Science.gov

Sample records for isolated rat ventricular

  1. Calcium current in isolated neonatal rat ventricular myocytes.

    PubMed Central

    Cohen, N M; Lederer, W J

    1987-01-01

    1. Calcium currents (ICa) from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the 'whole-cell' voltage-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Examination of ICa was limited to one calcium channel type, 'L' type (Nilius, Hess, Lansman & Tsien, 1985), by appropriate voltage protocols. 2. We measured transient and steady-state components of ICa, and could generally describe ICa in terms of the steady-state activation (d infinity) and inactivation (f infinity) parameters. 3. We observed that the reduction of ICa by the calcium channel antagonist D600 can be explained by both a shift of d infinity to more positive potentials as well as a slight reduction of ICa conductance. D600 did not significantly alter either the rate of inactivation of ICa or the voltage dependence of f infinity. 4. The calcium channel modulator BAY K8644 shifted both d infinity and f infinity to more negative potentials. Additionally, BAY K8644 increased the rate of inactivation at potentials between +5 and +55 mV. Furthermore, BAY K8644 also increased ICa conductance, a change consistent with a promotion of 'mode 2' calcium channel activity (Hess, Lansman & Tsien, 1984). 5. We conclude that, as predicted by d infinity and f infinity, there is a significant steady-state component of ICa ('window current') at plateau potentials in neonatal rat heart cells. Modulation of the steady-state and transient components of ICa by various agents can be attributed both to specific alterations in d infinity and f infinity and to more complicated alterations in the mode of calcium channel activity. PMID:2451004

  2. The effect of hexane on the ventricular fibrillation threshold of the isolated perfused rat heart.

    PubMed

    Khedun, S M; Maharaj, B; Leary, W P; Lockett, C J

    1992-01-01

    This investigation was conducted to determine the influence of hexane on the ventricular fibrillation threshold of the isolated perfused rat heart and myocardial electrolyte levels. Ventricular fibrillation threshold was measured using the Langendorff perfusion apparatus. Heart rate was measured by a universal digital counter and the cardiac flow by collecting the outflow of the heating chamber below the heart into a graduated measuring cylinder. Magnesium and zinc were measured by atomic absorption spectrophotometry and potassium by flame photometry. Two groups of rats were studied; those in the experimental group were given 0.2 ml of hexane and the control group 0.2 ml olive oil subcutaneously for 90 days. Their hearts were removed under anaesthesia. Half of the experimental and control hearts were mounted on the Langendorff perfusion apparatus and the heart rate, coronary flow and ventricular fibrillation threshold were measured. The hearts of the other half were used to measure myocardial electrolyte levels. In the experimental group the ventricular fibrillation threshold decreased (4.72 (S.D. +/- 1.87) vs 9.48 (S.D. +/- 2.98); P less than 0.001). There was no change in the coronary flow and heart rate in between the groups. The mean myocardial potassium levels (2586 (S.D. +/- 162) vs 2968 (S.D. +/- 218) micrograms/g; P less than 0.001), magnesium levels (164 (S.D. +/- 28) vs 208 (S.D. +/- 18) micrograms/g; P less than 0.001) and zinc levels (19.6 (S.D. +/- 4) vs 33.8 (S.D. +/- 6.8) micrograms/g; P less than 0.001) were significantly lower in the hexane-treated group compared to controls. Hexane, a constituent of glue and benzine, is cardiotoxic; marked derangement in myocardial electrolytes and a reduced ventricular fibrillation threshold, indicating an increased myocardial vulnerability to arrhythmias, was noted in the experimental animals. PMID:1729763

  3. Pharmacological inhibition of IK1 by PA-6 in isolated rat hearts affects ventricular repolarization and refractoriness.

    PubMed

    Skarsfeldt, Mark A; Carstensen, Helena; Skibsbye, Lasse; Tang, Chuyi; Buhl, Rikke; Bentzen, Bo H; Jespersen, Thomas

    2016-04-01

    The inwardly rectifying potassium current (IK 1) conducted through Kir2.X channels contribute to repolarization of the cardiac action potential and to stabilization of the resting membrane potential in cardiomyocytes. Our aim was to investigate the effect of the recently discovered IK 1 inhibitor PA-6 on action potential repolarization and refractoriness in isolated rat hearts. Transiently transfected HEK-293 cells expressing IK 1 were voltage-clamped with ramp protocols. Langendorff-perfused heart experiments were performed on male Sprague-Dawley rats, effective refractory period, Wenckebach cycle length, and ventricular effective refractory period were determined following 200 nmol/L PA-6 perfusion. 200 nmol/L PA-6 resulted in a significant time-latency in drug effect on the IK 1 current expressed in HEK-293 cells, giving rise to a maximal effect at 20 min. In the Langendorff-perfused heart experiments, PA-6 prolonged the ventricular action potential duration at 90% repolarization (from 41.8 ± 6.5 msec to 72.6 ± 21.1 msec, 74% compared to baseline, P < 0.01, n = 6). In parallel, PA-6 significantly prolonged the ventricular effective refractory period compared to baseline (from 34.8 ± 4.6 msec to 58.1 ± 14.7 msec, 67%, P < 0.01, n = 6). PA-6 increased the short-term beat-to-beat variability and ventricular fibrillation was observed in two of six hearts. Neither atrial ERP nor duration of atrial fibrillation was altered following PA-6 application. The results show that pharmacological inhibition of cardiac IK 1 affects ventricular action potential repolarization and refractoriness and increases the risk of ventricular arrhythmia in isolated rat hearts. PMID:27117805

  4. Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes.

    PubMed Central

    Bouchard, R A; Clark, R B; Giles, W R

    1993-01-01

    1. Regulation of unloaded cell shortening and relaxation by sarcolemmal Na(+)-Ca2+ exchange was investigated in rat ventricular myocytes. Contraction of single cells at 22 +/- 1 degrees C was measured simultaneously with membrane current and voltage using the whole-cell voltage clamp technique in combination with a video edge-detection device. 2. The extent of mechanical activation (cell shortening amplitude) was strongly dependent on diastolic membrane potential over the voltage range -140 to -50 mV. This voltage sensitivity of contraction was abolished completely when a recently described inhibitory peptide of the cardiac Na(+)-Ca2+ exchanger (XIP, 2 x 10(-5) M) was present in the recording pipette, demonstrating that in rat ventricular cells Na(+)-Ca2+ exchange is modulated by diastolic membrane potential. 3. Possible influences of Na(+)-Ca2+ exchange on contraction were studied from a holding potential of -80 mV. Depolarizations (-50 to +60 mV) resulted in a bell-shaped shortening-voltage (S-V) relationship. These contractions were suppressed completely by either Cd2+ (10(-4) M) or verapamil (10(-5) M), but remained unchanged during superfusion with tetrodotoxin (TTX, 1.5 x 10(-5) M), when [NA+]o was reduced from 140 to 10 mM by substitution with either Li+ or Cs+ ions or when pipette Na+ was varied between 8 and 13 mM. XIP (2 x 10(-5) M) increased the magnitude and duration of twitch contractions, but had no effect on the shape of the S-V relationship. Thus, the Ca2+ current but not the Na+ current or Ca2+ influx due to reversed Na(+)-Ca2+ exchange can release Ca2+ from the sarcoplasmic reticulum (SR) under these experimental conditions. 4. The effect of the rate of repolarization on cell shortening was studied under voltage clamp by applying ramp waveforms immediately following the depolarizations which activated contraction. Although slowing of the rate of repolarization had no effect on the first contraction following a train of conditioning depolarizations

  5. Characterization and agonist regulation of muscarinic ([3H]N-methyl scopolamine) receptors in isolated ventricular myocytes from rat.

    PubMed

    Horackova, M; Robinson, B; Wilkinson, M

    1990-11-01

    Cell surface muscarinic cholinergic receptors have been characterized and quantified for the first time, in intact, isolated adult rat cardiomyocytes. The cells were previously established as functionally fully compatible with cellular responses in intact cardiac tissue. The specific binding of the hydrophilic radioligand, [3H]-NMS, (N-methyl-[3H]-scopolamine methylchloride) was found to be stereo-specific, saturable, reversible and of high affinity. Binding of [3H]-NMS demonstrated appropriate drug specificity and was positively correlated with increasing cell concentrations. Bmax for [3H]-NMS binding to ventricular myocytes, enzymatically dissociated from adult male rats, was 15.8 +/- 1.03 fmol/25 x 10(3) cells (at 4 degrees C) and KD was 0.27 +/- 0.05 nM (n = 14). Binding assays performed at a higher incubation temperature (30 degrees C) yielded a higher Bmax value (22.1 +/- 1.6 fmol/25 x 10(3) cells; n = 11; P less than 0.005 vs. Bmax at 4 degrees C) but an unchanged KD (0.23 +/- 0.06 nM). Pretreatment of myocytes with the muscarinic agonist carbachol (1 mM) at 37 degrees C resulted in a reduction (down-regulation) in specific binding of the hydrophilic ligand [3H]-NMS. The magnitude of this reduction and its rate of recovery were dependent on the time of the exposure to carbachol. Exposures of 30-60 min elicited down-regulated by 35% (Bmax = 14.29 +/- 1.66 changed to 9.5 +/- 1.79 fmol/25 x 10(3) cells, without change in KD P less than 0.01, n = 4). The down-regulation of the muscarinic receptors by carbachol was insensitive to application of bacitracin - an inhibitor of endocytosis. On the other hand preincubation with 10(-9)M atropine, a muscarinic antagonist, hindered the agonist-induced receptor "loss" from the cell surface confirming the muscarinic nature of these receptors. We conclude that our preparation of intact, isolated ventricular cardiomyocytes is ideally suited for the study of cell surface muscarinic receptor regulation under physiological and

  6. Mechanism of extracellular ATP-induced increase of cytosolic Ca2+ concentration in isolated rat ventricular myocytes.

    PubMed Central

    Christie, A; Sharma, V K; Sheu, S S

    1992-01-01

    1. Changes in the cytosolic Ca2+ concentration ([Ca2+]i) of isolated rat ventricular myocytes in suspension were measured in response to extracellular ATP using the fluorescent Ca2+ indicators Quin-2 and Fura-2. 2. ATP produced a concentration-, time- and Mg(2+)-dependent, biphasic increase of [Ca2+]i whereas slowly hydrolysable ATP analogues produced a slow, monophasic increase of [Ca2+]i and the non-hydrolysable ATP analogues were without effect. 3. Extracellular Ca2+ was required for the ATP-induced increase of [Ca2+]i and pre-treatment of the cells with caffeine, ryanodine, verapamil or nimodipine partially inhibited the [Ca2+]i increase. 4. Whole-cell patch-clamp experiments revealed that ATP activated an ionic current that had a linear current-voltage relationship with a reversal potential near O mV. Quinidine, a putative P2 purinergic receptor blocker, abolished the ATP-activated current. The ATP-activated current was Mg2+ dependent. 5. Associated with the ATP-activated current was cellular depolarization. In a physiological solution, ATP depolarized cells to the threshold for the firing of action potentials. In the presence of the voltage-activated ion channel blockers tetrodotoxin, 4-aminopyridine, caesium and nitrendipine, ATP depolarized cells to -44 +/- 6 mV from a resting potential of -66 +/- 4 mV (n = 11). 6. Sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis and autoradiography demonstrated that extracellular ATP stimulated the phosphorylation of several extracellular membrane-bound proteins. The phosphorylation of these proteins was concentration, time and Mg2+ dependent. Pre-treatment of cells with the slowly hydrolysable ATP analogues inhibited the ATP-induced phosphorylation. Adenosine 5'-O-3-thiotriphosphate (ATP gamma S) thiophosphorylated proteins with the same apparent molecular weight as the proteins phosphorylated by ATP. 7. These results suggest that the ATP-induced increase of [Ca2+]i is a result of the activation, possibly

  7. Protection against cardiac anoxia--role and limitations of increased glycogen reserves in the isolated rat right ventricular strip.

    PubMed

    Towart, R; Schlossmann, K; Kazda, S

    1981-01-01

    The effects of drugs on rat cardiac glycogen reserves in vivo, and on the subsequent in vitro sensitivity of the right ventricular strip preparation to anoxia have been investigated. Isoproterenol (0.2 mg/kg i.p.) causes immediate cardiac stimulation and reduction of glycogen reserves, coupled with an increased susceptibility to anoxia. Several hours after administration, glycogen levels are found to be greatly (100-200%) increased, by a "supercompensation" mechanism, and a marked tolerance to anoxia can be simultaneously demonstrated. In contrast, large doses of corticosteroids (dexamethasone, 8 mg/kg i.m.) increase glycogen levels without initial stimulation and glycogen depletion; increased myocardial tolerance to anoxia parallels the increase in glycogen reserves in vivo. We conclude that the myocardial tolerance to anoxia in this model is related to increased glycogen reserves, which increase the rate and/or duration of anaerobic glycolysis during anoxia. PMID:7332516

  8. Dietary pre-exposure of rats to fish oil does not enhance myocardial efficiency of isolated working hearts or their left ventricular trabeculae

    PubMed Central

    Goo, Soyeon; Han, June-Chiew; Nisbet, Linley A; LeGrice, Ian J; Taberner, Andrew J; Loiselle, Denis S

    2014-01-01

    Numerous epidemiological studies, supported by clinical and experimental findings, have suggested beneficial effects of dietary fish or fish oil supplementation on cardiovascular health. One such experimental study showed a profound (100%) increase in myocardial efficiency (i.e. the ratio of work output to metabolic energy input) of the isolated whole heart, achieved by a corresponding decrease in the rate of myocardial oxygen consumption. However, a number of other investigations have returned null results on the latter energetic index. Such conflicting findings have motivated us to undertake a re-examination. To that effect, we investigated the effects of dietary fatty acid supplementation on myocardial mechano–energetics, with our primary focus on cardiac efficiency. We used both isolated hearts and isolated left ventricular trabeculae of rats fed with one of three distinct diets: reference (REF), fish oil-supplemented (FO) or saturated fat-supplemented (SFA). For all three groups, and at both spatial levels, we supplied 10 mm glucose as the exogenous metabolic substrate. In the working heart experiments, we found no difference in the average mechanical efficiency among the three dietary groups: 14.8 ± 1.1% (REF), 13.9 ± 0.6% (FO) and 13.6 ± 0.7% (SFA). Likewise, we observed no difference in peak mechanical efficiency of left ventricular trabeculae among the REF, FO and SFA groups: 13.3 ± 1.4, 11.2 ± 2.2 and 12.5 ± 1.5%, respectively. We conclude that there is no effect of a period of pre-exposure to a diet supplemented with either fish oil or saturated fatty acids on the efficiency of the myocardium at either spatial level: tissue or whole heart. PMID:24535444

  9. [Isolated left ventricular noncompaction causing refractory heart failure].

    PubMed

    Meneguz-Moreno, Rafael Alexandre; Rodrigues da Costa Teixeira, Felipe; Rossi Neto, João Manoel; Finger, Marco Aurélio; Casadei, Carolina; Castillo, Maria Teresa; Sanchez de Almeida, Antonio Flávio

    2016-03-01

    Left ventricular noncompaction is a rare congenital anomaly characterized by excessive left ventricular trabeculation, deep intertrabecular recesses and a thin compacted layer due to the arrest of compaction of myocardial fibers during embryonic development. We report the case of a young patient with isolated left ventricular noncompaction, leading to refractory heart failure that required extracorporeal membrane oxygenation followed by emergency heart transplantation. PMID:26928017

  10. Effects of the Selective Stretch-Activated Channel Blocker GsMtx4 on Stretch-Induced Changes in Refractoriness in Isolated Rat Hearts and on Ventricular Premature Beats and Arrhythmias after Coronary Occlusion in Swine

    PubMed Central

    Barrabés, José A.; Inserte, Javier; Agulló, Luis; Rodríguez-Sinovas, Antonio; Alburquerque-Béjar, Juan J.; Garcia-Dorado, David

    2015-01-01

    Mechanical factors may contribute to ischemic ventricular arrhythmias. GsMtx4 peptide, a selective stretch-activated channel blocker, inhibits stretch-induced atrial arrhythmias. We aimed to assess whether GsMtx4 protects against ventricular ectopy and arrhythmias following coronary occlusion in swine. First, the effects of 170-nM GsMtx4 on the changes in the effective refractory period (ERP) induced by left ventricular (LV) dilatation were assessed in 8 isolated rat hearts. Then, 44 anesthetized, open-chest pigs subjected to 50-min left anterior descending artery occlusion and 2-h reperfusion were blindly allocated to GsMtx4 (57 μg/kg iv. bolus and 3.8 μg/kg/min infusion, calculated to attain the above concentration in plasma) or saline, starting 5-min before occlusion and continuing until after reflow. In rat hearts, LV distension induced progressive reductions in ERP (35±2, 32±2, and 29±2 ms at 0, 20, and 40 mmHg of LV end-diastolic pressure, respectively, P<0.001) that were prevented by GsMTx4 (33±2, 33±2, and 32±2 ms, respectively, P=0.002 for the interaction with LV end-diastolic pressure). Pigs receiving GsMtx4 had similar number of ventricular premature beats during the ischemic period as control pigs (110±28 vs. 103±21, respectively, P=0.842). There were not significant differences among treated and untreated animals in the incidence of ventricular fibrillation (13.6 vs. 22.7%, respectively, P=0.696) or tachycardia (36.4 vs. 50.0%, P=0.361) or in the number of ventricular tachycardia episodes during the occlusion period (1.8±0.7 vs. 5.5±2.6, P=0.323). Thus, GsMtx4 administered under these conditions does not suppress ventricular ectopy following coronary occlusion in swine. Whether it might protect against malignant arrhythmias should be tested in studies powered for these outcomes. PMID:25938516

  11. Resveratrol reduces intracellular free calcium concentration in rat ventricular myocytes.

    PubMed

    Liu, Zheng; Zhang, Li-Ping; Ma, Hui-Jie; Wang, Chuan; Li, Ming; Wang, Qing-Shan

    2005-10-25

    Resveratrol (trans-3, 4', 5-trihydroxy stilbene), a phytoalexin found in grape skins and red wine, has been reported to have a wide range of biological and pharmacological properties. It has been speculated that resveratrol may have cardioprotective activity. The objective of our study was to investigate the effects of resveratrol on intracellular calcium concentration ([Ca(2+)](i)) in rat ventricular myocytes. [Ca(2+)](i) was detected by laser scanning confocal microscopy. The results showed that resveratrol (15~60 mumol/L) reduced [Ca(2+)](i) in normal and Ca(2+)-free Tyrode's solution in a concentration-dependent manner. The effects of resveratrol on [Ca(2+)](i) in normal Tyrode's solution was partially inhibited by pretreatment with sodium orthovanadate (Na3VO4, 1.0 mmol/L, P<0.01), an inhibitor of protein tyrosine phosphatase, or L-type Ca(2+) channel agonist Bay K8644 (10 mumol/L, P<0.05), but could not be antagonized by NO synthase inhibitor L-NAME (1.0 mmol/L). Resveratrol also markedly inhibited the ryanodine-induced [Ca(2+)](i) increase in Ca(2+)-free Tyrode's solution (P<0.01). When Ca(2+) waves were produced by increasing extracellular Ca(2+) concentration from 1 to 10 mmol/L, resveratrol (60 mumol/L) could reduce the velocity and duration of propagating waves, and block the propagating waves of elevated [Ca(2+)](i). These results suggest that resveratrol may reduce the [Ca(2+)](i) in isolated rat ventricular myocytes. The inhibition of voltage-dependent Ca(2+) channel and tyrosine kinase, and alleviation of Ca(2+) release from sarcoplasmic reticulum (SR) are possibly involved in the effects of resveratrol on rat ventricular myocytes. These findings could help explain the protective activity of resveratrol against cardiovascular disease. PMID:16220198

  12. Calcium-sensing receptor induces rat neonatal ventricular cardiomyocyte apoptosis

    SciTech Connect

    Sun Yihua; Liu Meina; Li Hong; Shi Sa; Zhao Yajun; Wang Rui; Xu Changqing . E-mail: syh200415@yahoo.com.cn

    2006-12-01

    The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, Physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (GdCl{sub 3}) in rat neonatal ventricular cardiomyocytes. Expression of the CaSR protein was observed by Western blot. The apoptotic ratio of rat neonatal ventricular cardiomyocytes was measured with flow cytometry and immunofluorescence techniques. A laser scan confocal microscope was used to detect the intracellular concentration of calcium ([Ca{sup 2+}]{sub i}) in rat neonatal ventricular cardiomyocytes using the acetoxymethyl ester of fluo-3 (fluo-3/(AM)) as a fluorescent dye. The results showed that GdCl{sub 3} increased the phosphorylation of extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal protein kinases (JNK), and p38. GdCl{sub 3} also activated caspase 9 and increased apoptosis in myocyte by increasing [Ca{sup 2+}]{sub i}. In conclusion, these results suggest that CaSR promotes cardiomyocyte apoptosis in rat neonatal ventricular cardiomyocytes through activation of mitogen-activated protein kinases and caspase 9 signaling pathways.

  13. Isolated right ventricular infarction: a diagnostic challenge.

    PubMed

    Vieira, Catarina; Santa Cruz, Andre; Arantes, Carina; Rocha, Sérgia

    2016-01-01

    A 73-year-old woman was admitted to the emergency room due to sudden-onset dyspnoea, altered mental status and haemodynamic instability. ECG showed a junctional rhythm, T-wave inversion in I, aVL and V2-V6 (present in a previous ECG), and no ST/T changes in the right precordial leads. Transthoracic echocardiography, however, revealed a severe depression of global systolic function of right ventricle with akinesia of free wall and a normal left ventricular function. Coronary angiography showed an occlusion of the proximal segment of the right coronary artery, which was treated with balloon angioplasty, and a chronic lesion of the anterior descending artery. The patient had a good recovery and was discharged on the 14th day. Myocardial perfusion scintigraphy (stress and rest) was performed a month later, showing a fixed perfusion defect in the apex and anterior wall (medium-apical), with no signs of ischaemia. PMID:27143166

  14. Dual Endothelin Receptor Blockade Abrogates Right Ventricular Remodeling and Biventricular Fibrosis in Isolated Elevated Right Ventricular Afterload

    PubMed Central

    Nielsen, Eva Amalie; Sun, Mei; Honjo, Osami; Hjortdal, Vibeke E.; Redington, Andrew N.; Friedberg, Mark K.

    2016-01-01

    Background Pulmonary arterial hypertension is usually fatal due to right ventricular failure and is frequently associated with co-existing left ventricular dysfunction. Endothelin-1 is a powerful pro-fibrotic mediator and vasoconstrictor that is elevated in pulmonary arterial hypertension. Endothelin receptor blockers are commonly used as pulmonary vasodilators, however their effect on biventricular injury, remodeling and function, despite elevated isolated right ventricular afterload is unknown. Methods Elevated right ventricular afterload was induced by progressive pulmonary artery banding. Seven rabbits underwent pulmonary artery banding without macitentan; 13 received pulmonary artery banding + macitentan; and 5 did not undergo inflation of the pulmonary artery band (sham-operated controls). Results: Right and left ventricular collagen content was increased with pulmonary artery banding compared to sham-operated controls and ameliorated by macitentan. Right ventricular fibrosis signaling (connective tissue growth factor and endothelin-1 protein levels); extra-cellular matrix remodeling (matrix-metalloproteinases 2 and 9), apoptosis and apoptosis-related peptides (caspases 3 and 8) were increased with pulmonary artery banding compared with sham-operated controls and decreased with macitentan. Conclusion Isolated right ventricular afterload causes biventricular fibrosis, right ventricular apoptosis and extra cellular matrix remodeling, mediated by up-regulation of endothelin-1 and connective tissue growth factor signaling. These pathological changes are ameliorated by dual endothelin receptor blockade despite persistent elevated right ventricular afterload. PMID:26765263

  15. Effects of carvedilol on left ventricular function, mass, and scintigraphic findings in isolated left ventricular non-compaction

    PubMed Central

    Toyono, M; Kondo, C; Nakajima, Y; Nakazawa, M; Momma, K; Kusakabe, K

    2001-01-01

    A four month old infant with isolated left ventricular non-compaction was treated with carvedilol. Haemodynamic studies and various types of imaging—including echocardiography, radiographic angiography, magnetic resonance imaging, and single photon emission computed tomography with 201Tl, 123I-β-methyliodophenylpentadecanoic acid (BMIPP), and 123I-metaiodobenzylguanidine (MIBG)—were performed before and 14 months after treatment. Left ventricular ejection fraction increased from 30% to 57%, and left ventricular end diastolic volume, end systolic volume, and end diastolic pressure showed striking reductions during treatment. Left ventricular mass decreased to about two thirds of the baseline value after treatment. Per cent wall thickening increased after carvedilol in the segments corresponding to non-compacted myocardium. A mismatch between 201Tl and BMIPP uptake in the area of non-compaction observed before carvedilol disappeared after treatment. Impaired sympathetic neuronal function shown by MIBG recovered after treatment. Thus carvedilol had beneficial effects on left ventricular function, hypertrophy, and both metabolic and adrenergic abnormalities in isolated left ventricular non-compaction.


Keywords: isolated left ventricular non-compaction; carvedilol; cardiac sympathetic nerve; ventricular remodelling PMID:11410581

  16. Cardiac Muscle Studies with Rat Ventricular Strips

    ERIC Educational Resources Information Center

    Whitten, Bert K.; Faleschini, Richard J.

    1977-01-01

    Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…

  17. Protective effect of atrial natriuretic peptide on electrical-field-stimulated rat ventricular strips during hypoxia.

    PubMed

    Ljusegren, M E; Andersson, R G

    1994-12-01

    We have previously shown that atrial natriuretic peptide reduces lactate accumulation in non-beating rat ventricular myocardium exposed to hypoxic conditions, and that hypoxia induces release of atrial natriuretic peptide from isolated rat atrial tissue. In these studies we suggested that atrial natriuretic peptide may be physiologically important for protection of the myocardium during periods of oxygen deficit. In the present study, we used isolated strips of rat right ventricle, contracted by electrical-field-stimulation, as a model of a beating myocardium. After contraction stabilization, hypoxic conditions were introduced through aeration with 20% O2, held for 20 or 30 min., and then interrupted by reoxygenation with 95% O2. The contractile force was recorded and the percentage regain of the contractions after reoxygenation was considered as an indication of the amount of cell damage induced during the period of hypoxia. The results show that after 30 min. of hypoxia and subsequent reoxygenation, ventricular strips treated with atrial natriuretic peptide (0.1 microM) recovered 67.9 +/- 2.8% of the prehypoxic force of contraction; control strips from the same ventricle regained 44.9 +/- 4.4% (P = 0.015) of their initial contractile activity. After 20 min. of hypoxia followed by reoxygenation, a ventricular strip incubated together with an atrium regained 78.6 +/- 2.4% of the prehypoxic force of contraction as compared to a 60.2 +/- 2.7% regain (P = 0.002) for the control strip. We conclude that atrial natriuretic peptide protects the working ventricular myocardium during hypoxia, which further supports our previously reported suggestion that the effect on myocardial metabolism is physiologically relevant during situations of oxygen deficit in heart muscle. PMID:7899254

  18. l-Arginine currents in rat cardiac ventricular myocytes

    PubMed Central

    Peluffo, R Daniel

    2007-01-01

    l-Arginine (l-Arg) is a basic amino acid that plays a central role in the biosynthesis of nitric oxide, creatine, agmantine, polyamines, proline and glutamate. Most tissues, including myocardium, must import l-Arg from the circulation to ensure adequate intracellular levels of this amino acid. This study reports novel l-Arg-activated inward currents in whole-cell voltage-clamped rat ventricular cardiomyocytes. Ion-substitution experiments identified extracellular l-Arg as the charge-carrying cationic species responsible for these currents, which, thus, represent l-Arg import into cardiac myocytes. This result was independently confirmed by an increase in myocyte nitric oxide production upon extracellular application of l-Arg. The inward movement of Arg molecules was found to be passive and independent of Na2+, K2+, Ca2+ and Mg2+. The process displayed saturation and membrane potential (Vm)-dependent kinetics, with a K0.5 for l-Arg that increased from 5 mm at hyperpolarizing Vm to 20 mm at +40 mV. l-Lysine and l-ornithine but not d-Arg produced currents with characteristics similar to that activated by l-Arg indicating that the transport process is stereospecific for cationic l-amino acids. l-Arg current was fully blocked after brief incubation with 0.2 mmN-ethylmaleimide. These features suggest that the activity of the low-affinity, high-capacity CAT-2A member of the y2+ family of transporters is responsible for l-Arg currents in acutely isolated cardiomyocytes. Regardless of the mechanism, we hypothesize that a low-affinity arginine transport process in heart, by ensuring substrate availability for sustained NO production, might play a cardio-protective role during catabolic states known to increase Arg plasma levels severalfold. PMID:17303641

  19. Isolated Left Ventricular Hypoplasia in a Postpartum Patient.

    PubMed

    Ding, Wern Yew; Meah, Mohammed; Rao, Archana; Fairbairn, Timothy; Hasleton, Jonathan

    2016-06-01

    A 22-year-old woman presented with lethargy and shortness of breath at 13 weeks postpartum. She was clinically tachypnoeic with signs of fluid overload. Telemetry revealed 2 different morphologies of nonsustained ventricular tachycardia, associated with chest discomfort. Cardiac imaging demonstrated a truncated, spherical left ventricle (LV) with severe systolic dysfunction and fatty replacement of the LV apex but no evidence of myocardial fibrosis. The right ventricle was elongated wrapping around the LV apex and had moderate systolic impairment. A diagnosis of "isolated LV apical hypoplasia" was made with possible concomitant peripartum cardiomyopathy. PMID:26706664

  20. Dietary salt restriction in hyperthyroid rats. Differential influence on left and right ventricular mass.

    PubMed

    Wangensteen, Rosemary; Rodríguez-Gómez, Isabel; Perez-Abud, Rocío; Quesada, Andrés; Montoro-Molina, Sebastián; Osuna, Antonio; Vargas, Félix

    2015-01-01

    This study assessed the impact of salt restriction on cardiac morphology and biochemistry and its effects on hemodynamic and renal variables in experimental hyperthyroidism. Four groups of male Wistar rats were used: control, hyperthyroid, and the same groups under low salt intake. Body weight, blood pressure (BP), and heart rate (HR) were recorded weekly for 4 weeks. Morphologic, metabolic, plasma, cardiac, and renal variables were also measured. Low salt intake decreased BP in T(4)-treated rats but not in controls. Low salt intake reduced relative left ventricular mass but increased absolute right ventricular weight and right ventricular weight/BW ratio in both control and hyperthyroid groups. Low salt intake increased Na(+)/H(+) exchanger-1 (NHE-1) protein abundance in both ventricles in normal rats but not in hyperthyroid rats, independently of its effect on ventricular mass. Mammalian target of rapamycin (mTOR) protein abundance was not related to left or right ventricular mass in hyperthyroid or controls rats under normal or low salt conditions. Proteinuria was increased in hyperthyroid rats and attenuated by low salt intake. In this study, low salt intake produced an increase in right ventricular mass in normal and hyperthyroid rats. Changes in the left or right ventricular mass of control and hyperthyroid rats under low salt intake were not explained by the NHE-1 or mTOR protein abundance values observed. In hyperthyroid rats, low salt intake also slightly reduced BP and decreased HR, proteinuria, and water and sodium balances. PMID:25030483

  1. Predicting self-terminating ventricular fibrillations in an isolated heart

    NASA Astrophysics Data System (ADS)

    Le, Duy-Manh; Dvornikov, Alexey V.; Lai, Pik-Yin; Chan, C. K.

    2013-11-01

    Ventricular fibrillations (VFs) in isolated hearts induced by fast pacing are studied in a Langendorff preparation by measuring the electrical signals from the right atrium (V_a) and the ventricle (V_v) . We find that when there is a strong component of Vv detected in Va during VF, the induced VFs are usually not self-terminating. Criteria for the prediction of self-terminating VFs are developed based on the analysis of Vv and Va by the cross-wavelet power spectrum and cross-Fourier power spectrum methods. The success rate of our prediction criteria is about 80-90 %. Our findings suggest that a heart under VF can recover its sinus rhythm only when the sino-atrial node of the heart is not under strong influence of the VF from its ventricle.

  2. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    PubMed Central

    2010-01-01

    Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics

  3. Anesthetic experience of patient with isolated left ventricular noncompaction: a case report

    PubMed Central

    Kim, Doyeon; Kim, Eunhee; Lee, Jong-Hwan; Lee, Sangmin Maria; Lee, Jung Eun

    2016-01-01

    Isolated left ventricular noncompaction (LVNC) is a rare primary genetic cardiomyopathy characterized by prominent trabeculation of the left ventricular wall and intertrabecular recesses. Perioperative management of the patient with LVNC might be challenging due to the clinical symptoms of heart failure, systemic thromboembolic events, and fatal left ventricular arrhythmias. We conducted real time intraoperative transesophageal echocardiography in a patient with LVNC undergoing general anesthesia for ovarian cystectomy. PMID:27274374

  4. Isolation of rat adrenocortical mitochondria

    SciTech Connect

    Solinas, Paola; Fujioka, Hisashi; Tandler, Bernard; Hoppel, Charles L.

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A method for isolation of adrenocortical mitochondria from the adrenal gland of rats is described. Black-Right-Pointing-Pointer The purified isolated mitochondria show excellent morphological integrity. Black-Right-Pointing-Pointer The properties of oxidative phosphorylation are excellent. Black-Right-Pointing-Pointer The method increases the opportunity of direct analysis of adrenal mitochondria from small animals. -- Abstract: This report describes a relatively simple and reliable method for isolating adrenocortical mitochondria from rats in good, reasonably pure yield. These organelles, which heretofore have been unobtainable in isolated form from small laboratory animals, are now readily accessible. A high degree of mitochondrial purity is shown by the electron micrographs, as well as the structural integrity of each mitochondrion. That these organelles have retained their functional integrity is shown by their high respiratory control ratios. In general, the biochemical performance of these adrenal cortical mitochondria closely mirrors that of typical hepatic or cardiac mitochondria.

  5. Isolated Right Ventricular Dilated Cardiomyopathy: An Early Diagnosis

    PubMed Central

    Briongos Figuero, Sem; Acena Navarro, Alvaro

    2015-01-01

    Because of an incomplete right bundle branch block, a severe right ventricular dilatation with no left ventricular cardiomyopathy was found in a 44-year-old man. Magnetic resonance and transesophageal echocardiography confirmed the finding and these tests also failed to find any potential cause. A pulmonary hemodynamic study and a coronary angiography were strictly normal. Lastly pulmonary function tests and a pulmonary angiography were performed, which did not find any lung disease causing the right ventricular dilatation. The patient was catalogued as an early stage of an idiopathic form of right ventricular dilated cardiomyopathy. PMID:26346826

  6. Current-Voltage Relationship for Late Na(+) Current in Adult Rat Ventricular Myocytes.

    PubMed

    Clark, R B; Giles, W R

    2016-01-01

    It is now well established that the slowly inactivating component of the Na(+) current (INa-L) in the mammalian heart is a significant regulator of the action potential waveform. This insight has led to detailed studies of the role of INa-L in a number of important and challenging pathophysiological settings. These include genetically based ventricular arrhythmias (LQT 1, 2, and 3), ventricular arrhythmias arising from progressive cardiomyopathies (including diabetic), and proarrhythmic abnormalities that develop during local or global ventricular ischemia. Inhibition of INa-L may also be a useful strategy for management of atrial flutter and fibrillation. Many important biophysical parameters that characterize INa-L have been identified; and INa-L as an antiarrhythmia drug target has been studied extensively. However, relatively little information is available regarding (1) the ion transfer or current-voltage relationship for INa-L or (2) the time course of its reactivation at membrane potentials similar to the resting or diastolic membrane potential in mammalian ventricle. This chapter is based on our preliminary findings concerning these two very important physiological/biophysical descriptors for INa-L. Our results were obtained using whole-cell voltage clamp methods applied to enzymatically isolated rat ventricular myocytes. A chemical agent, BDF 9148, which was once considered to be a drug candidate in the Na(+)-dependent inotropic agent category has been used to markedly enhance INa-L current. BDF acts in a potent, selective, and reversible fashion. These BDF 9148 effects are compared and contrasted with the prototypical activator of INa-L, a sea anemone toxin, ATX II. PMID:27586292

  7. Hypercholesterolaemia exacerbates ventricular remodelling after myocardial infarction in the rat: role of angiotensin II type 1 receptors

    PubMed Central

    Mączewski, M; Mączewska, J; Duda, M

    2008-01-01

    Background and purpose: Diet-induced hypercholesterolaemia exacerbates post-myocardial infarction (MI) ventricular remodelling and heart failure, but the mechanism of this phenomenon remains unknown. This study examined whether worsening of post-MI ventricular remodelling induced by dietary hypercholesterolaemia was related to upregulation of angiotensin II type 1 (AT1) receptor in the rat heart. Experimental approach: MI was induced surgically in rats fed normal or high cholesterol diet. Both groups of rats were then assigned to control, atorvastatin, losartan or atorvastatin+losartan-treated subgroups and followed for 8 weeks. Left ventricular (LV) function was assessed with echocardiography. In isolated hearts, LV pressures were measured with a latex balloon and a tip catheter. AT1-receptor density was assessed in LV membranes with radioligand-binding assays. Key results: High cholesterol diet exacerbated LV dilation and dysfunction in post-MI hearts. Atorvastatin or losartan prevented these hypercholesterolaemia-induced effects, whereas their combination was not more effective than each drug alone. AT1 receptors were upregulated 8 weeks after MI, this was further increased by hypercholesterolaemia and restored to baseline levels by atorvastatin. Conclusions and implications: Hypercholesterolaemia exacerbated LV remodelling and dysfunction in post-MI rat hearts and upregulated cardiac AT1 receptors. All these effects were effectively prevented by atorvastatin. Thus, the pleiotropic statin effects may include interference with the renin-angiotensin system through downregulation of AT1 receptors. PMID:18536757

  8. Aspirate from human stented saphenous vein grafts induces epicardial coronary vasoconstriction and impairs perfusion and left ventricular function in rat bioassay hearts with pharmacologically induced endothelial dysfunction.

    PubMed

    Lieder, Helmut R; Baars, Theodor; Kahlert, Philipp; Kleinbongard, Petra

    2016-08-01

    Stent implantation into aortocoronary saphenous vein grafts (SVG) releases particulate debris and soluble vasoactive mediators, for example, serotonin. We now analyzed effects of the soluble mediators released into the coronary arterial blood during stent implantation on vasomotion of isolated rat epicardial coronary artery segments and on coronary flow and left ventricular developed pressure in isolated perfused rat hearts. Coronary blood was retrieved during percutaneous SVG intervention using a distal occlusion/aspiration protection device in nine symptomatic patients with stable angina pectoris and a flow-limiting SVG stenosis. The blood was separated into particulate debris and plasma. Responses to coronary plasma were determined in isolated rat epicardial coronary arteries and in isolated, constant pressure-perfused rat hearts (±nitric oxide synthase [NOS] inhibition and ±serotonin receptor blockade, respectively). Coronary aspirate plasma taken after stent implantation induced a stronger vasoconstriction of rat epicardial coronary arteries (52 ± 8% of maximal potassium chloride induced vasoconstriction [% KClmax = 100%]) than plasma taken before stent implantation (12 ± 8% of KClmax); NOS inhibition augmented this vasoconstrictor response (to 110 ± 15% and 24 ± 9% of KClmax). Coronary aspirate plasma taken after stent implantation reduced in isolated perfused rat hearts only under NOS inhibition coronary flow by 17 ± 3% and left ventricular developed pressure by 25 ± 4%. Blockade of serotonin receptors abrogated these effects. Coronary aspirate plasma taken after stent implantation induces vasoconstriction in isolated rat epicardial coronary arteries and reduces coronary flow and left ventricular developed pressure in isolated perfused rat hearts with pharmacologically induced endothelial dysfunction. PMID:27482071

  9. Rutaecarpine attenuates hypoxia-induced right ventricular remodeling in rats.

    PubMed

    Li, Wen-Qun; Li, Xiao-Hui; Du, Jie; Zhang, Wang; Li, Dai; Xiong, Xiao-Ming; Li, Yuan-Jian

    2016-07-01

    Rutaecarpine has been shown to exhibit wide pharmacological effects in the cardiovascular system via stimulation of calcitonin gene-related peptide (CGRP) release. In the present study, the effect of rutaecarpine on hypoxia-induced right ventricular (RV) remodeling and the underlying mechanisms were evaluated. RV remodeling was induced by hypoxia (10 % O2, 3 weeks) in rats. Rats were treated with rutaecarpine (20 or 40 mg/kg) by intragastric administration. Proliferation of cardiac fibroblasts was induced by TGF-β1 (5 ng/mL) and determined by MTS and EdU incorporation method. Cardiac fibroblasts were treated with exogenous CGRP (10 or 100 nM). The concentrations of CGRP and TGF-β1 in plasma were measured by ELISA. The expression of eIF3a, p27, α-SMA, collagen-I/III, ANP, and BNP were measured by real-time PCR or western blot. Hypoxia induced an increase of right ventricle systolic pressure (RVSP), ration of RV/LV+S, and RV/tibial length in rats, while cardiac hypertrophy, apoptosis, and fibrosis were detected. The expression of ANP, BNP, α-SMA, collagen-I, collagen-III, eIF3a, and TGF-β1 was up-regulated, and the expression of p27 was down-regulated in the right ventricle of hypoxia-treated rats. The plasma concentration of CGRP was decreased and TGF-β1 was increased in hypoxia-treated rats. All of these effects induced by hypoxia were attenuated by rutaecarpine in a dose-dependent manner. In cultured cardiac fibroblasts, TGF-β1 significantly promoted the proliferation and up-regulated the expression of α-SMA and collagen-I/III, while the expression of eIF3a was up-regulated and the expression of p27 was down-regulated. The effects of TGF-β1 were attenuated by CGRP. CGRP8-37, a selective CGRP receptor antagonist, abolished the effects of CGRP. Rutaecarpine attenuates hypoxia-induced RV remodeling via stimulation of CGRP release, and the effects of rutaecarpine involve the eIF3a/p27 pathway. PMID:27052575

  10. Physiological pathway of magnesium influx in rat ventricular myocytes.

    PubMed

    Tashiro, Michiko; Inoue, Hana; Konishi, Masato

    2014-11-01

    Cytoplasmic free Mg(2+) concentration ([Mg(2+)]i) was measured in rat ventricular myocytes with a fluorescent indicator furaptra (mag-fura-2) introduced by AM-loading. By incubation of the cells in a high-K(+) (Ca(2+)- and Mg(2+)-free) solution, [Mg(2+)]i decreased from ? 0.9 mM to 0.2 to 0.5 mM. The lowered [Mg(2+)]i was recovered by perfusion with Ca(2+)-free Tyrode's solution containing 1 mM Mg(2+). The time course of the [Mg(2+)]i recovery was fitted by a single exponential function, and the first derivative at time 0 was analyzed as being proportional to the initial Mg(2+) influx rate. The Mg(2+) influx rate was inversely related to [Mg(2+)]i, being higher at low [Mg(2+)]i. The Mg(2+) influx rate was augmented by the high extracellular Mg(2+) concentration (5 mM), whereas it was greatly reduced by cell membrane depolarization caused by high K(+). Known inhibitors of TRPM7 channels, 2-aminoethoxydiphenyl borate (2-APB), NS8593, and spermine reduced the Mg(2+) influx rate with half inhibitory concentrations (IC50) of, respectively, 17 ?M, 2.0 ?M, and 22 ?M. We also studied Ni(2+) influx by fluorescence quenching of intracellular furaptra by Ni(2+). The Ni(2+) influx was activated by lowering intra- and extracellular Mg(2+) concentrations, and it was inhibited by 2-APB and NS8593 with IC50 values comparable with those for the Mg(2+) influx. Intracellular alkalization (caused by pulse application of NH4Cl) enhanced, whereas intracellular acidification (induced after the removal of NH4Cl) slowed the Mg(2+) influx. Under the whole-cell patch-clamp configuration, the removal of intracellular and extracellular divalent cations induced large inward and outward currents, MIC (Mg-inhibited cation) currents or IMIC, carried by monovalent cations likely via TRPM7 channels. IMIC measured at -120 mV was diminished to ? 50% by 100 ?M 2-APB or 10 ?M NS8593. These results suggest that TRPM7/MIC channels serve as a major physiological pathway of Mg(2+) influx in rat

  11. The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure

    PubMed Central

    Bae, Hyun Kyung; Lee, Hyeryon; Kim, Kwan Chang

    2016-01-01

    Purpose Pulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF. Methods The rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed. Results The mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-α, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4. Conclusion Sildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function. PMID:27462355

  12. Isolated right ventricular cardiomyopathy with autoimmune hypothyroidism: a rare association in an adolescent.

    PubMed

    Yelve, Kavita; Panandikar, Gajanan Ashok; Pazare, Amar; Bajpai, Smrati

    2015-01-01

    A 13-year-old girl presented with progressive dyspnoea and palpitation, diagnosed on echocardiography as primary right ventricular cardiomyopathy with atrial fibrillation. Her thyroid profile was positive for antithyroid microsomal antibody, and antithyroid peroxidase antibodies were suggestive of autoimmune hypothyroidism. She was managed with furosemide, digoxin, acenocoumarol and thyroxine following which she showed significant improvement. This is a rare case of isolated right ventricular cardiomyopathy and its association with autoimmune hypothyroidism presenting at the age of 13. PMID:25795745

  13. STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes

    PubMed Central

    Zhao, Guiling; Li, Tianyu; Brochet, Didier X. P.; Rosenberg, Paul B.; Lederer, W. J.

    2015-01-01

    In ventricular myocytes, the physiological function of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum (ER/SR) Ca2+ sensor, is unclear with respect to its cellular localization, its Ca2+-dependent mobilization, and its action on Ca2+ signaling. Confocal microscopy was used to measure Ca2+ signaling and to track the cellular movement of STIM1 with mCherry and immunofluorescence in freshly isolated adult rat ventricular myocytes and those in short-term primary culture. We found that endogenous STIM1 was expressed at low but measureable levels along the Z-disk, in a pattern of puncta and linear segments consistent with the STIM1 localizing to the junctional SR (jSR). Depleting SR Ca2+ using thapsigargin (2–10 µM) changed neither the STIM1 distribution pattern nor its mobilization rate, evaluated by diffusion coefficient measurements using fluorescence recovery after photobleaching. Two-dimensional blue native polyacrylamide gel electrophoresis and coimmunoprecipitation showed that STIM1 in the heart exists mainly as a large protein complex, possibly a multimer, which is not altered by SR Ca2+ depletion. Additionally, we found no store-operated Ca2+ entry in control or STIM1 overexpressing ventricular myocytes. Nevertheless, STIM1 overexpressing cells show increased SR Ca2+ content and increased SR Ca2+ leak. These changes in Ca2+ signaling in the SR appear to be due to STIM1 binding to phospholamban and thereby indirectly activating SERCA2a (Sarco/endoplasmic reticulum Ca2+ ATPase). We conclude that STIM1 binding to phospholamban contributes to the regulation of SERCA2a activity in the steady state and rate of SR Ca2+ leak and that these actions are independent of store-operated Ca2+ entry, a process that is absent in normal heart cells. PMID:26261328

  14. Isolated acute occlusion of a large right ventricular branch of the right coronary artery following coronary balloon angioplasty. The only true 'model' to study ECG changes in acute, isolated right ventricular infarction.

    PubMed

    van der Bolt, C L; Vermeersch, P H; Plokker, H W

    1996-02-01

    An isolated right ventricular infarction occurs rarely and data on its electrocardiographic appearance and underlying angiographically proven cause are scarce. The electrocardiographic response of acute right ventricular ischaemia is often obscured by the coexisting forces of the ischaemic mass of the inferior wall of the left ventricle when the right coronary artery itself becomes occluded. Percutaneous transluminal coronary angioplasty of the right coronary artery may cause an isolated occlusion of a right ventricular branch. We encountered this phenomenon in nine patients. In all, it led to acute isolated right ventricular ischaemia with ST elevations in the right precordial leads (V1-V3, V3R and V4R) on the electrocardiogram. We conclude that the ECG pattern of pure right ventricular ischaemia can be seen when an isolated occlusion of a large right ventricular branch occurs, for example as a complication of percutaneous transluminal coronary angioplasty. PMID:8732378

  15. The relationship between contraction and intracellular sodium in rat and guinea-pig ventricular myocytes.

    PubMed Central

    Harrison, S M; McCall, E; Boyett, M R

    1992-01-01

    1. The contraction, measured optically, and the intracellular Na+ activity (aNai), measured with the Na(+)-sensitive fluorescent dye SBFI, have been recorded simultaneously in rat and guinea-pig ventricular myocytes. 2. In rat and guinea-pig ventricular myocytes at rest, aNai was 7.8 +/- 0.3 mM (n = 4) and 5.1 +/- 0.3 mM (n = 16), respectively. 3. When both rat and guinea-pig ventricular myocytes were stimulated at 1 Hz after a rest there was usually a gradual increase in twitch shortening (referred to as a 'staircase') over several minutes accompanied by an increase in aNai over a similar time course. Twitch shortening increased by 21 +/- 3% (n = 6) and 20 +/- 4% (n = 16) (of steady-state twitch shortening during 1 Hz stimulation) per millimolar rise in aNai in rat and guinea-pig ventricular myocytes, respectively. 4. When rat and guinea-pig ventricular myocytes were exposed to strophanthidin to block the Na(+)-K+ pump, there were increases in twitch shortening and aNai over similar time courses. Twitch shortening increased by 24 +/- 4% (n = 5) and 20 +/- 3% (n = 10) (of control twitch shortening) per millimolar rise in aNai in rat and guinea-pig ventricular myocytes respectively. 5. The inotropic effect of cardiac glycosides, such as strophanthidin, is widely regarded to be principally the result of the rise in aNai. The similarity of the relation between twitch shortening and aNai during the staircase and on application of strophanthidin suggests that the progressive increase in the strength of contraction during the staircase was also linked to the rise in aNai. 6. In guinea-pig, but not rat, ventricular myocytes there was hysteresis in the relation between twitch shortening and aNai on application and wash-off of strophanthidin. This indicates that strophanthidin has another inotropic action in guinea-pig ventricular myocytes. 7. A computer model of excitation-contraction coupling has been developed to simulate the staircase and the action of cardiac glycoside

  16. The effect of Ligustrum delavayanum on isolated perfused rat heart

    PubMed Central

    Stankovičová, Tatiana; Frýdl, Miroslav; Kubicová, Mária; Baróniková, Slávka; Nagy, Milan; Grančai, Daniel; Švec, Pavel

    2001-01-01

    BACKGROUND: Extract of ligustrum leaves (Ligustrum delavayanum Hariot [Oleaceae]) is well known in traditional Chinese medicine. One of the active components, oleuropein, displays vasodilating and hypotensive effects. OBJECTIVE: To analyze the effect of 0.008% lyophilized extract of ligustrum dissolved in 0.5% ethanol on heart function. ANIMALS AND METHODS: Experiments were done on isolated rat hearts perfused by the Langendorff method in control conditions and during ischemic-reperfusion injury. RESULTS: Application of ligustrum induced positive inotropic and vasodilating effects in spontaneously beating hearts. Pretreatment of the hearts with ligustrum reduced left ventricular diastolic pressure measured during reperfusion and improved left ventricular contraction compared with hearts without any pretreatment. Ligustrum significantly suppressed the incidence and duration of cardiac reperfusion arrhythmias, expressed as G-score, from 7.40±0.58 in nontreated rats to 1.97±0.50. DISCUSSION: Application of ligustrum or ethanol alone induced changes in coordination between atria and ventricles during ischemia-reperfusion injury. The ‘g-score’, a new parameter summing the incidence and duration of atrioventricular blocks, atrioventricular dissociation and cardiac arrest, is introduced. The g-scores with ligustrum pretreatment were higher during ischemia than during reperfusion. Ethanol significantly depressed myocardial contractility and coronary flow, and nonsignificantly decreased heart rate of isolated rat hearts. Electrical changes observed during coronary reperfusion in the presence of ethanol were accompanied by deterioration of contractile function. CONCLUSIONS: Ligustrum had a significant protective effect on rat myocardium against ischemic-reperfusion injury. Ethanol partially attenuated the protective effect of ligustrum. PMID:20428448

  17. Outcome of prolonged ventricular fibrillation and CPR in a rat model of chronic ischemic left ventricular dysfunction.

    PubMed

    Fang, Xiangshao; Huang, Lei; Sun, Shijie; Weil, Max Harry; Tang, Wanchun

    2013-01-01

    Patients with chronic left ventricular (LV) dysfunction are assumed to have a lower chance of successful CPR and lower likelihood of ultimate survival. However, these assumptions have rarely been documented. Therefore, we investigated the outcome of prolonged ventricular fibrillation (VF) and CPR in a rat model of chronic LV dysfunction. Sprague-Dawley rats were randomized to (1) chronic LV dysfunction: animals underwent left coronary artery ligation; and (2) sham control. Echocardiography was used to measure cardiac performance before surgery and 4 weeks after surgery. Four weeks after surgical intervention, 8 min of VF was induced and defibrillation was delivered after 8 min of CPR. LV dilation and low ejection fraction were observed 4 weeks after coronary ligation. With optimal chest compressions, coronary perfusion pressure values during CPR were well maintained and indistinguishable between groups. There were no differences in resuscitability and numbers of shock required for successful resuscitation between groups. Despite the significantly decreased cardiac index in LV dysfunction animals before induction of VF, no differences in cardiac index were observed between groups following resuscitation, which was associated with the insignificant difference in postresuscitation survival. In conclusion, the outcomes of CPR were not compromised by the preexisting chronic LV dysfunction. PMID:24455704

  18. Surgical management of isolated multiple ventricular septal defects. Logical approach in 130 cases.

    PubMed

    Serraf, A; Lacour-Gayet, F; Bruniaux, J; Ouaknine, R; Losay, J; Petit, J; Binet, J P; Planché, C

    1992-03-01

    From January 1980 through September 1990, 130 children underwent surgical closure of isolated multiple ventricular septal defects (mean age 14 +/- 18 months, mean weight 7.0 +/- 4.4 kg). Sixty-one were less than 1 year of age. Sixty-one children had pulmonary protection, 51 had pulmonary artery banding, and 10 had pulmonary valve stenosis. All other patients had severe pulmonary hypertension (mean systolic pressure 75.7 +/- 20.5 mm Hg and already disabling heart failure (New York Heart Association classes III and IV). The surgical management was based on the location of the defects and the ventricular dominance that were assessed preoperatively and intraoperatively. Midtrabecular ventricular septal defects were always centered by the moderator band and were therefore divided into low trabecular, midtrabecular, and high trabecular defects. The perimembranous septum was involved in 102 patients, the trabecular in 121, the inlet septum in 12, and the infundibular septum in 9. Fifty patients had the "Swiss cheese" form of the lesion. Closure of the ventricular septal defects included Dacron patch and mattress sutures. They were always first approached through a right atriotomy, which was sufficient for complete repair in 82 patients. In midtrabecular ventricular septal defects, section of the moderator band (n = 24) allowed closure of all the defects with a single Dacron patch. In 48 patients a right atriotomy and a right (n = 32) or left (n = 14) (particularly for low trabecular ventricular septal defects) or both right and left (n = 2) ventriculotomies were necessary to secure the repair. The hospital mortality rate was 7.7% (10 patients). The causes of deaths were residual ventricular septal defect (n = 5), pulmonary hypertension (n = 2), hypoplastic right ventricle (n = 1) and left ventricle (n = 1), and myocardial infarction (n = 1). Among eighteen survivors with residual ventricular septal defect, six were reoperated on; there were two deaths. A permanent

  19. The isolated working heart model in infarcted rat hearts.

    PubMed

    Itter, G; Jung, W; Schoelkens, B A; Linz, W

    2005-04-01

    Congestive heart failure (CHF) is one of the most common causes of death in western countries. The aim of this study was to establish and validate the working heart model in rat hearts with CHF. In the rat model the animals show parameters and symptoms that can be extrapolated to the clinical situation of patients with end-stage heart failure. The focus of attention was the evaluation of cardiodynamics (e.g.contractility) in the isolated 'working heart' model. The geometric properties of the left ventricle were measured by planimetry (stereology). Formulae available in the past for determining certain parameters in the working heart model (e.g.external heart work) have to be fitted to the circumstances of the infarcted rat hearts with its different organ properties.CHF was induced in Wistar Kyoto (WKY/NHsd) and spontaneously hypertensive rats (SHR/NHsd) by creating a permanent (8 week) occlusion of the left coronary artery, 2 mm distal to the origin from the aorta, by a modified technique (Itter et al. 2004). This resulted in a large infarction of the free left ventricular wall. We were able to establish and adapt a new and predictive working heart model in spontaneously hypertensive rat hearts with myocardial infarction (MI) 8-12 weeks after coronary artery ligation. At this stage the WKY rat did not show any symptoms of CHF. The SHR rat represented characteristic parameters and symptoms that could be extrapolated to the clinical situation of patients with end-stage heart failure (NYHA III-IV). Upon inspection, severe clinical symptoms of CHF such as dyspnoea, subcutaneous oedema, palebluish limbs and impaired motion were prominent. On necropsy the SHR showed lung oedema, hydrothorax, large dilated left and right ventricular chambers and hypertrophy of the septum. In the working heart model the infarcted animals showed reduced heart power, diminished contractility and enhanced heart work, much more so in the SHR/NHsd than in the Wistar Kyoto rat (WKY/NHsd). The

  20. GLUTAMINE CYCLING IN ISOLATED WORKING RAT HEART

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To what extent does glutamine turnover keep pace with oxidative metabolism in the rat heart? To address this question, the following substrates were presented to the isolated, working rat heart: (1) glucose (5 mM), insulin (40 mU/ml) and [2-13C]acetate (5mM) (high workload, n= 5); (2) pyruvate (2....

  1. Electrotonic suppression of early afterdepolarizations in the neonatal rat ventricular myocyte monolayer

    PubMed Central

    Himel, Herman D; Garny, Alan; Noble, Penelope J; Wadgoankar, Raj; Savarese, Joseph; Liu, Nian; Bub, Gil; El-Sherif, Nabil

    2013-01-01

    Pathologies that result in early afterdepolarizations (EADs) are a known trigger for tachyarrhythmias, but the conditions that cause surrounding tissue to conduct or suppress EADs are poorly understood. Here we introduce a cell culture model of EAD propagation consisting of monolayers of cultured neonatal rat ventricular myocytes treated with anthopleurin-A (AP-A). AP-A-treated monolayers display a cycle length dependent prolongation of action potential duration (245 ms untreated, vs. 610 ms at 1 Hz and 1200 ms at 0.5 Hz for AP-A-treated monolayers). In contrast, isolated single cells treated with AP-A develop prominent irregular oscillations with a frequency of 2.5 Hz, and a variable prolongation of the action potential duration of up to several seconds. To investigate whether electrotonic interactions between coupled cells modulates EAD formation, cell connectivity was reduced by RNA silencing gap junction Cx43. In contrast to well-connected monolayers, gap junction silenced monolayers display bradycardia-dependent plateau oscillations consistent with EADs. Further, simulations of a cell displaying EADs electrically connected to a cell with normal action potentials show a coupling strength-dependent suppression of EADs consistent with the experimental results. These results suggest that electrotonic effects may play a critical role in EAD-mediated arrhythmogenesis. PMID:24018945

  2. The Actions of Lyophilized Apple Peel on the Electrical Activity and Organization of the Ventricular Syncytium of the Hearts of Diabetic Rats

    PubMed Central

    Martínez-Ladrón de Guevara, Elideth; Pérez-Hernández, Nury; Villalobos-López, Miguel Ángel; Pérez-Ishiwara, David Guillermo; Salas-Benito, Juan Santiago; Martínez Martínez, Alejandro; Hernández-García, Vicente

    2016-01-01

    This study was designed to examine the effects of lyophilized red delicious apple peel (RDP) on the action potentials (APs) and the input resistance-threshold current relationship. The experiments were performed on isolated papillary heart muscles from healthy male rats, healthy male rats treated with RDP, diabetic male rats, and diabetic male rats treated with RDP. The preparation was superfused with oxygenated Tyrode's solution at 37°C. The stimulation and the recording of the APs, the input resistance, and the threshold current were made using conventional electrophysiological methods. The RDP presented no significant effect in normal rats. Equivalent doses in diabetic rats reduced the APD and ARP. The relationship between input resistance and threshold current established an inverse correlation. The results indicate the following: (1) The functional structure of the cardiac ventricular syncytium in healthy rats is heterogeneous, in terms of input resistance and threshold current. Diabetes further accentuates the heterogeneity. (2) As a consequence, conduction block occurs and increases the possibility of reentrant arrhythmias. (3) These modifications in the ventricular syncytium, coupled with the increase in the ARP, are the adequate substrate so that, with diabetes, the heart becomes more arrhythmogenic. (4) RDP decreases the APD, the ARP, and most syncytium irregularity caused by diabetes. PMID:26839897

  3. The Actions of Lyophilized Apple Peel on the Electrical Activity and Organization of the Ventricular Syncytium of the Hearts of Diabetic Rats.

    PubMed

    Martínez-Ladrón de Guevara, Elideth; Pérez-Hernández, Nury; Villalobos-López, Miguel Ángel; Pérez-Ishiwara, David Guillermo; Salas-Benito, Juan Santiago; Martínez Martínez, Alejandro; Hernández-García, Vicente

    2016-01-01

    This study was designed to examine the effects of lyophilized red delicious apple peel (RDP) on the action potentials (APs) and the input resistance-threshold current relationship. The experiments were performed on isolated papillary heart muscles from healthy male rats, healthy male rats treated with RDP, diabetic male rats, and diabetic male rats treated with RDP. The preparation was superfused with oxygenated Tyrode's solution at 37°C. The stimulation and the recording of the APs, the input resistance, and the threshold current were made using conventional electrophysiological methods. The RDP presented no significant effect in normal rats. Equivalent doses in diabetic rats reduced the APD and ARP. The relationship between input resistance and threshold current established an inverse correlation. The results indicate the following: (1) The functional structure of the cardiac ventricular syncytium in healthy rats is heterogeneous, in terms of input resistance and threshold current. Diabetes further accentuates the heterogeneity. (2) As a consequence, conduction block occurs and increases the possibility of reentrant arrhythmias. (3) These modifications in the ventricular syncytium, coupled with the increase in the ARP, are the adequate substrate so that, with diabetes, the heart becomes more arrhythmogenic. (4) RDP decreases the APD, the ARP, and most syncytium irregularity caused by diabetes. PMID:26839897

  4. Altered ventricular torsion and transmural patterns of myocyte relaxation precede heart failure in aging F344 rats

    PubMed Central

    Campbell, Stuart G.; Haynes, Premi; Kelsey Snapp, W.; Nava, Kristofer E.

    2013-01-01

    The purpose of this study was to identify and explain changes in ventricular and cellular function that contribute to aging-associated cardiovascular disease in aging F344 rats. Three groups of female F344 rats, aged 6, 18, and 22 mo, were studied. Echocardiographic measurements in isoflurane-anesthetized animals showed an increase in peak left ventricular torsion between the 6- and the 18-mo-old groups that was partially reversed in the 22-mo-old animals (P < 0.05). Epicardial, midmyocardial, and endocardial myocytes were subsequently isolated from the left ventricles of each group of rats. Unloaded sarcomere shortening and Ca2+ transients were then measured in these cells (n = >75 cells for each of the nine age-region groups). The decay time of the Ca2+ transient and the time required for 50% length relaxation both increased with age but not uniformly across the three regions (P < 0.02). Further analysis revealed a significant shift in the transmural distribution of these properties between 18 and 22 mo of age, with the largest changes occurring in epicardial myocytes. Computational modeling suggested that these changes were due in part to slower Ca2+ dissociation from troponin in aging epicardial myocytes. Subsequent biochemical assays revealed a >50% reduction in troponin I phosphoprotein content in 22-mo-old epicardium relative to the other regions. These data suggest that between 18 and 22 mo of age (before the onset of heart failure), F344 rats display epicardial-specific myofilament-level modifications that 1) break from the progression observed between 6 and 18 mo and 2) coincide with aberrant patterns of cardiac torsion. PMID:23792678

  5. Structural characterization of rat ventricular tissue exposed to the smoke of two types of waterpipe

    PubMed Central

    Al-Awaida, Wajdy; Najjar, Hossam; Shraideh, Ziad

    2015-01-01

    Objective(s): this study focused on the effect of waterpipe smoke exposure toxicity on the structure of albino rat’s ventricular tissue and their recovery. Materials and Methods: Albino rats were divided into three groups: control, flavored, and unflavored. The control group was exposed to normal air while the flavored and unflavored groups were exposed to waterpipe smoke for a period of 90 days. Each group was followed by a period of 90 days of fresh air exposure. Following each period, the ventricular tissue was removed for biochemical and histopathological studies. Results: The ventricular tissues of waterpipe exposed rats showed some degree of separation between cardiac muscle fibers, infiltration of lymphocytes, and congestion of blood vessel. Also, thin cross sections of ventricular cells revealed pleomorphic mitochondria with partially disrupted cristae, partial disruption of the myofibrils, and deposited toxic materials. The unflavored waterpipe has more deleterious effects on heart ventricular tissues than the flavored one. Waterpipe smoke didn’t induce apoptosis in the ventricular tissue. We also found very high levels of plasma thiocyanate after exposure to smoke in the flavored and unflavored groups, while the control group showed no increase. After the recovery period, those tissues showed partial recovery. Conclusion: Waterpipe smoke induces structural changes in the heart ventricle tissues, causing a negative impact on the capacity of the cardiac muscle for pumping blood and may lead to heart attack due to accumulation of free radicals and tissue inflammation. Cessation of smoking is important in returning most of these changes to their normal structure. PMID:26730327

  6. Derangement of autonomic nerve control in rat with right ventricular failure.

    PubMed

    Sanyal, S N.; Ono, K

    2002-06-01

    The effects of right ventricular hypertrophy and eventual right ventricular failure on autonomic nerve regulation of heart rate variability were investigated using rats with monocrotaline (MCT)-induced pulmonary hypertension. ECG signals were obtained from a radio transmitter placed into the subcutaneous pouch in the back of the male MCT-treated and control rats for 30 min every 6 h at a sample rate of 5 kHz with or without injection of atropine (2 mg/kg I.P.) or propranolol (4 mg/kg I.P.), in a room equipped with a climate controller. Heart rate (HR) and HR variability (HRV) were analyzed in each group by power spectrograms obtained by the fast-Fourier transform algorithm. The RR interval, total power (TP), low-frequency (LF) power (0.04-0.73 Hz), high-frequency (HF) power (0.73-2 Hz) and LF/HF (L/H) ratio were measured. HR was significantly increased in the MCT-treated rats (P<0.001), which also presented lower HRV than that of the control Wistar rats; TP (P<0.05) and HF (P<0.05) power, but not the L/H ratio, were significantly lower than that of the control rats. Responses of these parameters to a muscarinic antagonist (atropine: 2 mg/kg) and a beta-adrenergic antagonist (propranolol: 4 mg/kg), however, remained intact in the MCT-treated rats. Only the parasympathetic component of autonomic nervous controls of HRV was deranged in rats with MCT-induced right ventricular failure. PMID:12039652

  7. Itraconazole decreases left ventricular contractility in isolated rabbit heart: Mechanism of action

    SciTech Connect

    Qu, Yusheng; Fang, Mei; Gao, BaoXi; Amouzadeh, Hamid R.; Li, Nianyu; Narayanan, Padma; Acton, Paul; Lawrence, Jeff; Vargas, Hugo M.

    2013-04-15

    Itraconazole (ITZ) is an approved antifungal agent that carries a “black box warning” in its label regarding a risk of negative cardiac inotropy based on clinical findings. Since the mechanism of the negative inotropic effect is unknown, we performed a variety of preclinical and mechanistic studies to explore the pharmacological profile of ITZ and understand the negative inotropic mechanism. ITZ was evaluated in: (1) an isolated rabbit heart (IRH) preparation using Langendorff retrograde perfusion; (2) ion channel studies; (3) a rat heart mitochondrial function profiling screen; (4) a mitochondrial membrane potential (MMP) assay; (5) in vitro pharmacology profiling assays (148 receptors, ion channels, transporters, and enzymes); and (6) a kinase selectivity panel (451 kinases). In the IRH, ITZ decreased cardiac contractility (> 30%) at 0.3 μM, with increasing effect at higher concentrations, which indicated a direct negative inotropic effect upon the heart. It also decreased heart rate and coronary flow (≥ 1 μM) and prolonged PR/QRS intervals (3 μM). In mechanistic studies, ITZ inhibited the cardiac NaV channel (IC{sub 50}: 4.2 μM) and was devoid of any functional inhibitory effect at the remaining pharmacological targets. Lastly, ITZ did not affect MMP, nor interfere with mitochondrial enzymes or processes involved with fuel substrate utilization or energy formation. Overall, the cardiovascular and mechanistic data suggest that ITZ-induced negative inotropy is a direct effect on the heart, in addition, the potential involvement of mitochondria function and L-type Ca{sup 2+} channels are eliminated. The exact mechanism underlying the negative inotropy is uncertain, and requires further study. - Highlights: ► Effect of itraconazole (ITZ) was assessed in the isolated rabbit heart (IRH) assay. ► ITZ decreased ventricular contractility in IRH, indicating a direct effect. ► IC{sub 50} of ITZ on L-type I{sub Ca} was greater than 30 μM, on I{sub Na} was 4

  8. Effect of Wenxin Granule on Ventricular Remodeling and Myocardial Apoptosis in Rats with Myocardial Infarction

    PubMed Central

    Wu, Aiming; Zhai, Jianying; Zhang, Dongmei; Lou, Lixia; Zhu, Haiyan; Gao, Yonghong; Chai, Limin; Xing, Yanwei; Lv, Xiying; Zhu, Lingqun; Zhao, Mingjing; Wang, Shuoren

    2013-01-01

    Aim. To determine the effect of a Chinese herbal compound named Wenxin Granule on ventricular remodeling and myocardial apoptosis in rats with myocardial infarction (MI). Methods. Male Sprague-Dawley (SD) rats were randomly divided into four groups: the control group, the model group, the metoprolol group, and the Wenxin Granule group (WXKL group) with sample size (n) of 7 rats in each group. An MI model was established in all rats by occlusion of the left anterior descending coronary artery (the control group was without occlusion). Wenxin Granule (1.35 g/kg/day), metoprolol (12 mg/kg/day), and distilled water (5 mL/kg/day for the control and model groups) were administered orally for 4 weeks. Ultrasonic echocardiography was used to examine cardiac structural and functional parameters. Myocardial histopathological changes were observed using haematoxylin and eosin (H&E) dyeing. Myocardial apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Serum angiotensin II (Ang II) concentration was measured using the enzyme-linked immunosorbent assay (ELISA). Results. It was found that Wenxin Granule could partially reverse ventricular remodeling, improve heart function, alleviate the histopathological damage, inhibit myocardial apoptosis, and reduce Ang II concentration in rats with MI. Conclusions. The results of the current study suggest that Wenxin Granule may be a potential alternative and complementary medicine for the treatment of MI. PMID:23997803

  9. Inhibition of carnitine synthesis protects against left ventricular dysfunction in rats with myocardial ischemia.

    PubMed

    Aoyagi, T; Sugiura, S; Eto, Y; Yonekura, K; Matsumoto, A; Yokoyama, I; Kobayakawa, N; Omata, M; Kirimoto, T; Hayashi, Y; Momomura, S

    1997-10-01

    During myocardial ischemia, inhibition of the carnitine-mediated transportation of fatty acid may be beneficial because it facilitates glucose utilization and prevents an accumulation of fatty acid metabolites. We orally administered 3-(2,2,2-trimethyl hydrazinium) propionate (MET), an inhibitor of carnitine synthesis, for 20 days to rats. Then we evaluated left ventricular (LV) function during brief ischemia by using a buffer-perfused isovolumic heart model. After 15 min of reoxygenation after the transient ischemia, LV peak systolic pressure (PSP) almost completely returned to the baseline level in rats given MET (96 +/- 4%), whereas it was only partially (77 +/- 16%) recovered in the placebo-treated rats. We induced myocardial infarction in other rats by ligating the left anterior descending coronary artery. Then the animals were given MET for 20 days, and LV function was compared. In the placebo-treated rats (with myocardial infarction, but without drug treatment), LVPSP was lower than that in the sham group [108 +/- 19 (n = 10) vs. 136 +/- 15 mm Hg (n = 13); p < 0.05], and the time constant (T) of LV pressure decay was elongated (36 +/- 4 vs. 30 +/- 7 ms; p < 0.05). In MET-treated groups, however, neither PSP nor T differed from those in the sham group. In conclusion, inhibition of the carnitine-mediated transportation of fatty acid by MET protected against left ventricular dysfunction in acute and chronic myocardial ischemia. PMID:9335406

  10. Short-term vagal nerve stimulation improves left ventricular function following chronic heart failure in rats

    PubMed Central

    LI, YAN; XUAN, YAN-HUA; LIU, SHUANG-SHUANG; DONG, JING; LUO, JIA-YING; SUN, ZHI-JUN

    2015-01-01

    Increasing numbers of animal and clinical investigations have demonstrated the effectiveness of long-term electrical vagal nerve stimulation (VNS) on chronic heart failure (CHF). The present study investigated the effects of short-term VNS on the hemodynamics of cardiac remodeling and cardiac excitation-contraction coupling (ECP) in an animal model of CHF following a large myocardial infarction. At 3 weeks subsequent to ligation of the left coronary artery, the surviving rats were randomized into vagal and sham-stimulated groups. The right vagal nerve of the CHF rats was stimulated for 72 h. The vagal nerve was stimulated with rectangular pulses of 40 ms duration at 1 Hz, 5 V. The treated rats, compared with the untreated rats, had significantly higher left ventricular ejection fraction (54.86±9.73, vs. 45.60±5.51%; P=0.025) and left ventricular fractional shortening (25.31±6.30, vs. 15.42±8.49%; P=0.013), and lower levels of brain natriuretic peptide (10.07±2.63, vs. 19.95±5.22 ng/ml; P=0.001). The improvement in cardiac pumping function was accompanied by a decrease in left ventricular end diastolic volume (1.11±0.50, vs. 1.54±0.57 cm3; P=0.032) and left ventricular end systolic volume (0.50±0.28, vs. 0.87±0.36 cm3; P=0.007). Furthermore, the expression levels of ryanodine receptor type 2 (RyR2) and sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2) were significantly higher in the treated rats compared with the untreated rats (P=0.011 and P=0.001 for RyR2 and SERCA2, respectively). Therefore, VNS was beneficial to the CHF rats through the prevention of cardiac remodeling and improvement of cardiac ECP. PMID:25873055

  11. A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique.

    PubMed

    Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Gazmuri, Raúl J

    2015-01-01

    A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes - but is not limited to - hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation. PMID:25938619

  12. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats.

    PubMed

    Watts, John A; Zagorski, John; Gellar, Michael A; Stevinson, Brad G; Kline, Jeffrey A

    2006-08-01

    Acute right ventricular (RV) failure following pulmonary embolism (PE) is a strong predictor of poor clinical outcome. Present studies test for an association between RV failure from experimental PE, inflammation, and upregulated chemokine expression. Additional experiments test if neutrophil influx contributes to RV dysfunction. PE was induced in male rats by infusing 24 microm microspheres (right jugular vein) producing mild hypertension (1.3 million beads/100 g, PE1.3), or moderately severe hypertension (2.0 million beads/100 g, PE2.0). Additional rats served as vehicle sham (0.01% Tween 20, Veh). In vivo RV peak systolic pressures (RVPSP) increased significantly, and then declined following PE2.0 (51 +/- 1 mm Hg 2 h; 49 +/- 1, 6 h; 44 +/- 1, 18 h). RV generated pressure of isolated, perfused hearts was significantly reduced in PE2.0 compared with PE1.3 or Veh. MCP-1 protein (ELISA) was elevated 21-fold and myeloperoxidase activity 95-fold in RV of PE2.0 compared with Veh or PE1.3. CINC-1, CINC-2, MIP-2, MCP-1, and MIP-1alpha mRNA also increased in RV of PE2.0. Histological analysis revealed massive accumulation of neutrophils (selective esterase stain) and monocyte/macrophages (CD68, ED-1) in RV of PE2.0 hearts in regions of myocyte damage. Electron microscopy showed myocyte necrosis and phagocytosis by inflammatory cells. LV function was normal and did not show increased inflammation after PE2.0. Treatment with anti-PMN antibody reduced RV MPO activity and prevented RV dysfunction. Conclusions-PE with moderately severe pulmonary hypertension (PE2.0) resulted in selective RV dysfunction, which was associated with increased chemokine expression, and infiltration of both neutrophils and monocyte/macrophages, indicating that a robust immune response occurred with RV damage following experimental PE. Experimental agranulocytosis reduced RV, suggesting that neutrophil influx contributed to RV damage. PMID:16814320

  13. Differential Expression Levels of Integrin α6 Enable the Selective Identification and Isolation of Atrial and Ventricular Cardiomyocytes

    PubMed Central

    Wiencierz, Anne Maria; Kernbach, Manuel; Ecklebe, Josephine; Monnerat, Gustavo; Tomiuk, Stefan; Raulf, Alexandra; Christalla, Peter; Malan, Daniela; Hesse, Michael; Bosio, Andreas; Fleischmann, Bernd K.; Eckardt, Dominik

    2015-01-01

    Rationale Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or ventricular cardiomyocytes due to the lack of subtype specific cell surface markers. Methods and Results In order to develop cell surface marker-based isolation procedures for cardiomyocyte subtypes, we performed an antibody-based screening on embryonic mouse hearts. Our data indicate that atrial and ventricular cardiomyocytes are characterized by differential expression of integrin α6 (ITGA6) throughout development and in the adult heart. We discovered that the expression level of this surface marker correlates with the intracellular subtype-specific expression of MLC-2a and MLC-2v on the single cell level and thereby enables the discrimination of cardiomyocyte subtypes by flow cytometry. Based on the differential expression of ITGA6 in atria and ventricles during cardiogenesis, we developed purification protocols for atrial and ventricular cardiomyocytes from mouse hearts. Atrial and ventricular identities of sorted cells were confirmed by expression profiling and patch clamp analysis. Conclusion Here, we introduce a non-genetic, antibody-based approach to specifically isolate highly pure and viable atrial and ventricular cardiomyocytes from mouse hearts of various developmental stages. This will facilitate in-depth characterization of the individual cellular subsets and support translational research applications. PMID:26618511

  14. Cardiac and vascular responses of isolated rat tissues treated with diterpenes from Sinularia flexibilis (coelenterata: octocorallia).

    PubMed

    Aceret, T L; Brown, L; Miller, J; Coll, J C; Sammarco, P W

    1996-10-01

    The marine environment is a rich source of compounds with cardiovascular activity. This study characterizes the cardiac and vascular responses in isolated rat tissues of flexibilide, dihydroflexibilide and sinulariolide, three diterpenes isolated from the soft coral Sinularia flexibilis. On rat left ventricular papillary muscles, dihydroflexibilide and flexibilide showed similar potencies (-log EC50 = 4.69 +/- 0.05 and 4.66 +/- 0.06, respectively); the maximal response to dihydroflexibilide of 1.4 +/- 0.2 mN was 35 +/- 7% that of calcium chloride in the same muscles. All diterpenes relaxed rat thoracic aortic rings precontracted with KC1 (100 mM) with similar potencies (flexibilide, -log EC50 = 4.17 +/- 0.06). Flexibilide was further characterized and shown to increase force in isolated rat left atria by 0.8 +/- 0.5 mN at 1 x 10(-4) M, to increase rate of contraction in isolated rat right atria by 18 +/- 5 beta/min at 3 x 10(-5) M and to completely relax endothelium-denuded rat thoracic aortic rings (-log EC50 = 4.14 +/- 0.05). Toxicity as indicated by the occurrence of ectopic beats was not observed with the diterpenes at concentrations which produced complete relaxation of blood vessels, maximal positive inotropic activity and minor positive chronotropic responses. Thus, these compounds may be useful lead compounds in the search for improved treatment of cardiovascular disease, especially heart failure. PMID:8931257

  15. Measurement of cardiac left ventricular pressure in conscious rats using a fluid-filled catheter.

    PubMed

    Schenk, J; Hebden, A; McNeill, J H

    1992-05-01

    A fluid-filled catheter consisting of 100 cm of PE50 polyethylene tubing welded to 7 cm of PE10 polyethylene tubing (PE50/PE10) was constructed for the purpose of measuring the rate of left ventricular pressure development (+dP/dt) in conscious, freely moving rats. Prior to in vivo experiments, four PE50/PE10 catheters were randomly selected, and their natural frequencies and damping ratios were determined using a square wave impact. The mean (n = 4), natural frequency of these catheters was shown to be 35.0 +/- 5.5 Hz, and the mean damping ratio was 0.83 +/- 0.10. Natural frequency plotted against increasing PE50 tubing length was shown to have a slope of -0.44 Hz/cm with a correlation coefficient of 0.99. The effect of the 7-cm PE10 tubing segment on the catheter damping ratio was also demonstrated. One of the four PE50/PE10 type catheters exhibited a damping ratio of 0.74 +/- 0.09. When the 7-cm PE10 tube was removed, the damping ratio was reduced to 0.31 +/- 0.04. Left ventricular +dP/dt obtained in conscious rats with a PE50/PE10 catheter (n = 7; 6300 +/- 300 mmHg/sec) was significantly less than the +dP/dt obtained using a 100-cm PE50 catheter (n = 6; 9400 +/- 400 mmHg/sec). The results of this study make it clear that the PE50/PE10 catheter is suitable for the measurement of left ventricular +dP/dt in the conscious rat, and that catheter design has a profound influence on both the catheter natural frequency and damping ratio. PMID:1498344

  16. Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes.

    PubMed Central

    Yuan, W; Ginsburg, K S; Bers, D M

    1996-01-01

    1. Fundamental properties of Ca2+ channel currents in rat and rabbit ventricular myocytes were measured using whole cell voltage clamp. 2. In rat, as compared with rabbit myocytes, Ca2+ channel current (ICa) was half-activated at about 10 mV more negative potential, decayed slower, was half-inactivated (in steady state) at about 5 mV more positive potential, and recovered faster from inactivation. 3. These features result in a larger steady-state window current in rat, and also suggest that under comparable voltage clamp conditions, including action potential (AP) clamp, more Ca2+ influx would be expected in rat myocytes. 4. Ca2+ channel current carried by Na+ and Cs+ in the absence of divalent ions (Ins) also activated at more negative potential and decayed more slowly in rat. 5. The reversal potential for Ins was 6 mV more positive in rabbit, consistent with a larger permeability ratio (PNa/PCs) in rabbit than in rat. ICa also reversed at slightly more positive potentials in rabbit (such that PCa/PCs might also be higher). 6. Ca2+ influx was calculated by integration of ICa evoked by voltage clamp pulses (either square pulses or pulses based on recorded rabbit or rat APs). For a given clamp waveform, the Ca2+ influx was up to 25% greater in rat, as predicted from the fundamental properties of ICa and Ins. 7. However, the longer duration of the AP in rabbit myocytes compensated for the difference in influx, such that the integrated Ca2+ influx via ICa in response to the species-appropriate waveform was about twice as large as that seen in rat. PMID:8799895

  17. Protective effects of drag-reducing polymers on ischemic reperfusion injury of isolated rat heart.

    PubMed

    Hu, Feng; Wang, Yali; Gong, Kaizheng; Ge, Gaoyuan; Cao, Mingqiang; Zhao, Pei; Sun, Xiaoning; Zhang, Zhengang

    2016-01-01

    Drag-reducing polymers (DRPs) are blood-soluble macromolecules that can increase blood flow and reduce vascular resistance. The purpose of the present study was to observe the effect of DRPs on ischemic reperfusion (I/R) injury of isolated rat hearts. Experiments were performed on isolated rat hearts subjected to 30 min of ischemia followed by 90 min of reperfusion in Langendorff preparations. Adult Wistar rats were divided into the following five groups: control group, I/R group, group III (I/R and 2×10(-7)  g/ml PEO reperfusion), group IV (I/R and 1×10(-6)  g/ml PEO reperfusion), and group V (I/R and 5×10(-6)  g/ml PEO reperfusion). Left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), maximum rate of ventricular pressure increase and decrease ( ± dp/dtmax), heart rate (HR) and coronary flow were measured. Lactate dehydrogenase (LDH) and creatine kinase (CK) activity and coronary flow, myocardial infarction size and cardiomyocytes apoptosis were also assayed. Our results showed that PEO decreased LVEDP and increased LVSP, ± dP/dtmax in group IV and group V compared with the I/R group (all P <  0.05). The coronary flow significantly increased and the activities of LDH and CK in the coronary flow significantly decreased in group IV and group V compared with those in the I/R group (all P <  0.05). Cell apoptosis and myocardial infarction size were reduced in group IV and group V compared with the I/R group (all P <  0.05). Collectively, these results suggested that DRPs had a protective effect on cardiac I/R injury of isolated rat hearts and it may offer a new potential approach for the treatment of acute ischemic heart diseases. PMID:25633566

  18. Functional diversity of electrogenic Na+–HCO3− cotransport in ventricular myocytes from rat, rabbit and guinea pig

    PubMed Central

    Yamamoto, Taku; Swietach, Pawel; Rossini, Alessandra; Loh, Shih-Hurng; Vaughan-Jones, Richard D; Spitzer, Kenneth W

    2005-01-01

    The Na+–HCO3− cotransporter (NBC) is an important sarcolemmal acid extruder in cardiac muscle. The characteristics of NBC expressed functionally in heart are controversial, with reports suggesting electroneutral (NBCn; 1HCO3− : 1Na+; coupling coefficient n = 1) or electrogenic forms of the transporter (NBCe; equivalent to 2HCO3− : 1Na+; n = 2). We have used voltage-clamp and epifluorescence techniques to compare NBC activity in isolated ventricular myocytes from rabbit, rat and guinea pig. Depolarization (by voltage clamp or hyperkalaemia) reversibly increased steady-state pHi while hyperpolarization decreased it, effects seen only in CO2/HCO3−-buffered solutions, and blocked by S0859 (cardiac NBC inhibitor). Species differences in amplitude of these pHi changes were rat > guinea pig ≈ rabbit. Tonic depolarization (−140 mV to −0 mV) accelerated NBC-mediated pHi recovery from an intracellular acid load. At 0 mV, NBC-mediated outward current at resting pHi was +0.52 ± 0.05 pA pF−1 (rat, n = 5), +0.26 ± 0.05 pA pF−1 (guinea pig, n = 5) and +0.10 ± 0.03 pA pF−1 (rabbit, n = 9), with reversal potentials near −100 mV, consistent with n = 2. The above results indicate a functionally active voltage-sensitive NBCe in these species. Voltage-clamp hyperpolarization negative to the reversal potential for NBCe failed, however, to terminate or reverse NBC-mediated pHi-recovery from an acid load although it was slowed significantly, suggesting electroneutral NBC may also be operational. NBC-mediated pHi recovery was associated with a rise of [Na+]i at a rate ∼25% of that mediated via NHE, and consistent with an apparent NBC stoichiometry between n = 1 and n = 2. In conclusion, NBCe in the ventricular myocyte displays considerable functional variation among the three species tested (greatest in rat, least in rabbit) and may coexist with some NBCn activity. PMID:15550467

  19. Glucose-Insulin-Potassium Solution Protects Ventricular Myocytes of Neonatal Rat in an In Vitro Coverslip Ischemia/Reperfusion Model

    PubMed Central

    Chun, Woo-Jung; Bae, Jun-Ho; Chung, Jin-Wook; Lee, HyunSook; Moon, Il Soo

    2015-01-01

    Background and Objectives The benefit of high glucose-insulin-potassium (GIK) solution in clinical applications is controversial. We established a neonatal rat ventricular myocyte (NRVM) in vitro coverslip ischemia/reperfusion (I/R) model and investigated the effects of GIK solution on suppressing reactive oxygen species (ROS) and upregulating O-GlcNacylation, which protects cells from ischemic injury. Materials and Methods NRVMs were isolated from postnatal day 3-4 Sprague-Dawley rat pups and grown in Dulbecco's modified Eagle's medium containing high glucose (4.5 g/L), fetal bovine serum, and penicillin/streptomycin. The effects of the GIK solution on ROS production, apoptosis, and expression of O-GlcNAc and O-GlcNAc transferase (OGT) were investigated in the coverslip I/R model. Results Covering the 24-well culture plates for 3 hr with 12 mm diameter coverslips resulted in the appropriate ischemic shock. Glucose and insulin synergistically reduced ROS production, protected NRVM dose-dependently from apoptosis, and altered O-GlcNAc and OGT expression. Conclusion The high GIK solution protected NRVM from I/R injury in vitro by reducing ROS and altering O-GlcNacylation. PMID:26023312

  20. Chronic nonocclusive coronary artery constriction in rats. Beta-adrenoceptor signal transduction and ventricular failure.

    PubMed Central

    Meggs, L G; Huang, H; Li, P; Capasso, J M; Anversa, P

    1991-01-01

    To determine the effects of chronic coronary artery constriction on the relationship between cardiac function and regulation of beta-adrenoceptor signal transduction, the left main coronary artery was narrowed in rats and the animals were killed 5 mo later. An average reduction in coronary luminal diameter of 44% was obtained and this change resulted in an increase in left ventricular end-diastolic pressure and a decrease in positive and negative dP/dt. Significant increases in left and right ventricular weights indicative of global cardiac hypertrophy were observed. Radioligand binding studies of beta-adrenoreceptors, agonist-stimulated adenylate cyclase activity, and ADP ribosylation of 45-kD substrate by cholera toxin were all depressed in the failing left ventricle. In contrast, in the hypertrophic non-failing right ventricle, beta-adrenoreceptor density was preserved and receptor antagonist affinity was increased. In spite of these findings at the receptor level, agonist stimulated cyclic AMP generation was reduced in the right ventricular myocardium. The quantity of the 45-kD substrate was also decreased. In conclusion, longterm nonocclusive coronary artery stenosis of moderate degree has profound detrimental effects on the contractile performance of the heart in association with marked attenuation of adrenergic support mechanisms. Images PMID:1661293

  1. Streptozotocin-induced diabetes prolongs twitch duration without affecting the energetics of isolated ventricular trabeculae

    PubMed Central

    2014-01-01

    Background Diabetes induces numerous electrical, ionic and biochemical defects in the heart. A general feature of diabetic myocardium is its low rate of activity, commonly characterised by prolonged twitch duration. This diabetes-induced mechanical change, however, seems to have no effect on contractile performance (i.e., force production) at the tissue level. Hence, we hypothesise that diabetes has no effect on either myocardial work output or heat production and, consequently, the dependence of myocardial efficiency on afterload of diabetic tissue is the same as that of healthy tissue. Methods We used isolated left ventricular trabeculae (streptozotocin-induced diabetes versus control) as our experimental tissue preparations. We measured a number of indices of mechanical (stress production, twitch duration, extent of shortening, shortening velocity, shortening power, stiffness, and work output) and energetic (heat production, change of enthalpy, and efficiency) performance. We calculated efficiency as the ratio of work output to change of enthalpy (the sum of work and heat). Results Consistent with literature results, we showed that peak twitch stress of diabetic tissue was normal despite suffering prolonged duration. We report, for the first time, the effect of diabetes on mechanoenergetic performance. We found that the indices of performance listed above were unaffected by diabetes. Hence, since neither work output nor change of enthalpy was affected, the efficiency-afterload relation of diabetic tissue was unaffected, as hypothesised. Conclusions Diabetes prolongs twitch duration without having an effect on work output or heat production, and hence efficiency, of isolated ventricular trabeculae. Collectively, our results, arising from isolated trabeculae, reconcile the discrepancy between the mechanical performance of the whole heart and its tissues. PMID:24731754

  2. Effects of Mg2+ on Ca2+ waves and Ca2+ transients of rat ventricular myocytes.

    PubMed

    Terada, H; Hayashi, H; Noda, N; Satoh, H; Katoh, H; Yamazaki, N

    1996-03-01

    It has been shown that the occurrence of the transient inward current, which is responsible for triggered activity, was often associated with propagating regions of increased intracellular Ca2+ concentration ([Ca2+]i), i.e., the "Ca2+ wave." To investigate the mechanism of antiarrhythmic action of Mg2+, we have studied effects of high concentrations of Mg2+ on Ca2+ waves in isolated rat ventricular myocytes. [Ca2+]i was estimated using the Ca(2+)-indicating probe indo 1. Ca2+ waves in myocytes, stimulated at 0.2 Hz, were induced by perfusion of isoproterenol (10(-7) M). High Mg2+ concentration suppressed Ca2+ waves in a concentration-dependent manner (36% at 4 mM, 70% at 8 mM, and 82% at 12 mM). The Ca2+ channel blocker verapamil also suppressed Ca2+ waves in a similar way. In contrast with marked depression of Ca2+ transients by verapamil, Ca2+ transients were not affected by high Mg2+ concentration (8 mM). High Mg2+ concentration also reduced frequencies of Ca2+ waves in the absence of electrical stimulation, whereas verapamil failed to reduce frequencies of Ca2+ waves. Reduction in frequency of Ca2+ waves by high Mg2+ concentration was associated with slowing of propagation velocity of Ca2+ waves. To examine whether suppressive effects of high Mg2+ concentration on Ca2+ waves were related to an increase in intracellular Mg2+ concentration ([Mg2+]i), the effect of high-Mg2+ solution on [Mg2+]i was examined in myocytes loaded with mag-fura 2. An increase in extracellular Mg2+ concentration from 1 to 12 mM increased [Mg2+]i from 1.06 +/- 0.16 to 1.87 +/- 0.22 mM (P < 0.01) in 30 min. To examine the effect of high Mg2+ concentration on amount of releasable Ca2+ in the sarcoplasmic reticulum, the effect of high Mg2+ concentration on the Ca2+ transient induced by a rapid application of caffeine was examined. High-Mg2+ solution increased the peak of the caffeine-induced Ca2+ transient. These results suggest that the inhibitory effect of Mg2+ on Ca2+ waves was not due

  3. The cytosolic calcium transient modulates the action potential of rat ventricular myocytes.

    PubMed Central

    duBell, W H; Boyett, M R; Spurgeon, H A; Talo, A; Stern, M D; Lakatta, E G

    1991-01-01

    1. The modulation of the action potential by the cytosolic Ca2+ (Cai2+) transient was studied in single isolated rat ventricular myocytes loaded with the acetoxymethyl ester form of the Ca(2+)-sensitive fluorescent dye Indo-1. Stimulation following rest and exposure to ryanodine were used to change the amount of Ca2+ released from the sarcoplasmic reticulum and thus the size of the Cai2+ transient. The Cai2+ transient was measured as the change, upon stimulation, in the ratio of Indo-1 fluorescence at 410 nm to that at 490 nm (410/490) and action potentials or membrane currents were recorded using patch-type microelectrodes. 2. When stimulation was initiated following rest, the magnitude of the Cai2+ transient decreased in a beat-dependent manner until a steady state was reached. The negative staircase in the Cai2+ transient was accompanied by a similar beat-dependent decrease in the duration of the action potential, manifested primarily as a gradual loss of the action potential plateau (approximately -45 mV). A slow terminal phase of repolarization of a few millivolts in amplitude was found to parallel the terminal decay of the Cai2+ transient. 3. The terminal portion of phase-plane loops of membrane potential (Vm) vs. Indo-1 ratio from all of the beats of a stimulus train followed a common linear trajectory even though the individual beats differed markedly in the duration and amplitude of the action potential and Cai2+ transient. 4. When the stimulation dependence of the Cai2+ transient was titrated away with submaximal exposure to ryanodine, the stimulation-dependent changes in the action potential plateau and terminal phase of repolarization were also eliminated. The same effect was noted in cells which, fortuitously, did not show a staircase in the Cai2+ transient following a period of rest. 5. When action potentials were triggered immediately following spontaneous release of Ca2+ from the sarcoplasmic reticulum, which results in a small depolarization at the

  4. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes.

    PubMed Central

    Takahashi, N; Calderone, A; Izzo, N J; Mäki, T M; Marsh, J D; Colucci, W S

    1994-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) is a peptide growth factor that may play a role in the myocardial response to hypertrophic stimuli. However, the cellular distribution, mechanism of induction, and source of increased TGF-beta 1 in response to hypertrophic stimuli are not known. We tested the hypothesis that the cardiac myocyte responds to hypertrophic stimuli with the increased expression of TGF-beta 1. In adult rat ventricular myocardium freshly dissociated into myocyte and nonmyocyte cellular fractions, the preponderance of TGF-beta 1 mRNA visualized by Northern hybridization was in the nonmyocyte fraction. Abdominal aortic constriction (7 d) and subcutaneous norepinephrine infusion (36 h) each caused ventricular hypertrophy associated with 3.1-fold and 3.8-fold increases, respectively, in TGF-beta 1 mRNA in the myocyte fraction, but had no effect on the level of TGF-beta 1 mRNA in the nonmyocyte fraction. In ventricular myocytes, norepinephrine likewise caused a 4.1-fold increase in TGF-beta 1 mRNA associated with an increase in TGF-beta bioactivity. This induction of TGF-beta 1 mRNA occurred at norepinephrine concentrations as low as 1 nM and was blocked by prazosin, but not propranolol. NE did not increase the TGF-beta 1 mRNA level in nonmyocytes, primarily fibroblasts, cultured from neonatal rat ventricle. Thus, the cardiac myocyte responds to two hypertrophic stimuli, pressure overload and norepinephrine, with the induction of TGF-beta 1. These data support the view that TGF-beta 1, released by myocytes and acting in an autocrine and/or paracrine manner, is involved in myocardial remodeling by hypertrophic stimuli. Images PMID:7929822

  5. Activation of chloride current by P2-purinoceptors in rat ventricular myocytes.

    PubMed Central

    Kaneda, M.; Fukui, K.; Doi, K.

    1994-01-01

    1. Rat ventricular myocytes were dissociated and their responses to extracellularly applied ATP were recorded using patch pipettes under the whole cell configuration. 2. ATP initially induced an inward current followed by an outward current at -50 mV. With a Cs-rich pipette solution the late outward current was blocked, leaving a sustained inward current (IATPs) suggesting that a K+ conductance underlies the late response. 3. When the extracellular Cl- concentration was changed, the reversal potential of IATPs corresponded well to the shift of the Cl- equilibrium potential. IATPs was reversibly blocked by the chloride channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). 4. The concentration-response curve of IATPs had a Hill coefficient of 0.98 and an EC50 value of 5.2 x 10(-6) M. 5. ATP was more potent than ADP, while AMP and adenosine were ineffective, suggesting that P2-purinoceptor activation induced IATPs. 6. The activation of IATPs was depressed by depleting the extracellular Mg2+ and increased by adding Mg2+. 7. Our results strongly suggest that P2-purinoceptor activation by ATP induces both a Cl(-)-conductance (IATPs) and a K(+)-conductance in rat ventricular myocytes. PMID:8032621

  6. Low-Dose Bisphenol A and Estrogen Increase Ventricular Arrhythmias Following Ischemia-Reperfusion in Female Rat Hearts

    PubMed Central

    Yan, Sujuan; Song, Weizhong; Chen, Yamei; Hong, Kui; Rubinstein, Jack; Wang, Hong-Sheng

    2013-01-01

    Bisphenol A (BPA) is an environmental estrogenic endocrine disruptor that may have adverse health impacts on a range of tissue/systems. In previous studies, we reported that BPA rapidly promoted arrhythmias in female rodent hearts through alteration of myocyte calcium handling. In the present study we investigated the acute effects of BPA on ventricular arrhythmias and infarction following ischemia-reperfusion in rat hearts. Rat hearts were subjected to 20 minutes of global ischemia followed by reperfusion. In female, but not male hearts, acute exposure to 1 nM BPA, either alone or combined with 1 nM 17β-estradiol (E2), during reperfusion resulted in a marked increase in the duration of sustained ventricular arrhythmias. BPA plus E2 increased the duration ventricular fibrillation, and the duration of VF as a fraction of total duration of sustained ventricular arrhythmia. The pro-arrhythmic effects of estrogens were abolished by MPP combined with PHTPP, suggesting the involvements of both ERα and ERβ signaling. In contrast to their pro-arrhythmic effects, BPA and E2 reduced infarction size, agreeing with previously described protective effect of estrogen against cardiac infarction. In conclusion, rapid exposure to low dose BPA, particularly when combined with E2, exacerbates ventricular arrhythmia following IR injury in female rat hearts. PMID:23429042

  7. Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats

    PubMed Central

    Lestari, Bayu; Permatasari, Nur; Rohman, Mohammad Saifur

    2016-01-01

    The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (—); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats. PMID:26941790

  8. Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats.

    PubMed

    Lestari, Bayu; Permatasari, Nur; Rohman, Mohammad Saifur

    2016-01-01

    The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (-); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats. PMID:26941790

  9. Regional alterations of repolarizing K+ currents among the left ventricular free wall of rats with ascending aortic stenosis

    PubMed Central

    Volk, Tilmann; Nguyen, Thi Hong-Diep; Schultz, Jobst-Hendrik; Faulhaber, Jörg; Ehmke, Heimo

    2001-01-01

    The effect of cardiac hypertrophy on electrocardiogram (ECG), action potential duration (APD) and repolarizing K+ currents was investigated in epicardial, midmyocardial and endocardial myocytes isolated from the rat left ventricular free wall. Cardiac hypertrophy was induced by stenosis of the ascending aorta (AS), which led to an increased pressure load (+85 ± 10 mm) of the left ventricle; sham-operated animals served as controls. In ECG recordings from AS rats, the QTc interval was prolonged and the main vectors of the QRS complex and the T-wave pointed in opposite directions, indicating an abnormal sequence of repolarization. APD and K+ currents were recorded using the whole-cell patch-clamp technique. In the AS group, APD90 (90 % repolarization) was significantly prolonged in epicardial and midmyocardial, but not endocardial myocytes. Corresponding to the increase in APD, the magnitude of the transient outward K+ current (Ito1) was significantly smaller (-30 %) in epicardial and midmyocardial, but not endocardial myocytes. Inactivation and steady-state inactivation of Ito1 were not affected by hypertrophy. Recovery from inactivation was slightly prolonged in endocardial myocytes from AS rats. No differences in delayed rectifier currents (IK) or inwardly rectifying K+ currents (IK1) were detected between myocytes of the three regions of sham-operated or AS animals. However, both currents were reduced by AS. The present data show that cardiac hypertrophy caused by pressure overload leads to an increase in APD and a decrease in Ito1 primarily in epicardial and midmyocardial myocytes, which implies a major role of alterations in Ito1 for the reduced gradient in APD. The effects of AS on IK1 and IK may slightly counteract the decrease in APD gradient. The observed changes in APD and underlying ionic currents could well explain the alterations in repolarization observed in the ECG induced by cardiac hypertrophy. PMID:11158275

  10. Calcium uptake by sarcoplasmic reticulum isolated from hearts of septic rats

    SciTech Connect

    McDonough, K.H.

    1988-08-01

    Myocardial sarcoplasmic reticulum (SR) plays a critical role in the regulation of the cytosolic calcium fluctuations that occur during the cardiac cycle. One function of the SR is to lower the calcium concentration so that myocardial relaxation and thus ventricular filling can occur. The aim of the present study was to determine if hyperdynamic sepsis induced a decrease in the capacity of SR to take up calcium. This defect would result in decreased ventricular filling and thus decreased cardiac output, as has previously been shown in isolated perfused working hearts removed from septic rats. Therefore, rats were anesthetized with ether, and sepsis was induced by the injection of an aliquot of a fecal homogenate into the peritoneal cavity. Control animals either underwent surgery and received an aliquot of sterilized fecal inoculum (sham) or were untreated (no surgery). On day 2 after surgery, animals were anesthetized with pentobarbital, and hearts were removed, weighted, and SR isolated. The rate of uptake of /sup 45/Ca/sup 2 +/ by SR from septic rats was not depressed compared to controls but in fact was elevated. Maximum /sup 45/Ca/sup 2 +/ accumulated by the SR and Ca/sup 2 +/-stimulated ATPase activity were similar in SR from control and septic hearts. These results suggest that the contractile dysfunction noted in the myocardium in early sepsis is probably not due to inadequate SR removal of Ca/sup 2 +/ during diastole.

  11. Interventricular comparison of the energetics of contraction of trabeculae carneae isolated from the rat heart

    PubMed Central

    Han, June-Chiew; Taberner, Andrew J; Nielsen, Poul M F; Loiselle, Denis S

    2013-01-01

    We compare the energetics of right ventricular and left ventricular trabeculae carneae isolated from rat hearts. Using our work-loop calorimeter, we subjected trabeculae to stress-length work (W), designed to mimic the pressure–volume work of the heart. Simultaneous measurement of heat production (Q) allowed calculation of the accompanying change of enthalpy (ΔH=W+Q). From the mechanical measurements (i.e. stress and change of length), we calculated work, shortening velocity and power. In combination with heat measurements, we calculated activation heat (QA), crossbridge heat (Qxb) and two measures of cardiac efficiency: ‘mechanical efficiency’ (ɛmech=W/ΔH) and ‘crossbridge efficiency’ (ɛxb=W/(ΔH–QA)). With respect to their left ventricular counterparts, right venticular trabeculae have higher peak shortening velocity, and higher peak mechanical efficiency, but with no difference of stress development, twitch duration, work performance, shortening power or crossbridge efficiency. That is, the 35% greater maximum mechanical efficiency of right venticular than left ventricular trabeculae (13.6 vs. 10.2%) is offset by the greater metabolic cost of activation (QA) in the latter. When corrected for this difference, crossbridge efficiency does not differ between the ventricles. PMID:23184511

  12. Simultaneous measurement of arterial and left ventricular pressure in conscious freely moving rats by telemetry.

    PubMed

    Segreti, Jason A; Polakowski, James S; Blomme, Eric A; King, Andrew J

    2016-01-01

    Comprehensive cardiovascular assessment in conscious rodents by utilizing telemetry has been limited by the restriction of current devices to one pressure channel. The purpose of this study was to test and validate a dual pressure transmitter that allows the simultaneous measurement of arterial pressure (AP) and left ventricular pressure (LVP) in conscious freely moving rats. Six rats were surgically implanted with dual pressure transmitters. Baseline hemodynamics and circadian rhythm were observed to return within 7days. AP, heart rate (HR), LVP and indices of left ventricular contractility were stable and demonstrated a prominent circadian rhythm over a two-week period of uninterrupted recordings. Administration of the vasodilator nifedipine produced the anticipated dose-dependent decrease in AP which was accompanied by a baroreflex mediated increase in HR and cardiac contractility. The negative inotrope verapamil produced the expected dose-dependent decreases in AP and cardiac contractility. Finally, a terminal validation of the dual pressure transmitter was performed under anesthesia by measuring AP and LVP simultaneously via telemetry and from a fluid filled arterial catheter and an intraventricular Millar catheter, respectively. A range of pressures and cardiac contractility were studied by administering sequential intravenous infusions of the positive inotrope dobutamine followed by verapamil. Linear regression analysis revealed a high level of agreement between pressures measured by the dual pressure transmitter and the exteriorized catheters. Histopathologic analysis of the heart revealed mild peri-catheter fibrosis. In conclusion, the simultaneous measurement of AP and LVP offers the potential for more detailed cardiovascular assessment in conscious rats. PMID:26778372

  13. Voluntary exercise-induced changes in beta2-adrenoceptor signalling in rat ventricular myocytes.

    PubMed

    Stones, Rachel; Natali, Antonio; Billeter, Rudolf; Harrison, Simon; White, Ed

    2008-09-01

    Regular exercise is beneficial to cardiovascular health. We tested whether mild voluntary exercise training modifies key myocardial parameters [ventricular mass, intracellular calcium ([Ca2+]i) handling and the response to beta-adrenoceptor (beta-AR) stimulation] in a manner distinct from that reported for beneficial, intensive training and pathological hypertrophic stimuli. Female rats performed voluntary wheel-running exercise for 6-7 weeks. The mRNA expression of target proteins was measured in left ventricular tissue using real-time reverse transcriptase-polymerase chain reaction. Simultaneous measurement of cell shortening and [Ca2+]i transients were made in single left ventricular myocytes and the inotropic response to beta1- and beta2-AR stimulation was measured. Voluntary exercise training resulted in cardiac hypertrophy, the heart weight to body weight ratio being significantly greater in trained compared with sedentary animals. However, voluntary exercise caused no significant alteration in the size or time course of myocyte shortening and [Ca2+]i transients or in the mRNA levels of key proteins that regulate Ca2+ handling. The positive inotropic response to beta1-AR stimulation and the level of beta1-AR mRNA were unaltered by voluntary exercise but both mRNA levels and inotropic response to beta2-AR stimulation were significantly reduced in trained animals. The beta2-AR inotropic response was restored by exposure to pertussis toxin. We propose that in contrast to pathological stimuli and to beneficial, intense exercise training, modulation of Ca2+ handling is not a major adaptive mechanism in the response to mild voluntary exercise. In addition, and in a reversal of the situation seen in heart failure, voluntary exercise training maintains the beta1-AR response but reduces the beta2-AR response. Therefore, although voluntary exercise induces cardiac hypertrophy, there are distinct differences between its effects on key myocardial regulatory mechanisms

  14. Treprostinil potentiates the positive inotropic effect of catecholamines in adult rat ventricular cardiomyocytes

    PubMed Central

    Fontana, M; Olschewski, H; Olschewski, A; Schlüter, K-D

    2007-01-01

    Background and purpose: Prostanoids have been shown to improve exercise tolerance, hemodynamics and quality of life in patients with pulmonary arterial hypertension (PAH). We investigated whether treprostinil exerts direct contractile effects on cardiomyocytes that may explain partly the beneficial effects of these drugs. Experimental approach: Ventricular cardiomyocytes from adult rats were paced at a constant frequency of 0.5 to 2.0 Hz and cell shortening was monitored via a cell edge detection system. Twitch amplitudes, expressed as percent cell shortening of the diastolic cell length, and maximal contraction velocity, relaxation velocity, time to peak of contraction and time to reach 50% of relaxation were analyzed. Key results: Treprostinil (0.15 – 15 ng ml−1) slightly increased contractile dynamics of cardiomyocytes at clinically relevant concentrations. However, the drug significantly improved cell shortening of cardiomyocytes in the presence of isoprenaline, a β-adrenoceptor agonist. Treprostinil exerted this effect at all beating frequencies under investigation. Treprostinil mimicked this potentiating effect in a Langendorff preparation as well. The potentiating effect of treprostinil on isoprenaline-dependent cell shortening was no longer seen after phosphodiesterase inhibition. Long-term cultivation of cardiomyocytes with treprostinil did not modify load free cell shortening of these cells, but reduces the duration of contraction. Conclusions and implications: We conclude that the clinically used prostanoid treprostinil potentiates the positive inotropic effects of catecholamines in adult ventricular cardiomyocytes. This newly described effect may contribute to the beneficial clinical effects of prostanoids in patients with PAH. PMID:17533419

  15. Effects of Sleep Deprivation on Action Potential and Transient Outward Potassium Current in Ventricular Myocytes in Rats

    PubMed Central

    Fang, Zhou; Ren, Yi-Peng; Lu, Cai-Yi; Li, Yang; Xu, Qiang; Peng, Li; Fan, Yong-Yan

    2015-01-01

    Background Sleep deprivation contributes to the development and recurrence of ventricular arrhythmias. However, the electrophysiological changes in ventricular myocytes in sleep deprivation are still unknown. Material/Methods Sleep deprivation was induced by modified multiple platform technique. Fifty rats were assigned to control and sleep deprivation 1, 3, 5, and 7 days groups, and single ventricular myocytes were enzymatically dissociated from rat hearts. Action potential duration (APD) and transient outward current (Ito) were recorded using whole-cell patch clamp technique. Results Compared with the control group, the phases of APD of ventricular myocytes in 3, 5, and 7 days groups were prolonged and APD at 20% and 50% level of repolarization (APD20 and APD50) was significantly elongated (The APD20 values of control, 1, 3, 5, and 7 days groups: 5.66±0.16 ms, 5.77±0.20 ms, 8.28±0.30 ms, 11.56±0.32 ms, 13.24±0.56 ms. The APD50 values: 50.66±2.16 ms, 52.77±3.20 ms, 65.28±5.30 ms, 83.56±7.32 ms, 89.24±5.56 ms. P<0.01, n=18). The current densities of Ito significantly decreased. The current density-voltage (I–V) curve of Ito was vitally suppressed downward. The steady-state inactivation curve and steady-state activation curve of Ito were shifted to left and right, respectively, in sleep deprivation rats. The inactivation recovery time of Ito was markedly retarded and the time of closed-state inactivation was markedly accelerated in 3, 5, and 7 days groups. Conclusions APD of ventricular myocytes in sleep deprivation rats was significantly prolonged, which could be attributed to decreased activation and accelerated inactivation of Ito. PMID:25694200

  16. Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes.

    PubMed

    Despa, Sanda; Bers, Donald M

    2007-07-01

    The Na(+)/K(+)-ATPase (NKA) is the main route for Na(+) extrusion from cardiac myocytes. Different NKA alpha-subunit isoforms are present in the heart. NKA-alpha1 is predominant, although there is a variable amount of NKA-alpha2 in adult ventricular myocytes of most species. It has been proposed that NKA-alpha2 is localized mainly in T-tubules (TT), where it could regulate local Na(+)/Ca(2+) exchange and thus cardiac myocyte Ca(2+). However, there is controversy as to where NKA-alpha1 vs. NKA-alpha2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (I(Pump)) measurements and the different ouabain sensitivity of NKA-alpha1 (low) and NKA-alpha2 (high) in rat heart. Ouabain-dependent I(Pump) inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-alpha2, K(1/2) = 0.38 +/- 0.16 microM) that accounts for 29.5 +/- 1.3% of I(Pump) and a low-affinity isoform (NKA-alpha1, K(1/2) = 141 +/- 17 microM) that accounts for 70.5% of I(Pump). Detubulation decreased cell capacitance from 164 +/- 6 to 120 +/- 8 pF and reduced I(Pump) density from 1.24 +/- 0.05 to 1.02 +/- 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-alpha2 accounted for only 18.2 +/- 1.1% of I(Pump). Thus, approximately 63% of I(Pump) generated by NKA-alpha2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-alpha2/NKA-alpha1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-alpha2 is approximately 4.5 times higher in the T-tubules vs. ESL, whereas NKA-alpha1 is almost uniformly distributed between the TT and ESL. PMID:17392375

  17. An endogenous protectant effect of cardiac cyclic GMP against reperfusion-induced ventricular fibrillation in the rat heart.

    PubMed Central

    Pabla, R.; Bland-Ward, P.; Moore, P. K.; Curtis, M. J.

    1995-01-01

    1. After a period of myocardial ischaemia, reperfusion of the myocardium can elicit cardiac arrhythmias. Susceptibility to these arrhythmias declines with time, such that a preceding period of more than approximately 40 min ischaemia is associated with few reperfusion-induced arrhythmias. We have tested the hypothesis that this decline in susceptibility occurs, in part, because of protection by endogenous guanosine 3':5'-cyclic monophosphate (cyclic GMP). 2. Rat isolated hearts were subjected to 60 min left regional ischaemia followed by reperfusion (n = 10 per group). Methylene blue (20 microM), a soluble guanylate cyclase inhibitor, raised the incidence of reperfusion-induced ventricular fibrillation (VF) from 10% in control hearts to 80% (P < 0.05). This effect of methylene blue was abolished by co-perfusion with zaprinast (100 microM), a phosphodiesterase inhibitor which, in the rat heart, is cyclic GMP-specific (specific for the type-V phosphodiesterase isozyme). 3. Methylene blue reduced cyclic GMP levels in the ischaemic, non-ischaemic and reperfused myocardium (P < 0.05) to 50 +/- 10, 52 +/- 12 and 70 +/- 7 fmol mg-1 tissue wet weight, respectively from control values of 143 +/- 38, 147 +/- 43 and 156 +/- 15 fmol mg-1. Co-perfusion with zaprinast prevented this effect, and cyclic GMP levels were actually elevated (P < 0.05) to 366 +/- 102, 396 +/- 130 and 293 +/- 22 fmol mg-1 in ischaemic, non-ischaemic and reperfused myocardium, respectively. Zaprinast by itself also elevated cyclic GMP content. Cyclic AMP levels were not affected by zaprinast or methylene blue. 4. In conclusion, when endogenous cardiac cyclic GMP synthesis is reduced, susceptibility to reperfusion-induced VF after sustained ischaemia is substantially increased. The effect is prevented by inhibiting cyclic GMP degradation. Therefore cyclic GMP appears to be an endogenous intracellular cardioprotectant, and its actions may account for the low susceptibility to VF normally encountered in

  18. Simvastatin ameliorates ventricular remodeling via the TGF‑β1 signaling pathway in rats following myocardial infarction.

    PubMed

    Xiao, Xiangbin; Chang, Guanglei; Liu, Jian; Sun, Guangyun; Liu, Li; Qin, Shu; Zhang, Dongying

    2016-06-01

    Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)‑β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post‑myocardial infarction via the TGF‑β1 signaling pathway remains to be rigorously tested. The left anterior descending artery was ligated to induce a rat model of myocardial infarction. The rat model of myocardial infarction was treated with simvastatin through gastric gavage (10, 20 or 40 mg kg‑1·d‑1). All rats were sacrificed on day 28 after the myocardial infarction operation. The results revealed that simvastatin significantly improved the hemodynamic indexes, left ventricular mass index, the myocardial tissue structure, the cardiomyocyte cross‑sectional area and the collagen volume fraction, and also showed that the levels of TGF‑β1, TGF‑activated kinase (TAK)1 and drosophila mothers against decapentaplegic (Smad)3 were significantly reduced following treatment with simvastatin, while the levels of Smad7 in the simvastatin treatment groups were markedly increased. The results of the present study suggested that statins ameliorated ventricular remodeling in post‑myocardial infarction rats via the TGF‑β1 signaling pathway, which provided a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system. PMID:27121011

  19. Simvastatin ameliorates ventricular remodeling via the TGF-β1 signaling pathway in rats following myocardial infarction

    PubMed Central

    XIAO, XIANGBIN; CHANG, GUANGLEI; LIU, JIAN; SUN, GUANGYUN; LIU, LI; QIN, SHU; ZHANG, DONGYING

    2016-01-01

    Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)-β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post-myocardial infarction via the TGF-β1 signaling pathway remains to be rigorously tested. The left anterior descending artery was ligated to induce a rat model of myocardial infarction. The rat model of myocardial infarction was treated with simvastatin through gastric gavage (10, 20 or 40 mg kg−1·d−1). All rats were sacrificed on day 28 after the myocardial infarction operation. The results revealed that simvastatin significantly improved the hemodynamic indexes, left ventricular mass index, the myocardial tissue structure, the cardiomyocyte cross-sectional area and the collagen volume fraction, and also showed that the levels of TGF-β1, TGF-activated kinase (TAK)1 and drosophila mothers against decapentaplegic (Smad)3 were significantly reduced following treatment with simvastatin, while the levels of Smad7 in the simvastatin treatment groups were markedly increased. The results of the present study suggested that statins ameliorated ventricular remodeling in post-myocardial infarction rats via the TGF-β1 signaling pathway, which provided a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system. PMID:27121011

  20. Tyrosine kinase inhibitor BIBF1000 does not hamper right ventricular pressure adaptation in rats.

    PubMed

    de Raaf, Michiel Alexander; Herrmann, Franziska Elena; Schalij, Ingrid; de Man, Frances S; Vonk-Noordegraaf, Anton; Guignabert, Christophe; Wollin, Lutz; Bogaard, Harm Jan

    2016-09-01

    BIBF1000 is a small molecule tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), and platelet-derived growth factor receptor (PDGFR) and is a powerful inhibitor of fibrogenesis. BIBF1000 is very similar to BIBF1120 (nintedanib), a drug recently approved for the treatment of idiopathic pulmonary fibrosis (IPF). A safety concern pertaining to VEGFR, FGFR, and PDGFR inhibition is the possible interference with right ventricular (RV) responses to an increased afterload, which could adversely affect clinical outcome in patients with IPF who developed pulmonary hypertension. We tested the effect of BIBF1000 on the adaptation of the RV in rats subjected to mechanical pressure overload. BIBF1000 was administered for 35 days in pulmonary artery-banded (PAB) rats. RV adaptation was assessed by echocardiography, pressure volume loop analysis, histology, and determination of atrial natriuretic peptide (ANP) expression. BIBF1000 treatment resulted in growth attenuation but had no effects on RV function after PAB, given absence of changes in cardiac index, end-systolic elastance, connective tissue disposition, and capillary density. We conclude that, in this experimental model of increased afterload, combined VEGFR, FGFR, and PDGFR inhibition does not hamper RV adaptation to pressure overload. PMID:27342880

  1. Isolation and Cryopreservation of Neonatal Rat Cardiomyocytes

    PubMed Central

    Vandergriff, Adam C.; Hensley, Michael Taylor; Cheng, Ke

    2016-01-01

    Cell culture has become increasingly important in cardiac research, but due to the limited proliferation of cardiomyocytes, culturing cardiomyocytes is difficult and time consuming. The most commonly used cells are neonatal rat cardiomyocytes (NRCMs), which require isolation every time cells are needed. The birth of the rats can be unpredictable. Cryopreservation is proposed to allow for cells to be stored until needed, yet freezing/thawing methods for primary cardiomyocytes are challenging due to the sensitivity of the cells. Using the proper cryoprotectant, dimethyl sulfoxide (DMSO), cryopreservation was achieved. By slowly extracting the DMSO while thawing the cells, cultures were obtained with viable NRCMs. NRCM phenotype was verified using immunocytochemistry staining for α-sarcomeric actinin. In addition, cells also showed spontaneous contraction after several days in culture. Cell viability after thawing was acceptable at 40–60%. In spite of this, the methods outlined allow one to easily cryopreserve and thaw NRCMs. This gives researchers a greater amount of flexibility in planning experiments as well as reducing the use of animals. PMID:25938862

  2. Alterations of the intercellular coupling protein, connexin-43, during ventricular fibrillation and sinus rhythm restoration demonstrated in male and female rat hearts: A pilot study

    PubMed Central

    Radošinská, Jana; Knezl, Vladimír; Benová, Tamara; Urban, L’ubomír; Tribulová, Narcis; Slezák, Ján

    2011-01-01

    Ventricular fibrillation (VF) is a life-threatening arrhythmia, whose occurrence precedes the development of myocardial arrhythmogenic substrate resulting from either chronic or acute pathophysiological conditions. The authors’ previous and current studies suggest that downregulated and/or heterogeneously distributed cell-to-cell coupling protein – connexin-43 (Cx43) – facilitates the development of malignant arrhythmias. It was hypothesized that VF itself deteriorates Cx43, and may hamper cardioversion into sinus rhythm. The purpose of the present study was to examine whether myocardial expression and the phosphorylated status of Cx43 is altered due to VF and during sinus rhythm restoration. Experiments were performed using 10-month-old male and female Wistar rats. Isolated Langendorff-mode-perfused rat hearts were subjected to the following events: basal condition, electrically induced VF lasting 2 min, electrically induced VF lasting 10 min, and sustained VF followed by spontaneous sinus rhythm restoration due to transient stop perfusion. The hearts were snap frozen at each event; ventricular tissue was sent for Cx43 immunoblotting using rabbit antiCx43 polyclonal antibody to detect phosphorylated (P-Cx43) as well as unphosphorylated (noP-Cx43) forms of Cx43, and mouse antiCx43 monoclonal antibody to detect noP-Cx43 only. Compared with basal conditions, total Cx43 expression did not change during experiments in either male or female rat hearts. However, P-Cx43 and the ratio of P-Cx43 to total Cx43 decreased significantly due to VF lasting 2 min and 10 min in male rat hearts only. In parallel, there was a significant increase in noP-Cx43 due to VF lasting 2 min and 10 min in male rat hearts only. Surprisingly, an enhancement of noP-Cx43 linked with suppression of P-Cx43 was detected during stop perfusion-induced termination of VF lasting 2 min, followed by sinus rhythm restoration in both male and female rat hearts. Sinus rhythm was not restored after 10

  3. Alterations of the intercellular coupling protein, connexin-43, during ventricular fibrillation and sinus rhythm restoration demonstrated in male and female rat hearts: A pilot study.

    PubMed

    Radošinská, Jana; Knezl, Vladimír; Benová, Tamara; Urban, L'ubomír; Tribulová, Narcis; Slezák, Ján

    2011-01-01

    Ventricular fibrillation (VF) is a life-threatening arrhythmia, whose occurrence precedes the development of myocardial arrhythmogenic substrate resulting from either chronic or acute pathophysiological conditions. The authors' previous and current studies suggest that downregulated and/or heterogeneously distributed cell-to-cell coupling protein - connexin-43 (Cx43) - facilitates the development of malignant arrhythmias. It was hypothesized that VF itself deteriorates Cx43, and may hamper cardioversion into sinus rhythm. The purpose of the present study was to examine whether myocardial expression and the phosphorylated status of Cx43 is altered due to VF and during sinus rhythm restoration. Experiments were performed using 10-month-old male and female Wistar rats. Isolated Langendorff-mode-perfused rat hearts were subjected to the following events: basal condition, electrically induced VF lasting 2 min, electrically induced VF lasting 10 min, and sustained VF followed by spontaneous sinus rhythm restoration due to transient stop perfusion. The hearts were snap frozen at each event; ventricular tissue was sent for Cx43 immunoblotting using rabbit antiCx43 polyclonal antibody to detect phosphorylated (P-Cx43) as well as unphosphorylated (noP-Cx43) forms of Cx43, and mouse antiCx43 monoclonal antibody to detect noP-Cx43 only. Compared with basal conditions, total Cx43 expression did not change during experiments in either male or female rat hearts. However, P-Cx43 and the ratio of P-Cx43 to total Cx43 decreased significantly due to VF lasting 2 min and 10 min in male rat hearts only. In parallel, there was a significant increase in noP-Cx43 due to VF lasting 2 min and 10 min in male rat hearts only. Surprisingly, an enhancement of noP-Cx43 linked with suppression of P-Cx43 was detected during stop perfusion-induced termination of VF lasting 2 min, followed by sinus rhythm restoration in both male and female rat hearts. Sinus rhythm was not restored after 10 min of

  4. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction

    PubMed Central

    HUO, LIANYING; SHI, WENBING; CHONG, LING; WANG, JINLONG; ZHANG, KAI; LI, YUFENG

    2016-01-01

    Left ventricular remodeling results in cardiac dysfunction and accounts for the majority of the morbidity and mortality following myocardial infarction (MI). The aim of the present study was to investigate the effect of asiatic acid (AA) on cardiac function and left ventricular remodeling in a rat model of MI and explore the underlying mechanisms. Rats were subjected to coronary artery ligation to model MI and orally treated with AA. After 4 weeks, cardiac function was assessed by echocardiography. Cardiomyocyte cross-sectional area was recorded, and the expression levels of a number of inflammatory cytokines were detected using ELISA. The degree of interstitial fibrosis was determined by evaluating the mRNA expression levels of collagen II and III. Western blot analysis was performed to detect the expression levels of total and phosphorylated p38 MAPK and ERK1/2, to investigate whether they are involved in the mechanism underlying the effect of AA on the heart. Rats subjected to MI displayed significantly impaired cardiac function compared with those subjected to a sham procedure, while this change was reversed by treatment with AA. Furthermore, AA markedly inhibited cardiac hypertrophy, reduced the mRNA expression levels of inflammatory cytokines and decreased interstitial fibrosis in the infarct border zone of MI model rats compared with those in vehicle-treated MI model rats. Furthermore, the phosphorylation of p38 MAPK and ERK1/2 was blocked by AA in the MI rats but not in the sham rats. In summary, AA treatment preserved cardiac function and inhibited left ventricular remodeling, potentially by blocking the phosphorylation of p38 MAPK and ERK1/2 in the infarct border zone of the ischemic myocardium, indicating that AA may be a novel candidate for development as a therapy for MI. PMID:26889217

  5. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes

    PubMed Central

    Al Kury, Lina T; Voitychuk, Oleg I; Yang, Keun-Hang Susan; Thayyullathil, Faisal T; Doroshenko, Petro; Ramez, Ali M; Shuba, Yaroslav M; Galadari, Sehamuddin; Howarth, Frank Christopher; Oz, Murat

    2014-01-01

    BACKGROUND AND PURPOSE The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes. EXPERIMENTAL APPROACH Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes. KEY RESULTS In the presence of 1–10 μM AEA, suppression of both Na+ and L-type Ca2+ channels was observed. Inhibition of Na+ channels was voltage and Pertussis toxin (PTX) – independent. Radioligand-binding studies indicated that specific binding of [3H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd. Further studies on L-type Ca2+ channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba2+ currents. MetAEA also inhibited Na+ and L-type Ca2+ currents. Radioligand studies indicated that specific binding of [3H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd. CONCLUSION AND IMPLICATIONS Results indicate that AEA inhibited the function of voltage-dependent Na+ and L-type Ca2+ channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation. PMID:24758718

  6. Differential metal content and gene expression in rat left ventricular hypertrophy due to hypertension and hyperactivity.

    PubMed

    Subramanian, Meenakumari; Hunt, Adam L; Petrucci, Giuseppe A; Chen, Zengyi; Hendley, Edith D; Palmer, Bradley M

    2014-07-01

    The spontaneously hypertensive rat (SHR) has been studied extensively as a model of left ventricular hypertrophy (LVH) and associated cardiac dysfunction due to hypertension (HT). The SHR also possesses a hyperactive trait (HA). Crossbreeding SHR with Wistar-Kyoto (WKY) control rats, which are nonHT and nonHA, followed by selected inbreeding produced two additional homozygous strains: WKHT and WKHA, in which the traits of HT and HA, respectively, are expressed separately. WKHT, WKHA and SHR all display LVH, but only the SHR exhibits cardiac dysfunction. We hypothesized that cardiac dysfunction in the SHR is uniquely characterized by calcium overload. We measured total cardiac Ca, Cu, Fe, K, Mg and Zn in the four strains. We found elevated Ca and depressed Cu, Mg and Zn with HT, but not unique to SHR. We surmise that HT promotes aberrant regulation of cardiac Ca(2+), Cu(2+), Mg(2+) and Zn(2+), which does not necessarily result in cardiac dysfunction. Interestingly, Cu was elevated in HA strains compared to nonHA counterparts. We then analyzed gene expression as mRNA of Cu-containing proteins, most notably mitochondrial-Cox, Dbh, Lox, Loxl1, Loxl2, Sod1 and Tyr. The gene expression profiles of Lox, Loxl1, Loxl2 and Sod1 were found especially high in the WKHA, which if reflective of protein content could account for the high Cu content in the WKHA. The mRNA of other genes, notably Mb, Fxyd1, Maoa and Maob were also examined. We found that Maoa gene expression and monoamine oxidase-A (MAO-A) protein content were low in the SHR compared to the other strains. The finding that MAO-A protein is low in the SHR and normal in the WKHT and WKHA strains is most consistent with the idea that MAO-A protects against the development of cardiac dysfunction in LVH but not against LVH in these rats. PMID:24629670

  7. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    SciTech Connect

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-05-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  8. Effects of caffeine on ischemia-reperfusion injury in isolated rat hearts.

    PubMed

    Yamahara, Y; Asayama, J; Matsumoto, T; Miyazaki, H; Tatsumi, T; Ohta, B; Sakai, R; Inoue, M; Inoue, D; Nakagawa, M

    1993-07-01

    Cardiac sarcoplasmic reticulum (SR) plays an important role in regulation of the intracellular Ca2+ concentration. It is well known that intracellular Ca2+ overload is one cause of reperfusion injury. Thus, it is predicted that reperfusion injury of myocardium can be prevented by eliminating the Ca2+ overload. This study examined the effects of caffeine, a SR blocker, on reperfusion injury in isolated perfused rat hearts. Working hearts were reperfused for 25 min after 30 or 50 min of ischemia. Caffeine (10(-4) M) was administered during the period of ischemia or the initial 5 min of reperfusion. The left ventricular pressure and the electrocardiogram were recorded. Rate-pressure products were calculated as an index of cardiac function. Adenine nucleotides were measured by high-performance liquid chromatography to assess energy charge. The administration of caffeine for a short period during the initial reperfusion significantly improved cardiac function in the hearts. Caffeine pretreatment during 50 min of ischemia, though, resulted in deterioration of both energy charge and cardiac function. Caffeine did not affect the incidence of either ventricular fibrillation or reversion to sinus rhythm. The energy charges were lower in the preparations with sustained ventricular fibrillation. PMID:8246349

  9. Isolated congenital cardiac diverticulum originating from the left ventricular apex: Report of a pediatric case.

    PubMed

    Uysal, Fahrettin; Bostan, Ozlem Mehtap; Toprak, Muhammed Hamza Halil; Signak, Isik Senkaya; Cil, Ergun

    2016-01-01

    Congenital ventricular diverticulum is a rare cardiac anomaly defined as a localized protrusion of the ventricular free wall. Although, it is usually asymptomatic, complications such as embolism, infective endocarditis, and arrhythmias can occur. The diagnosis can be made by echocardiography, cardiac magnetic resonance imaging, or catheter angiography. Surgical resection is the treatment of choice in symptomatic patients, whereas the management of asymptomatic patients often represents a therapeutic dilemma. We report here, a 9-month-old patient with asymptomatic congenital left ventricular (LV) diverticulum associated with epigastric hernia. PMID:27212863

  10. Isolated congenital cardiac diverticulum originating from the left ventricular apex: Report of a pediatric case

    PubMed Central

    Uysal, Fahrettin; Bostan, Ozlem Mehtap; Toprak, Muhammed Hamza Halil; Signak, Isik Senkaya; Cil, Ergun

    2016-01-01

    Congenital ventricular diverticulum is a rare cardiac anomaly defined as a localized protrusion of the ventricular free wall. Although, it is usually asymptomatic, complications such as embolism, infective endocarditis, and arrhythmias can occur. The diagnosis can be made by echocardiography, cardiac magnetic resonance imaging, or catheter angiography. Surgical resection is the treatment of choice in symptomatic patients, whereas the management of asymptomatic patients often represents a therapeutic dilemma. We report here, a 9-month-old patient with asymptomatic congenital left ventricular (LV) diverticulum associated with epigastric hernia. PMID:27212863

  11. Characterization of a beta-adrenergically inhibited K+ current in rat cardiac ventricular cells.

    PubMed Central

    Scamps, F

    1996-01-01

    1. The electrophysiological properties and beta-adrenergic regulation of a non-inactivating K+ current were studied using the whole-cell patch-clamp technique (22 +/- 2 degrees C) in adult rat ventricular cells. 2. In the presence of 4-aminopyridine, an inhibitor of the rapidly inactivating current, the depolarization-activated current consisted only of a slowly decaying outward current (IK). The presence of a non-inactivating current (ISS) was revealed when analysing inactivation curves. 3. IK and ISS were both sensitive to 50 mM tetraethylammonium and 10 mM 4-aminopyridine inhibition. IK was totally blocked by 100 microM clofilium, while ISS was not inhibited but rather enhanced by this class III anti-arrhythmic agent. 4. Unlike IK, ISS was only slightly decreased by depolarizing prepulses and it did not show time-dependent inactivation when measured during 500 ms depolarizations. 5. ISS was decreased by the beta-adrenergic agonist isoprenaline (1 microM). Forskolin (10 microM) mimicked the effects of isoprenaline. The non-specific beta-adrenergic antagonist, propranolol (3 microM), and a specific beta 1-adrenergic antagonist, CGP 20712A (0.3 microM), both prevented the effects of isoprenaline. Cell perfusion with 100 microM PKI6-22, a peptide inhibitor of the cyclic AMP-dependent protein kinase, reduced or abolished the effects of isoprenaline. 6. The dose-response curve for the inhibition of ISS by isoprenaline was positioned to the left of that for the calcium current. The threshold dose and the dose giving 50% of the maximal effect were, respectively, 0.1 and 0.21 nM for ISS and 1 and 4.3 nM for ICa. 7. In view of the high sensitivity of ISS to isoprenaline, its possible physiological effect was evaluated on action potential duration during beta-adrenergic stimulation. At 1 nM, a concentration that did not increase ICa, isoprenaline induced a significant prolongation of action potential duration as a consequence of ISS inhibition. With 1 microM isoprenaline

  12. Caffeine-induced immobilization of gating charges in isolated guinea-pig ventricular heart cells

    PubMed Central

    Leroy, Jérôme; Lignon, Jacques M; Gannier, François; Argibay, Jorge A; Malécot, Claire O

    2002-01-01

    The effects of 10 mM caffeine (CAF) on intramembrane charge movements (ICM) were studied in isolated guinea-pig ventricular heart cells with the whole-cell patch-clamp technique.In the presence of CAF, the properties (voltage dependence, maximum QON [Qmax], availability with voltage) of QON charge activated from −110 mV were barely affected. Following a 100 ms prepulse to −50 mV to decrease the participation of charges originating from Na channels, the voltage dependence of QON was shifted by 5 mV (negative component) and by 10 mV (positive component) towards negative potentials, and Qmax was depressed by 16.5%.CAF drastically reduced in a time- and voltage-dependent manner QOFF on repolarization to −50 mV, the effects being greater at positive potentials.CAF-induced QOFF immobilization could be almost entirely removed by repolarization to voltages as negative as −170 mV. In these conditions, the voltage-dependence of QOFF (repolarization to +30 to −170 mV) was shifted by 17 mV (negative component) and 30 mV (positive component) towards negative potentials, suggesting an interconversion into charge 2.Most of CAF effects were suppressed when the sarcoplasmic reticulum (SR) was not functional or when the cells were loaded with BAPTA-AM.We conclude that CAF effects on ICM are likely due to Ca2+ ions released from the SR, and which accumulate in the subsarcolemmal fuzzy spaces in the vicinity of the Ca channels. Because CAF effects were more pronounced on QOFF than on QON the channels have likely to open before Ca2+ ions could affect their gating properties. It is speculated that such an effect on gating charges might contribute to the Ca-induced inactivation of the Ca current. PMID:11834620

  13. The role of luminal Ca2+ in the generation of Ca2+ waves in rat ventricular myocytes

    PubMed Central

    Lukyanenko, Valeriy; Subramanian, Saisunder; Györke, Inna; Wiesner, Theodore F; Györke, Sandor

    1999-01-01

    We used confocal Ca2+ imaging and fluo-3 to investigate the transition of localized Ca2+ releases induced by focal caffeine stimulation into propagating Ca2+ waves in isolated rat ventricular myocytes. Self-sustaining Ca2+ waves could be initiated when the cellular Ca2+ load was increased by elevating the extracellular [Ca2+] ([Ca2+]o) and they could also be initiated at normal Ca2+ loads when the sensitivity of the release sites to cytosolic Ca2+ was enhanced by low doses of caffeine. When we prevented the accumulation of extra Ca2+ in the luminal compartment of the sarcoplasmic reticulum (SR) with thapsigargin, focal caffeine pulses failed to trigger self-sustaining Ca2+ waves on elevation of [Ca2+]o. Inhibition of SR Ca2+ uptake by thapsigargin in cells already preloaded with Ca2+ above normal levels did not prevent local Ca2+ elevations from triggering propagating waves. Moreover, wave velocity increased by 20 %. Tetracaine (0·75 mM) caused transient complete inhibition of both local and propagating Ca2+ signals, followed by full recovery of the responses due to increased SR Ca2+ accumulation. Computer simulations using a numerical model with spatially distinct Ca2+ release sites suggested that increased amounts of releasable Ca2+ might not be sufficient to generate self-sustaining Ca2+ waves under conditions of Ca2+ overload unless the threshold of release site Ca2+ activation was set at relatively low levels (< 1·5 μM). We conclude that the potentiation of SR Ca2+ release channels by luminal Ca2+ is an important factor in Ca2+ wave generation. Wave propagation does not require the translocation of Ca2+ from the spreading wave front into the SR. Instead, it relies on luminal Ca2+ sensitizing Ca2+ release channels to cytosolic Ca2+. PMID:10373699

  14. Effect of the immunosupressant FK506 on excitation-contraction coupling and outward K+ currents in rat ventricular myocytes.

    PubMed

    duBell, W H; Wright, P A; Lederer, W J; Rogers, T B

    1997-06-15

    1. We examined the effects of the immunosupressant drug FK506 on excitation-contraction coupling in isolated rat ventricular myocytes. [Ca2+]i transients were recorded using the intracellular Ca2+ indicators fluo-3 and indo-1 while action potentials (APs) or membrane currents were recorded using patch-type microelectrodes in the whole cell mode. 2. FK506 (25 microM) rapidly and reversibly increased the magnitude of the [Ca2+]i transient in intact cells without changing resting [Ca2+]i or the kinetics of the [Ca2+]i transient, a finding consistent with previous reports that investigated the actions of FK506 on the sarcoplasmic reticulum Ca2+ release channel. 3. The 36% increase in the [Ca2+]i transient produced by FK506 was accompanied by a 293% increase in AP duration (by 293%). Importantly, the addition of FK506 had no effect on the [Ca2+]i transient when the depolarizing duration was controlled in voltage clamp experiments. The increased AP duration could be explained by a marked inward shift in the net membrane current that was observed in these experiments. 4. The net inward current change was not directly responsible for a change in Ca2+ influx, since no change in L-type Ca2+ current (ICa) was observed. Instead, FK506 inhibited both the transient outward K+ current (Ito) and the delayed rectifier K+ current (IK). 5. We conclude that FK506 increases the [Ca2+]i transient during normal contractions by an indirect action: it prolongs the action potential. This action does not appear to depend on the established action of FK506 on the ryanodine receptor. Instead, the inhibition of outward K+ currents prolongs the AP which secondarily increases Ca2+ influx and/or decreases Ca2+ efflux. PMID:9218211

  15. Baroreflex failure increases the risk of pulmonary edema in conscious rats with normal left ventricular function.

    PubMed

    Sakamoto, Kazuo; Hosokawa, Kazuya; Saku, Keita; Sakamoto, Takafumi; Tobushi, Tomoyuki; Oga, Yasuhiro; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2016-01-15

    In heart failure with preserved ejection fraction (HFpEF), the complex pathogenesis hinders development of effective therapies. Since HFpEF and arteriosclerosis share common risk factors, it is conceivable that stiffened arterial wall in HFpEF impairs baroreflex function. Previous investigations have indicated that the baroreflex regulates intravascular stressed volume and arterial resistance in addition to cardiac contractility and heart rate. We hypothesized that baroreflex dysfunction impairs regulation of left atrial pressure (LAP) and increases the risk of pulmonary edema in freely moving rats. In 15-wk Sprague-Dawley male rats, we conducted sinoaortic denervation (SAD, n = 6) or sham surgery (Sham, n = 9), and telemetrically monitored ambulatory arterial pressure (AP) and LAP. We compared the mean and SD (lability) of AP and LAP between SAD and Sham under normal-salt diet (NS) or high-salt diet (HS). SAD did not increase mean AP but significantly increased AP lability under both NS (P = 0.001) and HS (P = 0.001). SAD did not change mean LAP but significantly increased LAP lability under both NS (SAD: 2.57 ± 0.43 vs. Sham: 1.73 ± 0.30 mmHg, P = 0.01) and HS (4.13 ± 1.18 vs. 2.45 ± 0.33 mmHg, P = 0.02). SAD markedly increased the frequency of high LAP, and SAD with HS prolonged the duration of LAP > 18 mmHg by nearly 20-fold compared with Sham (SAD + HS: 2,831 ± 2,366 vs. Sham + HS: 148 ± 248 s, P = 0.01). We conclude that baroreflex failure impairs volume tolerance and together with salt loading increases the risk of pulmonary edema even in the absence of left ventricular dysfunction. Baroreflex failure may contribute in part to the pathogenesis of HFpEF. PMID:26589328

  16. Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes.

    PubMed

    Graff, Donald W; Cascio, Wayne E; Brackhan, Joseph A; Devlin, Robert B

    2004-05-01

    Soluble particulate matter (PM) components (e.g., metals) have the potential to be absorbed into the bloodstream and transported to the heart where they might induce the expression of inflammatory cytokines and remodel electrical properties. We exposed cultured rat ventricular myocytes to similar concentrations of two metals [zinc (Zn) and vanadium (V)] found commonly in PM and measured changes in spontaneous beat rate. We found statistically significant reductions in spontaneous beat rate after both short-term (4-hr) and long-term (24-hr) exposures, with a more substantial effect seen with Zn. We also measured the expression of genes associated with inflammation and a number of sarcolemmal proteins associated with electrical impulse conduction. Exposure to Zn or V (6.25-50 microM) for 6 hr produced significant increases in IL-6, IL-1 alpha, heat shock protein 70, and connexin 43 (Cx43). After 24 hr exposure, Zn induced significant changes in the gene expression of Kv4.2 and KvLQt (potassium channel proteins), the alpha 1 subunit of the L-type calcium channel, and Cx43, as well as IL-6 and IL-1 alpha. In contrast, V produced a greater effect on Cx43 and affected only one ion channel (KvLQT1). These results show that exposure of rat cardiac myocytes to noncytotoxic concentrations of Zn and V alter spontaneous beat rate as well as the expression of ion channels and sarcolemmal proteins relevant to electrical remodeling and slowing of spontaneous beat rate, with Zn producing a more profound effect. As such, these data suggest that the cardiac effects of PM are largely determined by the relative metal composition of particles. PMID:15159208

  17. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart

    NASA Technical Reports Server (NTRS)

    Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P < 0.0001) and correspondingly decreased average apparent surface conduction velocity by 16%+/- 7% (P = 0.007). Ventricular loading did not significantly alter action potential duration at 20% repolarization (APD20) but did at 80% repolarization (APD80), from 179 +/- 7 msec to 207 +/- 5 msec (P < 0.0001). The dispersion of APD20 was decreased with loading from 19 +/- 2 msec to 13 +/- 2 msec (P = 0.024), whereas the dispersion of APD80 was not significantly changed. These electrophysiologic changes with ventricular loading were not affected by the nonspecific stretch-activated channel blocker streptomycin (200 microM) and were not attributable to changes in myocardial perfusion or the presence of an electromechanical decoupling agent (butanedione monoxime) during optical mapping. CONCLUSION: Acute loading of the left ventricle of the isolated rabbit heart decreased apparent epicardial conduction velocity and increased action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.

  18. Pycnogenol improves left ventricular function in streptozotocin-induced diabetic cardiomyopathy in rats.

    PubMed

    Klimas, Jan; Kmecova, Jana; Jankyova, Stanislava; Yaghi, Diana; Priesolova, Elena; Kyselova, Zuzana; Musil, Peter; Ochodnicky, Peter; Krenek, Peter; Kyselovic, Jan; Matyas, Stefan

    2010-07-01

    We studied whether Pycnogenol (PYC) may attenuate the development of experimental streptozotocin-induced diabetic cardiomyopathy in rat. In addition, we aimed to study whether PYC affects cardiac oxidative stress and the protein expression of reactive oxygen species (ROS)-producing molecules (gp91(phox)-containing NADPH oxidase and NO-signalling proteins). Experimental diabetes mellitus was manifested by hyperglycaemia and impaired cardiac function estimated using left ventricular catheterisation in vivo. PYC lowered fasting plasma glucose and normalized basal cardiac function. Excessive oxidative stress in streptozotocin (STZ) hearts, evidenced by 40% increase (P < 0.05) of thiobarbituric acid reactive substances (TBARS) concentration, was associated with increased expression of gp91(phox) (by 75%, P < 0.05), iNOS (by 40%, P < 0.05) and alpha-tubulin (by 49%, P < 0.05), but unchanged expression of eNOS and its alosteric regulators, as compared to CON. PYC failed to affect these expression abnormalities. Our study shows that PYC corrects diabetic cardiac dysfunction, probably by its metabolic and direct radical scavenging activity without affecting the molecular maladaptations of ROS-producing enzymes and cytoskeletal components. PMID:19957251

  19. Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes.

    PubMed

    Fields, Laura A; Koschinski, Andreas; Zaccolo, Manuela

    2016-07-01

    In the heart compartmentalisation of cAMP/protein kinase A (PKA) signalling is necessary to achieve a specific functional outcome in response to different hormonal stimuli. Chronic exposure to catecholamines is known to be detrimental to the heart and disrupted compartmentalisation of cAMP signalling has been associated to heart disease. However, in most cases it remains unclear whether altered local cAMP signalling is an adaptive response, a consequence of the disease or whether it contributes to the pathogenetic process. We have previously demonstrated that isoforms of PKA expressed in cardiac myocytes, PKA-I and PKA-II, localise to different subcellular compartments and are selectively activated by spatially confined pools of cAMP, resulting in phosphorylation of distinct downstream targets. Here we investigate cAMP signalling in an in vitro model of hypertrophy in primary adult rat ventricular myocytes. By using a real time imaging approach and targeted reporters we find that that sustained exposure to catecholamines can directly affect cAMP/PKA compartmentalisation. This appears to involve a complex mechanism including both changes in the subcellular localisation of individual phosphodiesterase (PDE) isoforms as well as the relocalisation of PKA isoforms. As a result, the preferential coupling of PKA subsets with different PDEs is altered resulting in a significant difference in the level of cAMP the kinase is exposed to, with potential impact on phosphorylation of downstream targets. PMID:26475678

  20. Frataxin deficiency in neonatal rat ventricular myocytes targets mitochondria and lipid metabolism.

    PubMed

    Obis, Èlia; Irazusta, Verónica; Sanchís, Daniel; Ros, Joaquim; Tamarit, Jordi

    2014-08-01

    Friedreich ataxia (FRDA) is a hereditary disease caused by deficient frataxin expression. This mitochondrial protein has been related to iron homeostasis, energy metabolism, and oxidative stress. Patients with FRDA experience neurologic alterations and cardiomyopathy, which is the leading cause of death. The specific effects of frataxin depletion on cardiomyocytes are poorly understood because no appropriate cardiac cellular model is available to researchers. To address this research need, we present a model based on primary cultures of neonatal rat ventricular myocytes (NRVMs) and short-hairpin RNA interference. Using this approach, frataxin was reduced down to 5 to 30% of control protein levels after 7 days of transduction. At this stage the activity and amount of the iron-sulfur protein aconitase, in vitro activities of several OXPHOS components, levels of iron-regulated mRNAs, and the ATP/ADP ratio were comparable to controls. However, NRVMs exhibited markers of oxidative stress and a disorganized mitochondrial network with enlarged mitochondria. Lipids, the main energy source of heart cells, also underwent a clear metabolic change, indicated by the increased presence of lipid droplets and induction of medium-chain acyl-CoA dehydrogenase. These results indicate that mitochondria and lipid metabolism are primary targets of frataxin deficiency in NRVMs. Therefore, they contribute to the understanding of cardiac-specific mechanisms occurring in FRDA and give clues for the design of cardiac-specific treatment strategies for FRDA. PMID:24751525

  1. Left ventricular sphericity index predicts systolic dysfunction in rats with experimental aortic regurgitation.

    PubMed

    Roscani, Meliza Goi; Polegato, Bertha Fulan; Minamoto, Suzana Erico Tanni; Lousada, Ana Paula Mena; Minicucci, Marcos; Azevedo, Paula; Matsubara, Luiz Shiguero; Matsubara, Beatriz Bojikian

    2014-05-15

    Although an increased left ventricular (LV) diastolic diameter (DD) and a decreased ejection fraction have been used as markers for the surgical replacement of an insufficient aortic valve, these signals may be observed when irreversible myocardium damage has already occurred. The aim of this study was to determine whether change in LV geometry predicts systolic dysfunction in experimental aortic regurgitation. Male Wistar rats underwent surgical acute aorta regurgitation (aorta regurgitation group; n = 23) or a sham operation (sham group; n = 12). After the procedure, serial transthoracic echocardiograms were performed at 1, 4, 8, and 16 wk. At the end of protocol, the LV, lungs, and liver were dissected and weighed. During the follow-up, no animal developed overt heart failure. There was a correlation between the LV sphericity index and reduced fractional shortening (P < 0.001) over time. A multiple regression model showed that the LVDD-sphericity index association at 8 wk was a better predictor of decreased fractional shortening at week 16 (R(2) = 0.50; P < 0.001) than was the LVDD alone (R(2) = 0.39; P = 0.001). LV geometry associated with increased LVDD improved the prediction of systolic dysfunction in experimental aortic regurgitation. PMID:24699853

  2. Biphasic effects of hyposmotic challenge on excitation-contraction coupling in rat ventricular myocytes.

    PubMed

    Brette, F; Calaghan, S C; Lappin, S; White, E; Colyer, J; Le Guennec, J Y

    2000-10-01

    The effects of short (1 min) and long (7-10 min) exposure to hyposmotic solution on excitation-contraction coupling in rat ventricular myocytes were studied. After short exposure, the action potential duration at 90% repolarization (APD(90)), the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitude, and contraction increased, whereas the L-type Ca(2+) current (I(Ca, L)) amplitude decreased. Fractional sarcoplasmic reticulum (SR) Ca(2+) release increased but SR Ca(2+) load did not. After a long exposure, I(Ca,L), APD(90), [Ca(2+)](i) transient amplitude, and contraction decreased. The abbreviation of APD(90) was partially reversed by 50 microM DIDS, which is consistent with the participation of Cl(-) current activated by swelling. After 10-min exposure to hyposmotic solution in cells labeled with di-8-aminonaphthylethenylpyridinium, t-tubule patterning remained intact, suggesting the loss of de-t-tubulation was not responsible for the fall in I(Ca,L). After long exposure, Ca(2+) load of the SR was not increased, and swelling had no effect on the site-specific phosphorylation of phospholamban, but fractional SR Ca(2+) release was depressed. The initial positive inotropic response to hyposmotic challenge may be accounted for by enhanced coupling between Ca(2+) entry and release. The negative inotropic effect of prolonged exposure can be accounted for by shortening of the action potential duration and a fall in the I(Ca,L) amplitude. PMID:11009486

  3. Insulin internalization in isolated rat hepatocytes

    SciTech Connect

    Galan, J.; Trankina, M.; Noel, R.; Ward, W. )

    1990-02-26

    This project was designed to determine whether neomycin, an aminoglycoside antibiotic, has a significant effect upon the pathways of ligand endocytosis in isolated rat hepatocytes. The pathways studied include receptor-mediated endocytosis and fluid-phase endocytosis. Neomycin causes a dose-dependent acceleration of {sup 125}I-insulin internalization. Since fluid-phase endocytosis can also be a significant factor in {sup 125}I-insulin internalization, lucifer yellow (LY), a marker for fluid-phase endocytosis, was incorporated into an assay similar to the {sup 125}I-insulin internalization procedure. In the presence of 5 mM neomycin, a significant increase in LY uptake was evident at 0.2 and 0.4 mg/ml of LY. At 0.8 mg/ml, a decrease in LY uptake was observed. The increased rate of {sup 125}I-insulin internalization in the presence of neomycin was intriguing. Since one action of neomycin is to inhibit phosphoinositidase C, it suggests that the phosphotidylinositol cycle may be involved in ligand internalization by hepatocytes. At low insulin concentrations, receptor-mediated uptake predominates. Fluid-phase uptake can become an important uptake route as insulin concentrations are increased. Since neomycin stimulates fluid-phase endocytosis, it must also be taken into account when measuring ligand internalization.

  4. Beta-adrenoceptor subtypes in young and old rat ventricular myocytes: a combined patch-clamp and binding study.

    PubMed Central

    Cerbai, E.; Guerra, L.; Varani, K.; Barbieri, M.; Borea, P. A.; Mugelli, A.

    1995-01-01

    1. We used electrophysiological and binding techniques to assess the presence of beta 1- and beta 2-adrenoceptors (beta 1AR and beta 2AR) in rat cardiac myocytes and to determine their ratio during aging. Experiments were performed in left ventricular myocytes enzymatically dissociated from the heart of 3-(young) or 22-month-old (old) Wistar Kyoto rats. 2. In patch-clamp experiments, myocytes from old rats showed a prolonged action potential duration (at -20 mV: 41.7 +/- 3.6 vs 26.2 +/- 3.1 ms; at -60 mV: 154.4 +/- 17.7 vs 87.1 +/- 6.9 ms, P < 0.05) and an augmented membrane capacitance (an index of cell size) (271.7 +/- 20.2 vs 164.3 +/- 14.6 pF, P < 0.05) compared to young rats. beta 2AR stimulation, achieved by superfusing myocytes with the selective beta 2AR agonist, zinterol (10 microM) or with (-)-isoprenaline (1 microM) in the presence of the selective beta 1AR antagonist, CGP 20712A (0.1 microM), significantly increased L-type calcium current (ICa,L) in rat ventricular myocytes. The percentage increase was similar in both young and old rats, either with zinterol (26.9 +/- 3.6% and 24.2 +/- 2.8%, respectively) or isoprenaline plus CGP 20712A (30.4 +/- 3.7% and 22.4 +/- 4.1%, respectively). Isoprenaline alone (beta 1AR and beta 2AR stimulation) caused a much smaller increase in ICa,L in old rats (58.4 +/- 12.1%) than in younger ones (95.3 +/- 8.1%) (P = 0.067).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8528568

  5. Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes.

    PubMed Central

    Xiao, Y F; Kang, J X; Morgan, J P; Leaf, A

    1995-01-01

    Recent evidence indicates that polyunsaturated long-chain fatty acids (PUFAs) prevent lethal ischemia-induced cardiac arrhythmias in animals and probably in humans. To increase understanding of the mechanism(s) of this phenomenon, the effects of PUFAs on Na+ currents were assessed by the whole-cell patch-clamp technique in cultured neonatal rat ventricular myocytes. Extracellular application of the free 5,8,11,14,17-eicosapentaenoic acid (EPA) produced a concentration-dependent suppression of ventricular, voltage-activated Na+ currents (INa). After cardiac myocytes were treated with 5 or 10 microM EPA, the peak INa (elicited by a single-step voltage change with pulses from -80 to -30 mV) was decreased by 51% +/- 8% (P < 0.01; n = 10) and 64% +/- 5% (P < 0.001; n = 21), respectively, within 2 min. Likewise, the same concentrations of 4,7,10,16,19-docosahexaenoic acid produced the same inhibition of INa. By contrast, 5 and 10 microM arachidonic acid (AA) caused less inhibition of INa, but both n - 6 and n - 3 PUFAs inhibited INa significantly. A monounsaturated fatty acid and a saturated fatty acid did not. After washing out EPA, INa returned to the control level. Raising the concentration of EPA to 40 microM completely blocked INa. The IC50 of EPA was 4.8 microM. The inhibition of this Na+ channel was found to be dose and time, but not use dependent. Also, the EPA-induced inhibition of INa was voltage dependent, since 10 microM EPA produced 83% +/- 7% and 29% +/- 5% inhibition of INa elicited by pulses from -80 to -30 mV and from -150 to -30 mV, respectively, in single-step voltage changes. A concentration of 10 microM EPA shifted the steady-state inactivation curve of INa by -19 +/- 3 mV (n = 7; P < 0.01). These effects of PUFAs on INa may be important for their antiarrhythmic effect in vivo. PMID:7479925

  6. FATE OF INHALED NITROGEN DIOXIDE IN ISOLATED PERFUSED RAT LUNG

    EPA Science Inventory

    The fate of inhaled NO2 was studied with isolated perfused rat lungs. The isolated lungs were exposed to 5 ppm NO2 for 90 min at a ventilation rate of 45 ml/min. The NO2 exposure had no adverse effects on the lungs as judged from their weights, glucose uptake, or lactate producti...

  7. Overexpression of VEGF-C attenuates chronic high salt intake-induced left ventricular maladaptive remodeling in spontaneously hypertensive rats.

    PubMed

    Yang, Guo-Hong; Zhou, Xin; Ji, Wen-Jie; Zeng, Shan; Dong, Yan; Tian, Lu; Bi, Ying; Guo, Zhao-Zeng; Gao, Fei; Chen, Hong; Jiang, Tie-Min; Li, Yu-Ming

    2014-02-15

    Recent studies have shown that the tonicity-responsive enhancer binding protein (TonEBP)/vascular endothelial growth factor-C (VEGF-C) signaling pathway-induced lymphangiogenesis provides a buffering mechanism for high salt (HS) intake-induced elevation of blood pressure (BP). Moreover, blocking of TonEBP/VEGF-C signaling by mononuclear phagocyte depletion can induce salt-sensitive hypertension in rats. We hypothesized that HS intake could have an impact on cardiac lymphangiogenesis, and regulation of VEGF-C bioactivity, which is largely through the main receptor for VEGFR-3, may modulate HS intake-induced left ventricular remodeling. We demonstrated upregulation of TonEBP, increased macrophage infiltration, and enhanced lymphangiogenesis in the left ventricles of spontaneously hypertensive rats (SHR) that were fed a HS diet (8.0% NaCl). Then, retrovirus vectors capable of overexpression (ΔNΔC/VEGF-C/Cys152Ser, used for overexpressing VEGF-C) and blocking (VEGFR-3-Rg, used for trapping of bioactive VEGF-C) of VEGF-C and control vector (pLPCX) were intravenously administered to SHR from week 9 of a 12-wk HS loading period. At the end of the HS challenge, overexpression of VEGF-C led to enhanced cardiac lymphangiogenesis, decreased myocardial fibrosis, and macrophage infiltration, preserved left ventricular functions, as well as decreased blood pressure level compared with the HS group and the control vector-treated HS group. In contrast, systemic blocking of VEGF-C was associated with elevation of blood pressure level and an exacerbation of hypertensive left ventricular remodeling, as indicated by increased fibrosis and macrophage infiltration, and diminished lymphangiogenesis. Hence, our findings highlight that VEGF-C/VEGFR-3 is a promising therapeutic target to attenuate hypertensive left ventricular remodeling induced by HS intake, presumably via blood pressure-dependent and -independent mechanisms. PMID:24337460

  8. [Isolated left ventricular--right atrial shunt after blunt chest trauma (author's transl)].

    PubMed

    Kreuzer, E; Beyer, J

    1978-12-01

    A case of left-ventricular-right-atrial septal defect secundary to blunt chest trauma is described. The etiology of this type of septal defect, e. g. congenital, following aortic and mitral valve replacement, endocarditis and trauma, is discussed. Early defect closure is recommended in the presence of significant shunt volume. PMID:751280

  9. Endocardial endothelium is a key determinant of force-frequency relationship in rat ventricular myocardium

    PubMed Central

    Shen, Xiaoxu; Tan, Zhen; Zhong, Xin; Tian, Ye; Wang, Xian; Yu, Bo; Ramirez-Correa, Genaro; Murphy, Anne; Gabrielson, Kathleen; Paolocci, Nazareno

    2013-01-01

    We tested the hypothesis that removing endocardial endothelium (EE) negatively impacts the force-frequency relationship (FFR) of ventricular myocardium and dissected the signaling that underlies this phenomenon. EE of rat trabeculae was selectively damaged by brief (<1 s) exposure to 0.1% Triton X-100. Force, intracellular Ca2+ transient (iCa2+), and activity of protein kinase A (PKA) and protein kinase C (PKC) were determined. In control muscles, force and iCa2+ increased as the stimulation frequency increased in steps of 0.5 Hz up to 3.0 Hz. However, EE-denuded (EED) muscles exhibited a markedly blunted FFR. Neither isoproterenol (ISO; 0.1–5 nmol/l) nor endothelin-1 (ET-1; 10–100 nmol/l) alone restored the slope of FFR in EED muscles. Intriguingly, however, a positive FFR was restored in EED preparations by combining low concentrations of ISO (0.1 nmol/l) and ET-1 (20 nmol/l). In intact muscles, PKA and PKC activity increased proportionally with the increase in frequency. This effect was completely lost in EED muscles. Again, combining ISO and ET-1 fully restored the frequency-dependent rise in PKA and PKC activity in EED muscles. In conclusion, selective damage of EE leads to significantly blunted FFR. A combination of low concentrations of ISO and ET-1 successfully restores FFR in EED muscles. The interdependence of ISO and ET-1 in this process indicates cross-talk between the β1-PKA and ET-1-PKC pathways for a normal (positive) FFR. The results also imply that dysfunction of EE and/or EE-myocyte coupling may contribute to flat (or even negative) FFR in heart failure. PMID:23703113

  10. Multiphysics model of a rat ventricular myocyte: A voltage-clamp study

    PubMed Central

    2012-01-01

    Background The objective of this study is to develop a comprehensive model of the electromechanical behavior of the rat ventricular myocyte to investigate the various factors influencing its contractile response. Methods Here, we couple a model of Ca2 + dynamics described in our previous work, with a well-known model of contractile mechanics developed by Rice, Wang, Bers and de Tombe to develop a composite multiphysics model of excitation-contraction coupling. This comprehensive cell model is studied under voltage clamp (VC) conditions, since it allows to focus our study on the elaborate Ca2 + signaling system that controls the contractile mechanism. Results We examine the role of various factors influencing cellular contractile response. In particular, direct factors such as the amount of activator Ca2 + available to trigger contraction and the type of mechanical load applied (resulting in isosarcometric, isometric or unloaded contraction) are investigated. We also study the impact of temperature (22 to 38°C) on myofilament contractile response. The critical role of myofilament Ca2 + sensitivity in modulating developed force is likewise studied, as is the indirect coupling of intracellular contractile mechanism with the plasma membrane via the Na + /Ca2 + exchanger (NCX). Finally, we demonstrate a key linear relationship between the rate of contraction and relaxation, which is shown here to be intrinsically coupled over the full range of physiological perturbations. Conclusions Extensive testing of the composite model elucidates the importance of various direct and indirect modulatory influences on cellular twitch response with wide agreement with measured data on all accounts. Thus, the model provides mechanistic insights into whole-cell responses to a wide variety of testing approaches used in studies of cardiac myofilament contractility that have appeared in the literature over the past several decades. PMID:23171697

  11. Short-term pretreatment with atorvastatin attenuates left ventricular dysfunction, reduces infarct size and apoptosis in acute myocardial infarction rats

    PubMed Central

    Chen, Tie-Long; Zhu, Guang-Li; He, Xiao-Long; Wang, Jian-An; Wang, Yu; Qi, Guo-An

    2014-01-01

    Background: Atorvastatin showed a number of cardiovascular benefits, however, the role and underlying molecular mechanisms of short-term atorvastatin-mediated protection remain unclear. Methods: 30 rats were randomly divided into 3 groups: sham group, acute myocardial infarction model group and atorvastatin group. The rats of acute myocardial infarction model were established by ligation of the left anterior descending of coronary arteries. Before surgery, rats in the atorvastatin group received 20 mg/kg/d atorvastatin for 7 days in atorvastatin group. After 4 hours of model established, changes in hemodynamics parameters were recorded and myocardial infarct size was achieved by Evans blue-TTC staining. Myocardium apoptosis was evaluated by TUNEL. The expression of FAS, FAS-L, Bcl-2, Bax, p-BAD, Caspase-8 and Caspase-3 in myocardium were examined by Western blot. Results: In the atorvastatin group, left ventricular function was elevated and infarct size was decreased compared with the model group. Moreover, in the atorvastatin group, the cell apoptosis index was reduced in response to myocardial infarction. The expressions of Bcl-2 were increased and Bax, p-BAD, Fas, Fas-L, caspase-8 and caspase-3 in myocardium were decreased in atorvastatin group. Conclusions: Short-term atorvastatin pretreatment restored left ventricular function and limited infarct size in acute myocardial infarction, which were associated with reduction of the apoptosis in myocardium through Bcl-2 and Fas pathway. PMID:25663976

  12. A high-resolution thermoelectric module-based calorimeter for measuring the energetics of isolated ventricular trabeculae at body temperature.

    PubMed

    Johnston, Callum M; Han, June-Chiew; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J

    2015-07-15

    Isolated ventricular trabeculae are the most common experimental preparations used in the study of cardiac energetics. However, the experiments have been conducted at subphysiological temperatures. We have overcome this limitation by designing and constructing a novel calorimeter with sufficiently high thermal resolution for simultaneously measuring the heat output and force production of isolated, contracting, ventricular trabeculae at body temperature. This development was largely motivated by the need to better understand cardiac energetics by performing such measurements at body temperature to relate tissue performance to whole heart behavior in vivo. Our approach uses solid-state thermoelectric modules, tailored for both temperature sensing and temperature control. The thermoelectric modules have high sensitivity and low noise, which, when coupled with a multilevel temperature control system, enable an exceptionally high temperature resolution with a noise-equivalent power an order of magnitude greater than those of other existing muscle calorimeters. Our system allows us to rapidly and easily change the experimental temperature without disturbing the state of the muscle. Our calorimeter is useful in many experiments that explore the energetics of normal physiology as well as pathophysiology of cardiac muscle. PMID:26001412

  13. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy

    PubMed Central

    Jenni, R; Oechslin, E; Schneider, J; Jost, C; Kaufmann, P

    2001-01-01

    AIM—To determine clear cut echocardiographic criteria for isolated ventricular non-compaction (IVNC), a cardiomyopathy as yet "unclassified" by the World Health Organization. The disease is not widely known and its diagnosis mostly missed.
METHODS AND RESULTS—In seven out of a series of 34 patients with IVNC the in vivo echocardiographic characteristics were validated against the anatomical examination of the heart removed after death in four and due to heart transplantation in three patients. Four morphological criteria diagnostic for IVNC were found. (1) Coexisting cardiac abnormalities were absent (by definition). (2) A two layer structure was seen, with a compacted thin epicardial band and a much thicker non-compacted endocardial layer of trabecular meshwork with deep endomyocardial spaces. A maximal end systolic ratio of non-compacted to compacted layers of > 2 is diagnostic. (3) The predominant localisation of the pathology was to mid-lateral (seven of seven patients), apical (six), and mid-inferior (seven) areas. The pathological preparations confirmed the echocardiographic findings. Concomitant regional hypokinesia was not confined to the non-compacted segments. (4) There was colour Doppler evidence of deep perfused intertrabecular recesses.
CONCLUSIONS—Four clear cut echocardiographic diagnostic criteria were established. It is suggested that the WHO classification of cardiomyopathies be reconsidered to include IVNC as a distinct cardiomyopathy.


Keywords: isolated ventricular non-compaction; morphological criteria; cardiomyopathy; echocardiography; pathology PMID:11711464

  14. Tribulosin suppresses apoptosis via PKC epsilon and ERK1/2 signaling pathway during hypoxia/reoxygenation in neonatal rat ventricular cardiac myocytes.

    PubMed

    Zhang, Shuang; Li, Hong; Yang, Shi-Jie

    2011-12-01

    Tribulosin (tigogenin 3-O-β-D-xylopyranosyl(1-2)-[β-D-xylopyranosyl (1-3)]-β-D-glucopyranosyl (1-4)-[a-L-rhamnopyranosyl(1-2)]-β-D-galactopyranoside), a component of gross saponins of Tribulus terrestris, has been shown to produce cytoprotective effects in heart. Yet, the precise mechanisms are not fully understood. We examined the mechanisms of tribulosin on myocardial protection. Ventricular myocytes were isolated from the heart of neonatal rats and were exposed to 3 h of hypoxia followed by 2 h reoxygenation. Apoptosis was induced by hypoxia/reoxygenation (H/R), and the expression of protein kinase C epsilon (PKCϵ) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured neonatal rat cardiac myocytes was detected. The results indicated that treatment with tribulosin in the culture medium protected cardiac myocytes against apoptosis induced by H/R. PKCϵ and ERK1/2 expression increased after pretreated with tribulosin. In the presence of PKCϵ inhibitor co-treated with tribulosin, the expression of ERK1/2 was decreased in H/R cardiac myocytes. While preconditioned with PD98059, ERK1/2 inhibitor, no effects on the expression of PKCϵ were detected. Tribulosin has protective effects on cardiac myocytes against apoptosis induced by H/R injury via PKCϵ and ERK1/2 signaling pathway. PMID:22115037

  15. Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes.

    PubMed Central

    Donoso, P; Mill, J G; O'Neill, S C; Eisner, D A

    1992-01-01

    1. The fluorescent Na+ indicator SBFI was incorporated into isolated ventricular myocytes using the acetoxymethyl (AM) ester. 2. The excitation spectrum was found to be shifted about 20 nm in the cell compared to in vitro. In the cell, an increase of [Na+] decreased fluorescence at 380 nm (F380) and had no effect at 340 nm (F340). The ratio (R = F340/F380) was used as a measure of [Na+]i. 3. In vivo calibration of SBFI for [Na+]i was obtained by equilibrating [Na+] across the plasma membrane with a divalent-free solution in the presence of gramicidin D. 4. Selective removal of the surface membrane with saponin or digitonin released only about 50% of the indicator. Following saponin treatment, cyanide or carbonylcyanide m-chlorphenylhydrazone (CCCP) increased the apparent [Na+] measured by the remaining (presumably mitochondrial) SBFI. It is suggested that mitochondrial [Na+] is normally less than cytoplasmic. 5. Attempts to examine the effects of metabolic inhibition on [Na+]i were hampered by changes of autofluorescence due to changes of [NADH]. It is shown that this effect can be corrected for using the isosbestic signal (excited at 340 nm). 6. Inhibition of both aerobic metabolism (with CN-) and glycolysis (glucose removal or iodoacetate) produced a gradual increase of [Na+]i. This began before the resting contracture developed and may (via Na(+)-Ca2+ exchange) account for some of the rise of diastolic [Ca2+]i seen in previous work. The rise of [Na+]i began at about the same time as the decrease of systolic contraction and therefore at a time when [ATP]i had begun to fall. PMID:1593474

  16. MRI assessment of pacing induced ventricular dyssynchrony in an isolated human heart.

    PubMed

    Eggen, Michael D; Bateman, Michael G; Rolfes, Christopher D; Howard, Stephen A; Swingen, Cory M; Iaizzo, Paul A

    2010-02-01

    This study demonstrates the capabilities of MRI in the assessment of cardiac pacing induced ventricular dyssynchrony, and the findings support the need for employing more physiological pacing. A human donor heart deemed non-viable for transplantation, was reanimated using an MR compatible, four-chamber working perfusion system. The heart was imaged using a 1.5T MR scanner while being paced from the right ventricular apex (RVA) via an epicardial placed lead. Four-chamber, short-axis, and tagged short-axis cines were acquired in order to track wall motion and intramyocardial strain during pacing. The results of this study revealed that the activation patterns of the left ventricle (LV) during RVA pacing demonstrated intraventricular dyssynchrony; as the left ventricular mechanical activation proceeded from the septum and anterior wall to the lateral wall, with the posterior wall being activated last. As such, the time difference to peak contraction between the septum and lateral wall was approximately 125 msec. Likewise, interventricular dyssynchrony was demonstrated from the four-chamber cine as the time difference between the peak LV and RV free wall motion was 180 msec. With the ongoing development of MR safe and MR compatible pacing systems, we can expect MRI to be added to the list of imaging modalities used to optimize cardiac resynchronization therapy (CRT) and/or alternate site pacing. PMID:20099368

  17. MRI Assessment of Pacing Induced Ventricular Dyssynchrony in an Isolated Human Heart

    PubMed Central

    Eggen, Michael D.; Bateman, Michael G.; Rolfes, Christopher D.; Howard, Stephen A.; Swingen, Cory M.; Iaizzo, Paul A.

    2010-01-01

    This study demonstrates the capabilities of MR imaging in the assessment of cardiac pacing induced ventricular dyssynchrony, and findings support the need for employing more physiological pacing. A human donor heart deemed non-viable for transplantation, was reanimated using an MR compatible, four-chamber working perfusion system. The heart was imaged using a 1.5T MR scanner while being paced from the right ventricular apex (RVA) via an epicardial placed lead. Four-chamber, short-axis, and tagged short-axis cines were acquired in order track wall motion and intramyocardial strain during pacing. The results of this study revealed that the activation patterns of the left ventricle (LV) during RVA pacing demonstrated intraventricular dyssynchrony; as the left ventricular mechanical activation proceeded from the septum and anterior wall to the lateral wall, with the posterior wall being activated last. As such, the time difference to peak contraction between the septum and lateral wall was ∼125 ms. Likewise, interventricular dyssynchrony was demonstrated from the four-chamber cine as the time difference between the peak LV and RV free wall motion was 180 ms. With the ongoing development of MR safe and MR compatible pacing systems, we can expect MRI to be added to the list of imaging modalities used to optimize cardiac resynchronization therapy and/or alternate site pacing. PMID:20099368

  18. Prolonged asystole in a patient with an isolated left ventricular assist device.

    PubMed

    Javed, Wasim; Chaggar, Parminder S; Venkateswaran, Rajamiyer; Shaw, Steven M

    2016-09-01

    Left ventricular assist devices (LVADs) are well established in the management of end-stage heart failure as either destination therapy, a bridge prior to cardiac transplantation or during myocardial recovery. Despite LVADs requiring adequate left ventricular preload to effectively augment systemic circulation, there have been rare cases of patients with LVADs surviving sustained, normally fatal arrhythmias, such as ventricular fibrillation and asystole. Whilst current reports describe an LVAD patient surviving 15 days with such an arrhythmia, we describe the case of a patient with an LVAD surviving 104 days of asystole via a Fontan mechanism of circulation, which we believe is the longest known survival of a sustained fatal arrhythmia. This case highlights the physiology of circulations supported by LVADs and the unique challenges that may arise in managing ambulant LVAD patients, such as predicting prognosis. Given the increasing use of LVADs to treat end-stage heart failure, these issues are likely to become more frequently encountered in the future. PMID:27539188

  19. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats.

    PubMed

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-01

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. PMID:26811539

  20. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-01

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. PMID:26811539

  1. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes.

    PubMed Central

    Kagaya, Y; Weinberg, E O; Ito, N; Mochizuki, T; Barry, W H; Lorell, B H

    1995-01-01

    We tested the hypothesis that glycolytic inhibition by 2-deoxyglucose causes greater impairment of diastolic relaxation and intracellular calcium handling in well-oxygenated hypertrophied adult rat myocytes compared with control myocytes. We simultaneously measured cell motion and intracellular free calcium concentration ([Ca2+]i) with indo-1 in isolated paced myocytes from aortic-banded rats and sham-operated rats. There was no difference in either the end-diastolic or peak-systolic [Ca2+]i between control and hypertrophied myocytes (97 +/- 18 vs. 105 +/- 15 nM, 467 +/- 92 vs. 556 +/- 67 nM, respectively). Myocytes were first superfused with oxygenated Hepes-buffered solution containing 1.2 mM CaCl2, 5.6 mM glucose, and 5 mM acetate, and paced at 3 Hz at 36 degrees C. Exposure to 20 mM 2-deoxyglucose as substitution of glucose for 15 min caused an upward shift of end-diastolic cell position in both control (n = 5) and hypertrophied myocytes (n = 10) (P < 0.001 vs. baseline), indicating an impaired extent of relaxation. Hypertrophied myocytes, however, showed a greater upward shift in end-diastolic cell position and slowing of relaxation compared with control myocytes (delta 144 +/- 28 vs. 55 +/- 15% of baseline diastolic position, P < 0.02). Exposure to 2-deoxyglucose increased end-diastolic [Ca2+]i in both groups (P < 0.001 vs. baseline), but there was no difference between hypertrophied and control myocytes (218 +/- 38 vs. 183 +/- 29 nM, respectively). The effects of 2-deoxyglucose were corroborated in isolated oxygenated perfused hearts in which glycolytic inhibition which caused severe elevation of isovolumic diastolic pressure and prolongation of relaxation in the hypertrophied hearts compared with controls. In summary, the inhibition of the glycolytic pathway impairs diastolic relaxation to a greater extent in hypertrophied myocytes than in control myocytes even in well-oxygenated conditions. The severe impairment of diastolic relaxation induced by 2

  2. Ca exchange under non-perfusion-limited conditions in rat ventricular cells: Identification of subcellular compartments

    SciTech Connect

    Langer, G.A.; Rich, T.L.; Orner, F.B. )

    1990-08-01

    Freshly prepared ventricular myocytes from rat hearts, aliquots of which were tested for sarcolemmal integrity by La exposure, were labeled at high 45Ca specific activity. Isotope was subsequently washed out at a perfusion rate of 2.8 ml/s with washout solution sampled each 1 s. No initial unrecorded period of washout was imposed. Four compartments were distinguishable: (1) a rapid compartment (RC) containing 2.6 mmol Ca/kg dry wt of La-displaceable Ca, half time (t1/2) less than 1 s; (2) an intermediate compartment(s) (IC) containing 2.1 mmol, t1/2 = 3 and 19 s; (3) a slow compartment (SC) containing 1.6 mmol, t1/2 = 3.6 min; (4) an inexchangeable compartment that demonstrated no 45Ca uptake after 60-min labeling containing 1.2 mmol. Introduction of 10 mM caffeine as a probe for sarcoplasmic reticulum (SR) content at various times during the washouts caused an increased release of 45Ca. The net increased 45Ca release plotted as a function of time at which caffeine was introduced produced a biexponential curve with t1/2s of 2 and 22 s, very similar to the t1/2s of the IC. Ryanodine (1 microM) significantly reduced the caffeine-induced 45Ca release, confirming the SR locus of the IC. Cells were perfused with 10 mM NaH2PO4 to specifically increase mitochondrial 45Ca labeling. Subsequent removal of PO4 at various times during washouts produced large increases in effluent 45Ca. A plot of the net peak release of 45Ca vs. time of PO4 removal was monoexponential with t1/2 = 3.3 min, very similar to the SC t1/2. The large La-accessible RC remains unlocalized, but the rapidity of its exchange places it in the sarcolemma and/or at sites in rapid equilibrium with the sarcolemma.

  3. Isolation of anionic sialoproteins from the rat glomerulus.

    PubMed

    Nevins, T E; Michael, A F

    1981-04-01

    The epithelial glomerular polyanion (GPA) designates an array of sialic acid-containing sites along the surface of the glomerular epithelium which react with cationic dyes or probes. In this work, sequential rat glomerular isolation, ultrasonic disruption, trypsin digestion, ion-exchange chromatography, and preparative polyacrylamide gel electrophoresis have been used to isolate anionic sialoglycoproteins from the glomerular epithelium. Because colloidal iron (CI) reactivity has been used to define the GPA histologically, we used a modification of the CI reaction to monitor and direct the isolation procedure. Three major fractions have been recognized and isolated in homogeneity. Antibodies to two of the fractions have been raised by immunization in rabbits. Indirect immunofluorescent and peroxidase-antibody techniques have localized both antigens to the glomerular visceral epithelium of normal rat kidney. This identification and definition of components of the GPA is valuable in delineating a role for GPA in glomerular function. PMID:7241889

  4. The effect of cardiac glycosides on the Na+ pump current-voltage relationship of isolated rat and guinea-pig heart cells.

    PubMed Central

    Hermans, A N; Glitsch, H G; Verdonck, F

    1994-01-01

    1. Whole-cell recording from isolated rat and guinea-pig ventricular myocytes revealed a change of the cardiac Na+ pump current (Ip)-voltage (V) relationship by cardiac glycosides, specific inhibitors of the Na(+)-K+ pump. 2. Dihydro-ouabain (DHO) diminished Ip in rat ventricular cells at 0 mV in a concentration-dependent manner. 3. The concentration-response curve of Ip inhibition caused by DHO was shifted to higher [DHO] at higher extracellular K+ concentrations ([K+]o) or at more negative membrane potentials. 4. In rat myocytes, DHO immediately flattened the normalized cardiac Ip-V curve and evoked or enhanced a region of negative slope. 5. Ouabain, at concentrations which caused a comparable inhibition of Ip, exerted DHO-like effects on the Ip-V relationship of rat ventricular myocytes. However, the effects developed more slowly. 6. A slowly developing alteration of the Ip-V curve was also observed upon application of DHO to guinea-pig ventricular cells. The range of [DHO] used was about 100-fold lower than that applied to rat ventricular cells, but was equally effective for Ip inhibition. 7. Increasing the K+ concentration of DHO-containing media affected the existing equilibrium of DHO binding to the cardiac Na(+)-K+ pump. A new equilibrium was reached within about 3 s in rat ventricular myocytes, but only within about 50 s in guinea-pig ventricular cells under the experimental conditions chosen. 8. It is concluded that the changes of the cardiac Ip-V curve induced by cardiac glycosides are mediated by voltage-dependent variations of the local [K+]o at the K+ binding sites of the Na(+)-K+ pump in an 'access channel'. The variations were estimated by means of the Boltzmann equation. The estimations agreed with those derived from the measured DHO binding to the Na(+)-K+ pump at various [K+]o. A new equilibrium of glycoside binding to the pump is established at the altered [K+]o. The time necessary to reach the new binding equilibrium varies with the

  5. Fetal-Adult Cardiac Transcriptome Analysis in Rats with Contrasting Left Ventricular Mass Reveals New Candidates for Cardiac Hypertrophy

    PubMed Central

    Grabowski, Katja; Riemenschneider, Mona; Schulte, Leonard; Witten, Anika; Schulz, Angela; Stoll, Monika; Kreutz, Reinhold

    2015-01-01

    Reactivation of fetal gene expression patterns has been implicated in common cardiac diseases in adult life including left ventricular (LV) hypertrophy (LVH) in arterial hypertension. Thus, increased wall stress and neurohumoral activation are discussed to induce the return to expression of fetal genes after birth in LVH. We therefore aimed to identify novel potential candidates for LVH by analyzing fetal-adult cardiac gene expression in a genetic rat model of hypertension, i.e. the stroke-prone spontaneously hypertensive rat (SHRSP). To this end we performed genome-wide transcriptome analysis in SHRSP to identify differences in expression patterns between day 20 of fetal development (E20) and adult animals in week 14 in comparison to a normotensive rat strain with contrasting low LV mass, i.e. Fischer (F344). 15232 probes were detected as expressed in LV tissue obtained from rats at E20 and week 14 (p < 0.05) and subsequently screened for differential expression. We identified 24 genes with SHRSP specific up-regulation and 21 genes with down-regulation as compared to F344. Further bioinformatic analysis presented Efcab6 as a new candidate for LVH that showed only in the hypertensive SHRSP rat differential expression during development (logFC = 2.41, p < 0.001) and was significantly higher expressed in adult SHRSP rats compared with adult F344 (+ 76%) and adult normotensive Wistar-Kyoto rats (+ 82%). Thus, it represents an interesting new target for further functional analyses and the elucidation of mechanisms leading to LVH. Here we report a new approach to identify candidate genes for cardiac hypertrophy by combining the analysis of gene expression differences between strains with a contrasting cardiac phenotype with a comparison of fetal-adult cardiac expression patterns. PMID:25646840

  6. Comparison of Macitentan and Bosentan on Right Ventricular Remodeling in a Rat Model of Non-vasoreactive Pulmonary Hypertension

    PubMed Central

    Landskroner, Kyle; Bauer, Yasmina; Vercauteren, Magali; Rey, Markus; Renault, Berengère; Studer, Rolf; Vezzali, Enrico; Freti, Diego; Hadana, Hakim; Schläpfer, Manuela; Cattaneo, Christophe; Bortolamiol, Céline; Weber, Edgar; Whitby, Brian R.; Delahaye, Stéphane; Wanner, Daniel; Steiner, Pauline; Nayler, Oliver; Hess, Patrick; Clozel, Martine

    2015-01-01

    Aims: We compared the efficacy of macitentan, a novel dual endothelin A/endothelin B receptor antagonist, with that of another dual endothelin receptor antagonist, bosentan, in a rat model of non-vasoreactive pulmonary hypertension (PH) with particular emphasis on right ventricular (RV) remodeling. Methods and Results: Unlike monocrotaline or hypoxic/sugen rats, bleomycin-treated rats presented a non-vasoreactive PH characterized by the absence of pulmonary dilatation to adenosine. We therefore chose the bleomycin rat model to compare the effects of the maximally effective doses of macitentan and bosentan on pulmonary vascular and RV remodeling. Macitentan (100 mg·kg−1·d−1), but not bosentan (300 mg·kg−1·d−1), significantly prevented pulmonary vascular remodeling, RV hypertrophy, and cardiomyocyte diameter increase. Cardiac protection by macitentan was associated with a significant attenuation of genes related to cell hypertrophy and extracellular matrix remodeling. Microautoradiography and high performance liquid chromatography analysis showed greater distribution of macitentan than bosentan in the RV and pulmonary tissue. Conclusions: Macitentan was more efficacious than bosentan in preventing the development of pulmonary and RV hypertrophies in a model of non-vasoreactive PH. Greater ability to distribute into the tissue could contribute to the greater structural improvement by macitentan compared with bosentan. PMID:26230396

  7. Intrauterine endotoxin-induced impairs pulmonary vascular function and right ventricular performance in infant rats and improvement with early vitamin D therapy.

    PubMed

    Mandell, Erica; Powers, Kyle N; Harral, Julie W; Seedorf, Gregory J; Hunter, Kendall S; Abman, Steven H; Dodson, R Blair

    2015-12-15

    High pulmonary vascular resistance (PVR), proximal pulmonary artery (PA) impedance, and right ventricular (RV) afterload due to remodeling contribute to the pathogenesis and severity of pulmonary hypertension (PH). Intra-amniotic exposure to endotoxin (ETX) causes sustained PH and high mortality in rat pups at birth, which are associated with impaired vascular growth and RV hypertrophy in survivors. Treatment of ETX-exposed pups with antenatal vitamin D (vit D) improves survival and lung growth, but the effects of ETX exposure on RV-PA coupling in the neonatal lung are unknown. We hypothesized that intrauterine ETX impairs RV-PA coupling through sustained abnormalities of PA stiffening and RV performance that are attenuated with vit D therapy. Fetal rats were exposed to intra-amniotic injections of ETX, ETX+vit D, or saline at 20 days gestation (term = 22 days). At postnatal day 14, pups had pressure-volume measurements of the RV and isolated proximal PA, respectively. Lung homogenates were assayed for extracellular matrix (ECM) composition by Western blot. We found that ETX lungs contain decreased α-elastin, lysyl oxidase, collagen I, and collagen III proteins (P < 0.05) compared control and ETX+vit D lungs. ETX-exposed animals have increased RV mechanical stroke work (P < 0.05 vs. control and ETX+vit D) and elastic potential energy (P < 0.05 vs. control and ETX+vit D). Mechanical stiffness and ECM remodeling are increased in the PA (P < 0.05 vs. control and ETX+vit D). We conclude that intrauterine exposure of fetal rats to ETX during late gestation causes persistent impairment of RV-PA coupling throughout infancy that can be prevented with early vit D treatment. PMID:26475735

  8. PDE2 activity differs in right and left rat ventricular myocardium and differentially regulates β2 adrenoceptor-mediated effects.

    PubMed

    Soler, Fernando; Fernández-Belda, Francisco; Pérez-Schindler, Joaquín; Handschin, Christoph; Fuente, Teodomiro; Hernandez-Cascales, Jesús

    2015-09-01

    The important regulator of cardiac function, cAMP, is hydrolyzed by different cyclic nucleotide phosphodiesterases (PDEs), whose expression and activity are not uniform throughout the heart. Of these enzymes, PDE2 shapes β1 adrenoceptor-dependent cardiac cAMP signaling, both in the right and left ventricular myocardium, but its role in regulating β2 adrenoceptor-mediated responses is less well known. Our aim was to investigate possible differences in PDE2 transcription and activity between right (RV) and left (LV) rat ventricular myocardium, as well as its role in regulating β2 adrenoceptor effects. The free walls of the RV and the LV were obtained from Sprague-Dawley rat hearts. Relative mRNA for PDE2 (quantified by qPCR) and PDE2 activity (evaluated by a colorimetric procedure and using the PDE2 inhibitor EHNA) were determined in RV and LV. Also, β2 adrenoceptor-mediated effects (β2-adrenoceptor agonist salbutamol + β1 adrenoceptor antagonist CGP-20712A) on contractility and cAMP concentrations, in the absence or presence of EHNA, were studied in the RV and LV. PDE2 transcript levels were less abundant in RV than in LV and the contribution of PDE2 to the total PDE activity was around 25% lower in the microsomal fraction of the RV compared with the LV. β2 adrenoceptor activation increased inotropy and cAMP levels in the LV when measured in the presence of EHNA, but no such effects were observed in the RV, either in the presence or absence of EHNA. These results indicate interventricular differences in PDE2 transcript and activity levels, which may distinctly regulate β2 adrenoceptor-mediated contractility and cAMP concentrations in the RV and in the LV of the rat heart. PMID:25432985

  9. Effects of pethidine and nalorphine on the mechanical and electrical activities of mammalian isolated ventricular muscle.

    PubMed

    Grundy, H F; Tritthart, H

    1972-09-01

    1. The strength of the isometric mechanical contraction of electricallydriven ventricular muscle has been recorded simultaneously with the resting and action potentials; the effects of pethidine and of nalorphine on these parameters have been studied.2. When lower concentrations of pethidine (0.22-6.5 mug/ml) were perfused, isometric peak tension was decreased in parallel with the maximum upstroke velocity of the action potential; these actions are considered to result from membrane stabilization. At higher concentrations (11.8-109 mug/ml) pethidine usually produced, in addition, a progressive decrease in the resting and action potentials associated with marked irregularities in, or even abolition of, the mechanical response. It is suggested that these effects of the higher doses might be due to a depression of ATPase activity in the myocardial membrane.3. Compared with pethidine, nalorphine had similar, but weaker, actions. PMID:4263795

  10. Effect of plant polyphenols on ischemia-reperfusion injury of the isolated rat heart and vessels.

    PubMed

    Brosková, Z; Drábiková, K; Sotníková, R; Fialová, S; Knezl, V

    2013-07-01

    In the present study, we investigated the potential protective effect of selected natural substances in a rat model of heart and mesenteric ischemia-reperfusion (I/R). Experiments were performed on isolated Langendorff-perfused rat hearts, subjected to 30-min global ischemia, followed by 30-min reperfusion. Arbutin, curcumin, rosmarinic acid and extract of Mentha x villosa were applied in the concentration of 1 × 10⁻⁵ mol/l 10 min before the onset of ischemia and during reperfusion, through the perfusion medium. Mesenteric ischemia was induced by clamping the superior mesenteric artery (SMA) for 60 min, subsequent reperfusion lasted 30 min. Production of reactive oxygen species (ROS) by SMA ex vivo was determined by luminol-enhanced chemiluminiscence (CL). The effect of the substances was tested after their incubation with tissue. Curcumin and extract of Mentha x villosa were found to be the most effective in reducing reperfusion-induced dysrhythmias--ventricular tachycardia and fibrillation. This effect was accompanied by bradycardic effect. The mesenteric I/R induced an increase in CL in vascular tissue which was dampened by substances tested. All substances tested were found to have antioxidant properties, as demonstrated by a reduction in ROS production in mesenteric vessels. This effect was confirmed in curcumin and extract of Mentha x villosa which reduced reperfusion dyshythmias. PMID:22933407

  11. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium.

    PubMed

    Majumder, Rupamanjari; Engels, Marc C; de Vries, Antoine A F; Panfilov, Alexander V; Pijnappels, Daniël A

    2016-01-01

    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity. PMID:27072041

  12. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium

    NASA Astrophysics Data System (ADS)

    Majumder, Rupamanjari; Engels, Marc C.; de Vries, Antoine A. F.; Panfilov, Alexander V.; Pijnappels, Daniël A.

    2016-04-01

    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity.

  13. Effects of buyang huanwu decoction on ventricular remodeling and differential protein profile in a rat model of myocardial infarction.

    PubMed

    Zhou, Ying Chun; Liu, Bin; Li, Ying Jia; Jing, Lin Lin; Wen, Ge; Tang, Jing; Xu, Xin; Lv, Zhi Ping; Sun, Xue Gang

    2012-01-01

    Buyang Huanwu decoction (BYHWD) is a well-known and canonical Chinese medicine formula from "Correction on Errors in Medical Classics" in Qing dynasty. Here, we show that BYHWD could alleviate the ventricular remodeling induced by left anterior descending (LAD) artery ligation in rats. BYHWD treatment (18 g/kg/day) decreased heart weight/body weight (HW/BW), left ventricle (LV) dimension at end diastole (LVDd) and increased LV ejection fraction (LVEF) and LV fractional shortening (LVFS) significantly compared to model group at the end of 12 weeks. The collagen volume of BYHWD group was more significantly decreased than that of model group. Proteomic analysis showed that atrial natriuretic factor (ANF) was downregulated; heat shock protein beta-6 (HSPB6) and peroxiredoxin-6 (PRDX6) were upregulated in BYHWD-treated group among successfully identified proteins. The apoptotic index (AI) was reduced by BYHWD accompanied by decreased expression of Bax and caspase 3 activity, increased Bcl-2/Bax ratio, and phosphorylation of HSPB6 compared to that of model group. Taken together, these results suggest that BYHWD can alleviate ventricular remodeling induced by LAD artery ligation. The antiremodeling effects of BYHWD are conferred by decreasing AI through affecting multiple targets including increased Bcl-2/Bax ratio and decreased caspase 3 activity that might be via upregulated PRDX6, phosphorylation of HSPB6 and subsequently reduction of ANF. PMID:23049607

  14. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium

    PubMed Central

    Majumder, Rupamanjari; Engels, Marc C.; de Vries, Antoine A. F.; Panfilov, Alexander V.; Pijnappels, Daniël A.

    2016-01-01

    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity. PMID:27072041

  15. Nicorandil Prevents Right Ventricular Remodeling by Inhibiting Apoptosis and Lowering Pressure Overload in Rats with Pulmonary Arterial Hypertension

    PubMed Central

    Yu, Yan-Zhe; Wang, Hui; Bi, Li-Qing; Xie, Wei-Ping; Wang, Hong

    2012-01-01

    Background Most of the deaths among patients with severe pulmonary arterial hypertension (PAH) are caused by progressive right ventricular (RV) pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear. Methodology/Principal Findings RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT). RV systolic pressure (RVSP) was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP) ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD) reversed these beneficial effects of nicorandil in MCT-injected rats. Conclusions/Significance Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K+ (mitoKATP) channels. The use of a mitoKATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV remodeling during

  16. Non-targeted metabolomics identified a common metabolic signature of lethal ventricular tachyarrhythmia (LVTA) in two rat models.

    PubMed

    Wang, Xingxing; Wang, Dian; Yu, Xiaojun; Zhang, Guohong; Wu, Jiayan; Zhu, Guanghui; Su, Ruibing; Lv, Junyao

    2016-06-21

    Lethal ventricular tachyarrhythmia (LVTA) is the predominant underlying mechanism of sudden cardiac death (SCD). The aim of this study is to characterize the metabolic features of myocardia following LVTA, and identify potential biomarkers to diagnose LVTA. We developed two LVTA rat models induced by aconitine injection or coronary artery ligation, which represent cardiac ion channel disease-related and cardiac ischemia-related SCD, respectively. The myocardial metabolic profile was investigated by gas chromatography-mass spectrometry and proton nuclear magnetic resonance-based metabolomics. Twenty-three aconitine-injected and 14 coronary artery ligation-treated rats developed LVTA SCD. A total of 38 differential metabolites of myocardia were identified in aconitine-induced LVTA rats, of which 31 metabolites showed a similar change in coronary artery ligation-related LVTA rats. Fatty acids (stearic, palmitic, linoleic, elaidic, and myristic) and branched-chain amino acids (valine, leucine, and isoleucine) were the most down-regulated metabolites. Furthermore, elevated ADP, phosphate, lactate, glutamate, aspartate, threonine, choline and arginine were also observed. Major pathways regarding these dysregulated metabolites post LVTA are energy excessive consumption and deficit, ionic imbalance, oxidative stress, cardiac cytotoxicity and membrane injury. Valine, stearic acid and leucine collectively enable a precision of 92.9% to distinguish LVTA from its control, and are correlated with several arrhythmia indices. Our results uncovered a common metabolic feature of LVTA in myocardia in two rat models, which represent cardiac ion channel disease and cardiac ischemia, respectively. l-Valine, l-leucine and stearic acid jointly confer good potential for distinguishing LVTA, which might be potential biomarkers of LVTA-related SCD. PMID:27138062

  17. Effects of quinapril on myocardial function, ventricular remodeling and cardiac cytokine expression in congestive heart failure in the rat.

    PubMed

    We, Ge Cheng; Siroi, Martin G; Qu, Rong; Liu, Peter; Roulea, Jean L

    2002-01-01

    Inflammatory cytokines have been shown to be activated in congestive heart failure (CHF). This activation is likely the result of the convergence of a number of factors, several of which could be attenuated with the use of an Angiotensin converting enzyme (ACE) inhibitor. In order to assess this, rats had a myocardial infarction (MI) created by coronary artery ligation and were followed for 28 days without treatment to permit the development of CHF. At that time, the ACE inhibitor quinapril was started, or rats remained untreated and were followed a further 56 days for a total of 84 days. Half of the untreated rats had quinapril started 3 days prior to sacrifice, on day 81. Starting quinapril at either 28 or 81 days had little effect on cardiac hemodynamics, or ventricular remodeling. Quinapril did however attenuate the MI-induced rise in cardiac cytokine expression (tumor necrosis factor-alpha [TNF-alpha], interleukin-1beta, -5 and -6). Thus, in CHF, ACE inhibitors attenuate the rise in cardiac cytokine expression. This study helps to identify a new mechanism by which ACE inhibitors may exert their beneficial effects in CHF. PMID:12085975

  18. Effect of naringin on hemodynamic changes and left ventricular function in renal artery occluded renovascular hypertension in rats

    PubMed Central

    Visnagri, Asjad; Adil, Mohammad; Kandhare, Amit D.; Bodhankar, Subhash L.

    2015-01-01

    Background: Renal artery occlusion (RAO) induced hypertension is a major health problem associated with structural and functional variations of the renal and cardiac vasculature. Naringin a flavanone glycoside derived possesses metal-chelating, antioxidant and free radical scavenging properties. Objective: The objective of this study was to investigate the antihypertensive activity of naringin in RAO induced hypertension in rats. Material and Methods: Male Wistar rats (180-200 g) were divided into five groups Sham, RAO, naringin (20, 40 and 80 mg/kg). Animals were pretreated with naringin (20, 40 and 80 mg/kg p.o) for 4 weeks. On the last day of the experiment, left renal artery was occluded with renal bulldog clamp for 4 h. After assessment of hemodynamic and left ventricular function various biochemical (superoxide dismutase [SOD], glutathione [GSH] and malondialdehyde [MDA]) and histological parameters were determined in the kidney. Results: RAO group significantly (P < 0.001) increased hemodynamic parameters at 15, 30 and 45 min of clamp removal. Naringin (40 and 80 mg/kg) treated groups showed a significant decrease in hemodynamic parameters at 15 min. after clamp removal that remained sustained for 60 min. Naringin (40 and 80 mg/kg) treated groups showed significant improvement in left ventricular function at 15, 30 and 45 min after clamp removal. Alteration in level of SOD, GSH and MDA was significantly restored by naringin (40 and 80 mg/kg) treatment. It also reduced histological aberration induced in kidney by RAO. Conclusion: It is concluded that the antihypertensive activity of naringin may result through inhibition of oxidative stress. PMID:25883516

  19. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes

    PubMed Central

    Verde, Ignacio; Vandecasteele, Grégoire; Lezoualc'h, Frank; Fischmeister, Rodolphe

    1999-01-01

    The effects of several phosphodiesterase (PDE) inhibitors on the L-type Ca current (ICa) and intracellular cyclic AMP concentration ([cAMP]i) were examined in isolated rat ventricular myocytes. The presence of mRNA transcripts encoding for the different cardiac PDE subtypes was confirmed by RT–PCR.IBMX (100 μM), a broad-spectrum PDE inhibitor, increased basal ICa by 120% and [cAMP]i by 70%, similarly to a saturating concentration of the β-adrenoceptor agonist isoprenaline (1 μM). However, MIMX (1 μM), a PDE1 inhibitor, EHNA (10 μM), a PDE2 inhibitor, cilostamide (0.1 μM), a PDE3 inhibitor, or Ro 20-1724 (0.1 μM), a PDE4 inhibitor, had no effect on basal ICa and little stimulatory effects on [cAMP]i (20–30%).Each selective PDE inhibitor was then tested in the presence of another inhibitor to examine whether a concomitant inhibition of two PDE subtypes had any effect on ICa or [cAMP]i. While all combinations tested significantly increased [cAMP]i (40–50%), only cilostamide (0.1 μM)+Ro20-1724 (0.1 μM) produced a significant stimulation of ICa (50%). Addition of EHNA (10 μM) to this mix increased ICa to 110% and [cAMP]i to 70% above basal, i.e. to similar levels as obtained with IBMX (100 μM) or isoprenaline (1 μM).When tested on top of a sub-maximal concentration of isoprenaline (1 nM), which increased ICa by (≈40% and had negligible effect on [cAMP]i, each selective PDE inhibitor induced a clear stimulation of [cAMP]i and an additional increase in ICa. Maximal effects on ICa were ≈8% for MIMX (3 μM), ≈20% for EHNA (1–3 μM), ≈30% for cilostamide (0.3–1 μM) and ≈50% for Ro20-1724 (0.1 μM).Our results demonstrate that PDE1-4 subtypes regulate ICa in rat ventricular myocytes. While PDE3 and PDE4 are the dominant PDE subtypes involved in the regulation of basal ICa, all four PDE subtypes determine the response of ICa to a stimulus activating cyclic AMP production, with the rank order of potency PDE4>PDE3

  20. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes.

    PubMed

    Verde, I; Vandecasteele, G; Lezoualc'h, F; Fischmeister, R

    1999-05-01

    The effects of several phosphodiesterase (PDE) inhibitors on the L-type Ca current (I(Ca)) and intracellular cyclic AMP concentration ([cAMP]i) were examined in isolated rat ventricular myocytes. The presence of mRNA transcripts encoding for the different cardiac PDE subtypes was confirmed by RT-PCR. IBMX (100 microM), a broad-spectrum PDE inhibitor, increased basal I(Ca) by 120% and [cAMP]i by 70%, similarly to a saturating concentration of the beta-adrenoceptor agonist isoprenaline (1 microM). However, MIMX (1 microM), a PDE1 inhibitor, EHNA (10 microM), a PDE2 inhibitor, cilostamide (0.1 microM), a PDE3 inhibitor, or Ro20-1724 (0.1 microM), a PDE4 inhibitor, had no effect on basal I(Ca) and little stimulatory effects on [cAMP]i (20-30%). Each selective PDE inhibitor was then tested in the presence of another inhibitor to examine whether a concomitant inhibition of two PDE subtypes had any effect on I(Ca) or [cAMP]i. While all combinations tested significantly increased [cAMP]i (40-50%), only cilostamide (0.1 microM)+ Ro20-1724 (0.1 microM) produced a significant stimulation of I(Ca) (50%). Addition of EHNA (10 microM) to this mix increased I(Ca) to 110% and [cAMP]i to 70% above basal, i.e. to similar levels as obtained with IBMX (100 microM) or isoprenaline (1 microM). When tested on top of a sub-maximal concentration of isoprenaline (1 nM), which increased I(Ca) by (approximately 40% and had negligible effect on [cAMP]i, each selective PDE inhibitor induced a clear stimulation of [cAMP]i and an additional increase in I(Ca). Maximal effects on I(Ca) were approximately 8% for MIMX (3 microM), approximately 20% for EHNA (1-3 microM), approximately 30% for cilostamide (0.3-1 microM) and approximately 50% for Ro20-1724 (0.1 microM). Our results demonstrate that PDE1-4 subtypes regulate I(Ca) in rat ventricular myocytes. While PDE3 and PDE4 are the dominant PDE subtypes involved in the regulation of basal I(Ca), all four PDE subtypes determine the response of I

  1. Effects of Glucose Concentration on Propofol Cardioprotection against Myocardial Ischemia Reperfusion Injury in Isolated Rat Hearts.

    PubMed

    Yao, Xinhua; Li, Yalan; Tao, Mingzhe; Wang, Shuang; Zhang, Liangqing; Lin, Jiefu; Xia, Zhengyuan; Liu, Hui-Min

    2015-01-01

    The anesthetic propofol confers cardioprotection against myocardial ischemia-reperfusion injury (IRI) by reducing reactive oxygen species (ROS). However, its cardioprotection on patients is inconsistent. Similarly, the beneficial effect of tight glycemic control during cardiac surgery in patients has recently been questioned. We postulated that low glucose (LG) may promote ROS formation through enhancing fatty acid (FA) oxidation and unmask propofol cardioprotection during IRI. Rat hearts were isolated and randomly assigned to be perfused with Krebs-Henseleit solution with glucose at 5.5 mM (LG) or 8 mM (G) in the absence or presence of propofol (5 μg/mL) or propofol plus trimetazidine (TMZ). Hearts were subjected to 35 minutes of ischemia followed by 60 minutes of reperfusion. Myocardial infarct size (IS) and cardiac CK-MB were significantly higher in LG than in G group (P < 0.05), associated with reduced left ventricular developed pressure and increases in postischemic cardiac contracture. Cardiac 15-F2t-isoprostane was higher, accompanied with higher cardiac lipid transporter CD36 protein expression in LG. Propofol reduced IS, improved cardiac function, and reduced CD36 in G but not in LG. TMZ facilitated propofol cardioprotection in LG. Therefore, isolated heart with low glucose lost sensitivity to propofol treatment through enhancing FA oxidation and TMZ supplementation restored the sensitivity to propofol. PMID:26491698

  2. Effects of Glucose Concentration on Propofol Cardioprotection against Myocardial Ischemia Reperfusion Injury in Isolated Rat Hearts

    PubMed Central

    Yao, Xinhua; Li, Yalan; Tao, Mingzhe; Wang, Shuang; Zhang, Liangqing; Lin, Jiefu; Xia, Zhengyuan; Liu, Hui-min

    2015-01-01

    The anesthetic propofol confers cardioprotection against myocardial ischemia-reperfusion injury (IRI) by reducing reactive oxygen species (ROS). However, its cardioprotection on patients is inconsistent. Similarly, the beneficial effect of tight glycemic control during cardiac surgery in patients has recently been questioned. We postulated that low glucose (LG) may promote ROS formation through enhancing fatty acid (FA) oxidation and unmask propofol cardioprotection during IRI. Rat hearts were isolated and randomly assigned to be perfused with Krebs-Henseleit solution with glucose at 5.5 mM (LG) or 8 mM (G) in the absence or presence of propofol (5 μg/mL) or propofol plus trimetazidine (TMZ). Hearts were subjected to 35 minutes of ischemia followed by 60 minutes of reperfusion. Myocardial infarct size (IS) and cardiac CK-MB were significantly higher in LG than in G group (P < 0.05), associated with reduced left ventricular developed pressure and increases in postischemic cardiac contracture. Cardiac 15-F2t-isoprostane was higher, accompanied with higher cardiac lipid transporter CD36 protein expression in LG. Propofol reduced IS, improved cardiac function, and reduced CD36 in G but not in LG. TMZ facilitated propofol cardioprotection in LG. Therefore, isolated heart with low glucose lost sensitivity to propofol treatment through enhancing FA oxidation and TMZ supplementation restored the sensitivity to propofol. PMID:26491698

  3. Cardioprotective effect of aqueous extract of Chichorium intybus on ischemia-reperfusion injury in isolated rat heart

    PubMed Central

    Sadeghi, Najmeh; Dianat, Mahin; Badavi, Mohammad; Malekzadeh, Ahad

    2015-01-01

    Objective: Several studies have shown that Chichorium intybus (C. intybus) which possesses flavonoid compounds has an effective role in treatment of cardiovascular diseases. Contractile dysfunction mostly occurs after acute myocardial infarction, cardiac bypass surgery, heart transplantation and coronary angioplasty. The aim of the present study was to investigate the effect of aqueous extract of C. intybus on ischemia- reperfusion injury in isolated rat heart. Materials and Methods: The animals were divided into four groups (Sham, Control, 1 mg/ml and 3 mg/ml of extract) of 8 rats. The aorta was cannulated, and then the heart was mounted on a Langendorff apparatus. Next, a balloon was inserted into the left ventricle (LV) and peak positive value of time derivate of LV pressure (+dp/dt), coronary flow (CF), and left ventricular systolic pressure (LVSP) in pre-ischemia and reperfusion period were calculated by a Power Lab system. All groups underwent a 30-minute global ischemia followed by a 60-minute reperfusion. Results: The results showed that heart rate (HR), coronary flow, and left ventricular developed pressure (LVDP) and rate of pressure product (RPP) significantly decreased in the control group during reperfusion, while these values in the groups receiving the extract (3mg/ml) improved significantly during reperfusion (p<0.001). Conclusion: It seems that flavonoid compounds of aqueous extract of C. intybus reduce ischemia - reperfusion injuries, suggesting its protective effect on heart function after ischemia. PMID:26693414

  4. Effects of Aged Garlic Extract on Left Ventricular Diastolic Function and Fibrosis in a Rat Hypertension Model

    PubMed Central

    Hara, Yuki; Noda, Akiko; Miyata, Seiko; Minoshima, Makoto; Sugiura, Mari; Kojima, Jun; Otake, Masafumi; Furukawa, Mayuko; Cheng, Xian Wu; Nagata, Kohzo; Murohara, Toyoaki

    2013-01-01

    Daily consumption of garlic is known to lower the risk of hypertension and ischemic heart disease. In this study, we examined whether aged garlic extract (AGE) prevents hypertension and the progression of compensated left ventricular (LV) hypertrophy in Dahl salt-sensitive (DS) rats. DS rats were randomly divided into three groups: those fed an 8% NaCl diet until 18 weeks of age (8% NaCl group), those additionally treated with AGE (8% NaCl + AGE group), and control rats maintained on a diet containing 0.3% NaCl until 18 weeks of age (0.3% NaCl group). AGE was administered orally by gastric gavage once a day until 18 weeks of age. LV mass was significantly higher in the 8% NaCl + AGE group than in the 0.3% NaCl group at 18 weeks of age, but significantly lower in the 8% NaCl + AGE group than in the 8% NaCl group. No significant differences were observed in systolic blood pressure (SBP) between the 8% NaCl and 8% NaCl + AGE groups at 12 and 18 weeks of age. LV end-diastolic pressure and pressure half-time at 12 and 18 weeks of age were significantly lower in the 8% NaCl + AGE group compared with the 8% NaCl group. AGE significantly reduced LV interstitial fibrosis at 12 and 18 weeks of age. Chronic AGE intake attenuated LV diastolic dysfunction and fibrosis without significantly decreasing SBP in hypertensive DS rats. PMID:24172194

  5. Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: effects of endogenous and exogenous sex hormones

    PubMed Central

    Frump, Andrea L.; Goss, Kara N.; Vayl, Alexandra; Albrecht, Marjorie; Fisher, Amanda; Tursunova, Roziya; Fierst, John; Whitson, Jordan; Cucci, Anthony R.; Brown, M. Beth

    2015-01-01

    Estrogens are disease modifiers in PAH. Even though female patients exhibit better right ventricular (RV) function than men, estrogen effects on RV function (a major determinant of survival in PAH) are incompletely characterized. We sought to determine whether sex differences exist in RV function in the SuHx model of PAH, whether hormone depletion in females worsens RV function, and whether E2 repletion improves RV adaptation. Furthermore, we studied the contribution of ERs in mediating E2’s RV effects. SuHx-induced pulmonary hypertension (SuHx-PH) was induced in male and female Sprague-Dawley rats as well as OVX females with or without concomitant E2 repletion (75 μg·kg−1·day−1). Female SuHx rats exhibited superior CI than SuHx males. OVX worsened SuHx-induced decreases in CI and SuHx-induced increases in RVH and inflammation (MCP-1 and IL-6). E2 repletion in OVX rats attenuated SuHx-induced increases in RV systolic pressure (RVSP), RVH, and pulmonary artery remodeling and improved CI and exercise capacity (V̇o2max). Furthermore, E2 repletion ameliorated SuHx-induced alterations in RV glutathione activation, proapoptotic signaling, cytoplasmic glycolysis, and proinflammatory cytokine expression. Expression of ERα in RV was decreased in SuHx-OVX but was restored upon E2 repletion. RV ERα expression was inversely correlated with RVSP and RVH and positively correlated with CO and apelin RNA levels. RV-protective E2 effects observed in females were recapitulated in male SuHx rats treated with E2 or with pharmacological ERα or ERβ agonists. Our data suggest significant RV-protective ER-mediated effects of E2 in a model of severe PH. PMID:25713318

  6. Resveratrol attenuates left ventricular remodeling in old rats with COPD induced by cigarette smoke exposure and LPS instillation.

    PubMed

    Hu, Yi Xin; Cui, Hua; Fan, Li; Pan, Xiu Jie; Wu, Ji Hua; Shi, Suo Zhu; Cui, Shao Yuan; Wei, Zhi Min; Liu, Lin

    2013-12-01

    The objective of this study was to investigate left cardiac damage and the cardioprotective effects of resveratrol in old rats with COPD. Rats 22 months old were divided into three groups: control (CTL), smoking and lipopolysaccharides (SM/LPS), and SM/LPS plus resveratrol (SM/LPS-Res). Cardiac function, pathology, oxidative stress, and apoptosis index were measured. Expression of myocardial SIRT1 was studied by real-time quantitative polymerase chain reaction (PCR) and Western blot detection. The heart weight-body weight ratio (LVW/BW) increased in the SM/LPS group compared with the CTL group. Both the LVW/BW and the area of fibrosis in the SM/LPS-Res group decreased compared with those in the SM/LPS group. 8-OHdG expression increased in cardiac tissue of rats in the SM/LPS group, which could be inhibited by resveratrol. Resveratrol significantly increased the activity of superoxide dismutase (SOD) and reduced the cardiac malonyldialdehyde (MDA) level in the SM/LPS-Res group. There was a significant decrease in the extent of cardiomyocyte apoptosis in the SM/LPS-Res group compared with the SM/LPS group. SIRT1 mRNA increased in the SM/LPS-Res group compared with the SM/LPS group. In conclusion, resveratrol attenuated cardiac oxidative damage and left ventricular remodeling and enhanced the decreased expression of SIRT1 in hearts of old rats with emphysema and thus might be a therapeutic modality for cardiac injury complicated in chronic obstructive pulmonary disease (COPD). PMID:24289075

  7. Effects of aged garlic extract on left ventricular diastolic function and fibrosis in a rat hypertension model.

    PubMed

    Hara, Yuki; Noda, Akiko; Miyata, Seiko; Minoshima, Makoto; Sugiura, Mari; Kojima, Jun; Otake, Masafumi; Furukawa, Mayuko; Cheng, Xian Wu; Nagata, Kohzo; Murohara, Toyoaki

    2013-01-01

    Daily consumption of garlic is known to lower the risk of hypertension and ischemic heart disease. In this study, we examined whether aged garlic extract (AGE) prevents hypertension and the progression of compensated left ventricular (LV) hypertrophy in Dahl salt-sensitive (DS) rats. DS rats were randomly divided into three groups: those fed an 8% NaCl diet until 18 weeks of age (8% NaCl group), those additionally treated with AGE (8% NaCl + AGE group), and control rats maintained on a diet containing 0.3% NaCl until 18 weeks of age (0.3% NaCl group). AGE was administered orally by gastric gavage once a day until 18 weeks of age. LV mass was significantly higher in the 8% NaCl + AGE group than in the 0.3% NaCl group at 18 weeks of age, but significantly lower in the 8% NaCl + AGE group than in the 8% NaCl group. No significant differences were observed in systolic blood pressure (SBP) between the 8% NaCl and 8% NaCl + AGE groups at 12 and 18 weeks of age. LV end-diastolic pressure and pressure half-time at 12 and 18 weeks of age were significantly lower in the 8% NaCl + AGE group compared with the 8% NaCl group. AGE significantly reduced LV interstitial fibrosis at 12 and 18 weeks of age. Chronic AGE intake attenuated LV diastolic dysfunction and fibrosis without significantly decreasing SBP in hypertensive DS rats. PMID:24172194

  8. High-frequency periodic sources underlie ventricular fibrillation in the isolated rabbit heart.

    PubMed

    Chen, J; Mandapati, R; Berenfeld, O; Skanes, A C; Jalife, J

    The mechanism(s) underlying ventricular fibrillation (VF) remain unclear. We hypothesized that at least some forms of VF are not random and that high-frequency periodic sources of activity manifest themselves as spatiotemporal periodicities, which drive VF. Twenty-four VF episodes from 8 Langendorff-perfused rabbit hearts were studied using high-resolution video imaging in conjunction with ECG recordings and spectral analysis. Sequential wavefronts that activated the ventricles in a spatially and temporally periodic fashion were identified. In addition, we analyzed the lifespan and dynamics of wavelets in VF, using a new method of phase mapping that enables identification of phase singularity points (PSs), which flank individual wavelets. Spatiotemporal periodicity was found in 21 of 24 episodes. Complete reentry on the epicardial surface was observed in 3 of 24 episodes. The cycle length of discrete regions of spatiotemporal periodicity correlated highly with the dominant frequency of the optical pseudo-ECG (R(2)=0.75) and with the global bipolar electrogram (R(2)=0.79). The lifespan of PSs was short (14.7+/-14.4 ms); 98% of PSs existed for <1 rotation. The mean number of waves entering (6.50+/-0.69) exceeded the mean number of waves that exited our mapping field (4.25+/-0.56; P<0.05). These results strongly suggest that ongoing stable sources are responsible for the majority of the frequency content of VF and therefore play a role in its maintenance. In this model, multiple wavelets resulting from wavebreaks do not appear to be responsible for the sustenance of this arrhythmia, but are rather the consequence of breakup of high-frequency activation from a dominant reentrant source. PMID:10625309

  9. DHEA prevents mineralo- and glucocorticoid receptor-induced chronotropic and hypertrophic actions in isolated rat cardiomyocytes.

    PubMed

    Mannic, Tiphaine; Mouffok, Mounira; Python, Magaly; Yoshida, Takehisa; Maturana, Andres D; Vuilleumier, Nicolas; Rossier, Michel F

    2013-03-01

    Corticosteroids have been involved in the genesis of ventricular arrhythmias associated with pathological heart hypertrophy, although molecular mechanisms responsible for these effects have not been completely explained. Because mineralocorticoid receptor (MR) antagonists have been demonstrated to be beneficial on the cardiac function, much attention has been given to the action of aldosterone on the heart. However, we have previously shown that both aldosterone and corticosterone in vitro induce a marked acceleration of the spontaneous contractions, as well as a significant cell hypertrophy in isolated neonate rat ventricular cardiomyocytes. Moreover, a beneficial role of the steroid hormone dehydroepiandrosterone (DHEA) has been also proposed, but the mechanism of its putative cardioprotective function is not known. We found that DHEA reduces both the chronotropic and the hypertrophic responses of cardiomyocytes upon stimulation of MR and glucocorticoid receptor (GR) in vitro. DHEA inhibitory effects were accompanied by a decrease of T-type calcium channel expression and activity, as assessed by quantitative PCR and the patch-clamp technique. Prevention of cell hypertrophy by DHEA was also revealed by measuring the expression of A-type natriuretic peptide and BNP. The kinetics of the negative chronotropic effect of DHEA, and its sensitivity to actinomycin D, pointed out the presence of both genomic and nongenomic mechanisms of action. Although the genomic action of DHEA was effective mostly upon MR activation, its rapid, nongenomic response appeared related to DHEA antioxidant properties. On the whole, these results suggest new mechanisms for a putative cardioprotective role of DHEA in corticosteroid-associated heart diseases. PMID:23397034

  10. Effect of crocin on nitric oxide synthase expression in post-ischemic isolated rat heart

    PubMed Central

    Esmaeilizadeh, Mahdi; Dianat, Mahin; Badavi, Mohammad; Samarbaf-zadeh, Alireza; Naghizadeh, Bahareh

    2015-01-01

    Objective: Oxidative stress damages cells and brings about the pathogenesis of ischemia/reperfusion injury. This study was carried out to investigate the preconditioning and cardio protective potential effects of crocin and vitamin E by the eNOS and iNOS express gene in ischemia/reperfusion in rats. Material & Methods: Male rats were divided into seven groups, namely: sham, control group and experimental groups treated with crocin(10, 20 and 40 mg/kg), vitamin E (100 mg/kg) and combination of crocin (40 mg/kg) with vitamin E (100 mg/kg) that were gavaged The heart was removed and relocated to a Langendorff apparatus and subjected to global ischemia and then the left ventricular end diastolic pressure (LVEDP) were measured as a hemodynamic parameter. Total RNA was extracted from heart frozen tissues. RT-PCR technique was performed by specific primers designed for nitric oxide gene and the results were assessed by agarose gel electrophoresis. Results: Results after ischemia and reperfusion showed that crocin 40 mg/kg produced a significant improvement of LVEDP as a mechanical function (p<0.05), associated with a reduction of iNOS release (p<0.05). The eNOS mRNA levels were significantly higher in crocin-treated 40 mg/kg compared to controls treated by RT-PCR technique. The combination of crocin and vitamin E have shown more effective on the reduction of iNOS release (p<0.01). Conclusion: In the isolated rat heart, protective effect of crocin, may possibly be explained by regulating eNOS and iNOS expressions. The Results resultsconfirmed the hypothesis that cardioprotective effect of crocin is partly mediated by nitric oxide. This could explain the cardioprotective action of crocin following ischemia and reperfusion. PMID:26468461

  11. Tickling during adolescence alters fear-related and cognitive behaviors in rats after prolonged isolation.

    PubMed

    Hori, Miyo; Yamada, Kazuo; Ohnishi, Junji; Sakamoto, Shigeko; Furuie, Hiroki; Murakami, Kazuo; Ichitani, Yukio

    2014-05-28

    Social interactions during adolescence are important especially for neuronal development and behavior. We recently showed that positive emotions induced by repeated tickling could modulate fear-related behaviors and sympatho-adrenal stress responses. In the present study, we examined whether tickling during early to late adolescence stage could reverse stress vulnerability induced by socially isolated rearing. Ninety-five male Fischer rats were reared under different conditions from postnatal day (PND) 21 to 53: group-housed (three rats/cage), isolated-nontickled (one rat/cage) and isolated-tickled (received tickling stimulation for 5min a day). Auditory fear conditioning was then performed on the rats at PND 54. Isolated-tickled rats exhibited significantly lower freezing compared with group-housed rats in the first retention test performed 48h after conditioning and compared with isolated-nontickled rats in the second retention test performed 96h after conditioning. Moreover, group-housed and isolated-tickled rats tended to show a significant decrease in freezing responses in the second retention test; however, isolated-nontickled rats did not. In the Morris water maze task that was trained in adulthood (PND 88), but not in adolescence (PND 56), isolated-nontickled rats showed slower decrease of escape latency compared to group-housed rats; however, tickling treatment significantly improved this deficit. These results suggest that tickling stimulation can alleviate the detrimental effects of isolated rearing during adolescence on fear responses and spatial learning. PMID:24727339

  12. Gamma-linolenic acid provides additional protection against ventricular fibrillation in aged rats fed linoleic acid rich diets.

    PubMed

    Charnock, J S

    2000-02-01

    Ligation of the coronary artery in rats produces severe ventricular fibrillation (VF) and malignant cardiac arrhythmia. Mortality increases with the age of the animal. Diets rich in saturated fatty acids (SF) but low in linoleic acid (LA) increase, but diets high in LA and low in SF decrease the severity of VF and mortality in older animals. The effects of an LA enriched diet can be blocked by inhibition of cyclooxygenase suggesting that conversion of LA to eicosanoids is central to the development of VF. Conversion of LA to gamma-linolenic acid (GLA) via delta-6 desaturase is the first step in the process. The activity of delta-6 desaturase declines with age. Thus inclusion of GLA in the diet of older animals may provide an additional benefit over LA alone. Dietary supplements of evening primrose oil (EPO) to one year old rats reduced ischaemic VF more than a supplement of sunflower seed oil (SSO) without GLA. Substitution of borage oil (more GLA than EPO but less LA than either EPO or SSO) was without additional benefit. PMID:10780878

  13. (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine binding to A1 adenosine receptors of intact rat ventricular myocytes

    SciTech Connect

    Martens, D.; Lohse, M.J.; Schwabe, U.

    1988-09-01

    The purpose of the present study was the identification of A1 adenosine receptors in intact rat ventricular myocytes, which are thought to mediate the negative inotropic effects of adenosine. The adenosine receptor antagonist (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine was used as radioligand. Binding of the radioligand to intact myocytes was rapid, reversible, and saturable with a binding capacity of 40,000 binding sites per cell. The dissociation constant of the radioligand was 0.48 nM. The adenosine receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine, xanthine amine congener, and theophylline were competitive inhibitors with affinities in agreement with results obtained for A1 receptors in other tissues. Competition experiments using the adenosine receptor agonists R-N(6)-phenylisopropyladenosine, 5'-N-ethylcarboxamidoadenosine, and S-N(6)-phenylisopropyladenosine gave monophasic displacement curves with Ki values of 50 nM, 440 nM, and 4,300 nM, which agreed well with the GTP-inducible low affinity state in cardiac membranes. The low affinity for agonists was not due to agonist-induced desensitization, and correlated well with the corresponding IC50 values for the inhibition of cyclic AMP accumulation by isoprenaline. It is suggested that only a low affinity state of A1 receptors can be detected in intact rat myocytes due to the presence of high concentrations of guanine nucleotides in intact cells.

  14. Computational analysis of the regulation of Ca2+ dynamics in rat ventricular myocytes

    NASA Astrophysics Data System (ADS)

    Bugenhagen, Scott M.; Beard, Daniel A.

    2015-10-01

    Force-frequency relationships of isolated cardiac myocytes show complex behaviors that are thought to be specific to both the species and the conditions associated with the experimental preparation. Ca2+ signaling plays an important role in shaping the force-frequency relationship, and understanding the properties of the force-frequency relationship in vivo requires an understanding of Ca2+ dynamics under physiologically relevant conditions. Ca2+ signaling is itself a complicated process that is best understood on a quantitative level via biophysically based computational simulation. Although a large number of models are available in the literature, the models are often a conglomeration of components parameterized to data of incompatible species and/or experimental conditions. In addition, few models account for modulation of Ca2+ dynamics via β-adrenergic and calmodulin-dependent protein kinase II (CaMKII) signaling pathways even though they are hypothesized to play an important regulatory role in vivo. Both protein-kinase-A and CaMKII are known to phosphorylate a variety of targets known to be involved in Ca2+ signaling, but the effects of these pathways on the frequency- and inotrope-dependence of Ca2+ dynamics are not currently well understood. In order to better understand Ca2+ dynamics under physiological conditions relevant to rat, a previous computational model is adapted and re-parameterized to a self-consistent dataset obtained under physiological temperature and pacing frequency and updated to include β-adrenergic and CaMKII regulatory pathways. The necessity of specific effector mechanisms of these pathways in capturing inotrope- and frequency-dependence of the data is tested by attempting to fit the data while including and/or excluding those effector components. We find that: (1) β-adrenergic-mediated phosphorylation of the L-type calcium channel (LCC) (and not of phospholamban (PLB)) is sufficient to explain the inotrope-dependence; and (2) that

  15. A new class III antiarrhythmic drug, MS-551, blocks the inward rectifier potassium channel in isolated guinea pig ventricular myocytes.

    PubMed

    Sato, R; Koumi, S; Hisatome, I; Takai, H; Aida, Y; Oyaizu, M; Karasaki, S; Mashiba, H; Katori, R

    1995-07-01

    We have studied the effects of MS-551 on the inward rectifier potassium channel (IK1) in isolated guinea-pig ventricular myocytes by use of whole-cell and single-channel recording techniques. MS-551 (5 microM) blocked the IK1 current. The percent blockade of the peak and steady-state IK1 current by MS-551 was constant at each test potential. In contrast 50 microM MS-551 failed to block either the sodium or the calcium current. Under cell-attached patch conditions, MS-551 reduced the open probability of IK1 channel activity by prolonging the interburst interval without changing either the unitary amplitude or the equilibrium potential. The blockade of IK1 was concentration-dependent. MS-551 did not change either the mean open time or mean closed time within a burst. Extracellular acidification (pH 6.4) strongly attenuated the effect of MS-551 on the open probability of IK1 channel activity when compared with its effect at pH 7.4. In summary, our results demonstrated that MS-551 blocked the IK1 channel. The neutral form of this drug molecules may penetrate the cardiac cell membrane via a hydrophobic pathway to block the steady-state IK1 current by reduction of open probability. PMID:7616432

  16. Right aortic arch with isolation of the left innominate artery in a case of double chamber right ventricle and ventricular septal defect.

    PubMed

    Mangukia, Chirantan; Sethi, Sonali; Agarwal, Saket; Mishra, Smita; Satsangi, Deepak Kumar

    2014-05-01

    Herein, we report an unusual case of right aortic arch with isolation of the left innominate artery in a case of double chamber right ventricle with ventricular septal defect. The blood supply to the innominate artery was by a collateral arising from the descending aorta. The embryological development of this anomaly can be explained by the hypothetical double aortic arch model proposed by Edwards with interruption of the arch at two levels. PMID:24987265

  17. Three-Dimensional Endo-Cardiovascular Volume-Rendered Cine Computed Tomography of Isolated Left Ventricular Apical Hypoplasia: A Case Report and Literature Review.

    PubMed

    Hong, Sun Hwa; Kim, Yang Min; Lee, Hyun Jong

    2016-01-01

    We report multidetector computed tomography (MDCT) and cardiac magnetic resonance (CMR) findings of a 34-year-old female with isolated left ventricular apical hypoplasia. The MDCT and CMR scans displayed a spherical left ventricle (LV) with extensive fatty infiltration within the myocardium at the apex, interventricular septum and inferior wall, anteroapical origin of the papillary muscle, right ventricle wrapping around the deficient LV apex, and impaired systolic function. MDCT visualized morphologic and also functional findings of this unique cardiomyopathy. PMID:26798219

  18. Effect of sphingosine-1-phosphate on L-type calcium current and Ca(2+) transient in rat ventricular myocytes.

    PubMed

    Egom, Emmanuel Eroume-A; Bae, James S H; Capel, Rebecca; Richards, Mark; Ke, Yunbo; Pharithi, Rebabonye B; Maher, Vincent; Kruzliak, Peter; Lei, Ming

    2016-08-01

    Modulation of Ca(2+) homoeostasis in cardiac myocytes plays a major role in beat-to-beat regulation of heart function. Previous studies suggest that sphingosine-1-phosphate (S1P), a biologically active sphingomyelin metabolite, regulates Ca(2+) handling in cardiac myocytes, but the underlying mechanism is unclear. In the present study, we tested the hypothesis that S1P-induced functional alteration of intracellular Ca(2+) handling includes the L-type calcium channel current (ICa,L) via a signalling pathway involving P21-activated kinase 1 (Pak1). Our results show that, in rat ventricular myocytes, S1P (100 nM) does not affect the basal activity of ICa,L but is able to partially reverse the effect of the β-adrenergic agonist Isoproterenol (ISO, 100 nM) on ICa,L. S1P (25 nM) also significantly prevents ISO (5 nM)-induced Ca(2+) waves and diastolic Ca(2+) release in these cells. Our further molecular characterisation demonstrates that Pak1 activity is increased in myocytes treated with S1P (25 nM) compared with those myocytes without treatment of S1P. By immunoprecipitation we demonstrate that Pak1 and protein phosphatase 2A (PP2A) are associated in ventricular tissue indicating their functional interaction. Thus the results indicate that S1P attenuates β-adrenergic stress-induced alteration of intracellular Ca(2+) release and L-type Ca(2+) channel current at least in part via Pak1-PP2A-mediated signalling. PMID:27372350

  19. Protein phosphorylation in isolated hepatocytes of septic and endotoxemic rats

    SciTech Connect

    Deaciuc, I.V.; Spitzer, J.A. )

    1989-11-01

    The purpose of this study was to investigate possible alterations induced by sepsis and endotoxicosis in the late phase of Ca2+-dependent signaling in rat liver. Hepatocytes isolated from septic or chronically endotoxin (ET)-treated rats were labeled with (32P)H3PO4 and stimulated with various agents. Proteins were resolved by one-dimensional polyacrylamide gel electrophoresis and autoradiographed. Vasopressin (VP)- and phenylephrine (PE)-induced responses were attenuated in both septic and ET-treated rats for cytosolic and membrane proteins compared with their respective controls. Glucagon and 12-O-myristate phorbol-13-acetate (TPA) affected only the phosphorylation of membrane proteins. Glucagon-induced changes in the phosphorylation of membrane proteins were affected by both sepsis and endotoxicosis, whereas TPA-stimulated phosphorylation was lowered only in endotoxicosis. Response to the Ca2+ ionophore A23187 was depressed in septic rats for cytosolic proteins. The phosphorylation of two cytosolic proteins, i.e., 93 and 61 kDa (previously identified as glycogen phosphorylase and pyruvate kinase, respectively), in response to VP, PE, and A23187 was severely impaired by endotoxicosis and sepsis. TPA did not affect the phosphorylation state of these two proteins. The results show that sepsis and endotoxicosis produce perturbations of the phosphorylation step in Ca2+ transmembrane signaling. Such changes can explain alterations of glycogenolysis and gluconeogenesis associated with sepsis and endotoxicosis.

  20. Global and regional differences in cerebral blood flow after asphyxial versus ventricular fibrillation cardiac arrest in rats using ASL-MRI.

    PubMed

    Drabek, Tomas; Foley, Lesley M; Janata, Andreas; Stezoski, Jason; Hitchens, T Kevin; Manole, Mioara D; Kochanek, Patrick M

    2014-07-01

    Both ventricular fibrillation cardiac arrest (VFCA) and asphyxial cardiac arrest (ACA) are frequent causes of CA. However, only isolated reports compared cerebral blood flow (CBF) reperfusion patterns after different types of CA, and even fewer reports used methods that allow serial and regional assessment of CBF. We hypothesized that the reperfusion patterns of CBF will differ between individual types of experimental CA. In a prospective block-randomized study, fentanyl-anesthetized adult rats were subjected to 8min VFCA or ACA. Rats were then resuscitated with epinephrine, bicarbonate, manual chest compressions and mechanical ventilation. After the return of spontaneous circulation, CBF was then serially assessed via arterial spin-labeling magnetic resonance imaging (ASL-MRI) in cortex, thalamus, hippocampus and amygdala/piriform complex over 1h resuscitation time (RT). Both ACA and VFCA produced significant temporal and regional differences in CBF. All regions in both models showed significant changes over time (p<0.01), with early hyperperfusion and delayed hypoperfusion. ACA resulted in early hyperperfusion in cortex and thalamus (both p<0.05 vs. amygdala/piriform complex). In contrast, VFCA induced early hyperperfusion only in cortex (p<0.05 vs. other regions). Hyperperfusion was prolonged after ACA, peaking at 7min RT (RT7; 199% vs. BL, Baseline, in cortex and 201% in thalamus, p<0.05), then returning close to BL at ∼RT15. In contrast, VFCA model induced mild hyperemia, peaking at RT7 (141% vs. BL in cortex). Both ACA and VFCA showed delayed hypoperfusion (ACA, ∼30% below BL in hippocampus and amygdala/piriform complex, p<0.05; VFCA, 34-41% below BL in hippocampus and amygdala/piriform complex, p<0.05). In conclusion, both ACA and VFCA in adult rats produced significant regional and temporal differences in CBF. In ACA, hyperperfusion was most pronounced in cortex and thalamus. In VFCA, the changes were more modest, with hyperperfusion seen only in cortex

  1. Complete inhibition of creatine kinase in isolated perfused rat hearts

    SciTech Connect

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts are able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.

  2. Experimental glomerulonephritis in the isolated perfused rat kidney.

    PubMed Central

    Couser, W G; Steinmuller, D R; Stilmant, M M; Salant, D J; Lowenstein, L M

    1978-01-01

    The development of immune deposits on the subepithelial surface of the glomerular capillary wall was studied in isolated rat kidneys perfused at controlled perfusion pressure, pH, temperature, and flow rates with recirculating oxygenated perfusate containing bovine serum albumin (BSA) in buffer and sheep antibody to rat proximal tubular epithelial cell brush border antigen (Fx1A). Control kidney were perfused with equal concentrations of non-antibody immunoglobulin (Ig)G. Renal function was monitored by measuring inulin clearance, sodium reabsorption, and urine flow as well as BSA excretion and fractional clearance. Perfused kidneys were studied by light, immunofluorescence, and electron microscopy. All kidneys perfused with anti-Fx1A developed diffuse, finely granular deposits of IgG along the glomerular capillary wall by immunofluorescence. Electron microscopy revealed these deposits to be localized exclusively in the subepithelial space and slit pores. Similar deposits were produced in a nonrecirculating perfusion system, thereby excluding the formation of immune complexes in the perfusate caused by renal release of tubular antigen. Control kidneys perfused with nonantibody IgG did not develop glomerular immune deposits. Renal function and BSA excretion were the same in experimental and control kidneys. Glomerular deposits in antibody perfused kidneys were indistinguishable from deposits in rats injected with anti-Fx1A or immunized with Fx1A to produce autologous immune complex nephropathy. These studies demonstrate that subepithelial immune deposits can be produced in the isolated rat kidney by perfusion with specific antibody to Fx1A in the absence of circulating immune complexes. In this model deposits result from in situ complex formation rather than circulating immune complex deposition. Images PMID:372233

  3. Long-Term Left Ventricular Remodelling in Rat Model of Nonreperfused Myocardial Infarction: Sequential MR Imaging Using a 3T Clinical Scanner

    PubMed Central

    Saleh, Muhammad G.; Sharp, Sarah-Kate; Alhamud, Alkathafi; Spottiswoode, Bruce S.; van der Kouwe, Andre J. W.; Davies, Neil H.; Franz, Thomas; Meintjes, Ernesta M.

    2012-01-01

    Purpose. To evaluate whether 3T clinical MRI with a small-animal coil and gradient-echo (GE) sequence could be used to characterize long-term left ventricular remodelling (LVR) following nonreperfused myocardial infarction (MI) using semi-automatic segmentation software (SASS) in a rat model. Materials and Methods. 5 healthy rats were used to validate left ventricular mass (LVM) measured by MRI with postmortem values. 5 sham and 7 infarcted rats were scanned at 2 and 4 weeks after surgery to allow for functional and structural analysis of the heart. Measurements included ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), and LVM. Changes in different regions of the heart were quantified using wall thickness analyses. Results. LVM validation in healthy rats demonstrated high correlation between MR and postmortem values. Functional assessment at 4 weeks after MI revealed considerable reduction in EF, increases in ESV, EDV, and LVM, and contractile dysfunction in infarcted and noninfarcted regions. Conclusion. Clinical 3T MRI with a small animal coil and GE sequence generated images in a rat heart with adequate signal-to-noise ratio (SNR) for successful semiautomatic segmentation to accurately and rapidly evaluate long-term LVR after MI. PMID:23118511

  4. Free fatty-acid uptake by isolated rat hepatocytes.

    PubMed

    Renaud, G; Bouma, M E; Foliot, A; Infante, R

    1985-11-01

    In isolated rat hepatocytes, the rate of palmitic acid binding and uptake is directly related to the concentration of free fatty acid (FFA) in the medium. After their entry into the cell, FFA are immediately incorporated into cellular phospholipids and triglycerides and no accumulation of free fatty acids can be demonstrated inside the cell. The rate of free fatty-acid uptake remains unchanged after incubation in a 2 mM KCN containing medium, indicating that in the range of fatty-acid concentrations used in this study, this phenomenon does not require energy. PMID:2421669

  5. Uptake of free choline by isolated perfused rat liver.

    PubMed Central

    Zeisel, S H; Story, D L; Wurtman, R J; Brunengraber, H

    1980-01-01

    The uptake of free choline by isolated perfused rat liver was characterized. A saturable uptake mechanism [Ka = 0.17 +/- 0.07 mM (SD); Vmax = 0.84 +/- 0.16 mumol/min X g dry weight] and a nonsaturable mechanism (through which uptake is proportional to choline concentration in the perfusate) were identified. Most of the choline transported into hepatocytes was converted to betaine, phosphorylcholine, or lecithin. Free choline also accumulated within the intracellular space, suggesting that choline oxidase activity does not always limit choline's uptake by the liver. PMID:6933493

  6. Cardiotoxicity of emetine dihydrochloride by calcium channel blockade in isolated preparations and ventricular myocytes of guinea-pig hearts.

    PubMed Central

    Lemmens-Gruber, R.; Karkhaneh, A.; Studenik, C.; Heistracher, P.

    1996-01-01

    1. The cardiotoxic effects of emetine dihydrochloride on mechanical and electrical activity were studied in isolated preparations (papillary muscles, sinoatrial and atrioventricular nodes, ventricular myocytes) of the guinea-pig heart. 2. Force of contraction was measured isometrically, action potentials and maximum rate of rise of the action potential were recorded by means of the intracellular microelectrode technique. Single channel L-type calcium current (Ba2+ ions as charge carrier) was studied with the patch-clamp technique in the cell-attached mode. 3. Emetine dihydrochloride (8-256 microM) reduced force of contraction in papillary muscles and spontaneous activity of sinoatrial and atrioventricular nodes concentration-dependently; the negative inotropic effect was abolished when the extracellular Ca2+ concentration was increased. 4. Maximum diastolic potential, action potential amplitude, maximum rate of rise of the action potential and the slope of the slow diastolic depolarization were decreased by emetine in sinoatrial as well as atrioventricular noes, while action potential duration was prolonged in both preparations (1-64 microM). 5. The amplitude of the L-type calcium single channel current was not altered by emetine dihydrochloride, while average open state probability was decreased concentration-dependently (10, 30 and 60 microM). 6. The most prominent effect of emetine dihydrochloride on single channel current was an increase of sweeps without activity. 7. At 60 microM, emetine dihydrochloride caused a decrease of the mean open time an increase of the mean closed time. The number of openings per record and number of bursts per record were reduced. 8. It is concluded that emetine dihydrochloride produces an L-type calcium channel block which might contribute to its cardiac side effects. PMID:8789394

  7. Speckle myocardial imaging modalities for early detection of myocardial impairment in isolated left ventricular non-compaction

    PubMed Central

    Bellavia, Diego; Michelena, Hector I; Martinez, Matthew; Pellikka, Patricia A; Bruce, Charles J; Connolly, Heidi M; Villarraga, Hector R; Veress, Gabriella; Oh, Jae K; Miller, Fletcher A

    2013-01-01

    Objective To examine the hypothesis that speckle myocardial imaging (SMI) modalities, including longitudinal, radial and circumferential systolic (s) and diastolic (d) myocardial velocity imaging, displacement (D), strain rate (SR) and strain (S), as well as left ventricular (LV) rotation/torsion are sensitive for detecting early myocardial dysfunction in isolated LV non-compaction (iLVNC). Design and results Twenty patients with iLVNC diagnosed by cardiac magnetic resonance (15) or echocardiography (5) were included. Patients were divided into two groups: ejection fraction (EF)>50% (n=10) and EF≤50% (n=10). Standard measures of systolic and diastolic function including pulsed wave tissue Doppler Imaging (PWTDI) were obtained. Longitudinal, radial and circumferential SMI, and LV rotation/torsion were compared with values for 20 age/sex-matched controls. EF, PWTDI E′, E/E′ and all of the SMI modalities were significantly abnormal for patients with EF≤50% compared with controls. In contrast, EF and PWTDI E′, E/E′ were not significantly different between controls and patients with iLVNC (EF>50%). However, SMI-derived longitudinal sS, sSR, sD and radial sS, as well as LV rotation/torsion values, were all reduced in iLVNC (EF>50%) compared with controls. Measurements with the highest discriminating power between iLVNC (EF>50%) and controls were longitudinal sS mean of the six apical segments (area under the curve (AUC)=0.94), sS global average (AUC=0.94), LV rotation apical mean (AUC=0.94); LV torsion (AUC=0.93) LV torsion rate (AUC=0.94). Conclusions LV SMI values are reduced in patients with iLVNC, even those with normal EF and PWTDI. The most accurate SMI modalities to discriminate between patients and controls are longitudinal sS mean of the six apical segments, LV apical rotation or LV torsion rate. PMID:19966109

  8. Physiologic significance of the phosphorylation potential in isolated perfused rat hearts (31-P NMR)

    SciTech Connect

    Watters, T.; Wikman-Coffelt, J.; Wu, S.; Wendland, M.; James, T.; Sievers, R.; Botvinick, E.; Parmley, W.

    1986-03-05

    The authors assessed the metabolic and mechanical effects of changes in coronary perfusion pressure (CPP) and afterload (A) in isolated working apex-ejecting rat hearts perfused with Krebs-Henseleit solution containing an excess of O/sub 2/ and substrate. Log (phosphorylation potential) or log (ATP)/(ADP)x (Pi), designated (L), and log (PCR)/(Pi), designated (L*), were calculated from HPLC measurements after rapid freeze-clamping. Increasing CPP from 80-140 cm H/sub 2/O caused an increase in coronary flow (flow), developed pressure (DevP), O/sub 2/ consumption (VO/sub 2/), L, L*, and CO. L and L* were directly related to VO/sub 2/ and CO. Increasing A from 80-140 cm H/sub 2/O caused an increase in DevP and VO/sub 2/, but a decrease in L, L*, and CO. L and L* were inversely linearly related to VO/sub 2/ but were directly linearly related to CO. In both experiments, L and L* are directly related to CO, suggesting that determination of L* (which can be done with 31-P NMR spectroscopy) may be a useful non-invasive method for determining cardiac pump function curves. L and L* may be related to the Frank-Starling mechanism. In a separate experiment using 31-P NMR spectroscopy of isovolumic (left ventricular balloon) perfused rat hearts, increasing CPP caused a direct linear increase in flow, DevP, and L*, confirming the L* results reported above with CPP experiments using the rapid freeze-clamp technique.

  9. Physiologic significance of the phosphorylation potential in isolated perfused rat hearts (/sup 31/P NMR)

    SciTech Connect

    Watters, T.; Wikman-Coffelt, J.; Wu, S.; Wendland, M.; James, T.; Sievers, R.; Botvinick, E.; Parmley, W.

    1986-03-05

    The authors assessed the metabolic and mechanical effects of changes in coronary perfusion pressure (CPP) and afterload (A) in isolated working apex-ejecting rat hearts perfused with Krebs-Henseleit solution containing an excess of O/sub 2/ and substrate. Log(phosphorylation potential) or log (ATP)/(ADP)x (Pi), designated (L), and log (PCR)/(Pi), designated (L*), were calculated from HPLC measurements after rapid freeze-clamping. Increasing CPP from 80-140 cm H/sub 2/O caused an increase in coronary flow(flow), developed pressure(DevP), O/sub 2/ consumption (VO/sub 2/), L, L*, and CO. L and L* were directly related to VO/sub 2/ and CO. Increasing A from 80-140 cm H/sub 2/O caused an increase in DevP and VO/sub 2/, but a decrease in L, L*, and CO. L and L* were inversely linearly related to VO/sub 2/ but were directly linearly related to CO. In both experiments, L and L* are directly related to CO, suggesting that determination of L* (which can be done with /sup 31/P NMR spectroscopy) may be a useful non-invasive method for determining cardiac pump function curves. L and L* may be related to the Frank-Starling mechanism. In a separate experiment using /sup 31/P NMR spectroscopy of isovolumic (left ventricular balloon) perfused rat hearts, increasing CPP caused a direct linear increase in flow, DevP, and L*, confirming the L* results reported above with CPP experiments using the rapid freeze-clamp technique.

  10. Cardio-protecteffect of qiliqiangxin capsule on left ventricular remodeling, dysfunction and apoptosis in heart failure rats after chronic myocardial infarction

    PubMed Central

    Liang, Tuo; Zhang, Yuhui; Yin, Shijie; Gan, Tianyi; An, Tao; Zhang, Rongcheng; Wang, Yunhong; Huang, Yan; Zhou, Qiong; Zhang, Jian

    2016-01-01

    Background: Qiliqiangxin (QL) capsule is a traditional Chinese medicine which has been approved for the treatment of chronic heart failure. Evidences proved that QL capsules further reduced the NT-proBNP levels and improved left ventricular ejection fraction in CHF patients but the evidence supporting its underlying mechanism is still unclear. Methods and Results: Myocardial infarction (MI) -Heart failure (HF) Sprague-Dawley ratsmodel and neonatal rat cardiac myocytes (NRCMs) were used. Animals were assigned into 4 groups, normal group (n=6), shame-operation group (n=6), MI rats 4 weeks after left anterior descending coronary artery ligation were randomized into vehicle group (n=8), QL group (n=8). QL significantly attenuated cardiac dysfunction and ventricle remodeling as echocardiography and hemodynamic measurements showed improvement in left ventricular ejection fraction, fractional shortening, ±dp/dt and left ventricular end diastolic and systolic diameters in QL treated group compared with the vehicle group. Improvements ininterstitial fibrosisand mitochondrial structures were also exhibited by Sirius Red staining, RT-PCR and electron microscopy. QL treatment improved apoptosis and VEGF expression in rats marginal infract area. Complementary experiments analyzed the improved apoptosis and up-regulate of VEGF in ischemia-hypoxia cultivated NRCMs is in an Akt dependent manner and can be reversed by Akt inhibitor. Conclusion: QL capsule can improve cardiac dysfunction and ventricular remodeling in MI-HF ratsmodel, this cardiac protective efficacy may be concerned with attenuated apoptosis and cardiac fibrosis. Up-regulated VEGF expression and Akt phosphorylation may take part in this availability. PMID:27347313

  11. The impact of social isolation on immunological parameters in rats.

    PubMed

    Krügel, Ute; Fischer, Johannes; Bauer, Katrin; Sack, Ulrich; Himmerich, Hubertus

    2014-03-01

    In various toxicological studies, single housing of rodents is preferred to standardize for regulatory purposes. However, housing conditions can have severe, often underestimated, impact on results in toxicological examinations. As different husbandry conditions have been shown to impose stress, we investigated their influence on plasma cytokines. Adult male Wistar rats were assigned to one group housed in cages of four and another housed singly for 28 days. Eight animals per group were tested in the forced swim test (FST) for symptoms of "behavioral despair," and in another eight animals per group, plasma concentrations of the stress hormone ACTH, of the pro-inflammatory cytokines TNF-α, IFN-γ, IL-2 and IL-22, and of the anti-inflammatory cytokines IL-4 and IL-10 were analyzed. Group-housed animals had significantly lower body weight than individually housed animals. The FST revealed symptoms of "behavioral despair" of individually housed rats accompanied by higher levels of ACTH and TNF-α but also of IL-4 and IL-10. No significant differences between housing conditions were found for IFN-γ, IL-2 and IL-22. Social isolation by husbandry conditions, apart from any other manipulation, alters the behavioral and immunological status of rats and must be considered when immunological effects are examined in various experimental protocols. PMID:24500571

  12. Isolation and purification of rat liver morphine UDP-glucuronosyltransferase

    SciTech Connect

    Puig, J.F.; Tephly, T.R.

    1986-03-05

    The enhancement of rat liver microsomal morphine (M) and 4-hydroxybiphenyl (4-HBP) UDP-glucuronyltransferase (UDPGT) activities by phenobarbital treatment has been proposed to represent increased activity of a single enzyme form, GT-2. They have separated M and 4-HBP UDPGT activities from Emulgen 911-solubilized microsomes obtained from livers of phenobarbital-treated Wistar rats. A sensitive assay procedure was developed to quantify M-UDPGT and 4-HBP-UDPGT activities using /sup 14/C-UDP-glucuronic acid (UDPGA) and reversed phase C-18 minicolumns whereby the radioactive glucuronides were differentially eluted from labeled UDPGA. Trisacryl DEAE, and chromatofocusing procedures were employed to separate M-UDPGT and 4-HBP-UDPGT in the presence of exogenous phosphatidylcholine (PC). The PC is necessary to stabilize UDPGT activities. M-UDPGT was isolated to apparent homogeneity and displayed a monomeric molecular weight of 56,000 daltons on SDS-PAGE. It reacted with M but not with 4-HBP, bilirubin, p-nitrophenol, testosterone, androsterone, estrone, 4-aminobiphenyl or ..cap alpha..-naphthylamine. 4-HBP-UDPGT did not react with M. Therefore, M and 4-HBP glucuronidations are catalyzed by separate enzymes in rat liver microsomes.

  13. Experimental studies on islets isolation, purification and function in rats.

    PubMed

    Pang, Xinlu; Xue, Wujun; Feng, Xinshun; Tian, Xiaohui; Teng, Yan; Ding, Xiaoming; Pan, Xiaoming; Guo, Qi; He, Xiaoli

    2015-01-01

    To develop a simple and effective method of islet isolation and purification in rats. Collagenase P was injected into pancreatic duct followed by incubation in water bath to digest the pancreas and isolate islet, then discontinuous gravity gradient purification was used to purify the islet. The purified islets were identified by dithizone staining. The viability of islets was assessed by fluorescence staining of acridine orange (AO) and propidium iodide (PI). The function of purified islets was determined by glucose-stimulated insulin release test and transplantation of rat with streptozocin-induced diabetes. 738±193 islets were recovered after purification. The average purity was 77±13%, the viability of islets was more than 95%. When inspected by glucose stimulation, the secreted insulin concentration was 24.31±5.47 mIU/L when stimulated by low concentration glucose and 37.62±4.29 mIU/L by high concentration glucose. There was significant difference between the two phases (P<0.05). The blood sugar concentration recovered to normal level after two days in the animals with islet transplantation. In conclusion, islets can be procured with good function and shape by using the method of injecting collagenase into pancreatic duct followed by incubation in water bath and purification using discontinuous gravity gradient. PMID:26885021

  14. The effect of cinnamon extract on isolated rat uterine strips.

    PubMed

    Alotaibi, Mohammed

    2016-03-01

    Cinnamon is a spice used by some populations as a traditional remedy to control blood pressure and thus hypertension. Cinnamon extract decreases contractility in some smooth muscles, but its effect on uterine smooth muscle is unknown. The aim of this study was to determine the physiological and pharmacological effects of cinnamon extract (CE) on the contractions of isolated rat uterine strips and to investigate its possible mechanism of action. Isolated longitudinal uterine strips were dissected from non-pregnant rats, mounted vertically in an organ bath chamber, and exposed to different concentrations of CE (10-20mg/mL). The effect of CE was investigated in the presence of each of the following solutions: 60mM KCl, 5nM oxytocin, and 1μM Bay K8644. CE significantly decreased the force of uterine contraction in a concentration-dependent manner and significantly attenuated the uterine contractions elicited by KCl and oxytocin. In addition, CE significantly decreased the contractile force elicited when L-type Ca(2+) channels were activated by Bay K8644. CE's major mechanism may be inhibition of L-type Ca(2+) channels, which limits calcium influx. These data demonstrate that CE can be a potent tocolytic that can decrease uterine activity regardless of how the force was produced, even when the uterus was stimulated by agonists. As a result, cinnamon may be used to alleviate menstrual pain associated with dysmenorrhoea or prevent unwanted uterine activity in early pregnancy. PMID:26952750

  15. Protective effects of remote ischemic preconditioning in isolated rat hearts

    PubMed Central

    Teng, Xiao; Yuan, Xin; Tang, Yue; Shi, Jingqian

    2015-01-01

    To use Langendorff model to investigate whether remote ischemic preconditioning (RIPC) attenuates post-ischemic mechanical dysfunction on isolated rat heart and to explore possible mechanisms. SD rats were randomly divided into RIPC group, RIPC + norepinephrine (NE) depletion group, RIPC + pertussis toxin (PTX) pretreatment group, ischemia/reperfusion group without treatment (ischemia group) and time control (TC) group. RIPC was achieved through interrupted occlusion of anterior mesenteric artery. Then, Langendorff model was established using routine methods. Heart function was tested; immunohistochemistry and ELISA methods were used to detect various indices related to myocardial injury. Compared with ischemia group in which the hemodynamic parameters deteriorated significantly, heart function recovered to a certain degree among the RIPC, RIPC + NE depletion, and RIPC + PTX groups (P<0.05). More apoptotic nuclei were observed in ischemia group than in the other three groups (P<0.05); more apoptotic nuclei were detected in NE depletion and PTX groups than in RIPC group (P<0.05). While, there was no significant difference between NE depletion and PTX groups. In conclusion, RIPC protection on I/R myocardium extends to the period after hearts are isolated. NE and PTX-sensitive inhibitory G protein might have a role in the protection process. PMID:26550168

  16. Experimental studies on islets isolation, purification and function in rats

    PubMed Central

    Pang, Xinlu; Xue, Wujun; Feng, Xinshun; Tian, Xiaohui; Teng, Yan; Ding, Xiaoming; Pan, Xiaoming; Guo, Qi; He, Xiaoli

    2015-01-01

    To develop a simple and effective method of islet isolation and purification in rats. Collagenase P was injected into pancreatic duct followed by incubation in water bath to digest the pancreas and isolate islet, then discontinuous gravity gradient purification was used to purify the islet. The purified islets were identified by dithizone staining. The viability of islets was assessed by fluorescence staining of acridine orange (AO) and propidium iodide (PI). The function of purified islets was determined by glucose-stimulated insulin release test and transplantation of rat with streptozocin-induced diabetes. 738±193 islets were recovered after purification. The average purity was 77±13%, the viability of islets was more than 95%. When inspected by glucose stimulation, the secreted insulin concentration was 24.31±5.47 mIU/L when stimulated by low concentration glucose and 37.62±4.29 mIU/L by high concentration glucose. There was significant difference between the two phases (P<0.05). The blood sugar concentration recovered to normal level after two days in the animals with islet transplantation. In conclusion, islets can be procured with good function and shape by using the method of injecting collagenase into pancreatic duct followed by incubation in water bath and purification using discontinuous gravity gradient. PMID:26885021

  17. Traditional Formula, Modern Application: Chinese Medicine Formula Sini Tang Improves Early Ventricular Remodeling and Cardiac Function after Myocardial Infarction in Rats

    PubMed Central

    Liu, Jiangang; Peter, Karoline; Shi, Dazhuo; Zhang, Lei; Dong, Guoju; Zhang, Dawu; Breiteneder, Heimo; Ma, Yan

    2014-01-01

    Sini Tang (SNT) is a traditional Chinese herbal formula consisting of four different herbs: the root of Aconitum carmichaelii, the bark of Cinnamomum cassia, the rhizome of Zingiber officinale, and the root of Glycyrrhiza uralensis. This study aims to evaluate the improvement of early ventricular remodeling and cardiac function in myocardial infarction (MI) rats by SNT. A MI model was established by ligation of the left anterior descending coronary artery. Following treatment for 4 weeks, ultrasonic echocardiography was performed. Myocardial histopathological changes were observed using haematoxylin and eosin staining. Collagens (type I and type III), transforming growth factor-β1 (TGF-β1), and Toll-like receptors (TLR-2 and TLR-4) were measured in plasma, serum, and myocardial tissue. SNT treatment decreased the infarct size, the left ventricular cavity area/heart cavity area ratio, and the left ventricle dimension at end systole and increased the left ventricular ejection fraction. SNT reduced the levels of TLR-2 and TLR-4 in myocardial tissue significantly and decreased the collagens content in serum and in myocardial tissue. SNT could partially reduce the level of TGF-β1 in serum and in myocardial tissue. Our data suggest that the Chinese medicine formula SNT has the potential to improve early ventricular remodeling and cardiac function after MI. PMID:24971143

  18. Effects of Single Drug and Combined Short-term Administration of Sildenafil, Pimobendan, and Nicorandil on Right Ventricular Function in Rats With Monocrotaline-induced Pulmonary Hypertension.

    PubMed

    Nakata, Telma M; Tanaka, Ryou; Yoshiyuki, Rieko; Fukayama, Toshiharu; Goya, Seijiro; Fukushima, Ryuji

    2015-06-01

    This study was designed to assess the progression of pulmonary arterial hypertension (PAH) and the effectiveness of therapy using recently investigated echocardiographic parameters. PAH is characterized by the progressive elevation of pulmonary artery pressure and right ventricular hypertrophy and dysfunction, which ultimately results in right-sided heart failure and death. Echocardiography results and invasive measurements of right and left ventricular systolic pressures were compared after 3-week administrations of sildenafil (S group), pimobendan (P group), nicorandil (N group), and their combinations (SP and SPN groups) in male rats with monocrotaline (MCT)-induced pulmonary hypertension (M group) and without this condition (C group). The groups that received pimobendan alone and in combinations (SP and SPN groups) showed improvement in their echocardiographic parameters of systolic function. A significant improvement of diastolic function was achieved in the SPN group. Invasive measurements showed the most significant decreases of right ventricular systolic pressure in the N and SPN groups, and the use of pimobendan resulted in a comparatively low risk of adverse hemodynamic effects (left ventricular systolic pressure). Although our results suggested the attenuation of PAH severity in all treatment groups, PAH could not be reversed. PMID:25806612

  19. Effects of Single Drug and Combined Short-term Administration of Sildenafil, Pimobendan, and Nicorandil on Right Ventricular Function in Rats With Monocrotaline-induced Pulmonary Hypertension

    PubMed Central

    Tanaka, Ryou; Yoshiyuki, Rieko; Fukayama, Toshiharu; Goya, Seijiro; Fukushima, Ryuji

    2015-01-01

    Abstract: This study was designed to assess the progression of pulmonary arterial hypertension (PAH) and the effectiveness of therapy using recently investigated echocardiographic parameters. PAH is characterized by the progressive elevation of pulmonary artery pressure and right ventricular hypertrophy and dysfunction, which ultimately results in right-sided heart failure and death. Echocardiography results and invasive measurements of right and left ventricular systolic pressures were compared after 3-week administrations of sildenafil (S group), pimobendan (P group), nicorandil (N group), and their combinations (SP and SPN groups) in male rats with monocrotaline (MCT)-induced pulmonary hypertension (M group) and without this condition (C group). The groups that received pimobendan alone and in combinations (SP and SPN groups) showed improvement in their echocardiographic parameters of systolic function. A significant improvement of diastolic function was achieved in the SPN group. Invasive measurements showed the most significant decreases of right ventricular systolic pressure in the N and SPN groups, and the use of pimobendan resulted in a comparatively low risk of adverse hemodynamic effects (left ventricular systolic pressure). Although our results suggested the attenuation of PAH severity in all treatment groups, PAH could not be reversed. PMID:25806612

  20. Novel isolated cecal pouch model for endoscopic observation in rats

    PubMed Central

    Koshino, Kurodo; Kanai, Nobuo; Yamato, Masayuki; Okano, Teruo; Yamamoto, Masakazu

    2015-01-01

    AIM: To create a new rat model for drug administration, cell transplantation, and endoscopic examination for the treatment of intestinal diseases. METHODS: F344/NJc l-rnu/rnu rats (10-wk-old males, 350-400 g) were used in this study. The rats were anesthetized via 2% isoflurane inhalation. The rat’s cecum was isolated from the intestines, and a pouch was created. The remainder of the intestines was rejoined to create an anastomosis. The “side-to-side” anastomosis (SSA) technique initially involves the creation of a 2-cm longitudinal incision into each intestinal wall. To create an anastomosis along the ileal and colonic walls, both intestines were cut, and a continuous suture procedure was performed that included all layers of both intestines. The serous membrane was sutured along the edge and on the anterior wall of the anastomosis. The “end-to-end” anastomosis (EEA) technique was compared with the SSA technique. In the EEA technique, the frontal surfaces of both cut intestinal lumens were joined together by continuous sutures. Additional sutures were made at the serosa. After the anastomotic intestine was successfully constructed, the two intestinal lumens that were cut at the isolated cecum were managed. In addition, one luminal side of the pouch remained open to create an artificial anus on the dorsum as a passage for the residual substances in the pouch. Finally, small animal endoscopy was used to observe the inside of the pouch. RESULTS: In this animal model, mucus and feces are excreted through the reconstructed passage. Accordingly, the cecal pouch mucosa was not obstructed or contaminated by feces, thus facilitating observations of the luminal surface of the intestine. The endoscopic observation of the cecal pouch provided clear visualization given the absence of feces. The membrane surface of the cecum was clearly observed. Two methods of creating an anastomotic intestine, the “SSA” and “EEA” techniques, were compared with regard to

  1. Gender comparison of contractile performance and beta-adrenergic response in isolated rat cardiac trabeculae.

    PubMed

    Monasky, Michelle M; Varian, Kenneth D; Janssen, Paul M L

    2008-03-01

    It is known that gender can affect susceptibility to development of various cardiomyopathies. However, it is unclear whether basic mechanical contractile function of the myocardium differs between genders, whether they respond differently to stressors, or both. To test for a possible gender factor, contractile parameters of healthy, isolated myocardium were investigated under near physiological conditions. Right ventricular ultra-thin trabeculae from young adult LBN-f1 rats were electrically stimulated to isometrically contract at 37 degrees C. No differences were found in developed force or kinetic parameters. In each muscle, the force-frequency relationship was measured at 4, 6, and 8 Hz, encompassing most of the in vivo range. Again, no differences were observed in force-frequency behavior; developed force rose from 21.6 +/- 4.0 at 4 Hz to 30.3 +/- 5.8 mN/mm(2) at 8 Hz in females and from 23.4 +/- 3.4 to 29.8 +/- 3.4 mN/mm(2 )in males. The response to beta-adrenergic stimulation was similar; at 1 microM isoproterenol, developed force increased to 34.5 +/- 6.2 mN/mm(2) in females and 32.3 +/- 3.2 mN/mm(2) in males (female vs. male, not significant). We conclude that basic mechanical performance of healthy isolated myocardium under physiological conditions is not different between males and females, and a different response to stress must underlie gender-based differences in cardiac performance. PMID:18030479

  2. Isolating the delay component of impulsive choice in adolescent rats

    PubMed Central

    McClure, Jesse; Podos, Jeffrey; Richardson, Heather N.

    2014-01-01

    Impulsive choice—the preference for small immediate rewards over larger delayed rewards—has been linked to various psychological conditions ranging from behavioral disorders to addiction. These links highlight the critical need to dissect the various components of this multifaceted behavioral trait. Delay discounting tasks allow researchers to study an important factor of this behavior: how the subjective value of a rewards changes over a delay period. However, existing methods of delay discounting include a confound of different reward sizes within the procedure. Here we present a new approach of using a single constant reward size to assess delay discounting. A complementary approach could hold delay constant and assess the utility of changing quantities of a reward. Isolating these behavioral components can advance our ability to explore the behavioral complexity of impulsive choice. We present in detail the methods for isolating delay, and further capitalize on this method by pairing it with a standard peak interval task to test whether individual variation in delay discounting can be explained by differences in perception of time in male and female adolescent rats. We find that rats that were more precise in discriminating time intervals were also less impulsive in their choice. Our data suggest that differences in timing and delay discounting are not causally related, but instead are more likely influenced by a common factor. Further, the mean-level change in our measure between post-natal day 28 and 42 suggests this test may be capturing a developmental change in this factor. In summary, this new method of isolating individual components of impulsive choice (delay or quantity) can be efficiently applied in either adolescent or adult animal models and may help elucidate the mechanisms underlying impulsivity and its links to psychological disorders. PMID:24478644

  3. Guanine deaminase inhibitor from rat liver. Isolation and characterization.

    PubMed

    Ali, S; Sitaramayya, A; Kumar, K S; Krishnan, P S

    1974-01-01

    1. An inhibitor of cytoplasmic guanine deaminase of rat liver was isolated from liver ;heavy mitochondrial' fraction after freezing and thawing and treatment with Triton X-100. 2. Submitochondrial fractionation revealed that the inhibitor was localized in the outer-membrane fraction. 3. The method of purification of inhibitor, involving precipitation with (NH(4))(2)SO(4) and chromatography on DEAE-cellulose, its precipitability by trichloroacetic acid and the pattern of absorption in the u.v. indicated that the inhibitor was a protein. In confirmation, tryptic digestion of the isolated material resulted in destruction of the inhibitor activity. The inhibitor was stable to acid, but labile to heat. 4. The isolated inhibitor required phosphatidylcholine (lecithin) for activity. Phosphatidylcholine also partially protected the inhibitor against heat inactivation. 5. When detergent treatment was omitted, the inhibitor activity of frozen mitochondria was precipitated by (NH(4))(2)SO(4) in a fully active form without supplementation with phosphatidylcholine, indicating that Triton X-100 ruptured the linkage between inhibitor and lipid. 6. A reconstituted sample of inhibitor-phosphatidylcholine complex was precipitated in a fully active form by dialysis against 2-mercaptoethanol, but treatment of the precipitate with NaCl yielded an extract which was inactive unless supplemented with fresh phosphatidylcholine. 7. We interpret the results as evidence that the inhibitor was present in vivo as a lipoprotein and that once the complex was dissociated by the action of detergent and the protein precipitated, there was an absolute need for exogenous phosphatidylcholine for its activity. The manner in which inhibitor associated with the outer membrane of rat liver mitochondria might regulate the activity of the enzyme in the supernatant has been suggested. PMID:4821397

  4. The Inotropic Effect of the Active Metabolite of Levosimendan, OR-1896, Is Mediated through Inhibition of PDE3 in Rat Ventricular Myocardium

    PubMed Central

    Ørstavik, Øivind; Manfra, Ornella; Andressen, Kjetil Wessel; Andersen, Geir Øystein; Skomedal, Tor; Osnes, Jan-Bjørn; Levy, Finn Olav; Krobert, Kurt Allen

    2015-01-01

    Aims We recently published that the positive inotropic response (PIR) to levosimendan can be fully accounted for by phosphodiesterase (PDE) inhibition in both failing human heart and normal rat heart. To determine if the PIR of the active metabolite OR-1896, an important mediator of the long-term clinical effects of levosimendan, also results from PDE3 inhibition, we compared the effects of OR-1896, a representative Ca2+ sensitizer EMD57033 (EMD), levosimendan and other PDE inhibitors. Methods Contractile force was measured in rat ventricular strips. PDE assay was conducted on rat ventricular homogenate. cAMP was measured using RII_epac FRET-based sensors. Results OR-1896 evoked a maximum PIR of 33±10% above basal at 1 μM. This response was amplified in the presence of the PDE4 inhibitor rolipram (89±14%) and absent in the presence of the PDE3 inhibitors cilostamide (0.5±5.3%) or milrinone (3.2±4.4%). The PIR was accompanied by a lusitropic response, and both were reversed by muscarinic receptor stimulation with carbachol and absent in the presence of β-AR blockade with timolol. OR-1896 inhibited PDE activity and increased cAMP levels at concentrations giving PIRs. OR-1896 did not sensitize the concentration-response relationship to extracellular Ca2+. Levosimendan, OR-1896 and EMD all increased the sensitivity to β-AR stimulation. The combination of either EMD and levosimendan or EMD and OR-1896 further sensitized the response, indicating at least two different mechanisms responsible for the sensitization. Only EMD sensitized the α1-AR response. Conclusion The observed PIR to OR-1896 in rat ventricular strips is mediated through PDE3 inhibition, enhancing cAMP-mediated effects. These results further reinforce our previous finding that Ca2+ sensitization does not play a significant role in the inotropic (and lusitropic) effect of levosimendan, nor of its main metabolite OR-1896. PMID:25738589

  5. The H{sub 1}–H{sub 2} domain of the α{sub 1} isoform of Na{sup +}–K{sup +}–ATPase is involved in ouabain toxicity in rat ventricular myocytes

    SciTech Connect

    Xiong, Chen; Li, Jun-xia; Guo, Hui-cai; Zhang, Li-nan; Guo, Wei; Meng, Jing; Wang, Yong-li

    2012-07-01

    The composition of different isoforms of Na{sup +}-K{sup +}-ATPase (NKA, Na/K pump) in ventricular myocytes is an important factor in determining the therapeutic effect and toxicity of cardiac glycosides (CGs) on heart failure. The mechanism whereby CGs cause these effects is still not completely clear. In the present study, we prepared two site-specific antibodies (SSA78 and WJS) against the H{sub 1}–H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA in rat heart, respectively, and compared their influences on the effect of ouabain (OUA) in isolated rat ventricular myocytes. SSA78 or WJS, which can specifically bind with the α{sub 1} or α{sub 2} isoform, were assessed with enzyme linked immunosorbent assay (ELISA), Western blot and immunofluorescent staining methods. Preincubation of myocytes with SSA78 inhibited low OUA affinity pump current but not high OUA affinity pump current, reduced the rise in cytosolic calcium concentration ([Ca{sup 2+}]{sub i}), attenuated mitochondrial Ca{sup 2+} overload, restored mitochondrial membrane potential reduction, and delayed the decrease of the myocardial contractile force as well as the occurrence of arrhythmic contraction induced by high concentrations (1 mM) but not low concentrations (1 μM) of OUA. Similarly, preincubation of myocytes with WJS inhibited high OUA affinity pump current, reduced the increase of [Ca{sup 2+}]{sub i} and the contractility induced by 1 μM but not that induced by 1 mM OUA. These results indicate that the H{sub 1}–H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity in rat ventricular myocytes, and inhibitors for this binding site may be used as an adjunct to CGs treatment for cardiovascular disease. -- Highlights: ► We prepared two antibodies against the H{sub 1}-H{sub 2} domain of α{sub 1} and α{sub 2} isoforms of NKA. ► The H{sub 1}-H{sub 2} domain of the NKA α{sub 1} isoform mediates OUA-induced cardiac toxicity. ► The H{sub 1}-H{sub 2

  6. METABOLIC PROPERTIES OF ISOLATED RAT LIVER CELL PREPARATIONS ENRICHED IN EPITHELIAL CELLS OTHER THAN HEPATOCYTES

    EPA Science Inventory

    A selected fraction of non-parenchymal cells was prepared from the liver of untreated rats, of rats 11-13 days after ligation of the common bile duct, and of rats fed for 4-5 weeks a choline devoid diet containing DL-ethionine. The cell fraction isolated from these livers consist...

  7. Enhancement of contraction and L-type Ca(2+) current by murrayafoline-A via protein kinase C in rat ventricular myocytes.

    PubMed

    Chidipi, Bojjibabu; Son, Min-Jeong; Kim, Joon-Chul; Lee, Jeong Hyun; Toan, Tran Quoc; Cuong, Nguyen Manh; Lee, Byung Ho; Woo, Sun-Hee

    2016-08-01

    We previously reported that murrayafoline-A (1-methoxy-3-methyl-9H-carbazole, Mu-A) increases the contractility of ventricular myocytes, in part, via enhancing Ca(2+) influx through L-type Ca(2+) channels, and that it increases the Ca(2+) transients by activation of protein kinase C (PKC). In the present study, we further examined the cellular mechanisms for the enhancement of contractility and L-type Ca(2+) current (ICa,L) by Mu-A. Cell shortening and ICa,L were measured in rat ventricular myocytes using a video edge detection method and perforated patch-clamp technique, respectively. We found that the positive inotropic effect of Mu-A was not affected by pre-exposure to the β-adrenoceptor antagonist propranolol, the protein kinase A (PKA) inhibitors KT5720 or H-89, or the phospholipase C inhibitor U73122. Interestingly, the Mu-A-mediated increases in cell shortening and in the rate of contraction were completely suppressed by pre-treatment with the PKC inhibitor GF109203X. The stimulatory effect of Mu-A on ICa,L was not altered by inhibition of PKA (KT5720), G-protein coupled receptors (suramin), or α1-adrenoceptor (prazosin). However, pre-exposure to the PKC inhibitor, GF109203X or chelerythrine, abolished the Mu-A-induced increase in ICa,L. Pre-exposure to the Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 slightly reduced the stimulatory effects on contraction and ICa,L by Mu-A. Phosphorylation of PKC was enhanced by Mu-A in ventricular myocytes. These data suggest that Mu-A increases contraction and ICa,L via PKC in rat ventricular myocytes, and that the PKC-mediated responses in the presence of Mu-A may be partly mediated by CaMKII. PMID:27158118

  8. Modulation of L-type Ca2+ current by extracellular ATP in ferret isolated right ventricular myocytes.

    PubMed Central

    Qu, Y; Campbell, D L; Strauss, H C

    1993-01-01

    1. The effects of extracellular adenosine triphosphate (ATP) on the basal L-type Ca2+ current (ICa) were investigated in ferret isolated right ventricular myocytes using the gigaohm seal voltage clamp in the whole-cell and cell-attached configurations. 2. Micromolar levels of extracellular ATP reversibly inhibited ICa in a concentration-dependent manner, without any significant changes in the voltage dependence of either the peak ICa I-V relationship or steady-state activation curve. 3. In contrast, micromolar levels of extracellular ATP did significantly alter the inactivation characteristics of ICa. Ten micromolar ATP: (i) increased the degree of steady-state inactivation of ICa; (ii) altered the time constants of ICa inactivation at 0 mV; and (iii) decreased the time constant of ICa recovery from inactivation at -70 mV. 4. The inhibitory effect of ATP on ICa was not blocked by atropine, a muscarinic cholinergic receptor antagonist, or CPDPX (8-cyclopentyl-3,4-dipropylxanthine), an A1 adenosine receptor antagonist. In contrast, the inhibitory effect of 10 microM ATP could be nearly completely antagonized by 100 microM suramin, a purinergic P2 receptor antagonist. 5. The potency order of ATP analogues in inhibiting ICa was 2-methyl-thio-ATP > ATP > alpha,beta-methylene-ATP, indicating involvement of a P2Y-type ATP receptor. 6. Pretreatment of cells with pertussis toxin (PTX) did not prevent the ATP-induced decrease in ICa. However, (i) ATP produced an irreversible decrease of ICa in the presence of intracellular GTP gamma S, and (ii) the inhibitory effect was significantly attenuated in the presence of intracellular GDP beta S, indicating the involvement of a PTX-insensitive G protein in the P2Y receptor-coupling process. 7. Neither (i) replacing extracellular Ca2+ with 1 mM Ba2+, nor (ii) intracellular perfusion of 10 mM BAPTA for at least 30 min attenuated the inhibitory effect of ATP on the current through Ca2+ channels, suggesting that the inhibitory effect

  9. The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts.

    PubMed

    Rosic, Gvozden; Selakovic, Dragica; Joksimovic, Jovana; Srejovic, Ivan; Zivkovic, Vladimir; Tatalović, Nikola; Orescanin-Dusic, Zorana; Mitrovic, Slobodanka; Ilic, Milena; Jakovljevic, Vladimir

    2016-02-01

    The aim of this study was to evaluate the effects of chronic NAC administration along with cisplatin on cisplatin-induced cardiotoxicity by means of coronary flow (CF), cardiodynamic parameters, oxidative stress markers and morphological changes in isolated rat heart. Isolated hearts of Wistar albino rats (divided into four groups: control, cisplatin, NAC and cisplatin+NAC group) were perfused according to Langendorff technique at constant coronary perfusion pressure starting at 50 and gradually increased to 65, 80, 95 and 110 cm H2O to evaluate cardiodynamic parameters within autoregulation range. Samples of coronary venous effluent (CVE) were collected for determination of CF and biochemical assays, and heart tissue samples for biochemical assays and histopathological examination. Cisplatin treatment decreased CF and heart rate, and increased left ventricular systolic pressure and maximum left ventricular pressure development rate. Cisplatin increased H2O2 and TBARS, but decreased NO2(-) levels in CVE. In tissue samples, cisplatin reduced pathological alterations in myocardium and coronary vessels, with no changes in the amount of total glutathione, as well as in activity of glutathione peroxidase and glutathione reductase. NAC coadministration, by reducing oxidative damage, attenuated cisplatin-induced changes of cardiodynamic and oxidative stress parameters, as well as morphological changes in myocardium and coronary vasculature. PMID:26656795

  10. Isolation and Molecular Characterization of Leptospira interrogans and Leptospira borgpetersenii Isolates from the Urban Rat Populations of Kuala Lumpur, Malaysia

    PubMed Central

    Benacer, Douadi; Zain, Siti Nursheena Mohd; Amran, Fairuz; Galloway, Renee L.; Thong, Kwai Lin

    2013-01-01

    Rats are considered the principal maintenance hosts of Leptospira. The objectives of this study were isolation and identification of Leptospira serovars circulating among urban rat populations in Kuala Lumpur. Three hundred urban rats (73% Rattus rattus and 27% R. norvegicus) from three different sites were trapped. Twenty cultures were positive for Leptospira using dark-field microscopy. R. rattus was the dominant carrier (70%). Polymerase chain reaction (PCR) confirmed that all isolates were pathogenic Leptospira species. Two Leptospira serogroups, Javanica and Bataviae, were identified using microscopic agglutination test (MAT). Pulsed-field gel electrophoresis (PFGE) identified two serovars in the urban rat populations: L. borgpetersenii serovar Javanica (85%) and L. interrogans serovar Bataviae (15%). We conclude that these two serovars are the major serovars circulating among the urban rat populations in Kuala Lumpur. Despite the low infection rate reported, the high pathogenicity of these serovars raises concern of public health risks caused by rodent transmission of leptospirosis. PMID:23358635

  11. Role of SERCA and the sarcoplasmic reticulum calcium content on calcium waves propagation in rat ventricular myocytes.

    PubMed

    Salazar-Cantú, Ayleen; Pérez-Treviño, Perla; Montalvo-Parra, Dolores; Balderas-Villalobos, Jaime; Gómez-Víquez, Norma L; García, Noemí; Altamirano, Julio

    2016-08-15

    In Ca(2+)-overloaded ventricular myocytes, SERCA is crucial to steadily achieve the critical sarcoplasmic reticulum (SR) Ca(2+) level to trigger and sustain Ca(2+) waves, that propagate at constant rate (ʋwave). High luminal Ca(2+) sensitizes RyR2, thereby increasing Ca(2+) sparks frequency, and the larger RyR2-mediated SR Ca(2+) flux (dF/dt) sequentially activates adjacent RyR2 clusters. Recently, it was proposed that rapid SERCA Ca(2+) reuptake, ahead of the wave front, further sensitizes RyR2, increasing ʋwave. Nevertheless, this is controversial because rapid cytosolic Ca(2+) removal could instead impair RyR2 activation. We assessed whether rapid SR Ca(2+) uptake enhances ʋwave by changing SERCA activity (ҡDecay) over a large range (∼175%). We used normal (Ctrl) and hyperthyroid rat (HT; reduced phospholamban by ∼80%) myocytes treated with thapsigargin or isoproterenol (ISO). We found that ʋwave and dF/dt had a non-linear dependency with ҡDecay, while Ca(2+) waves amplitude was largely unaffected. Furthermore, SR Ca(2+) also showed a non-linear dependency with ҡDecay, however, the relationships ʋwave vs. SR Ca(2+) and ʋwave vs. dF/dt were linear, suggesting that high steady state SR Ca(2+) determines ʋwave, while rapid SERCA Ca(2+) uptake does not. Finally, ISO did not increase ʋwave in HT cells, therefore, ISO-enhanced ʋwave in Ctrl depended on high SR Ca(2+). PMID:27242324

  12. The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes.

    PubMed

    Hewawasam, Ruwani P; Liu, Dan; Casarotto, Marco G; Board, Philip G; Dulhunty, Angela F

    2016-01-01

    The cardiac ryanodine receptor (RyR2) is an intracellular ion channel that regulates Ca2+ release from the sarcoplasmic reticulum (SR) during excitation-contraction coupling in the heart. The glutathione transferases (GSTs) are a family of phase II detoxification enzymes with additional functions including the selective inhibition of RyR2, with therapeutic implications. The C-terminal half of GSTM2 (GSTM2C) is essential for RyR2 inhibition, and mutations F157A and Y160A within GSTM2C prevent the inhibitory action. Our objective in this investigation was to determine whether GSTM2C can enter cultured rat neonatal ventricular cardiomyocytes and influence contractility. We show that oregon green-tagged GSTM2C (at 1 μM) is internalized into the myocytes and it reduces spontaneous contraction frequency and myocyte shortening. Field stimulation of myocytes evoked contraction in the same percentage of myocytes treated either with media alone or media plus 15 μM GSTM2C. Myocyte shortening during contraction was significantly reduced by exposure to 15 μM GSTM2C, but not 5 and 10 μM GSTM2C and was unaffected by exposure to 15 μM of the mutants Y160A or F157A. The amplitude of the Ca2+ transient in the 15 μM GSTM2C - treated myocytes was significantly decreased, the rise time was significantly longer and the decay time was significantly shorter than in control myocytes. The Ca2+ transient was not altered by exposure to Y160A or F157A. The results are consistent with GSTM2C entering the myocytes and inhibiting RyR2, in a manner that indicates a possible therapeutic potential for treatment of arrhythmia in the neonatal heart. PMID:27612301

  13. Role of inositol-1,4,5-trisphosphate receptor in the regulation of calcium transients in neonatal rat ventricular myocytes.

    PubMed

    Zeng, Zheng; Zhang, Heping; Lin, Na; Kang, Man; Zheng, Yuanyuan; Li, Chen; Xu, Pingxiang; Wu, Yongquan; Luo, Dali

    2014-01-01

    This study determined the regulatory effect of inositol 1,4,5-trisphosphate receptors (IP3Rs) on the basal Ca(2+) transients in cardiomyocytes. In cultured neonatal rat ventricular myocytes (NRVMs) at different densities, we used confocal microscopy to assess the effect of IP3Rs on the endogenous spontaneous Ca(2+) oscillations through specific activation of IP3Rs with myo-IP3 hexakis (butyryloxymethyl) ester (IP3BM), a membrane permeable IP3, and interference of IP3R expression with shRNA. We found that NRVMs at the monolayer state displayed coordinated Ca(2+) transients with less rate, shorter duration, and higher amplitude compared to single NRVMs. In addition, monolayer NRVMs exhibited 4 or 10 times more increased Ca(2+) transients in response to phenylephrine, an α-adrenergic receptor agonist, or IP3BM than single NRVMs did, while the transient pattern remained unaltered, suggesting that the sensitivity of intracellular Ca(2+) response to IP3R activation is different between single and monolayer NRVMs. However, interference of IP3R expression with shRNA reduced the frequency and amplitude of the spontaneous Ca(2+) fluctuates similarly in both densities of NRVMs, resembling the effects of ryanodine receptor inhibition by ryanodine or tetracaine. Our findings suggest that IP3Rs are involved, in part, in the regulation of native Ca(2+) transients, in profiles of their initiation and Ca(2+) release extent, in developing cardiomyocytes. In addition, caution should be paid in evaluating the behavior of Ca(2+) signaling in primary cultured cardiomyocytes at different densities. PMID:25242084

  14. Characterization of glutamatergic neurons in the rat atrial intrinsic cardiac ganglia that project to the cardiac ventricular wall.

    PubMed

    Wang, Ting; Miller, Kenneth E

    2016-08-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia (ICG) for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside ICG. In the present study, rat ICG neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) ICG contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial ICG contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT; (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac

  15. Fenofibrate inhibits aldosterone-induced apoptosis in adult rat ventricular myocytes via stress-activated kinase-dependent mechanisms

    PubMed Central

    De Silva, Deepa S.; Wilson, Richard M.; Hutchinson, Christoph; Ip, Peter C.; Garcia, Anthony G.; Lancel, Steve; Ito, Masa; Pimentel, David R.; Sam, Flora

    2009-01-01

    Aldosterone induces extracellular signal-regulated kinase (ERK)-dependent cardiac remodeling. Fenofibrate improves cardiac remodeling in adult rat ventricular myocytes (ARVM) partly via inhibition of aldosterone-induced ERK1/2 phosphorylation and inhibition of matrix metalloproteinases. We sought to determine whether aldosterone caused apoptosis in cultured ARVM and whether fenofibrate ameliorated the apoptosis. Aldosterone (1 μM) induced apoptosis by increasing terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei in ARVM. Spironolactone (100 nM), an aldosterone receptor antagonist, but not RU-486, a glucocorticoid receptor, inhibited aldosterone-mediated apoptosis, indicating that the mineralocorticoid receptor (MR) plays a role. SP-600125 (3 μM)—a selective inhibitor of c-Jun NH2-terminal kinase (JNK)—inhibited aldosterone-induced apoptosis in ARVM. Although aldosterone increased the expression of both stress-activated protein kinases, pretreatment with fenofibrate (10 μM) decreased aldosterone-mediated apoptosis by inhibiting only JNK phosphorylation and the aldosterone-induced increases in Bax, p53, and cleaved caspase-3 and decreases in Bcl-2 protein expression in ARVM. In vivo studies demonstrated that chronic fenofibrate (100 mg·kg body wt−1·day−1) inhibited myocardial Bax and increased Bcl-2 expression in aldosterone-induced cardiac hypertrophy. Similarly, eplerenone, a selective MR inhibitor, used in chronic pressure-overload ascending aortic constriction inhibited myocardial Bax expression but had no effect on Bcl-2 expression. Therefore, involvement of JNK MAPK-dependent mitochondrial death pathway mediates ARVM aldosterone-induced apoptosis and is inhibited by fenofibrate, a peroxisome proliferator-activated receptor (PPAR)α ligand. Fenofibrate mediates beneficial effects in cardiac remodeling by inhibiting programmed cell death and the stress-activated kinases. PMID:19395558

  16. Study of the strontium response in isolated rat aorta.

    PubMed

    Barreda, A; Anselmi, E

    1989-01-01

    We have studied the effects of the cumulative application of Sr2+ in isolated rat aorta in a normal and in a Ca2+-free solution containing EDTA 1 mM. Sr2+ induced a concentration-dependent contraction which was reduced by verapamil (5 X 10(-6) and 10(-7) M) and lanthanum (1 and 2 mM). Sr2+ also induced a contraction in K+-depolarized medium. In aorta strips depleted of Ca2+ by several applications of noradrenaline (10(-6) M), Sr2+ induced a dose-response contraction in a Ca2+-free solution. These findings suggest that the influx of external Ca2+ is only partly responsible for the Sr2+-induced contraction and that another intracellular mechanism is involved in the response. PMID:2774765

  17. [Polyamines antagonizing angiotensin II contractile effects in isolated rat aorta].

    PubMed

    Costuleanu, Natalia; Foia, Liliana; Slătineanu, Simona Mihaela; Indrei, L L; Costuleanu, M; Petrescu, Gh

    2003-01-01

    Our study showed that the administration in pre-treatment of some polyamines (especially spermine and spermidine and almost null agmatine, putrescine and cadaverine) reduced the contractile effects of angiotensin II (Ang II) in isolated rat aorta. These effects might not be associated to the interference of clathrin coated vesicles (coated pits) formation or caveolae interaction (and thus to Ang II internalization through AT1 receptors). In contrast, these effects seem to be due to the interaction with voltage-gated membrane Ca2+ channels. Therefore, the alteration of transmembrane Ca2+ fluxes does not exclude the involvement of internalization process through coated pits or caveolae, since the endocytosis mediated by these phenomena essentially needs Ca2+. In addition, the inhibitory effects are dependent on the number of positive charges of the polyamine molecules. PMID:14755941

  18. Transport of deutherium oxide across isolated rat small intestine.

    PubMed Central

    Bywater, R J; Fisher, R B; Gardner, M L

    1975-01-01

    1. Transport of deuterium oxide from a luminal perfusate containing 1% D2O was studied in Fisher & Gardners (1974) isolated preparation of perfused rat small intestine. 2. The kinetics of appearance of D2O in the intestinal secretion at the serosal surface fitted well to a single exponential function. 3. The steady-state concentration of D2O in this secretion was not significantly different from the concentration in the luminal perfusate. 4. The total tissue water contained D2O at a concentration, on average, 5% lower than that in the luminal perfusate. 5. There is no evidence to suggest discrimination in transport across the intestinal mucosa between H2O and D2O. 6. The kinetics of wash-in of D2O to intestinal secretion show that the ratio of flux out of the lumen to reflux back to the lumen is 1-38;1. PMID:1177106

  19. Blood pressure, ventricular volume and number of cardiomyocyte nuclei in rats fed for 12 months on diets differing in fat composition.

    PubMed

    Aguila, M B; Mandarim-de-Lacerda, C A

    2001-01-01

    Blood pressure (BP), body mass (BM), ventricular volume (V[vent]) and the number of ventricular cardiomyocyte nuclei (N[vcn]) were analysed in rats fed different dietary fats. A total of 20 Wistar male rats were studied from 21 days old to 12 months of age and divided in the groups: soybean oil (S), canola oil (CA), lard and egg yolk (LE) and canola oil+lard and egg yolk (CA+LE). The diets had the same basal diet that included cornstarch, casein, maize, egg white and mineral and vitamin mixtures. At the moment of the sacrifice, the LE group had the greatest BP and V[vent] which was significantly higher than the other groups, and the S group had the greatest BM. The myocardial structure was apparently normal in the S and CA groups while it showed areas of diffuse interstitial fibrosis and hypertrophied cardiomyocytes in the LE group, and intramyocardial coronaries with thick tunica media and little interstitial fibrosis in CA+LE group. The N[vcn] was significantly higher in the CA group and it was lower in the LE group. These results suggest that the different dietary fats affect the myocardial structure, and the canola oil diet reduces the cardiomyocyte loss in the old rats. PMID:11163625

  20. Intravenous Glial Growth Factor 2 (GGF2) Isoform of Neuregulin-1β Improves Left Ventricular Function, Gene and Protein Expression in Rats after Myocardial Infarction

    PubMed Central

    Murphy, Abigail; Smith, Holly M.; Galindo, Cristi L.; Pentassuglia, Laura; Peng, Xuyang; Lenneman, Carrie G.; Odiete, Oghenerukevwe; Friedman, David B.; Kronenberg, Marvin W.; Zheng, Siyuen; Zhao, Zhongming; Song, Yanna; Harrell, Frank E.; Srinivas, Maya; Ganguly, Anindita; Iaci, Jennifer; Parry, Tom J.; Caggiano, Anthony O.; Sawyer, Douglas B.

    2013-01-01

    Aims Recombinant Neuregulin (NRG)-1β has multiple beneficial effects on cardiac myocytes in culture, and has potential as a clinical therapy for heart failure (HF). A number of factors may influence the effect of NRG-1β on cardiac function via ErbB receptor coupling and expression. We examined the effect of the NRG-1β isoform, glial growth factor 2 (GGF2), in rats with myocardial infarction (MI) and determined the impact of high-fat diet as well as chronicity of disease on GGF2 induced improvement in left ventricular systolic function. Potential mechanisms for GGF2 effects on the remote myocardium were explored using microarray and proteomic analysis. Methods and Results Rats with MI were randomized to receive vehicle, 0.625 mg/kg, or 3.25 mg/kg GGF2 in the presence and absence of high-fat feeding beginning at day 7 post-MI and continuing for 4 weeks. Residual left ventricular (LV) function was improved in both of the GGF2 treatment groups compared with the vehicle treated MI group at 4 weeks of treatment as assessed by echocardiography. High-fat diet did not prevent the effects of high dose GGF2. In experiments where treatment was delayed until 8 weeks after MI, high but not low dose GGF2 treatment was associated with improved systolic function. mRNA and protein expression analysis of remote left ventricular tissue revealed a number of changes in myocardial gene and protein expression altered by MI that were normalized by GGF2 treatment, many of which are involved in energy production. Conclusions This study demonstrates that in rats with MI induced systolic dysfunction, GGF2 treatment improves cardiac function. There are differences in sensitivity of the myocardium to GGF2 effects when administered early vs. late post-MI that may be important to consider in the development of GGF2 in humans. PMID:23437060

  1. Reduction in the amplitude of shortening and Ca(2+) transient by phlorizin and quercetin-3-O-glucoside in ventricular myocytes from streptozotocin-induced diabetic rats.

    PubMed

    Hamouda, N N; Qureshi, M A; Alkaabi, J M; Oz, M; Howarth, F C

    2016-06-20

    Diabetes mellitus is the leading cause of cardiovascular morbidity and mortality. Phlorizin (PHLOR) and quercetin-3-O-glucoside (QUER-3-G) are two natural compounds reported to have antidiabetic properties by inhibiting sodium/glucose transporters. Their effects on ventricular myocyte shortening and intracellular Ca(2+) in streptozotocin (STZ)-induced diabetic rats were investigated. Video edge detection and fluorescence photometry were used to measure ventricular myocyte shortening and intracellular Ca(2+), respectively. Blood glucose in STZ rats was 4-fold higher (469.64+/-22.23 mg/dl, n=14) than in Controls (104.06+/-3.36 mg/dl, n=16). The amplitude of shortening was reduced by PHLOR in STZ (84.76+/-2.91 %, n=20) and Control (83.72+/-2.65 %, n=23) myocytes, and by QUER-3-G in STZ (79.12+/-2.28 %, n=20) and Control (76.69+/-1.92 %, n=30) myocytes. The amplitude of intracellular Ca(2+) was also reduced by PHLOR in STZ (82.37+/-3.16 %, n=16) and Control (73.94+/-5.22 %, n=21) myocytes, and by QUER-3-G in STZ (73.62+/-5.83 %, n=18) and Control (78.32+/-3.54 %, n=41) myocytes. Myofilament sensitivity to Ca(2+) was not significantly altered by PHLOR; however, it was reduced by QUER-3-G modestly in STZ myocytes and significantly in Controls. PHLOR and QUER-3-G did not significantly alter sarcoplasmic reticulum Ca(2+) in STZ or Control myocytes. Altered mechanisms of Ca(2+) transport partly underlie PHLOR and QUER-3-G negative inotropic effects in ventricular myocytes from STZ and Control rats. PMID:26447513

  2. Electrophoretic analysis of myofibrillar and mitochondrial proteins from ventricular myocardium from normal and copper deficient rats

    SciTech Connect

    McCormick, R.J.; Ovecka, G.D.; Medeiros, D.M. )

    1989-02-09

    Male Long-Evans rats were fed copper adequate (8 mg Cu/kg diet, N=9) or copper deficient (0.4 mg Cu/kg diet, N=10) diets from weanling until sacrificed (9 weeks). Animals fed the copper deficient diet had decreased hematocrit and liver copper levels and increased heart weight verifying copper deficiency. Left ventricle cardiac tissue was evaluated for changes in myofibrillar and mitochondrial proteins by gradient polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and densitometry. No differences in individual myofibrillar proteins as a function of copper deficiency were apparent. In the mitochondrial protein fraction 2 peptides (approx. molecular weights 22,000 and 19,000) present in normal ventricles were absent from copper deficient, severely hypertrophic tissues of present in lesser amounts in copper deficient animals exhibiting a lesser degree of hypertrophy. The molecular weight of these peptides corresponds closely to published weights of cytochrome C oxidase subunits. The changes observed here may represent alterations in translation or assembly of cytochrome C oxidase as a function of copper deficiency.

  3. Rapid Surface Cooling by ThermoSuit System Dramatically Reduces Scar Size, Prevents Post-Infarction Adverse Left Ventricular Remodeling, and Improves Cardiac Function in Rats

    PubMed Central

    Dai, Wangde; Herring, Michael J; Hale, Sharon L; Kloner, Robert A

    2015-01-01

    Background The long-term effects of transient hypothermia by the non-invasive ThermoSuit apparatus on myocardial infarct (MI) scar size, left ventricular (LV) remodeling, and LV function were assessed in rat MI model. Methods and Results Rats were randomized to normothermic or hypothermic groups (n=14 in each group) and subjected to 30 minutes coronary artery occlusion and 6 weeks of reperfusion. For hypothermia therapy, rats were placed into the ThermoSuit apparatus at 2 minutes after the onset of coronary artery occlusion, were taken out of the apparatus when the core body temperature reached 32°C (in ≈8 minutes), and were then allowed to rewarm. After 6 weeks of recovery, rats treated with hypothermia demonstrated markedly reduced scar size (expressed as % of left ventricular area: hypothermia, 6.5±1.1%; normothermia, 19.4±1.7%; P=1.3×10−6); and thicker anterior LV wall (hypothermia, 1.57±0.09 mm; normothermia, 1.07±0.05 mm; P=3.4×10−5); decreased postmortem left ventricular volume (hypothermia, 0.45±0.04 mL; normothermia, 0.6±0.03 mL; P=0.028); and better LV fractional shortening by echocardiography (hypothermia, 37.2±2.8%; normothermia, 18.9±2.3%; P=0.0002) and LV ejection fraction by LV contrast ventriculography (hypothermia, 66.8±2.3%; normothermia, 56.0±2.0%; P=0.0014). Conclusions Rapid, transient non-invasive surface cooling with the ThermoSuit apparatus in the acute phase of MI decreased scar size by 66.5%, attenuated adverse post-infarct left ventricular dilation and remodeling, and improved cardiac function in the chronic phase of experimental MI. PMID:26116692

  4. Left ventricular restoration devices.

    PubMed

    Oliveira, Guilherme H; Al-Kindi, Sadeer G; Bezerra, Hiram G; Costa, Marco A

    2014-04-01

    Left ventricular (LV) remodeling results in continuous cardiac chamber enlargement and contractile dysfunction, perpetuating the syndrome of heart failure. With current exhaustion of the neurohormonal medical paradigm, surgical and device-based therapies have been increasingly investigated as a way to restore LV chamber architecture and function. Left ventricular restoration has been attempted with surgical procedures, such as partial left ventriculectomy, surgical ventricular restoration with or without revascularization, and devices, such as the Acorn CorCap, the Paracor HeartNet, and the Myocor Myosplint. Whereas all these techniques require surgical access, with or without cardiopulmonary bypass, a newer ventricular partitioning device (VPD) called Parachute, can be delivered percutaneously through the aortic valve. Designed to achieve LV restoration from within the ventricle, this VPD partitions the LV by isolating aneurysmal from normal myocardium thereby diminishing the functioning cavity. This review aims to critically appraise the above methods, with particular attention to device-based therapies. PMID:24574107

  5. Segmental hemodynamics during partial liquid ventilation in isolated rat lungs

    PubMed Central

    Ko, Angela C.; Hirsh, Emily; Wong, Andrew C.; Moore, Timothy M.; Taylor, Aubrey E.; Hirschl, Ronald B.; Younger, John G.

    2011-01-01

    Partial liquid ventilation (PLV) is a means of ventilatory support in which gas ventilation is carried out in a lung partially filled with a perfluorocarbon liquid capable of supporting gas exchange. Recently, this technique has been proposed as an adjunctive therapy for cardiac arrest, during which PLV with cold perfluorocarbons might rapidly cool the intrathoracic contents and promote cerebral protective hypothermia while not interfering with gas exchange. A concern during such therapy will be the effect of PLV on pulmonary hemodynamics during very low blood flow conditions. In the current study, segmental (i.e. precapillary, capillary, and postcapillary) hemodynamics were studied in the rat lung using a standard isolated lung perfusion system at a flow rate of 6 ml/min ( ~5% normal cardiac output). Lungs received either gas ventilation or 5 or 10 ml/kg PLV. Segmental pressures and vascular resistances were determined, as was transcapillary fluid flux. The relationship between individual hemodynamic parameters and PLV dose was examined using linear regression, with n = 5 in each study group. PLV at both the 5 and 10 ml/kg dose produced no detectable changes in pulmonary blood flow or in transcapillary fluid flux (all R2 values < 0.20). Conclusion: In an isolated perfused lung model of low flow conditions, normal segmental hemodynamic behavior was preserved during liquid ventilation. These data support further investigation of this technique as an adjunct to cardiopulmonary resuscitation. PMID:12668304

  6. Effects of Aronia melanocarpa Fruit Juice on Isolated Rat Hepatocytes

    PubMed Central

    Kondeva-Burdina, Magdalena; Valcheva-Kuzmanova, Stefka; Markova, Tsvetelina; Mitcheva, Mitka; Belcheva, Anna

    2015-01-01

    Background: Aronia melanocarpa (Michx.) Elliot fruits are very rich in polyphenols – procyanidins, flavonoids, and phenolic acids. Objective: On rat hepatocytes, isolated by two-stepped collagenase perfusion, we investigated the effect of A. melanocarpa fruit juice (AMFJ) in two models of liver toxicity caused by (i) metabolic bioactivation of carbon tetrachloride (CCl4), and (ii) tert-butyl hydroperoxide (t-BuOOH)-induced oxidative stress. Materials and Methods: Isolated rat hepatocytes are a suitable model for hepatotoxicity studies. We determined the main parameters of the functional and metabolic status of rat hepatocytes: Cell viability (measured by trypan blue exclusion) and the levels of lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA). These parameters were used to investigate the protective effects of AMFJ in the two toxicity models. The effects of AMFJ were compared with those of silymarin. The cells were treated either with AMFJ or silymarin at increasing concentrations of 5 μg/ml, 10 μg/ml, 30 μg/ml, 50 μg/ml, and 100 μg/ml which were used for measuring of IC50. Results: In both toxicity models – CCl4 and t-BuOOH, AMFJ showed statistically significant cytoprotective and antioxidant activities. AMFJ prevented the loss of cell viability and GSH depletion, decreased LDH leakage and MDA production. The effects of AMFJ at the concentrations of 5, 10, 30, and 50 μg/ml were similar to those of the same concentrations of silymarin, while the effect of the highest AMFJ concentration of 100 μg/ml was higher than that of the same silymarin concentration. The effects were concentration-dependent and more prominent in the t-BuOOH model, compared to those in the CCl4 model. Conclusion: The cytoprotective and antioxidant effects of AMFJ established in this study might be due to its polyphenolic ingredients, which could influence the cytochrome P450-mediated metabolism of the experimental hepatotoxic substances (CCl4 and t

  7. Adverse effects of free fatty acid associated with increased oxidative stress in postischemic isolated rat hearts.

    PubMed

    Gambert, Ségolène; Vergely, Catherine; Filomenko, Rodolphe; Moreau, Daniel; Bettaieb, Ali; Opie, Lionel H; Rochette, Luc

    2006-02-01

    The mechanisms of the adverse effects of free fatty acids on the ischemic-reperfused myocardium are not fully understood. Long-chain fatty acids, including palmitate, uncouple oxidative phosphorylation and should therefore promote the formation of oxygen-derived free radicals, with consequent adverse effects. Conversely, the antianginal agent trimetazidine (TMZ), known to inhibit cardiac fatty acid oxidation, could hypothetically lessen the formation of reactive oxygen species (ROS) and thus improve reperfusion mechanical function. Isolated perfused rat hearts underwent 30 min of total global ischemia followed by 30 min of reperfusion. Hearts were perfused with glucose 5.5 mmol/l or palmitate 1.5 mmol/l with or without TMZ (100 micromol/l). Ascorbyl free radical (AFR) release during perfusion periods was measured by electron spin resonance as a marker of oxidative stress. Post-ischemic recovery in the palmitate group of heart was lower than in the glucose group with a marked rise in diastolic tension and reduction in left ventricular developed pressure (Glucose: 85 +/- 11 mmHg; Palmitate: 10 +/- 6 mmHg; p < 0.001). TMZ decreased diastolic tension in both glucose- and in palmitate-perfused hearts. Release of AFR within the first minute of reperfusion was greater in palmitate-perfused hearts and in hearts perfused with either substrate, this marker of oxidative stress was decreased by TMZ (expressed in arbitrary units/ml; respectively: 8.49 +/- 1.24 vs. 1.06 +/- 0.70 p < 0.05; 12.47 +/- 2.49 vs. 3.37 +/- 1.29 p < 0.05). Palmitate increased the formation of ROS and reperfusion contracture. TMZ, a potential inhibitor of palmitate-induced mitochondrial uncoupling, decreased the formation of free radicals and improved postischemic mechanical dysfunction. The novel conclusion is that adverse effects of fatty acids on ischemic-reperfusion injury may be mediated, at least in part, by oxygen-derived free radicals. PMID:16444597

  8. Effect of Exercise Training and L-arginine on Oxidative Stress and Left Ventricular Function in the Post-ischemic Failing Rat Heart.

    PubMed

    Ranjbar, Kamal; Nazem, Farzad; Nazari, Afshin

    2016-04-01

    The aim of the present study was to evaluate the effect of exercise training (ET) and L-arginine on oxidative stress and ventricular function in rat with myocardial infarction (MI). Four weeks after the surgical procedures, 40 Wistar male rats were randomized to the following groups: MI-sedentary (Sed); MI-exercise (Ex); MI-sedentary + L-arginine (Sed + LA); and MI-exercise + L-arginine (Ex + LA); the rats were subjected to aerobic training in the form of treadmill running. Rats in the L-arginine-treated groups drank water containing 4 % L-arginine. Before and after the training program, all subjects underwent resting echocardiography. Catalase (CAT) glutathione peroxidase (GPx), malondialdehyde (MDA) and myeloperoxidase (MPO) were measured. Cardiac output, stroke volume and fractional shortening in Ex and Ex + LA groups significantly increased in comparison with the Sed group. Cardiac systolic function indices in Ex + LA group were significantly greater than Ex group. Also, GPx activity and MDA, respectively, increased and decreased in response to ET, but no change was observed in MPO and CAT. These results suggest that ET increased LV function by decreasing oxidative stress and increasing antioxidant defense system in rats with MI. In addition in response to training, L-arginine appears to have additive effect on cardiac function, but have no effect on oxidative stress indices. PMID:25762197

  9. Noninvasive Blood Perfusion Measurements of an Isolated Rat Liver and an Anesthetized Rat Kidney

    PubMed Central

    Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Ricketts, Patricia L.; Lanz, Otto I.; Lee, Charles Y.; Diller, Thomas E.; Scott, Elaine P.

    2008-01-01

    A simple, cost effective, and noninvasive blood perfusion system is tested in animal models. The system uses a small sensor to measure the heat transfer response to a thermal event (convective cooling) imposed on the tissue surface. Heat flux data are compared with a mathematical model of the tissue to estimate both blood perfusion and thermal contact resistance between the tissue and the probe. The perfusion system was evaluated for repeatability and sensitivity using isolated rat liver and exposed rat kidney tests. Perfusion in the isolated liver tests was varied by controlling the flow of the perfusate into the liver, and the perfusion in the exposed kidney tests was varied by temporarily occluding blood flow through the renal artery and vein. The perfusion estimated by the convective perfusion probe was in good agreement with that of the metered flow of the perfusate into the liver model. The liver tests indicated that the probe can be used to detect small changes in perfusion (0.005 ml/ml/s). The probe qualitatively tracked the changes in the perfusion in the kidney model due to occlusion of the renal artery and vein. PMID:19045542

  10. Effects of salicylic acid on post-ischaemic ventricular function and purine efflux in isolated mouse hearts.

    PubMed

    Farthing, Don; Gehr, Lynne; Karnes, H Thomas; Sica, Domenic; Gehr, Todd; Larus, Terri; Farthing, Christine; Xi, Lei

    2007-01-01

    Acetyl salicylic acid (aspirin) is one of the most widely used drugs in the world. Various plasma concentrations of aspirin and its predominant metabolite, salicylic acid, are required for its antiarthritic (1.5-2.5 mM), anti-inflammatory (0.5-5.0 mM) or antiplatelet (0.18-0.36 mM) actions. A recent study demonstrated the inhibitory effects of both aspirin and salicylic acid on oxidative phosphorylation and ATP synthesis in isolated rat cardiac mitochondria in a dose-dependent manner (0-10 mM concentration range). In this context, the present study was conducted to determine the effects of salicylic acid on inosine efflux (a potential biomarker of acute cardiac ischaemia) as well as cardiac contractile function in the isolated mouse heart following 20 min of zero-flow global ischaemia. Inosine efflux was found at significantly higher concentrations in ischaemic hearts perfused with Krebs buffer fortified with 1.0 mM salicylic acid compared with those without salicylic acid (12575+/-3319 vs. 1437+/-348 ng ml(-1) min(-1), mean+/-SEM, n=6 per group, p<0.01). These results indicate that 1.0 mM salicylic acid potentiates 8.8-fold ATP nucleotide purine catabolism into its metabolites (e.g. inosine, hypoxanthine). Salicylic acid (0.1 or 1.0 mM) did not appreciably inhibit purine nucleoside phosphorylase (the enzyme converts inosine to hypoxanthine) suggesting the augmented inosine efflux was due to the salicylic acid effect on upstream elements of cellular respiration. Whereas post-ischaemic cardiac function was further depressed by 1.0 mM salicylic acid, perfusion with 0.1 mM salicylic acid led to a remarkable functional improvement despite moderately increased inosine efflux (2.7-fold). We conclude that inosine is a sensitive biomarker for detecting cardiac ischaemia and salicylic acid-induced effects on cellular respiration. However, the inosine efflux level appears to be a poor predictor of the individual post-ischaemic cardiac functional recovery in this ex vivo

  11. Metabolism of 1- and 2-naphthylamine in isolated rat hepatocytes.

    PubMed

    Orzechowski, A; Schrenk, D; Bock, K W

    1992-12-01

    The liver probably plays a major role in the metabolic activation of the bladder carcinogen 2-naphthylamine (2-NA) and in the inactivation of the non-carcinogenic isomer 1-naphthylamine (1-NA). However, metabolic profiles of these compounds (including primary metabolites and directly determined conjugates) in hepatocytes are not available. Therefore metabolism of 1- and 2-NA was compared in freshly isolated hepatocytes from 3-methylcholanthrene (MC)-treated and untreated rats. At 10 microM, 2-NA was found to be mainly N-acetylated (66% of total metabolites after 1 h incubation) and N-glucuronidated (19%). Minor pathways led to C-oxidation (7%) and N-oxidation (3%; 2% present as the N-glucuronide). In hepatocytes from MC-treated rats total metabolism was slightly affected (1.5-fold increase). However, C- and N-oxidation were markedly increased (63 and 18% respectively), while N-acetylation and N-glucuronidation were diminished (5 and 2% respectively). Similar experiments were carried out with 1-NA. Its N-glucuronide was the predominant metabolite (68%) followed by the N-acetylated compound (15%) while C-oxidation was low and N-oxidized metabolites could not be detected, even after induction. The results demonstrate that MC treatment markedly shifted 2-NA metabolism from N-acetylation and N-glucuronidation to N- and C-oxidation. In the case of 1-NA metabolism extensive N-glucuronidation together with the lack of N-oxidation may prevent carcinogenesis. PMID:1473229

  12. Influence of decompression sickness on vasocontraction of isolated rat vessels.

    PubMed

    Mazur, Aleksandra; Lambrechts, Kate; Wang, Qiong; Belhomme, Marc; Theron, Michael; Buzzacott, Peter; Guerrero, François

    2016-04-01

    Studies conducted in divers indicate that endothelium function is impaired following a dive even without decompression sickness (DCS). Our previous experiment conducted on rat isolated vessels showed no differences in endothelium-dependent vasodilation after a simulated dive even in the presence of DCS, while contractile response to phenylephrine was progressively impaired with increased decompression stress. This study aimed to further investigate the effect of DCS on vascular smooth muscle. Thirty-two male Sprague-Dawley rats were submitted to the same hyperbaric protocol and classified according to the severity of DCS: no-DCS (without clinical symptoms), mild-DCS, or severe-DCS (dead within 1 h). A control group remained at atmospheric pressure. Isometric tension was measured in rings of abdominal aorta and mesenteric arteries. Single dose contraction was assessed with KCl solution. Dose-response curves were obtained with phenylephrine and endothelin-1. Phenylephrine-induced contraction was observed in the presence of antioxidant tempol. Additionally, plasma concentrations of angiotensin II, angiotensin-converting enzyme, and thiobarbituric acid reactive substances (TBARS) were assessed. Response to phenylephrine was impaired only among mild-DCS in both vessels. Dose-response curves to endothelin-1 were impaired after mild-DCS in mesenteric and severe-DCS in aorta. KCl-induced contraction was affected after hyperbaric exposure regardless of DCS status in aorta only. These results confirm postdive vascular dysfunction is dependent on the type of vessel. It further evidenced that vascular dysfunction is triggered by DCS rather than by diving itself and suggest the influence of circulating factor/s. Diving-induced impairment of the L-type voltage-dependent Ca(2+) channels and/or influence of renin-angiotensin system is proposed. PMID:26769950

  13. The protective effect of microRNA-320 on left ventricular remodeling after myocardial ischemia-reperfusion injury in the rat model.

    PubMed

    Song, Chun-Li; Liu, Bin; Diao, Hong-Ying; Shi, Yong-Feng; Li, Yang-Xue; Zhang, Ji-Chang; Lu, Yang; Wang, Guan; Liu, Jia; Yu, Yun-Peng; Guo, Zi-Yuan; Wang, Jin-Peng; Zhao, Zhuo; Liu, Jian-Gen; Liu, Yi-Hang; Liu, Zhi-Xian; Cai, Dan; Li, Qian

    2014-01-01

    The primary objective of this study investigated the role of microRNA-320 (miR-320) on left ventricular remodeling in the rat model of myocardial ischemia-reperfusion (I/R) injury, and we intended to explore the myocardial mechanism of miR-320-mediated myocardium protection. We collected 120 male Wistar rats (240-280 g) in this study and then randomly divided them into three groups: (1) sham surgery group (sham group: n=40); (2) ischemia-reperfusion model group (I/R group: n=40); and (3) I/R model with antagomir-320 group (I/R+antagomir-320 group: n=40). Value changes of heart function in transesophageal echocardiography were recorded at various time points (day 1, day 3, day 7, day 15 and day 30) after surgery in each group. Myocardial sections were stained with hematoxylin and eosin (H&E) and examined with optical microscope. The degree of myocardial fibrosis was assessed by Sirius Red staining. Terminal dUTP nick end-labeling (TUNEL) and qRT-PCR methods were used to measure the apoptosis rate and to determine the miR-320 expression levels in myocardial tissues. Transesophageal echocardiography showed that the values of left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP) and ±dp/dtmax in the I/R group were obviously lower than those in the sham group, while the left ventricular end-diastolic pressure (LVEDP) value was higher than that in the sham group. The values of LVEF, LVFS, LVSP and ±dp/dtmax showed a gradual decrease in the I/R group, while the LVEDP value showed an up tendency along with the extension of reperfusion time. The H&E staining revealed that rat myocardial tissue in the I/R group presented extensive myocardial damage; for the I/R+antagomir-320 group, however, the degree of damage in myocardial cells was obviously better than that of the I/R group. The Sirius Red staining results showed that the degree of myocardial fibrosis in the I/R group was more severe along

  14. Isolation rearing effects on probabilistic learning and cognitive flexibility in rats.

    PubMed

    Amitai, Nurith; Young, Jared W; Higa, Kerin; Sharp, Richard F; Geyer, Mark A; Powell, Susan B

    2014-03-01

    Isolation rearing is a neurodevelopmental manipulation that produces neurochemical, structural, and behavioral alterations in rodents that in many ways are consistent with schizophrenia. Symptoms induced by isolation rearing that mirror clinically relevant aspects of schizophrenia, such as cognitive deficits, open up the possibility of testing putative therapeutics in isolation-reared animals prior to clinical development. We investigated what effect isolation rearing would have on cognitive flexibility, a cognitive function characteristically disrupted in schizophrenia. For this purpose, we assessed cognitive flexibility using between- and within-session probabilistic reversal-learning tasks based on clinical tests. Isolation-reared rats required more sessions, though not more task trials, to acquire criterion performance in the reversal phase of the task, and were slower to adjust their task strategy after reward contingencies were switched. Isolation-reared rats also completed fewer trials and exhibited lower levels of overall activity in the probabilistic reversal-learning task than did the socially reared rats. This finding contrasted with the elevated levels of unconditioned investigatory activity and reduced levels of locomotor habituation that isolation-reared rats displayed in the behavioral pattern monitor. Finally, isolation-reared rats also exhibited sensorimotor gating deficits, reflected by decreased prepulse inhibition of the startle response, consistent with previous studies. We concluded that isolation rearing constitutes a valuable, noninvasive manipulation for modeling schizophrenia-like cognitive deficits and assessing putative therapeutics. PMID:23943516

  15. Hypocarnitinaemia induced by sodium pivalate in the rat is associated with left ventricular dysfunction and impaired energy metabolism.

    PubMed

    Broderick, Tom L

    2006-01-01

    Carnitine is a naturally occurring compound that is essential in energy metabolism of the mammalian heart. In addition to its essential role in facilitating beta-oxidation, carnitine eliminates excess toxic acyl residues and regulates the mitochondrial acetyl coenzyme A (CoA)/CoA ratio. Thus, it is not surprising that patients with carnitine deficiency syndromes exhibit defects in energy metabolism and in some cases demonstrate left ventricular dysfunction. Pivalic acid is commonly used to create prodrugs, such as pivampicillin and pivmecillinam, to facilitate enteral absorption and increase oral bioavailability. Pivalic acid released from the drug following absorption readily forms an ester with carnitine, which is then excreted as pivaloylcarnitine. Sustained loss of carnitine in the form of this ester induces a state of carnitine deficiency, exemplified by low plasma and tissue carnitine content. This review examines the effects in the rat of short- and long-term sodium pivalate treatment on: (1) cardiac carnitine content; (2) in vitro mechanical function; (3) markers of glycolytic and fatty acid metabolism; and (4) energy substrate metabolism. Treatment with sodium pivalate induces a gradual loss of cardiac carnitine content for up to 12 weeks. Doubling the duration of treatment is not associated with any further decrease in cardiac carnitine content. While heart function following short-term treatment (2 weeks) is normal under aerobic conditions, impaired recovery of function following ischaemia is seen. In contrast, long-term treatment (11-28 weeks) is associated with impaired heart function, which is dependent on workload and substrate availability. Impaired heart function is also associated with reductions in activity of 3-hydroxyacyl CoA dehydrogenase and rates of fatty acid oxidation. However, to maintain adenosine triphosphate production, glucose metabolism, expressed as hexokinase activity and glucose oxidation, is increased in carnitine

  16. Effect of overexpressed adenylyl cyclase VI on β1- and β2-adrenoceptor responses in adult rat ventricular myocytes

    PubMed Central

    Stark, Joalice C C; Haydock, Stephen F; Foo, Roger; Brown, Morris J; Harding, Sian E

    2004-01-01

    Adenylyl cyclase VI (ACVI) is one of the most abundantly expressed β adrenergic receptor (βAR)-coupled cyclases responsible for cyclic AMP (cAMP) production within the mammalian myocardium. We investigated the role of ACVI in the regulation of cardiomyocyte contractility and whether it is functionally coupled with β1 adrenergic receptor (β1AR). Recombinant adenoviruses were generated for ACVI and for antisense to ACVI (AS). Adult rat ventricular myocytes were transfected with ACVI virus, AS or both (SAS). Adenovirus for green fluorescent protein (GFP) served as control. Myocyte contraction amplitudes (% shortening) and relaxation times (R50) were analysed. ACVI function was determined using cAMP assays. ACVI-transfected cells demonstrated a strong 139 kDa ACVI protein band compared to controls. ACVI myocytes had higher steady-state intracellular cAMP levels than GFP myocytes when unstimulated (GFP vs ACVI=6.60±0.98 vs 14.2±2.1 fmol cAMP/viable cell, n=4, P<0.05) and in the presence of 1 μM isoprenaline or 10 μM forskolin. ACVI myocytes had increased basal contraction (% shortening: GFP vs ACVI: 1.90±1.36 vs 3.91±2.29, P<0.0001) and decreased basal R50 (GFP vs ACVI: 62.6±24.2 ms (n=50) vs 45.0±17.2 ms (n=248), P<0.0001). ACVI myocyte responses were increased for forskolin (Emax: GFP=6.70±1.59 (n=6); ACVI=9.06±0.69 (n=14), P<0.01) but not isoprenaline. ACVI myocyte responses were increased (Emax: GFP vs ACVI=3.16±0.77 vs 5.10±0.60, P<0.0001) to xamoterol (a partial β1AR-selective agonist) under β2AR blockade (+50 nM ICI 118, 551). AS decreased both control and ACVI-stimulated xamoterol responses (Emax: AS=2.59±1.42, SAS=1.38±0.5). ACVI response was not mimicked by IBMX. Conversely, response through β2 adrenergic receptor (β2AR) was decreased in ACVI myocytes. In conclusion, ACVI overexpression constitutively increases myocyte contraction amplitudes by raising cAMP levels. Native ACVI did not contribute to basal cAMP production or contraction

  17. [Reperfusion injury in the isolated rat liver after hypothermic preservation].

    PubMed

    Kopecký, M; Balás, P; Semecký, V; Tilser, I; Rouchalová, E

    2002-03-01

    Histological changes which appear as a result of reperfusion injury of cold-preserved rat liver were studied at intervals of 0 hr, 3 hr, 24 hr and 48 hr of cold storage. The isolated livers were stored in a UW solution (University of Wisconsin), which is used in human liver transplantations. Computer image analysis of light microscopic sections (methyl green-pyronin stained) was used for the study and quantification of injured cells. The method of TUNEL was performed to prove possible apoptosis of sinusoidal endothelial cells and heptocytes. Bile production during reperfusion and ALT, AST, LDH and ACP were measured in the reperfusion medium at the end of the 90 min reperfusion. It has been confirmed that prolongation of the cold storage of liver results in extensive changes in the liver structure and increased injury of liver cells. Sinusoidal endothelial cells were damaged more and earlier than hepatocytes. It has been shown that methyl green-pyronin stained sections are advantageous for the study of these morphological changes, allowing the strongest view of these changes. The appearance of TUNEL positive cells and an increase in the levels of biochemical parameters, e.g. AST or ALT, indicate earlier cell injury. The methodology described in this article can be used for the study of reperfusion injury of the liver and for the study of this phenomenon in other experiments. PMID:11928282

  18. Nickel chloride inhibits metabolic coronary vasodilatation in isolated rat hearts

    SciTech Connect

    Edoute, Y.; Rubanyi, G.M.; Vanhoutte, P.M.

    1986-03-01

    Nickel is a potent coronary vasoconstrictor and it is released from ischemic myocardium. To determine whether or not nickel ions cause coronary vasoconstriction when local vasodilator mechanisms are stimulated the authors studied the inter-relation between exogenous nickel chloride (NiCl/sub 2/) and metabolic coronary vasodilatation in isolated rat hearts perfused by a modified Langendorff technique. NiCl/sub 2/ induced dose-dependent (10/sup -7/-10/sup -5/M) increases in coronary vascular resistance in spontaneously beating hearts. Pacing of the hearts (380/min) and infusing adenosine (10/sup -6/M) evoked comparable increases in coronary flow but did not affect the coronary vasoconstriction caused by NiCl/sub 2/. At concentrations (> 10/sup -7/M) which evoked vasoconstriction, NiCl/sub 2/ significantly reduced vasodilator responses evoked by pacing, transient coronary occlusion and adenosine. Lower concentrations, which did not cause vasoconstriction, had no effect on these vasodilator responses. Thus, at relative low concentrations NiCl/sub 2/ inhibits metabolic dilatation of the coronary vessels which may contribute to the increased vascular resistance caused by the trace metal under ischemic/hypoxic conditions.

  19. Pulmonary Alveolar Type II Cells Isolated from Rats

    PubMed Central

    Dobbs, Leland G.; Mason, Robert J.

    1979-01-01

    It is unclear what factors control the secretion of pulmonary surface active material from alveolar type II cells in vivo. Other workers have suggested that cholinergic stimuli, adrenergic stimuli, and prostaglandins may all stimulate secretion. We isolated type II cells from the lungs of rats by treatment with elastase, discontinuous density centrifugation, and adherence in primary culture. β-Adrenergic agonists, but not cholinergic agonists, caused an increase in the release of [14C]disaturated phosphatidylcholine, the major component of surface-active material, from type II cells in culture. The β-adrenergic effect was stereo-selective, (−)-isoproterenol being 50 times more potent than (+)-isoproterenol. Terbutaline, 10 μM, a noncatecholamine β-2 adrenergic agonist, caused a release of 2.0±0.5 (mean±SD) times the basal release of [14C]disaturated phosphatidylcholine in 3 h; the concentration of terbutaline causing half maximal stimulation was 800 nM. The terbutaline effect was blocked by propranolol, a β-adrenergic antagonist (calculated Kd = 6 nM), but not by phentolamine, an α-adrenergic antagonist. Isobutylmethylxanthine, a phosphodiesterase inhibitor, and 8-Br cyclic AMP, but not 8-Br cyclic guanosine monophosphate, also stimulated release. We conclude that type II cells secrete disaturated phosphatidylcholine in response to treatment with adrenergic stimulation. PMID:34631

  20. RNA synthesis in isolated rat osteoclasts: inhibitory effect of calcitonin.

    PubMed

    Zheng, M H; Papadimitriou, J M; Nicholson, G C

    1991-01-01

    The metabolism of RNA has not been studied in the osteoclast (OC) because these bone-resorbing cells are only available in small numbers and cultures are always contaminated with other cells. Using two single-cell assay techniques, tritiated uridine (3H-UdR) autoradiography and gallocyanin quantitative cytophotometry, we have examined RNA synthesis in OCs isolated from neonatal rats. Oligo-nuclear OCs showed greater nuclear uptake of 3H-UdR than cells with many nuclei, and the variance of nuclear labeling within polykarya was greater in the latter, possibly because they contain nuclei of various ages. Salmon calcitonin (sCT) was a potent (ED50 approximately 5 x 10(-12) M) and rapid (40% reduction in 2 h, 75% reduction in 6 h) inhibitor of 3H-UdR uptake, and also reduced cytochemical total cellular RNA by 22% within 4 h. Forskolin (10(-5) M) inhibited nuclear uptake of 3H-UdR, suggesting that the sCT response may be mediated by cyclic AMP. Following a short (30 min) exposure to sCT, there was a progressive decline in labeling, followed by complete recovery by 4.5 h, a response possibly related to the phenomenon of calcitonin-induced persistent activation of adenylate cyclase. Inhibition of OC RNA synthesis may be an important component of its anti-resorptive action. PMID:1723609

  1. Effects of cromolyn sodium on isolated rat's trachea

    PubMed Central

    Lin, Yuan-Yung; Chou, Ying-Liang; Chu, Yueng-Hsiang; Wu, Chi-Chung; Wang, Jia-Yi

    2011-01-01

    Cromolyn sodium (cromolyn) effectively inhibits both antigen- and exercise-induced asthma when used as an aerosol. Intranasal cromolyn is also recommended for preventing and treating allergic rhinitis. By inhibiting the degranulation of sensitized mast cells, cromolyn reduces the release of mediators that trigger inflammation and the allergic response. The precise pharmacologic activity of cromolyn has not been fully elucidated. This study evaluated the effect of cromolyn on isolated rat's trachea. The following assessments of cromolyn were performed: (1) effect on tracheal resting tension, (2) effect on contraction caused by 10−6 M of methacholine as a parasympathetic mimetic, and (3) effect of the drug on electrically induced tracheal contractions. The results indicated cromolyn could inhibit electrical field stimulation-induced spike contraction when the preparation was increased to 10−4M. Adding cromolyn at doses of ≥10−8 M did not elicit a relaxation or contraction response to 10−6 M of methacholine-induced contraction. It alone had a minimal effect on the basal tension of the trachea as the concentration increased. This study indicates cromolyn had no cholinergic or anticholinergic effect and high concentrations of cromolyn might actually inhibit parasympathetic function of the trachea. Inhibiting parasympathetic function of the trachea through stabilizing the presynaptic nerve by cromolyn may be responsible for protecting patients against antigen- and exercise-induced asthma. PMID:22852116

  2. Electron microscopic morphometry of isolated rat brain porosome complex.

    PubMed

    Zhvania, Mzia G; Japaridze, Nadezhda J; Qsovreli, Mariam G; Okuneva, Vera G; Surmava, Arkadi G; Lordkipanidze, Tamar G

    2015-11-01

    Porosomes are the universal secretory portals at the cell plasma membrane where secretory vesicles dock and transiently fuse via the kiss-and-run mechanism of cellular secretion, to release intravesicular cargo to the outside of the cell. During last two decades discovery of porosome and a great volume of work from different laboratories provide molecular insights on the structure, function, and composition of the porosome complex, especially the neuronal porosome. In rat neurons 12-17 nm cup-shaped lipoprotein porosomes present at presynaptic membrane. They possess a central plug and sometimes are with docked synaptic vesicles. Although earlier studies have greatly progressed our understanding of the morphology and the proteome and limited lipidome of the neuronal porosome complex, the current study was carried out to determine the morphology of the bare protein backbone of the neuronal porosome complex. Results from our study demonstrate that although the eight-fold symmetry of the immunoisolated porosome is maintained, and the central plug is preserved in the isolated structures, there is a loss in the average size of the porosome complex, possibly due to a loss of lipids from the complex. PMID:26119463

  3. Isolation of Sertoli Cells and Peritubular Cells from Rat Testes.

    PubMed

    Bhushan, Sudhanshu; Aslani, Ferial; Zhang, Zhengguo; Sebastian, Tim; Elsässer, Hans-Peter; Klug, Jörg

    2016-01-01

    The testis, and in particular the male gamete, challenges the immune system in a unique way because differentiated sperm first appear at the time of puberty - more than ten years after the establishment of systemic immune tolerance. Spermatogenic cells express a number of proteins that may be seen as non-self by the immune system. The testis must then be able to establish tolerance to these neo-antigens on the one hand but still be able to protect itself from infections and tumor development on the other hand. Therefore the testis is one of a few immune privileged sites in the body that tolerate foreign antigens without evoking a detrimental inflammatory immune response. Sertoli cells play a key role for the maintenance of this immune privileged environment of the testis and also prolong survival of cotransplanted cells in a foreign environment. Therefore primary Sertoli cells are an important tool for studying the immune privilege of the testis that cannot be easily replaced by established cell lines or other cellular models. Here we present a detailed and comprehensive protocol for the isolation of Sertoli cells - and peritubular cells if desired - from rat testes within a single day. PMID:26890157

  4. Regulation of atriopeptin release from the isolated rat heart

    SciTech Connect

    Currie, M.G.; Newman, W.H.

    1986-03-05

    Recent studies have demonstrated that the mammalian atria possess an endocrine function which appears to play a role in the regulation of systemic arterial pressure, fluid balance, and electrolyte homeostasis. They have begun to study the regulation of atriopeptin (atrial natriuretic factor) release into the coronary effluent of the isolated perfused rat heart. Characterization by high pressure liquid chromatography of the form of the hormone released indicates that the predominant form is the active low MW circulating hormone not the pro-hormone. The release of immunoreactive atriopeptin (iAP) was stimulated by infusion of norepinephrine (1 ..mu..M) or epinephrine (1 ..mu..M) 3.0 and 2.6-fold, respectively. The ..beta..-adrenergic agonist isoproterenol and the ..cap alpha..-2 adrenergic agonist BHT-920 lacked effects on iAP release. On the other hand, the ..cap alpha..-1 adrenergic agonist phenylephrine caused a dose-dependent increase in release of iAP. Release of iAP stimulated by phenylephrine was inhibited by the ..cap alpha.. antagonist phentolamine. Further, iAP release was stimulated 4.2-fold by phorbol ester (1 ..mu..M) but was not affected by 4-..beta.. phorbol (1 ..mu..M). From these collective data they conclude that the release of atriopeptin is stimulated by ..cap alpha..-1 receptor activation and that protein kinase C participates in the regulation of secretion. The data suggests that the sympathetic nervous system may play a physiologic role in the regulation of atriopeptin secretion.

  5. Effects of voluntary ethanol consumption on emotional state and stress responsiveness in socially isolated rats.

    PubMed

    Pisu, Maria Giuseppina; Mostallino, Maria Cristina; Dore, Riccardo; Maciocco, Elisabetta; Secci, Pietro Paolo; Serra, Mariangela

    2011-05-01

    Social isolation of rats immediately after weaning is thought to represent an animal model of anxiety-like disorders. This mildly stressful condition reduces the cerebrocortical and plasma concentrations of 3α-hydroxy-5α-pregnan-20-one (3α,5α-TH PROG) as well as increases the sensitivity of rats to the effects of acute ethanol administration on the concentrations of this neuroactive steroid. We further investigated the effects of voluntary consumption of ethanol at concentrations increasing from 2.5 to 10% over 4 weeks of isolation. Isolated rats showed a reduced ethanol preference compared with group-housed animals. Ethanol consumption did not affect the isolation-induced down-regulation of BDNF or Arc, but it attenuated the increase in the cerebrocortical concentration of 3α,5α-TH PROG induced by foot-shock stress in both isolated and group-housed animals as well as increased the percentage of number of entries made by socially isolated rats into the open arms in the elevated plus-maze test. Ethanol consumption did not affect expression of the α₄ subunit of the GABA(A) receptor in the hippocampus of group-housed or isolated rats, whereas it up-regulated the δ subunit throughout the hippocampus under both conditions. The results suggest that low consumption of ethanol may ameliorate some negative effects of social isolation on stress sensitivity and behavior. PMID:21067904

  6. Protooncogene expression identifies a transient columnar organization of the forebrain within the late embryonic ventricular zone

    SciTech Connect

    Johnston, J.G.; Van Der Kooy, D. )

    1989-02-01

    Immunocytochemical studies using monoclonal antibodies directed against oncogenic peptides revealed a heterogeneous distribution of the peptides within the ventricular zone of the embryonic day 18 rat forebrain. This sis-, src-, ras-, and myc-encoded peptides were concentrated in the same isolated clusters of 5-25 radial glial cells (also identified by vimentin staining), providing a transient columnar compartmentalization to the ventricular zone. An increased number of ({sup 3}H)thymidine-labeled ventricular zone cells were observed within the protooncogene stained radial glial cell columns as compared to noncolumn areas. The columnar heterogeneity of radial glial cells reveals the mosaicism of the embryonic ventricular zone and the differential proliferation of its cells.

  7. SOY PROTEIN ISOLATE INDUCES CYP3A1 AND CYP3A2 IN PREPUBERTAL RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feeding soy diets has been shown to induce cytochrome P450s in gene family CYP3A in Sprague-Dawley rat liver. We compared expression of CYP3A enzymes on PND33 rats fed casein or soy protein isolate (SPI+)-based AIN-93G diets continuously from gestational day 4 through PND 33 or the diets were switc...

  8. Repeated Cocaine Experience Facilitates Sucrose-Reinforced Operant Responding in Enriched and Isolated Rats

    ERIC Educational Resources Information Center

    Klein, Emily D.; Gehrke, Brenda J.; Green, Thomas A.; Zentall, Thomas R.; Bardo, Michael T.

    2007-01-01

    The purpose of the present experiment was to determine whether repeated cocaine exposure differentially affects sucrose-reinforced operant responding in rats raised in an enriched condition (EC) or an isolated condition (IC). Specifically, the performance of EC and IC rats pressing a lever for sucrose under a high fixed-ratio schedule (FR 30)…

  9. Behavioral effects of repeated handling differ in rats reared in social isolation and environmental enrichment.

    PubMed

    Pritchard, L M; Van Kempen, T A; Zimmerberg, B

    2013-03-01

    The post-weaning social environment has profound effects on behavior and physiology in rodents. Social isolation increases anxiety-like behaviors and novelty-induced locomotor activity, while environmental enrichment decreases these behaviors. In some cases, the effects of social isolation are ameliorated by repeated handling. The goal of the present study was to determine whether the effects of handling differ in rats reared in social isolation and those reared in an enriched environment. After weaning, male Long-Evans rats were housed individually (ISO)(3) or in groups in an enriched environment (EE). During adulthood, rats from each housing condition received four, once-daily, brief handling sessions or remained undisturbed in the home cage. All rats were then tested in the open field, elevated plus maze, and for behavioral responses to d-amphetamine (1.0mg/kg). EE rats spent more time on the open arms of the elevated plus maze and were more likely than ISO rats to emerge from the start box in the open field, suggesting lower anxiety. Handling significantly decreased open arm time in EE rats and marginally increased open arm time in ISO rats. Housing condition did not affect amphetamine-stimulated locomotor activity, but handling altered the time course of the amphetamine response. ISO rats exhibited significantly fewer stereotyped behaviors than did EE rats, but repeated handling eliminated this difference. These findings support previously published studies that suggest brief handling of adult rats may at least partially ameliorate the effects of post-weaning social isolation on anxiety-like behaviors and psychostimulant sensitivity. Furthermore, there are complex interactions between the effects of housing environment and handling, suggesting that handling may be perceived and/or processed differently, depending on the animal's housing environment. PMID:23313592

  10. Specific binding of /sup 3/H-naloxone with isolated rat enterocytes

    SciTech Connect

    Yarygin, K.N.; Shitin, A.G.; Suiridov, D.D.; Titov, M.I.; Vinogradov, V.A.

    1985-12-01

    This paper presents data on the specific binding of naloxone with isolated rat enterocytes. Naloxone was bound with the cells in medium 199 containing 1 mg/ml of BSA. The incubation mixture contained 5 x 100 mM /sup 3/H-naloxone and, if indicated, other substances also. Dose dependence of binding of naloxone with rat enterocytes is shown. The kinetics of specific binding of naloxone with enterocytes at different temperatures is also shown, as is the irreversibility of binding of /sup 3/H-naloxone with isolated rat enterocytes. It was found that different ligands of opioid receptors can inhibit binding of naloxone competitively.

  11. K+ transport and membrane potentials in isolated rat parotid acini

    SciTech Connect

    Nauntofte, B.; Dissing, S.

    1988-10-01

    42K+ transport properties of isolated rat parotid acini were characterized concomitant with measurements of membrane potentials (Em) by means of the fluorescent dye diSC3-(5). In unstimulated acini suspended in a 5 mM K+ buffer, Em was governed by the K+ and Cl- gradients and amounted to about -59 mV, a value that remained unaffected on cholinergic stimulation. In unstimulated acini, 42K+ influx was largely mediated by the Na+-K+ pump, and the residual influxes were mediated by a bumetanide-sensitive component (cotransport system) and by K+ channels. Efflux of 42K+ was largely mediated by a bumetanide-sensitive component and by K+ channels. In the unstimulated state, the cotransport system was mediating K+-K+ exchange without contributing to the net uptake of K+. Within 10 s after stimulation, a approximately 10-fold increase in the acinar K+ conductance (gK) occurred, resulting in a rapid net efflux of K+ that amounted to approximately 3.8 mmol.l cells-1.s-1. Measurements of 42K+ fluxes as a function of the external K+ concentration revealed that in the stimulated state gK increases when external K+ is raised from 0.7 to 10 mM, consistent with an activation of acinar gK by the binding of external K+ to the channel. 42K+ flux ratios as well as the effect of the K+ channel inhibitor from scorpion venom (LQV) suggest that approximately 90% of K+ transport in the stimulated state is mediated by ''maxi'' K+ channels.

  12. Rapid Responses and Mechanism of Action for Low-Dose Bisphenol S on ex Vivo Rat Hearts and Isolated Myocytes: Evidence of Female-Specific Proarrhythmic Effects

    PubMed Central

    Gao, Xiaoqian; Ma, Jianyong; Chen, Yamei

    2015-01-01

    Background Bisphenol S (BPS) has increasingly been used as a substitute for bisphenol A (BPA) in some “BPA-free” consumer goods and in thermal papers. Wide human exposure to BPS has been reported; however, the biological and potential toxic effects of BPS are poorly understood. Objective In this study, we sought to elucidate the sex-specific rapid effect of BPS in rat hearts and its underlying mechanism. Methods We examined the rapid effects of BPS in rat hearts using electrophysiology, confocal and conventional fluorescence imaging, and immunoblotting. Treatment was administered via acute perfusion of excised hearts or isolated cardiac myocytes. Results In female rat hearts acutely exposed to 10–9 M BPS, the heart rate was increased; in the presence of catecholamine-induced stress, the frequency of ventricular arrhythmia events was markedly increased. BPS-exposed hearts showed increased incidence of arrhythmogenic-triggered activities in female ventricular myocytes and altered myocyte Ca2+ handling, particularly spontaneous Ca2+ release from the sarcoplasmic reticulum. The dose responses of BPS actions were inverted U-shaped. The impact of BPS on myocyte Ca2+ handling was mediated by estrogen receptor β signaling and by rapid increases in the phosphorylation of key Ca2+ handling proteins, including ryanodine receptor and phospholamban. The proarrhythmic effects of BPS were female specific; male rat hearts were not affected by BPS at the organ, myocyte, or protein levels. Conclusion Rapid exposure to low-dose BPS showed proarrhythmic impact on female rat hearts; these effects at the organ, cellular, and molecular levels are remarkably similar to those reported for BPA. Evaluation of the bioactivity and safety of BPS and other BPA analogs is necessary before they are used as BPA alternatives in consumer products. Citation Gao X, Ma J, Chen Y, Wang HS. 2015. Rapid responses and mechanism of action for low-dose bisphenol S on ex vivo rat hearts and isolated

  13. The effect of epigallocatechin gallate on hepatocytes isolated from normal and partially hepatectomized rats.

    PubMed

    Mezera, Vojtech; Kucera, Otto; Moravcova, Alena; Peterova, Eva; Cervinkova, Zuzana

    2014-06-01

    Epigallocatechin gallate (EGCG) is an antioxidant found in green tea. In this study, male Wistar rats were subjected either to partial hepatectomy (PHx), or a sham operation (LAP). Twenty-four hours after surgery, hepatocytes were isolated and treated with various concentrations of EGCG for up to 72 h. We then measured markers of cell viability, oxidative stress, DNA synthesis, and caspase activity. Morphological criteria, cell viability tests, and albumin synthesis revealed toxicity starting at 10 μmol/L. DNA synthesis was higher in hepatocytes isolated from rats after PHx and inhibited by EGCG. Furthermore, EGCG increased the activity of caspases 3 and 7, seen more in hepatocytes from PHx rats. In conclusion, EGCG at a concentration of 10 μmol/L was toxic for hepatocytes isolated from both PHx and LAP rats. PMID:24853265

  14. Regulation of the frequency-dependent facilitation of L-type Ca2+ currents in rat ventricular myocytes.

    PubMed Central

    Tiaho, F; Piot, C; Nargeot, J; Richard, S

    1994-01-01

    1. An increase in the rate of stimulation induces an augmentation of L-type Ca2+ currents (ICa) and concomitant slowing of current decay in rat ventricular cells. This facilitation is quasi immediate (1-3 s), graded with the rate of stimulation, and occurs only from negative holding potentials. We investigated this effect using trains of stimulation at 1 Hz and the whole-cell patch-clamp technique (18-22 degrees C). 2. The decay of ICa is normally bi-exponential and comprises fast and slow current components (ICa,fc and ICa,sc, respectively). Facilitation of ICa was observed only when ICa,fc was predominant. 3. Facilitation developed during the run-up of ICa with the interconversion of ICa,sc into ICa,fc, and vanished during the run-down of ICa with the loss of ICa,fc.Ni2+ (300 microM) and nifedipine (1 microM) suppressed facilitation owing to the preferential inhibition of ICa,fc. 4. Facilitation of ICa was not altered (when present) or favoured (when absent) by the cAMP-dependent phosphorylation of Ca2+ channels promoted by isoprenaline or by intracellular application of cAMP or of the catalytic subunit of protein kinase A (C-sub). A similar effect was observed when the dihydropyridine agonist Bay K 8644 was applied. In both cases, facilitation was linked to a preferential increase of ICa,fc. 5. Following intracellular application of inhibitors of protein kinase A in combination with a non-hydrolysable ATP analogue, ICa consisted predominantly of ICa,sc and no facilitation was observed. The calmodulin antagonist naphthalenesulphonamide had no effect on facilitation. 6. When Bay K 8644 was applied in combination with isoprenaline, cAMP or C-sub, the decay of ICa was slowed with the predominant development of ICa,sc, and facilitation of ICa was nearly abolished. Facilitation also depended on extracellular Ca2+, and was suppressed when Ba2+ replaced Ca2+ as the permeating ion. 7. When no EGTA was included in the patch pipette, facilitation was not further enhanced

  15. Effects of cytosolic ATP on spontaneous and triggered Ca2+-induced Ca2+ release in permeabilised rat ventricular myocytes.

    PubMed

    Yang, Z; Steele, D S

    2000-02-15

    1. The effects of cytosolic ATP on sarcoplasmic reticulum (SR) Ca2+ regulation were investigated in saponin-permeabilised rat ventricular myocytes. [Ca2+] within the cells was monitored using Fura-2 or Fluo-3 fluorescence. Spontaneous cyclic Ca2+ release from the SR was induced by increasing the bathing [Ca2+] to 200-300 nM, in solutions weakly Ca2+ buffered with 0.05 mM EGTA. Alternatively, Ca2+-induced Ca2+ release (CICR) was triggered by a rapid increase in [Ca2+] induced by flash photolysis of Nitr-5 (0.08 mM), replacing EGTA in the solution. 2. Stepwise reductions in [ATP] were associated with corresponding decreases in the frequency and increases in the amplitude of spontaneous Ca2+ transients. A decrease from 5 mM to 0. 1 mM ATP, reduced the release frequency by 48.6 +/- 7 % (n = 7) and almost doubled the amplitude of the Ca2+ transient. Marked prolongation of the spontaneous Ca2+ transient occurred when [ATP] was further reduced to 10 microM, consistent with inhibition of the SR Ca2+ pump. 3. These effects of ATP were compared with other interventions that inhibit Ca2+ uptake or reduce the sensitivity of the SR Ca2+ release mechanism. Inhibition of the SR Ca2+ pump with cyclopiazonic acid (CPA) markedly reduced the spontaneous Ca2+ release frequency, without changing the amplitude. The descending phase of the Ca2+ transient was prolonged in the presence of CPA, while the rising phase was unaffected. In contrast, desensitisation of the SR Ca2+ release mechanism with tetracaine decreased the frequency of spontaneous release, but markedly increased the amplitude. 4. CICR triggered by flash photolysis of Nitr-5 appeared to be more sensitive to cytosolic [ATP] than spontaneous release and was generally delayed by a decrease to 2.5 mM ATP. In the presence of 0.1-0.2 mM ATP, release often failed completely or was not consistently triggered. Some preparations exhibited Ca2+ release 'alternans', whereby every alternate trigger induced a response. 5. These results

  16. Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI.

    PubMed

    Hales, Patrick W; Schneider, Jürgen E; Burton, Rebecca A B; Wright, Benjamin J; Bollensdorff, Christian; Kohl, Peter

    2012-01-01

    Deformation and wall-thickening of ventricular myocardium are essential for cardiac pump function. However, insight into the histo-anatomical basis for cardiac tissue re-arrangement during contraction is limited. In this report, we describe dynamic changes in regionally prevailing cardiomyocyte (fibre) and myolaminar (sheet) orientations, using Diffusion Tensor Imaging (DTI) of ventricles in the same living heart in two different mechanical states. Hearts, isolated from Sprague-Dawley rats, were Langendorff-perfused and imaged, initially in their slack state during cardioplegic arrest, then during lithium-induced contracture. Regional fibre- and sheet-orientations were derived from DTI-data on a voxel-wise basis. Contraction was accompanied with a decrease in left-handed helical fibres (handedness relative to the baso-apical direction) in basal, equatorial, and apical sub-epicardium (by 14.0%, 17.3%, 15.8% respectively; p < 0.001), and an increase in right-handed helical fibres of the sub-endocardium (by 11.0%, 12.1% and 16.1%, respectively; p < 0.001). Two predominant sheet-populations were observed, with sheet-angles of either positive (β+) or negative (β-) polarity relative to a 'chamber-horizontal plane' (defined as normal to the left ventricular long-axis). In contracture, mean 'intersection'-angle (geometrically quantifiable intersection of sheet-angle projections) between β+ and β- sheet-populations increased from 86.2 ± 5.5° (slack) to 108.3 ± 5.4° (p < 0.001). Subsequent high-resolution DTI of fixed myocardium, and histological sectioning, reconfirmed the existence of alternating sheet-plane populations. Our results suggest that myocardial tissue layers in alternating sheet-populations align into a more chamber-horizontal orientation during contraction. This re-arrangement occurs via an accordion-like mechanism that, combined with inter-sheet slippage, can significantly contribute to ventricular deformation, including wall-thickening in a

  17. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure.

    PubMed

    Sadredini, Mani; Danielsen, Tore Kristian; Aronsen, Jan Magnus; Manotheepan, Ravinea; Hougen, Karina; Sjaastad, Ivar; Stokke, Mathis Korseberg

    2016-01-01

    Abnormal cellular Ca2+ handling contributes to both contractile dysfunction and arrhythmias in heart failure. Reduced Ca2+ transient amplitude due to decreased sarcoplasmic reticulum Ca2+ content is a common finding in heart failure models. However, heart failure models also show increased propensity for diastolic Ca2+ release events which occur when sarcoplasmic reticulum Ca2+ content exceeds a certain threshold level. Such Ca2+ release events can initiate arrhythmias. In this study we aimed to investigate if both of these aspects of altered Ca2+ homeostasis could be found in left ventricular cardiomyocytes from rats with different states of cardiac function six weeks after myocardial infarction when compared to sham-operated controls. Video edge-detection, whole-cell Ca2+ imaging and confocal line-scan imaging were used to investigate cardiomyocyte contractile properties, Ca2+ transients and Ca2+ waves. In baseline conditions, i.e. without beta-adrenoceptor stimulation, cardiomyocytes from rats with large myocardial infarction, but without heart failure, did not differ from sham-operated animals in any of these aspects of cellular function. However, when exposed to beta-adrenoceptor stimulation, cardiomyocytes from both non-failing and failing rat hearts showed decreased sarcoplasmic reticulum Ca2+ content, decreased Ca2+ transient amplitude, and increased frequency of Ca2+ waves. These results are in line with a decreased threshold for diastolic Ca2+ release established by other studies. In the present study, factors that might contribute to a lower threshold for diastolic Ca2+ release were increased THR286 phosphorylation of Ca2+/calmodulin-dependent protein kinase II and increased protein phosphatase 1 abundance. In conclusion, this study demonstrates both decreased sarcoplasmic reticulum Ca2+ content and increased propensity for diastolic Ca2+ release events in ventricular cardiomyocytes from rats with heart failure after myocardial infarction, and that these

  18. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure

    PubMed Central

    Danielsen, Tore Kristian; Aronsen, Jan Magnus; Manotheepan, Ravinea; Hougen, Karina; Sjaastad, Ivar; Stokke, Mathis Korseberg

    2016-01-01

    Abnormal cellular Ca2+ handling contributes to both contractile dysfunction and arrhythmias in heart failure. Reduced Ca2+ transient amplitude due to decreased sarcoplasmic reticulum Ca2+ content is a common finding in heart failure models. However, heart failure models also show increased propensity for diastolic Ca2+ release events which occur when sarcoplasmic reticulum Ca2+ content exceeds a certain threshold level. Such Ca2+ release events can initiate arrhythmias. In this study we aimed to investigate if both of these aspects of altered Ca2+ homeostasis could be found in left ventricular cardiomyocytes from rats with different states of cardiac function six weeks after myocardial infarction when compared to sham-operated controls. Video edge-detection, whole-cell Ca2+ imaging and confocal line-scan imaging were used to investigate cardiomyocyte contractile properties, Ca2+ transients and Ca2+ waves. In baseline conditions, i.e. without beta-adrenoceptor stimulation, cardiomyocytes from rats with large myocardial infarction, but without heart failure, did not differ from sham-operated animals in any of these aspects of cellular function. However, when exposed to beta-adrenoceptor stimulation, cardiomyocytes from both non-failing and failing rat hearts showed decreased sarcoplasmic reticulum Ca2+ content, decreased Ca2+ transient amplitude, and increased frequency of Ca2+ waves. These results are in line with a decreased threshold for diastolic Ca2+ release established by other studies. In the present study, factors that might contribute to a lower threshold for diastolic Ca2+ release were increased THR286 phosphorylation of Ca2+/calmodulin-dependent protein kinase II and increased protein phosphatase 1 abundance. In conclusion, this study demonstrates both decreased sarcoplasmic reticulum Ca2+ content and increased propensity for diastolic Ca2+ release events in ventricular cardiomyocytes from rats with heart failure after myocardial infarction, and that these

  19. Promotion of bone growth by dietary soy protein isolate: Comparision with dietary casein, whey hydrolysate and rice protein isolate in growing female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of different dietary protein sources(casein (CAS), soy protein isolate (SPI), whey protein hydrolysate (WPH) and rice protein isolate (RPI)) on bone were studied in intact growing female rats and in ovarectomized (OVX) rats showing sex steroid deficiency-induced bone loss. In addition, S...

  20. Early Adolescent Emergence of Reversal Learning Impairments in Isolation-Reared Rats

    PubMed Central

    Powell, Susan B.; Khan, Asma; Young, Jared W.; Scott, Christine N.; Buell, Mahalah R.; Caldwell, Sorana; Tsan, Elisa; de Jong, Loek A.W.; Acheson, Dean T.; Lucero, Jacinta; Geyer, Mark A.; Behrens, M. Margarita

    2015-01-01

    Cognitive impairments appear early in the progression of schizophrenia, often preceding the symptoms of psychosis. Thus, the systems subserving these functions may be more vulnerable to, and mechanistically linked with, the initial pathology. Understanding the trajectory of behavioral and anatomical abnormalities relevant to the schizophrenia prodrome and their sensitivity to interventions in relevant models will be critical to identifying early therapeutic strategies. Isolation rearing of rats is an environmental perturbation that deprives rodents of social contact from weaning through adulthood and produces behavioral and neuronal abnormalities that mirror some pathophysiology associated with schizophrenia, e.g. frontal cortex abnormalities and prepulse inhibition (PPI) of startle deficits. Previously, we showed that PPI deficits in isolation-reared rats emerge in mid-adolescence (4 weeks after weaning; approx. postnatal day 52) but are not present when tested at 2 weeks after weaning (approx. postnatal day 38). Because cognitive deficits are reported during early adolescence, are relevant to the prodrome, and are linked to functional outcome, we examined the putative time course of reversal learning deficits in isolation-reared rats. Separate groups of male Sprague Dawley rats were tested in a two-choice discrimination task at 2 and 8 weeks after weaning, on postnatal day 38 and 80, respectively. The isolation-reared rats displayed impaired reversal learning at both time points. Isolation rearing was also associated with deficits in PPI at 4 and 10 weeks after weaning. The reversal learning deficits in the isolated rats were accompanied by reductions in parvalbumin immunoreactivity, a marker for specific subpopulations of GABAergic neurons, in the hippocampus. Hence, isolation rearing of rats may offer a unique model to examine the ontogeny of behavioral and neurobiological alterations that may be relevant to preclinical models of prodromal psychosis. PMID

  1. Influence of Endurance Exercise Overloading Patterns on the Levels of Left Ventricular Catechoamines After a Bout of Lactate Threshold Test in Male Wistar Rat

    PubMed Central

    Azad, Ahmad; Ghasemi, Fatemeh; Rahmani, Ahmad

    2015-01-01

    Background: It is well known that exercise training has positive effect on catecholamine response to a given work load. But in this regard, the effective method of training needs to be studied. Objectives: The aim of this study was to compare the effects of 8 weeks endurance exercise with two overloading patterns on the left ventricular catecholamine levels. Materials and Methods: 29 male Wistar rats were randomly assigned to control (n = 9), daily sinusoidal overloading (n = 10) and weekly sinusoidal overloading (n = 10) groups. After the last exercise session, left ventricular blood samples were obtained immediately after lactate threshold test. Plasma concentrations of adrenaline and noradrenaline were measured by ELISA method. One way analysis of variance was used for analysis of the data. Results: Immediately after lactate threshold test, adrenaline level was significantly (P < 0.05) lower in weekly loading group than in control and daily loading groups. Adrenaline was higher in the daily loading group compared with control group but did not reach the significant level. Noradrenaline levels were not significantly (P > 0.05) different between three study groups. Conclusions: The results showed 8 weeks of endurance exercise with weekly sinusoidal overloading pattern could induce a lower adrenal medulla activity (reflection of physical and physiological improvement) than daily sinusoidal loading pattern in response to the same absolute work load. PMID:26715962

  2. Sex differences in the outcome of juvenile social isolation on HPA axis function in rats.

    PubMed

    Pisu, M G; Garau, A; Boero, G; Biggio, F; Pibiri, V; Dore, R; Locci, V; Paci, E; Porcu, P; Serra, M

    2016-04-21

    Women are more likely than men to suffer from anxiety disorders and major depression. These disorders share hyperresponsiveness to stress as an etiological factor. Thus, sex differences in brain arousal systems and their regulation by chronic stress may account for the increased vulnerability to these disorders in women. Social isolation is a model of early life stress that results in neurobiological alterations leading to increased anxiety-like and depressive-like behaviors. Here we investigated the sex difference in the effects of post-weaning social isolation on acute stress sensitivity and behavior in rats. In both sexes, social isolation at weaning reduced basal levels of the neuroactive steroid allopregnanolone in the brain and of corticosterone in plasma. Moreover, acute stress increased plasma corticosterone levels in both group-housed and socially isolated male and female rats; however this effect was greater in male than female rats subjected to social isolation. Intriguingly, group-housed female rats showed no change in plasma and brain levels of allopregnanolone after acute foot-shock stress. The absence of stress-induced effects on allopregnanolone synthesis might be due to the physiologically higher levels of this hormone in females vs. males. Accordingly, increasing allopregnanolone levels in male rats blunted the response to foot-shock stress in these animals. Socially isolated male, but not female, rats also display depressive-like behavior and increased hippocampal brain-derived neurotrophic factor (BDNF). The ovarian steroids could "buffer" the effect of this adverse experience in females on these parameters. Finally, the dexamethasone (DEX) suppression test indicated that the chronic stress associated with social isolation impairs feedback inhibition in both sexes in which an increase in the abundance of glucocorticoid receptors (GRs) in the hippocampus was found. Altogether, these results demonstrate that social isolation affects neuroendocrine

  3. Ventricular tachycardia

    MedlinePlus

    ... of implanting a device called an implantable cardioverter defibrillator (ICD). The ICD is most often implanted in ... tachycardia; V tach; Tachycardia - ventricular Images Implantable cardioverter-defibrillator References Olgin JE, Zipes DP. Specific Arrhythmias: Diagnosis ...

  4. Ventricular fibrillation

    MedlinePlus

    ... Fibrillation is an uncontrolled twitching or quivering of muscle fibers (fibrils). When it occurs in the lower chambers of the heart, it is called ventricular fibrillation. During ... the heart muscle does not get enough oxygen for any reason. ...

  5. Dietary supplementation with either saturated or unsaturated fatty acids does not affect the mechanoenergetics of the isolated rat heart

    PubMed Central

    Goo, Soyeon; Han, June‐Chiew; Nisbet, Linley A.; LeGrice, Ian J.; Taberner, Andrew J.; Loiselle, Denis S.

    2014-01-01

    Abstract It is generally recognized that increased consumption of polyunsaturated fatty acids, fish oil (FO) in particular, is beneficial to cardiac and cardiovascular health, whereas equivalent consumption of saturated fats is deleterious. In this study, we explore this divergence, adopting a limited purview: The effect of dietary fatty acids on the mechanoenergetics of the isolated heart per se. Mechanical indices of interest include left‐ventricular (LV) developed pressure, stroke work, cardiac output, coronary perfusion, and LV power. The principal energetic index is whole‐heart oxygen consumption, which we subdivide into its active and basal moieties. The primary mechanoenergetic index of interest is cardiac efficiency, the ratio of work performance to metabolic energy expenditure. Wistar rats were divided into three Diet groups and fed, ad libitum, reference (REF), fish oil‐supplemented (FO), or saturated fatty acid‐supplemented (SFA) food for 6 weeks. At the end of the dietary period, hearts were excised, mounted in a working‐heart rig, and their mechanoenergetic performance quantified over a range of preloads and afterloads. Analyses of Variance revealed no difference in any of the individual mechanoenergetic indices among the three Diet groups. In particular, we found no effect of prior dietary supplementation with either saturated or unsaturated fatty acids on the global efficiency of the heart. PMID:24760525

  6. Low Frequency Electromagnetic Field Conditioning Protects against I/R Injury and Contractile Dysfunction in the Isolated Rat Heart

    PubMed Central

    Bialy, Dariusz; Wawrzynska, Magdalena; Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Wozniak, Mieczyslaw; Cadete, Virgilio J. J.

    2015-01-01

    Low frequency electromagnetic field (LF-EMF) decreases the formation of reactive oxygen species, which are key mediators of ischemia/reperfusion (I/R) injury. Therefore, we hypothesized that the LF-EMF protects contractility of hearts subjected to I/R injury. Isolated rat hearts were subjected to 20 min of global no-flow ischemia, followed by 30 min reperfusion, in the presence or absence of LF-EMF. Coronary flow, heart rate, left ventricular developed pressure (LVDP), and rate pressure product (RPP) were determined for evaluation of heart mechanical function. The activity of cardiac matrix metalloproteinase-2 (MMP-2) and the contents of coronary effluent troponin I (TnI) and interleukin-6 (IL-6) were measured as markers of heart injury. LF-EMF prevented decreased RPP in I/R hearts, while having no effect on coronary flow. In addition, hearts subjected to I/R exhibited significantly increased LVDP when subjected to LF-EMF. Although TnI and IL-6 levels were increased in I/R hearts, their levels returned to baseline aerobic levels in I/R hearts subjected to LF-EMF. The reduced activity of MMP-2 in I/R hearts was reversed in hearts subjected to LF-EMF. The data presented here indicate that acute exposure to LF-EMF protects mechanical function of I/R hearts and reduces I/R injury. PMID:25961016

  7. Evidence of Reversible Bradycardia and Arrhythmias Caused by Immunogenic Proteins Secreted by T. cruzi in Isolated Rat Hearts

    PubMed Central

    Rodríguez-Angulo, Héctor O.; Toro-Mendoza, Jhoan; Marques, Juan A.; Concepción, Juan L.; Bonfante-Cabarcas, Rafael; Higuerey, Yoliver; Thomas, Luz E.; Balzano-Nogueira, Leandro; López, José R.; Mijares, Alfredo

    2015-01-01

    Rationale Chagas cardiomyopathy, caused by the protozoan Trypanosoma cruzi, is characterized by alterations in intracellular ion, heart failure and arrhythmias. Arrhythmias have been related to sudden death, even in asymptomatic patients, and their molecular mechanisms have not been fully elucidated. Objective The aim of this study is to demonstrate the effect of proteins secreted by T. cruzi on healthy, isolated beating rat heart model under a non-damage-inducing protocol. Methods and Results We established a non-damage-inducing recirculation-reoxygenation model where ultrafiltrate fractions of conditioned medium control or conditioned infected medium were perfused at a standard flow rate and under partial oxygenation. Western blotting with chagasic patient serum was performed to determine the antigenicity of the conditioned infected medium fractions. We observed bradycardia, ventricular fibrillation and complete atrioventricular block in hearts during perfusion with >50 kDa conditioned infected culture medium. The preincubation of conditioned infected medium with chagasic serum abolished the bradycardia and arrhythmias. The proteins present in the conditioned infected culture medium of >50 kDa fractions were recognized by the chagasic patient sera associated with arrhythmias. Conclusions These results suggest that proteins secreted by T. cruzi are involved in Chagas disease arrhythmias and may be a potential biomarker in chagasic patients. PMID:25647069

  8. Replication of parainfluenza (Sendai) virus in isolated rat pulmonary type II alveolar epithelial cells.

    PubMed Central

    Castleman, W. L.; Northrop, P. J.; McAllister, P. K.

    1989-01-01

    The major objectives of this study were to determine whether alveolar type II epithelial cells isolated from rat lung and maintained in tissue culture would support productive replication of parainfluenza type 1 (Sendai) virus and to determine whether isolated type II cells from neonatal (5-day-old) rats that are more susceptible to viral-induced alveolar dysplasia supported viral replication to a greater extent than those from weanling (25-day-old) rats. Isolated and cultured type II cells from neonatal and weanling rats that were inoculated with Sendai virus supported productive replication as indicated by ultrastructural identification of budding virions and viral nucleocapsids in type II cells and by demonstration of rising titers of infectious virus from inoculated type II cell cultures. Alveolar macrophages from neonatal and weanling rats also supported viral replication, although infectious viral titers in macrophage cultures were lower than those from type II cell cultures. Only minor differences were detected between viral titers from neonatal and weanling type II epithelial cell cultures. Higher densities of viral nucleocapsids were observed in neonatal type II cells than in those from weanling rats. The results indicate that isolated type II alveolar epithelial cells support productive replication of parainfluenza virus and that type II cells are probably more efficient in supporting productive viral replication than are alveolar macrophages. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2541612

  9. Quantitative structure toxicity relationships for phenols in isolated rat hepatocytes.

    PubMed

    Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2003-05-01

    Quantitative structure toxicity relationship (QSTR) equations were obtained to predict and describe the cytotoxicity of 31 phenols using logLD(50) as a concentration to induce 50% cytotoxicity of isolated rat hepatocytes in 2 h and logP as octanol/water partitioning: logLD(50) (microM)=-0.588(+/-0.059)logP+4.652(+/-0.153) (n=27, r(2)=0.801, s=0.261, P<1 x 10(-9)). Hydroquinone, catechol, 4-nitrophenol, and 2,4-dinitrophenol were outliers for this equation. When the ionization constant pK(a) was considered as a contributing factor a two-parameter QSTR equation was derived: logLD(50) (microM)=-0.595(+/-0.051)logP+0.197(+/-0.029)pK(a)+2.665(+/-0.281) (n=28, r(2)=0.859, s=0.218, P<1 x 10(-6)). Using sigma+, the Brown variation of the Hammet electronic constant, as a contributing parameter, the cytotoxicity of phenols towards hepatocytes were defined by logLD(50) (microM)=-0.594(+/-0.052)logP-0.552(+/-0.085)sigma+ +4.540(+/-0.132) (n=28, r(2)=0.853, s=0.223, P<1 x 10(-6)). Replacing sigma+ with the homolytic bond dissociation energy (BDE) for (X-PhOH+PhO.-->X-PhO.+PhOH) led to logLD(50) (microM)=-0.601(+/-0.066)logP-0.040(+/-0.018)BDE+4.611(+/-0.166) (n=23, r(2)=0.827, s=0.223, P<0.05). Hydroquinone, catechol and 2-nitrophenol were outliers for the above equations. Using redox potential and logP led to a new correlation: logLD(50) (microM)=-0.529(+/-0.135)logP+2.077(+/-0.892)E(p/2)+2.806(+/-0.592) (n=15, r(2)=0.561, s=0.383, P<0.05) with 4-nitrophenol as an outlier. Our findings indicate that phenols with higher lipophilicity, BDE, or sigma+ values or with lower pK(a) and redox potential were more toxic towards hepatocytes. We also showed that a collapse of hepatocyte mitochondrial membrane potential preceded the cytotoxicity of most phenols. Our study indicates that one or a combination of mechanisms; i.e. mitochondrial uncoupling, phenoxy radicals, or phenol metabolism to quinone methides and quinones, contribute to phenol cytotoxicity towards hepatocytes depending on

  10. Cell swelling impairs dye coupling in adult rat ventricular myocytes. Cell volume as a regulator of cell communication

    PubMed Central

    De Mello, WC

    2013-01-01

    The influence of cell swelling on cell communication was investigated in cardiomyocytes isolated from the ventricle of adult rats. Measurements of dye coupling were performed in cell pairs using intracellular dialysis of Lucifer Yellow CH. The pipette was attached to one cell of the pair and after a gig ohm seal was achieved, the membrane was ruptured by a brief suction allowing the dye to diffuse from the pipette into the cell. Fluorescence of the dye in the injected as well as in non-dialyzed cell of the pair was continuously monitored. The results indicate that in cell pairs exposed to hypotonic solution the cell volume was increased by about 60% within 35 min and the dye coupling was significantly reduced by cell swelling. Calculation of gap junction permeability (P(j)) assuming an the intracellular volume accessible to intracellular diffusion of the dye as 12% of total cell volume, showed an average P(j) value of 0.16 ± 0.04 × 10−4 cm/s (n = 35) in the control and 0.89 ± 1.1 × 10−5 cm (n = 40) for cells exposed to hypotonic solution (P < 0.05). Similar results were found assuming intracellular volumes accessible to the dye of 20 and 30% of total cell volume, respectively. Cell swelling did not change the rate of intracellular diffusion of the dye. The results, which indicate that cell volume is an important regulator of gap junction permeability, have important implications to myocardial ischemia and heart failure as well as to heart pharmacology because changes in cell volume caused by drugs and transmitters can impair cell communication with consequent generation of slow conduction and cardiac arrhythmias. PMID:20512611

  11. Effects of dehydroepiandrosterone (DHEA) on glucose metabolism in isolated hepatocytes from Zucker rats

    SciTech Connect

    Finan, A.; Cleary, M.P.

    1986-03-05

    DHEA has been shown to competitively inhibit the pentose phosphate shunt (PPS) enzyme glucose-6-phosphate dehydrogenase (G6PD) when added in vitro to supernatants or homogenates prepared from mammalian tissues. However, no consistent effect on G6PD activity has been determined in tissue removed from DHEA-treated rats. To explore the effects of DHEA on PPS, glucose utilization was measured in hepatocytes from lean and obese male Zucker rats (8 wks of age) following 1 wk of DHEA treatment (0.6% in diet). Incubation of isolated hepatocytes from treated lean Zucker rats with either (1-/sup 14/C) glucose or (6-/sup 14/C) glucose resulted in significant decreases in CO/sub 2/ production and total glucose utilization. DHEA-lean rats also had lowered fat pad weights. In obese rats, there was no effect of 1 wk of treatment on either glucose metabolism or fat pad weight. The calculated percent contribution of the PPS to glucose metabolism in hepatocytes was not changed for either DHEA-lean or obese rats when compared to control rats. In conclusion, 1 wk of DHEA treatment lowered overall glucose metabolism in hepatocytes of lean Zucker rats, but did not selectively affect the PPS. The lack of an effect of short-term treatment in obese rats may be due to differences in their metabolism or storage/release of DHEA in tissues in comparison to lean rats.

  12. Bacteria Isolated from Conspecific Bite Wounds in Norway and Black Rats: Implications for Rat Bite–Associated Infections In People

    PubMed Central

    Zabek, Erin; Tang, Patrick; Parsons, Kirbee L.; Koehn, Martha; Jardine, Claire M.; Patrick, David M.

    2014-01-01

    Abstract Bites associated with wild and domestic Norway and black rats (Rattus norvegicus and Rattus rattus) may have a variety of health consequences in people. Bite-related infections are among the most significant of these consequences; however, there is little data on the infectious agents that can be transmitted from rats to people through biting. This is problematic because without an accurate understanding of bite-related infection risks, it is difficult for health professionals to evaluate the adequacy of existing guidelines for empirical therapy. The objectives of this study were to increase our knowledge of the bacterial species associated with rat bites by studying bite wounds that wild rats inflict upon one another and to review the literature regarding rat bites and bite wound management. Wild Norway and black rats (n=725) were trapped in Vancouver, Canada, and examined for bite wounds in the skin. All apparently infected wounds underwent aerobic and anaerobic culture, and isolated bacteria were identified. Thirty-six rats had bite wound–related infections, and approximately 22 different species of bacteria belonging to 18 genera were identified. Staphylococcus aureus was the most common isolate; however, the majority of infections (72.5%) were polymicrobial. Rat bites can result in infection with a number of aerobic and anaerobic Gram-positive and Gram-negative bacteria. In humans, these wounds are best managed through early recognition and cleansing. The benefit of prophylactic antimicrobial treatment is debatable, but given the deep puncturing nature of rodent bites, we suggest that they should be considered a high risk for infection. Antibiotics selected should include coverage for a broad range of bacterial species. PMID:24528094

  13. A novel, voltage-dependent nonselective cation current activated by insulin in guinea pig isolated ventricular myocytes.

    PubMed

    Zhang, Yin Hua; Hancox, Jules C

    2003-04-18

    Insulin regulates cardiac metabolism and function by targeting metabolic proteins or voltage-gated ion channels. This study provides evidence for a novel, voltage-dependent, nonselective cation channel (NSCC) in the heart. Under voltage clamp at 37 degrees C and with major known conductances blocked, insulin (1 nmol/L to 1 micromol/L) activated an outwardly rectifying current (Iinsulin) in guinea pig ventricular myocytes. Iinsulin could be carried by Cs+, K+, Li+, and Na+ ions but not by NMDG+. It was inhibited by the NSCC blockers gadolinium and SKF96365 but not flufenamic acid. Iinsulin was largely blocked by the insulin receptor tyrosine kinase inhibitor HNMPA-(AM)3 and by the phospholipase C inhibitor U73122 but not by its inactive analogue U73433. Staurosporine, a potent blocker of protein kinase C, did not prevent the activation of Iinsulin. Application of an analogue of diacylglycerol, 1-oleoyl-2-acetyl-sn-glycerol, mimicked the effect of insulin. This activated an outwardly rectifying NSCC that could be carried by Cs+, K+, Li+, or Na+ and that was blocked by gadolinium but not by flufenamic acid or staurosporine. We conclude that the intracellular pathway leading to activation of this novel cardiac NSCC involves phospholipase C, is protein kinase C-independent, and may depend on direct channel activation by diacylglycerol. PMID:12637365

  14. Glucose production and storage in hepatocytes isolated from normal versus diabetic rats

    SciTech Connect

    Olivieri, M.C.; Dragland-Meserve, C.J.; Parker Botelho, L.H.

    1987-05-01

    The rates of glucose production and storage were compared in hepatocytes isolated from normal versus insulin-resistant diabetic rats. A single low-dose (40 mg/kg) IV injection of streptozotocin to 250 g rats resulted in a Type II diabetic animal model which was hyperglycemic with normal insulin levels. Addition of 8 mM /sup 14/C-lactate and 2 mM pyruvate to hepatocytes resulted in a linear increase in total glucose production (/sup 14/C-glucose and unlabeled glucose) and incorporation into glycogen measured over 120 min. The rate of gluconeogenesis was estimated from the production of /sup 14/C-glucose and the rate of glycogenolysis was estimated from the production of unlabeled glucose in cells incubated in the presence or absence of /sup 14/C-labelled substrate. There was not significant difference in total glucose production in hepatocytes isolated from normal versus diabetic rats, however, the contribution from gluconeogenesis versus glycogenolysis was significantly different. Following a 1 h incubation of cells from normal rats, 42% of the total glucose production was due to gluconeogenesis and 58% was due to glycogenolysis. In cells from diabetic rats, 83% of total glucose production was from gluconeogenesis and 17% from glycogenolysis. Also, incubation with /sup 14/C-lactate/pyruvate resulted in a 3.3-fold increase in /sup 14/C-glucose incorporation into glycogen in hepatocytes isolated from normal rats compared to diabetic rats. These data suggest that alterations occur in the rate-limiting enzymes responsible for glucose production and storage in hepatocytes isolated from a rat model of insulin-resistant Type II diabetes.

  15. TESTOSTERONE AND SOCIAL ISOLATION INFLUENCE ADULT NEUROGENESIS IN THE DENTATE GYRUS OF MALE RATS

    PubMed Central

    Spritzer, Mark D.; Ibler, Erin; Inglis, William; Curtis, Molly G.

    2011-01-01

    Testosterone has been previously shown to enhance adult neurogenesis within the dentate gyrus of adult male rats, whereas social isolation has been shown to cause a decrease in adult neurogenesis under some conditions. The current study tested the combined effects of testosterone and social isolation upon adult neurogenesis using two experiments involving adult male rats. For both experiments, half of the subjects were pair-housed and half were housed individually for the duration of the experiments (34 days). For experiment 1, the subjects were divided into four groups (n=8/group): 1) sham/pair-housed, 2) sham/isolated, 3) castrate/pair-housed, and 4) castrate/isolated. Rats in the castrate groups were bilaterally castrated, and rats in the sham groups were sham castrated. For experiment 2, all rats were castrated and the effects of testosterone were tested using daily injections of testosterone propionate (0.500 mg/rat for 15 days) or the oil vehicle. Subjects were divided into four groups (n =8/group): 1) oil/pair-housed, 2) oil/isolated, 3) testosterone/pair-housed, and 4) testosterone/isolated. All rats were injected with 5-Bromo-2’-deoxyuridine (BrdU, 200 mg/kg body mass) and immunohistochemistry was used to determine levels of neurogenesis following a 16-day cell survival period. For experiment 1, castrated subjects had significantly fewer BrdU-labeled cells along the granule cell layer and sub-granular zone (GCL+SGZ) of the dentate gyrus than did intact subjects, and this effect was mainly due to low levels of neurogenesis in the castrate/isolated group. For experiment 2, social isolation caused a significant decrease in neurogenesis within the GCL+SGZ relative to the pair-housed groups. Testosterone injections did not buffer against this effect but instead tended to cause a decrease in neurogenesis. Thus, social isolation reduced hippocampal neurogenesis, but the effects of testosterone were inconsistent. This suggests that normal circulating levels of

  16. Testosterone and social isolation influence adult neurogenesis in the dentate gyrus of male rats.

    PubMed

    Spritzer, M D; Ibler, E; Inglis, W; Curtis, M G

    2011-11-10

    Testosterone has been previously shown to enhance adult neurogenesis within the dentate gyrus of adult male rats, whereas social isolation has been shown to cause a decrease in adult neurogenesis under some conditions. The current study tested the combined effects of testosterone and social isolation upon adult neurogenesis using two experiments involving adult male rats. For both experiments, half of the subjects were pair-housed and half were housed individually for the duration of the experiments (34 days). For experiment 1, the subjects were divided into four groups (n=8/group): (1) sham/pair-housed, (2) sham/isolated, (3) castrate/pair-housed, and (4) castrate/isolated. Rats in the castrate groups were bilaterally castrated, and rats in the sham groups were sham castrated. For experiment 2, all rats were castrated, and the effects of testosterone were tested using daily injections of testosterone propionate (0.500 mg/rat for 15 days) or the oil vehicle. Subjects were divided into four groups (n=8/group): (1) oil/pair-housed, (2) oil/isolated, (3) testosterone/pair-housed, and (4) testosterone/isolated. All rats were injected with 5-bromo-2'-deoxyuridine (BrdU, 200 mg/kg body mass), and immunohistochemistry was used to determine levels of neurogenesis following a 16-day cell survival period. For experiment 1, castrated subjects had significantly fewer BrdU-labeled cells along the granule cell layer and subgranular zone (GCL+SGZ) of the dentate gyrus than did intact subjects, and this effect was mainly due to low levels of neurogenesis in the castrate/isolated group. For experiment 2, social isolation caused a significant decrease in neurogenesis within the GCL+SGZ relative to the pair-housed groups. Testosterone injections did not buffer against this effect but instead tended to cause a decrease in neurogenesis. Thus, social isolation reduced hippocampal neurogenesis, but the effects of testosterone were inconsistent. This suggests that normal circulating

  17. Effects of type of dietary fat and carbohydrate on gluconeogenesis in isolated hepatocytes from BHE rats.

    PubMed

    Wander, R C; Berdanier, C D

    1986-07-01

    The effect of type of dietary fat and carbohydrate on gluconeogenesis and ketogenesis by isolated hepatocytes was studied. BHE male weanling rats were fed one of six diets: 64% sucrose or cornstarch with 6% corn oil, 6% hydrogenated coconut oil, or a 1:2 mixture of the two oils. At 100 d of age the rats were anesthetized, and isolated hepatocytes were prepared. The cells were incubated with lactate, lactate and lysine, lactate and pyruvate, lactate and palmitate, lactate and linoleate, lactate and epinephrine or lactate and glucagon. The hepatocytes from the rats that had been fed hydrogenated coconut oil produced significantly more glucose than the rats fed either corn oil or a mixture of oils, regardless of the type of carbohydrate fed. Each of the additives in turn, except for epinephrine, stimulated glucose production above that obtained with lactate alone. However, when expressed as a percent increase above that from lactate there was no effect of fat type on the magnitude of this stimulation. We interpret these data to mean that, although the metabolic pathways function equally well in the hepatocytes isolated from rats fed hydrogenated coconut oil and rats fed corn oil, the flux through these pathways can be influenced by the type of dietary fat. PMID:3091787

  18. Lactate Up-Regulates the Expression of Lactate Oxidation Complex-Related Genes in Left Ventricular Cardiac Tissue of Rats

    PubMed Central

    Gabriel-Costa, Daniele; da Cunha, Telma Fatima; Bechara, Luiz Roberto Grassmann; Fortunato, Rodrigo Soares; Bozi, Luiz Henrique Marchesi; Coelho, Marcele de Almeida; Barreto-Chaves, Maria Luiza; Brum, Patricia Chakur

    2015-01-01

    Background Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex. Methods/Principal Findings Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM) added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2●-/H2O2) levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively) were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2●-/H2O2. Conclusions Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of

  19. Ultrastructural features of left ventricular myocytes in active and torpid hamsters compared with rats: a morphometric study.

    PubMed Central

    Skepper, J N; Navaratnam, V

    1995-01-01

    Myocytes from the midmyocardium of the left ventricle of rats and hamsters were examined by transmission electron microscopy. The volume fraction of lipid droplets in such myocytes was about 6 times greater in the active hamster than in the rat, but it became progressively reduced during cold exposure and entry into hibernation to values similar to those of the rat. The volume fraction of the T-system as well as the surface density of its membranes were each found to be twice as large in hamster myocytes as in the rat but there was no difference in these parameters between control, cold-exposed and torpid hamsters. The surface density of the junctional sarcoplasmic reticulum coupled with elements of the T-system was greater in active hamsters when compared with those of the rat, and greater still in torpid hamsters. There was no significant difference in the surface density of free sarcoplasmic reticulum between control hamsters, cold-exposed hamsters and rats but it was almost doubled in torpid hamsters. It is proposed that these features represent inherent differences in the ultrastructure of the left ventricle between the rat and hamster that may facilitate entry into hibernation. Additionally, further structural modifications during entry into hibernation may be related to alterations in lipid metabolism and modifications of calcium handling. Images Fig. 1 Fig. 2 PMID:7559131

  20. Social isolation-induced increase in the sensitivity of rats to the steroidogenic effect of ethanol.

    PubMed

    Serra, Mariangela; Pisu, M Giuseppina; Floris, Ivan; Cara, Valeria; Purdy, Robert H; Biggio, Giovanni

    2003-04-01

    Social isolation of rats for 30 days immediately after weaning results in marked decreases in the cerebrocortical and plasma concentrations of pregnenolone, progesterone, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG), and 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-TH DOC), as well as a moderate increase in the plasma concentration of corticosterone. This mildly stressful condition has now been shown to increase the sensitivity of rats to the effect of acute ethanol administration on the cerebrocortical and plasma concentrations of neuroactive steroids. The percentage increases in the brain and plasma concentrations of pregnenolone, progesterone, 3alpha,5alpha-TH PROG, and 3alpha,5alpha-TH DOC, apparent 20 min after a single intraperitoneal injection of ethanol (1 g/kg), were thus markedly greater in isolated rats than in group-housed animals. A subcutaneous injection of isoniazid (300 mg/kg) also induced greater percentage increases in the concentrations of these steroids in isolated rats than in group-housed animals. These results suggest that mild chronic stress, such as that induced by social isolation, enhances the steroidogenic effect of ethanol, a drug abused by humans under stress or affected by neuropsychiatric disorders. Social isolation also induced hyper-responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis, as was apparent after reduction of GABA-mediated inhibitory tone by isoniazid administration. PMID:12641747

  1. Isolation and Culture of Alveolar Epithelial Type I and Type II Cells from Rat Lungs

    PubMed Central

    Gonzalez, Robert F.; Dobbs, Leland G.

    2014-01-01

    The pulmonary alveolar epithelium, comprised of alveolar Type I (TI) and Type II (TII) cells, covers more than 99% of the internal surface area of the lungs. The study of isolated and cultured alveolar epithelial TI and TII cells has provided a large amount of information about the functions of both cell types. This chapter provides information about methods for isolating and culturing both of these cell types from rat lungs. PMID:23097106

  2. 17β-Estradiol mediates superior adaptation of right ventricular function to acute strenuous exercise in female rats with severe pulmonary hypertension.

    PubMed

    Lahm, Tim; Frump, Andrea L; Albrecht, Marjorie E; Fisher, Amanda J; Cook, Todd G; Jones, Thomas J; Yakubov, Bakhtiyor; Whitson, Jordan; Fuchs, Robyn K; Liu, Aiping; Chesler, Naomi C; Brown, M Beth

    2016-08-01

    17β-Estradiol (E2) exerts protective effects on right ventricular (RV) function in pulmonary arterial hypertension (PAH). Since acute exercise-induced increases in afterload may lead to RV dysfunction in PAH, we sought to determine whether E2 allows for superior RV adaptation after an acute exercise challenge. We studied echocardiographic, hemodynamic, structural, and biochemical markers of RV function in male and female rats with sugen/hypoxia (SuHx)-induced pulmonary hypertension, as well as in ovariectomized (OVX) SuHx females, with or without concomitant E2 repletion (75 μg·kg(-1)·day(-1)) immediately after 45 min of treadmill running at 75% of individually determined maximal aerobic capacity (75% aerobic capacity reserve). Compared with males, intact female rats exhibited higher stroke volume and cardiac indexes, a strong trend for better RV compliance, and less pronounced increases in indexed total pulmonary resistance. OVX abrogated favorable RV adaptations, whereas E2 repletion after OVX markedly improved RV function. E2's effects on pulmonary vascular remodeling were complex and less robust than its RV effects. Postexercise hemodynamics in females with endogenous or exogenous E2 were similar to hemodynamics in nonexercised controls, whereas OVX rats exhibited more severely altered postexercise hemodynamics. E2 mediated inhibitory effects on RV fibrosis and attenuated increases in RV collagen I/III ratio. Proapoptotic signaling, endothelial nitric oxide synthase phosphorylation, and autophagic flux markers were affected by E2 depletion and/or repletion. Markers of impaired autophagic flux correlated with endpoints of RV structure and function. Endogenous and exogenous E2 exerts protective effects on RV function measured immediately after an acute exercise challenge. Harnessing E2's mechanisms may lead to novel RV-directed therapies. PMID:27288487

  3. Is rate–pressure product of any use in the isolated rat heart? Assessing cardiac ‘effort’ and oxygen consumption in the Langendorff‐perfused heart

    PubMed Central

    Aksentijević, Dunja; Lewis, Hannah R.

    2016-01-01

    . Experiments were repeated in the presence of isoprenaline and in unpaced hearts where heart rate was increased by cumulative isoprenaline challenge. In KH buffer‐perfused hearts, MV˙O2 increased with increasing heart rate, but given that left ventricular developed pressure decreased with increases in rate, RPP was not correlated with MV˙O2, lactate production or phosphocreatine/ATP ratio. Although the provision of substrates or β‐adrenoceptor stimulation changed the shape of the RPP–MV˙O2 relationship, neither intervention resulted in a positive correlation between RPP and oxygen consumption. Rate–pressure product is therefore an unreliable index of oxygen consumption or ‘cardiac effort’ in the isolated rat heart. PMID:26585840

  4. Forebrain gene expression predicts deficits in sensorimotor gating after isolation rearing in male rats

    PubMed Central

    Swerdlow, Neal R.; Light, Gregory A.; Trim, Ryan S.; Breier, Michelle R.; Hines, Samantha R.; Powell, Susan B.

    2013-01-01

    Compared to socially housed (SH) rats, adult isolation-reared (IR) rats exhibit phenotypes relevant to schizophrenia (SZ), including reduced prepulse inhibition (PPI) of startle. PPI is normally regulated by the medial prefrontal cortex (mPFC) and nucleus accumbens (NAC). We assessed PPI, auditory-evoked local field potentials (LFPs) and expression of 7 PPI- and SZ-related genes in the mPFC and NAC, in IR and SH rats. Buffalo (BUF) rats were raised in same-sex groups of 2–3 (SH) or in isolation (IR). PPI was measured early (d53) and later in adulthood (d74); LFPs were measured approximately on d66. Brains were processed for RT-PCR measures of mPFC and NAC expression of Comt, Erbb4, Grid2, Ncam1, Slc1a2, Nrg1 and Reln. Male IR rats exhibited PPI deficits, most pronounced at d53; male and female IR rats had significantly elevated startle magnitude on both test days. Gene expression levels were not significantly altered by IR. PPI levels (d53) were positively correlated with mPFC expression of several genes, and negatively correlated with NAC expression of several genes, in male IR but not SH rats. Late (P90) LFP amplitudes correlated significantly with expression levels of 6/7 mPFC genes in male rats, independent of rearing. After IR that disrupts early adult PPI in male BUF rats, expression levels of PPI- and SZ-associated genes in the mPFC correlate positively with PPI, and levels in the NAC correlate negatively with PPI. These results support the model that specific gene-behavior relationships moderate the impact of early-life experience on SZ-linked behavioral and neurophysiological markers. PMID:24076151

  5. Role of the antidiabetic drugs: Glibenclamide and metformin on the contractility of isolated rat uteri.

    PubMed

    Kelany, Mohamed Elsayed; Alqahtani, Saeed; Alkuriji, Afrah; Al-Omar, SulimanYousef

    2016-01-01

    The current investigation has designed to study the role of two antidiabetics, glibenclamide and metformin on the spontaneous uterine contractions in the non-diabetic non-pregnant female rats. The rat uteri were isolated and allocated to two groups: 1)the glibenclamide group: After recording the normal spontaneous uterine contractions, the vehicle (ethanol) and glibenclamide molar concentrations (10(-7), 10(-6) and 10(-5) M) were analyzed on uterine contractions by recording on smoked paper on a rotating kymograph drum, and 2) the metformin group: After recording the normal spontaneous uterine contractions, the metformin concentrations (10(-7), 10(-6) and 10(-5) M) were analyzed on uterine contractions. Responses to the two drugs and vehicle control (ethanol) were recorded for 30 min. Glibenclamide has not significantly effected on the amplitude and frequency of spontaneous contractions of the isolated rat uteri. Metformin also has no significant effect on the amplitude and frequency of spontaneous contractions of the isolated rat uteri. In conclusion, the two oral antidiabetics glibenclamide and metformin have not changed both the amplitude and frequency of spontaneous uterine contractions in the non-pregnant non-diabetic female rats. PMID:26826839

  6. C-type natriuretic peptide activates a non-selective cation current in acutely isolated rat cardiac fibroblasts via natriuretic peptide C receptor-mediated signalling.

    PubMed

    Rose, R A; Hatano, N; Ohya, S; Imaizumi, Y; Giles, W R

    2007-04-01

    In the heart, fibroblasts play an essential role in the deposition of the extracellular matrix and they also secrete a number of hormonal factors. Although natriuretic peptides, including C-type natriuretic peptide (CNP) and brain natriuretic peptide, have antifibrotic effects on cardiac fibroblasts, the effects of CNP on fibroblast electrophysiology have not been examined. In this study, acutely isolated ventricular fibroblasts from the adult rat were used to measure the effects of CNP (2 x 10(-8) M) under whole-cell voltage-clamp conditions. CNP, as well as the natriuretic peptide C receptor (NPR-C) agonist cANF (2 x 10(-8) M), significantly increased an outwardly rectifying non-selective cation current (NSCC). This current has a reversal potential near 0 mV. Activation of this NSCC by cANF was abolished by pre-treating fibroblasts with pertussis toxin, indicating the involvement of G(i) proteins. The cANF-activated NSCC was inhibited by the compounds Gd(3+), SKF 96365 and 2-aminoethoxydiphenyl borate. Quantitative RT-PCR analysis of mRNA from rat ventricular fibroblasts revealed the expression of several transient receptor potential (TRP) channel transcripts. Additional electrophysiological analysis showed that U73122, a phospholipase C antagonist, inhibited the cANF-activated NSCC. Furthermore, the effects of CNP and cANF were mimicked by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG), independently of protein kinase C activity. These are defining characteristics of specific TRPC channels. More detailed molecular analysis confirmed the expression of full-length TRPC2, TRPC3 and TRPC5 transcripts. These data indicate that CNP, acting via the NPR-C receptor, activates a NSCC that is at least partially carried by TRPC channels in cardiac fibroblasts. PMID:17204501

  7. SOY PROTEIN ISOLATE CONSUMPTION PROTECTS AGAINST AZOXYMETHAN-INDUCED COLON TUMORS IN MALE RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male Sprague-Dawley rats (F2 generation) that have been fed modified American Institute of Nutrition-93G diets formulated with a single protein source of either casein or soy protein isolate for their entire life received azoxymethane once a week for 2 weeks (s.c., 15 mg/kg) starting at age 90 days....

  8. UPTAKE OF INORGANIC LEAD IN VITRO BY ISOLATED MITOCHONDRIA AND TISSUE SLICES OF RAT RENAL CORTEX

    EPA Science Inventory

    Slices of rat renal cortex were shown to take up Pb2+ during incubation in vitro; Pb2+ was also shown to enter mitochondria within the slices. The uptake of Pb2+ by isolated mitochondria was inhibited by N3-, La3+ and ruthenium red. A steady state of uptake was attained within 60...

  9. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats

    PubMed Central

    Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S.

    2015-01-01

    Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP–GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure. PMID:26617573

  10. Effect of trimebutine maleate on the contractile response of the isolated ileum from diabetic rats.

    PubMed

    Uchida, M; Iwata, T; Takagi, S; Sugiyama, Y; Ishitani, K; Honda, H; Sakai, Y

    1994-05-01

    1. Tension of the isolated ileum from diabetic rats induced by streptozotocin was measured isometrically to study the mode of action of trimebutine maleate (TMB). 2. The hyperreactivity of contractile response to KCl was observed in the isolated ileum from diabetic rats. TMB inhibited the contraction induced by KCl and acetylcholine (ACh) in normal solution. 3. In Ca2+ free solution, the hyperreactivity of contractile response to KCl was attenuated, and TMB did not inhibit the contraction induced by KCl. In contrast, TMB inhibited the contraction induced by ACh even in Ca2+ free solution. 4. These results suggest that the hyperreactivity of contractile response to KCl in the ileum from diabetic rats is due to the enhancement of Ca2+ influx through voltage-dependent Ca2+ channel and that TMB inhibits the hyperreactivity of contractile response through the inhibition of Ca2+ movement by the cell. PMID:7926598

  11. Kinetic mRNA Profiling in a Rat Model of Left-Ventricular Hypertrophy Reveals Early Expression of Chemokines and Their Receptors

    PubMed Central

    Nemska, Simona; Monassier, Laurent; Gassmann, Max; Frossard, Nelly; Tavakoli, Reza

    2016-01-01

    Left-ventricular hypertrophy (LVH), a risk factor for heart failure and death, is characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and leukocyte infiltration. Chemokines interacting with G protein-coupled chemokine receptors may play a role in LVH development by promoting recruitment of activated leukocytes or modulating left-ventricular remodeling. Using a pressure overload-induced kinetic model of LVH in rats, we examined during 14 days the expression over time of chemokine and chemokine receptor mRNAs in left ventricles from aortic-banded vs sham-operated animals. Two phases were clearly distinguished: an inflammatory phase (D3-D5) with overexpression of inflammatory genes such as il-1ß, tnfa, nlrp3, and the rela subunit of nf-kb, and a hypertrophic phase (D7-D14) where anp overexpression was accompanied by a heart weight/body weight ratio that increased by more than 20% at D14. No cardiac dysfunction was detectable by echocardiography at the latter time point. Of the 36 chemokines and 20 chemokine receptors analyzed by a Taqman Low Density Array panel, we identified at D3 (the early inflammatory phase) overexpression of mRNAs for the monocyte chemotactic proteins CCL2 (12-fold increase), CCL7 (7-fold increase), and CCL12 (3-fold increase), for the macrophage inflammatory proteins CCL3 (4-fold increase), CCL4 (2-fold increase), and CCL9 (2-fold increase), for their receptors CCR2 (4-fold increase), CCR1 (3-fold increase), and CCR5 (3-fold increase), and for CXCL1 (8-fold increase) and CXCL16 (2-fold increase). During the hypertrophic phase mRNA expression of chemokines and receptors returned to the baseline levels observed at D0. Hence, this first exhaustive study of chemokine and chemokine receptor mRNA expression kinetics reports early expression of monocyte/macrophage-related chemokines and their receptors during the development of LVH in rats, followed by regulation of inflammation as LVH progresses. PMID:27525724

  12. Nephrotoxicity of aminophenols: effects of 4-dimethylaminophenol on isolated rat kidney tubules.

    PubMed

    Szinicz, L; Weger, N; Schneiderhan, W; Kiese, M

    1979-04-23

    In isolated rat kidney tubules DMAP was found to inhibit the gluconeogenesis from lactate, pyruvate, or dihydroxyacetone. The ratio DMAP/protein rather than the calculated concentration of DMAP determined the strength of the effect, 20--25 nmoles DMAP/mg protein inhibiting the rate of gluconeogenesis by about 50%. The inhibition was not reversible. Phenacetin, 4-aminophenol and 4-acetamidophenol were much less effective than DMAP in inhibiting gluconeogenesis in isolated rat kidney tubules. DMAP 14C-labeled in the ring was quickly bound to proteins in kidney tubules. A portion of DMAP which did not exceed about 4 nmoles/mg protein, was bound in compounds soluble in perchloric acid. From this portion tris-GS-DMAP was isolated. DMAP diminished the glutathione content of isolated rat kidney tubules. Reduced glutathione added before DMAP prevented the inhibition of gluconeogenesis and diminished the binding of DMAP to proteins. The binding of DMAP required oxygen and was inhibited by carbon monoxide or cyanide. Several enzymes from isolated kidney tubules were found to be inhibited by DMAP doses which inhibited gluconeogenesis. Large DMAP doses also diminished the sums of ATP + ADP + AMP as well as NAD + NADH and NADP + NADPH. This effect corresponded to an increase in nucleotide degradation products and to increased activity of extracellular LDH. The results indicate that the inhibition of gluconeogenesis by DMAP is not due to a specific effect on one enzyme or on membranes but to unspecific reactions with many substances. PMID:454186

  13. Left Ventricular Gene Expression Profile of Healthy and Cardiovascular Compromised Rat Models Used in Air Pollution Studies

    EPA Science Inventory

    The link between pollutant exposure and cardiovascular disease (CVD) has prompted mechanistic research with animal models of CVD. We hypothesized that the cardiac gene expression patterns of healthy and genetically compromised, CVD-prone rat models, with or without metabolic impa...

  14. Ethanol inhibition of glucose absorption in isolated, perfused small bowel of rats

    SciTech Connect

    Cobb, C.F.; Van Thiel, D.H.; Wargo, J.

    1983-08-01

    There is evidence for both humans and rats that malnutrition frequently occurs when ethanol is chronically ingested. Small bowel /sup 14/C-labelled glucose absorption was measured with an ex vivo system in which the small bowel of the rat was surgically removed and then arterially perfused with an artificial medium. Glucose absorption for a control group of seven rats was 248 +/- 8 microM/min/gm dry weight of small bowel (mean +/- SEM). This was significantly greater than the value 112 +/- 12 microM/min/gm dry weight (P less than 0.005) for a group of five rats in which a competitive inhibitor of glucose absorption, phlorizin (0.2 mM), was added to the bowel lumen. In the presence of 3% ethanol within the gut lumen of five rats, glucose absorption was also reduced (to 131 +/- 12 microM/min/gm dry weight) compared to absorption in the control group (P less than 0.005). The calculated amount of glucose absorbed was corrected for metabolism to lactate and carbon dioxide. We conclude that both phlorizin and ethanol inhibit glucose absorption in the isolated and perfused small bowel of rats and that probably at least part of the malnutrition in ethanol-fed rats is due to glucose malabsorption.

  15. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    SciTech Connect

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj; Selvam, Govindan Sadasivam

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer L-Arginine treatment reduced the metabolic disturbances in diabetic animals. Black-Right-Pointing-Pointer Antioxidant marker proteins were found high in myocardium by L-arginine treatment. Black-Right-Pointing-Pointer Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. Black-Right-Pointing-Pointer L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. Black-Right-Pointing-Pointer Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg{sup -1} body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-{kappa}B. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic

  16. Homologous beta-adrenergic desensitization in isolated rat hepatocytes.

    PubMed Central

    García-Sáinz, J A; Michel, B

    1987-01-01

    Hepatocytes from hypothyroid rats have a marked beta-adrenergic responsiveness. Preincubation of these hepatocytes with isoprenaline induced a time-dependent and concentration-dependent desensitization of the beta-adrenergic responsiveness without altering that to glucagon (homologous desensitization). The desensitization was evidenced both in the cyclic AMP accumulation and in the stimulation of ureagenesis induced by the beta-adrenergic agonists. Under the same conditions, preincubation with glucagon induced no desensitization. Propranolol was also unable to induce desensitization, but blocked that induced by isoprenaline. Pertussis-toxin treatment did not alter the homologous beta-adrenergic desensitization induced by isoprenaline. PMID:2825633

  17. Shortening and intracellular Ca2+ in ventricular myocytes and expression of genes encoding cardiac muscle proteins in early onset type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Salem, K A; Adrian, T E; Qureshi, M A; Parekh, K; Oz, M; Howarth, F C

    2012-12-01

    There has been a spectacular rise in the global prevalence of type 2 diabetes mellitus. Cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. Contractile dysfunction, associated with disturbances in excitation-contraction coupling, has been widely demonstrated in the diabetic heart. The aim of this study was to investigate the pattern of cardiac muscle genes that are involved in the process of excitation-contraction coupling in the hearts of early onset (8-10 weeks of age) type 2 diabetic Goto-Kakizaki (GK) rats. Gene expression was assessed in ventricular muscle with real-time RT-PCR; shortening and intracellular Ca(2+) were measured in ventricular myocytes with video edge detection and fluorescence photometry, respectively. The general characteristics of the GK rats included elevated fasting and non-fasting blood glucose and blood glucose at 120 min following a glucose challenge. Expression of genes encoding cardiac muscle proteins (Myh6/7, Mybpc3, Myl1/3, Actc1, Tnni3, Tnn2, Tpm1/2/4 and Dbi) and intercellular proteins (Gja1/4/5/7, Dsp and Cav1/3) were unaltered in GK ventricle compared with control ventricle. The expression of genes encoding some membrane pumps and exchange proteins was unaltered (Atp1a1/2, Atp1b1 and Slc8a1), whilst others were either upregulated (Atp1a3, relative expression 2.61 ± 0.69 versus 0.84 ± 0.23) or downregulated (Slc9a1, 0.62 ± 0.07 versus 1.08 ± 0.08) in GK ventricle compared with control ventricle. The expression of genes encoding some calcium (Cacna1c/1g, Cacna2d1/2d2 and Cacnb1/b2), sodium (Scn5a) and potassium channels (Kcna3/5, Kcnj3/5/8/11/12, Kchip2, Kcnab1, Kcnb1, Kcnd1/2/3, Kcne1/4, Kcnq1, Kcng2, Kcnh2, Kcnk3 and Kcnn2) were unaltered, whilst others were either upregulated (Cacna1h, 0.95 ± 0.16 versus 0.47 ± 0.09; Scn1b, 1.84 ± 0.16 versus 1.11 ± 0.11; and Hcn2, 1.55 ± 0.15 versus 1.03 ± 0.08) or downregulated (Hcn4, 0.16 ± 0.03 versus 0.37 ± 0.08; Kcna2, 0.35 ± 0

  18. Partially Silencing Brain Toll-Like Receptor 4 Prevents in Part Left Ventricular Remodeling with Sympathoinhibition in Rats with Myocardial Infarction-Induced Heart Failure

    PubMed Central

    Ogawa, Kiyohiro; Hirooka, Yoshitaka; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2013-01-01

    Background Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. Methodology/Principal Findings MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. Conclusions Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure. PMID:23874864

  19. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering.

    PubMed

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-12-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE. PMID:27263018

  20. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-06-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE.

  1. Influence of decompression sickness on vasomotion of isolated rat vessels.

    PubMed

    Mazur, A; Lambrechts, K; Buzzacott, P; Wang, Q; Belhomme, M; Theron, M; Mansourati, J; Guerrero, F

    2014-06-01

    Several studies have demonstrated that endothelial function is impaired following a dive even without decompression sickness. During this study we determined the effect of decompression sickness on endothelium-dependent and independent vasoreactivity. For this purpose twenty-seven male Sprague-Dawley rats were submitted to a simulated dive up to 1,000 kPa absolute pressure and divided into 3 groups: safe diving without decompression sickness or dives provoking mild or severe sickness. A fourth control group remained at atmospheric pressure. Endothelium-dependent and independent vasomotion was assessed ex vivo by measuring isometric tension in rings of abdominal aorta and mesenteric arteries. Dose-response curves were obtained with phenylephrine, acetylcholine and sodium nitroprusside. Acetylcholine-induced relaxation was measured in the presence of L-NAME, indometacin or both of them at once.Contraction was significantly decreased after each protocol compared with the control rats. Additionally, the response in animals from the severe group was significantly different from that of the safe and mild groups. Dose response curves for acetylcholine alone and in the presence of inhibitors remained unchanged. We did not observe differences in endothelium-dependent vasodilation after diving or in the presence of decompression sickness. Contractile response to phenylephrine was progressively impaired with increased decompression stress. These results may indicate smooth muscle injury. PMID:24258471

  2. Neuropeptide B and W regulate leptin and resistin secretion, and stimulate lipolysis in isolated rat adipocytes.

    PubMed

    Skrzypski, Marek; Pruszyńska-Oszmałek, Ewa; Ruciński, Marcin; Szczepankiewicz, Dawid; Sassek, Maciej; Wojciechowicz, Tatiana; Kaczmarek, Przemysław; Kołodziejski, Paweł A; Strowski, Mathias Z; Malendowicz, Ludwik K; Nowak, Krzysztof W

    2012-06-10

    Neuropeptide B (NPB) and W (NPW) regulate food intake and energy homeostasis in humans via two G-protein-coupled receptor subtypes, termed as GPR7 and GPR8. Rodents express GPR7 only. In animals, NPW decreases insulin and leptin levels, whereas the deletion of either NPB or GPR7 leads to obesity and hyperphagia. Metabolic and endocrine in vitro activities of NPW/NPB in adipocytes are unknown. We therefore characterize the effects of NPB and NPW on the secretion and expression of leptin and resistin, and on lipolysis, using rat adipocytes. Isolated rat adipocytes express GPR7 mRNA. NPB and NPW are expressed in macrophages and preadipocytes but are absent in mature adipocytes. Both, NPB and NPW reduce the secretion and expression of leptin from isolated rat adipocytes. NPB stimulates the secretion and expression of resistin, whereas both, NPB and NPW increase lipolysis. Our study demonstrates for the first time that NPB and NPW regulate the expression and secretion of leptin and resistin, and increase lipolysis in isolated rat adipocytes. These effects are presumably mediated via GPR7. The increase of resistin secretion, stimulation of lipolysis and the decrease of leptin secretion may represent mechanisms, through which NPB and NPW can affect glucose and lipid homeostasis, and food intake in rodents. PMID:22484289

  3. Myocardial pharmacokinetics of ebastine, a substrate for cytochrome P450 2J, in rat isolated heart

    PubMed Central

    Kang, W; Elitzer, S; Noh, K; Bednarek, T; Weiss, M

    2011-01-01

    BACKGROUND AND PURPOSE It is well established that cytochrome P450 2J (CYP2J) enzymes are expressed preferentially in the heart, and that ebastine is a substrate for CYP2J, but it is not known whether ebastine is metabolized in myocardium. Therefore, we investigated its pharmacokinetics in the rat isolated perfused heart. EXPERIMENTAL APPROACH Rat isolated hearts were perfused in the recirculating mode with ebastine for 130 min. The concentrations of ebastine and its metabolites, hydroxyebastine and carebastine, were measured using liquid chromatography with a tandem mass spectrometry. The data were analysed by a compartmental model. The time course of negative inotropic response was linked to ebastine concentration to determine the concentration–effect relationship. KEY RESULTS Ebastine was metabolized to an intermediate compound, hydroxyebastine, which was subsequently further metabolized to carebastine. No desalkylebastine was found. The kinetics of the sequential metabolism of ebastine was well described by the compartmental model. The EC50 of the negative inotropic effect of ebastine in rat isolated heart was much higher than free plasma concentrations in humans after clinical doses. CONCLUSIONS AND IMPLICATIONS The kinetics of ebastine conversion to carebastine via hydroxyebastine resembled that observed in human liver microsomes. The results may be of interest for functional characterization of CYP2J activity in rat heart. PMID:21410688

  4. NSAIDs acutely inhibit TRPC channels in freshly isolated rat glomeruli

    SciTech Connect

    Ilatovskaya, Daria V.; Institute of Cytology RAS, St. Petersburg ; Levchenko, Vladislav; Ryan, Robert P.; Cowley, Allen W.; Staruschenko, Alexander

    2011-05-06

    Highlights: {yields} We have established a unique approach to search for physiologically relevant mechanisms of TRPC channels in podocytes. {yields} This study describes endogenous TRPC channels in the isolated decapsulated glomeruli preparation. {yields} We report for the first time that NSAIDs inhibit TRPC channels in podocytes. -- Abstract: Using a novel approach for analysis of TRPC channel activity, we report here that NSAIDs are involved into regulation of TRPC channels in the podocytes of the freshly isolated decapsulated glomeruli. Fluorescence and electron microscopy techniques confirmed the integrity of podocytes in the glomeruli. Western blotting showed that TRPC1, 3 and 6 are highly expressed in the glomeruli. Single-channel patch clamp analysis revealed cation currents with distinct TRPC properties. This is the first report describing single TRPC-like currents in glomerular podocytes. Furthermore, our data provide a novel mechanism of NSAIDs regulation of TRPC channels, which might be implicated in maintaining the glomerular filtration barrier.

  5. Acetaldehyde inhibition of protein synthesis in isolated rat pancreatic acini

    SciTech Connect

    Majumdar, A.P.; Haiman, M.J.; Zylbert, B.A.; Billy, H.T.; Vesenka, G.D.; Geokas, M.C.

    1986-03-30

    Exposure of isolated dispersed pancreatic acini to increasing concentrations of ethanol (5 to 500 mM) or acetaldehyde (0.5 to 100 mM) produced a progressive inhibition of (3H)leucine incorporation into both cellular (those remaining in the cell) and secretory (those released into the medium) proteins. Whereas 500 mM ethanol caused 90-95% inhibition in the synthesis of cellular and secretory proteins, the concentration of acetaldehyde needed to produce a similar inhibition was found to be 50 mM. All subsequent experiments were performed with 12.5 mM acetaldehyde, a concentration that consistently inhibited acinar protein synthesis by about 50%. The acetaldehyde-mediated inhibition of acinar protein synthesis was partially normalized when this metabolite was removed after 30 min during a 90-min incubation period. In the presence of acetaldehyde, the secretion of 3H-pulse-labeled proteins, but not amylase, trypsinogen, or chymotrypsinogen, was greatly depressed. Acetaldehyde also caused a marked reduction in (3H)uridine incorporation into acinar RNA. The entry of (3H)uridine, (3H)leucine, and (3H)aminoisobutyric acid into isolated acini was found to be slightly (15-25%) decreased by acetaldehyde. It is concluded that acetaldehyde exerts a direct toxic effect on isolated dispersed pancreatic acini as evidenced by diminution of both protein and RNA synthesis and decreased secretion of the newly synthesized proteins. This inhibitory effect of acetaldehyde could be partially reversed.

  6. Chronic Psychosocial Stress Impairs Bone Homeostasis: A Study in the Social Isolation Reared Rat

    PubMed Central

    Schiavone, Stefania; Morgese, Maria G.; Mhillaj, Emanuela; Bove, Maria; De Giorgi, Angelo; Cantatore, Francesco P.; Camerino, Claudia; Tucci, Paolo; Maffulli, Nicola; Cuomo, Vincenzo; Trabace, Luigia

    2016-01-01

    Chronic psychosocial stress is a key player in the onset and aggravation of mental diseases, including psychosis. Although a strong association between this psychiatric condition and other medical co-morbidities has been recently demonstrated, few data on the link between psychosis and bone homeostasis are actually available. The aim of this study was to investigate whether chronic psychosocial stress induced by 4 or 7 weeks of social isolation in drug-naïve male Wistar rats could alter bone homeostasis in terms of bone thickness, mineral density and content, as well as markers of bone formation and resorption (sclerostin, cathepsin K, and CTX-I). We found that bone mineral density was increased in rats exposed to 7 weeks of social isolation, while no differences were detected in bone mineral content and area. Moreover, 7 weeks of social isolation lead to increase of femur thickness with respect to controls, suggesting the development of a hyperostosis condition. Isolated rats showed no changes in sclerostin levels, a marker of bone formation, compared to grouped animals. Conversely, bone resorption markers were significantly altered after 7 weeks of social isolation in terms of decrease in cathepsin K and increase of CTX-I. No alterations were found after 4 weeks of isolation rearing. Our observations suggest that chronic psychosocial stress might affect bone homeostasis, more likely independently from drug treatment. Thus, the social isolation model might help to identify possible new therapeutic targets to treat the burden of chronic psychosocial stress and to attempt alternative therapy choices. PMID:27375486

  7. Endophytic fungal metabolite fumigaclavine C causes relaxation of isolated rat aortic rings.

    PubMed

    Ma, Hsiao-Yen; Song, Yong-Chun; Mao, Ying-Ying; Jiang, Ji-Hong; Tan, Ren-Xiang; Luo, Lan

    2006-04-01

    Two indole alkaloids were isolated from the culture of Aspergillus fumigatus (strain No. CY018), an endophytic fungus harboring inside the elder leaf of Cynodon dactylon. These two chemicals were identified as fumigaclavine C and fumitremorgin C. In screening the bioactivity of these two indole alkaloids, their vasorelaxant effects on isolated rat thoracic aortic rings were observed. The results showed that fumigaclavine C exhibited potent concentration-dependent vasorelaxant actions in isolated rat aortic rings pre-contracted by high K+ or phenylephrine (with EC50 values of 5.62 micromol/L and 1.58 micromol/L, respectively) whereas fumitremorgin C displayed a weaker vasorelaxation. A detailed investigation was therefore performed with fumigaclavine C. The vasorelaxing action of fumigaclavine C is independent of the presence of endothelium, suggesting its effect of vasorelaxation was not related to endothelial mediators. Blockage of L-type voltage-dependent calcium channels, activation of ATP-sensitive potassium channels and inhibition of Ca2+ release from intracellular Ca2+ stores may be involved in fumigaclavine C induced relaxation of rat isolated aortic rings. These results demonstrate that fumigaclavine C from the endophytic fungus has a potential capacity in vascular protection and thus may have therapeutic use in protection against cardiovascular disease. PMID:16557450

  8. Application of retrograde dissection method for isolation of bone marrow cells from rat femurs and tibiae.

    PubMed

    Li, C M; Fu, B M; Zhang, L C; Tang, B; Zhu, L; Zhao, Y; Zhang, J

    2016-01-01

    Currently, there is no practical and efficient method for the isolation of bone marrow cells (BMCs) from rat femurs and tibiae. Here, we attempted to develop a rapid, simple, effective, and non-contaminating method for the isolation of BMCs from rat femurs and tibiae. Rat femurs and tibiae were dissected from the ankle to the hip joint; subsequently, a three-step "locate-slide-twist" procedure was performed using scissors and forceps to remove the femurs and tibiae completely, from the surrounding musculature. The bones were flushed with phosphate-buffered saline to harvest BMCs. The femurs and tibiae were dissected in 1.8 ± 0.6 min, and the BMC suspension preparation time was 13.1 ± 2.3 min. The bone marrow cavities did not incur any fractures or injuries during the isolation. Culture of harvested BMCs for 72 h led to a significant increase in cell number from 4.4 ± 0.3 x 106 to 6.9 ± 0.7 x 10(6) (P < 0.01) with no significant decrease in viability (98.1 ± 0.6% vs 96.2 ± 1.1%; P > 0.05). Microscopic examination of the isolated BMCs after the 72-h incubation period revealed the no-microbial or muscle cell contamination. Furthermore, flow cytometry revealed that cultured BMCs (72-h culture) grew well. Here, we have reported a rapid, simple, effective, and non-contaminating method for the isolation of BMCs from rat femurs and tibiae by using retrograde dissection. This method can be used to harvest a large number of viable BMCs without the risk of contamination from muscle and connective tissues. PMID:27323101

  9. Mechanical properties and reactivity of vessels in isolated perfused lungs of chronically hypoxic rats.

    PubMed

    Emery, C J; Bee, D; Barer, G R

    1981-11-01

    1. Chronically hypoxic rats kept in 10% (v/v) O2 for 3--6 weeks, were compared with littermate control rats. Pulmonary vascular resistance, measured from the slope of the pressure-flow relationship in isolated lungs perfused with blood of normal packed cell volume was higher in chronically hypoxic than control rats even during normoxia. 2. Chronically hypoxic rats weighed less than control rats but their pulmonary vascular volume, measured with labelled albumin was similar to control rats. This, together with evidence that the number of precapillary vessels is not reduced, does not suggest a large reduction in the vascular bed in chronic hypoxia. 3. A greater vasodilator action of isoprenaline and adenosine in chronically hypoxic than control lungs suggested a higher normoxic vascular tone. This higher tone was not the sole cause of increased resistance in chronically hypoxic lungs, since maximal vasodilatation did not reduce resistance to control levels. The chief cause was probably encroachment of new muscle on the vascular lumen of small vessels. 4. Pulmonary arterial compliance was reduced in chronically hypoxic lungs. 5. Reactivity of vessels to ventilation hypoxia, over a wide range of oxygen tension, to angiotensin II (ANG II) and to adenosine 5'-triphosphate (ATP) was significantly greater in chronically hypoxic than control lungs, but thresholds to these stimuli were not reduced. PMID:7285503

  10. Isolation and in vitro translation of mRNA from rat peritoneal mast cells and rat basophilic leukemia cells.

    PubMed

    Fujimaki, H; Lee, T D; Swieter, M; Saito, A; Tamaoki, T; Befus, A D

    1988-11-10

    In the absence of any specific literature on the isolation of RNA from mast cells, our initial attempts established that unusual measures would be needed to prepare acceptable yields of high quality RNA from peritoneal mast cells of normal adult rats. Accordingly, we developed procedures for the isolation and characterization of RNA from rat peritoneal mast cells (PMC) and basophilic leukemia cells (RBL). The significant components of the procedures include: separation and removal of mast cell granules to minimize contamination of RNA with proteins and proteoglycans; use of bentonite in phenol extractions; and repetition of extractions and precipitation. The amounts of total RNA extracted from PMC were about 15% of those from RBL, although the percentage mRNA of total RNA in PMC and RBL was similar (1.8 and 2.0%). Ribosomal RNA banding patterns in agarose gel electrophoresis and in vitro translation experiments indicate that the isolated RNA can be employed for analysis of molecular mechanisms of mast cell function and heterogeneity. PMID:3183393

  11. Unusual electrocardiographic presentation of right ventricular myocardial infarction.

    PubMed Central

    Wilson, J M; Kalife, G; Rogers, M; Strickman, N E; Massumi, A

    1996-01-01

    Isolated right ventricular infarction is uncommon, but when it occurs its prompt recognition may alter therapy substantially. Electrocardiographic changes accompanying acute right ventricular infarction are variable and may be difficult to recognize. The case of a 40-year-old man who had right ventricular infarction with unusual electrocardiographic findings is presented. The clinical, hemodynamic, and electrocardiographic findings of right ventricular infarction are discussed. Images PMID:8969034

  12. [Early social isolation increases aggression and impairs a short-term habituation in acoustic startle reflex in rats].

    PubMed

    Krupina, N A; Khlebnikova, N N; Orlova, I N

    2015-01-01

    Prolonged social isolation in early ontogeny leads to various changes in behavior and cognitive dysfunction in adult rats; however, data on the disorders are contradictory. In the present work, we studied the effects of early social isolation in Wistar rats by indices of psychomotor activity, aggression, anxiety, depression-like behavior, sensorimotor reactivity and short-term habituation of acoustic startle reflex. On the 24th postnatal day, rats were weaned from the dams and housed in individual cages for nine consecutive weeks. Animal behavior was evaluated at the age of one, two and three months. Immediately after weaning from the dam rats in the experimental group did not differ from the control on any of the indices. After four weeks of social isolation, rats showed an increased aggression in the social contact test. In rats isolated for an 8-weeks period, the increase in active non-aggressive contacts with a slight increase in motor activity in the elevated plus maze (E PM) accompanied increased aggression. At any terms of examination, isolated rats did not differ from the control in the anxiety in EPM, in the anxiety-phobic score, which is evaluated in a battery of tests, and in the duration of immobility which characterizes depression in the forced swimming test. Rats isolated for an 8-weeks period increased daily liquid intake by increasing the consumption of sucrose. After nine weeks of isolation, basal startle amplitude and prepulse inhibition that is, the characteristics of sensorimotor gating did not differ from the control, but there was a lack of short-term habituation of the acoustic startle reflex. Based on the data obtained, Wistar rats subjected to prolonged social isolation can be seen as a model of increased aggression with signs of cognitive deficits by indices of non-associative learning in the acoustic startle reflex. PMID:27116871

  13. Intracellular Ca2+ Transient Phase II Can be Assessed by Half-Logistic Function Model in Isolated Aequorin-Injected Mouse Left Ventricular Papillary Muscle

    PubMed Central

    Mizuno, Ju; Otsuji, Mikiya; Arita, Hideko; Hanaoka, Kazuo; Yokoyama, Takeshi

    2013-01-01

    Background Myocardial contraction and relaxation are regulated by increases and decreases in intracellular cytoplasmic calcium (Ca2+) concentration ([Ca2+]i). In previous studies, we found that a half-logistic (h-L) function, which represents a half-curve of a symmetrical sigmoid logistic function with a boundary at the inflection point, curve-fits the first half of the ascending phase (CaTI) and the second half of the descending phase of the [Ca2+]i transient curve (CaTIV) better than a mono-exponential (m-E) function. In the present study, we investigated the potential application of an h-L function to the analysis of the second half of the ascending phase of the [Ca2+]i transient curve (CaTII). Methods The [Ca2+]i transient was measured using the Ca2+-sensitive photoprotein aequorin, which was microinjected into 15 isolated left ventricular (LV) papillary muscles of mice. The observed CaTII data during the time duration from the point corresponding to the maximum of the first-order time derivative of Ca2+ concentration (dCa/dtmax) to the point corresponding to the peak Ca2+ concentration was curve-fitted by the least-squares method using the h-L and m-E function equations. Results The mean correlation coefficient (r) values of the h-L and m-E curve-fits for CaTII were 0.9996 and 0.9984, respectively. The Z transformation of h-L r was larger than that of m-E r (p < 0.0001). H-L residual mean square (RMS) was smaller than m-E RMS (p < 0.001). Conclusions The h-L function tracks the magnitudes and time courses of CaTII more accurately than the m-E function in isolated aequorin-injected mouse LV papillary muscle. Compared with the m-E time constant, the h-L time constant of CaTII is a more reliable index for evaluating the time duration of the change in the increase in [Ca2+]i during the combination of the middle part of the contraction process and the early part of the relaxation process. CaTII can be assessed by the h-L function model in cardiac muscles. The h

  14. Arrhythmogenic Right Ventricular Dysplasia

    MedlinePlus

    MENU Return to Web version Arrhythmogenic Right Ventricular Dysplasia Overview What is arrhythmogenic right ventricular dysplasia? Arrhythmogenic right ventricular dysplasia (say: “uh-rith-mo-jen-ic right ven-trick- ...

  15. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia

    PubMed Central

    2011-01-01

    Background Diabetes mellitus is strongly associated with cardiovascular dysfunction, derived in part from impairment of sympathetic nervous system signaling. Glucose, insulin, and non-esterified fatty acids are potent stimulants of sympathetic activity and norepinephrine (NE) release. We hypothesized that sustained hyperglycemia in the high fat diet-fed streptozotocin (STZ) rat model of sustained hyperglycemia with insulin resistance would exhibit progressive sympathetic nervous dysfunction in parallel with deteriorating myocardial systolic and/or diastolic function. Methods Cardiac sympathetic nervous integrity was investigated in vivo via biodistribution of the positron emission tomography radiotracer and NE analogue [11C]meta-hydroxyephedrine ([11C]HED). Cardiac systolic and diastolic function was evaluated by echocardiography. Plasma and cardiac NE levels and NE reuptake transporter (NET) expression were evaluated as correlative measurements. Results The animal model displays insulin resistance, sustained hyperglycemia, and progressive hypoinsulinemia. After 8 weeks of persistent hyperglycemia, there was a significant 13-25% reduction in [11C]HED retention in myocardium of STZ-treated hyperglycemic but not euglycemic rats as compared to controls. There was a parallel 17% reduction in immunoblot density for NE reuptake transporter, a 1.2 fold and 2.5 fold elevation of cardiac and plasma NE respectively, and no change in sympathetic nerve density. No change in ejection fraction or fractional area change was detected by echocardiography. Reduced heart rate, prolonged mitral valve deceleration time, and elevated transmitral early to atrial flow velocity ratio measured by pulse-wave Doppler in hyperglycemic rats suggest diastolic impairment of the left ventricle. Conclusions Taken together, these data suggest that sustained hyperglycemia is associated with elevated myocardial NE content and dysregulation of sympathetic nervous system signaling in the absence of

  16. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    SciTech Connect

    Sun, Yi-hua; Li, Yong-quan; Feng, Shan-li; Li, Bao-xin; Pan, Zhen-wei; Xu, Chang-qing; Li, Ting-ting; Yang, Bao-feng

    2010-04-16

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca{sup 2+} stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca{sup 2+} imaging, we found that the depletion of ER/SR Ca{sup 2+} stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca{sup 2+} ([Ca{sup 2+}]{sub i}), followed by sustained increase depending on extracellular Ca{sup 2+}. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na{sup +}/Ca{sup 2+} exchanger inhibitors, inhibited [Ca{sup 2+}]{sub i} relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl{sub 3}) or by an increased extracellular Ca{sup 2+}([Ca{sup 2+}]{sub o}) increased the concentration of intracelluar Ca{sup 2+}, whereas, the sustained elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of SKF96365. Similarly, the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of extracellular Ca{sup 2+}. Western blot analysis showed that GdCl{sub 3} increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl{sub 3}. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca{sup 2+}-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  17. Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds.

    PubMed

    Kishimoto, Yo; Kishimoto, Ayami Ohno; Ye, Shuyun; Kendziorski, Christina; Welham, Nathan V

    2016-07-01

    Following injury, pathologically activated vocal fold fibroblasts (VFFs) can engage in disordered extracellular matrix (ECM) remodeling, leading to VF fibrosis and impaired voice function. Given the importance of scar VFFs to phenotypically appropriate in vitro modeling of VF fibrosis, we pursued detailed characterization of scar VFFs obtained from surgically injured rat VF mucosae, compared with those obtained from experimentally naïve, age-matched tissue. Scar VFFs initially exhibited a myofibroblast phenotype characterized by increased proliferation, increased Col1a1 transcription and collagen, type I synthesis, increased Acta2 transcription and α-smooth muscle actin synthesis, and enhanced contractile function. These features were most distinct at passage 1 (P1); we observed a coalescence of the scar and naïve VFF phenotypes at later passages. An empirical Bayes statistical analysis of the P1 cell transcriptome identified 421 genes that were differentially expressed by scar, compared with naïve, VFFs. These genes were primarily associated with the wound response, ECM regulation, and cell proliferation. Follow-up comparison of P1 scar VFFs and their in vivo tissue source showed substantial transcriptomic differences. Finally, P1 scar VFFs responded to treatment with hepatocyte growth factor and transforming growth factor-β3, two biologics with reported therapeutic value. Despite the practical limitations inherent to working with early passage cells, this experimental model is easily implemented in any suitably equipped laboratory and has the potential to improve the applicability of preclinical VF fibrosis research. PMID:27111284

  18. The isolation and properties of phenylalanine hydroxylase from rat liver

    PubMed Central

    Gillam, Shirley Su; Woo, Savio L. C.; Woolf, Louis I.

    1974-01-01

    Phenylalanine hydroxylase was prepared from rat liver and purified 200-fold to about 90% purity. All the enzymic activity of the liver appeared in a single protein of mol.wt. approx. 110000, but omission of dithiothreitol and of a preliminary filtration step to remove lipids resulted in partial conversion into a second enzymically active protein of mol.wt. approx. 250000. The Km and Vmax. values of the enzyme for phenylalanine, p-fluorophenylalanine and dimethyltetrahydropterin were measured; p-chlorophenylalanine inhibited the enzyme by competing with phenylalanine. Disc gel electrophoresis at pH7.2 showed a single protein band containing all the enzymic activity, but at pH8.7 the enzyme dissociated into two inactive fragments of similar but not identical molecular weight. The molecule of phenylalanine hydroxylase contained two atoms of iron, one atom of copper and one molecule of FAD; molybdenum was absent. Treatment with chelating agents showed that both non-haem iron and copper were necessary for enzymic activity. The molecule contained five thiol groups, and thiol-binding reagents inhibited the enzyme. Catalase or peroxidase enhanced enzymic activity fivefold; it is postulated that catalase (or other peroxidase) plays a part in the hydroxylation reaction independent of the protection by catalase of enzyme and cofactor from inactivation by a hydroperoxide. PMID:4854920

  19. Electrical Properties of Isolated Cardiomyocytes in a Rat Model of Thiamine Deficiency

    PubMed Central

    Santos-Miranda, Artur; Cruz, Jader Santos; Roman-Campos, Danilo

    2015-01-01

    In modern society, thiamine deficiency (TD) remains an important medical condition linked to altered cardiac function. There have been contradictory reports about the impact of TD on heart physiology, especially in the context of cardiac excitability. In order to address this particular question, we used a TD rat model and patch-clamp technique to investigate the electrical properties of isolated cardiomyocytes from epicardium and endocardium. Neither cell type showed substantial differences on the action potential waveform and transient outward potassium current. Based on our results we can conclude that TD does not induce major electrical remodeling in isolated cardiac myocytes in either endocardium or epicardium cells. PMID:25884771

  20. Contraceptive studies of isolated fractions of Cuminum cyminum in male albino rats.

    PubMed

    Saxena, Poonam; Gupta, Rajnish; Gupta, R S

    2015-01-01

    The contraceptive efficacy of Cuminum cyminum isolated fractions (CcFr) in male albino rats was investigated. Oral dose of CcFr at 50 mg/rat/day for 60 days revealed no significant changes in body weight, while marked abnormalities in spermatogenesis were observed with decreased counts (P ≤ 0.001) in round spermatids, preleptotene spermatocytes and secondary spermatocytes. Cross sectional surface area of Sertoli cells as well as number of mature Leydig cell were decreased significantly (P ≤ 0.001). Testicular as well as accessory sex organ biochemical parameters were significantly changed (P ≤ 0.001). Sperm motility, density and morphology were resulted in 100% negative fertility. Testosterone levels were declined significantly. In conclusion, Cuminum cyminum inhibited spermatogenesis in rats, indicating the possibility of developing an herbal male contraceptive. PMID:25675391

  1. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. PMID:25935538

  2. The relative activities of some tryptamine analogues on the isolated rat stomach strip preparation

    PubMed Central

    Vane, J. R.

    1959-01-01

    The relative potencies of analogues of tryptamine and 5-hydroxytryptamine have been determined on the rat fundus preparation. This tissue had an amine oxidase activity, which, in the homogenate, was able to inactivate both tryptamine and 5-hydroxytryptamine to about the same degree. Amine oxidase inhibitors potentiated the action of tryptamine and many analogues on the isolated rat fundus preparation, but not the action of 5-hydroxytryptamine or of other hydroxytryptamines. This suggested that, in the isolated organ, the amine oxidase was unable to inactivate 5-hydroxytryptamine, but could inactivate tryptamine, 5-methoxytryptamine and many others. These results may be explained if it is supposed that tryptamine entered the cell, but because of the polar hydroxyl group 5-hydroxytryptamine did not. This hypothesis is supported by the oil/water partition coefficients. The structure/activity of the various tryptamine derivatives is discussed in the light of this assumption. PMID:13651584

  3. Effect on the White Rat Uterus of a Toxic Substance Isolated from Fusarium1

    PubMed Central

    Christensen, C. M.; Nelson, G. H.; Mirocha, C. J.

    1965-01-01

    Eighty-five fungi isolated from prepared feed and from corn collected on farms were grown separately in moist autoclaved corn. The corn was fed to virgin weanling rats for 5 to 12 days; the rats were then killed, and their uteri were removed and weighed. Twelve isolates of Fusarium from corn and one from poinsettias caused increases of five to eight times in weight of the uterus as compared with controls that were fed sound corn. The greatest increase in weight of the uterus was caused by corn inoculated with Fusarium No. 5 incubated for 21 days at 20 to 25 C followed by 14 days at 12 C. Extraction of this corn with methylene chloride, separation into fractions by means of a silicic acid column, and further purification by thin-layer chromatography yielded a compound with ultraviolet-absorption maxima at 314, 274, and 236 mμ. Images Fig. 1 Fig. 2 PMID:5893805

  4. Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart

    SciTech Connect

    Nguyen, N.T.B.; DeGrado, T.R.; Chakraborty, P.

    1997-05-01

    The kinetics of EPI were studied in the isolated rat heart model to evaluate {sup 11}C-epinephrine (EPI) as a radiotracer for the assessment of sympathetic neuronal function in the heart. Isolated rat hearts were perfused in a working mode. Carbon-11-EPI was added to the perfusate during wash-in period of 20 min, followed by a washout period of 40 min. Radioactivity in the heart was externally monitored and time-activity curves were recorded as a function of time. Effluent samples were collected throughout each study to determine the fraction of {sup 11}C radioactivity as intact tracer. Time-activity curves of control hearts showed that {sup 11}C-EPI is taken up and retained by the myocardium. Desipramine inhibition (DMI) of uptake-1 resulted in a significant decrease in myocardial uptake and retention of {sup 11}C-EPI by 91% compared to controls. Addition of DMI to the perfusion medium during washout did not affect kinetics of {sup 11}C-EPI compared to control hearts. Reserpine pretreated rat hearts also showed significant decrease in tracer retention of 95% compared to controls. The metabolic data showed that, in control conditions, about 61% of {sup 11}C-EPI taken up by the rat heart is rapidly metabolized and released. Carbon-11-EPI traces sympathetic nerve terminals in the isolated rat heart. Uptake blockade by DMI and reserpine suggest that uptake and storage of {sup 11}C-EPI appear to be similar to that of norepinephrine. However, the prominent metabolic pathway warrants further consideration. These results suggest that {sup 11}C-EPI may be a suitable radiolabeled tracer for the evaluation of sympathetic vesicular function of the heart by PET. 23 refs., 3 figs., 3 tabs.

  5. Effect of glucagon on intracellular pH regulation in isolated rat hepatocyte couplets.

    PubMed Central

    Alvaro, D; Della Guardia, P; Bini, A; Gigliozzi, A; Furfaro, S; La Rosa, T; Piat, C; Capocaccia, L

    1995-01-01

    To elucidate mechanisms of glucagon-induced bicarbonate-rich choleresis, we investigated the effect of glucagon on ion transport processes involved in the regulation of intracellular pH (pHi) in isolated rat hepatocyte couplets. It was found that glucagon (200 nM), without influencing resting pHi, significantly stimulates the Cl-/HCO3- exchange activity. The effect of glucagon was associated with a sevenfold increase in cAMP levels in rat hepatocytes. The activity of the Cl-/HCO3- exchanger was also stimulated by DBcAMP + forskolin. The effect of glucagon on the Cl-/HCO3- exchange was individually blocked by two specific and selective inhibitors of protein kinase A, Rp-cAMPs (10 microM) and H-89 (30 microM), the latter having no influence on the glucagon-induced cAMP accumulation in isolated rat hepatocytes. The Cl- channel blocker, NPPB (10 microM), showed no effect on either the basal or the glucagon-stimulated Cl-/HCO3 exchange. In contrast, the protein kinase C agonist, PMA (10 microM), completely blocked the glucagon stimulation of the Cl-/HCO3- exchange; however, this effect was achieved through a significant inhibition of the glucagon-stimulated cAMP accumulation in rat hepatocytes. Colchicine pretreatment inhibited the basal as well as the glucagon-stimulated Cl-/HCO3- exchange activity. The Na+/H+ exchanger was unaffected by glucagon either at basal pHi or at acid pHi values. In contrast, glucagon, at basal pHi, stimulated the Na(+)-HCO3- symport. The main findings of this study indicate that glucagon, through the cAMP-dependent protein kinase A pathway, stimulates the activity of the Cl-/HCO3- exchanger in isolated rat hepatocyte couplets, a mechanism which could account for the in vivo induced bicarbonate-rich choleresis. Images PMID:7635959

  6. Vasorelaxant action of aqueous extract of the leaves of Persea americana on isolated thoracic rat aorta.

    PubMed

    Owolabi, Mbang A; Jaja, Smith I; Coker, Herbert A B

    2005-09-01

    The present study investigated the vasorelaxant action of the aqueous leaves extract of Persea americana on isolated rat aorta. The results showed that the extract produced significant vasorelaxation and that the effect is dependent on the synthesis or release of endothelium-derived relaxing factors (EDRFs) as well as the release of prostanoid. The extract also reduced vasoconstriction probably by inhibiting Ca2+ influx through calcium channels. PMID:15990249

  7. Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    SciTech Connect

    Goliaei, B.

    1980-08-01

    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB)

  8. Triacylglycerol metabolism in isolated rat kidney cortex tubules.

    PubMed

    Wirthensohn, G; Guder, W G

    1980-01-15

    Triacylglycerol metabolism has been studied in kidney cortex tubules from starved rats, prepared by collagenase treatment. Triacylglycerol was determined by a newly developed fully enzymic method. Incubation of tubules in the absence of fatty acids led to a decrease of endogenous triacylglycerol by about 50% in 1h. Addition of albuminbound oleate or palmitate resulted in a steady increase of tissue triacylglycerol over 2h. The rate of triacylglycerol synthesis was linearly dependent on oleate concentration up to 0.8mm, reaching a saturation at higher concentrations. Triacylglycerol formation from palmitate was less than that from oleate. This difference was qualitatively the same when net synthesis was compared with incorporation of labelled fatty acids. Quantitatively, however, the difference was less with the incorporation technique. Gluconeogenic substrates, which by themselves had no effect on triacylglycerol concentrations, stimulated neutral lipid formation from fatty acids. Glucose and lysine did not have such a stimulatory effect. Inhibition of gluconeogenesis from lactate by mercaptopicolinic acid likewise inhibited triacylglycerol formation. This inhibitory effect was seen with oleate as well as with oleate plus lactate. When [2-(14)C]lactate was used the incorporation of label into triacylglycerol was found in the glycerol moiety exclusively. Addition of dl-beta-hydroxybutyrate (5mm) to the incubation medium in the presence of oleate or oleate plus lactate led to a significant increase in triacylglycerol formation. In contrast with the gluconeogenic substrates, dl-beta-hydroxybutyrate had no stimulatory effect on fatty acid uptake. The results suggest that renal triacylglycerol formation is a quantitatively important metabolic process. The finding that gluconeogenic substrates, but not glucose, increase lipid formation, indicates that the glycerol moiety is formed by glyceroneogenesis in the proximal tubules. The effect of ketone bodies seems to be

  9. Protective effect of apigenin on ischemia/reperfusion injury of the isolated rat heart.

    PubMed

    Hu, Jing; Li, Zilin; Xu, Li-ting; Sun, Ai-jun; Fu, Xiao-yan; Zhang, Li; Jing, Lin-lin; Lu, An-dong; Dong, Yi-fei; Jia, Zheng-ping

    2015-07-01

    Apigenin (Api), a mainly bioactive component of Apium graveolens L. var. dulce DC. (a traditional Chinese medicinal herb), possesses a wide range of biological activities, including antioxidant effects. It also has been shown to associate with lower prevalence of cardiovascular diseases, but its mechanisms of action remain unclear. The aim of the present study is to investigate the role of Api in isolated rat heart model of ischemia/reperfusion (I/R). Langendorff-perfused isolated rat hearts were used in our study. Api was added to the perfusate before ischemia and during reperfusion in the isolated pulsed rat heart exposed to 30-min ischemia followed by 50-min reperfusion. The treatment with Api conferred a cardioprotective effect, and the treated hearts demonstrated an improved ischemic cardiac functional recovery, a decreased myocardial infarct size, a reduced activities of creatine kinase isoenzyme and lactate dehydrogenase in the coronary flow, a reduced number of apoptotic cardiomyocytes, a reduced activity of caspase-3, up-regulation of the anti-apoptotic protein Bcl-2 and down-regulation of the pro-apoptotic protein Bax. In addition, Api inhibited the phosphorylation of p38 MAPKS during I/R. In conclusion, these observations provide preliminary evidence that Api can protect cardiomyocytes from I-/R-induced injury, at least partially, through the inhibition of p38 MAPKS signaling pathway. PMID:25377428

  10. Spasmolytic effect of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract on rat isolated uterine horns.

    PubMed

    Chiwororo, Witness D H; Ojewole, John A O

    2009-02-01

    Globally, primary dysmenorrhoea is one of the most frequent gynaecological disorders in young women. It is associated with increased uterine tone, and exaggerated contractility of uterine smooth muscles. In many rural African communities, a number of medicinal plants, including Psidium guajava Linn. (family: Myrtaceae), are used traditionally for the management, control and/or treatment of primary dysmenorrhoea. The present study was, therefore, undertaken to examine the spasmolytic effect of Psidium guajava leaf aqueous extract (PGE) on isolated, spontaneously-contracting and oestrogen-dominated, quiescent uterine horns of healthy, young adult, female Wistar rats. Graded, escalated concentrations of PGE (0.5-4.0 mg/ml) produced concentration-dependent and significant inhibitions of the amplitude of spontaneous phasic contractions of the isolated rat uterine horn preparations. In a concentration-related manner, PGE also significantly inhibited or abolished contractions produced by acetylcholine (ACh, 0.5-8.0 microg/ml), oxytocin (0.5-4.0 microU), bradykinin (2.5-10 ng/ml), carbachol (CCh, 0.5-8.0 microg/ml) or potassium chloride (K+, 10-80 mM) in quiescent uterine horn preparations isolated from the oestrogen-dominated rats. The spasmolytic effect of PGE observed in the present study lends pharmacological support to the traditional use of ;guava' leaves in the management, control and/or treatment of primary dysmenorrhoea in some rural African communities. PMID:19377271

  11. A novel highly selective adenosine A1 receptor agonist VCP28 reduces ischemia injury in a cardiac cell line and ischemia-reperfusion injury in isolated rat hearts at concentrations that do not affect heart rate.

    PubMed

    Urmaliya, Vijay B; Pouton, Colin W; Devine, Shane M; Haynes, John M; Warfe, Lyndon; Scammells, Peter J; White, Paul J

    2010-09-01

    The cardioprotective effects of a novel adenosine A1 receptor agonist N6-(2,2,5,5-tetramethylpyrrolidin-1-yloxyl-3-ylmethyl) adenosine (VCP28) were compared with the selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) in a H9c2(2-1) cardiac cell line-simulated ischemia (SI) model (12 hours) and a global ischemia (30 minutes) and reperfusion (60 minutes) model in isolated rat heart model. H9c2(2-1) cells were treated with CPA and VCP28 at the start of ischemia for entire ischemic duration, whereas isolated rat hearts were treated at the onset of reperfusion for 15 minutes. In the H9c2(2-1) cells SI model, CPA and VCP28 (100 nM) significantly (P < 0.05, n = 5-6) reduced the proportion of nonviable cells (30.88% +/- 2.49% and 16.17% +/- 3.77% of SI group, respectively) and lactate dehydrogenase efflux. In isolated rat hearts, CPA and VCP28 significantly (n = 6-8, P < 0.05) improved post-ischemic contractility (dP/dt(max), 81.69% +/- 10.96%, 91.07% +/- 19.87% of baseline, respectively), left ventricular developed pressure, and end diastolic pressure and reduced infarct size. The adenosine A1 receptor antagonist abolished the cardioprotective effects of CPA and VCP28 in SI model and isolated rat hearts. In conclusion, the adenosine A1 receptor agonist VCP28 has equal cardioprotective effects to the prototype A1 agonist CPA at concentrations that have no effect on heart rate. PMID:20571427

  12. Characterization of ascorbic acid uptake by isolated rat kidney cells

    SciTech Connect

    Bowers-Komro, D.M.; McCormick, D.B. )

    1991-01-01

    Isolated kidney cells accumulated L(1-14C)ascorbic acid in a time-dependent manner and reached a steady state after 15 min at 37 degrees C. Initial velocity for uptake was over 300 pmol/mg protein per min when cells were separated from the bathing solution using a density gradient established during centrifugation. The uptake process was saturable with an apparent concentration at half maximal uptake of 36 mumols/L. Ascorbate uptake was reduced by metabolic inhibitors and was temperature dependent. Although ascorbic acid is an acid anion at pH 7.4, uptake did not appear to be inhibited by other acid anions such as p-aminohippurate and probenecid; however, involvement of the ion gradient established by Na+, H(+)-adenosine triphosphatase could not be confirmed. Replacing the sodium ion with other monovalent ions reduced the accumulation of ascorbate significantly. Isoascorbic and dehydroascorbic acids inhibited ascorbate uptake (34 and 13 mmol/L, respectively), whereas high concentrations of glucose showed some stimulation. These findings indicated that ascorbic acid is reabsorbed by the kidney in a sodium-dependent active transport process that is not common to other acid anions and has some specificity for the ascorbic acid structure.

  13. Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins*

    PubMed Central

    Yu, Li-na; Yu, Jing; Zhang, Feng-jiang; Yang, Mei-juan; Ding, Ting-ting; Wang, Jun-kuan; He, Wei; Fang, Tao; Chen, Gang; Yan, Min

    2010-01-01

    Sevoflurane postconditioning reduces myocardial infarct size. The objective of this study was to examine the role of the phosphatidylinositol-3-kinase (PI3K)/Akt pathway in anesthetic postconditioning and to determine whether PI3K/Akt signaling modulates the expression of pro- and antiapoptotic proteins in sevoflurane postconditioning. Isolated and perfused rat hearts were prepared first, and then randomly assigned to the following groups: Sham-operation (Sham), ischemia/reperfusion (Con), sevoflurane postconditioning (SPC), Sham plus 100 nmol/L wortmannin (Sham+Wort), Con+Wort, SPC+Wort, and Con+dimethylsulphoxide (DMSO). Sevoflurane postconditioning was induced by administration of sevoflurane (2.5%, v/v) for 10 min from the onset of reperfusion. Left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), maximum increase in rate of LVDP (+dP/dt), maximum decrease in rate of LVDP (−dP/dt), heart rate (HR), and coronary flow (CF) were measured at baseline, R30 min (30 min of reperfusion), R60 min, R90 min, and R120 min. Creatine kinase (CK) and lactate dehydrogenase (LDH) were measured after 5 min and 10 min reperfusion. Infarct size was determined by triphenyltetrazolium chloride staining at the end of reperfusion. Total Akt and phosphorylated Akt (phospho-Akt), Bax, Bcl-2, Bad, and phospho-Bad were determined by Western blot analysis. Analysis of variance (ANOVA) and Student-Newman-Keuls’ test were used to investigate the significance of differences between groups. The LVDP, ±dP/dt, and CF were higher and LVEDP was lower in the SPC group than in the Con group at all points of reperfusion (P<0.05). The SPC group had significantly reduced CK and LDH release and decreased infarct size compared with the Con group [(22.9±8)% vs. (42.4±9.4)%, respectively; P<0.05]. The SPC group also had increased the expression of phosphor-Akt, Bcl-2, and phospho-Bad, and decreased the expression of Bax. Wortmannin abolished the

  14. Negative visuospatial priming in isolation-reared rats: Evidence of resistance to the disruptive effects of amphetamine.

    PubMed

    Amitai, Nurith; Powell, Susan; Weber, Martin; Swerdlow, Neal R; Young, Jared W

    2015-12-01

    Negative visuospatial priming (NP) represents a quantifiable measure of inhibitory information processing that is disrupted in several neurodevelopmental and psychiatric disorders, including schizophrenia. We developed a novel rodent NP task to investigate mechanisms underlying NP and its role in various disorders, and to test potential therapeutics. In the present studies, we further characterized this novel paradigm by investigating whether NP is disrupted in rats reared in isolation, a developmental manipulation that produces a range of abnormalities in behavior, neurochemistry, and brain structure that mirror aspects of schizophrenia pathology. We also further explored the role of monoaminergic signaling in NP and the effects of isolation rearing by challenging both socially reared and isolation-reared rats with D-amphetamine during the NP task. Although fewer isolation-reared animals learned the complex NP task, those that learned exhibited unaffected NP compared with socially reared rats. Consistent with previous reports, D-amphetamine impaired NP and increased motor impulsivity in socially reared rats. In contrast, D-amphetamine did not affect NP or motor impulsivity in isolation-reared rats. These data confirm a monoaminergic influence on NP behavior and indicate that rats reared in isolation have altered dopaminergic sensitivity. PMID:26220402

  15. Caveolin Contributes to the Modulation of Basal and β-Adrenoceptor Stimulated Function of the Adult Rat Ventricular Myocyte by Simvastatin: A Novel Pleiotropic Effect

    PubMed Central

    Agarwal, Shailesh R.; Harvey, Robert D.; Porter, Karen E.; Calaghan, Sarah

    2014-01-01

    The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system (‘pleiotropic effects’). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 µM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2+]i) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16 and troponin I at Ser23/24 was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered β-adrenoceptor signalling. In addition

  16. Pharmacological profile of the ATP-mediated increase in L-type calcium current amplitude and activation of a non-specific cationic current in rat ventricular cells.

    PubMed Central

    Scamps, F; Vassort, G

    1994-01-01

    1. The pharmacological profile of the ATP-induced increase in ICa amplitude and of ATP activation of a non-specific cationic current, IATP, was investigated in rat ventricular cells. 2. The EC50 values for ICa increase and IATP activation were 0.36 microM and 0.76 microM respectively. Suramin (10 microM) and cibacron blue (1 microM) competitively antagonized both effects of ATP. 3. The rank order of efficacy and potency of ATP analogues in increasing ICa amplitude was 2-methylthio-ATP approximately ATP approximately ATP gamma S. The derivatives alpha,beta-methylene-ATP, beta,gamma-methylene-ATP and beta,gamma-imido-ATP up to 500 microM had no significant effects. 4. The rank order of efficacy of ATP analogues in activating a non-specific cationic current, IATP, was 2-methylthio-ATP > ATP >> ATP gamma S. The rank order of potency was 2-methylthio-ATP approximately ATP. The EC50 of ATP gamma S could not be determined owing to its very low efficacy. 5. The ATP analogues alpha,beta-methylene-ATP, beta,gamma-methylene-ATP and beta,gamma-imido-ATP at 500 microM did not activate IATP but acted as antagonists of activation of IATP by ATP. 6. The results suggest that the increase in ICa amplitude induced by external ATP is due to activation of P2Y-purinoceptors. 7. The mechanism of IATP activation remains to be determined before the receptor subtype involved can be deduced. PMID:7858894

  17. Prevalence, Patterns, and Clinical Predictors of Left Ventricular Late Gadolinium Enhancement in Patients Undergoing Cardiac Magnetic Resonance Prior to Pulmonary Vein Antral Isolation for Atrial Fibrillation

    PubMed Central

    Nance, John W.; Khurram, Irfan M.; Nazarian, Saman; DeWire, Jane; Calkins, Hugh; Zimmerman, Stefan L.

    2015-01-01

    Abstract Cardiac magnetic resonance (CMR) imaging is increasingly used to evaluate patients with atrial fibrillation (AF) before pulmonary vein antral isolation (PVAI). The purpose of this study was to assess the incidence and pattern of left ventricular (LV) late gadolinium enhancement (LGE) in patients undergoing CMR before PVAI and compare the clinical and demographic differences of patients with and without LV LGE. Clinical and demographic data on 62 patients (mean age 61 ± 7.9, 69% male) undergoing CMR before PVAI for AF were collected. Two observers, masked to clinical histories, independently recorded the prevalence, extent (number of myocardial segments), and pattern (subendocardial, midmyocardial, or subepicardial) of LV LGE in each patient. Clinical and demographic predictors of LV LGE were determined using logistic regression. Twenty-three patients (37%) demonstrated LV LGE affecting a mean of 3.0 ± 2.1 myocardial segments. There was no difference in LV ejection fraction between patients with and without LGE, and most (65%) patients with LGE had normal wall motion. Only age (P = 0.04) and a history of congestive heart failure (P = .03) were statistically significant independent predictors of LGE. The most common LGE pattern was midmyocardial, seen in 17 of 23 (74%) patients. Only 4 of 23 (17%) patients had LGE in an “expected” pattern based on clinical history. Of the remaining 19 patients, 4 had known congestive heart failure, 5 nonischemic cardiomyopathy, 4 known coronary artery disease, and 2 prior aortic valve replacement. Six of 23 (26%) patients had no known coronary artery, valvular, or myocardial disease. There is a high prevalence of unexpected LV scar in patients undergoing CMR before PVAI for AF, with most patients demonstrating a nonischemic pattern of LV LGE and no wall motion abnormalities (ie, subclinical disease). The high prevalence of unexpected LGE in these patients may argue for CMR as the modality of choice for

  18. Decreased activity of hepatic P-glycoprotein in the isolated perfused liver of the adjuvant arthritis rat.

    PubMed

    Achira, M; Totsuka, R; Kume, T

    2002-11-01

    1. We investigated the hepatobiliary transport of doxorubicin in the isolated perfused liver prepared from the adjuvant arthritis rat, an animal model for rheumatoid arthritis, to examine the hepatic P-glycoprotein activity in the adjuvant arthritis rat. 2. Liver was isolated from the normal and the adjuvant arthritis rat and perfused for 60 min with recirculating buffer and the perfusate and bile samples were collected at timed interval. 3. The elimination of doxorubicin in the adjuvant arthritis rat tended to be reduced, but it was not significantly different from the normal rat. Biliary clearance (CL(bile)) in the normal rat was 1.93 +/- 0.48 ml min(-1), whereas, CL(bile) in the adjuvant arthritis rat was significantly decreased to 0.40 +/- 0.13 ml min(-1). 4. CL(bile) was markedly decreased to about 0.15 ml min(-1) in the presence of 100 microM verapamil in both types of rat. Methotrexate treatment had no effect on CL(bile) in both the normal and adjuvant arthritis rat (2.18 +/- 0.22 and 0.47 +/- 0.22 ml min(-1), respectively). 5. The results suggest that the hepatic P-glycoprotein activity was markedly decreased in the adjuvant arthritis rat and the effect of methotrexate on the hepatic P-glycoprotein activity did not corresponded to its anti-inflammatory effect. PMID:12487726

  19. Influence of microwaves on the beating rate of isolated rat hearts

    SciTech Connect

    Yee, K.C.; Chou, C.K.; Guy, A.W.

    1988-01-01

    Previous reports have shown that microwave exposure can decrease the beating rate of isolated rat hearts. These experiments were conducted at room temperature and with the hearts exposed to air. We observed arrhythmia frequently at room temperature, and the variation of heart beat was so large that it makes the results difficult to reproduce. Therefore, we employed a double-circulating system to provide perfusion through the coronary artery and around the outside of the heart to maintain the rat hearts at 37.7 degrees C. No arrhythmias were observed in our experiments, and the hearts were beating for at least 1 h. The effects of 16-Hz modulated 2,450-MHz pulsed microwaves (10 microseconds, 100 pps) on the beating rate of 50 isolated rat hearts were studied. Results showed no statistically significant changes of heart rate in exposed groups at SARs of 2 and 10 W/kg compared with the control group. The effect seen at 200 W/kg was shown to be similar to that resulting from heating the heart.

  20. Isolation and identification of phase 1 metabolites of curcuminoids in rats.

    PubMed

    Li, Jun; Liu, Yue; Wei, Jun-Qi; Wang, Kun; Chen, Li-Xia; Yao, Xin-Sheng; Qiu, Feng

    2012-08-01

    Curcuminoids are natural food coloring additives with anti-inflammatory, antioxidant, and anticarcinogenic activity, which contain mainly three diarylheptanoids: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. In this paper, the metabolites of curcuminoids in the feces and urine of rats after oral administration by gavage were investigated. Four new metabolites, 3-hydroxy-[1-(4-hydroxyphenyl)-7-(3-hydroxyphey)] heptane-A (M1), 3-hydroxy-[1-(4-hydroxyphenyl)-7-(3-hydroxyphey)] heptane-B (M2), 3-hydroxy-1,7-bis(3-hydroxyphenyl) heptane-A (M3) and 3-hydroxy-1,7-bis(3-hydroxyphenyl) heptane-B (M4), along with five known metabolites (M5-M9), were isolated from the feces of male Wistar-derived rats and nine known metabolites (M5-M8, M10-M14) were isolated from the urine. Their structures were elucidated by extensive spectroscopic analysis. The finding that the metabolites occurred as several pairs of enantiomers was confirmed by chiral column chromatography. Based on the metabolites' profiles, possible metabolic pathways of the curcuminoids in rats are proposed. PMID:22753036

  1. The vasodilatory action of telmisartan on isolated mesenteric artery rings from rats

    PubMed Central

    Chen, Xiao-ping; Qian, Li-ren

    2015-01-01

    Objective(s): Angiotensin II type 1 receptor blockers (ARBs) represent one of the widely used antihypertensive agents. In addition to anti-hypertension effect, some ARBs also show other molecular effects such as activating peroxisome proliferator-activated receptor-γ and so on. Here we studied the effects of telmisartan on the rat isolated mesenteric artery rings pre-contracted by phenylephrine (PE). Materials and Methods: Rat mesenteric artery rings were pre-contracted with 10 μM PE, and cumulative concentration-response curves to telmisartan were obtained. The endothelium-dependent mechanisms were investigated by mechanical removal of the endothelium. K+ channels were investigated by pretreatment of the artery rings with various K+ channel blockers. Results: Telmisartan produced concentration-dependent relaxation of the artery rings pre-contracted by 10 μM PE. Denudation of the endothelium did not affect the relaxant effect of telmisartan. Pretreatment with BaCl2 nearly inhibited the relaxation induced by the 0.5, 1, 5 and 10 μM telmisartan, but did not affect the relaxation induced by the 50 and 100 μM telmisartan. While the relaxation induced by telmisartan was not affected by pretreatment with TEA, 4-AP and glibenclamide. Conclusion: These findings demonstrated that telmisartan produces concentration dependent vasodilation in isolated rat mesenteric artery rings with or without endothelium pre-contracted by PE. KIR channel may be involved in such a relaxant effect of telmisartan. PMID:26730331

  2. Swertianlarin, isolated from Swertia mussotii Franch, increases detoxification enzymes and efflux transporters expression in rats.

    PubMed

    Feng, Xin-Chan; Du, Xiaohuang; Chen, Sheng; Yue, Dongmei; Cheng, Ying; Zhang, Liangjun; Gao, Yu; Li, Shaoxue; Chen, Lei; Peng, Zhihong; Yang, Yong; Luo, Weizao; Wang, Rongquan; Chen, Wensheng; Chai, Jin

    2015-01-01

    Swertianlarin, isolated from Swertia mussotii Franch and Enicostemma axillare, has hepatoprotective effects against cholestasis in rat models of hepatotoxicity. However, the underlying molecular mechanism is not clear. We then treated rats with swertianlarin for 7 d and then measured serum liver injury markers, lipids, and bile salts, as well as the expression of bile acid synthesis and detoxification enzymes (e.g. Cyp7a1 and Cyp3a), membrane influx and efflux transporters (e.g. Ntcp and Mrp3), nuclear receptors (e.g. Pxr and Fxr/Shp) and transcriptional factors (e.g. Nrf2 and Hnf3β) in the liver. We found a significant induction of the expression of the basolateral efflux transporters Mrp3 and Mrp4 and canalicular transporter Mdr1 in rats treated with swertianlarin, compared with the controls (1.9-fold and 2.2-fold, P < 0.005, and 3.4-fold, P < 0.05, respectively). The expression of detoxification enzymes Cyp3a, Ugt2b, Sult2a1 and Gsta1 in rats treated with swertianlarin was significantly higher than that in controls (3.7-fold, 2.8-fold, 2.1-fold, and 1.7-fold, respectively, all P < 0.05). Expression of the synthetic enzyme, Cyp8b1, was higher in rats treated with swertianlarin than that in controls (1.8-fold at mRNA level and 3.4-flod at protein level, P < 0.05). Elevated serum levels of the conjugated bile acids, taurocholic acid and taurodeoxycholic acid, and a reduction in levels of serum ALP, unconjugated bile acid αMCA, and TG were observed (all P < 0.05). In conclusion, swertianlarin significantly up-regulates hepatic bile acid detoxification enzymes and efflux transporters in rats, which can increase the water solubility of hydrophobic bile acids and elimination of conjugated bile acids. PMID:25755705

  3. Swertianlarin, isolated from Swertia mussotii Franch, increases detoxification enzymes and efflux transporters expression in rats

    PubMed Central

    Feng, Xin-Chan; Du, Xiaohuang; Chen, Sheng; Yue, Dongmei; Cheng, Ying; Zhang, Liangjun; Gao, Yu; Li, Shaoxue; Chen, Lei; Peng, Zhihong; Yang, Yong; Luo, Weizao; Wang, Rongquan; Chen, Wensheng; Chai, Jin

    2015-01-01

    Swertianlarin, isolated from Swertia mussotii Franch and Enicostemma axillare, has hepatoprotective effects against cholestasis in rat models of hepatotoxicity. However, the underlying molecular mechanism is not clear. We then treated rats with swertianlarin for 7 d and then measured serum liver injury markers, lipids, and bile salts, as well as the expression of bile acid synthesis and detoxification enzymes (e.g. Cyp7a1 and Cyp3a), membrane influx and efflux transporters (e.g. Ntcp and Mrp3), nuclear receptors (e.g. Pxr and Fxr/Shp) and transcriptional factors (e.g. Nrf2 and Hnf3β) in the liver. We found a significant induction of the expression of the basolateral efflux transporters Mrp3 and Mrp4 and canalicular transporter Mdr1 in rats treated with swertianlarin, compared with the controls (1.9-fold and 2.2-fold, P < 0.005, and 3.4-fold, P < 0.05, respectively). The expression of detoxification enzymes Cyp3a, Ugt2b, Sult2a1 and Gsta1 in rats treated with swertianlarin was significantly higher than that in controls (3.7-fold, 2.8-fold, 2.1-fold, and 1.7-fold, respectively, all P < 0.05). Expression of the synthetic enzyme, Cyp8b1, was higher in rats treated with swertianlarin than that in controls (1.8-fold at mRNA level and 3.4-flod at protein level, P < 0.05). Elevated serum levels of the conjugated bile acids, taurocholic acid and taurodeoxycholic acid, and a reduction in levels of serum ALP, unconjugated bile acid αMCA, and TG were observed (all P < 0.05). In conclusion, swertianlarin significantly up-regulates hepatic bile acid detoxification enzymes and efflux transporters in rats, which can increase the water solubility of hydrophobic bile acids and elimination of conjugated bile acids. PMID:25755705

  4. Glucose metabolism in isolated uteri of immature rats. Influence of prostaglandins and nitric oxide.

    PubMed

    Finkelberg, Ana Beatriz; Linares, Jorge; Goldraij, Adolfo

    2006-01-01

    We studied the contractile activity and glucose metabolism, in terms of production of 14CO2 from [14C] glucose, in isolated uteri of immature rats. Immaturity was due to age or exposure to a restricted diet. The contractile activity in both prepubertal groups persisted for a period of 60 minutes and fell when indomethacin was added to the KRB medium. The production of 14CO2 was greater than for adult rats and fell as a result of the addition of indomethacin. The metabolism of [14C] arachidonic acid showed that the percentage of eicosanoids released in age related immature uteri was greater than that in restricted diet related immature uteri. In animals that are immature as a result of exposure to a restricted diet, 14CO2 fell due to the effect of NAME. Sodium nitroprusside and L-arginine increased the production of 14CO2. This effect was reverted by NAME and indomethacin. Conversely, the uteri of age related prepubertal rats were not affected. The level of activity of nitric oxide synthase was higher in restricted diet related immature animals and fell following the addition of NS-398. We may conclude that in rats exposed to a restricted diet, NO and COX-2 participate in glucose metabolism whereas they would not be involved in age related prepubertal animals. PMID:16438910

  5. The binding of proteins to isolated enterocytes from the small intestine of the neonatal rat.

    PubMed Central

    Mackenzie, N M; Morris, B; Morris, R

    1983-01-01

    IgG binds specifically to isolated jejunal enterocytes but not to ileal enterocytes; maximum binding occurred at pH 6. The ability of jejunal enterocytes to bind IgG was reduced to low levels at 20 days of age and was lost at 24 days. Human and rat IgG were bound specifically in similar amounts; human IgG displaced rat IgG with identical efficiency to rat IgG (ED50 = 50 nM). Much less bovine and sheep IgG were bound to enterocytes and the ED50s for these proteins were 150 nM and 2.5 microM, respectively. Rat IgG bound to jejunal enterocytes with high affinity (13.21 x 10(6)M-1) and to 4.83 x 10(6) sites per cell. Receptor protein was estimated to represent 0.18% of total cell protein. These observations are discussed in relation to the results of in vivo IgG transmission studies. It is estimated that the IgG transport mechanism, operating at maximum efficiency, requires that available IgG receptors would come into use once to twice per hour. PMID:6219063

  6. Effects of chronic ethanol administration on receptor mediated endocytosis of asialoorosomucoid (ASOR) in isolated rat hepatocytes

    SciTech Connect

    Casey, C.A.; Kragskow, S.L.; Sorrell, M.F.; Tuma, D.J.

    1986-05-01

    The authors have previously shown that acute and chronic ethanol administration decreases hepatic glycoprotein secretion and membrane biogenesis. The present study was undertaken to determine the effects of chronic ethanol feeding on receptor-mediated endocytosis using the endocytosis of ASOR as a model system. Rats were fed either rat chow ad lib or pair-fed with Lieber-DeCarli diet (ethanol or isocaloric glucose as 36% of total calories) for 5 to 7 weeks. Binding of /sup 125/I ASOR to isolated hepatocytes was studied at 0-4/sup 0/C. Internalization (cell-associated acid precipitable radioactivity) and degradation (acid soluble radioactivity) were determined at 37/sup 0/C for periods up to 240 min. Results were expressed as pmoles ASOR bound, degraded or internalized/10/sup 6/ cells. In ethanol-fed rats the number of pmoles ASOR bound/10/sup 6/ cells was decreased by 40-50% (p< 0.01) as compared to pair-fed and chow-fed animals. Rates of degradation and internalization of the ligand were also 50-70% lower (p< 0.01) in chronic ethanol-treated animals. No significant differences were observed for either binding or internalization of ASOR between chow-fed and pair-fed animals. These results indicate that chronic ethanol feeding decreases internalization and degradation of ASOR in rat hepatocytes.

  7. Influence of age on inducibility and cholinergic modulation of arrhythmia in isolated rat right atria.

    PubMed

    Faria, D M; Viviane, A G; Galvão, K M; Caricati-Neto, A; Godoy, C M G

    2009-03-01

    The effects of carbachol and atropine on the number of trains (NT) and on the train stimulus strength (SS) necessary to induce arrhythmia were studied in isolated right atria of infant, young, adult and mature rats submitted to electric field stimulation (66.7 Hz, 5 ms pulse-duration, 250 pulses). Carbachol (1 microM) decreased NT from four (control) to two in all ages tested. Atropine (1 microM) prevented tachyarrhythmia induction in tissue of all ages, even with NT equal to 12, except for mature rats (typically four trains). The SS decreases from infant to adult age [5- to 2-fold atrial threshold (AT)] and increases in mature animals (5-fold AT). Carbachol changes this result only for mature rats (5- to 2-fold AT). The SS was decreased by carbachol (1 microM) from 5- to 3-fold AT in mature rats, but atropine did not modify SS in this age. These results indicate that inducibility and cholinergic modulation of atrial tachyarrhythmia is influenced by age. PMID:19234768

  8. Crocin, a carotenoid component of Crocus cativus, exerts inhibitory effects on L-type Ca(2+) current, Ca(2+) transient, and contractility in rat ventricular myocytes.

    PubMed

    Liu, Tao; Chu, Xi; Wang, Hua; Zhang, Xuan; Zhang, Yuanyuan; Guo, Hui; Liu, Zhenyi; Dong, Yongsheng; Liu, Hongying; Liu, Yang; Chu, Li; Zhang, Jianping

    2016-03-01

    Crocin, a carotenoid component of Crocus sativus L. belonging to the Iridaceae family, has demonstrated cardioprotective effects. To investigate the cellular mechanisms of these cardioprotective effects, here we studied the influence of crocin on L-type Ca(2+)current (I(Ca-L)), intracellular Ca(2+) ([Ca(2+)]i), and contraction of isolated rat cardiomyocytes by using the whole-cell patch-clamp technique and video-based edge detection and dual excitation fluorescence photomultiplier systems. Crocin inhibited I(Ca-L) in a concentration-dependent manner with the half-maximal inhibitory concentration (IC50) of 45 μmol/L and the maximal inhibitory effect of 72.195% ± 1.54%. Neither current-voltage relationship of I(Ca-L), reversal potential of I(Ca-L), nor the activation/inactivation of I(Ca-L) was significantly changed. Crocin at 1 μmol/L reduced cell shortening by 44.64% ± 2.12% and the peak value of the Ca(2+) transient by 23.66% ± 4.52%. Crocin significantly reduced amplitudes of myocyte shortening and [Ca(2+)]i with an increase in the time to reach 10% of the peak (Tp) and a decrease in the time to 10% of the baseline (Tr). Thus, the cardioprotective effects of crocin may be attributed to the attenuation of [Ca(2+)]i through the inhibition of I(Ca-L) in rat cardiomyocytes and negative inotropic effects on myocardial contractility. PMID:26674933

  9. Quantifying Single Microvessel Permeability in Isolated Blood-perfused Rat Lung Preparation

    PubMed Central

    Kandasamy, Kathirvel; Parthasarathi, Kaushik

    2014-01-01

    The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement. PMID:25045895

  10. Effect of isolated unilateral diaphragmatic paralysis on ventilation and exercise performance in rats.

    PubMed

    Xu, Yali; Rui, Jing; Zhao, Xin; Xiao, Chengwei; Bao, Qiyuan; Li, Jifeng; Lao, Jie

    2014-06-01

    The degree of impairment of ventilation and exercise performance after unilateral diaphragmatic paralysis (UDP) induced by phrenic nerve injury has been controversial due to heterogeneity in the published clinical studies. The aim of this study was to assess the effect of isolated UDP on breathing and exercise performance in conscious rats. Breathing was measured by unrestrained whole body plethysmography during quiet breathing and after moderate aerobic exercise. Additionally, incremental exercise testing was performed to evaluate the effects of intensive activity. The results demonstrated that complete UDP in rats resulted in a permanent decrease of peak inspiratory flow at rest breathing. Nevertheless, adequate ventilation could be maintained, and the breathing pattern was unaltered due to a strong compensatory mechanism and central re-coordination initiated by UDP. After being affected at an early stage, the ventilatory response to exercise was gradually regained and subsequently restored. PMID:24556382

  11. Effects of opiates on sodium excretion in the isolated perfused rat kidney.

    PubMed

    Ellis, A G; Adam, W R

    1991-12-01

    1. A rat isolated perfused kidney preparation was utilized to define clearly a renal site of action. The variables measured were perfusate pressure and flow, glomerular filtration rate, urine volume, sodium excretion and potassium excretion. 2. Dextromethorphan (3 nmol/L) and dextrorphan (10 nmol/L) reduced sodium excretion in kidneys from rats on either control or high K+ diet, in the absence of any other measured renal effects. Dextromethorphan (10 nmol/L) produced a decrease in glomerular filtration rate as well as a decrease in sodium excretion. Naloxone (1 mumol/L) inhibited the effect of dextromethorphan on sodium excretion but had no effect when administered alone. 3. The levorotatory opiates levorphanol and levomethorphan, the kappa agonist ketocyclazocine and a range of other opiates had no effect on sodium excretion. 4. The results suggest a renal action specific for dextrorotatory opiates. This renal action is consistent with earlier binding studies suggesting preferential recognition of dextrorotatory opiates. PMID:1797448

  12. Characterization of epidermal growth factor receptors on plasma membranes isolated from rat gastric mucosa

    SciTech Connect

    Hori, R.; Nomura, H.; Iwakawa, S.; Okumura, K. )

    1990-06-01

    The binding of human epidermal growth factor (hEGF), beta-urogastrone, to plasma membranes isolated from rat gastric mucosa was studied to characterize gastric EGF receptors. The binding of ({sup 125}I)hEGF was temperature dependent, reversible, and saturable. A single class of binding sites for EGF with a dissociation constant of 0.42 nM and maximal binding capacity of 42 fmol/mg protein was suggested. There was little change in the binding of ({sup 125}I)hEGF upon addition of peptide hormones (secretin, insulin), antiulcer drugs (cimetidine), or an ulcer-inducing reagent (aspirin). Cross-linking of ({sup 125}I)hEGF to gastric plasma membranes with the use of disuccinimidyl suberate resulted in the labeling of a protein of 150 kDa. These results indicate the presence of EGF receptors on plasma membranes of rat gastric mucosa.

  13. The role of Na(+), K(+)-ATPase in the hypoxic vasoconstriction in isolated rat basilar artery.

    PubMed

    Shen, Haitao; Liang, Peng; Qiu, Suhua; Zhang, Bo; Wang, Yongli; Lv, Ping

    2016-06-01

    Hypoxia-induced cerebrovascular dysfunction is a key factor in the occurrence and the development of cerebral ischemia. Na(+), K(+)-ATPase affects the regulation of intracellular Ca(2+) concentration and plays an important role in vascular smooth muscle function. However, the potential role of Na(+), K(+)-ATPase in hypoxia-induced cerebrovascular dysfunction is unknown. In this study, we found that the KCl-induced contraction under hypoxia in rat endothelium-intact basilar arteries is similar to that of denuded arteries, suggesting that hypoxia may cause smooth muscle cell (SMC)-dependent vasoconstriction in the basilar artery. The Na(+), K(+)-ATPase activity of the isolated basilar artery with or without endothelium significantly reduced with prolonged hypoxia. Blocking the Na(+)-Ca(2+) exchanger with Ni(2+) (10(-3)M) or the L-type Ca(2+) channel with nimodipine (10(-8)M) dramatically attenuated KCl-induced contraction under hypoxia. Furthermore, prolonged hypoxia significantly reduced Na(+), K(+)-ATPase activity and increased [Ca(2+)]i in cultured rat basilar artery SMCs. Hypoxia reduced the protein and mRNA expression of the α2 isoform of Na(+), K(+)-ATPase in SMCs in vitro. We used a low concentration of the Na(+), K(+)-ATPase inhibitor ouabain, which possesses a high affinity for the α2 isoform. The contractile response in the rat basilar artery under hypoxia was partly inhibited by ouabain pretreatment. The decreased Na(+), K(+)-ATPase activity in isolated basilar artery and the increased [Ca(2+)]i in SMCs induced by hypoxia were partly inhibited by pretreatment with a low concentration of ouabain. These results suggest that hypoxia may educe Na(+), K(+)-ATPase activity in SMCs through the α2 isoform contributing to vasoconstriction in the rat basilar artery. PMID:26924456

  14. CHRONIC METHYLPHENIDATE TREATMENT DURING EARLY LIFE IS ASSOCIATED WITH GREATER ETHANOL INTAKE IN SOCIALLY ISOLATED RATS

    PubMed Central

    Gill, Kathryn E; Chappell, Ann; Beveridge, Thomas J R; Porrino, Linda J; Weiner, Jeffrey L

    2014-01-01

    Background Methylphenidate is a stimulant prescribed to treat Attention Deficit Hyperactivity Disorder. Its primary mechanism of action is in the dopamine system, alterations of which are associated with vulnerability to alcohol abuse. There are concerns that juvenile MPH treatment may influence adult drinking behavior. This study examined the interaction of MPH treatment and environmental rearing conditions, which are known to independently influence ethanol (EtOH) drinking behavior, on anxiety-like behavior and vulnerability to alcohol abuse in a juvenile rodent model. Methods Male Sprague Dawley rats were housed in enriched, standard, or isolated conditions for four weeks, starting at postnatal day 21. Rats were concurrently treated with 8 mg/kg/day MPH or saline, delivered via osmotic minipump. Anxiety-like behavior was determined at the end of the treatment session, and 5 weeks later. After MPH treatment, rats were exposed to a two-bottle choice EtOH drinking procedure that lasted three weeks. Results Early life chronic MPH treatment was associated with greater EtOH intake and greater EtOH preference, but only in socially isolated animals. Isolated animals had greater levels of anxiety-like behavior than standard-housed or enriched animals after 4 weeks of exposure to the housing conditions, a difference that persisted even after all animals had been individually housed for an additional 5 weeks and exposed to EtOH. Conclusions These results suggest that early life MPH treatment may increase vulnerability to EtOH drinking in adulthood in a subset of the population. Additionally, this study highlights the importance of early rearing condition for establishing long-lasting behavioral phenotypes. Environmental histories should be considered when prescribing MPH treatment to young children. PMID:25156616

  15. Renal accumulation of /sup 99m/Tc-DMSA in the artificially perfused isolated rat kidney

    SciTech Connect

    Goldraich, N.P.; Alvarenga, A.R.; Goldraich, I.H.; Ramos, O.L.; Sigulem, D.

    1985-12-01

    In order to investigate aspects of the renal handling of /sup 99m/Tc-DMSA, 68 isolated rat kidneys were artificially perfused. The experimental groups were: Group 1 (no. = 32)-oxygenated filtering kidneys; Group 2 (no. = 29)-oxygenated non-filtering kidneys; Group 3 (no. = 7)-anaerobic non-filtering kidneys. The authors conclude that the /sup 99m/Tc-DMSA complex is strongly bound to albumin, is not filtered and is removed from perfusion fluid through the renal peritubular capillary route and that this occurs by an active process which depends upon aerobic metabolism. This process has a high capacity and is not inhibited by probenecid.

  16. Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function.

    PubMed

    Hanft, Laurin M; Cornell, Timothy D; McDonald, Colin A; Rovetto, Michael J; Emter, Craig A; McDonald, Kerry S

    2016-07-01

    Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA

  17. Social, thermal, and temporal influences on isolation-induced and maternally potentiated ultrasonic vocalizations of rat pups.

    PubMed

    Shair, Harry N; Brunelli, Susan A; Masmela, Jenny R; Boone, Emilie; Hofer, Myron A

    2003-03-01

    Sensory and temporal factors have been demonstrated to be involved in the regulation of isolation-induced ultrasonic vocalizations (USV) of young rats. Sensory cues include thermal, olfactory, and tactile modalities. Temporal factors include the time spent in isolation. The goal of the present research was to examine the interaction of these factors in both isolation-induced and maternally potentiated USV. Maternal potentiation of USV occurs when a brief interaction with the dam, even a passive (anesthetized) dam, elicits an augmented vocal response to a subsequent isolation, with rates of USV in rat pups well above those emitted in standard isolation tests. We found that passive maternal potentiation of USV did occur under all conditions tested. Neither a 30-min prior isolation nor high ambient temperature prevented an increase in USV rate over the rate of the original isolation. After 30-min isolation at warm temperatures when the rate of USV had fallen to zero, the pups increased vocalization in the presence of the dam as well as in the subsequent isolation. Temporal and thermal factors also interacted significantly in regulating the level of the USV emitted by the pups during the first isolation, in the presence of the anesthetized dam, and during the second isolation. PMID:12555284

  18. Olanzapine modulation of hepatic oxidative stress and inflammation in socially isolated rats.

    PubMed

    Todorović, Nevena; Tomanović, Nada; Gass, Peter; Filipović, Dragana

    2016-01-01

    Olanzapine, an atypical antipsychotic, is efficient in stress associated psychiatric diseases, but its effect on the liver, a primary organ for drug activation and detoxification, still remains unclear. The effect of olanzapine administration (7.5mg/kg/day), on rat hepatic glutathione (GSH)-dependent defense and proinflammatory cytokines following 6weeks of chronic social isolation (CSIS), which causes depressive- and anxiety-like behavior in adult male Wistar rats, was investigated. The subcellular distribution of nuclear factor-κB (NF-κB), cytosolic inducible nitric oxide synthase (iNOS) protein levels and hepatic histological alterations were also determined. Decreased GSH content and glutathione reductase activity associated with increased catalase and glutathione S-transferase activity following CSIS indicated hepatic oxidative stress. Moreover, CSIS caused NF-κB nuclear translocation and the concomitant increase in iNOS together with increase in interleukin-1beta and tumor necrosis factor alpha protein levels, but no effect on interleukin-6. Olanzapine treatment suppressed NF-κB activation and iNOS expression and caused modulation of GSH-dependent defense systems but failed to reverse CSIS-induced increase in hepatic proinflammatory cytokines. Portal inflammation, focal hepatocyte necrosis and an increased number of Kupffer cells in CSIS rats (vehicle- or olanzapine-treated) were found. Olanzapine-treated socially reared rats showed portal inflammation and focal hepatocyte necrosis. Data suggest that CSIS compromised GSH-dependent defense, triggered a proinflammatory response and histological alterations in rat liver. Olanzapine treatment partially reversed the alterations in hepatic GSH-dependent defense, but showed no anti-inflammatory effect suggesting that it may provide protective effect against hepatic CSIS-induced oxidative stress, but not against inflammation. PMID:26474692

  19. [Studies on the metabolism of antiepilepserine in isolated perfused rat liver].

    PubMed

    Dong, S N; Bai, F; Yang, H J; Lou, Y Q; Liang, W S

    1989-01-01

    The metabolism of antiepilepserine, 3,4-methylene dioxycinnamyl piperidine, was studied in isolated perfused rat liver. Two metabolites were separated and purified by means of HPLC. They were identified as 3,4-methylene dioxycinnamyl hydroxypiperidine and 4-hydroxy-3-methoxycinnamyl piperidine by UV and MS. The latter was further confirmed by chemical synthesis. The pharmacokinetics of antiepilepserine in isolated perfused liver was also studied. Parameters obtained include a first order elimination constant, k = 0.0157 +/- 0.0043 min-1, and a half-life, t 1/2 = 46.7 +/- 11.9 min, (n = 6). The amount of antiepilepserine lost during the perfusion could not be compensated by the increased amount of metabolites. Antiepilepserine was found to be tightly bound and stored in the liver. This might be one of the explanations of the first pass effect of antiepilepserine after oral administration. PMID:2816382

  20. Direct nephrotoxicity of Russell's viper venom demonstrated in the isolated perfused rat kidney.

    PubMed

    Ratcliffe, P J; Pukrittayakamee, S; Ledingham, J G; Warrell, D A

    1989-03-01

    Envenoming by Russell's Viper (Vipera russelli) is an important cause of acute renal failure. The mechanism of renal damage is unresolved. It is difficult to obtain evidence of a direct nephrotoxic action because of the coincidental disturbance to the systemic circulation. We studied the action of Russell's Viper venom on the function of the isolated perfused rat kidney. Direct nephrotoxic action was indicated by a dose dependent decrease in inulin clearance and an increase in fractional excretion of sodium seen at venom concentrations down to 50 ng/ml, a concentration likely to be achieved in the human circulation after envenoming. The isolated perfused kidney was also used to assess the efficiency of antivenom and for a comparison with snake venoms from the Thai cobra (Naja kauothia) and the Nigerian Saw-Scaled Viper (Echis ocellatus). PMID:2929855

  1. NMDA-induced rhythmical activity in XII nerve of isolated CNS from newborn rats.

    PubMed

    Katakura, N; Jia, L; Nakamura, Y

    1995-03-01

    We tried to induce rhythmical oro-facial motor activities in an isolated brain stem-spinal cord preparation from newborn rats. Neural activities were monitored from the hypoglossal nerve (XII N) and the ventral roots of the cervical cord. Bath application of N-methyl-D-aspartate (NMDA) as well as glutamate induced rhythmical burst activity in XII N distinct from and much faster than respiratory rhythm. This NMDA-induced rhythmical activity was blocked by simultaneous application of 2-amino-5-phosphonovalerate (AP5). The results demonstrate that NMDA receptor activation can induce rhythmical XII N activity different from respiration in an isolated mammalian CNS. This preparation will be useful for the investigation of neural mechanisms underlying the central generation of food ingestive movements. PMID:7605909

  2. Isolation and characterization of all-trans-retinoic acid-responsive genes in the rat testis.

    PubMed

    Gaemers, I C; Van Pelt, A M; Themmen, A P; De Rooij, D G

    1998-05-01

    By way of differential screening of testis cDNA libraries from vitamin A-deficient (VAD) rats before and after administration of all-trans retinoic acid (ATRA), genes, the transcription of which was influenced by ATRA, were isolated. Most clones with an increased transcription encoded different subunits of the same mitochondrial protein complex, cytochrome c oxidase (COX). The mRNA expression of COX increased by a factor 3.9 +/- 1.5 (mean +/- SD, n = 4). This increased expression seems to reflect an increased energy demand in the ATRA-supplemented VAD testis. Also, one gene was isolated, the transcription of which was reduced to about 70% by ATRA. This gene, sulfated glycoprotein 2 (Sgp-2), is a major secretion product of Sertoli cells, the function of which is still unknown. The effect of ATRA on Sgp-2 expression may be direct, since the promoter of Sgp-2 contains a putative ATRA-responsive element (RARE). PMID:9547504

  3. Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide.

    PubMed

    Gao, Xin; Zheng, Chun Yan; Yang, Ling; Tang, Xi Can; Zhang, Hai Yan

    2009-06-01

    Our previous work in cells and animals showed that mitochondria are involved in the neuroprotective effect of huperzine A (HupA). In this study, the effects of HupA on isolated rat brain mitochondria were investigated. In addition to inhibiting the Abeta(25-35) (40 microM)-induced decrease in mitochondrial respiration, adenosine 5'-triphosphate (ATP) synthesis, enzyme activity, and transmembrane potential, HupA (0.01 or 0.1 microM) effectively prevented Abeta-induced mitochondrial swelling, reactive oxygen species increase, and cytochrome c release. More interestingly, administration of HupA to isolated mitochondria promoted the rate of ATP production and blocked mitochondrial swelling caused by normal osmosis. These results indicate that HupA protects mitochondria against Abeta at least in part by preserving membrane integrity and improving energy metabolism. These direct effects on mitochondria further extend the noncholinergic functions of HupA. PMID:19272446

  4. Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts

    PubMed Central

    Murray, David B.; Voloshenyuk, Tetyana G.; Brower, Gregory L.; Bradley, Jessica M.; Janicki, Joseph S.

    2010-01-01

    We have previously reported gender differences in ventricular remodeling and development of heart failure using the aortocaval fistula model of chronic volume overload in rats. In contrast to males, female rats exhibited no adverse ventricular remodeling and less mortality in response to volume overload. This gender-specific cardioprotection was lost following ovariectomy and was partially restored using estrogen replacement. However, it is not known if estrogen treatment would be as effective in males. The purpose of this study was to evaluate the structural and functional effects of estrogen in male rats subjected to chronic volume overload. Four groups of male rats were studied at 3 days and 8 wk postsurgery as follows: fistula and sham-operated controls, with and without estrogen treatment. Biochemical and histological studies were performed at 3 days postsurgery, with chronic structural and functional effects studied at 8 wk. Measurement of systolic and diastolic pressure-volume relationships was obtained using a blood-perfused isolated heart preparation. Both fistula groups developed significant ventricular hypertrophy after 8 wk of volume overload. Untreated rats with fistula exhibited extensive ventricular dilatation, which was coupled with a loss of systolic function. Estrogen attenuated left ventricular dilatation and maintained function in treated rats. Estrogen treatment was also associated with a reduction in oxidative stress and circulating endothelin-1 levels, as well as prevention of matrix metalloproteinase-2 and -9 activation and breakdown of ventricular collagen in the early stage of remodeling. These data demonstrate that estrogen attenuates ventricular remodeling and disease progression in male rats subjected to chronic volume overload. PMID:19933421

  5. Isolation of insulin-sensitive phosphatidylinositol-glycan from rat adipocytes. Its impaired breakdown in the streptozotocin-diabetic rat.

    PubMed Central

    Macaulay, S L; Larkins, R G

    1990-01-01

    In this study an insulin-sensitive glycophospholipid from rat adipocytes was isolated and partially characterized. A material that activated pyruvate dehydrogenase was extracted from rat adipocyte membrane supernatants. Its release was stimulated by insulin and phosphatidylinositol-specific-phospholipase C and its activity was destroyed by nitrous acid deamination. These findings suggested that insulin might stimulate breakdown of a glycophospholipid containing inositol and glucosamine, as previously reported for some other cell types [Low & Saltiel (1988) Science 239, 268-275]. A lipid that incorporated [3H]glucosamine, [3H]galactose, [3H]inositol, and [3H]myristate and whose turnover was stimulated by insulin was subsequently isolated from intact adipocytes by sequential t.l.c. using an acidic solvent system followed by a basic solvent system. The effects of insulin on turnover of the lipid in these cells were transient, with maximal effects at 1 min, and there was a typical concentration-response curve to insulin (0.07 nM-7 nM), with effects being detected over the physiological range of insulin concentrations. In contrast with studies in other cells, there was appreciable turnover of the sugar labels. The majority of the [3H]glucosamine and [3H]galactose labels were cycled through to triacylglycerol in the adipocyte. However, of that recovered in the glycophospholipid band, a major proportion (less than 40%) was recovered as the native label. Digestion of the purified molecule with phosphatidylinositol-specific phospholipase C generated a material that activated both pyruvate dehydrogenase and low-Km cyclic AMP phosphodiesterase. Impairment in insulin-stimulated breakdown of the molecule in adipocytes of streptozotocin-diabetic rats was found, consistent with the impaired insulin activation of pyruvate dehydrogenase and glucose utilization seen in this model. These findings suggest that insulin stimulates breakdown of this glycophospholipid by stimulating an

  6. The isolation and culture of endothelial colony-forming cells from human and rat lungs.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Zhong, Shumei; Zong, Shumei; McConaghy, Suzanne; Ohls, Robin; Yoder, Mervin C; Thébaud, Bernard

    2015-11-01

    Blood vessels are crucial for the normal development, lifelong repair and homeostasis of tissues. Recently, vascular progenitor cell-driven 'postnatal vasculogenesis' has been suggested as an important mechanism that contributes to new blood vessel formation and organ repair. Among several described progenitor cell types that contribute to blood vessel formation, endothelial colony-forming cells (ECFCs) have received widespread attention as lineage-specific 'true' vascular progenitors. Here we describe a protocol for the isolation of pulmonary microvascular ECFCs from human and rat lung tissue. Our technique takes advantage of an earlier protocol for the isolation of circulating ECFCs from the mononuclear cellular fraction of peripheral blood. We adapted the earlier protocol to isolate resident ECFCs from the distal lung tissue. After enzymatic dispersion of rat or human lung samples into a cellular suspension, CD31-expressing cells are positively selected using magnetic-activated cell sorting and plated in endothelial-specific growth conditions. The colonies arising after 1-2 weeks in culture are carefully separated and expanded to yield pure ECFC cultures after a further 2-3 weeks. The resulting cells demonstrate the defining characteristics of ECFCs such as (i) 'cobblestone' morphology of cultured cell monolayers; (ii) acetylated low-density lipoprotein uptake and Ulex europaeus lectin binding; (iii) tube-like network formation in Matrigel; (iv) expression of endothelial cell-specific surface markers and the absence of hematopoietic or myeloid surface antigens; (v) self-renewal potential displayed by the most proliferative cells; and (vi) contribution to de novo vessel formation in an in vivo mouse implant model. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 4 weeks. Isolation and culture of lung vascular ECFCs will allow assessment of the functional state of these cells in experimental and human

  7. Cardiovascular effects of herbicides and formulated adjuvants on isolated rat aorta and heart.

    PubMed

    Chan, Yin-Ching; Chang, Shih-Chieh; Hsuan, Shih-Ling; Chien, Maw-Sheng; Lee, Wei-Cheng; Kang, Jaw-Jou; Wang, Shun-Cheng; Liao, Jiunn-Wang

    2007-06-01

    Various formulations of agricultural chemicals, including solutions, wettable powders, and emulsifiable concentrates, contain adjuvants of solvents and surfactants in addition to active ingredients. Among these formulations, herbicides are among the most commonly used pesticides globally. Some pesticides have been demonstrated to cause severe circulatory failure in poisoned humans. To clarify the potential risk of herbicides and their adjuvants influence on the cardiovascular system, four technical grade (TG) herbicides and their end products (EP), including paraquat, glyphosate, glufosinate, and atrazine, as well as their formulated adjuvants isopropylamine (IPA), polyoxyethylene alkylether sulfate (AES), ethyl acetate (EA), xylene, petrolium-170 (P-170), and solvesso-100 (S-100), were assessed to determine their effects on isolated rat aorta and heart. The results revealed that the vasorelaxation effects of the herbicide EPs exceeded those of TGs, and atrazine produced more significant vasorelaxation in rat aortas than the other herbicides tested. The formulated adjuvants of IPA did not affect the aorta; however, AES, EA, xylene, P-170 and S-100 caused significant vasorelaxation. Herbicide EPs-induced vasorelaxation was generally endothelium-dependent. Furthermore, the TG and EP of paraquat, and the TG of glufosinate and glyphosate were found to have no effect on the isolated heart. However, the normal twitch tensions of the isolated heart were significantly inhibited by EPs of glyphosate and glufosinate, and by TG and EP of atrazine. Although, the adjuvants of IPA appeared unaffected, however, AES, EA, xylene, P-170 and S-100 caused complete inhibition and contraction on the isolated hearts. These results indicated that the adjuvants of herbicides might enhance hypotension and contributed to cardiovascular disorders during intoxication. PMID:17267167

  8. Isolation of cardiac myosin light-chain isotypes by chromatofocusing. Comparison of human cardiac atrial light-chain 1 and foetal ventricular light-chain 1.

    PubMed

    Vincent, N D; Cummins, P

    1985-04-01

    Cardiac myosin light chain isotypes have been resolved using chromatofocusing, a new preparative column chromatographic technique. The method relies on production of narrow-range, shallow and stable pH gradients using ion-exchange resins and buffers with even buffering capacity over the required pH range. Light chains were resolved in order of decreasing isoelectric point in the pH range 5.2-4.5. Gradients of delta pH = 0.004-0.006/ml elution volume were achieved which were capable of resolving light chains with isoelectric point differences of only 0.03. Analytical isoelectric focusing of light chains in polyacrylamide gels could be used to predict the results of preparative chromatofocusing for method development. Chromatofocusing was capable of resolving human and bovine cardiac light chain 1 and 2 subunits, atrial (ALC) and ventricular (VLC) light chain isotypes and homologous VLC-2 and VLC-2* light chains. The technique was used to purify and resolve the human foetal ventricular light chain 1 (FLC-1) from adult ventricular light chain 1 (VLC-1) present in foetal ventricles and the atrial light chain 1 (ALC-1) in adult atria. Comparative peptide mapping studies and amino acid analyses were carried out on FLC-1 and ALC-1. No differences were detected between FLC-1 and ALC-1 using three different proteases and amino acid compositions were similar with the exception of glycine content. The studies indicate that FLC-1 and ALC-1 are homologous, and possibly identical, light chains. Comparison of human FLC-1/ALC-1 with VLC-1 suggested marked structural and chemical differences in these light chain isotypes, in particular in the contents of methionine, proline, lysine and alanine residues. Differences in the contents of these residues were also apparent in the corresponding bovine atrial and ventricular light chains [Wikman-Coffelt, J. & Srivastava, S. (1979) FEBS Lett. 106, 207-212]. The latter three residues are known to be rich in the N-termini of cardiac and

  9. Pharmacological manipulation of glucocorticoid receptors differentially affects cocaine self-administration in environmentally enriched and isolated rats

    PubMed Central

    Hofford, Rebecca S.; Prendergast, Mark A.; Bardo, Michael T.

    2015-01-01

    Social isolation rearing (isolated condition, IC) is used as a model of early life stress in rodents. Rats raised in this condition are often compared to rats raised in an environmentally enriched condition (EC). However, EC rats are repeatedly exposed to forced novelty, another classic stressor in rodents. These studies explored the relationship between cocaine self-administration and glucocorticoid receptor (GR) activation and measured total levels of GR protein in reward-related brain regions (medial prefrontal cortex, orbitofrontal cortex, nucleus accumbens, amygdala) in rats chronically exposed to these conditions. For experiment 1, rats were housed in EC or IC and were then trained to self-administer cocaine. Rats raised in these housing conditions were tested for their cocaine responding after pretreatment with the GR antagonist, RU486, or the GR agonist, corticosterone (CORT). For experiment 2, levels of GR from EC and IC rats were measured in brain regions implicated in drug abuse using Western blot analysis. Pretreatment with RU486 (20 mg/kg) decreased responding for a low unit dose of cocaine (0.03 mg/kg/infusion) in EC rats only. IC rats were unaffected by RU486 pretreatment, but earned significantly more cocaine than EC rats after pretreatment with CORT (10 mg/kg). No difference in GR expression was found between EC and IC rats in any brain area examined. These results, along with previous literature, suggest that enrichment enhances responsivity of the HPA axis related to cocaine reinforcement, but this effect is unlikely due simply to differential baseline GR expression in areas implicated in drug abuse. PMID:25655510

  10. Uptake and degradation of natural surfactant by isolated rat granular pneumocytes

    SciTech Connect

    Fisher, A.B.; Chander, A.; Reicherter, J. )

    1987-12-01

    It has been previously shown that isolated granular pneumocytes internalize and degrade dipalmitoylphosphatidylcholine (DPPC) in synthetic lipid vesicles and reutilize degradation products for phosphatidylcholine (PC) synthesis. In this study, the authors evaluated the uptake and degradation of radiolabeled natural surfactant (NS) isolated from lung lavage after perfusing isolated rat lungs with ({sup 3}H)choline. Uptake of NS by isolated granular pneumocytes was increased approximately fourfold compared with synthetic liposomes, suggesting that physical form or a component (e.g., a protein) of NS plays a role in phospholipid uptake by these cells. Uptake was significantly decreased by metabolic inhibitors, indicating an energy requirement for this process. After 2-h incubation, the pattern of radioactivity in cells compared with NS showed a significant decrease in PC and DSPC and increase in free choline, choline phosphate, and CDP-choline. This pattern of metabolism indicates degradation of PC and metabolic reutilization of products. These studies support the hypothesis that alveolar phospholipids are accumulated and reutilized by granular pneumocytes for surfactant synthesis.

  11. Isolation and identification of metabolites of porfiromycin formed in the presence of a rat liver preparation.

    PubMed

    Lang, W; Mao, J; Wang, Q; Niu, C; Doyle, T W; Almassian, B

    2000-02-01

    The isolation and identification of the major metabolites of porfiromycin formed in the presence of a rat liver preparation under aerobic conditions were performed with high-performance liquid chromatography and electrospray ionization mass spectrometry. Porfiromycin was extensively metabolized by the rat liver preparation in an aqueous 0.1 M potassium phosphate buffer (pH 7.4) containing an NADPH generating system at 37 degrees C. A total of eight metabolites was identified as mitosene analogs. Of these, three primary metabolites are 2-methylamino-7-aminomitosene, 1,2-cis and 1,2-trans-1-hydroxy-2-methylamino-7-aminomitosene, which are consistent with those previously observed in hypoxia using purified rat liver NADPH-cytochrome c reductase. Interestingly, 2-methylamino-7-aminomitosene is a reactive metabolite, which undergoes further activation at the C-10 position by the loss of carbamic acid and then links with the 7-amino group of the primary metabolites to yield two dimeric adducts. In addition, three phosphate adducts, 10-decarbamoyl-2-methylamino-7-aminomitosene-10-phosphate, 1,2-cis and 1,2-trans-2-methylamino-7-aminomitosene-1-phosphate, were also identified in the incubation system. The configurations of the diastereoisomeric metabolites were determined with (1)HNMR and phosphatase digestion. On the basis of the metabolite profile, we propose in vitro metabolic pathways for porfiromycin. The findings provide direct evidence for understanding the reactive nature and hepatic metabolism of the drug currently in phase III clinical trials. PMID:10688748

  12. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes.

    PubMed Central

    Stremmel, W; Strohmeyer, G; Borchard, F; Kochwa, S; Berk, P D

    1985-01-01

    When [14C]oleate-bovine serum albumin complexes were incubated in vitro with rat liver plasma membranes (LPM), specific, saturable binding of oleate to the membranes was observed. Maximal heat-sensitive (i.e., specific) binding was 3.2 nmol/mg of membrane protein. Oleate-agarose affinity chromatography of Triton X-100-solubilized LPM was used to isolate a single 40-kDa protein with high affinity for oleate. On gel filtration, the protein comigrated with various fatty acids but not with [14C]bilirubin, [35S]sulfobromophthalein, [14C]taurocholate, [14C]phosphatidylcholine, or [14C]cholesteryloleate. A rabbit antibody to this membrane fatty acid-binding protein gave a single precipitin line with the antigen but no reactivity with concentrated cytosolic proteins, LPM bilirubin/sulfobromophthalein-binding protein, or rat albumin or other rat plasma proteins. The antibody selectively inhibited heat-sensitive binding of [14C]oleate to LPM. Immunofluorescence studies localized the antigen in liver-cell plasma membranes as well as in other major sites of fatty acid transport. These data are compatible with the hypothesis that this protein may act as a receptor in a hepatocellular uptake mechanism for fatty acids. Images PMID:3881757

  13. Mechanostimulation, electrostimulation and force measurement in an in vitro model of the isolated rat diaphragm.

    PubMed

    Armbruster, Caroline; Dassow, Constanze; Gamerdinger, Katharina; Schneider, Matthias; Sumkauskaite, Migle; Guttmann, Josef; Schumann, Stefan

    2011-12-01

    In an in vitro model of the entire rat diaphragm, diaphragmatic contraction forces at defined preload levels were investigated. A total of 24 excised rat diaphragms were electrically stimulated inside a two-chamber strain-applicator. The resulting contraction forces were determined on eight adjusted preload levels via measuring the elicited pressure in the chamber below the diaphragm. Subsequently, diaphragms were exposed for 6 h to one of four treatments: (1) control, (2) cyclic mechanical stretch, (3) intermittent electrical stimulation or (4) combination of cyclic mechanical stretch and electrical stimulation. Diaphragmatic contraction force increased from 116 ± 21 mN at the lowest preload level to 775 ± 85 mN at the maximal preload level. After 6 h maximal muscle contraction forces were smallest after non-electrostimulated treatment (control: 81 ± 15 mN, mechanical deflection: 94 ± 12 mN) and largest after electrostimulation treatment (mere electrostimulation: 165 ± 20 mN, combined mechano- and electro-stimulation: 164 ± 14 mN). We conclude that our model allows force measurements on isolated rat diaphragms. Furthermore, we conclude that by intermediate electrical stimulation diaphragmatic force generation was better preserved than by mechanical stimulation. PMID:22033209

  14. Creatine metabolism in the seminiferous epithelium of rats. I. Creatine synthesis by isolated and cultured cells.

    PubMed

    Moore, N P; Gray, T J; Timbrell, J A

    1998-03-01

    The testis synthesizes creatine from both arginine and glycine precursors, but when rat testicular tissue is separated into seminiferous tubules and interstitial cells, creatine synthesis occurs only in the tubular fraction. The purpose of the work presented here was to define the locus of creatine synthesis within the seminiferous tubules, by using cell separation and culture techniques to examine synthesis in the Sertoli cells and germ cells. The total creatine content, in the cellular compartment and incubation medium, of Sertoli-germ cell co-cultures and of Sertoli cell-enriched cultures, largely free of germ cells, increased by similar amounts over a 24 h incubation period. Sertoli cell-enriched cultures incorporated radioactivity from L-[guanidino-14C]arginine and [1-14C]glycine into both creatine and its biosynthetic precursor, guanidinoacetic acid. Isolated germ cells did not incorporate radioactivity from L-[guanidino-14C]arginine into either creatine or guanidinoacetic acid when incubated at a similar density and protein concentration under similar conditions. It is concluded that the synthesis of creatine observed in isolated rat seminiferous tubules occurs within the Sertoli cells and not the germ cells. PMID:9640271

  15. Cytotoxicity of butylated hydroxyanisole and butylated hydroxytoluene in isolated rat hepatocytes.

    PubMed

    Thompson, D; Moldéus, P

    1988-06-01

    The effects of the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on isolated rat hepatocytes were investigated. Both antioxidants were observed to be cytotoxic in a concentration-dependent manner at concentrations ranging from 100 to 750 microM. At equimolar concentrations BHT was more cytotoxic than BHA. Their toxicity appeared to be independent of their metabolism to reactive intermediates since inhibitors of cytochrome P-450 (metyrapone, SKF 525-A and piperonyl butoxide) had no effect on the cytotoxicity and N-acetylcysteine was also without protective effect. In addition, deuterated BHT was equitoxic with BHT. Only low temperature incubation (4 degrees), which has previously been shown to inhibit the insertion of these compounds into biomembranes, was effective in inhibiting the cytotoxic effects. Using isolated rat liver mitochondria we observed that both BHA and BHT inhibited respiratory control primarily by stimulating state 4 respiration and thus acting as membrane uncouplers. BHA and BHT also effectively dissipated membrane potential across the mitochondrial membrane and caused the release of calcium and mitochondrial swelling. These mitochondrial effects were reflected by a rapid decrease in ATP levels in intact hepatocytes which preceded cell death. These results suggest that the observed cytotoxicity of BHA and BHT to hepatocytes is related to their effects on biomembranes and mitochondrial bioenergetics. PMID:3377819

  16. The role of mitochondria and biotransformation in abamectin-induced cytotoxicity in isolated rat hepatocytes.

    PubMed

    Maioli, Marcos A; de Medeiros, Hyllana C D; Guelfi, Marieli; Trinca, Vitor; Pereira, Flávia T V; Mingatto, Fábio E

    2013-03-01

    Abamectin (ABA), which belongs to the family of avermectins, is used as a parasiticide; however, ABA poisoning can impair liver function. In a previous study using isolated rat liver mitochondria, we observed that ABA inhibited the activity of adenine nucleotide translocator and FoF1-ATPase. The aim of this study was to characterize the mechanism of ABA toxicity in isolated rat hepatocytes and to evaluate whether this effect is dependent on its metabolism. The toxicity of ABA was assessed by monitoring oxygen consumption and mitochondrial membrane potential, intracellular ATP concentration, cell viability, intracellular Ca(2+) homeostasis, release of cytochrome c, caspase 3 activity and necrotic cell death. ABA reduces cellular respiration in cells energized with glutamate and malate or succinate. The hepatocytes that were previously incubated with proadifen, a cytochrome P450 inhibitor, are more sensitive to the compound as observed by a rapid decrease in the mitochondrial membrane potential accompanied by reductions in ATP concentration and cell viability and a disruption of intracellular Ca(2+) homeostasis followed by necrosis. Our results indicate that ABA biotransformation reduces its toxicity, and its toxic action is related to the inhibition of mitochondrial activity, which leads to decreased synthesis of ATP followed by cell death. PMID:23142325

  17. Comparative cytotoxicity between butylated hydroxytoluene and its methylcarbamate derivative, terbucarb, on isolated rat hepatocytes

    SciTech Connect

    Nakagawa, Y.; Yaguchi, K.; Suzuki, T. )

    1994-08-01

    Butylated hydroxytoluene (3,5-di-tert-butyl-4-hydroxytoluene; BHT) is widely used as phenolic antioxidant in processed foods, cosmetics and petroleum products. It is well known that high doses of BHT cause acute hepatic damage accompanied by centrilobular necrosis in rats. The hepatic damage is associated with prolonged depletion of glutathione (GSH). Terbucarb (2,6-di-tert-butyl-para-tolyl-methylcarbamate), which has a methylcarbamate group substituted for the phenol group on BHT, was developed as an insecticide and is also presently used as a herbicide on turfgrass. Despite the metabolic and toxicological details known about BHT in vivo and in vitro, no extensive studies have been reported on the metabolism and toxicity of Terbucarb. The isolated hepatocyte system provides a very useful system for the study of the temporal sequences leading to cell damage caused by chemicals and drugs. Here, using freshly isolated rat hepatocytes, we report on the comparative toxic effects of BHT and its methylcarbamate derivative, Terbucarb. 17 refs., 2 figs., 2 tabs.

  18. Comparative Proteomics Provides Insights into Metabolic Responses in Rat Liver to Isolated Soy and Meat Proteins.

    PubMed

    Song, Shangxin; Hooiveld, Guido J; Zhang, Wei; Li, Mengjie; Zhao, Fan; Zhu, Jing; Xu, Xinglian; Muller, Michael; Li, Chunbao; Zhou, Guanghong

    2016-04-01

    It has been reported that isolated dietary soy and meat proteins have distinct effects on physiology and liver gene expression, but the impact on protein expression responses are unknown. Because these may differ from gene expression responses, we investigated dietary protein-induced changes in liver proteome. Rats were fed for 1 week semisynthetic diets that differed only regarding protein source; casein (reference) was fully replaced by isolated soy, chicken, fish, or pork protein. Changes in liver proteome were measured by iTRAQ labeling and LC-ESI-MS/MS. A robust set totaling 1437 unique proteins was identified and subjected to differential protein analysis and biological interpretation. Compared with casein, all other protein sources reduced the abundance of proteins involved in fatty acid metabolism and Pparα signaling pathway. All dietary proteins, except chicken, increased oxidoreductive transformation reactions but reduced energy and essential amino acid metabolic pathways. Only soy protein increased the metabolism of sulfur-containing and nonessential amino acids. Soy and fish proteins increased translation and mRNA processing, whereas only chicken protein increased TCA cycle but reduced immune responses. These findings were partially in line with previously reported transcriptome results. This study further shows the distinct effects of soy and meat proteins on liver metabolism in rats. PMID:26886706

  19. Endothelial nitric oxide modulates perivascular sensory neurotransmission in the rat isolated mesenteric arterial bed

    PubMed Central

    Ralevic, Vera

    2002-01-01

    A possible role of nitric oxide (NO) as a modulator of capsaicin-sensitive sensory neurotransmission in blood vessels was investigated in the rat isolated mesenteric arterial bed. Electrical field stimulation (EFS) of methoxamine-preconstricted mesenteric beds elicited frequency-dependent vasorelaxation mediated by capsaicin-sensitive sensory nerves. NG-nitro-L-arginine methyl ester (L-NAME, 10 and 300 μM) and 7-nitroindazole (7-NI, 100 μM), inhibitors of nitric oxide synthase (NOS), augmented sensory neurogenic vasorelaxation. D-NAME (300 μM), 6-aminoindazole (100 μM) and Nω-propyl-L-arginine (50 nM), a selective inhibitor of neuronal NOS, were without effect. The effect of 10 μM L-NAME was reversed by L-arginine (1 mM), the substrate for NOS. L-NAME (300 μM) and 7-NI (100 μM) had no significant effect on vasorelaxations to calcitonin gene-related peptide (CGRP), the principal motor neurotransmitter of capsaicin-sensitive sensory nerves in rat mesenteric arteries, or to capsaicin, indicating a prejunctional action. The inhibitors of NOS had no effect on vasorelaxation to forskolin, but augmented vasorelaxation to sodium nitroprusside (SNP). Removal of the endothelium augmented sensory neurogenic vasorelaxation, but did not affect vasorelaxation to CGRP, indicating a prejunctional action of endothelial NO. In the absence of endothelium, L-NAME (300 μM) inhibited, and 7-NI (100 μM) caused no further augmentation of sensory neurotransmission. SNP (100 nM), a nitric oxide donor, attenuated sensory neurogenic relaxations to EFS. In rat isolated thoracic aortic rings, L-NAME (100 μM) and 7-NI (100 μM) attenuated concentration-dependent relaxations to acetylcholine. These data show that NO modulates sensory neurotransmission evoked by EFS of the rat isolated mesenteric arterial bed, and that when NO synthesis is blocked sensory neurogenic relaxation is augmented. The source of NO is the vascular endothelium. PMID:12183327

  20. Chronic Cadmium Treatment Promotes Oxidative Stress and Endothelial Damage in Isolated Rat Aorta

    PubMed Central

    Almenara, Camila C. P.; Broseghini-Filho, Gilson B.; Vescovi, Marcus V. A.; Angeli, Jhuli K.; Faria, Thaís de O.; Stefanon, Ivanita; Vassallo, Dalton V.; Padilha, Alessandra S.

    2013-01-01

    Cadmium is a highly toxic metal that is present in phosphate fertilizers, and the incidence of cadmium poisoning in the general population has increased, mainly due to cigarette smoking. Once absorbed, cadmium accumulates in the tissues, causing harmful effects including high blood pressure, endothelial damage and oxidative stress. Oxidative stress is known to efficiently produce oxidized low-density lipoprotein and consequently atherosclerosis, mainly in the aorta. However, the mechanisms through which endothelial damage is induced by cadmium have not been elucidated. Thus, the aim of this study was to investigate the effects of this metal in the isolated aorta and the possible role of oxidative stress. Rats received 100 mg.L−1 cadmium chloride (CdCl2) in the drinking water or distilled water alone for four weeks. The pressor effect of cadmium was followed throughout the exposure period by tail plethysmography. At the end of the fourth week, the blood cadmium content was established, and the vascular reactivity of the isolated aorta to phenylephrine, acetylcholine and sodium nitroprusside was analyzed in the context of endothelium denudation and incubation with L-NAME, apocynin, losartan, enalapril, superoxide dismutase (SOD) or catalase. We observed an increased response to phenylephrine in cadmium-treated rats. This increase was abolished by catalase and SOD incubation. Apocynin treatment reduced the phenylephrine response in both treatment groups, but its effect was greater in cadmium-treated rats, and NOX2 expression was greater in the cadmium group. These results suggested that cadmium in blood concentrations similar to those found in occupationally exposed populations is able to stimulate NOX2 expression, contributing to oxidative stress and reducing NO bioavailability, despite enhanced eNOS expression. These findings suggest that cadmium exposure promotes endothelial damage that might contribute to inflammation, vascular injury and the development of

  1. Alterations to prepulse inhibition magnitude and latency in adult rats following neonatal treatment with domoic acid and social isolation rearing.

    PubMed

    Marriott, Amber L; Tasker, R Andrew; Ryan, Catherine L; Doucette, Tracy A

    2016-02-01

    Deficits in perceptual, informational, and attentional processing are consistently identified as a core feature in schizophrenia and related neuropsychiatric disorders. Neonatal injections of low doses of the AMPA/kainate agonist domoic acid (DOM) have previously been shown to alter various aspects of perceptual and attentional processing in adult rats. The current study investigated the effects of combined neonatal DOM treatment with isolation rearing on prepulse inhibition behaviour and relevant neurochemical measures, to assess the usefulness of these paradigms in modeling neurodevelopmental disorders. Daily subcutaneous injections of DOM (20 μg/kg) or saline were administered to male and female rat pups from postnatal days (PND) 8-14. After weaning, rats were either housed alone or in groups of 4. Both the magnitude and latency of prepulse inhibition were determined in adulthood (approximately 4.5 months of age) and post-mortem brain tissue was assayed using Western blot. Social isolation alone significantly lowered PPI magnitude in male (but not female) rats while DOM treatment appeared to make animals refractory to this effect. Combining social isolation and DOM treatment caused an additive decrease in PPI startle latency. No statistically significant differences were found in the expression of D1, D2, TH, GAD65 or GAD67 protein in either the prefrontal cortex or hippocampus, although some tendencies toward differences were noted. We conclude that both neonatal low-dose DOM and social isolation affect prepulse inhibition in rats but that each paradigm exerts these effects through different neuronal signalling systems. PMID:26590368

  2. Emotional learning enhances stimulus-specific top-down modulation of sensorimotor gating in socially reared rats but not isolation-reared rats.

    PubMed

    Du, Yi; Wu, Xihong; Li, Liang

    2010-01-20

    Prepulse inhibition (PPI), the suppression of the startle reflex by a preceding sensory stimulus (prepulse), can be top-down modulated in both humans and rats. This study investigated whether emotional-learning-induced enhancement of PPI in rats is prepulse specific. The results show that in socially reared rats, PPI elicited by a narrowband-noise prepulse on the broadband-noise background (masker) was enhanced after the prepulse became fear conditioned. This fear-conditioning-modulated PPI was further enhanced by introducing a perceived spatial separation between the conditioned prepulse and the broadband-noise masker. However, these PPI enhancements disappeared if the conditioned prepulse was replaced by a different narrowband-noise prepulse that was not fear conditioned. In isolation-reared rats, who had both enhanced baseline startle and reduced PPI before conditioning, neither fear conditioning of the prepulse nor perceived spatial separation between the conditioned prepulse and noise masker could enhance PPI. Thus, the emotional-learning-induced enhancement of PPI in socially reared rats is prepulse specific, indicating that auditory processing interacts with mnemonic signaling in the formation of top-down modulation of PPI. Since the deficiency of attentional modulation of PPI in schizophrenic patients is correlated with the symptom severity, the deficiency of top-down modulations of PPI in isolation-reared rats is useful for modeling schizophrenia. PMID:19761801

  3. Antihyperlipidemic effect of sesame (Sesamum indicum L.) protein isolate in rats fed a normal and high cholesterol diet.

    PubMed

    Biswas, Arundhati; Dhar, Pubali; Ghosh, Santinath

    2010-01-01

    The dietary influence of sesame protein isolate (protein content 91.5%), produced from dehulled, defatted sesame meal, on blood and tissue lipid profile and lipid peroxidation has been assessed in normal and hypercholesterolemic rats. To evaluate their hypocholesterolemic and antioxidative activity in vivo, we fed 18% sesame protein isolate with or without 2% cholesterol in comparison with casein to rats for 28 d. We determined plasma total protein, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, triacylglycerol as well as susceptibility of plasma and erythrocyte membrane lipid to oxidation ex vivo. Liver tissue lipid, cholesterol, phospholipids, and lipid peroxidations were also determined. The total cholesterol, LDL-cholesterol and triacylglycerol levels were significantly reduced in the sesame protein isolate and isolate containing cholesterol group than the corresponding control casein groups. HDL-cholesterol level was also increased in sesame protein isolate (41%) and protein isolate containing cholesterol group (38%) than the corresponding control casein and casein containing cholesterol groups. There was 49% and 64% lowering of plasma lipid peroxidation as well as 36% and 56% lowering of lipoprotein oxidation susceptibility (LOS) in the 2 experimental groups (sesame protein isolate and isolate containing cholesterol group) than the corresponding control (casein and casein containing cholesterol) groups. There was significant lowering of erythrocyte membrane lipid peroxidation (68% and 63% lowering in sesame protein isolate and isolate containing cholesterol groups) and liver lipid peroxidation (61% and 76% lowering in the 2 experimental groups than the corresponding control casein groups). Therefore, our results indicate that sesame protein isolate decreases cholesterol concentration in plasma, increases HDL-cholesterol, and also decreases plasma and erythrocyte membrane lipid peroxidation with or

  4. Properties of ionic currents from isolated adult rat carotid body chemoreceptor cells: effect of hypoxia.

    PubMed Central

    López-López, J R; González, C; Pérez-García, M T

    1997-01-01

    1. The electrical properties of chemoreceptor cells from neonatal rat and adult rabbit carotid bodies (CBs) are strikingly different. These differences have been suggested to be developmental and/or species related. To distinguish between the two possibilities, the whole-cell configuration of the patch-clamp technique was used to characterize the ionic currents present in isolated chemoreceptor cells from adult rat CBs. Since hypoxia-induced inhibition of O2-sensitive K+ currents is considered a crucial step in O2 chemoreception, the effect of hypoxia on the adult rat chemoreceptor cell currents was also studied. 2. Outward currents were carried mainly by K+, and two different components could be distinguished: a Ca(2+)-dependent K+ current (IK(Ca)) sensitive to Cd2+ and charybdotoxin (CTX), and a Ca(2+)-insensitive, voltage-dependent K+ current (IK(V)). IK(V) showed a slow voltage-dependent activation (time constant (tau) of 87.4 ms at -20 mV and 8.8 ms at +60 mV) and a very slow inactivation, described by the sum of two exponentials (tau 1 = 684 +/- 150 ms and tau 2 = 4.96 +/- 0.76 s at + 30 mV), that was almost voltage insensitive. The kinetic and pharmacological properties of IK(V) are typical of a delayed rectifier K+ channel. 3. Voltage-dependent Ca2+ currents (ICa) were present in nineteen of twenty-seven cells. TTX-sensitive Na+ currents were also observed in about 10% of the cells. 4. Low PO2 (< 10 mmHg) reduced the whole outward current amplitude by 22.17 +/- 1.96% (n = 27) at +20 mV. This effect was absent in the presence of Cd2+. Since low PO2 did not affect ICa, we conclude that hypoxia selectively blocks IK(Ca). 5. The properties of the currents recorded in adult rat chemoreceptor cells, including the specific inhibition of IK(Ca) by hypoxia, are similar to those reported in neonatal rat CB cells, implying that the differences between rat and rabbit chemoreceptor cells are species related. PMID:9080372

  5. RNA-sequencing data analysis of uterus in ovariectomized rats fed with soy protein isolate,17B-estradiol and casein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This data file describes the bioinformatics analysis of uterine RNA-seq data comparing genome wide effects of feeding soy protein isolate compared to casein to ovariectomized female rats age 64 days relative to treatment of casein fed rats with 5 ug/kg/d estradiol and relative to rats treated with e...

  6. Characteristics of saxitoxin binding to the sodium channel of sarcolemma isolated from rat skeletal muscle.

    PubMed Central

    Barchi, R L; Weigele, J B

    1979-01-01

    1. The characteristics of saxitoxin (STX) binding to the mammalian Na channel have been studied in purified sarcolemma isolated from rat skeletal muscle. 2. STX binds specifically to isolated sarcolemma with a Kd of 1.43 x 10(-9) M and Bmax of 7-8 p-mole STX bound/mg membrane protein at 0 degrees C in the presence of 140 mM-NaCl. In rat muscle homogenate under the same conditions the corresponding values are Kd = 1.53 x 10(-9) M and Bmax = 0.15-0.20 p-mole/mg protein (18-20 p-mole/g wet wt.). Membrane purification produced a fortyfold increase in STX binding site concentration per milligram protein. Calculated binding site density in isolated sarcolemma was about 30 sites/micron 2 of membrane surface. 3. Denervation (10-14 days) results in a 43% reduction in the density of high-affinity STX binding sites in purified sarcolemma, but the Kd for this class of sites is not changed. 4. In sarcolemma, the apparent Kd for STX binding is dependent on temperature pH and ionic strength. The Q10 for Kd between 0 and 40 degrees C is 1.3. Protonation of a group having a pK of 6.0 markedly raises Kd without affecting Bmax. Apparent Kd increases eightfold when ionic strength is raised from 20 to 600 mM. 5. Dissociation and association rate constants for STX binding are temperature dependent with Q10 of 2.6 and 1.9 respectively between 0 and 20 degrees C. 6. STX binding is competitively inhibited by monovalent and divalent cations under conditions of constant total ionic strength. An affinity sequence of Tl+ greater than Li+ greater than Na+ greater than K+ greater than Rb+ greater than Cs+ is seen for the monovalent cation-binding site. 7. The STX binding site is relatively stable to heat and to enzymic degradation. A specific modifier of carboxyl residues inactivates subsequent STX binding. This process can be prevented by the presence of STX during the reaction. 8. Characteristics of the STX binding site in isolated sarcolemma are compared to those reported for other isolated

  7. Stress initiated during isolation of rat renal proximal tubules limits in vitro survival.

    PubMed

    Green, C E; Dabbs, J E; Tyson, C A; Rauckman, E J

    1990-01-01

    The effects of oxidative damage were assessed in rat proximal tubule fragments (isolated by collagenase perfusion) by monitoring lactate dehydrogenase release (LDH-R) to measure cell viability and thiobarbituric acid (TBA) reactive material to follow oxidative damage. Increasing the oxygen content in the incubation atmosphere from 10 to 95% significantly increased LDH-R and TBA reactants. Addition of butylated hydroxytoluene or deferoxamine (DF) to the medium prevented these changes, but ascorbic acid or mannitol had no positive effect. Lima bean trypsin inhibitor also reduced LDH leakage significantly when added to the medium, but not when added to the perfusion buffers. In contrast, adding DF to the perfusate during tubule isolation produced the most pronounced benefit; net LDH-R after 4 hr was about 10% in tubules prepared this way compared to 20% when DF was omitted. Basal oxygen consumption declined to approximately the same extent as LDH-R increased. Maintenance of nystatin-stimulated respiration, ATP/ADP, GSH content and total adenine nucleotides indicated good cell function. These results suggest that oxidative damage initiated during the tubule isolation procedure limits cell survival but this effect can be counteracted substantially by the addition of DF to the perfusion buffer. PMID:1962872

  8. The effect of curcumin on insulin release in rat-isolated pancreatic islets.

    PubMed

    Abdel Aziz, Mohamed T; El-Asmar, Mohamed F; El Nadi, Essam G; Wassef, Mohamed A; Ahmed, Hanan H; Rashed, Laila A; Obaia, Eman M; Sabry, Dina; Hassouna, Amira A; Abdel Aziz, Ahmed T

    2010-08-01

    Curcumin exerts a hypoglycemic action and induces heme-oxygenase-1 (HO-1). We evaluated the effect of curcumin on isolated islets of Langerhans and studied whether its action on insulin secretion is mediated by inducible HO-1. Islets were isolated from rats and divided into control islets, islets incubated in different curcumin concentrations, islets incubated in hemin, islets incubated in curcumin and HO inhibitor, stannous mesoporphyrin (SnMP), islets incubated in hemin and SnMP, islets incubated in SnMP only, and islets incubated in 16.7 mmol/L glucose. Heme-oxygenase activity, HO-1 expression, and insulin estimation was assessed. Insulin secretion, HO-1 gene expression and HO activity were significantly increased in islets incubated in curcumin, hemin, and glucose compared with controls. This increase in insulin secretion was significantly decreased by incubation of islets in SnMP. The action of curcumin on insulin secretion from the isolated islets may be, in part, mediated through increased HO-1 gene expression. PMID:20395228

  9. Ethanol-induced impairment of hepatic glycoprotein secretion in the isolated rat liver perfusion model

    SciTech Connect

    Volentine, G.D.; Ogden, K.A.; Tuma, D.J.; Sorrell, M.F.

    1987-05-01

    The authors have previously shown that acute administration of ethanol inhibits hepatic glycoprotein secretion in vivo. This ethanol-induced effect appears to be mediated by its reactive metabolite, acetaldehyde. Since hormonal influences and vascular changes can not be controlled in vivo during ethanol administration, they investigated the effect of ethanol in the isolated perfused liver model. Rat liver from fed animals was perfused with oxygenated KRB at 3 ml/min/g liver for 4 hrs. Since ethanol inhibits proteins synthesis in vitro, protein acceptor pool size was equalized in both ethanol and control perfused livers with 1 mM cycloheximide. /sup 3/H-glucosamine was used to label hepatic secretory glycoproteins in the perfusate. Colchicine, a known inhibitor of protein secretion, impaired the secretion of labeled glycoproteins with a concomitant retention of these export proteins in the liver; therefore, confirming the authors secretory model. Ethanol (50 mM) inhibited the appearance of glucosamine-labeled glycoproteins by 60% into the perfusate as compared to control livers. Pretreatment of animals with cyanamide (an aldehyde dehydrogenase inhibitor) further potentiated this effect of ethanol in the isolated perfused liver. These data suggest that ethanol inhibits hepatic glycoprotein secretion in the isolated liver perfusion model, and this ethanol-induced impairment appears to be mediated by acetaldehyde.

  10. Protective effects of Sesamum indicum extract against oxidative stress induced by vanadium on isolated rat hepatocytes.

    PubMed

    Hosseini, Mir-Jamal; Shahraki, Jafar; Tafreshian, Saman; Salimi, Ahmad; Kamalinejad, Mohammad; Pourahmad, Jalal

    2016-08-01

    Vanadium toxicity is a challenging problem to human and animal health with no entirely understanding cytotoxic mechanisms. Previous studies in vanadium toxicity showed involvement of oxidative stress in isolated liver hepatocytes and mitochondria via increasing of ROS formation, release of cytochrome c and ATP depletion after incubation with different concentrations (25-200 µM). Therefore, we aimed to investigate the protective effects of Sesamum indicum seed extract (100-300 μg/mL) against oxidative stress induced by vanadium on isolated rat hepatocytes. Our results showed that quite similar to Alpha-tocopherol (100 µM), different concentrations of extract (100-300 μg/mL) protected the isolated hepatocyte against all oxidative stress/cytotoxicity markers induced by vanadium in including cell lysis, ROS generation, mitochondrial membrane potential decrease and lysosomal membrane damage. Besides, vanadium induced mitochondrial/lysosomal toxic interaction and vanadium reductive activation mediated by glutathione in vanadium toxicity was significantly (P < 0.05) ameliorated by Sesamum indicum extracts. These findings suggested a hepato-protective role for extracts against liver injury resulted from vanadium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 979-985, 2016. PMID:25727928

  11. Platelet-activating factor mediates angiotensin II-induced proteinuria in isolated perfused rat kidney.

    PubMed

    Perico, N; Lapinski, R; Konopka, K; Aiello, S; Noris, M; Remuzzi, G

    1997-09-01

    Isolated kidney preparations (IPK) from male Sprague Dawley rats perfused at constant pressure were used to evaluate the effect of angiotensin II (AII) and platelet-activating factor (PAF) on renal function and urinary protein excretion. Compared with basal, intrarenal infusion of AII at 8 ng/min caused a progressive increase in protein excretion (11 +/- 6 versus 73 +/- 21 micrograms/min) in parallel with a decline in renal perfusate flow (RPF) (29 +/- 3 versus 18 +/- 3 ml/min). Addition to the perfusate of PAF at 50 nM final concentration also induced proteinuria (9 +/- 4 versus 55 +/- 14 micrograms/min) but did not change RPF (29 +/- 3 versus 30 +/- 3 ml/min). Preexposure of isolated kidneys to the PAF receptor antagonist WEB 2086 prevented the increase in urinary protein excretion induced by AII infusion (basal: 13 +/- 6; post-AII: 12 +/- 7 micrograms/min) but failed to prevent the vasoactive effect of AII (RPF, basal: 30 +/- 2; post-AII: 21 +/- 3 ml/min). In additional experiments, dexamethasone reduced the proteinuric effect of PAF remarkably. These results indicate that in isolated kidney preparation: (1) AII infusion induced proteinuria and decreased RPF; and (2) the effect of AII in enhancing urinary protein excretion was completely prevented by a specific PAF receptor antagonist, which, however, did not influence the AII-induced fall in RPF. It is suggested that PAF plays a major role in AII-induced changes in the permselective function of the glomerular capillary barrier. PMID:9294830

  12. Contribution of Social Isolation, Restraint, and Hindlimb Unloading to Changes in Hemodynamic Parameters and Motion Activity in Rats

    PubMed Central

    Tsvirkun, Darya; Bourreau, Jennifer; Mieuset, Aurélie; Garo, Florian; Vinogradova, Olga; Larina, Irina; Navasiolava, Nastassia; Gauquelin-Koch, Guillemette; Gharib, Claude; Custaud, Marc-Antoine

    2012-01-01

    The most accepted animal model for simulation of the physiological and morphological consequences of microgravity on the cardiovascular system is one of head-down hindlimb unloading. Experimental conditions surrounding this model include not only head-down tilting of rats, but also social and restraint stresses that have their own influences on cardiovascular system function. Here, we studied levels of spontaneous locomotor activity, blood pressure, and heart rate during 14 days under the following experimental conditions: cage control, social isolation in standard rat housing, social isolation in special cages for hindlimb unloading, horizontal attachment (restraint), and head-down hindlimb unloading. General activity and hemodynamic parameters were continuously monitored in conscious rats by telemetry. Heart rate and blood pressure were both evaluated during treadmill running to reveal cardiovascular deconditioning development as a result of unloading. The main findings of our work are that: social isolation and restraint induced persistent physical inactivity, while unloading in rats resulted in initial inactivity followed by normalization and increased locomotion after one week. Moreover, 14 days of hindlimb unloading showed significant elevation of blood pressure and slight elevation of heart rate. Hemodynamic changes in isolated and restrained rats largely reproduced the trends observed during unloading. Finally, we detected no augmentation of tachycardia during moderate exercise in rats after 14 days of unloading. Thus, we concluded that both social isolation and restraint, as an integral part of the model conditions, contribute essentially to cardiovascular reactions during head-down hindlimb unloading, compared to the little changes in the hydrostatic gradient. PMID:22768322

  13. Antidiabetic effects of scoparic acid D isolated from Scoparia dulcis in rats with streptozotocin-induced diabetes.

    PubMed

    Latha, Muniappan; Pari, Leelavinothan; Ramkumar, Kunga Mohan; Rajaguru, Palanisamy; Suresh, Thangaraj; Dhanabal, Thangavel; Sitasawad, Sandhya; Bhonde, Ramesh

    2009-01-01

    We evaluated the antihyperglycaemic effect of scoparic acid D (SAD), a diterpenoid isolated from the ethanol extract of Scoparia dulcis in streptozotocin (STZ)-induced diabetic male Wistar rats. SAD was administered orally at a dose of 10, 20 and 40 mg kg(-1) bodyweight for 15 days. At the end of the experimental period, the SAD-treated STZ diabetic rats showed decreased levels of glucose as compared with diabetic control rats. The improvement in blood glucose levels of SAD-treated rats was associated with a significant increase in plasma insulin levels. SAD at a dose of 20 mg kg(-1) bodyweight exhibited a significant effect when compared with other doses. Further, the effect of SAD was tested on STZ-treated rat insulinoma cell lines (RINm5F cells) and isolated islets in vitro. SAD at a dose of 20 microg mL(-1) evoked two-fold stimulation of insulin secretion from isolated islets, indicating its insulin secretagogue activity. Further, SAD protected STZ-mediated cytotoxicity and nitric oxide (NO) production in RINm5F cells. The present study thus confirms the antihyperglycaemic effect of SAD and also demonstrated the consistently strong cytoprotective properties of SAD. PMID:19606382

  14. Prevention of increases in blood pressure and left ventricular mass and remodeling of resistance arteries in young New Zealand genetically hypertensive rats: the effects of chronic treatment with valsartan, enalapril and felodipine.

    PubMed

    Ledingham, J M; Phelan, E L; Cross, M A; Laverty, R

    2000-01-01

    The relative efficacy of three antihypertensive drugs in the prevention of further elevation of blood pressure (BP) and cardiovascular structural remodeling in 4-week-old genetically hypertensive (GH) rats was studied by means of two complementary methods, stereology and myography. Four to 10-week-old GH rats were treated with valsartan (10 mg/kg/day), enalapril (10 mg/kg/day) or felodipine (30 mg/kg/day). Untreated GH and normotensive control rats of Wistar origin served as controls. Tail-cuff systolic SBP was measured weekly and left ventricular (LV) mass determined at the end of the experiment. Mesenteric resistance arteries (MRA) were either fixed by perfusion, embedded in Technovit and sections stained for stereological analysis, or mounted on a wire myograph for structural and functional measurements. BP and LV mass were significantly reduced by all drugs; decreases in BP and LV mass were smaller after felodipine treatment. Valsartan and enalapril caused a decrease in BP to normotensive control values. Felodipine kept BP at the 4-week level and prevented further rise with age. Valsartan caused hypotrophic outward remodeling of MRA, enalapril eutrophic outward remodeling and felodipine hypotrophic remodeling. Myograph measurements showed remodeling of the same order. While all drugs lowered the media/lumen ratio in GH to normal, the outward remodeling after valsartan and enalapril indicates that valsartan and enalapril might be more effective in reversing the inward remodeling of resistance arteries found in essential hypertension. PMID:10754398

  15. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides.

    PubMed Central

    Schlosser, S F; Burgstahler, A D; Nathanson, M H

    1996-01-01

    Intercellular communication among certain cell types can occur via ATP secretion, which leads to stimulation of nucleotide receptors on target cells. In epithelial cells, however, intercellular communication is thought to occur instead via gap junctions. Here we examined whether one epithelial cell type, hepatocytes, can also communicate via nucleotide secretion. The effects on cytosolic Ca2+ ([Ca2+]i) of mechanical stimulation, including microinjection, were examined in isolated rat hepatocytes and in isolated bile duct units using confocal fluorescence video microscopy. Mechanical stimulation of a single hepatocyte evoked an increase in [Ca2+]i in the stimulated cell plus an unexpected [Ca2+]i rise in neighboring noncontacting hepatocytes. Perifusion with ATP before mechanical stimulation suppressed the [Ca2+]i increase, but pretreatment with phenylephrine did not. The P2 receptor antagonist suramin inhibited these intercellular [Ca2+]i signals. The ATP/ADPase apyrase reversibly inhibited the [Ca2+]i rise induced by mechanical stimulation, and did not block vasopressin-induced [Ca2+]i signals. Mechanical stimulation of hepatocytes also induced a [Ca2+]i increase in cocultured isolated bile duct units, and this [Ca2+]i increase was inhibited by apyrase as well. Finally, this form of [Ca2+]i signaling could be elicited in the presence of propidium iodide without nuclear labeling by that dye, indicating that this phenomenon does not depend on disruption of the stimulated cell. Thus, mechanical stimulation of isolated hepatocytes, including by microinjection, can evoke [Ca2+]i signals in the stimulated cell as well as in neighboring noncontacting hepatocytes and bile duct epithelia. This signaling is mediated by release of ATP or other nucleotides into the extracellular space. This is an important technical consideration given the widespread use of microinjection techniques for examining mechanisms of signal transduction. Moreover, the evidence provided suggests a

  16. IN VITRO EFFECTS OF PARTICULATE MATTER ON AIRWAY EPITHELIAL CELLS ISOLATED FROM CONCENTRATED AIR PARTICLES-EXPOSED SPONTANEOUS HYPERTENSIVE RATS

    EPA Science Inventory

    In vitro effects of particulate matter on airway epithelial cells isolated from concentrated air particles-exposed spontaneous hypertensive rats

    Ines Pagan, Urmila Kodavanti, Paul Evansky, Daniel L Costa and Janice A Dye. U.S. Environmental Protection Agency, ORD, National...

  17. Dietary soy protein isolate attenuates metabolic syndrome in rats via effects on PPAR, LXR and SREBP signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male and female rats (age 21 days) were fed AIN-93G diets made with casein, soy protein isolate (SPI+), isoflavone reduced SPI+ (SPI-), or casein plus purified genistein or daidzein. After 2 weeks, peroxisome proliferator activated receptor (PPAR) alpha-regulated genes involved in fatty acid degrada...

  18. ISOLATION AND GENOTYPING OF Toxoplasma gondii IN SERONEGATIVE URBAN RATS AND PRESENCE OF ANTIBODIES IN COMMUNICATING DOGS IN BRAZIL

    PubMed Central

    RUFFOLO, Bruno Bergamo; TOLEDO, Roberta dos Santos; MARTINS, Felippe Danyel Cardoso; BUGNI, Felipe Monteiro; da COSTA, Letícia; MARANA, Elizabete Regina Marangoni; NAVARRO, Italmar Teodorico; GARCIA, João Luis; SU, Chunlei; FREIRE, Roberta Lemos

    2016-01-01

    The role of rodents in the epidemiology of toxoplasmosis was investigated in Londrina, Paraná State, Brazil. One hundred and eighty-one Rattus rattus and one Mus musculus were caught in 37 places. Blood and tissues were collected and submitted to the indirect fluorescence antibody test (IFAT) and the bioassay. Serum samples from 61 contacting dogs were also collected. Sixteen rats (8.8%) were positive for Toxoplasma gondii, but just two of them were positive by serology and bioassay test. Antibodies were found in nine (4.9%) rats. Tissues of nine rats bioassayed were positive and four isolates were obtained. Restriction fragment length polymorphism (RFLP) analysis was performed using 12 markers (SAG1, SAG2, SAG2-alt, C22-8, C29-2, L358, PK1, BTUB, GRA6, SAG3, Apico, CS3). Genotyping revealed that the four strains isolated from this study have been isolated before in cats and chickens from Brazil. None of the isolates was identified like clonal archetypal T-types I, II, and III. The rats presented lower serologic Toxoplasma gondii prevalence (8.8%) compared to contacting dogs (70.5%). PMID:27074322

  19. Soy protein isolate and estradiol differ in their effects on the mammary gland of weanling male and female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isoflavones are phytochemical components of soy diets that bind weakly to estrogen receptors (ERs). To study potential estrogen-like actions of soy in the mammary gland, we fed weanling male and female Sprague-Dawley rats a casein diet from PND21 to PND33, the same diet substituting soy protein isol...

  20. Rice Protein isolate improves lipid and glucose homeostasis in rats fed high fat/high cholesterol diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hundreds of phytochemicals are bound to rice protein isolate (RPI) and many are bioactive. To determine the metabolic effects of feeding RPI in early development, weanling rats were fed AIN-93G diets made with casein or RPI for 14 d. Reduced growth rate and adiposity prior to puberty in RPI-fed ra...

  1. Uterine responses to feeding soy protein isolate and treatment with 17B-estradiol differ in ovariectomized female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are concerns regarding reproductive toxicity from consumption of soy foods, including an increased risk of endometriosis and endometrial cancer, as a result of phytoestrogen consumption. In this study, female rats were fed AIN-93G diets made with casein (CAS) or soy protein isolate (SPI) from ...

  2. Effects of Malva sylvestris and Its Isolated Polysaccharide on Experimental Ulcerative Colitis in Rats.

    PubMed

    Hamedi, Azadeh; Rezaei, Hossein; Azarpira, Negar; Jafarpour, Mehrnaz; Ahmadi, Fatemeh

    2016-01-01

    Malva sylvestris is an edible plant that is consumed as a herbal supplement for its antiulcer and colon cleansing properties in traditional Persian medicine. This study was designed to evaluate its effects on ulcerative colitis, which is a chronic gastrointestinal inflammation. Colitis was induced by rectal instillation of acetic acid solution. Rats in different groups received aqueous, n-hexane, or ethanolic fractions of the plant before induction of colitis. Isolated polysaccharide of plant was also tested in 2 groups before and after induction of colitis. Macroscopic and microscopic evaluation of colitis showed that the aqueous fraction was very effective in preventing the inflammation and efficacy was lower for ethanolic and n-hexane fractions. Polysaccharide was effective in reducing signs of inflammation, especially as pretreatment. These beneficial effects provide evidences that this plant can be suggested for patients with this disease to improve their health condition or to reduce adverse effects of their medication. PMID:26045553

  3. Lipid phosphorylation in isolated rat liver nuclei. Synthesis of polyphosphoinositides at subnuclear level.

    PubMed

    Capitani, S; Bertagnolo, V; Mazzoni, M; Santi, P; Previati, M; Antonucci, A; Manzoli, F A

    1989-08-28

    Isolated rat liver nuclei and subnuclear fractions synthesize polyphosphoinositides in vitro in a mode dependent on the presence of nuclear membrane, detergent and exogenous substrates. The nuclear membrane is not essential as a source of lipid kinases, since the addition of exogenous phosphatidylinositol or phosphatidylinositol monophosphate to reaction mixtures lacking membranes restores the synthesis of phosphatidylinositol mono- and bisphosphate, respectively. Inositide phosphorylation is best accomplished by high-salt extracted nuclei and pre-detergent lamina. These data suggest that the nucleus, and especially the nuclear periphery, is a cell compartment in which polyphosphoinositide synthesis occurs; this might be related to the progression of phosphatidylinositol metabolism-dependent signals to the genetic apparatus. PMID:2550277

  4. Effect of cannabinoids on CGRP release in the isolated rat lumbar spinal cord.

    PubMed

    Milne, Michael; Ashton, John C

    2016-02-12

    Cannabinoids produce analgesia through a variety of mechanisms. It has been proposed that one mechanism is by modulating the release of CGRP in the spinal cord pain pathways. Previous studies have reported that cannabinoids, particularly CB2 receptor agonists, can modulate CGRP release in the isolated rat spinal cord. In our experiments, the TRPV1 agonist capsaicin evoked CGRP release and this was supressed by the TRPV1 antagonist capsazepine and by the opioid receptor agonist DAMGO. However, none of the cannabinoid receptor agonists that we tested were able to modulate evoked CGRP release; including WIN 55,212-2, methanandamide, and GW405833. These results question the role of spinal cord cannabinoid receptors in the regulation of CGRP signaling. PMID:26762784

  5. [Cholinomimetics effects of carnitine on isolated and denervated rat stomach preparations].

    PubMed

    Bettini, V; Martino, R; Norani, M; Ton, P; Legrenzi, E

    1986-07-01

    According to various suggestions in the literature of cholinomimetic effects of carnitine on nervous structures, and experimental results of previous work on vascular smooth muscle, we studied the influence of this substance on the rat isolated and denervated stomach responses to acetylcholine (Ach). We found that Ach invariably induces contraction of the preparation, this effect being abolished by means of atropine or prifinium bromide or reduced by means of fendiline or flunarizine. We found also that carnitine invariably enhances the contractile responses of the preparation to Ach, and this effect is not modified by indomethacin or lysine acetylsalicylate, but usually abolished by fendiline and flunarizine. Our opinion is that the potentiation of stomach contractile responses to Ach by carnitine, is not due to prostaglandin mediation but it is due to sensitisation of the muscarinic receptors, which are stimulating contraction (here and in vascular smooth muscle) by means of: facilitation of calcium transit across the cellular membrane; intracellular deposit site release activation. PMID:3743746

  6. Motion compensation of optical mapping signals from isolated beating rat hearts

    NASA Astrophysics Data System (ADS)

    Stender, B.; Ernst, F.; Wang, B.; Zhang, Z. X.; Schlaefer, A.

    2013-09-01

    Optical mapping is a well established technique for recording monophasic action potential traces on the epicardial surface of isolated hearts. This measuring technique offers a high spatial resolution but it is sensitive towards myocardial motion. Motion artifacts occur because the mapping between a certain tissue portion sending out fluorescent light and a pixel of the photo detector changes over time. So far this problem has been addressed by suppressing the motion or ratiometric imaging. We developed a different approach to compensate the motion artifacts based on image registration. We could demonstrate how an image deformation field temporally changing with the heart motion could be determined. Using these deformation field time series for image transformation motion signals could be generated for each image pixel which were then successfully applied to remove baseline shift and compensate motion artifacts potentially leading to errors within maps of the first arrival time. The investigation was based on five different rat hearts stained with Di-4-ANEPPS.

  7. Nitrogen metabolism in the isolated perfused rat liver. Nitrogen balance, redox state and rates of proteolysis.

    PubMed

    Parrilla, R; Goodman, M N

    1974-03-01

    Nitrogen balances were measured in isolated perfused rat livers in the presence and absence of nitrogen donors. In all instances the balance apparently was incomplete. The expression [alanine][alpha-oxoglutarate]/[pyruvate][glutamate] remained fairly constant under the metabolic conditions studied, indicating that it may be at near-equilibrium. The source of the extra nitrogen seems to be derived from increased hepatic proteolysis. The addition of a nitrogen donor to the perfusate arrested proteolysis, as did the addition of pyruvate. The free mitochondrial [NAD(+)]/[NADH] ratio, calculated from the glutamate dehydrogenase and beta-hydroxybutyrate dehydrogenase reactants, showed similar values and exhibited parallel changes under most metabolic situations studied. These results suggest that, under the reported experimental conditions, both dehydrogenases share a common mitochondrial NAD pool. Glutamate dehydrogenase plays an important role in hepatic nitrogen metabolism in vivo. PMID:4372991

  8. Ischaemia-reperfusion and toxic oxygen metabolites do not induce release of immunoreactive atrial natriuretic factor from isolated rat hearts.

    PubMed

    Valen, G; Lettrem, I; Sundsfjord, J; Vaage, J

    1993-07-01

    Secretion of immunoreactive atrial natriuretic factors (ANF) after injury by ischaemia-reperfusion and toxic oxygen metabolites (TOM) was investigated in the following groups of Langendorff-perfused rat hearts: 1.1., control perfusion; 1.2., hearts perfused with H2O2 (200 mumol l-1) as a TOM-generating agent for 10 min, followed by recovery for 30 min; 1.3., thiourea (10 mmol l-1), a hydroxyl radical scavenger, was given together with H2O2; 2.1., control perfusion; 2.2., ischaemia (37 degrees C) for 20 min followed by reperfusion for 40 min. Ischaemia-reperfusion and TOM temporarily decreased left ventricular developed pressure and increased left ventricular end-diastolic pressure. The cardiac effects of H2O2 were inhibited by thiourea. Coronary flow (CF) was increased by TOM and decreased by ischaemia-reperfusion. Immunoreactive ANF was measured sequentially in the coronary effluent by radioimmunoassay. Basal secretion of immunoreactive ANF for all groups pooled was 0.45 +/- 0.02 pmol min-1 (mean +/- SEM), and did not change significantly with time in any group. In conclusion, ischaemia-reperfusion and TOM do not influence secretion of immunoreactive ANF. PMID:8378741

  9. Hormone responsiveness of cultured Sertoli cells obtained from adult rats after their rapid isolation under less harsh conditions.

    PubMed

    Gautam, M; Bhattacharya, I; Devi, Y S; Arya, S P; Majumdar, S S

    2016-05-01

    During adulthood, testicular Sertoli cells (Sc) coordinate all stages of germ cell (Gc) development involved in sperm production. However, our understanding about the functions of adult Sc is limited because of the difficulties involved in the process of isolating these cells from the adult testis, mainly because of the presence of large number of advanced Gc which interfere with Sc isolation at this age. Most of our knowledge about Sc function are derived from studies which used pre-pubertal rat Sc (18 ± 2-day old) as it is easy to isolate and culture Sc at this age. To this end, we established a less time consuming and less harsh procedure of isolating Sc from adult (60 days of age) rat testis for facilitating research on Sc-mediated regulation of spermatogenesis during adulthood. The cells were isolated using collagenase digestion at higher temperature, reducing the exposure time of cells to the enzyme. Step-wise digestion with intermittent removal of small clusters of tissue helped in increasing the yield of Sc. Isolated Sc were cultured and treated with FSH and testosterone (T) to evaluate their hormone responsiveness in terms of lactate, E2 , cAMP production. Adult Sc were found to be active and produced high amounts of lactate in a FSH-independent manner. FSH-mediated augmentation of cAMP and E2 production by adult Sc was less as compared with that by pre-pubertal Sc obtained from 18-day-old rats. Androgen-binding ability of adult Sc was significantly higher than pre-pubertal Sc. Although T treatment remarkably augmented expression of Claudin 11, it failed to augment lactate production by adult Sc. This efficient and rapid procedure for isolation and culture of functionally viable adult rat Sertoli cells may pave the way for determining their role in regulation and maintenance of spermatogenesis. PMID:26991307

  10. Variations in maternal behavior in rats selected for infant ultrasonic vocalization in isolation.

    PubMed

    Brunelli, Susan A; Curley, James P; Gudsnuk, Kathryn; Champagne, Frances A; Myers, Michael M; Hofer, Myron A; Welch, Martha G

    2015-09-01

    Individual differences in maternal behavior in rodents are associated with altered physiology and behavior in offspring across their lifespan and across generations. Offspring of rat dams that engage in high frequencies of high-arched-back nursing and pup-licking (High-LG) show attenuated stress responses compared to those engaging in lower frequencies (Low-LG). Selective breeding also produces widespread alterations in physiology and behavior that are stable over generations. To examine processes underlying generational and developmental influences on anxiety in an animal model, we developed two lines of rats that emit either extremely high (High-USV) or low (Low-USV) rates of 45kHz ultrasonic vocalizations in isolation at postnatal day 10. Compared to the Low-USV line, High-USV rats display increased indices of anxiety- and depression-like behavior in adulthood. The current study assessed maternal behaviors as well as oxytocin and vasopressin receptor density in High-USV and Low-USV dams to determine if selective breeding had produced differences that paralleled those found in Low- and High-LG dams. We found that Low-USV dams engage in more high-arched nursing and pup-licking than High-USV dams. Differences in oxytocin and vasopressin receptor levels were not widespread throughout the brain, with line differences in the piriform cortex and nucleus accumbens. This research illustrates the potential interplay between genetically determined (USV line) and environmental (postnatal mother-infant interactions) factors in accounting for the phenotypes associated with maternal separation induced postnatal vocalizations. PMID:26306860

  11. The effects of opioids, local anesthetics and adjuvants on isolated pregnant rat uterine muscles.

    PubMed

    Nacitarhan, C; Sadan, G; Kayacan, N; Ertugrul, F; Arici, G; Karsli, B; Erman, M

    2007-05-01

    Local anaesthetics, opioids and adjuvants are often used for managing labor pain. Some others of these agents are reported to cause alterations on uterine contractility during labor. However, there are controversies and the effects of some others are unknown. In the present study, we aimed to elucidate the effects of opioids such as alfentanyl, meperidine, remifentanyl; local anesthetics such as mepivacaine, ropivacaine, bupivacaine; and adjuvants such as clonidine and midazolam on isolated pregnant rat uterine muscle. Strips of longitudinal uterine smooth muscle obtained from rats pregnant for 18-21 days were suspended in 20 ml organ baths. Isometric tension was continuously measured with an isometric force transducer connected to a computer-based data acquisition system. The effects of cumulative concentrations of alfentanyl, meperidine, remifentanyl, mepivacaine, ropivacaine, bupivacaine, clonidine and midazolam (10(-8) - 10(-4) M, for all) on contractions induced by oxytocin (1 mU/ml) were studied. Alfentanyl (10(-5) M), meperidine (10(-5) M), remifentanyl (10(-4) M), bupivacaine (10(-4) M), ropivacaine (10(-4) M) and midazolam (3 x 10(-5) M) caused significant decreases in contractile responses of uterine strips to oxytocin. Contrastingly, mepivacaine increased (33.1% +/- 7.2%) oxytocin-induced contractions of uterine strips while clonidine exerted no significant effect. The sensitivity of myometrial preparations to tested local anesthetics or opioids did not differ significantly. The findings of the present study demonstrated that some local anesthetics, opioids and adjuvants caused significant and agent-specific alterations on contractility of the pregnant rat myometrium. Therefore, they seemed to have a potential to influence uterine contractility during clinical management of pain during labor. However, further research is needed to extrapolate these finding to clinical practice. PMID:17609740

  12. Pharmacology and thermosensitivity of the dartos muscle isolated from rat scrotum

    PubMed Central

    Gibson, Alan; Akinrinsola, Adetokunbo; Patel, Tejesh; Ray, Arijit; Tucker, John; McFadzean, Ian

    2002-01-01

    The dartos is a thin sheet of smooth muscle closely associated with the skin of the scrotum. Although known to play an important role in scrotal thermoregulation, there has been no detailed study into the pharmacology, or thermosensitivity, of the dartos from any species. Here, we investigate these two parameters in the isolated dartos muscle from rat. Field stimulation of the rat dartos caused contractions that were abolished by tetrodotoxin, phentolamine and guanethidine, but unaffected by atropine or L-NG-nitroarginine. Exogenous noradrenaline also produced contractions blocked by both phentolamine and prazosin. In muscles with raised tone and negated sympathetic function, field stimulation failed to elicit relaxation. The dartos muscle did not contract in response to carbachol, nicotine, histamine, 5-hydroxytryptamine (all up to 100 μM) or substance P (up to 1 μM). Contractile responses to field stimulation and noradrenaline were much greater at 30°C compared with 40°C; indeed, contractions to 1 μM noradrenaline at 30°C were relaxed by around 80% on heating to 40°C. Similar heat-induced relaxations were observed during contractions to both U46619 (100 nM) and high K (70 mM). In contrast, contractile responses to the myosin phosphatase inhibitor calyculin-A (1 μM), either in the presence or absence of external calcium, were resistant to relaxation by heating. In calcium-free medium at 30°C, U46619 continued to produce contractions that were again relaxed by 80% on heating to 40°C. However, in the presence of calyculin-A, this heat-induced relaxation was greatly reduced. Thus, the rat dartos muscle receives a functional sympathetic innervation and contracts to noradrenaline via α-adrenoceptors. There is no functional inhibitory innervation. Experiments with calyculin-A suggest that myosin phosphatase is a major contributor to the marked thermosensitivity of the dartos muscle. PMID:12163353

  13. Protective effect of gap junction uncouplers given during hypoxia against reoxygenation injury in isolated rat hearts.

    PubMed

    Rodríguez-Sinovas, Antonio; García-Dorado, David; Ruiz-Meana, Marisol; Soler-Soler, Jordi

    2006-02-01

    It has been shown that cell-to-cell chemical coupling may persist during severe myocardial hypoxia or ischemia. We aimed to analyze the effects of different, chemically unrelated gap junction uncouplers on the progression of ischemic injury in hypoxic myocardium. First, we analyzed the effects of heptanol, 18alpha-glycyrrhetinic acid, and palmitoleic acid on intracellular Ca2+ concentration during simulated hypoxia (2 mM NaCN) in isolated cardiomyocytes. Next, we analyzed their effects on developed and diastolic tension and electrical impedance in 47 isolated rat hearts submitted to 40 min of hypoxia and reoxygenation. All treatments were applied only during the hypoxic period. Cell injury was determined by lactate dehydrogenase (LDH) release. Heptanol, but not 18alpha-glycyrrhetinic acid nor palmitoleic acid, attenuated the increase in cytosolic Ca2+ concentration induced by simulated ischemia in cardiomyocytes and delayed rigor development (rigor onset at 7.31 +/- 0.71 min in controls vs. 14.76 +/- 1.44 in heptanol-treated hearts, P < 0.001) and the onset of the marked changes in electrical impedance (tissue resistivity: 4.02 +/- 0.29 vs. 7.75 +/- 1.84 min, P = 0.016) in hypoxic rat hearts. LDH release from hypoxic hearts was minimal and was not significantly modified by drugs. However, all gap junction uncouplers, given during hypoxia, attenuated LDH release during subsequent reoxygenation. Dose-response analysis showed that increasing heptanol concentration beyond the level associated with maximal effects on cell coupling resulted in further protection against hypoxic injury. In conclusion, gap junction uncoupling during hypoxia has a protective effect on cell death occurring upon subsequent reoxygenation, and heptanol has, in addition, a marked protective effect independent of its uncoupling actions. PMID:16183732

  14. Effects of ascorbic acid on UV light-mediated photoreceptor damage in isolated rat retina

    PubMed Central

    Tokuda, Kazuhiro; Zorumski, Charles F.; Izumi, Yukitoshi

    2007-01-01

    Concerns have been raised about whether operating microscopes and endoillumination used during ophthalmic surgeries contribute to retinal damage. Despite the recognition that ascorbic acid (vitamin C) helps to protect the eye from light and the abundance of vitamin C in the retina, artificial aqueous humors used during surgery only contain the antioxidant glutathione. To test whether inclusion of antioxidants other than glutathione in surgical solutions might help to preserve retinal integrity, we studied the effects of vitamin C on acute toxicity in isolated rat retinas. Male Sprague-Dawley rats (PND 30 ± 2) were sacrificed for retinal isolation. In the presence or absence of vitamin C (1 or 3 mM), retinas were exposed to 302 nm ultraviolet B (UVB) light for 1 hour and were incubated for a total of 5 hours at 30°C. Retinal damage was assessed by morphological examination and biochemical assay measuring the amount of lactate dehydrogenase (LDH) released from injured cells. In control retinas, LDH release was significantly increased after UVB exposure. The presence of 1 mM vitamin C in the incubation media significantly reduced LDH release during the post-incubation period following UV exposure. No difference was found between 1 mM and 3 mM vitamin C. Microscopic examination revealed that disorganization in the outer nuclear layer after UVB exposure was markedly attenuated by administration of 1 mM vitamin C. One mM vitamin C, a concentration found in the anterior chamber in humans, but not glutathione, prevented phototoxic injury following UV exposure. Although vitamin C itself cannot be used in intraocular irrigating solutions because of adverse interactions with iron released during bleeding, inclusion of antioxidants equivalent to vitamin C should be considered to help protect the retina from intraoperative light toxicity. PMID:17222826

  15. The actions of some cannabinoid receptor ligands in the rat isolated mesenteric artery

    PubMed Central

    White, Richard; Robin Hiley, C

    1998-01-01

    The actions of a number of cannabinoid receptor ligands were investigated using the myograph-mounted rat isolated mesenteric artery. Anandamide, CP 55,940, HU-210, palmitoylethanolamide and WIN 55,212-2 all caused concentration-dependent relaxations of methoxamine-precontracted vessels which were not affected by removal of the endothelium.Precontracting vessels with 60 mM KCl instead of methoxamine greatly reduced the vasorelaxant effects of anandamide and palmitoylethanolamide. High K+ solution caused a modest decrease in the relaxant potency of CP 55,940 and HU-210, and had no effect on relaxations induced by WIN 55,212-2.Relaxations of methoxamine-induced tone by anandamide, CP 55,940 and HU-210, but not palmitoylethanolamide and WIN 55,212-2, were attenuated by the cannabinoid receptor antagonist, SR 141716A. Relaxation of vessels contracted with 60 mM KCl by CP 55,940 was also sensitive to SR 141716A.Anandamide and CP 55,940 caused small but concentration-dependent contractions in resting vessels in the absence of extracellular calcium. These were not sensitive to SR 141716A. Palmitoylethanolamide and WIN 55,212-2 produced smaller contractions only at higher concentrations.Anandamide and CP 55,940, but not palmitoylethanolamide and WIN 55,212-2, caused concentration-dependent inhibition of the phasic contractions induced by methoxamine in calcium-free conditions, but only anandamide caused inhibition of contractions to caffeine under such conditions. These inhibitory effects were not antagonised by SR 141716A.The present study provides the first detailed investigation of the actions of cannabinoid agonists on vascular smooth muscle. Our results show that these compounds exert both receptor-dependent and -independent effects on agonist-induced calcium mobilization in the rat isolated mesenteric artery. PMID:9806337

  16. The vasorelaxant effect of simvastatin in isolated aorta from diabetic rats

    PubMed Central

    Roghani-Dehkordi, Farshad; Roghani, Mehrdad

    2016-01-01

    BACKGROUND The increasing incidence of diabetes mellitus (DM) is of great clinical significance. In this study, we aimed to investigate whether exposure of endothelium-intact aortic rings to simvastatin could have a vasorelaxant effect in diabetic rats. METHODS For induction of diabetes, streptozotocin (STZ) (60 mg/kg, i.p., single dose) was used. After 1 month, the cumulative reaction of isolated endothelium-intact aortic rings was determined to KCl and phenylephrine (PE) in the absence and presence of nitric oxide (NO) synthase inhibitor, i.e., nitro-L-arginine-methyl ester (L-NAME), and prostaglandin synthesis inhibitor, i.e., indomethacin. Meanwhile, the role of extracellular calcium was assessed in this respect. RESULTS At the end of the study, the addition of simvastatin (at a concentration ≥ 10−5 M) caused a significant concentration-dependent relaxation response of PE-precontracted aortic rings for both control and diabetic groups (at a significant difference of P < 0.050), and this difference did not exist for KCl-precontracted aortic rings. Furthermore, both L-NAME (100 µM) and indomethacin (10 µM) significantly diminished the vasorelaxant response following simvastatin addition. Meanwhile, there was no statistically significant difference between control and diabetic groups in the absence of extracellular calcium. CONCLUSION The results of this study suggest that simvastatin is able to relax PE-precontracted aortic rings isolated from STZ-diabetic rats via modulation of NO- and prostaglandin-dependent signaling and its effect is not via modulation of calcium mobilization from intracellular stores. PMID:27429631

  17. Effects of chronic social isolation on Wistar rat behavior and brain plasticity markers.

    PubMed

    Djordjevic, Jelena; Djordjevic, Ana; Adzic, Miroslav; Radojcic, Marija B

    2012-01-01

    Chronic stress is a contributing risk factor in the development of psychiatric illnesses, including depressive disorders. The mechanisms of their psychopathology are multifaceted and include, besides others, alterations in the brain plasticity. Previously, we investigated the effects of chronic social stress in the limbic brain structures of Wistar rats (hippocampus, HIPPO, and prefrontal cortex, PFC) and found multiple characteristics that resembled alterations described in some clinical studies of depression. We extended our investigations and followed the behavior of stressed animals by the open field test (OFT) and forced swimming test (FST), and the expression and polysialylation of synaptic plasticity markers, neural cell adhesion molecule (NCAM) and L1, in the HIPPO and PFC. We also determined the adrenal gland mass and plasma corticosterone (CORT) as a terminal part of the hypothalamic-pituitary-adrenal axis activity. Our data indicated that stressed animals avoided the central zone in the OFT and displayed decreased swimming, but prolonged immobility in the FST. The animals exhibited marked hypertrophy of the adrenal gland cortex, in spite of decreased serum CORT. Simultaneously, the stressed animals exhibited an increase in NCAM mRNA expression in the HIPPO, but not in the PFC. The synaptosomal NCAM of the HIPPO was markedly polysialylated, while cortical PSA-NCAM was significantly decreased. The results showed that chronic social isolation of Wistar rats causes both anxiety-like and depression-like behavior. These alterations are parallel with molecular changes in the limbic brain, including diminished NCAM sialylation in the PFC. Together with our previous results, the current observations suggest that a chronic social isolation model may potentially be used to study molecular mechanisms that underlie depressive symptomatology. PMID:22814229

  18. Diminution by benzodiazepines of the chronotropic responses to noradrenaline in rat isolated atria.

    PubMed

    Elgoyhen, B; Adler-Graschinsky, E

    1989-05-30

    The effects of various benzodiazepines on chronotropic responses were assayed in spontaneously beating rat isolated atria. The increases in atrial rate obtained from concentration-response curves to noradrenaline were reduced dose dependently by both the peripheral agonist, Ro 5-4864 5 and 10 microM, and the mixed agonist, diazepam 5, 10 and 50 microM, but not by the central benzodiazepine agonist, clonazepam 10 and 30 microM. The inhibitory effects of the benzodiazepines on the atrial responses to noradrenaline were not counteracted by either the peripheral benzodiazepine antagonist, PK 11195 10 microM, or the central benzodiazepine antagonist, Ro 15-1788 10 and 100 microM. Both 10 microM Ro 5-4864 and 10 microM diazepam also reduced the increases in atrial rate produced by either the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, or the adenylate cyclase activator, forskolin. On the contrary, diazepam and Ro 5-4864 did not modify the chronotropic responses of the atria either to direct exposure to CaCl2 or to the calcium agonist, BAY K 8644. The increases in the intracellular levels of cAMP induced by noradrenaline were not modified by Ro 5-4864 and were even increased by 50% in the presence of diazepam. It is concluded that benzodiazepines probably reduce the chronotropic responses to noradrenaline in rat isolated atria through the interaction with the cAMP-linked chain of events that follows the activation of beta-adrenoceptors. PMID:2475348

  19. Biphasic effects of sodium danshensu on vessel function in isolated rat aorta

    PubMed Central

    Zhang, Ning; Zou, Hao; Jin, Lei; Wang, Jian; Zhong, Mei-fang; Huang, Peng; Gu, Bing-qing; Mao, Shi-Long; Zhang, Chuan; Chen, Hong

    2010-01-01

    Aim: To investigate the effects of sodium danshensu on vessel function in isolated rat aortic ring. Methods: Thoracic aortae from normal rats were isolated and equilibrated in organ bath with Krebs-Henseleit buffer and ring tension was recorded. Effects of sodium danshensu on basal tonus of the vessel and its effects on vessel contraction and relaxation with or without endothelium were observed. Results: In thoracic arteries under basal tonus, sodium danshensu (0.3–3 g/L) produced a dose-dependent transient contraction. In phenylephrine-precontracted thoracic arteries with or without endothelium, low concentration (0.1–0.3 g/L) of sodium danshensu produced a weak contraction, while high concentrations (1–3 g/L) produced a pronounced vasodilator after a transient vasocontraction. Pre-incubation with sodium danshensu could inhibit vessel contraction induced by phenylephrine and potassium chloride in a concentration-dependent way. Sodium danshensu inhibited phenylephrine- and CaCl2-induced vasoconstriction in Ca2+-free medium. Pre-incubation with tetraethylammonium, a non-selective K+ channel blocker, and apamin, a small-conductance calcium-activated K+ channel blocker partially antagonized the relaxation response induced by sodium danshensu. However, iberiotoxin (big-conductance calcium-sensitive K+ channel blocker), barium chloride (inward rectifier K+ channel blocker), and glibencalmide (ATP-sensitive K+ channel blocker) had no influence on the vasodialtion effect of sodium danshensu. Conclusion: Sodium danshensu showed a biphasic effects on vessel tension. While low dosage of sodium danshensu produced small contraction possibly through transient enhancement of Ca2+ influx, high dosage produced significant vasodilation mainly through promoting the opening of non-selective K+ channels and small-conductance calcium-sensitive K+ channels in the vascular smooth muscle cells. PMID:20228827

  20. Activation, isolation, identification and in vitro proliferation of oval cells from adult rat livers.

    PubMed

    He, Z P; Tan, W Q; Tang, Y F; Zhang, H J; Feng, M F

    2004-04-01

    Oval cells, putative hepatic stem cells, could potentially provide a novel solution to the severe shortage of donor livers, because of their ability to proliferate and differentiate into functional hepatocytes. We have previously demonstrated that oval cells can be induced to differentiate into cells with morphologic, phenotypic, and functional characteristics of mature hepatocytes. In this study, we have established a new model combining ethionine treatment with partial hepatectomy to activate oval cells, then developed a procedure utilizing selective enzymatic digestion and density gradient centrifugation to isolate and purify such cells from heterogeneous liver cell population. We identified oval cells by their morphological characteristics and phenotypic properties, thereby providing definitive evidence of the presence of hepatic stem-like cells in adult rat livers. Viewed by transmission electron microscopy, they were small cells with ovoid nuclei, a high nucleus/cytoplasm ratio and few organelles, including mitochondria and endoplasmic reticulum. Flow cytometric assay showed that these cells highly expressed OV-6, cytokeratin-19 (CK-19) and albumin. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis displayed that the freshly isolated cells co-expressed albumin, cytokeratin-7 (CK-7) and CK-19 mRNA, indicating that they were essentially bipotential hepatic stem-like cells. Furthermore, we set up a culture system containing growth factors and a fibroblast feeder layer, to provide nourishment to these cells. Thus, we were able to culture them in vitro for more than 3 months, with the number of cells doubling 100 times. Gene expressions of albumin, CK-7 and CK-19 in the cells derived from the expanding colonies at day 95 were confirmed by RT-PCR analysis. These data suggested that the hepatic oval cells derived from adult rat livers possess a high potential to proliferate in vitro with a large increase in number, while maintaining the bipotential

  1. Effect of scorpion toxin from Tityus serrulatus on the contraction of the isolated rat uterus.

    PubMed

    Mendonça, M; Da Luz, M M; Freire-Maia, L; Cunha-Melo, J R

    1995-03-01

    Scorpion toxin T1 from Tityus serrulatus was tested for its effects on the isolated rat uterus preparation. T1 (5 micrograms/ml) caused a contraction of the uterus, which was potentiated by neostigmine (1.64 x 10(-6) M) and abolished by atropine (1.4 x 10(-7) M). After addition of neostigmine to the bath, we noted a higher amplitude of the toxin-induced contractions, and the appearance of repetitive rhythmic contractions. The scorpion toxin-induced contraction was not prevented by previous addition to the bath of hexamethonium or bradykinin, 5-HT and angiotensin II antagonists. The uterine contraction was prevented by previous addition to the bath of either tetrodotoxin (5 x 10(-8) M) or lidocaine (4.2 x 10(-5) M). These data seem to indicate that scorpion toxin-induced rat uterus contractions are due to actions on post-ganglionic autonomic nerve endings, with acetylcholine release and stimulation of muscarinic receptors. PMID:7638874

  2. Uptake of corticosterone into isolated rat liver cells: possible involvement of Na+/K(+)-ATPase.

    PubMed

    Spindler, K D; Kanuma, K; Grossmann, D

    1991-06-01

    Isolated rat hepatocytes possess a saturable glucocorticoid uptake system with high affinity (Kd value = 2.8 +/- 0.7 x 10(-8) M; 318,000 +/- 80,000 binding sites per cell; 317 fmol/mg protein). The initial rates of uptake decrease by about 30-40% if the cells are incubated simultaneously with [3H]corticosterone and either SH-reagents (N-ethylmaleimide and p-chloromercuriphenylsulphonate, 1 mM), metabolic inhibitors (2,4-dinitrophenol, 1 mM; and antimycin, 0.1 mM) or the Na+/K(+)-ATPase-inhibitors, ouabain and quercetine. These Na+/K(+)-ATPase-blockers exert half-maximal inhibition at 3 x 10(-7) and 3 x 10(-6) M, respectively. A slight increase in K+ concentration and a corresponding decrease in Na+ in the medium leads to a significant reduction in the initial uptake rate. The uptake system from the rat hepatocytes shows a clear steroid specificity, being different from the intracellular receptor. Corticosterone and progesterone are the strongest competitors, cortisol, 5 alpha- and 5 beta-dihydrocorticosterone, 11-deoxycorticosterone, cortisone and testosterone have an intermediate effect and only weak competition is exerted by dexamethasone and by the mineralocorticoid, aldosterone. Estradiol and estrone sulphate as well as the synthetic glucocorticoid triamcinolone acetonide are unable to inhibit initial corticosterone uptake. PMID:1648377

  3. Association between microtubules and Golgi vesicles isolated from rat parotid glands.

    PubMed

    Coffe, G; Raymond, M N

    1990-01-01

    We report an isolation procedure of trans-Golgi vesicles (GVs) from rat parotid glands. Various organelle markers were used, particularly galactosyl transferase as a trans-Golgi marker, to test the purity of the GV fraction. A quantitative in vitro binding assay between microtubules and GVs is described. The vesicles were incubated with taxol-induced microtubules, layered between 50% and 43% sucrose cushions and subjected to centrifugation. Unlike free microtubules which were sedimented, the GV-bound microtubules co-migrated upward with GVs. Quantification of these bound microtubules was carried out by densitometric scanning of Coomassie blue-stained gels. The association between microtubules and GVs followed a saturation curve, with a plateau value of 20 micrograms of microtubule protein bound to 500 micrograms of GV fraction. The half-saturation of the GV sites was obtained with a microtubule concentration of 20 micrograms/ml. Electron microscopy of negatively stained re-floated material showed numerous microtubule-vesicle complexes. Coating of microtubules with an excess of brain microtubule-associated proteins (MAPs) abolished binding. In the absence of exogenous microtubules, we showed that the GV fraction was already interacting with a class of endogenous rat parotid microtubules. This class of colcemid and cold-stable microtubules represents 10-20% of the total tubulin content of the parotid cell. PMID:1983303

  4. Isolation and Characterization of δ-Subspecies of Protein Kinase C from Rat Brain

    NASA Astrophysics Data System (ADS)

    Ogita, Kouji; Miyamoto, Shin-Ichi; Yamaguchi, Keizo; Koide, Hiroshi; Fujisawa, Naoko; Kikkawa, Ushio; Sahara, Setsuko; Fukami, Yasuo; Nishizuka, Yasutomi

    1992-03-01

    The δ-subspecies of protein kinase C (δ PKC) was purified to near homogeneity from the Triton X-100 extract of the rat brain particulate fraction by successive chromatographies on S-Sepharose fast flow, phenyl 5PW, heparin 5PW, hydroxyapatite, and Mono Q columns. The purified enzyme was a doublet with molecular masses of 78 and 76 kDa on SDS/PAGE. The doublet proteins were separated partially by Mono Q column chromatography; both were recognized by the antibodies raised against synthetic oligopeptides, parts of the deduced amino acid sequence of the rat δ PKC. Protein phosphatase 2A treatment suggested that the 78-kDa protein was a phosphorylated form of the 76-kDa protein. To confirm the structural and genetic identity of the doublet proteins, δ PKC was expressed in COS 7 cells by transfecting its cDNA-constructed plasmid and was purified for comparison. This recombinant enzyme was also a doublet. The enzymes isolated from the brain and COS 7 cells showed identical reactivities with δ PKC-specific antibodies, chromatographic behaviors, and V8 protease peptide mappings. In addition, these two enzyme preparations were indistinguishable from each other in their responses to phosphatidylserine, diacylglycerol, phorbol esters, free fatty acids, Ca2+, and enzyme inhibitors. Comparison was also made between the enzymologic properties of δ PKC and α PKC, which were distinctly different from each other.

  5. Antidiarrheal activity of 19-deoxyicetexone isolated from Salvia ballotiflora Benth in mice and rats.

    PubMed

    Pérez-Gutiérrez, Salud; Zavala-Mendoza, Daniel; Hernández-Munive, Abigail; Mendoza-Martínez, Angel; Pérez-González, Cuauhtemoc; Sánchez-Mendoza, Ernesto

    2013-01-01

    The antidiarrheal properties of 19-deoxyicetexone, a diterpenoid isolated from Salvia ballotiflora were evaluated on castor oil-, arachidonic acid (AA)- and prostaglandin (PGE₂)-induced diarrhea in rodent models. The structure of 19-deoxyicetexone was determined by X-ray crystallography, mass spectrometry (EI-MS), as well as ultraviolet (UV-Vis), infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopies. This compound significantly and dose-dependently reduced frequency of stooling in castor oil-induced diarrhea, and at dose of 25 mg/kg it also inhibited diarrhea induced with AA, while it had no effect on PGE₂-induced diarrhea. This compound at doses of 25 mg/kg also diminished castor oil-induced enteropooling and intestinal motility, and inhibited the contraction of the rats' ileum induced by carbachol chloride at a concentration of 100 µg/mL. 19-Deoxyicetexone did not present acute toxicity at doses of 625 mg/kg. Its antidiarrheal activity may be due to increased reabsorption of NaCl and water and inhibition of the release of prostaglandins, gastrointestinal motility and fluid accumulation in the intestinal tracts of rats. These findings suggest that 19-deoxyicetexone may be used in the treatment of diarrhea, although more studies must be carried out to confirm this. PMID:23896615

  6. Effect of dose of metoprolol on its elimination by isolated perfused rat liver in vitro.

    PubMed

    Shen, G S; Zhang, Y D; Li, M Y; Shen, J P; Ding, Y; Huang, D K

    1993-11-01

    The effects of dose of metoprolol (Met) on hepatic elimination was studied in isolated rat liver perfused at a flow of 25 ml.min-1. The results showed that Met was eliminated by rat liver in accordance with one-compartment model. Linear kinetic eliminating processes (apparent first-order kinetics) were found in doses of Met 0.2, 0.5, 1.0, and 2.0 mg, T1/2 were 8.3, 8.8, 9.6, and 10.6 min and the clearance rate were 11.7, 11.8, 9.6, and 8.6 ml.min-1, respectively. Nonlinear eliminating processes were found in doses of Met 4, 8, and 12 mg. Vm and Km were 0.98, 1.05, and 0.94 microgram/min-1.ml-1 and 15.6, 16.9, and 14.6 micrograms.ml-1, respectively. It is concluded that hepatic Met elimination is independent on lower doses, but rested upon high doses. PMID:8010054

  7. Cardioprotective Effects of Astragalin against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart

    PubMed Central

    Qu, Daoxu; Ren, Huanhuan; Yang, Wenxiao; Zhang, Xinjie; Zheng, Qiusheng; Wang, Dong

    2016-01-01

    This study aims to evaluate the cardioprotective effects of astragalin against myocardial ischemia/reperfusion (I/R) injury in isolated rat heart. The cardioprotective effects of astragalin on myocardial I/R injury were investigated on Langendorff apparatus. Adult male Sprague-Dawley rats were randomly divided into five groups. The results showed that astragalin pretreatment improved myocardial function. Compared with I/R group, lactate dehydrogenase (LDH) and creatine kinase (CK) activities in coronary flow decreased in astragalin pretreatment groups, whereas superoxide dismutase (SOD) activity and glutathione/glutathione disulfide (GSH/GSSG) ratio significantly increased. The levels of malondialdehyde (MDA), intracellular reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) decreased in astragalin-treated groups. The infarct size (IS) and apoptosis rate in hearts from astragalin-treated groups were lower than those in hearts from the I/R group. Western blot analysis also revealed that astragalin preconditioning significantly reduced Bax level, whereas Bcl-2 was increased in the myocardium. Therefore, astragalin exhibited cardioprotective effects via its antioxidative, antiapoptotic, and anti-inflammatory activities. PMID:26788251

  8. Glycine, a new regulator of glutamine metabolism in isolated rat-liver cells.

    PubMed

    Vincent, N; Martin, G; Baverel, G

    1992-12-15

    Glycine (0.1-10 mM) caused a dose-dependent increase in the removal of 5 mM [1-14C]glutamine by isolated rat-liver cells; at low concentrations of glycine, an increase in the formation of 14CO2, urea and glucose from glutamine occurred. At 2-10 mM, glycine also caused an accumulation of ammonia, a well-established activator of glutaminase (E.C. 3.5.1.2) and, at concentrations found in the presence of glutamine plus glycine, ammonia stimulated glutamine removal. The inhibition of urea synthesis from glutamine observed with 10 mM glycine was relieved by the addition of ornithine, suggesting that this inhibition occurred by reducing the availability of ornithine for the ornithine transcarbamoylase reaction. The metabolism of glycine as sole substrate led to a small increase in the accumulation of ammonia. Glycine did not alter hepatic glutaminase activity but swelling of rat hepatocytes, a factor considered to stimulate glutamine metabolism, was observed in the presence of glycine (1 mM). It is concluded that stimulation by glycine of hepatic utilization of glutamine is mediated by the accumulation of ammonia arising from both glycine and glutamine metabolism and by hepatocyte osmotic swelling secondary to glycine transport. PMID:1482692

  9. Soy protein isolate modified metabolic phenotype and hepatic Wnt signaling in obese Zucker rats.

    PubMed

    Cain, J; Banz, W J; Butteiger, D; Davis, J E

    2011-10-01

    We have previously shown that soy protein isolate (SPI) with intact phytoestrogen content prevented obesity-related dysfunction. Recent data have suggested that soy ingredients may act as regulators of adipogenic programming in adipose tissue (AT) and liver. Thus, the current study was undertaken to determine whether the beneficial effects of SPI are linked to changes in adipogenic regulators, such as the Wnt signaling cascade. For this, lean (LZR) and obese Zucker (OZR) rats were provided isocaloric and isonitrogenous diets containing SPI, sodium caseinate, or dairy whey protein for 17 weeks. At termination, SPI increased body weight and total adiposity in rodents, which corresponded with an increase in both adipocyte size and number. Furthermore, markers of inflammation, hypercholesterolemia, and hepatic steatosis were all reduced in OZR rats provided SPI. Transcript abundance of several canonical and noncanonical Wnt signaling intermediates in liver, but not AT, was distinctly modified by SPI. Collectively, these data confirm the protective SPI attenuated obesity-related metabolic dysfunction conceivably through regulation of adipogenic programming, as evident by changes in AT morphology and hepatic Wnt signaling. Collectively, this study confirmed the potential utilization of soy protein and its bioactive ingredients for prevention and treatment of obesity-related comorbidities. PMID:22009372

  10. Transepithelial Transport of PAMAM Dendrimers across Isolated Rat Jejunal Mucosae in Ussing Chambers

    PubMed Central

    2015-01-01

    Oral delivery remains a challenge for poorly permeable hydrophilic macromolecules. Poly(amido amine) (PAMAM) dendrimers have shown potential for their possible oral delivery. Transepithelial transport of carboxyl-terminated G3.5 and amine-terminated G4 PAMAM dendrimers was assessed using isolated rat jejunal mucosae mounted in Ussing chambers. The 1 mM FITC-labeled dendrimers were added to the apical side of mucosae. Apparent permeability coefficients (Papp) from the apical to the basolateral side were significantly increased for FITC when conjugated to G3.5 PAMAM dendrimer compared to FITC alone. Minimal signs of toxicity were observed when mucosae were exposed to both dendrimers with respect to transepithelial electrical resistance changes, carbachol-induced short circuit current stimulation, and histological changes. [14C]-mannitol fluxes were not altered in the presence of 1 mM dendrimers, suggesting that the paracellular pathway was not affected at this concentration in this model. These results give insight into the mechanism of PAMAM dendrimer transepithelial rat jejunal transport, as well as toxicological considerations important for oral drug delivery. PMID:24992090

  11. FGF23 induces left ventricular hypertrophy

    PubMed Central

    Faul, Christian; Amaral, Ansel P.; Oskouei, Behzad; Hu, Ming-Chang; Sloan, Alexis; Isakova, Tamara; Gutiérrez, Orlando M.; Aguillon-Prada, Robier; Lincoln, Joy; Hare, Joshua M.; Mundel, Peter; Morales, Azorides; Scialla, Julia; Fischer, Michael; Soliman, Elsayed Z.; Chen, Jing; Go, Alan S.; Rosas, Sylvia E.; Nessel, Lisa; Townsend, Raymond R.; Feldman, Harold I.; St. John Sutton, Martin; Ojo, Akinlolu; Gadegbeku, Crystal; Di Marco, Giovana Seno; Reuter, Stefan; Kentrup, Dominik; Tiemann, Klaus; Brand, Marcus; Hill, Joseph A.; Moe, Orson W.; Kuro-o, Makoto; Kusek, John W.; Keane, Martin G.; Wolf, Myles

    2011-01-01

    Chronic kidney disease (CKD) is a public health epidemic that increases risk of death due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiovascular disease in individuals with CKD. Elevated levels of FGF23 have been linked to greater risks of LVH and mortality in patients with CKD, but whether these risks represent causal effects of FGF23 is unknown. Here, we report that elevated FGF23 levels are independently associated with LVH in a large, racially diverse CKD cohort. FGF23 caused pathological hypertrophy of isolated rat cardiomyocytes via FGF receptor–dependent activation of the calcineurin-NFAT signaling pathway, but this effect was independent of klotho, the coreceptor for FGF23 in the kidney and parathyroid glands. Intramyocardial or intravenous injection of FGF23 in wild-type mice resulted in LVH, and klotho-deficient mice demonstrated elevated FGF23 levels and LVH. In an established animal model of CKD, treatment with an FGF–receptor blocker attenuated LVH, although no change in blood pressure was observed. These results unveil a klotho-independent, causal role for FGF23 in the pathogenesis of LVH and suggest that chronically elevated FGF23 levels contribute directly to high rates of LVH and mortality in individuals with CKD. PMID:21985788

  12. Effects of post-weaning social isolation and environment al enrichment on exploratory behavior and ankiety in Wistar rats.

    PubMed

    Tanaś, Łukasz; Ostaszewski, Paweł; Iwan, Anna

    2015-01-01

    Adverse early experience is generally regarded as a risk factor for both externalizing and internalizing behavioral disorders in humans. It can be modeled in rats by a post-weaning social isolation procedure. Effects of social isolation might possibly be ameliorated by environmental enrichment. In the current study, 24 male Wistar rats were divided post-weaning into four rearing conditions: control, environmental enrichment (EE), social isolation (SI) and a combination of the two experimental conditions; (EE+SI). Two observations of the effects of rearing conditions on the rate of social and object interactions were conducted during the juvenile and post-pubertal stages of development. The SI condition led to a marked increase of social interactions during the juvenile phase, but did not affect object interactions. The EE condition increased the level of social interactions during both the juvenile and post-pubertal measurements. The effects of early rearing conditions on adult exploratory behavior were less clear, with a significant difference between the groups obtained in one of three behavioral tests. Results suggest a general robustness in the development of adult exploratory behavior and anxiety when rats were exposed to early social isolation and provided brief opportunities for social play during the juvenile period. Further studies, aimed at distinguishing play-related protective factors serving against long-term adverse effects of juvenile social isolation, are suggested. PMID:25856524

  13. Role of 4-bromophenol and 4-bromocatechol in bromobenzene covalent binding and toxicity in isolated rat hepatocytes

    SciTech Connect

    Dankovic, D.A.; Billings, R.E.

    1985-06-30

    4-Bromophenol and 4-bromocatechol are formed as metabolites of bromobenzene in vivo and in isolated rat hepatocytes. Both of these metabolites may potentially contribute to the hepatotoxicity of bromobenzene. Bromobenzene metabolism in hepatocytes isolated from phenobarbital-treated rats forms 0.12 to 0.17 mM 4-bromophenol and 4-bromocatechol in 2 hr, with 1 to 3 mM bromobenzene. The role of activated metabolites derived from 4-bromophenol and 4-bromocatechol in bromobenzene covalent binding and toxicity was investigated with isolated hepatocytes in suspension. The covalent binding of the phenol and the catechol was increased four- to eightfold by the addition of unlabeled bromobenzene. Two-hour incubations of 0.25 mM /sup 14/C-labeled 4-bromophenol or 4-bromocatechol with hepatocytes isolated from phenobarbital-treated rats resulted, under these conditions, in no significant toxicity, and approximately 4 and 25%, respectively, of the covalent binding associated with bromobenzene itself. Two- and six-hour incubations with higher 4-bromophenol and 4-bromocatechol concentrations demonstrated that 1 to 3 mM substrate concentrations were required for cytotoxicity. These results show that metabolically produced 4-bromophenol and 4-bromocatechol do not play significant roles in the production of bromobenzene cytotoxicity in isolated hepatocytes, and that they contribute only modestly to bromobenzene covalent binding.

  14. Multispacer Typing (MST) of Spotted Fever Group Rickettsiae Isolated from Humans and Rats in Chengmai County, Hainan Province, China.

    PubMed

    Cheng, Xueqin; Jin, Yuming; Lao, Shijun; Huang, Changhe; Huang, Fang; Jia, Pengben; Zhang, Lijuan

    2014-09-01

    Spotted fever caused by spotted fever group rickettsiae (SFGR) is found throughout China. During 2007-2008, 28 human SFGR isolates and 34 rat SFGR isolates including 15 isolates from Rattus fulvescens, 5 isolates from R. edwardsi, 7 isolates from Callosciurus erythraeus roberti and 7 isolates from Dremomys rufigenis) were obtained from L929 cell culture. Previous research indicated that the 62 strains of SFGR mentioned above shared not only the same serophenotype but also 100% of identity sequences of 16S rRNA, gltA, ompA, groEL and 17KD, which enabled us to apply multispacer typing (MST) to the 62 SFGR isolates in the study. Six primer pairs, which were used for typing of Rickettsia rickettsii and Rickettsia conorii, were chosen, and the results exhibited greater nucleotide polymorphisms among the 62 isolates tested. A total of 48 distinct genotypes were identified. The dominant genotype, represented by h3 isolates, accounted for 21.7% (13/60) of the isolates tested, and the remaining 47 genotypes were all unique. Phylogenetic analysis showed that all the 48 genotypes could be classified in the same clade, while the genetically related strain, R. heilongjiangensis, was close but not the same as the cluster. We concluded that the genetically diverse of spotted fever group rickettsiae strains are endemic in Chengmai County, Hainan Province, China. PMID:25324688

  15. Surface fluorescence studies of tissue mitochondrial redox state in isolated perfused rat lungs.

    PubMed

    Staniszewski, Kevin; Audi, Said H; Sepehr, Reyhaneh; Jacobs, Elizabeth R; Ranji, Mahsa

    2013-04-01

    We designed a fiber-optic-based optoelectronic fluorometer to measure emitted fluorescence from the auto-fluorescent electron carriers NADH and FAD of the mitochondrial electron transport chain (ETC). The ratio of NADH to FAD is called the redox ratio (RR = NADH/FAD) and is an indicator of the oxidoreductive state of tissue. We evaluated the fluorometer by measuring the fluorescence intensities of NADH and FAD at the surface of isolated, perfused rat lungs. Alterations of lung mitochondrial metabolic state were achieved by the addition of rotenone (complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor) and/or pentachlorophenol (PCP, uncoupler) into the perfusate recirculating through the lung. Rotenone- or KCN-containing perfusate increased RR by 21 and 30%, respectively. In contrast, PCP-containing perfusate decreased RR by 27%. These changes are consistent with the established effects of rotenone, KCN, and PCP on the redox status of the ETC. Addition of blood to perfusate quenched NADH and FAD signal, but had no effect on RR. This study demonstrates the capacity of fluorometry to detect a change in mitochondrial redox state in isolated perfused lungs, and suggests the potential of fluorometry for use in in vivo experiments to extract a sensitive measure of lung tissue health in real-time. PMID:23238793

  16. Isolated rat hepatocyte couplets: a primary secretory unit for electrophysiologic studies of bile secretory function.

    PubMed

    Graf, J; Gautam, A; Boyer, J L

    1984-10-01

    Hepatocyte couplets were isolated by collagenase perfusion from rat liver. Between adjacent cells, the bile canaliculus forms a closed space into which secretion occurs. As in intact liver, Mg2+-ATPase is localized at the canalicular lumen, the organic anion fluorescein is excreted, and secretion is modified by osmotic gradients. By passing a microelectrode through one cell into the canalicular vacuole, a transepithelial potential profile was obtained. In 27 cell couplets the steady-state intracellular (-26.3 +/- 5.3 mV) and intracanalicular (-5.9 +/- 3.3 mV) potentials were recorded at 37 degrees C with reference to the external medium. Input resistances were determined within the cell (86 +/- 23 M omega) and in the bile canalicular lumen (32 +/- 17 M omega) by passing current pulses through the microelectrode. These data define electrical driving forces for ion transport across the sinusoidal, canalicular, and paracellular barriers and indicate ion permeation across a leaky paracellular junctional pathway. These findings indicate that the isolated hepatocyte couplet is an effective model for electrophysiologic studies of bile secretory function. PMID:6149546

  17. Charge Variants of an Avastin Biosimilar Isolation, Characterization, In Vitro Properties and Pharmacokinetics in Rat.

    PubMed

    Zhao, Yan-Yan; Wang, Ning; Liu, Wan-Hui; Tao, Wen-Jie; Liu, Li-Li; Shen, Zhen-Duo

    2016-01-01

    The similarity between a proposed biosimilar product and the reference product can be affected by many factors. This study is designed to examine whether any subtle difference in the distribution of the charge variants of an Avastin biosimilar can affect its in vitro potency and in vivo PK. Here, the acidic, basic and main peak fractions of a biosimilar product were isolated using high-performance cation-exchange chromatography and were subjected to various studies to compare their in vitro properties and in vivo PK profile. A serial of analytical methods, including size exclusion chromatography (SEC), imaged capillary isoelectric focusing (icIEF) capillary zone electrophoresis (CZE) and cation-exchange chromatography (CEX-HPLC) were also used to characterize the isolated charge variants. The kinetics constant was measured using a Biacore X100 system. The study indicates the biosimilar product has a high similarity with avastin in physicochemical properties. The potency in vitro and PK profile in rat of charge variants and biosimilar product are consistent with avastin. PMID:26987122

  18. In vitro study of lovastatin interactions with amiodarone and with carbon tetrachloride in isolated rat hepatocytes

    PubMed Central

    Krasteva, AZ; Mitcheva, MK; Kondeva-Burdina, MS; Descatoire, VA

    2007-01-01

    AIM: To investigate the interactions at a metabolic level between lovastatin, amiodarone and carbon tetrachloride in isolated rat hepatocytes. METHODS: For cell isolation two-step collagenase liver perfusion was performed. Lovastatin was administered alone in increasing concentrations (1 μmol/L, 3 μmol/L, 5 μmol/L and 10 μmol/L) and in combination with CCl4 (86 μmol/L). The cells were also pretreated with 14 μmol/L amiodarone and then the other two compounds were added. RESULTS: Lovastatin promoted concentration-dependent significant toxicity estimated by decrease in cell viability and GSH level by 45% and 84%, respectively. LDH-activity increased by 114% and TBARS content by 90%. CCl4 induced the expected severe damage on the examined parameters. CCl4 induced toxicity was attenuated after lovastatin pretreatment, which was expressed in less increased values of LDH activity and TBARS levels, as well as in less decreased cell viability and GSH concentrations. However, the pretreatment of hepatocytes with amiodarone abolished the protective effect of lovastatin. CONCLUSION: We suggest that the observed cytopro-tective effect was due to interactions between lovastatin, CCl4 and amiodarone at a metabolic level. PMID:17465501

  19. Charge Variants of an Avastin Biosimilar Isolation, Characterization, In Vitro Properties and Pharmacokinetics in Rat

    PubMed Central

    Liu, Wan-Hui; Tao, Wen-Jie; Liu, Li-Li; Shen, Zhen-Duo

    2016-01-01

    The similarity between a proposed biosimilar product and the reference product can be affected by many factors. This study is designed to examine whether any subtle difference in the distribution of the charge variants of an Avastin biosimilar can affect its in vitro potency and in vivo PK. Here, the acidic, basic and main peak fractions of a biosimilar product were isolated using high-performance cation-exchange chromatography and were subjected to various studies to compare their in vitro properties and in vivo PK profile. A serial of analytical methods, including size exclusion chromatography (SEC), imaged capillary isoelectric focusing (icIEF) capillary zone electrophoresis (CZE) and cation-exchange chromatography (CEX-HPLC) were also used to characterize the isolated charge variants. The kinetics constant was measured using a Biacore X100 system. The study indicates the biosimilar product has a high similarity with avastin in physicochemical properties. The potency in vitro and PK profile in rat of charge variants and biosimilar product are consistent with avastin. PMID:26987122

  20. Isolation and characterization of neural stem cells from the neonatal rat cochlear nucleus.

    PubMed

    Rak, Kristen; Wasielewski, Natalia V; Radeloff, Andreas; Völkers, Johannes; Scherzed, Agmal; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2011-03-01

    Neural stem cells have been identified in multiple parts of the postnatal mammalian brain, as well as in the inner ear. No investigation of potential neural stem cells in the cochlear nucleus has yet been performed. The aim of this study was to investigate potential neural stem cells from the cochlear nucleus by neurosphere assay and in histological sections to prove their capacity for self-renewal and for differentiation into progenitor cells and cells of the neuronal lineage. For this purpose, cells of the cochlear nucleus of postnatal day 6 rats were isolated and cultured for generation of primary neurospheres. Spheres were dissociated and cells analyzed for capacity for mitosis and differentiation. Cell division was detected by cell-counting assay and BrdU incorporation. Differentiated neural progenitor cells showed distinct labeling for Nestin and for Atoh1. Positive staining of ß-III Tubulin, glial fibrillary acid protein (GFAP) and myelin basic protein (MBP) showed differentiation into neurons, astrocytes and oligodendrocytes. Furthermore, Nestin- and BrdU-labeled cells could also be detected in histological sections. In conclusion, the isolated cells from the cochlear nucleus presented all the features of neural stem cells: cell division, presence of progenitor cells and differentiation into different cells of the neuronal lineage. The existence of neural stem cells may add to the understanding of developmental features in the cochlear nucleus. PMID:21258945

  1. Interactions between ADH and prostaglandins in isolated erythrocyte-perfused rat kidney

    SciTech Connect

    Lieberthal, W.; Vasilevsky, M.L.; Valeri, C.R.; Levinsky, N.G.

    1987-02-01

    Interactions between antidiuretic hormone (ADH) and renal prostaglandins in the regulation of sodium reabsorption and urinary concentrating ability were studied in isolated erythrocyte-perfused rat kidneys (IEPK). In this model, hemodynamic characteristics are comparable to those found in vivo, and tubular morphology is preserved throughout the period of perfusion. (Deamino)-D-arginine vasopressin (dDAVP) markedly reduced fractional sodium excretion (FE/sub Na/) in the IEPK. After indomethacin, FE/sub Na/ fell still further. In the absence of dDAVP indomethacin had no effect on sodium excretion. dDAVP increased urine osmolality in the IEPK. When prostaglandin synthesis was blocked with indomethacin, urinary osmolality increased further. In isolated kidneys perfused without erythrocytes (IPK), dDAVP decreased FE/sub Na/ from 14.5 +/- 1.8% to 9.6 +/- 1.2%. dDAVP increased urine osmolality only modestly in the IPK and indomethacin did not increase concentrating ability further. Thus the IEPK (unlike the IPK) can excrete markedly hypertonic urine in response to ADH. ADH also enhances tubular reabsorption of sodium in the IEPK. Prostaglandins inhibit both these actions of ADH but do not directly affect sodium excretion in the absence of the hormone. Prostaglandius were measured by radioimmunoassay.

  2. Proton electron double resonance imaging (PEDRI) of the isolated beating rat heart.

    PubMed

    Liebgott, Thibaut; Li, Haihong; Deng, Yuanmu; Zweier, Jay L

    2003-08-01

    Proton electron double resonance imaging (PEDRI) is a double resonance technique where proton MRI is performed with irradiation of a paramagnetic solute. A low-field PEDRI system was developed at 20.1 mT suitable for imaging free radicals in biological samples. With a new small dual resonator, PEDRI was applied to image nitroxide free radicals in isolated beating rat hearts. Experiments with phantoms showed maximum image enhancement factors (IEF) of 42 or 28 with TEMPONE radical concentrations of 2-3 mM at EPR irradiation powers of 12W or 6W, respectively. In the latter case, image resolution better than 0.5 mm and radical sensitivity of 5 microM was obtained. For isolated heart studies, EPR irradiation power of 6W provided optimal compromise of modest sample heating with good SNR. Only a small increase in temperature of about 1 degrees C was observed, while cardiac function remained within 10% of control values. With infusion of 3 mM TEMPONE an IEF of 15 was observed enabling 2D or 3D images to be obtained in 27 sec or 4.5 min, respectively. These images visualized the change in radical distribution within the heart during infusion and clearance. Thus, PEDRI enables rapid and high-quality imaging of free radical uptake and clearance in perfused hearts and provides a useful technique for studying cardiac radical metabolism. PMID:12876716

  3. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  4. Effect of phorbol ester on the release of atrial natriuretic peptide from the hypertrophied rat myocardium.

    PubMed Central

    Kinnunen, P.; Taskinen, T.; Järvinen, M.; Ruskoaho, H.

    1991-01-01

    1. To determine the cellular mechanisms of atrial natriuretic peptide (ANP) release from ventricular cardiomyocytes, the secretory and the cardiac effects of a phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate protein kinase C activity in heart cells, were studied in isolated, perfused heart preparations from 2- and 21-month-old Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. TPA was added to the perfusion fluid for 30 min at a concentration of 46 nM after removal of atrial tissue. Additionally, atrial and ventricular levels of immunoreactive ANP (IR-ANP) and ANP mRNA, the distribution of ANP within ventricles as well as the relative contribution of atria and ventricles in the release of ANP were studied. 2. Ventricular hypertrophy that gradually developed in hypertensive rats resulted in remarkable augmentation of ANP gene expression, as reflected by elevated levels of immunoreactive ANP and ANP mRNA. The total amount of IR-ANP in the ventricles of the SHR rats increased 41 fold and ANP mRNA levels 12.9 fold from the age of 2 to 21 months. At the age of 21 months, levels of IR-ANP and ANP mRNA in the ventricles of SHR rats were 5.4 fold and 3.7 fold higher, respectively, than in the normotensive WKY rats. Immunohistochemical studies demonstrated ANP granules within the hypertrophic ventricles of the old SHR rats, but not within normal ventricular tissue. 3. In isolated perfused heart preparations, the severely hypertrophied ventricular tissue of SHR rats after atrialectomy secreted more ANP into the perfusate than did the control hearts.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 PMID:1826618

  5. Pyridoxal 5'-phosphate is an ATP-receptor antagonist in freshly isolated rat cardiomyocytes.

    PubMed

    Wang, X; Dakshinamurti, K; Musat, S; Dhalla, N S

    1999-05-01

    Although extracellular ATP is considered to exert a positive inotropic action on the myocardium through purinoceptors, very little information is available regarding interventions which may modify the actions of ATP on the heart. We report here that pyridoxal 5'-phosphate (PLP), an active form of vitamin B6, shows antagonism towards ATP-induced positive inotropic effect in isolated perfused rat hearts, ATP-induced increase in [Ca2+] in freshly isolated adult cardiomyocytes and ATP-binding in cardiac sarcolemma; ED50 for PLP in each of these cases varied from 10-15 microM. PLP (5-50 microM) was observed to antagonize the positive inotropic effect of ATP but did not modify the action of isoproterenol in the isolated perfused heart. Preincubation of cardiomyocytes with 1-50 microM PLP prevented the ATP-induced increase in [Ca2+]i in a concentration-dependent manner but showed no effect on the KCl-induced increase in [Ca2+]i. Creatine phosphate and Na2HPO4 as well as vitamin B6-related compounds, such as pyridoxine, pyridoxal, 4-deoxypyridoxine and isonicotinic acid hydrazide showed no effect on the ATP-induced increase in [Ca2+]i in cardiomyocytes. Furthermore, different concentrations of PLP (1-50 microM) were shown to inhibit the specific ATP gamma S binding at both the high and low affinity sites in the cardiac sarcolemmal membrane; adrenoceptor and Ca2+-channel inhibitors did not affect the ATP-binding. It is concluded that PLP may antagonize the actions of ATP on the heart in a selective manner and both pyridoxal and phosphate moieties are essential for its action. Furthermore, it is suggested that PLP may serve as a valuable tool for monitoring the role of purinoceptors in cellular function. PMID:10336844

  6. Primary culture of purified Leydig cells isolated from adult rat testes.

    PubMed

    Browning, J Y; Heindel, J J; Grotjan, H E

    1983-02-01

    Methods for isolating highly purified Leydig cells permit the study of acute responses and biochemical properties of Leydig cells independent of other testicular cell types. The present study describes the development of a primary culture system for purified Leydig cells from adult rats in which the cells retain their ability to secrete testosterone for at least 72 h in culture. When Leydig cells were cultured in tissue culture medium 199--0.1% BSA (M199-BSA), basal testosterone secretion declined by 72 h, whereas hCGB-stimulated testosterone secretion was reduced by 48 h. Changing the culture medium twice daily or adding 0.5% fetal calf serum (fcs) enhanced basal and gonadotropin-stimulated testosterone secretion at 72 h in culture, although responsiveness to hCG was reduced to 57% of that in freshly isolated cells. Incubation of Leydig cells in the defined culture medium Dulbecco's Modified Eagles-Ham's F-12 (1:1, vol/vol) supplemented with 15 mM Hepes buffer, transferrin, insulin, and epidermal growth factor (DHG:F12 + Hepes + TIE) in either the presence or absence of 0.5% fcs yielded functional Leydig cells for longer intervals in culture. Furthermore, testosterone secretion was greater in DHG:F12 + Hepes + TIE than in M199-BSA at all time intervals tested. In DHG:F12 + Hepes + TIE, basal and gonadotropin-stimulated testosterone production by Leydig cells were maintained for 72 h in culture. Degenerative changes in morphology were apparent in some cells at 72 h, but not at earlier times in culture. This primary culture system for isolated Leydig cells provides a valuable tool to examine the temporally regulated events in Leydig cell function. PMID:6848362

  7. Percutaneous left ventricular restoration.

    PubMed

    Ige, Mobolaji; Al-Kindi, Sadeer G; Attizzani, Guilherme; Costa, Marco; Oliveira, Guilherme H

    2015-04-01

    The ventricular partitioning device known as Parachute is the first and only percutaneously implantable device aimed at restoration of normal left ventricular geometry in humans. Since its conception, this technology has undergone extensive animal and human testing, with proved feasibility and safety, and is currently being studied in a pivotal randomized clinical trial. This article discusses ventricular remodeling and therapies attempted in the past, details the components of the ventricular partitioning device, describes the implanting technique, and reviews the most current experience of this device in humans. PMID:25834974

  8. Differential sensitivity to LPS-induced myocardial dysfunction in the isolated Brown Norway and Dahl S rat hearts: roles of mitochondrial function, NFκB activation and TNF-α production

    PubMed Central

    An, Jianzhong; Du, Jianhai; Wei, Na; Guan, Tongju; Camara, Amadou K.S.; Shi, Yang

    2011-01-01

    Recently we reported that BN rats were more resistant to lipopolysaccharide (LPS)-induced myocardial dysfunction than SS rats. This differential sensitivity was exemplified by reduced production of proinflammatory cytokines and diminished NFκB pathway activation. To further clarify the mechanisms of different susceptibility of these two strains to endotoxin, this study was designed to examine the alterations of cardiac and mitochondrial bioenergetics, proinflammatory cytokines, and signaling pathways after hearts were isolated and exposed to LPS ex vivo. Isolated BN and SS hearts were perfused with LPS (4 μg/ml) for 30 min in the Langendorff preparation. LPS depressed cardiac function as evident by reduced left ventricular developed pressure as well as decreased peak rate of contraction and relaxation in SS hearts, but not in BN heart. These findings are consistent with our previous in vivo data. Under complex I substrates a higher O2 consumption and H2O2 production were observed in mitochondria from SS hearts than that from BN hearts. LPS significantly increased H2O2 levels in both SS and BN heart mitochondria; however the increase in O2 consumption and H2O2 production in BN heart mitochondria was much lower than that in SS heart mitochondria. Additionally LPS significantly decreased complex I activity in SS hearts but not in BN hearts. Furthermore, LPS induced higher levels of TNF-α and increased phosphorylation of IκB and p65 more in SS hearts than BN hearts. Our results clearly demonstrate that less mitochondrial dysfunction combined with a reduced production of TNF-α and diminished activation of NFκB are involved in the mechanisms by which isolated BN hearts were more resistant to LPS-induced myocardial dysfunction. PMID:22089203

  9. Random amplified polymorphic DNA analysis and demonstration of genetic variability among bifidobacteria isolated from rats fed with raw kidney beans.

    PubMed

    Fanedl, L; Nekrep, F V; Avgustin, G

    1998-11-01

    A rise in bifidobacterial numbers resembling the Escherichia coli overgrowth phenomenon was observed in the rat small intestine in a feeding experiment with kidney beans. Bifidobacterial colony counts increased from 7.6 x 10(6) to 1.7 x 10(8) cfu.g-1 of intestinal tissue in the anterior part and from less than 1 x 10(5) to 2.65 x 10(8) cfu.g-1 in posterior part of the intestine. Fifteen bifidobacterial strains were purified and further analysed. Random amplified polymorphic DNA (RAPD) assays were used to genetically differentiate bifidobacterial isolates from rat gut and compare them with type strains of 20 different species from the genus Bifidobacterium. A total of 80 arbitrary decamere primers were screened with 6 isolates, and 7 primers were chosen for the final analysis. The amplified DNA bands were scored and analysed by the unweighted pair-group method using arithmetic averages clustering. The isolates were not identical to each other nor to the screened type strains. Whereas it was possible to group 12 of the isolates into 2 separate clusters, 3 strains showed no significant relatedness to any strain. The results of the RAPD analysis indicated that there was a large degree variability among the bifidobacteria in the rat gut and demonstrated the potential applicability of such an approach in the investigation of microbial diversity in complex ecosystems. PMID:10030004

  10. Effects of 4-hydroxyisoleucine from Fenugreek Seeds on Depression-like Behavior in Socially Isolated Olfactory Bulbectomized Rats

    PubMed Central

    Kalshetti, Padmaja B.; Alluri, Ramesh; Mohan, Vishwaraman; Thakurdesai, Prasad Arvind

    2015-01-01

    Context: Antidepressant-like effects of (2S, 3R, 4S)-4-hydroxyisoleucine (4-HI), a major amino acid from fenugreek seeds, has been reported in the animal model of acute depression. Aims: To evaluate effects of subacute administration of 4-HI in animal model of stress-induced depression namely socially isolated olfactory bulbectomized rats. Materials and Methods: Bilateral olfactory bulbectomy (OBX) were induced in 30 Sprague-Dawley rats. After recovery period of 14 days, rats were randomized into five groups of 6 rats each and stressed with social isolation (individual housing). The rats were orally treated with either vehicle (OBX-Iso), positive control, fluoxetine (30 mg/kg) or 4-HI (10, 30, 100 mg/kg) once a day from day 14 onward. Separate group of rats with social isolation but without OBX (Sham-Iso) was also maintained. The behavioral depression and anxiety related parameters using open field test (OFT), sucrose intake test, novelty suppressed feeding (NSF) and forced swim test (FST), and neurochemical estimation (brain monoamines viz., serotonin and nor-adrenaline, serotonin turnover, and serum cortisol) were performed. Statistical Analysis Used: Data was analyzed by either two-way ANOVA (OFT and FST) or one-way ANOVA (sucrose intake test, NSF, and neurochemical estimation) followed by Dunnett's multiple comparisons test. Differences were considered significant at P < 0.05. Results: The significant and dose-dependent protection from behavioral and neurochemical changes were observed in 4-HI co-administrated OBX-Iso rats. Conclusion: 4-HI demonstrated the antidepressant and antianxiety effects in socially isolated stress-induced OBX rats with possible involvement of multiple stress relieving mechanisms. HIGHLIGHTS OF PAPER In this study, the subacute pretreatment of 4-HI showed strong and dose-dependent prevention of isolation stress related behavioral and neurochemical responses in olfactory bulbectomized rats. The prevention of hyperactive HPA axis in OBX

  11. [Hypothermia induced alteration of refractoriness in the ventricular myocardium of ground souirrel Citellus undulatus].

    PubMed

    Kuz'min, V S; Abramov, A A; Egorov, Iu V; Rozenshtraukh, L V

    2014-12-01

    Bioelectrical activity and refractoriness in ventricular myocardium of the hibernator--ground squirrel Citellus undulatus were investigated during hypothermia. Experiments were performed with use of isolated, perfused preparations of papillary muscle from right ventricular. Preparations were obtained from hibernating (HS), summer active (SAS) squirrels and from rats. Bioelectrical activity was registered using the standard microelectrode technique at 37-17 degrees C. Action potentials duration (APD), refractoriness duration (RD) and the velocity of the action potential wave front (dV/dt) were estimated. Hypothermia induced APD and RD prolongation were demonstrated in all groups of experimental animals. However, normalized RD was significantly longer in the HS group during hypothermia than in SAS and rats. Ratio of RD to APD in HS group exceeds unity at 17 degrees C, which allows to suggest so called "postrepolarization refractoriness" during hypothermia. Also, HS reveal more prominent preservation of dV/dt during hypothermia than SAS and rat. Significant prolongation of RD and maintenance of normal excitation conduction during hypothermia probably plays essential role in hibernators resistivity to cold induced arrhythmias. PMID:25936179

  12. Rapid degradation of endothelin-1 by an enzyme released by the rat isolated perfused mesentery.

    PubMed Central

    Pérez-Vizcaíno, F; Cooper, A C; Corder, R; Fournier, A; Warner, T D

    1995-01-01

    1. In vivo the effects of endothelin-1 (ET-1) are limited by its rapid removal from the circulation and possibly by its metabolism by enzymes such as neutral endopeptidase 24.11, deamidase or carboxypeptidase A. Here, using as a model the isolated perfused mesenteric arterial bed of the rat, we have examined the involvements of these enzymatic activities in the vascular responses to ET-1. 2. Samples of Krebs buffer which had been recirculated through the mesenteric arterial bed for 30 min rapidly destroyed the activity of ET-1 as assessed either by bioassay on rings of rat thoracic aorta or by high performance liquid chromatography (h.p.l.c.). For instance, after 15 min incubation with the recirculated-Krebs solution (recirc-K) the contraction induced by 3 x 10(-9) M ET-1 was reduced by more than 90%. Contractions induced by sarafotoxin 6b (3 x 10(-9) M) were similarly suppressed by preincubation with recirc-K whereas those to Arg-vasopressin (3 x 10(-9) M) were unaffected. 3. The degradation of ET-1 by recirc-K was prevented by 1,10-phenanthroline (10(-3) M), abolished by heating the recirc-K solution to 90 degrees C for 15 min, and reduced by EGTA (5 x 10(-3) M) or ET-1(16-21) (10(-5) M). For instance, in the presence of ET-1(16-21) (n = 6) the contraction induced by ET-1 was reduced by only 40% after 15 min incubation with recirc-K buffer.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7773548

  13. Effects of Tityus stigmurus (Thorell 1876) (Scorpiones: Buthidae) venom in isolated perfused rat kidneys.

    PubMed

    Silva, Nathalia A; Albuquerque, Cleide M R; Marinho, Aline D; Jorge, Roberta J B; Silva, Antonio G; Monteiro, Helena S A; Silva, Túlio D; Silva, Márcia V; Correia, Maria Tereza S; Pereira, Ticiana P; Martins, Alice M C; Menezes, Dalgimar B; Ximenes, Rafael M; Martins, René D

    2016-01-01

    Scorpions belonging to the Tityus genus are of medical interest in Brazil. Among them, Tityus stigmurus is the main scorpion responsible for stings in the Northeast region. After a sting, the scorpion venom distributes rapidly to the organs, reaching the kidneys quickly. However, there are few studies concerning the renal pathophysiology of scorpion poisoning. In this study, we evaluated the effects of T. stigmurus venom (TsV) on renal parameters in isolated rat kidneys. Wistar rats (n = 6), weighing 250-300 g, were perfused with Krebs-Henseleit solution containing 6 g/100 mL bovine serum albumin. TsV at 0.3 and 1.0 μg/mL was tested, and the effects on perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), and electrolyte excretion were analyzed. Effects were observed only at TsV concentration of 1.0 μg/mL, which increased PP (controlPP40' = 92.7 ± 1.95; TsVPP40' = 182.0 ± 4.70* mmHg, *p < 0.05), RVR (controlRVR40' = 3.28 ± 0.23 mmHg; TstRVR40' = 6.76 ± 0.45* mmHg, *p < 0.05), UF (controlUF50' = 0.16 ± 0.04; TstUF50' = 0.60 ± 0.10* mL/g/min,*p < 0.05), GFR and electrolyte excretion, with histological changes that indicate renal tubular injury. In conclusion, T. stigmurus venom induces a transient increase in PP with tubular injury, both of which lead to an augmented electrolyte excretion. PMID:27142547

  14. Ribose-enhanced myocardial recovery following ischemia in the isolated working rat heart.

    PubMed

    Pasque, M K; Spray, T L; Pellom, G L; Van Trigt, P; Peyton, R B; Currie, W D; Wechsler, A S

    1982-03-01

    Recovery for myocardial adenosine triphosphate (ATP) following moderate periods of ischemic is dependent upon the availability of adenosine monophosphate (AMP) and diphosphate (ADP) for rephosphorylation. Recovery of AMP and ADP levels following ischemia is, in turn, determined by the rates of salvage and de novo adenine nucleotide synthesis. Phosphoribosyl pyrophosphate (PRPP) availability is rate limiting in both salvage and de novo adenine nucleotide synthesis. Parenteral ribose infusions in rats have been documented to elevate myocardial PRPP levels with resultant enhancement of adenine nucleotide synthesis. In this study postischemic recovery of myocardial function and ATP levels in isolated, working rat hearts given ribose infusions before and after ischemia was compared with recovery in control hearts subjected to the same protocol without ribose administration. The mean percent of functional recovery in control hearts following 15 minutes of warm ischemia reached values of 56.7 +/- 4.1%, 63.5% +/- 4.3%, 65.9% +/- 4.6%, and 70.5% +/- 4.7% at 2, 5, 10, and 15 minutes of work following ischemia. Hearts perfused with ribose demonstrated improved mean percent return of function at similar intervals of postischemic work with values of 67.9% +/- 4.2%, 73.7% +/- 3.7%, 81.0% +/- 3.5% (* = p less than 0.02 versus control) *and 85.4% +/- 3.3%, *respectively. Determinations of myocardial ATP levels (mumoles/gm of dry weight) made at the end of 15 minutes of postischemic work were significantly higher (p less than 0.02) in the ribose-treated hearts (18.9 +/- 0.7) than in controls (16.3 +/- 0.6). Infusion of ribose before and after ischemia is a biochemically logical method of improving postischemic myocardial ATP and functional recovery by manipulation of adenine nucleotide synthetic pathways. PMID:6174831

  15. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta

    PubMed Central

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. l-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase. PMID:26273653

  16. The vascular effects of different arginase inhibitors in rat isolated aorta and mesenteric arteries

    PubMed Central

    Huynh, NN; Harris, EE; Chin-Dusting, JFP; Andrews, KL

    2009-01-01

    Background and purpose Arginase and nitric oxide (NO) synthase share the common substrate L-arginine, and arginase inhibition is proposed to increase NO production by increasing intracellular levels of L-arginine. Many different inhibitors are used, and here we have examined the effects of these inhibitors on vascular tissue. Experimental approach Each arginase inhibitor was assessed by its effects on isolated rings of aorta and mesenteric arteries from rats by: (i) their ability to preserve the tolerance to repeated applications of the endothelium-dependent agonist acetylcholine (ACh); and (ii) their direct vasorelaxant effect. Key results In both vessel types, tolerance (defined as a reduced response upon second application) to ACh was reversed with addition of L-arginine, (S)-(2-boronethyl)-L-cysteine HCl (BEC) or NG-Hydroxy-L-arginine (L-NOHA). On the other hand, Nω-hydroxy-nor-L-arginine (nor-NOHA) significantly augmented the response to ACh, an effect that was partially reversed with L-arginine. No effect on tolerance to ACh was observed with L-valine, nor-valine or D,L, α-difluoromethylornithine (DFMO). BEC, L-NOHA and nor-NOHA elicited endothelium-independent vasorelaxation in both endothelium intact and denuded aorta while L-valine, DFMO and nor-valine did not. Conclusions and implications BEC and L-NOHA, but not nor-NOHA, L-valine, DFMO or nor-valine, significantly reversed tolerance to ACh possibly conserving L-arginine levels and therefore increasing NO bioavailability. However, both BEC and L-NOHA caused endothelium-independent vasorelaxation in rat aorta, suggesting that these inhibitors have a role beyond arginase inhibition alone. Our data thus questions the interpretation of many studies using these antagonists as specific arginase inhibitors in the vasculature, without verification with other methods. PMID:19133993

  17. Hypocholesterolemic effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rat

    PubMed Central

    Xie, Yuanhong; Zhang, Hongxing; Liu, Hui; Xiong, Lixia; Gao, Xiuzhi; Jia, Hui; Lian, Zhengxing; Tong, Nengsheng; Han, Tao

    2015-01-01

    To investigate the effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rats, female Wistar rats were fed a high-cholesterol diet (HCD) for 28 d to generate hyperlipidemic models. Hyperlipidemic rats were assigned to four groups, which were individually treated with three different dosages of K. marxianus M3+HCD or physiological saline+HCD via oral gavage for 28 d. The total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels in the serum and liver of the rats were measured using commercially available enzyme kits. In addition, the liver morphology was also examined using hematoxylin and eosin staining and optical microscopy. According to our results, the serum and liver TC, TG, LDL-C levels and atherogenic index (AI) were significantly decreased in rats orally administered K. marxianus M3 (p <0.01), and the HDL-C levels and anti atherogenic index (AAI) were significantly increased (p <0.01) compared to the control group. Moreover, K. marxianus M3 treatment also reduced the build-up of lipid droplets in the liver and exhibited normal hepatocytes, suggesting a protective effect of K. marxianus M3 in hyperlipidemic rats. PMID:26273253

  18. Spreading dilatation to luminal perfusion of ATP and UTP in rat isolated small mesenteric arteries

    PubMed Central

    Winter, Polly; Dora, Kim A

    2007-01-01

    Levels of ATP achieved within the lumen of vessels suggest a key autacoid role. P2Y receptors on the endothelium may represent the target for ATP, leading to hyperpolarization and associated relaxation of vascular smooth muscle through the endothelium-dependent hyperpolarizing factor (EDHF) pathway. EDHF signals radially from the endothelium to cause dilatation, and appears mechanistically distinct from the axial spread of dilatation, which we showed occurs independently of a change in endothelial cell Ca2+ in rat mesenteric arteries. Here we have investigated the potential of P2Y receptor stimulation to evoke spreading dilatation in rat resistance small arteries under physiological pressure and flow. Triple cannulation of isolated arteries enables focal application of purine and pyrimidine nucleotides to the endothelium, avoiding potential complicating actions of these agents on the smooth muscle. Nucleotides were locally infused through one branch of a bifurcation, causing near maximal local dilatation attributable to EDHF. Dilatation then spread rapidly into the adjacent feed artery and upstream against the direction of luminal flow, sufficient to increase flow into the feed artery. The rate of decay of this spreading dilatation was identical between nucleotides, and matched that to ACh, which acts only on the endothelium. In contrast, focal abluminal application of either ATP or UTP at the downstream end of cannulated arteries evoked constriction, which only in the case of ATP was also associated with modest spread of dilatation. The non-hydrolysable ADP analogue, ADPβS, acting at P2Y1 receptors, caused robust local and spreading dilatation responses whether applied to the luminal or abluminal surface of pressurized arteries. Dilatation to nucleotides was sensitive to inhibition with apamin and TRAM-34, selective blockers of small- and intermediate-conductance Ca2+-activated K+ channels, respectively. These data demonstrate that direct luminal stimulation of P

  19. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon

    PubMed Central

    Barcelo, A; Claustre, J; Moro, F; Chayvialle, J; Cuber, J; Plaisancie, P

    2000-01-01

    BACKGROUND—Mucins play an important protective role in the colonic mucosa. Luminal factors modulating colonic mucus release have been not fully identified.
AIM—To determine the effect of some dietary compounds on mucus discharge in rat colon.
METHODS—An isolated vascularly perfused rat colon model was used. Mucus secretion was induced by a variety of luminal factors administered as a bolus of 1 ml for 30 minutes in the colonic loop. Mucin release was evaluated using a sandwich enzyme linked immunosorbent assay supported by histological analysis.
RESULTS—The three dietary fibres tested in this study (pectin, gum arabic, and cellulose) did not provoke mucus secretion. Luminal administration of sodium alginate (an algal polysaccharide used as a food additive) or ulvan (a sulphated algal polymer) induced a dose dependent increase in mucin discharge over the concentration range 1-25 mg/l (p<0.05 for 25 mg/l alginate and p<0.05 for 10 and 25 mg/l ulvan). Glucuronic acid and galacturonic acid, which are major constituents of a variety of fibres, produced significant mucin secretion (p<0.05). Hydrogen sulphide and mercaptoacetate, two sulphides produced in the colonic lumen by microbial fermentation of sulphated polysaccharides, did not modify mucin secretion. Among the short chain fatty acids, acetate (5-100 mM) induced a dose dependent release of mucus (p<0.05 for 100 mM acetate). Interestingly, butyrate at a concentration of 5 mM produced colonic mucin secretion (p<0.05), but increasing its concentration to 100 mM provoked a gradual decrease in mucus discharge. Propionate (5-100 mM) did not induce mucin release. Several dietary phenolic compounds (quercetin, epicatechin, resveratrol) did not provoke mucus discharge.
CONCLUSIONS—Two algal polysaccharides (alginate and ulvan), two uronic acids (glucuronic acid and galacturonic acid), and the short chain fatty acids acetate and butyrate induce mucin secretion in rat colon. Taken together, these

  20. Peroxynitrite-induced relaxation in isolated rat aortic rings and mechanisms of action

    SciTech Connect

    Li Jianfeng; Li Wenyan; Altura, Bella T.; Altura, Burton M. . E-mail: baltura@downstate.edu

    2005-12-15

    The present study was designed to evaluate the effects of peroxynitrite (ONOO{sup -}), the product of superoxide and nitric oxide, on isolated segments of rat aorta. In the absence of any vasoactive agent, ONOO{sup -} (from 10{sup -8} to 10{sup -4} M) failed to alter the basal tension. In phenylephrine (PE; 5 x 10{sup -7} M)-precontracted rat aortic rings (RAR), ONOO{sup -} elicited concentration-dependent relaxation at concentrations of from 10{sup -8} to 10{sup -4} M. The effective concentrations producing approximately 50% of maximal relaxation (ED{sub 5}) to ONOO{sup -} were 1.84 x 10{sup -5} M and 1.96 x 10{sup -5} M in intact and denuded RAR, respectively (P > 0.05). No significant differences in the relaxation responses were found between RAR with or without endothelium (P > 0.05). The presence of either 5 {mu}M methylene blue (MB) or 5 {mu}M 1H-[1,2,4]oxadiazolo-[4,3-{alpha}]quinoxalin-1-one (ODQ) significantly inhibited the relaxations induced by ONOO{sup -}. Sildenafil (10{sup -7} M), on the other hand, significantly potentiated the ONOO{sup -}-induced relaxations. Tetraethylammonium chloride (T-2265) significantly decreased the ONOO{sup -}-induced relaxations in a concentration-dependent manner. However, ONOO{sup -} had no effect on RAR precontracted by high KCL (40 mM, n = 6, P > 0.05). Addition of calyculin A also significantly decreased the ONOO{sup -}-induced relaxation in a dose-dependent manner. Furthermore, ONOO{sup -} significantly inhibited calcium-induced contractions of K{sup +}-depolarized aortic rings in a concentration-related manner. Lastly, a variety of other pharmacological agents and antagonists including L-NMMA, L-arginine, indomethacin, atropine, naloxone, diphenhydramine, cimetine, glibenclamide, haloperidol, superoxide dismutase (SOD), and catalase did not influence the relaxant effects of ONOO{sup -} on RAR. Our new results suggest that ONOO{sup -}-triggered relaxation on rat aortic rings is mediated by elevation of cGMP levels

  1. Tissue specific characteristics of cells isolated from human and rat tendons and ligaments

    PubMed Central

    Scutt, N; Rolf, CG; Scutt, A

    2008-01-01

    Background Tendon and ligament injuries are common and costly in terms of surgery and rehabilitation. This might be improved by using tissue engineered constructs to accelerate the repair process; a method used successfully for skin wound healing and cartilage repair. Progress in this field has however been limited; possibly due to an over-simplistic choice of donor cell. For tissue engineering purposes it is often assumed that all tendon and ligament cells are similar despite their differing roles and biomechanics. To clarify this, we have characterised cells from various tendons and ligaments of human and rat origin in terms of proliferation, response to dexamethasone and cell surface marker expression. Methods Cells isolated from tendons by collagenase digestion were plated out in DMEM containing 10% fetal calf serum, penicillin/streptomycin and ultraglutamine. Cell number and collagen accumulation were by determined methylene blue and Sirius red staining respectively. Expression of cell surface markers was established by flow cytometry. Results In the CFU-f assay, human PT-derived cells produced more and bigger colonies suggesting the presence of more progenitor cells with a higher proliferative capacity. Dexamethasone had no effect on colony number in ACL or PT cells but 10 nM dexamethasone increased colony size in ACL cultures whereas higher concentrations decreased colony size in both ACL and PT cultures. In secondary subcultures, dexamethasone had no significant effect on PT cultures whereas a stimulation was seen at low concentrations in the ACL cultures and an inhibition at higher concentrations. Collagen accumulation was inhibited with increasing doses in both ACL and PT cultures. This differential response was also seen in rat-derived cells with similar differences being seen between Achilles, Patellar and tail tendon cells. Cell surface marker expression was also source dependent; CD90 was expressed at higher levels by PT cells and in both humans and

  2. [Effect of polypeptides isolated from cattle abomasum on stomach regenerative processes in rats].

    PubMed

    Chernukha, I M; Bogatyrev, A N; Dydykin, A S; Aslanova, M A; Fedulova, L V

    2014-01-01

    The effect of polypeptides isolated from cattle abomasum on regenerative processes of rat stomach upon simulating stomach mucosal damage caused by aspirin was studied. Experimental research was carried out on male Wistar rats with initial body weight of 230±20 g. The duration of the experiment was 22 days. The rats were divided into 4 equal groups (n=11). The first (control) group-consisted of the intact animals; animals from experimental groups 2-4 were intragastrically administered acetylsalicylic acid from the 1st to the 7th day for simulating stomach mucosal damage caused by aspirin (300 mg/100 g body weight). From day 8 to day 22, the animals were intragastrically adminitered the tested samples in the quantity of 2 ml per animal according tothe scheme: the 2nd group - distilled water, the 3d group - native abomasum extract; the 4 th group - thermally treated abomasum extract. Abomasum extract was obtained by extraction with 0,87% aqueous sodium chloride crushed abomasum and represented a liquid of cream color with protein mass content of 1,3 g/100 g of the product with high content of glutamic acid (15,5 g/100 g protein) and B-group vitamins. Electrophoretic analysis of the extract revealed several high molecular weight fractions in the range of 72 to 55 kDa. The bands with molecular masses 52, 43, 40, 37, 34, 26, 17 kD