston, J Brian; Hrach, Jens; Ito, Kiyomi; Jaeschke, Hartmut; Keitel, Verena; Kelm, Jens M; Kevin Park, B; Kordes, Claus; Kullak-Ublick, Gerd A; LeCluyse, Edward L; Lu, Peng; Luebke-Wheeler, Jennifer; Lutz, Anna; Maltman, Daniel J; Matz-Soja, Madlen; McMullen, Patrick; Merfort, Irmgard; Messner, Simon; Meyer, Christoph; Mwinyi, Jessica; Naisbitt, Dean J; Nussler, Andreas K; Olinga, Peter; Pampaloni, Francesco; Pi, Jingbo; Pluta, Linda; Przyborski, Stefan A; Ramachandran, Anup; Rogiers, Vera; Rowe, Cliff; Schelcher, Celine; Schmich, Kathrin; Schwarz, Michael; Singh, Bijay; Stelzer, Ernst H K; Stieger, Bruno; Stöber, Regina; Sugiyama, Yuichi; Tetta, Ciro; Thasler, Wolfgang E; Vanhaecke, Tamara; Vinken, Mathieu; Weiss, Thomas S; Widera, Agata; Woods, Courtney G; Xu, Jinghai James; Yarborough, Kathy M; Hengstler, Jan G

    2013-08-01

    This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.

  9. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    PubMed

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposuremore » to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells.

  11. The absence of 2,3-diphosphoglycerate from myocytes, hepatocytes and adipocytes.

    PubMed

    Reddy, W J; Burns, A H

    1976-04-23

    Myocytes, hepatocytes and adipocytes were prepared from heart, liver and epididymal fat pad of the rat. No detectable level of 2,3-diphosphoglycerate was found. Evidence is also presented which indicates the absence from these cells of 2,3-diphosphoglycerate mutase and 2,3-diphosphoglycerate phosphatase. Previous findings by others of the presence of 2,3-diphosphoglycerate and 2,3-diphosphoglycerate mutase probably resulted from erythrocytes sequestered in the tissue.

  12. Cell therapy from bench to bedside: Hepatocytes from fibroblasts - the truth and myth of transdifferentiation.

    PubMed

    Sanal, Madhusudana Girija

    2015-06-07

    Hepatocyte transplantation is an alternative to liver transplantation in certain disorders such as inherited liver diseases and liver failure. It is a relatively less complicated surgical procedure, and has the advantage that it can be repeated several times if unsuccessful. Another advantage is that hepatocytes can be isolated from partly damaged livers which are not suitable for liver transplantation. Despite these advantages hepatocyte transplantation is less popular. Important issues are poor engraftment of the transplanted cells and the scarcity of donor hepatocytes. Generation of "hepatocyte like cells"/iHeps from embryonic stem cells (ES) and induced pluripotent stem cells (iPSCs) by directed differentiation is an emerging solution to the latter issue. Direct conversation or trans-differentiation of fibroblasts to "hepatocyte like cells" is another way which is, being explored. However this method has several inherent and technical disadvantages compared to the directed differentiation from ES or iPSC. There are several methods claiming to be "highly efficient" for generating "highly functional" "hepatocyte like cells". Currently different groups are working independently and coming up with differentiation protocols and each group claiming an advantage for their protocol. Directed differentiation protocols need to be designed, compared, analyzed and tweaked systematically and logically than empirically. There is a need for a well-coordinated global initiative comparable to the Human Genome Project to achieve this goal in the near future.

  13. Routine post-weaning handling of rats prevents isolation rearing-induced deficit in prepulse inhibition.

    PubMed

    Rosa, M L N M; Silva, R C B; Moura-de-Carvalho, F T; Brandão, M L; Guimarães, F S; Del Bel, E A

    2005-11-01

    Rats reared under isolation conditions from weaning present a number of behavioral changes compared to animals reared under social conditions (group housing). These changes include deficits in prepulse inhibition (PPI) of the startle reflex to a loud sound. PPI refers to the reduction of the magnitude of the startle reflex when a relatively weak stimulus (the prepulse) precedes by an appropriate time interval the intense startle-elicing stimulus (the pulse). PPI is useful for studying sensorimotor integration. The present study evaluated the effect of handling on the impairment of PPI induced by isolation-rearing. Male Wistar rats (N = 11-15/group) were housed in groups (5 per cage and handled three times a week) or isolated (housed individually) since weaning (21 days) for 10 weeks when they reach approximately 150 g. The isolated rats were divided into "minimally handled" animals (handled once a week for cleaning purposes only) or "handled" animals (handled three times a week). This handling consisted of grasping the rat by the tail and moving it to a clean cage (approximately 5 s). A statistically significant reduction (52%) in the PPI test was found only in the isolated group with minimal handling while no difference was seen between grouped animals and isolated handled animals. These results indicate that isolation rearing causes disruption in the PPI at adult age, which serves as an index of attention deficit. This change in the sensory processing of information induced by post-weaning isolation can be prevented by handling during the development of the animal.

  14. Knockdown of Triglyceride Synthesis Does Not Enhance Palmitate Lipotoxicity or Prevent Oleate-Mediated Rescue in Rat Hepatocytes

    PubMed Central

    Leamy, Alexandra K.; Hasenour, Clinton M.; Egnatchik, Robert A.; Trenary, Irina A.; Yao, Conghui; Patti, Gary J.; Shiota, Masakazu; Young, Jamey D.

    2016-01-01

    Experiments in a variety of cell types, including hepatocytes, consistently demonstrate the acutely lipotoxic effects of saturated fatty acids, such as palmitate (PA), but not unsaturated fatty acids, such as oleate (OA). PA+OA co-treatment fully prevents PA lipotoxicity through mechanisms that are not well defined but which have been previously attributed to more efficient esterification and sequestration of PA into triglycerides (TGs) when OA is abundant. However, this hypothesis has never been directly tested by experimentally modulating the relative partitioning of PA/OA between TGs and other lipid fates in hepatocytes. In this study, we found that addition of OA to PA-treated hepatocytes enhanced TG synthesis, reduced total PA uptake and PA lipid incorporation, decreased phospholipid saturation and rescued PA-induced ER stress and lipoapotosis. Knockdown of diacylglycerol acyltransferase (DGAT), the rate-limiting step in TG synthesis, significantly reduced TG accumulation without impairing OAmediated rescue of PA lipotoxicity. In both wild-type and DGAT-knockdown hepatocytes, OA cotreatment significantly reduced PA lipid incorporation and overall phospholipid saturation compared to PA-treated hepatocytes. These data indicate that OA’s protective effects do not require increased conversion of PA into inert TGs, but instead may be due to OA’s ability to compete against PA for cellular uptake and/or esterification and, thereby, normalize the composition of cellular lipids in the presence of a toxic PA load. PMID:27249207

  15. Comparative study of toxicological and cell cycle effects of okadaic acid and dinophysistoxin-2 in primary rat hepatocytes.

    PubMed

    Rubiolo, J A; López-Alonso, H; Vega, F V; Vieytes, M R; Botana, L M

    2012-03-10

    To determine the relative toxicity and effects on the cell cycle of okadaic acid and dinophysistoxin-2 in primary hepatocyte cultures. Cytotoxicity was determined by the MTT method, caspase-3 activity and lactate dehydrogenase release to the medium. The cell cycle analysis was performed by imaging flow cytometry and the effect of the toxins on cell proliferation was studied by quantitative PCR and confocal microscopy. We show that dinophysistoxin-2 is less toxic than okadaic acid for primary hepatocytes with a similar difference in potency as that observed in vivo in mice after intraperitoneal injection. Both toxins induced apoptosis with caspase-3 increase. They also inhibited the hepatocytes cell cycle in G1 affecting diploid cells and diploid bi-nucleated cells. In proliferating hepatocytes exposed to the toxins, a decrease of p53 gene expression as well as a lower protein level was detected. Studies of the tubulin cytoskeleton in toxin treated cells, showed nuclear localization of this molecule and a granulated tubulin pattern in the cytoplasm. The results presented in this work show that the difference in toxicity between dinophysistoxin-2 and okadaic acid in cultured primary hepatocytes is the same as that observed in vivo after intraperitoneal injection. Okadaic acid and dinophysistoxin-2 arrest the cell cycle of hepatocytes at G1 even in diploid bi-nucleated cells. p53 and tubulin could be involved in the cell cycle inhibitory effect. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. DEVELOPMENT OF AN INTACT HEPATOCYTE ACTIVATION SYSTEM FOR ROUTINE USE WITH THE MOUSE LYMPHOMA ASSAY

    EPA Science Inventory

    The authors have developed a method for cocultivating primary rat hepatocytes with L5178Y/TK+/- 3.7.2C mouse lymphoma cells. The system should provide a means to simulate more closely in vivo metabolism compared to metabolism by liver homogenates, while still being useful for rou...

  17. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Berg, G.J.; de Goeij, J.J.; Bock, I.

    1991-08-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver, anemia, low plasma ceruloplasmin oxidase activity and increased 64Cu whole-body retention. Freshly isolated liver parenchymal cells from copper-deficient rats showed a higher 64Cu influx, which was associated with a higher apparent Vmax of 45 {plus minus} 4 pmol Cu.mg protein-1.min-1 as compared with 30 {plus minus} 3 pmol Cu.mg protein-1.min-1 for cells isolated from copper-sufficientmore » rats. No significant difference in the apparent Km (approximately 30 mumol/L) was observed. Relative 64Cu efflux from cells from copper-deficient rats was significantly smaller than the efflux from cells from copper-sufficient rats after prelabeling as determined by 2-h efflux experiments. Analysis of the medium after efflux from cells from copper-deficient rats showed elevated protein-associated 64Cu, suggesting a higher incorporation of radioactive copper during metalloprotein synthesis. Effects of copper deficiency persist in primary cultures of parenchymal cells derived from copper-deficient rats, and short-term cultures of these cells offer a prospect for the study of cell biological aspects of the metabolic adaptation of the liver to copper deficiency.« less

  18. Isolation and Molecular Characterization of Leptospira interrogans and Leptospira borgpetersenii Isolates from the Urban Rat Populations of Kuala Lumpur, Malaysia

    PubMed Central

    Benacer, Douadi; Zain, Siti Nursheena Mohd; Amran, Fairuz; Galloway, Renee L.; Thong, Kwai Lin

    2013-01-01

    Rats are considered the principal maintenance hosts of Leptospira. The objectives of this study were isolation and identification of Leptospira serovars circulating among urban rat populations in Kuala Lumpur. Three hundred urban rats (73% Rattus rattus and 27% R. norvegicus) from three different sites were trapped. Twenty cultures were positive for Leptospira using dark-field microscopy. R. rattus was the dominant carrier (70%). Polymerase chain reaction (PCR) confirmed that all isolates were pathogenic Leptospira species. Two Leptospira serogroups, Javanica and Bataviae, were identified using microscopic agglutination test (MAT). Pulsed-field gel electrophoresis (PFGE) identified two serovars in the urban rat populations: L. borgpetersenii serovar Javanica (85%) and L. interrogans serovar Bataviae (15%). We conclude that these two serovars are the major serovars circulating among the urban rat populations in Kuala Lumpur. Despite the low infection rate reported, the high pathogenicity of these serovars raises concern of public health risks caused by rodent transmission of leptospirosis. PMID:23358635

  19. Micropatterned coculture of hepatocytes on electrospun fibers as a potential in vitro model for predictive drug metabolism.

    PubMed

    Liu, Yaowen; Wei, Jiaojun; Lu, Jinfu; Lei, Dongmei; Yan, Shili; Li, Xiaohong

    2016-06-01

    The liver is the major organ of importance to determine drug dispositions in the body, thus the development of hepatocyte culture systems is of great scientific and practical interests to provide reliable and predictable models for in vitro drug screening. In the current study, to address the challenges of a rapid function loss of primary hepatocytes, the coculture of hepatocytes with fibroblasts and endothelial cells (Hep-Fib-EC) was established on micropatterned fibrous scaffolds. Liver-specific functions, such as the albumin secretion and urea synthesis, were well maintained in the coculture system, accompanied by a rapid formation of multicellular hepatocyte spheroids. The activities of phase I (CYP3A11 and CYP2C9) and phase II enzymes indicated a gradual increase for cocultured hepatocytes, and a maximum level was achieved after 5 days and maintained throughout 15 days of culture. The metabolism testing on model drugs indicated that the scaled clearance rates for hepatocytes in the Hep-Fib-EC coculture system were significantly higher than those of other culture methods, and a linear regression analysis indicated good correlations between the observed data of rats and in vitro predicted values during 15 days of culture. In addition, the enzyme activities and drug clearance rates of hepatocytes in the Hep-Fib-EC coculture model experienced sensitive responsiveness to the inducers and inhibitors of metabolizing enzymes. These results demonstrated the feasibility of micropatterned coculture of hepatocytes as a potential in vitro testing model for the prediction of in vivo drug metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices.

    PubMed

    Masia, Ricard; McCarty, William J; Lahmann, Carolina; Luther, Jay; Chung, Raymond T; Yarmush, Martin L; Yellen, Gary

    2018-01-01

    Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD + ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD + ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD + ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD + ratio, and this increase is mitigated by the presence of NAD + -generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD + ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD + ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real

  1. Maintenance of in vivo induced cytochrome P-450s in hepatocyte monolayers at non freezing temperatures.

    PubMed

    Evans, Peter J

    2015-04-01

    Cytochrome P450s (CYPs) induced in rats by 3-methylcholanthrene (3-MC), phenobarbital (PB) and dexamethasone (Dex) were investigated. The inducers had no effect on hepatocyte yield, viability, attachment or spreading on collagen. 3-MC induced ethoxyresorufin deethylase (EROD). Under normothermic conditions the activity fell in culture. However, it was maintained when cells were preserved at 10°C under a gelatin gel. Upon reactivation the activity mirrored that of freshly isolated cells at 37°C. Induced levels were stable for at least 6h , the time to form a confluent monolayer. The investigation was extended to other CYPs by looking at patterns of testosterone metabolism. Phenobarbital had the greatest influence in terms of the quantity and number of metabolites. Culture at 37°C decreased the peaks dramatically within 24 h. All 7 peaks were maintained in the preservation system. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Fermented wheat powder induces the antioxidant and detoxifying system in primary rat hepatocytes.

    PubMed

    La Marca, Margherita; Beffy, Pascale; Pugliese, Annalisa; Longo, Vincenzo

    2013-01-01

    Many plants exhibit antioxidant properties which may be useful in the prevention of oxidative stress reactions, such as those mediated by the formation of free radical species in different pathological situations. In recent years a number of studies have shown that whole grain products in particular have strong antioxidant activity. Primary cultures of rat hepatocytes were used to investigate whether and how a fermented powder of wheat (Lisosan G) is able to modulate antioxidant and detoxifying enzymes, and whether or not it can activate Nrf2 transcription factor or inhibit NF-kB activation. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by 0.7 mg/ml Lisosan G treatment. In particular, quinone oxidoreductase and heme oxygenase-1 were induced, although to different degrees, at the transcriptional, protein and/or activity levels by the treatment. As for the Nrf2 transcription factor, a partial translocation of its protein from the cytosol to the nucleus after 1 h of Lisosan G treatment was revealed by immunoblotting. Lisosan G was also observed to decrease H2O2-induced toxicity Taken together, these results show that this powder of wheat is an effective inducer of ARE/Nrf2-regulated antioxidant and detoxifying genes and has the potential to inhibit the translocation of NF-kB into the nucleus.

  3. Fractionated External Beam Radiotherapy as a Suitable Preparative Regimen for Hepatocyte Transplantation After Partial Hepatectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, Petra; Wolff, Hendrik A.; Rave-Frank, Margret

    2011-07-15

    Purpose: Hepatocyte transplantation is strongly considered to be a promising option to correct chronic liver failure through repopulation of the diseased organ. We already reported on extensive liver repopulation by hepatocytes transplanted into rats preconditioned with 25-Gy single dose selective external beam irradiation (IR). Herein, we tested lower radiation doses and fractionated protocols, which would be applicable in clinical use. Methods and Material: Livers of dipeptidylpeptidase IV (DPPIV)-deficient rats were preconditioned with partial liver external beam single dose IR at 25 Gy, 8 Gy, or 5 Gy, or fractionated IR at 5 x 5 Gy or 5 x 2 Gy.more » Four days after completion of IR, a partial hepatectomy (PH) was performed to resect the untreated liver section. Subsequently, 12 million wild-type (DPPIV{sup +}) hepatocytes were transplanted via the spleen into the recipient livers. The degree of donor cell integration and liver repopulation was studied 16 weeks after transplantation by means of immunofluorescence and DPPIV-luminescence assay. Results: Donor hepatocyte integration and liver repopulation were more effective in the irradiated livers following pretreatment with the IR doses 1 x 25 Gy and 5 x 5 Gy (formation of large DPPIV-positive cell clusters) than single-dose irradiation at 8 Gy or 5 Gy (DPPIV-positive clusters noticeably smaller and less frequent). Quantitative analysis of extracted DPPIV revealed signals exceeding the control level in all transplanted animals treated with IR and PH. Compared with the standard treatment of 1 x 25 Gy, fractionation with 5 x 5 Gy was equally efficacious, the Mann-Whitney U test disclosing no statistically significant difference (p = 0.146). The lower doses of 1 x 5 Gy, 1 x 8 Gy, and 5 x 2 Gy were significantly less effective with p < 0.05. Conclusion: This study suggests that fractionated radiotherapy in combination with PH is a conceivable pretreatment approach to prime the host liver for hepatocyte

  4. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice.

    PubMed

    Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko

    2017-01-01

    A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans.

  5. Complete genome sequence of the english isolate of rat cytomegalovirus (Murid herpesvirus 8).

    PubMed

    Ettinger, Jakob; Geyer, Henriette; Nitsche, Andreas; Zimmermann, Albert; Brune, Wolfram; Sandford, Gordon R; Hayward, Gary S; Voigt, Sebastian

    2012-12-01

    The complete genome of the English isolate of rat cytomegalovirus (RCMV-E) was determined. RCMV-E has a 202,946-bp genome with noninverting repeats but without terminal repeats. Thus, it differs significantly in size and genomic arrangement from closely related rodent cytomegaloviruses (CMVs). To account for the differences between the rat CMV isolates of Maastricht and England, RCMV-E was classified as Murid herpesvirus 8 by the International Committee on Taxonomy of Viruses.

  6. Sex differences in the outcome of juvenile social isolation on HPA axis function in rats.

    PubMed

    Pisu, M G; Garau, A; Boero, G; Biggio, F; Pibiri, V; Dore, R; Locci, V; Paci, E; Porcu, P; Serra, M

    2016-04-21

    Women are more likely than men to suffer from anxiety disorders and major depression. These disorders share hyperresponsiveness to stress as an etiological factor. Thus, sex differences in brain arousal systems and their regulation by chronic stress may account for the increased vulnerability to these disorders in women. Social isolation is a model of early life stress that results in neurobiological alterations leading to increased anxiety-like and depressive-like behaviors. Here we investigated the sex difference in the effects of post-weaning social isolation on acute stress sensitivity and behavior in rats. In both sexes, social isolation at weaning reduced basal levels of the neuroactive steroid allopregnanolone in the brain and of corticosterone in plasma. Moreover, acute stress increased plasma corticosterone levels in both group-housed and socially isolated male and female rats; however this effect was greater in male than female rats subjected to social isolation. Intriguingly, group-housed female rats showed no change in plasma and brain levels of allopregnanolone after acute foot-shock stress. The absence of stress-induced effects on allopregnanolone synthesis might be due to the physiologically higher levels of this hormone in females vs. males. Accordingly, increasing allopregnanolone levels in male rats blunted the response to foot-shock stress in these animals. Socially isolated male, but not female, rats also display depressive-like behavior and increased hippocampal brain-derived neurotrophic factor (BDNF). The ovarian steroids could "buffer" the effect of this adverse experience in females on these parameters. Finally, the dexamethasone (DEX) suppression test indicated that the chronic stress associated with social isolation impairs feedback inhibition in both sexes in which an increase in the abundance of glucocorticoid receptors (GRs) in the hippocampus was found. Altogether, these results demonstrate that social isolation affects neuroendocrine

  7. Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells

    PubMed Central

    Fagoonee, Sharmila; Famulari, Elvira Smeralda; Silengo, Lorenzo; Tolosano, Emanuela; Altruda, Fiorella

    2015-01-01

    One of the major hurdles in liver gene and cell therapy is availability of ex vivo-expanded hepatocytes. Pluripotent stem cells are an attractive alternative. Here, we show that hepatocyte precursors can be isolated from male germline cell-derived pluripotent stem cells (GPSCs) using the hepatoblast marker, Liv2, and induced to differentiate into hepatocytes in vitro. These cells expressed hepatic-specific genes and were functional as demonstrated by their ability to secrete albumin and produce urea. When transplanted in the liver parenchyma of partially hepatectomised mice, Liv2-sorted cells showed regional and heterogeneous engraftment in the injected lobe. Moreover, approximately 50% of Y chromosome-positive, GPSC-derived cells were found in the female livers, in the region of engraftment, even one month after cell injection. This is the first study showing that Liv2-sorted GPSCs-derived hepatocytes can undergo long lasting engraftment in the mouse liver. Thus, GPSCs might offer promise for regenerative medicine. PMID:26323094

  8. An improved microphotometry system for measurement of cytochrome P-450 in hepatocyte cytoplasm.

    PubMed

    Watanabe, J; Kanamura, S

    1991-05-01

    To measure cytochrome P-450 (P-450) content in hepatocyte cytoplasm, we developed a dual monochromator-equipped microphotometry system (KWSP-1). Simultaneous measurements of absorbance at 450 and 490 nm with narrow band width (0.5 nm) and small spot size (2 microns) were accomplished by this system. Corresponding fields in serial sections could be easily and rapidly identified under the Nomarski imaging mode of KWSP-1. Photometric accuracy and repeatability of wavelength setting of KWSP-1 were also satisfactory for measurement of P-450. With this system, it is thus possible to measure the extinction of P-450 from many small measuring areas and to precisely determine P-450 content in the cytoplasm of rat hepatocytes. A microphotometric method was developed using cuvette slides and two serial 10-microns thick sections (mapping method). The intracellular distribution of P-450 in individual hepatocytes could be visualized by the mapping method with KWSP-1. However, this method was not applicable to tissue sections containing hemoglobin larger than 4 microM.

  9. Microtubule stabilization with paclitaxel does not protect against infarction in isolated rat hearts.

    PubMed

    Rodríguez-Sinovas, Antonio; Abad, Elena; Sánchez, Jose A; Fernández-Sanz, Celia; Inserte, Javier; Ruiz-Meana, Marisol; Alburquerque-Béjar, Juan José; García-Dorado, David

    2015-01-01

    What is the central question of this study? The microtubule network is disrupted during myocardial ischaemia-reperfusion injury. It was suggested that prevention of microtubule disruption with paclitaxel might reduce cardiac infarct size; however, the effects on infarction have not been studied. What is the main finding and its importance? Paclitaxel caused a reduction in microtubule disruption and cardiomyocyte hypercontracture during ischaemia-reperfusion. However, it induced a greater increase in cytosolic calcium, which may explain the lack of effect against infarction that we have seen in isolated rat hearts. The large increase in perfusion pressure induced by paclitaxel in this model may have clinical implications, because detrimental effects of the drug were reported after its clinical application. Microtubules play a major role in the transmission of mechanical forces within the myocardium and in maintenance of organelle function. However, this intracellular network is disrupted during myocardial ischaemia-reperfusion. We assessed the effects of prevention of microtubule disruption with paclitaxel on ischaemia-reperfusion injury in isolated rat cardiomyocytes and hearts. Isolated rat cardiomyocytes were submitted to normoxia (1 h) or 45 min of simulated ischaemia (pH 6.4, 0% O2 , 37 °C) and reoxygenation, without or with treatment with the microtubule stabilizer, paclitaxel (10(-5) M), or the inhibitor of microtubule polymerization, colchicine (5 × 10(-6) M). Simulated ischaemia leads to microtubule disruption before the onset of ischaemic contracture. Paclitaxel attenuated both microtubule disruption and the incidence of hypercontracture, whereas treatment with colchicine mimicked the effects of simulated ischaemia and reoxygenation. In isolated normoxic rat hearts, treatment with paclitaxel induced concentration-dependent decreases in heart rate and left ventricular developed pressure and increases in perfusion pressure. Despite protection against

  10. Multiformity of elongation factor eEF-2 isolated from rat liver cells.

    PubMed

    Gajko, A; Gałasiński, W; Gindzieński, A

    1994-07-29

    Two fractions of eEF-2 (M(r) approx. 100,000 and M(r) approx. 65,000) were isolated from post-ribosomal supernatant of the rat liver cells. Only eEF-2, with mol. weight of about 100,000 Da, can be phosphorylated, but only eEF-2, with mol. weight of about 65,000 Da, was isolated from the active polyribosomes. The existence of two eEF-2 forms with different properties in the rat liver cells is striking and uncovers new aspects for the cellular function of this protein.

  11. Endoplasmic reticulum membrane potassium channel dysfunction in high fat diet induced stress in rat hepatocytes

    PubMed Central

    Khodaee, Naser; Ghasemi, Maedeh; Saghiri, Reza; Eliassi, Afsaneh

    2014-01-01

    In a previous study we reported the presence of a large conductance K+ channel in the membrane of endoplasmic reticulum (ER) from rat hepatocytes. The channel open probability (Po) appeared voltage dependent and reached to a minimum 0.2 at +50 mV. Channel activity in this case was found to be totally inhibited at ATP concentration 2.5 mM, glibenclamide 100 µM and tolbutamide 400 µM. Existing evidence indicates an impairment of endoplasmic reticulum functions in ER stress condition. Because ER potassium channels have been involved in several ER functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the ER potassium channel function is altered in a high fat diet model of ER stress. Male Wistar rats were made ER stress for 2 weeks with a high fat diet. Ion channel incorporation of ER stress model into the bilayer lipid membrane allowed the characterization of K+ channel. Our results indicate that the channel Po was significantly increased at voltages above +30 mV. Interestingly, addition of ATP 7.5 mM, glibenclamide 400 µM and tolbutamide 2400 µM totally inhibited the channel activities, 3-fold, 4-fold and 6-fold higher than that in the control groups, respectively. Our results thus demonstrate a modification in the ER K+ channel gating properties and decreased sensitivity to drugs in membrane preparations coming from ER high fat model of ER stress, an effect potentially linked to a change in ER K+ channel subunits in ER stress condition. Our results may provide new insights into the cellular mechanisms underlying ER dysfunctions in ER stress. PMID:26417322

  12. Hyperphagia and depression-like behavior by adolescence social isolation in female rats.

    PubMed

    Jahng, Jeong Won; Yoo, Sang Bae; Ryu, Vitaly; Lee, Jong-Ho

    2012-02-01

    This study was conducted to examine the effects of adolescence social isolation on food intake and psycho-emotional behaviors of female rats. Female littermates were either single-caged (social isolation) or group-caged (control) from postnatal day 28, and then subjected to behavioral sessions during postnatal day 50-53. Body weight gain of the isolates was accelerated during the experimental period and food intake was persistently greater than group-caged controls from postnatal day 35. Isolated females showed a selective increase in cookie intake when they had additional cookie access to standard chow. The isolates exhibited hyperactivity with increased ambulatory counts and rearings during the activity test as compared with group-caged controls. Behavioral scores of the elevated plus maze test did not differ between the isolates and group-caged controls; however, immobility time during the forced swim test was significantly increased in the isolates. Basal levels of plasma corticosterone were elevated, but the corticosterone increase responding to an acute stress was blunted, in the isolates compared with group-caged ones. Results suggest that adolescence social isolation induces hyperphagia and depression-like behaviors in female rats and a tonic increase of plasma corticosterone may be implicated in its underlying mechanisms. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Hepatocyte heterogeneity in the metabolism of carbohydrates.

    PubMed

    Jungermann, K; Thurman, R G

    1992-01-01

    the hepatocytes sense the glucagon/insulin gradients via the respective hormone receptors, it is not known how they sense different oxygen tensions; the O2 sensor may be an oxygen-binding heme protein. The zonal separation of glucose release and uptake appears to be important for the liver to operate as a 'glucostat'. Thus, zonation of carbohydrate metabolism develops gradually during the first weeks of life, in part before and in part with weaning, when (in rat and mouse) the fat- and protein-rich but carbohydrate-poor nutrition via milk is replaced by carbohydrate-rich food. Similarly, zonation of carbohydrate metabolism adapts to longer lasting alterations in the need of a 'glucostat', such as starvation, diabetes, portocaval anastomoses or partial hepatectomy.

  14. Accumulation of iron by primary rat hepatocytes in long-term culture: changes in nuclear shape mediated by non-transferrin-bound forms of iron.

    PubMed Central

    Cable, E. E.; Connor, J. R.; Isom, H. C.

    1998-01-01

    We have previously shown that hepatocytes in long-term dimethylsulfoxide (DMSO) culture, fed a chemically defined medium, are highly differentiated and an excellent in vitro model of adult liver. Hepatocytes in long-term DMSO culture can be iron loaded by exposure to non-transferrin-bound iron (NTBI) in the form of ferrous sulfate (FeSO4), ferric nitrilotriacetate, or trimethylhexanoyl (TMH)-ferrocene. Holotransferrin, at equivalent times and concentrations, was unable to load hepatocytes. Of the iron compounds tested, TMH-ferrocene most accurately simulated the morphological features of iron-loaded hepatocytes in vivo. When exposed to 25 micromol/L TMH-ferrocene, hepatocytes loaded increasing amounts of iron for 2 months before the cells died. When exposed to lower concentrations of TMH-ferrocene (as low as 2.5 micromol/L), hepatocytes continuously loaded iron and remained viable for more than 2 months. The cellular deposition of iron was different in hepatocytes exposed to TMH-ferrocene compared with those exposed to FeSO4; exposure to TMH-ferrocene resulted in the presence of more ferritin cores within lysosomes than were seen with FeSO4. When the concentration of TMH-ferrocene was increased, a greater number of ferritin cores were observed within the lysosome, and total cellular ferritin, as assessed by Western blot, increased. The formation of hemosiderin was also observed. Furthermore, nuclear shape was distorted in iron-loaded hepatocytes. The extent of deviation from circularity in the nucleus correlated with increasing concentrations of TMH-ferrocene and was greater in hepatocytes exposed to FeSO4 than an equivalent concentration of TMH-ferrocene. The deviation from circularity was smallest in hepatocytes that contained well formed ferritin cores and increased in hepatocytes that contained greater amounts of hemosiderin. Furthermore, in hepatocytes treated with FeSO4, a large amount of cell-associated iron was detected but without a significant increase in

  15. Immune system stimulation in rats by Lactobacillus sp. isolates from Raffia wine (Raphia vinifera).

    PubMed

    Flore, Tiepma N E; François, Zambou N; Félicité, Tchouanguep M

    2010-01-01

    The immune system consists of organs and several cell types. Antigen interaction with these cells induces a cellular immune response mediated by activated cells. The effects of lactic acid bacteria on the systemic immune response and on the secretory immune system are described. The current investigation sets out to examine the possible effects of isolated wine lacto-bacilli upon various hematologic and immunologic parameters in rats. We have fed rats with probiotic isolates from Raffia wine and challenged with castor oil; two control groups were fed with castor oil and others were not. We counted blood cells at the end of the experiment; all isolates seemed to cause a decrease of circulating white blood cells. The percentage of lymphocytes and the total protein in the spleen increased in the treated animals; also a normal aspect of faeces was observed compared to the control. These isolates of Lactobacillus seem to occur to immune cell-mediated responses in rats.

  16. Generation, characterization and potential therapeutic applications of mature and functional hepatocytes from stem cells.

    PubMed

    Zhang, Zhenzhen; Liu, Jianfang; Liu, Yang; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2013-02-01

    Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end-stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end-stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra-hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra-hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. Copyright © 2012 Wiley Periodicals, Inc.

  17. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells.

    PubMed Central

    Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H

    1987-01-01

    One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978

  18. Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure

    PubMed Central

    Kuijk, Ewart W.; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M.; Cuppen, Edwin

    2016-01-01

    The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah−/− Il2rg−/− rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat. PMID:26915950

  19. DNA and proteins of the nuclear matrix are the main targets of benzo[a]pyrene's action in rat hepatocytes.

    PubMed

    Widłak, P; Rzeszowska-Wolny, J

    1993-01-01

    The binding of [14C]benzo[a]pyrene (B[a]P) to DNA and proteins in total nuclei and subnuclear fractions of cultured rat hepatocytes was compared. The main targets of B[a]P were non-histone high molecular weight proteins of the nuclear matrix and DNA sequences attached to this structure. Following 24 h exposure to B[a]P the amounts of adducts in the nuclear matrix DNA and proteins were twice as high as in total nuclei. After withdrawal of the carcinogen containing medium the level of B[a]P-induced adducts gradually decreased but always remained the highest in the nuclear matrix proteins. Removal of adducts from the nuclear matrix DNA was more efficient than from the other DNA fractions, and 72 h after exposure to the carcinogen the level of DNA adducts in this fraction was similar to that in total nuclei.

  20. Glu-Phe from onion (Allium Cepa L.) attenuates lipogenesis in hepatocytes.

    PubMed

    Lee, Yu Geon; Cho, Jeong-Yong; Hwang, Eom Ji; Jeon, Tae-Il; Moon, Jae-Hak

    2017-07-01

    A Glu-Phe (EF) was isolated from onion (Allium cepa L. cv. Sunpower). The chemical structure of EF was determined by nuclear magnetic resonance and electrospray ionization-mass (ESI-MS) spectroscopy. We showed that EF reduced lipid accumulation in mouse hepatocytes by inhibiting the expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its lipogenic target genes. We also found that AMP-activated protein kinase (AMPK) was required for the inhibitory effect of EF on lipid accumulation in mouse hepatocytes. Furthermore, EF was qualified in nine onion cultivars by selective multiple reaction-monitoring detection of liquid chromatography-ESI-MS. These results suggest that EF could contribute to the beneficial effect of onion supplement in maintaining hepatic lipid homeostasis.

  1. Green tea polyphenols and tannic acid act as potent inhibitors of phorbol ester-induced nitric oxide generation in rat hepatocytes independent of their antioxidant properties.

    PubMed

    Srivastava, R C; Husain, M M; Hasan, S K; Athar, M

    2000-05-29

    The deleterious effects of excessive release of nitric oxide (NO) have been implicated in the tissue damage and inflammation. In this study, the effect of various flavonoids and other oxidant scavenging chemical agents have been studied for their ability to inhibit 12-O-tetradecanoyl phorbol 13-acetate (TPA)-induced NO generation in rat hepatocyte. Hepatocytes activated with TPA (25-200 nM) released NO in a concentration- and time-dependent manner. Green tea polyphenols (GTP) and tannic acid (TA) were most effective in inhibiting TPA-induced NO generation (90%). These agents were also effective in inhibiting NO formation when added 2 h following TPA addition. The other oxidant scavengers, such as L-histidine, sodium azide, vitamin E and sodium benzoate, were not found to be effective even up to 1.0 mM concentration. These results suggest that TA and GTP are potent inhibitors of NOS activity and the inhibition of TPA-induced NO generation by these polyphenols is independent of their antioxidant activity. It is tempting to speculate that these agents could be utilized in the pharmacological manipulations of NO-dependent pathophysiological responses.

  2. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    PubMed

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  3. The Ron Receptor Regulates Kupffer Cell-Dependent Cytokine Production and Hepatocyte Survival Following Endotoxin Exposure in Mice

    PubMed Central

    Stuart, William D.; Kulkarni, Rishikesh M.; Gray, Jerilyn K.; Vasiliauskas, Juozas; Leonis, Mike A.; Waltz, Susan E.

    2011-01-01

    Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK−/− mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNFα). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wild-type (TK+/+) and TK−/− mice were studied. Utilizing quantitative RT-PCR, we demonstrated that Ron is expressed in these cell-types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK−/− mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK−/− Kupffer cells produce increased levels of TNFα and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK−/− Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK−/− Kupffer cells are detrimental to wild type hepatocytes. In addition, we observed that TK−/− hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. In conclusion, we have dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury. PMID:21520175

  4. [Features of the effect of bemethyl on glycogen metabolism in hepatocytes of pathological changed human liver].

    PubMed

    Kudriavtseva, M V; Bezborodkina, N N; Okovityĭ, S V; Ivanova, O V; Kudriavtsev, B N

    2002-01-01

    Effect of actoprotector bemithyl (2-ethylthiobenzimidazole hydrobromide) on glycogen metabolism in hepatocytes of patients with chronic hepatitis and liver cirrhosis was investigated. Using cytofluorimetric method, the content of glycogen and its fractions in isolated hepatocytes was measured. The treatment with bemithyl resulted in a decrease in glycogen levels in hepatocytes, and in a marked restoration of fractional glycogen composition as compared to the basic therapy. Besides, it was established that the degree of glycogen decrease in cells of patients with chronic hepatitis depended on the increase of glucose-6-phosphatase activity (r = 0.75, P < 0.05), and on the levels of glycogen in hepatocytes prior to bemitil treatment (r = = 0.87, P < 0.01). Positive changes in glycogen metabolism after bemithyl treatment are pronounced in patients with chronic hepatitis. These positive alterations take place simultaneously with the conservation of basic structural disturbances in the liver parenchyma. However, even in this case, the indices of glycogen metabolism do not reach the normal levels.

  5. Social isolation and chronic handling alter endocannabinoid signaling and behavioral reactivity to context in adult rats

    PubMed Central

    Sciolino, Natale R.; Bortolato, Marco; Eisenstein, Sarah A.; Fu, Jin; Oveisi, Fariba; Hohmann, Andrea G.; Piomelli, Daniele

    2010-01-01

    Social deprivation in early life disrupts emotionality and attentional processes in humans. Rearing rats in isolation reproduces some of these abnormalities, which are attenuated by daily handling. However, the neurochemical mechanisms underlying these responses remain poorly understood. We hypothesized that post-weaning social isolation alters the endocannabinoid system, a neuromodulatory system that controls emotional responding. We characterized behavioral consequences of social isolation and evaluated whether handling would reverse social isolation-induced alterations in behavioral reactivity to context and the endocannabinoid system. At weaning, pups were single or group housed and concomitantly handled or not handled daily until adulthood. Rats were tested in emotionality- and attentional-sensitive behavioral assays (open field, elevated plus maze, startle and prepulse inhibition). Cannabinoid receptor densities and endocannabinoid levels were quantified in a separate group of rats. Social isolation negatively altered behavioral responding. Socially-isolated rats that were handled showed less deficits in the open field, elevated plus maze, and prepulse inhibition tests. Social isolation produced site-specific alterations (supraoptic nucleus, ventrolateral thalamus, rostral striatum) in cannabinoid receptor densities compared to group rearing. Handling altered the endocannabinoid system in neural circuitry controlling emotional expression. Handling altered endocannabinoid content (prefrontal and piriform cortices, nucleus accumbens) and cannabinoid receptor densities (lateral globus pallidus, cingulate and piriform cortices, hippocampus) in a region-specific manner. Some effects of social isolation on the endocannabinoid system were moderated by handling. Isolates were unresponsive to handling-induced increases in cannabinoid receptor densities (caudal striatum, anterior thalamus), but were sensitive to handling-induced increases in endocannabinoid content

  6. Structural and ultrastructural study of rat liver influenced by electromagnetic radiation.

    PubMed

    Holovská, K; Almášiová, V; Cigánková, V; Beňová, K; Račeková, E; Martončíková, M

    2015-01-01

    Mobile communication systems are undoubtedly an environmental source of electromagnetic radiation (EMR). There is an increasing concern regarding the interactions of EMR with the humans. The aim of this study was to examine the effects of EMR on Wistar rat liver. Mature rats were exposed to electromagnetic field of frequency 2.45 GHz and mean power density of 2.8 mW/cm2 for 3 h/d for 3 wk. Samples of the liver were obtained 3 h after the last irradiation and processed histologically for light and transmission electron microscopy. Data demonstrated the presence of moderate hyperemia, dilatation of liver sinusoids, and small inflammatory foci in the center of liver lobules. Structure of hepatocytes was not altered and all described changes were classified as moderate. Electron microscopy of hepatocytes revealed vesicles of different sizes and shapes, lipid droplets, and proliferation of smooth endoplasmic reticulum. Occasionally necrotizing hepatocytes were observed. Our observations demonstrate that EMR exposure produced adverse effects on rat liver.

  7. Hepatocyte or serum albumin protein carbonylation by oxidized fructose metabolites: Glyceraldehyde or glycolaldehyde as endogenous toxins?

    PubMed

    Dong, Qiang; Yang, Kai; Wong, Stephanie M; O'Brien, Peter J

    2010-10-06

    Excessive sugar intake in animal models may cause tissue damage associated with oxidative and carbonyl stress cytotoxicity as well as inflammation. Fructose became a 100-fold more cytotoxic if hepatocytes were exposed to a non-toxic infusion of H(2)O(2) so as to simulate H(2)O(2) released by Kupffer cells or infiltrating immune cells. In order to determine the molecular mechanisms involved, protein carbonylation of fructose and its metabolites were determined using the 2,4-dinitrophenylhydrazine method. In a cell-free system, fructose was found to carbonylate bovine serum albumin (BSA) only if low concentrations of FeII/H(2)O(2) were added. Protein carbonylation by the fructose metabolites glyceraldehyde or glycolaldehyde was also markedly increased by FeII/H(2)O(2). The protein carbonylation may be attributed to glyoxal formation by hydroxyl radicals as the glyoxal trapping agent aminoguanidine or hydroxyl radical scavengers prevented protein carbonylation. Glyoxal was also much more effective than other carbonyls at causing protein carbonylation. When BSA was replaced by isolated rat hepatocytes, fructose metabolite glyceraldehyde in the presence of non-toxic 2 microM FeII:8-hydroxyquinoline (HQ) and a H(2)O(2) generating system (glucose/glucose oxidase) markedly increased cytotoxicity, protein carbonylation and reactive oxygen species (ROS)/H(2)O(2) formation. Furthermore this was prevented by hydroxyl radical scavengers or aminoguanidine, a glyoxal scavenger. CuII: 8-hydroxyquinoline increased H(2)O(2) induced hepatocyte protein carbonylation less but was prevented by aminoguanidine. However, cytotoxicity and protein carbonylation induced by glyceraldehyde/CuII:HQ/H(2)O(2) were not affected by hydroxyl radical scavengers. Although fatty liver induced by an excessive sugar diet in animal models has been proposed as the first hit for non-alcoholic steatohepatitis (NASH) we propose that oxidative stress induced by the oxidation of fructose or fructose metabolites

  8. The role of hepatic transport and metabolism in the interactions between pravastatin or repaglinide and two rOatp inhibitors in rats.

    PubMed

    Badolo, Lassina; Bundgaard, Christoffer; Garmer, Mats; Jensen, Bente

    2013-07-16

    A change in the function or expression of hepatic drug transporters may have significant effect on the efficacy or safety of orally administered drugs. Although a number of clinical drug-drug interactions associated with hepatic transport proteins have been reported, in practice it is not always straightforward to discriminate other pathways (e.g. drug metabolism) from being involved in these interactions. The present study was designed to assess the interactions between organic anion transporting polypeptide (Oatp) substrates (pravastatin or repaglinide) and inhibitors (spironolactone or diphenhydramine) in vivo in rats. The mechanisms behind the interactions were then investigated using in vitro tools (isolated hepatocytes and rat liver microsomes). The results showed a significant increase in the systemic exposures of pravastatin (2.5-fold increase in AUC) and repaglinide (1.8-fold increase in AUC) after co-administration of spironolactone to rats. Diphenhydramine increased the AUC of repaglinide by 1.4-fold. The in vivo interactions observed in rats between Oatp substrates and inhibitors may a priori be classified as transport-mediated drug-drug interactions. However, mechanistic studies performed in vitro using both isolated rat hepatocytes and rat liver microsomes showed that the interaction between pravastatin and spironolactone may be solely linked to the inhibition of pravastatin uptake in liver. On the contrary, the inhibition of cytochrome P450 seemed to be the reason for the interactions observed between repaglinide and spironolactone. Although the function and structure of transport proteins may vary between rats and humans, the approach used in the present study can be applied to humans and help to understand the role of drug transport and drug metabolism in a given drug-drug interaction. This is important to predict and mitigate the risk of drug-drug interactions for a candidate drug in pre-clinical development, it is also important for the optimal

  9. Physiological Ranges of Matrix Rigidity Modulate Primary Mouse Hepatocyte Function In Part Through Hepatocyte Nuclear Factor 4 Alpha

    PubMed Central

    Desai, Seema S.; Tung, Jason C.; Zhou, Vivian X.; Grenert, James P.; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M.; Chang, Tammy T.

    2016-01-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of hepatic-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150Pa and increased to 1–6kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α) whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase (FAK). In addition, blockade of the Rho/Rho-associated protein kinase (ROCK) pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Conclusion Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/ROCK pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. PMID:26755329

  10. Liver uptake of biguanides in rats.

    PubMed

    Sogame, Yoshihisa; Kitamura, Atsushi; Yabuki, Masashi; Komuro, Setsuko

    2011-09-01

    Metformin is an oral antihyperglycaemic agent widely used in the management of non-insulin-dependent diabetes mellitus. The liver is the primary target, metformin being taken up into human and rat hepatocytes via an active transport mechanism. The present study was designed to compare hepatic uptake of two biguanides, metformin and phenformin, in vitro and in vivo. In in vitro experiments, performed using rat cryopreserved hepatocytes, phenformin exhibited a much higher affinity and transport than metformin, with marked differences in kinetics. The K(m) values for metformin and phenformin were 404 and 5.17μM, respectively, with CLint (V(max)/K(m)) values 1.58μl/min per 10(6) cells and 34.7μl/min per 10(6) cells. In in vivo experiments, when (14)C-metformin and (14)C-phenformin were given orally to male rats at a dose of 50mg/kg, the liver concentrations of radioactivity at 0.5 hour after dosing were 21.5μg eq./g with metformin but 147.1μg eq./g for phenformin, ratios of liver to plasma concentrations being 4.2 and 61.3, respectively. In conclusion, the results suggest that uptake of biguanides by rat hepatocytes is in line with the liver distribution found in vivo, phenformin being more efficiently taken up by liver than metformin after oral administration. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes.

    PubMed Central

    Niculescu, L; Veiga-da-Cunha, M; Van Schaftingen, E

    1997-01-01

    In isolated hepatocytes in suspension, the effect of sorbitol but not that of fructose to increase the concentration of fructose 1-phosphate and to stimulate glucokinase was abolished by 2-hydroxymethyl-4-(4-N,N-dimethylamino-1-piperazino)-pyrimidine (SDI 158), an inhibitor of sorbitol dehydrogenase. In hepatocytes in primary culture, fructose was metabolized at approximately one-quarter of the rate of sorbitol, and was therefore much less potent than the polyol in increasing the concentration of fructose 1-phosphate and the translocation of glucokinase. In cultures, sorbitol, commercial mannitol, fructose, D-glyceraldehyde or high concentrations of glucose caused fructose 1-phosphate formation and glucokinase translocation in parallel. Commercial mannitol was contaminated by approx. 1% sorbitol, which accounted for its effects. The effects of sorbitol, fructose and elevated concentrations of glucose were partly inhibited by ethanol, glycerol and glucosamine. Mannoheptulose increased translocation without affecting fructose 1-phosphate concentration. Kinetic studies performed with recombinant human beta-cell glucokinase indicated that this sugar, in contrast with N-acetylglucosamine, binds to glucokinase competitively with the regulatory protein. All these observations indicate that translocation is promoted by agents that favour the dissociation of the glucokinase-regulatory-protein complex either by binding to the regulatory protein (fructose I-phosphate) or to glucokinase (glucose, mannoheptulose). They support the hypothesis that the regulatory protein of glucokinase acts as an anchor for this enzyme that slows down its release from digitonin-permeabilized cells. PMID:9003425

  12. Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes.

    PubMed

    Niculescu, L; Veiga-da-Cunha, M; Van Schaftingen, E

    1997-01-01

    In isolated hepatocytes in suspension, the effect of sorbitol but not that of fructose to increase the concentration of fructose 1-phosphate and to stimulate glucokinase was abolished by 2-hydroxymethyl-4-(4-N,N-dimethylamino-1-piperazino)-pyrimidine (SDI 158), an inhibitor of sorbitol dehydrogenase. In hepatocytes in primary culture, fructose was metabolized at approximately one-quarter of the rate of sorbitol, and was therefore much less potent than the polyol in increasing the concentration of fructose 1-phosphate and the translocation of glucokinase. In cultures, sorbitol, commercial mannitol, fructose, D-glyceraldehyde or high concentrations of glucose caused fructose 1-phosphate formation and glucokinase translocation in parallel. Commercial mannitol was contaminated by approx. 1% sorbitol, which accounted for its effects. The effects of sorbitol, fructose and elevated concentrations of glucose were partly inhibited by ethanol, glycerol and glucosamine. Mannoheptulose increased translocation without affecting fructose 1-phosphate concentration. Kinetic studies performed with recombinant human beta-cell glucokinase indicated that this sugar, in contrast with N-acetylglucosamine, binds to glucokinase competitively with the regulatory protein. All these observations indicate that translocation is promoted by agents that favour the dissociation of the glucokinase-regulatory-protein complex either by binding to the regulatory protein (fructose I-phosphate) or to glucokinase (glucose, mannoheptulose). They support the hypothesis that the regulatory protein of glucokinase acts as an anchor for this enzyme that slows down its release from digitonin-permeabilized cells.

  13. Antioxidant effect of a fermented powder of Lady Joy bean in primary rat hepatocytes.

    PubMed

    La Marca, Margherita; Pucci, Laura; Bollini, Roberto; Russo, Rossella; Sparvoli, Francesca; Gabriele, Morena; Longo, Vincenzo

    2015-03-01

    The role and beneficial effects of plant and food extracts against various diseases induced by oxidative stress have received much attention in recent years. Legumes are rich in bioactive compounds, and some studies suggest a correlation between their consumption and a reduced incidence of diseases. Primary cultures of rat hepatocytes were used to investigate whether and how an extract obtained from a fermented powder of bean named Lady Joy (Phaseolus vulgaris L.) is able to regulate antioxidant and detoxifying enzymes through the NRF2 pathway, inhibit NF-kB activation, and reduce H2O2-induced endoplasmic reticulum (ER) stress. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by Lady Joy treatment. Western blot showed that Nrf2 was activated by Lady Joy treatment. Also, cells treated with this fermented bean were partially protected against NF-kB activation resulting from H2O2 stress. As a link between oxidative stress and ER dysfunction is hypothesized, we verified whether Lady Joy was able to protect cells from H2O2-induced ER stress, by studying the response of the proteins CHOP, BiP and caspase 12. The results of this study show that Lady Joy can induce the Nrf2 pathway, inhibit NF-kB, and protect ER from stress induced by H2O2.

  14. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha.

    PubMed

    Desai, Seema S; Tung, Jason C; Zhou, Vivian X; Grenert, James P; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M; Chang, Tammy T

    2016-07-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275). © 2016 by the American Association for the Study of Liver Diseases.

  15. Cannabinoid HU210 Protects Isolated Rat Stomach against Impairment Caused by Serum of Rats with Experimental Acute Pancreatitis

    PubMed Central

    Cao, Ming-hua; Li, Yong-yu; Xu, Jing; Feng, Ya-jing; Lin, Xu-hong; Li, Kun; Han, Tong; Chen, Chang-Jie

    2012-01-01

    Acute pancreatitis (AP), especially severe acute pancreatitis often causes extra-pancreatic complications, such as acute gastrointestinal mucosal lesion (AGML) which is accompanied by a considerably high mortality, yet the pathogenesis of AP-induced AGML is still not fully understood. In this report, we investigated the alterations of serum components and gastric endocrine and exocrine functions in rats with experimental acute pancreatitis, and studied the possible contributions of these alterations in the pathogenesis of AGML. In addition, we explored the intervention effects of cannabinoid receptor agonist HU210 and antagonist AM251 on isolated and serum-perfused rat stomach. Our results showed that the AGML occurred after 5 h of AP replication, and the body homeostasis was disturbed in AP rat, with increased levels of pancreatic enzymes, lipopolysaccharide (LPS), proinflammtory cytokines and chemokines in the blood, and an imbalance of the gastric secretion function. Perfusing the isolated rat stomach with the AP rat serum caused morphological changes in the stomach, accompanied with a significant increment of pepsin and [H+] release, and increased gastrin and decreased somatostatin secretion. HU210 reversed the AP-serum-induced rat pathological alterations, including the reversal of transformation of the gastric morphology to certain degree. The results from this study prove that the inflammatory responses and the imbalance of the gastric secretion during the development of AP are responsible for the pathogenesis of AGML, and suggest the therapeutic potential of HU210 for AGML associated with acute pancreatitis. PMID:23285225

  16. Effects of silver nanoparticles on the liver and hepatocytes in vitro.

    PubMed

    Gaiser, Birgit K; Hirn, Stephanie; Kermanizadeh, Ali; Kanase, Nilesh; Fytianos, Kleanthis; Wenk, Alexander; Haberl, Nadine; Brunelli, Andrea; Kreyling, Wolfgang G; Stone, Vicki

    2013-02-01

    With the increasing use and incorporation of nanoparticles (NPs) into consumer products, screening for potential toxicity is necessary to ensure customer safety. NPs have been shown to translocate to the bloodstream following inhalation and ingestion, and such studies demonstrate that the liver is an important organ for accumulation. Silver (Ag) NPs are highly relevant for human exposure due to their use in food contact materials, dietary supplements, and antibacterial wound treatments. Due to the large number of different NPs already used in various products and being developed for new applications, it is essential that relevant, quick, and cheap methods of in vitro risk assessment suitable for these new materials are established. Therefore, this study used a simple hepatocytes model combined with an in vivo injection model to simulate the passage of a small amount of NPs into the bloodstream following exposure, e.g., via ingestion or inhalation, and examined the potential of Ag NPs of 20 nm diameter to cause toxicity, inflammation, and oxidative stress in the liver following in vivo exposures of female Wistar rats via iv injection to 50 μg of NPs and in vitro exposures using the human hepatocyte cell line C3A. We found that Ag NPs were highly cytotoxic to hepatocytes (LC(50) lactate dehydrogenase: 2.5 μg/cm(2)) and affected hepatocyte homeostasis by reducing albumin release. At sublethal concentrations with normal cell or tissue morphology, Ag NPs were detected in cytoplasm and nuclei of hepatocytes. We observed similar effects of Ag NPs on inflammatory mediator expression in vitro and in vivo with increase of interleukin-8 (IL-8)/macrophage inflammatory protein 2, IL-1RI, and tumor necrosis factor-α expression in both models and increased IL-8 protein release in vitro. This article presents evidence of the potential toxicity and inflammogenic potential of Ag NPs in the liver following ingestion. In addition, the similarities between in vitro and in vivo

  17. Experimental Type 2 Diabetes Induces Enzymatic Changes in Isolated Rat Enterocytes

    PubMed Central

    Martínez, Isabel M.; Morales, Inmaculada; García-Pino, Guadalupe; Campillo, José E.

    2003-01-01

    Diabetes in humans and in experimental animals produces changes in the function and structure of the small intestine. The authors determined the activity of intestinal disaccharidases (maltase and sucrase) and of 6-phosphofructo-1-kinase (PFK-1) in enterocytes isolated from the small intestine of male Wistar rats (2.5 to 3 months old) with experimental nonobese type 2 diabetes, induced by streptozotocin (STZ) injection on the day of birth (n0-STZ) or on the 5th day of life (n5-STZ), with different degrees of hyperglycemia and insulinemia (n0-STZ and n5-STZ models). The glycemia (mmol/L) of the diabetic rats (n0-STZ: 8.77 ± 0.47; n5-STZ: 20.83 ± 0.63) was higher (P < .01) than that of the nondiabetic (ND) rats (5.99 ± 0.63); on the contrary, the insulinemia (ng/mL) was significantly lower in both n0-STZ (1.74 ± 0.53; P < .05) and n5-STZ (1.12 ± 0.44; P < .01) diabetic rats than in normal rats (3.77 ± 0.22). The sucrase and maltase activities (U/g protein) in diabetic rats (n0-STZ: 89 ± 9 and 266 ± 12; n5-STZ: 142 ± 23 and 451 ± 57) were significantly higher than those in the ND group (66 ± 5 and 228 ± 22). The PFK-1 activities (mU/mg protein) in the diabetic models (n0-STZ: 14.89 ± 1.51; n5-STZ: 13.35 ± 3.12) were significantly lower (P < .05) than in ND rats (20.54 ± 2.83). The data demonstrated enzymatic alterations in enterocytes isolated fromthe small intestine of n0-STZ rats that are greater (P < .05) than in the more hyperglycemic and hypoinsulinemic n5-STZ animals. The results also show that nonobese type 2–like diabetes in the rat produces modifications that favor an increase in glucose absorption rates. PMID:14630573

  18. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes

    PubMed Central

    Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T.; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A.; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W.; Malik, Hassan; Kitteringham, Neil R.; Goldring, Chris E.; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A.

    2015-01-01

    Background & Aims Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Methods Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. Results HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. Conclusions HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. PMID:25457200

  19. A fat option for the pig: Hepatocytic differentiated mesenchymal stem cells for translational research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de; Tautenhahn, Hans-Michael, E-mail: hans-michael.tautenhahn@medizin.uni-leipzig.de; TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103

    Study background: Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention inmore » the pig model. Methods: Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. Results: MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. Conclusion: The

  20. Differential Regulation of Gene Expression by Cholesterol Biosynthesis Inhibitors That Reduce (Pravastatin) or Enhance (Squalestatin 1) Nonsterol Isoprenoid Levels in Primary Cultured Mouse and Rat Hepatocytes

    PubMed Central

    Rondini, Elizabeth A.; Duniec-Dmuchowski, Zofia; Cukovic, Daniela; Dombkowski, Alan A.

    2016-01-01

    Squalene synthase inhibitors (SSIs), such as squalestatin 1 (SQ1), reduce cholesterol biosynthesis but cause the accumulation of isoprenoids derived from farnesyl pyrophosphate (FPP), which can modulate the activity of nuclear receptors, including the constitutive androstane receptor (CAR), farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs). In comparison, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (e.g., pravastatin) inhibit production of both cholesterol and nonsterol isoprenoids. To characterize the effects of isoprenoids on hepatocellular physiology, microarrays were used to compare orthologous gene expression from primary cultured mouse and rat hepatocytes that were treated with either SQ1 or pravastatin. Compared with controls, 47 orthologs were affected by both inhibitors, 90 were affected only by SQ1, and 51 were unique to pravastatin treatment (P < 0.05, ≥1.5-fold change). When the effects of SQ1 and pravastatin were compared directly, 162 orthologs were found to be differentially coregulated between the two treatments. Genes involved in cholesterol and unsaturated fatty acid biosynthesis were up-regulated by both inhibitors, consistent with cholesterol depletion; however, the extent of induction was greater in rat than in mouse hepatocytes. SQ1 induced several orthologs associated with microsomal, peroxisomal, and mitochondrial fatty acid oxidation and repressed orthologs involved in cell cycle regulation. By comparison, pravastatin repressed the expression of orthologs involved in retinol and xenobiotic metabolism. Several of the metabolic genes altered by isoprenoids were inducible by a PPARα agonist, whereas cytochrome P450 isoform 2B was inducible by activators of CAR. Our findings indicate that SSIs uniquely influence cellular lipid metabolism and cell cycle regulation, probably due to FPP catabolism through the farnesol pathway. PMID:27225895