Science.gov

Sample records for isolated wetland implications

  1. Are isolated wetlands isolated?

    USGS Publications Warehouse

    Smith, Loren M.; Euliss, Ned H.; Haukos, David A.

    2011-01-01

    While federal regulations during the past 10 years have treated isolated wetlands as unconnected to aquatic resources protected by the Clean Water Act, they provide critical ecosystem services to society that extend well beyond their wetland boundaries. The authors offer well-documented examples from the scientific literature on some of the ecosystem services provided by isolated wetlands to society and other ecosystems.

  2. Benthic diatom composition in isolated forested wetlands subject to drying: implications for monitoring and assessment

    EPA Science Inventory

    The development of bioindicators for wetlands, especially ephemerally hydrated depressional and isolated wetlands, can be problematic because of seasonal hydrology and target organism biology. To determine if benthic diatoms could be used as a year-round biological indicator of w...

  3. Benthic diatom composition in wet and dry isolated forested wetlands: implications for monitoring and assessment

    EPA Science Inventory

    The development of bioindicators for wetlands, especially ephemerally hydrated depressional and isolated wetlands, can be problematic because of seasonal changes in hydrology and target organism biology. To determine if benthic diatoms could be used as a year-round biological ind...

  4. Geographically isolated wetlands: Rethinking a misnomer

    USGS Publications Warehouse

    Mushet, David M.; Calhoun, Aram J. K.; Alexander, Laurie C.; Cohen, Matthew J.; DeKeyser, Edward S.; Fowler, Laurie G.; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Walls, Susan

    2015-01-01

    We explore the category “geographically isolated wetlands” (GIWs; i.e., wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important hydrological and ecological differences among multiple wetland functional types, (2) aggregates wetlands in a manner not reflective of regulatory and management information needs, (3) implies wetlands so described are in some way “isolated,” an often incorrect implication, (4) is inconsistent with more broadly used and accepted concepts of “geographic isolation,” and (5) has injected unnecessary confusion into scientific investigations and discussions. Instead, we suggest other wetland classification systems offer more informative alternatives. For example, hydrogeomorphic (HGM) classes based on well-established scientific definitions account for wetland functional diversity thereby facilitating explorations into questions of connectivity without an a priori designation of “isolation.” Additionally, an HGM-type approach could be used in combination with terms reflective of current regulatory or policymaking needs. For those rare cases in which the condition of being surrounded by uplands is the relevant distinguishing characteristic, use of terminology that does not unnecessarily imply isolation (e.g., “upland embedded wetlands”) would help alleviate much confusion caused by the “geographically isolated wetlands” misnomer.

  5. Pore Water Circulation in Isolated Wetlands: Implications to Internal Nutrient Loading.

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Perkins, D. B.; Jawitz, J. W.

    2005-12-01

    The potential of wetland soils to accumulate and release pollutants including nutrients has been the motivation for numerous studies related to measuring the concentration, fate, and transport mechanisms of these substances in soils. While external nutrient loading from anthropogenic sources such as agricultural and cattle areas can be addressed through the implementation of Best Management Practices (BMPs), and interception strategies such as construction of storm-water treatment areas (STAs) in Florida, internal loading through shallow sediments has prevented the rapid improvement of water quality in numerous watersheds in South Florida, including the Lake Okeechobee drainage basin. The internal release of nutrients can occur via two different yet equally important mechanisms: advection and diffusion. These processes may mix the pore water not only within the sediment but also with the overlying water column over short periods of time (e.g., days or weeks). This provides sufficient time for diagenesis to alter the reactive chemical components of nutrients that may ultimately increase the nutrient fluxes to the overlying water column. The objectives of this research are to present a plausible and testable technique to collect pore water samples from saturated wetland soils, and to evaluate the importance of pore water circulation as a mechanism for mobilizing nutrients into the water column from within shallow sediments in isolated wetlands. Pore water sampling can be a difficult task to perform in low permeable wetland soils using standard sampling devices such as pore water equilibrators (peepers) and mechanical vises (Rheeburg squeezers). However, our attempt at using Multisamplers, which is in fact a multi-level piezometer capable of collecting up to ten pore water samples to a depth of 110 cm below the soil-water interface in a single deployment, proved to be a success. The ability to collect samples from multiple depths from a single location is an important

  6. Mapping hydrologic connectivity of geographically isolated wetlands

    NASA Astrophysics Data System (ADS)

    Ameli, Ali; Creed, Irena

    2016-04-01

    Geographically isolated wetlands (GIWs) are characterized as depressional landscape features completely surrounded by uplands. These small and typically circular landscape features represent a vast majority of wetlands in various landscapes in North America (98% of all wetlands in the Prairie Pothole Region). Geographical isolation, however, does not imply the hydrological isolation. Although geospatial data (e.g., aerial photos) suggested that GIWs lack a persistent surface water connection, the groundwater connection between GIWs and navigable downstream waters can be substantial with large fluxes at the regional scales. The surface/subsurface connections among GIWs and between GIWs and navigable waters are difficult to map and quantify. This is intimately tied to the fact that an efficient incorporation of these small geometric features and characterization of the mechanisms behind these connectivities are challenging within grid-based simulators. We used a physically-based grid-free groundwater-surface water interaction and surface flow routing schemes to map and assess the watershed-scale GIWs connectivity within an extensively studied watershed at the Canadian prairie pothole region with high density of GIWs. The results showed that there is a persistent subsurface connectivity among GIWs and between GIWs and navigable waters. Surface connection was rare and only occurred during extreme events. The results of this paper have significant implications for developing scientifically grounded environmental policy for protection of GIWs within North American Prairie.

  7. ISOLATED WETLANDS: STATE-OF-THE-SCIENCE AND FUTURE DIRECTIONS

    EPA Science Inventory

    The U.S. Supreme Court case of Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC) has had profound implications on the legal status of isolated wetlands. As a result of this decision, policymakers and regulators need information on the ecological...

  8. ISOLATED WETLANDS AND THEIR FUNCTIONS: AN ECOLOGICAL PERSPECTIVE

    EPA Science Inventory

    The recent U.S. Supreme Court case of Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC) has had profound implications on the legal status of isolated wetlands. As a result of this decision, policymakers need ecological information on the definit...

  9. DEVELOPING A REGULATORY PROGRAM FOR ISOLATED WETLANDS IN WASHINGTON

    EPA Science Inventory

    The Supreme Court's recent decision on isolated wetlands leaves many wetlands in Washington unprotected. Previously these wetlands were regulated through use of state-issued CWA ?401 water quality certifications, during the Corps of Engineers ?404 permitting process. But since ...

  10. GEOGRAPHICALLY ISOLATED WETLANDS IN EASTERN CAROLINA: SOUTHEAST ISOLATED WETLANDS ASSESSMENT, QUALITY ASSURANCE PROJECT PLAN (JULY 2008)

    EPA Science Inventory

    The Southeastern Isolated Wetlands Assessment is the new Regional Environmental Monitoring and Assessment Program (REMAP) project in EPA Region 4. The project will produce data and synthesis on the ways that isolated wetlands can protect downstream water quality at a watershed s...

  11. Geographically Isolated Wetlands: Why We Should Keep the Term

    EPA Science Inventory

    Use of the term "isolated wetlands" in the U.S. Supreme Court’s SWANCC decision created confusion, since it could imply functional isolation. In response, the term "geographically isolated wetlands" (GIWs) - wetlands surrounded by uplands - was introduced in 2003. A recent arti...

  12. Isolated wetlands of the southeastern United States: abundance and expected condition

    EPA Science Inventory

    In the wake of two U.S. Supreme Court decisions that severely curtailed federal protection for isolated wetlands in the U.S. (i.e., those completely surrounded by uplands), the true extent of the wetlands impacted, and thus, the implications of the decisions, is unknown. Best pro...

  13. Do geographically isolated wetlands influence landscape functions?

    USGS Publications Warehouse

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie C.; Basu, Nandita; Calhoun, Aram J. K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward S.; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2015-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.

  14. SPATIAL AND FUNCTIONAL CHARACTERIZATION OF ISOLATED WETLANDS

    EPA Science Inventory

    The USEPA is conducting isolated wetland (IW) research at locations around the USA to better understand the ecological importance and ecosystem services provided by IW and to develop methods to monitor and assess their condition. The first research component explores the use of r...

  15. Responses of Isolated Wetland Herpetofauna to Upland Forest Management

    SciTech Connect

    Russell, K.R.; Hanlin, H.G.; Wigley, T.B.; Guynn, D.C., Jr.

    2002-01-02

    Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community.

  16. Geographically isolated wetlands: What we've learned since SWANCC

    EPA Science Inventory

    The 2001 SWANCC and 2006 Rapanos US Supreme Court decisions created a need for research on geographically isolated wetlands (GIWs). In 2003, a special issue on isolated wetlands was published in Wetlands. That issue contained fifteen papers that reviewed and summarized the lite...

  17. Do geographically isolated wetlands influence landscape functions?

    PubMed

    Cohen, Matthew J; Creed, Irena F; Alexander, Laurie; Basu, Nandita B; Calhoun, Aram J K; Craft, Christopher; D'Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E; Jawitz, James W; Kalla, Peter; Kirkman, L Katherine; Lane, Charles R; Lang, Megan; Leibowitz, Scott G; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L; Mushet, David M; Raanan-Kiperwas, Hadas; Rains, Mark C; Smith, Lora; Walls, Susan C

    2016-02-23

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs. PMID:26858425

  18. Do geographically isolated wetlands influence landscape functions?

    PubMed Central

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie; Basu, Nandita B.; Calhoun, Aram J. K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2016-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs. PMID:26858425

  19. USGS research on Florida's isolated freshwater wetlands

    USGS Publications Warehouse

    Torres, Arturo E.; Haag, Kim H.; Lee, Terrie M.; Metz, Patricia A.

    2011-01-01

    The U.S. Geological Survey (USGS) has studied wetland hydrology and its effects on wetland health and ecology in Florida since the 1990s. USGS wetland studies in Florida and other parts of the Nation provide resource managers with tools to assess current conditions and regional trends in wetland resources. Wetland hydrologists in the USGS Florida Water Science Center (FLWSC) have completed a number of interdisciplinary studies assessing the hydrology, ecology, and water quality of wetlands. These studies have expanded the understanding of wetland hydrology, ecology, and related processes including: (1) the effects of cyclical changes in rainfall and the influence of evapotranspiration; (2) surface-water flow, infiltration, groundwater movement, and groundwater and surfacewater interactions; (3) the effects of water quality and soil type; (4) the unique biogeochemical components of wetlands required to maintain ecosystem functions; (5) the effects of land use and other human activities; (6) the influences of algae, plants, and invertebrates on environmental processes; and (7) the effects of seasonal variations in animal communities that inhabit or visit Florida wetlands and how wetland function responds to changes in the plant community.

  20. Identification of Putative Geographically Isolated Wetlands of the Conterminous United States

    EPA Science Inventory

    Geographically isolated wetlands (GIWs) are unique landscape features, defined as wetlands completely surrounded by uplands. Densely occurring in certain parts of the North America, GIWs include wetland types such as Prairie Potholes, Delmarva Ponds, West Coast or California Vern...

  1. Sequestration of carbon and phosphorus in subtropical grazed historically isolated wetlands

    NASA Astrophysics Data System (ADS)

    Mitchell, J. D.; Jawitz, J. W.

    2009-12-01

    Hydrologic restoration of ditched and drained wetlands within the 12000 km2 Lake Okeechobee basin (LOB), FL is expected to promote carbon (C) accretion and phosphorus (P) retention. The majority of P loading to Lake Okeechobee is attributed to historical pasture fertilization and continued high density cattle activity which perpetuate elevated P transport to the lake from dairies and cow/calf operations. Isolated wetlands which dominate the LOB landscape have been historically ditched to increase pasture area for grazing. Current best management practices intended to reduce P transport to the lake include the option of fencing wetlands in cattle pastures to prevent cattle access. The objective of this study was to develop a predictive model of the dynamics of wetland biomass, soil accretion, C and P. The coupled effects of grazing intensity, highly transient water level, and seasonality were incorporated. The model was conditioned based on approximately three years of monitoring data from four isolated wetlands in the LOB. Drought-induced declining water table resulted in decreased wetland plant biomass in both grazed and ungrazed simulations but reduction was more severe in the grazed simulations. High intensity grazing during flooded conditions resulted in declines in wetland plant biomass due to disconnection between leaves and the air column. Standing biomass and C and P storage in vegetation increased with the exclusion of grazing in these wetlands. Although vegetation nutrient storage is short term, biomass turnover supports accretion of soil and associated C and P. Predicted implications for C and P sequestration at the watershed scale and reduction of P load to the lake are directly related to the wetland area that can be excluded from grazing.

  2. Do Geographically Isolated Wetlands Influence Landscape Functions?

    EPA Science Inventory

    Landscape functions such as flow generation, nutrient and sediment retention, and biodiversity support depend on the exchange of solutes, particles, energy, and organisms between elements in hydrological and habitat networks. Wetlands are important network elements, providing hyd...

  3. Spatial modeling of potential hydrologic connectivity among isolated wetlands and jurisdictional surface waters for the Dougherty Plain in southwestern Georgia

    NASA Astrophysics Data System (ADS)

    Deemy, J. B.; Hepinstall-Cymerman, J.; Kirkman, L.; Rasmussen, T. C.

    2012-12-01

    monitoring wetlands to other hydrographic features. Nearly one fifth of the approximately 200 predicted wetlands on site were connected to other hydrographic features by potential drainages. Preliminary soil assessments within the potential drainages connecting wetlands to surface waters indicate the presence of redoximorphic characters and hydric soils in more than half of those sampled. Potential flow paths are further used to determine optimal hydrologic monitoring sites during high water events for temporal components of biological, chemical and hydrologic connectivity. These data may have important implications for quantifying ecosystem services provided by geographically isolated wetlands in southwestern Georgia.

  4. The extent and expected condition of isolated wetlands in the southeastern and mid-Atlantic states, USA

    EPA Science Inventory

    In the wake of two United States (US) Supreme Court decisions in the past decade, federal protection for isolated wetlands (i.e., those completely surrounded by uplands) has been severely curtailed. However, the extent of the resource impacted and thus the implications for the c...

  5. Phosphorus Retention and Storage by Isolated Wetlands in the Lake Ocheechobee Basin, Florida

    NASA Astrophysics Data System (ADS)

    Tkaczyk, M.; Jawitz, J.

    2003-04-01

    Wetlands are one of the most promising technologies for use in controlling nutrients from agricultural operations. Their effectiveness, however, depends on the retention capacity of the wetland, contaminant load and the desired effluent quality. The purpose of this study is to evaluate the use of isolated wetlands for attenuation of phosphorus (P) export from the basin. Small isolated wetlands comprise 16.6 % of the landscape in Lake Okeechobee basin, located in south-central Florida. The lake provides flood protection, water supply for agricultural and urban areas, and it is a critical habitat for wildlife. Excessive phosphorus loading causes algal blooms and detrimental changes in biological communities of Lake Okeechobee and the Everglades ecosystem. The land use in the Okeechobee basin is primarily dairy farms and cow-calf operations. Studies conducted within the past two decades have implicated these land uses as a prominent source of the P loading from manure, fertilizers and runoff. Due to poor retention by sandy soils, much of the P is ultimately exported downstream through the Taylor Creek-Nubbin Slough and Kissimmee River to Lake Okeechobee. Despite numerous efforts to reduce P loading from these watersheds, continued improvements are necessary to further reduce nutrients runoff. This research is a multi-year effort to optimize the P removal and assimilation capacity of on-farm treatment wetlands thorough hydrologic manipulation to describe long-term P retention by wetlands. Field data collection is ongoing at four ranch sites selected for this project. Initially, hypothetical case simulations will be evaluated using several modeling methodologies: one-dimensional mass balance based input-output analysis, two-dimensional variably saturated water flow and solute transport model, and three-dimensional analysis at the watershed scale.

  6. Watershed-scale effects of isolated wetlands on downstream hydrology: modeling approaches

    EPA Science Inventory

    Geographically isolated wetlands (GIWs) are depressional features on an eroding landscape that are entirely surrounded by uplands. These wetlands are purported to provide an array of ecological and watershed values and functions, including increasing biodiversity, modifying water...

  7. Modeling the effects of isolated wetlands on downstream hydrology at the watershed scale

    EPA Science Inventory

    Geographically-isolated wetlands, wetlands completely surrounded by uplands (e.g., prairie potholes, vernal pools and cypress domes), are depressional landscape features. They provide numerous ecological functions including biogeochemical cycling and water storage and recharge an...

  8. An improved representation of geographically isolated wetlands in a watershed-scale hydrologic model

    EPA Science Inventory

    Geographically isolated wetlands (GIWs), defined as wetlands surrounded by uplands, provide an array of ecosystem goods and services. Within the United States, federal regulatory protections for GIWs are contingent, in part, on the quantification of their singular or aggregate ef...

  9. Mapping isolated wetlands with GIS and remote sensing in North Central Florida, USA

    EPA Science Inventory

    Wetlands perform many functions on the landscape related to water quality and quantity, and provide habitat for myriad organisms. The identification of wetlands can be problematic, especially in areas with numerous isolated wetlands, in mixed landuse areas, or over large geograph...

  10. Geographically isolated wetlands and watershed hydrology: A modified model analysis

    NASA Astrophysics Data System (ADS)

    Evenson, Grey R.; Golden, Heather E.; Lane, Charles R.; D'Amico, Ellen

    2015-10-01

    Geographically isolated wetlands (GIWs) are defined as wetlands that are completely surrounded by uplands. While GIWs are therefore spatially isolated, field-based studies have observed a continuum of hydrologic connections between these systems and other surface waters. Yet few studies have quantified the watershed-scale aggregate effects of GIWs on downstream hydrology. Further, existing modeling approaches to evaluate GIW effects at a watershed scale have utilized conceptual or spatially disaggregated wetland representations. Working towards wetland model representations that use spatially explicit approaches may improve current scientific understanding concerning GIW effects on the downstream hydrograph. The objective of this study was to quantify the watershed-scale aggregate effects of GIWs on downstream hydrology while emphasizing a spatially explicit representation of GIWs and GIW connectivity relationships. We constructed a hydrologic model for a ∼202 km2 watershed in the Coastal Plain of North Carolina, USA, a watershed with a substantial population of GIWs, using the Soil and Water Assessment Tool (SWAT). We applied a novel representation of GIWs within the model, facilitated by an alternative hydrologic response unit (HRU) definition and modifications to the SWAT source code that extended the model's "pothole" representation. We then executed a series of scenarios to assess the downstream hydrologic effect of various distributions of GIWs within the watershed. Results suggest that: (1) GIWs have seasonally dependent effects on baseflow; (2) GIWs mitigate peak flows; and (3) The presence of GIWs on the landscape impacts the watershed water balance. This work demonstrates a means of GIW simulation with improved spatial detail while showing that GIWs, in-aggregate, have a substantial effect on downstream hydrology in the studied watershed.

  11. Stochastic modeling of hydrologic variability of geographically isolated wetlands: Effects of hydro-climatic forcing and wetland bathymetry

    NASA Astrophysics Data System (ADS)

    Park, Jeryang; Botter, Gianluca; Jawitz, James W.; Rao, P. Suresh C.

    2014-07-01

    We examined temporal variability in hydrology of geographically isolated wetlands (GIWs), and derived analytical expressions for probability density functions (pdfs) for water storage volume and water stage. We conceptualize a GIW as a non-linear reservoir, subject to stochastic “shot-noise” (Poisson rainfall inputs) modulated by recession through both evapotranspiration and drainage during inter-event periods. The analytical pdfs are defined by four key dimensionless parameters which characterize temporal variability of wetland hydrologic conditions: scaled aridity index (ϕ∗), mean daily stage jump (r), relative rate constants for the two recession processes (ε), and wetland shape coefficient (β). These parameters define the similarity or diversity of hydrologic regimes in GIWs at a location or at different sites by capturing the essential features of the landscape: stochastic hydro-climatic forcing, bathymetry, and groundwater or upland connectivity. We illustrate the utility of the analytical pdfs using observed data from an isolated wetland in Florida.

  12. Mapping isolated wetlands in a Karst landscape: GIS and remote sensing methods

    EPA Science Inventory

    Isolated wetlands occur in many areas of the United States, and although they are relatively common, they are a resource not yet thoroughly understood by the scientific community. Isolated wetlands have received increased attention recently, due to the 2001 Solid Waste Agency of ...

  13. A LANDSCAPE ECOLOGY APPROACH TO IDENTIFYING ECOLOGICAL VULNERABILITY IN GEOGRAPHICALLY ISOLATED WETLANDS

    EPA Science Inventory

    U.S. EPA 's Office of Research and Development is using a landscape approach to assess the ecological/hydrologic functions of geographically isolated wetlands in the mid-western, southern, and western regions of the United States. Geographically isolated wetlands are considered t...

  14. Ecological Processes of Isolated Wetlands: Ecosystem Services and the Significant Nexus (Invited)

    NASA Astrophysics Data System (ADS)

    Lengler, U.; De Lucia, M.; Kuehn, M.

    2011-12-01

    Geographically isolated wetlands occur throughout the US and are characterized by a wetland system completely surrounded by uplands. Examples include prairie potholes, woodland seasonal (i.e., vernal) pools, cypress domes, playas, and other such systems. Decisions by the US Supreme Court in 2001 and 2006 have affected the jurisdictional status of geographically isolated wetlands such that those failing to have a demonstrable 'significant nexus' to navigable waters may have no federal protection under the Clean Water Act. These systems are typically small and, as such, may be under-counted in assessments of area and abundance. Areal extent is a portion of the information required to characterize the functions associated with geographically isolated wetlands and understanding both site-specific and larger-scale processes are also required to better quantify those functions. In addition, quantifying anthropogenic effects on system processing informs our understanding of the contributions and the connectivity of geographically isolated wetlands to other waters. This presentation focuses on both efforts to quantify the contribution of geographically isolated wetlands to system-scale processes, focusing on nutrient assimilation and hydrologic storage, as well as concurrent research to identify their locations at multiple scales. Findings from this research may help elucidate the link between geographically isolated wetlands and other systems, and may inform discussions on ecosystem services provided by geographically isolated wetlands.

  15. Ecological Processes of Isolated Wetlands: Ecosystem Services and the Significant Nexus (Invited)

    NASA Astrophysics Data System (ADS)

    Lane, C.; Autrey, B.; D'Amico, E.

    2013-12-01

    Geographically isolated wetlands occur throughout the US and are characterized by a wetland system completely surrounded by uplands. Examples include prairie potholes, woodland seasonal (i.e., vernal) pools, cypress domes, playas, and other such systems. Decisions by the US Supreme Court in 2001 and 2006 have affected the jurisdictional status of geographically isolated wetlands such that those failing to have a demonstrable 'significant nexus' to navigable waters may have no federal protection under the Clean Water Act. These systems are typically small and, as such, may be under-counted in assessments of area and abundance. Areal extent is a portion of the information required to characterize the functions associated with geographically isolated wetlands and understanding both site-specific and larger-scale processes are also required to better quantify those functions. In addition, quantifying anthropogenic effects on system processing informs our understanding of the contributions and the connectivity of geographically isolated wetlands to other waters. This presentation focuses on both efforts to quantify the contribution of geographically isolated wetlands to system-scale processes, focusing on nutrient assimilation and hydrologic storage, as well as concurrent research to identify their locations at multiple scales. Findings from this research may help elucidate the link between geographically isolated wetlands and other systems, and may inform discussions on ecosystem services provided by geographically isolated wetlands.

  16. New species of Eunotia from small isolated wetlands in Florida

    EPA Science Inventory

    Diatom species composition of small wetlands is diverse and unique due to a plethora of spatial and temporal variables. Diatoms from small wetlands can contribute greatly to better understanding microbial biodiversity, distribution, dispersal and populations.

  17. EXTENT, PROPERTIES, AND LANDSCAPE SETTING OF GEOGRAPHICALLY ISOLATED WETLANDS IN URBAN SOUTHERN NEW ENGLAND WATERSHEDS

    EPA Science Inventory

    We assessed the extent and characteristics of geographically isolated wetlands (i.e., wetlands completely surrounded by upland) in a series of drainage basins in the urban northeast U.S. We employed a random sampling design that stratifies study sites according to their degree o...

  18. Geographically Isolated Wetlands and Catchment Hydrology: A Modified Model Analyses

    NASA Astrophysics Data System (ADS)

    Evenson, G.; Golden, H. E.; Lane, C.; D'Amico, E.

    2014-12-01

    Geographically isolated wetlands (GIWs), typically defined as depressional wetlands surrounded by uplands, support an array of hydrological and ecological processes. However, key research questions concerning the hydrological connectivity of GIWs and their impacts on downgradient surface waters remain unanswered. This is particularly important for regulation and management of these systems. For example, in the past decade United States Supreme Court decisions suggest that GIWs can be afforded protection if significant connectivity exists between these waters and traditional navigable waters. Here we developed a simulation procedure to quantify the effects of various spatial distributions of GIWs across the landscape on the downgradient hydrograph using a refined version of the Soil and Water Assessment Tool (SWAT), a catchment-scale hydrological simulation model. We modified the SWAT FORTRAN source code and employed an alternative hydrologic response unit (HRU) definition to facilitate an improved representation of GIW hydrologic processes and connectivity relationships to other surface waters, and to quantify their downgradient hydrological effects. We applied the modified SWAT model to an ~ 202 km2 catchment in the Coastal Plain of North Carolina, USA, exhibiting a substantial population of mapped GIWs. Results from our series of GIW distribution scenarios suggest that: (1) Our representation of GIWs within SWAT conforms to field-based characterizations of regional GIWs in most respects; (2) GIWs exhibit substantial seasonally-dependent effects upon downgradient base flow; (3) GIWs mitigate peak flows, particularly following high rainfall events; and (4) The presence of GIWs on the landscape impacts the catchment water balance (e.g., by increasing groundwater outflows). Our outcomes support the hypothesis that GIWs have an important catchment-scale effect on downgradient streamflow.

  19. Evaluating the aggregate effect of geographical isolated wetlands and associated spatial and size distributions on downstream hydrologic flows

    EPA Science Inventory

    Geographically isolated wetlands (GIW), defined as depressional wetlands completely surrounded by uplands, support an array of ecological processes. A solid scientific understanding of the hydrologic effects of GIWs upon downstream waterways is important for legal and policy-mak...

  20. After the deluge: Establishing rates of geographically isolated wetland loss within the prairie pothole region

    NASA Astrophysics Data System (ADS)

    Serran, J.; Creed, I. F.

    2014-12-01

    Geographically isolated wetlands (GIWs) from the prairie pothole region of North America are particularly vulnerable to loss and increasing urban, agricultural, and natural resource development pressures continue to place these wetlands at risk. Although small in area and low in surface hydrologic connectivity, GIWs provide important functions such as flood control and water purification and their loss has been recognized as a contributing factor to the eutrophication of Lake Winnipeg. Within Canada, GIW loss can be attributed to the lack of high-resolution wetland inventories and the lack of information about historic wetland loss rates. In this study, we tested an approach to estimate GIW loss by improving their detection and delineation. To initialize our work, a high-resolution wetland inventory was created using a novel approach that fuses LiDAR data (probability of wetland) with aerial photographs (to distinguish open water and wet meadow) for the Beaverhill watershed, a major tributary of the North Saskatchewan watershed. Our wetland mapping results validated our ability to detect wetlands on the landscape. Secondly, we applied a power law area-frequency function to an aerial photograph time series spanning the watershed's natural climate variation range (1960 to present) to estimate historic wetland loss, with historic wetland loss determined via a break in slope in the power law function. Our analysis revealed ongoing loss of small GIWs in the watershed, despite the implementation of wetland policy measures to mitigate this loss. This ongoing GIW loss is particularly detrimental as it is concomitant with a loss in the important associated ecosystem functions of these GIWs, which has serious repercussions for downstream waters. Overall, our findings support a shift in wetland policies from area to function assessments that provide governments with tools to manage the potential consequences of wetland loss in terms of increased flooding and pollution of

  1. Geographically Isolated Wetlands are Part of the Hydrological Landscape

    EPA Science Inventory

    A recent report by the U.S. Environmental Protection Agency concluded that all wetlands located on floodplains and/or within riparian areas have significant chemical, physical, and/or biological connections with downgradient WOUS. The report concludes that other wetlands – includ...

  2. Seasonal dynamics and habitat specificity of mosquitoes in an English wetland: implications for UK wetland management and restoration.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2015-06-01

    We engaged in field studies of native mosquitoes in a Cambridgeshire Fen, investigating a) the habitat specificity and seasonal dynamics of our native fauna in an intensively managed wetland, b) the impact of water-level and ditch management, and c) their colonization of an arable reversion to flooded grassland wetland expansion project. Studies from April to October, 2010 collected 14,000 adult mosquitoes (15 species) over 292 trap-nights and ∼4,000 pre-imaginal mosquitoes (11 species). Open floodwater species (Aedes caspius and Aedes cinereus, 43.3%) and wet woodland species (Aedes cantans/annulipes and Aedes rusticus, 32.4%) dominated, highlighting the major impact of seasonal water-level management on mosquito populations in an intensively managed wetland. In permanent habitats, managing marginal ditch vegetation and ditch drying significantly affect densities of pre-imaginal anophelines and culicines, respectively. This study presents the first UK field evidence of the implications of wetland expansion through arable reversion on mosquito colonization. Understanding the heterogeneity of mosquito diversity, phenology, and abundance in intensively managed UK wetlands will be crucial to mitigating nuisance and vector species through habitat management and biocidal control. PMID:26047189

  3. Sphingomonas hengshuiensis sp. nov., isolated from lake wetland.

    PubMed

    Wei, Shuzhen; Wang, Tingting; Liu, Hongliang; Zhang, Caifeng; Guo, Jiping; Wang, Qian; Liang, Kuijing; Zhang, Zhiqiang

    2015-12-01

    A polyphasic taxonomic study was undertaken to establish the status of a novel bacterium, designated strain WHSC-8T, which was isolated from soil of Hengshui Lake Wetland Reserve in Hebei province, northern China. Colonies of this strain were yellow and cells were rod-shaped, polar-flagellated and obligately aerobic, exhibiting negative Gram reaction. The strain was able to grow at 0-1 % (w/v) NaCl, pH 5-10 and 20-35 °C, with optimal growth occurring at pH 7.0 and 28 °C without NaCl. Chemotaxonomic data revealed that strain WHSC-8T possesses ubiquinone Q-10 as the predominant respiratory quinone, C18 : 1ω7c, C16 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids, and sym-homospermidine as the major polyamine. Sphingomonadaceae-specific sphingoglycolipid was detected in the polar lipid patterns. The G+C content of the genomic DNA was 68.7 mol%. All of the above characters corroborated the assignment of the novel strain to the genus Sphingomonas. Strain WHSC-8T shared less than 97.0 % 16S rRNA gene sequence similarity with the type strains of other species of the genus Sphingomonas, except for Sphingomonas asaccharolytica DSM 10564T (97.5 %). The low DNA-DNA relatedness value and distinct phenotypic and chemotaxonomic characteristics distinguished strain WHSC-8T from closely related species of the genus Sphingomonas. Therefore, strain WHSC-8T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas hengshuiensis sp. nov. is proposed. The type strain is WHSC-8T ( = KCTC 42455T = CCTCC AB 2015265T). PMID:26410379

  4. Parasediminibacterium paludis gen. nov., sp. nov., isolated from wetland.

    PubMed

    Kang, Heeyoung; Kim, Haneul; Joung, Yochan; Joh, Kiseong

    2016-01-01

    A novel orange-pigmented bacterial strain, designated HME6815T, was isolated from wetland in Jeju Island, Republic of Korea. The cells were Gram stain-negative, non-motile, strictly aerobic and rod-shaped. Optimal growth occurred at 30 °C and pH 7.0 on R2A agar. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain HME6815T formed a distinct phyletic lineage within the family Chitinophagaceae and was most closely related to members of the genera Sediminibacterium, Vibrionimonas, Hydrobacter, Hydrotalea and Asinibacterium with 92.3-94.3 % 16S rRNA gene sequence similarity. The major cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and iso-C13 : 0. The only respiratory quinone was MK-7. Polar lipid analysis revealed the presence of phosphatidylethanolamine, four unidentified aminolipids, one unidentified aminophospholipid and three unidentified polar lipids. The DNA G+C content was 38.4 mol%. On the basis of the evidence presented in this study, strain HME6815T represents a novel species of a new genus in the family Chitinophagaceae, for which the name Parasediminibacterium paludis gen. nov., sp. nov. is proposed. The type strain of the type species is HME6815T ( = KCTC 23736T = CECT 8010T). PMID:26514371

  5. How do wetland type and location affect their hydrological services? - A distributed hydrological modelling study of the contribution of isolated and riparian wetlands

    NASA Astrophysics Data System (ADS)

    Fossey, Maxime; Rousseau, Alain N.; Savary, Stéphane; Royer, Alain

    2015-04-01

    Wetlands play a significant role on the hydrological cycle, reducing peak flows through water storage functions and sustaining low flows through slow release of water. However, their impacts on water resource availability and flood control are mainly driven by wetland types and locations within a watershed. So, despite the general agreement about these major hydrological functions, little is known about their spatial and typological influences. Consequently, assessing the quantitative impact of wetlands on hydrological regimes has become a relevant issue for both the scientific community and the decision-maker community. To investigate the hydrologic response at the watershed scale, mathematical modelling has been a well-accepted framework. Specific isolated and riparian wetland modules were implemented in the PHYSITEL/HYDROTEL distributed hydrological modelling platform to assess the impact of the spatial distribution of isolated and riparian wetlands on the stream flows of the Becancour River watershed, Quebec, Canada. More specifically, the focus was on assessing whether stream flow parameters, including peak flow and low flow, were related to: (i) geographic location of wetlands, (ii) typology of wetlands, and (iii) season of the year. Preliminary results suggest that isolated and riparian wetlands have individual space- and time-dependent impacts on the hydrologic response of the study watershed and provide relevant information for the design of wetland protection and restoration programs.

  6. Wetlands.

    ERIC Educational Resources Information Center

    Nelson, Patricia L.

    1986-01-01

    Suggests studying New York's wetlands, both in the classroom and in the field, to illustrate ecological concepts of diversity, succession, and adaptation and to learn about their importance in controlling flooding, erosion, and pollution. (NEC)

  7. Implications of agricultural encroachment on the carbon and greenhouse gas dynamics in tropical African wetlands.

    NASA Astrophysics Data System (ADS)

    Saunders, Matthew; Kansiime, Frank; Jones, Michael

    2015-04-01

    the production and emission of methane (CH4), and plant-facilitated emissions of up to 32 mg CH4 m-2 h-1 were measured from mature papyrus plants grown in a constructed wetland, suggesting that these wetlands may make a significant contribution to regional methane emissions. The conversion of the papyrus wetlands to agricultural land use has significant implications for the carbon budgets of these systems, as the decomposition of detrital material in addition to the carbon exported in the crop biomass resulted in a net loss of carbon of ~10 t C ha-1 yr-1. The development of sustainable wetland management strategies are therefore required to maintain and enhance the services provided by these ecosystems especially under increasing population pressures and future climatic scenarios.

  8. Hydraulic characteristics of a constructed wetland: Implications for pollutant removal

    NASA Astrophysics Data System (ADS)

    Wachniew, P.; Czuprynski, P.; Maloszewski, P.; Ozimek, T.

    2003-04-01

    Constructed wetlands are built in order to treat wastewaters of various origin with some degree of control over purification processes. Treatment wetlands improve water quality through removal of suspended solids, organics, nitrogen, phosphorus, pathogens (bacteria, parasites, viruses) and metals. Transformation and removal of pollutants from wastewaters occur via numerous interrelated physical, chemical and biological processes. The efficiency of soluble pollutants removal is related to the degree of contact between wastewaters and the reactive surfaces. Therefore knowledge of hydraulic phenomena is crucial in studies of wetland functioning. A subsurface flow wetland in Nowa Slupia, Poland was studied in order to find out relationships between hydraulic phenomena and wetland performance. The wetland consists of three parallel gravel beds overgrown by common reed with a total surface area of 6400 sq m, total active volume of around 900 cubic m and the average loading of around 4 l/s. Three tracer tests with bromide and tritium accompanied by observations of water quality, plant distribution and biomass were performed in summer and winter conditions. Tracer breakthrough curves obtained from tracer tests were used to identify sub-systems within the wetland and to infer their hydraulic properties (water residence times, active volumes, dispersive characteristics). Three reed beds receive different wastewater loadings and show different water residence times and dispersive characteristics. Wastewater flow occurs partly via surface overflow with apparent stagnant zones and preferential flow pathways. These flow patterns are reflected in complex structure of breakthrough curves. Inhomogenous wastewater distribution within the wetland is due to operation practices and clogging of the gravel beds with refractory organic matter. Observations of effluent water quality, plant distribution and biomass reflect these apparent inhomogenities in wastewater flow patterns. This work

  9. Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in north central Florida, USA (presentation)

    EPA Science Inventory

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We f...

  10. Calculating the ecosystem service of water storage in isolated wetlands using LIDAR in north central Florida, USA

    EPA Science Inventory

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We ...

  11. Importance of Small Isolated Wetlands for Herpetofaunal Diversity in Managed, Young Growth Forests in the Coastal Plain of South Carolina

    SciTech Connect

    Russell, K.R.; Guynn, D.C., Jr.; Hanlin, H.G.

    2002-03-27

    Assessment and comparison of richness, abundance and difference of herpetofauna at five small isolated wetlands located within a commercial forest landscape in the South Carolina Coastal Plain. Data indicates small isolated wetlands are focal points of herpetofaunal richness and abundance in managed coastal plain forest and contribute more to regional biodiversity than is implied by their small size or ephemeral hydrology.

  12. Spatial and functional characterization, identification and assessment of isolated wetlands in Alachua County, Florida, USA - GIS and remote sensing techniques

    EPA Science Inventory

    In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...

  13. Implications of hydrologic variability on the succession of plants in Great Lakes wetlands

    USGS Publications Warehouse

    Wilcox, Douglas A.

    2004-01-01

    Primary succession of plant communities directed toward a climax is not a typical occurrence in wetlands because these ecological systems are inherently dependent on hydrology, and temporal hydrologic variability often causes reversals or setbacks in succession. Wetlands of the Great Lakes provide good examples for demonstrating the implications of hydrology in driving successional processes and for illustrating potential misinterpretations of apparent successional sequences. Most Great Lakes coastal wetlands follow cyclic patterns in which emergent communities are reduced in area or eliminated by high lake levels and then regenerated from the seed bank during low lake levels. Thus, succession never proceeds for long. Wetlands also develop in ridge and swale terrains in many large embayments of the Great Lakes. These formations contain sequences of wetlands of similar origin but different age that can be several thousand years old, with older wetlands always further from the lake. Analyses of plant communities across a sequence of wetlands at the south end of Lake Michigan showed an apparent successional pattern from submersed to floating to emergent plants as water depth decreased with wetland age. However, paleoecological analyses showed that the observed vegetation changes were driven largely by disturbances associated with increased human settlement in the area. Climate-induced hydrologic changes were also shown to have greater effects on plant-community change than autogenic processes. Other terms, such as zonation, maturation, fluctuations, continuum concept, functional guilds, centrifugal organization, pulse stability, and hump-back models provide additional means of describing organization and changes in vegetation; some of them overlap with succession in describing vegetation processes in Great Lakes wetlands, but each must be used in the proper context with regard to short- and long-term hydrologic variability.

  14. Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods

    EPA Science Inventory

    Rulings in 2001 and 2006 by the United States Supreme Court concerning the protection of Geographically Isolated Wetlands (GIWs) unveiled a critical area of research: quantifying the extent of potential hydrologic connectivity of GIWs to navigable waters and their effects at a va...

  15. DIATOMS AS INDICATORS OF ISOLATED HERBACEOUS WETLAND CONDITION IN FLORIDA, USA

    EPA Science Inventory

    Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical-chemical parameters, were sampled from 70 small (~1 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to: 1) compare assemblage str...

  16. Ambient ex-situ denitrification in isolated wetlands of Ohio, North Carolina and Florida

    EPA Science Inventory

    Isolated wetlands are completely surrounded by uplands and typically do not warrant federal protection under the Clean Water Act. Nevertheless they can be found at high densities in certain parts of the US and Canada (e.g., Prairie Pothole Region, Southern and Middle Atlantic Coa...

  17. Ambient ex-situ Denitrification in Isolated Wetlands of Ohio, North Carolina, and Florida

    EPA Science Inventory

    Isolated wetlands are completely surrounded by uplands and typically do not warrant federal protection under the Clean Water Act. Nevertheless they can be found at high densities in certain parts of the US and Canada (e.g., Prairie Pothole Region, Southern and Middle Atlantic Co...

  18. Draft genome sequence of cyanobacteria Arthrospira sp. TJSD091 isolated from seaside wetland.

    PubMed

    Dong, Shirui; Chen, Jin; Wang, Suying; Wu, Yuemei; Hou, Hujing; Li, Mi; Yan, Chunyu

    2015-12-01

    The cyanobacteria TJSD091 strain, a member of the genus Arthrospira was isolated from seaside wetland in China, Bohai. The draft genome sequence of Arthrospira sp. TJSD091 with a genome size of approximately 6.3 Mbp and a G+C content of 44.75% is reported. PMID:26001511

  19. Satellite remote sensing of isolated wetlands using object-oriented classification of LANDSAT-7 data

    EPA Science Inventory

    There has been an increasing interest in characterizing and mapping isolated depressional wetlands due to a 2001 U.S. Supreme Court decision that effectively removed their protected status. Our objective was to determine the utility of satellite remote sensing to accurately map ...

  20. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    NASA Astrophysics Data System (ADS)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  1. Emission of greenhouse gases from geographically isolated wetlands of Western Siberia

    NASA Astrophysics Data System (ADS)

    Golovatskaya, E.; Dyukarev, E.; Veretennikova, E.

    2014-12-01

    Wetlands are integral components of landscapes with specific nutrient dynamics and carbon sequestration potentials, which frequently differ, based on hydroperiod and seasonal hydropattern, as well as the constituent concentration of inputs, site-specific storages and vegetation structures. Human modifications have the potential to significantly alter controls on carbon dynamics. This study focused on determining carbon emissions (CO2 and CH4) from geographically isolated peatlands within the Ob-Tom River Interfluve area of Western Siberia affected by water diversion for municipal use by the city of Tomsk, Russia. Two oligotrophic wetlands within the study area were selected for site-specific CO2 studies, the Timiryazevskoe (16 ha) and Kirsanovskoe wetlands (29 ha), both affected by the Tomsk water intake (177 water wells 250 000 m3 water daily). Measurements of СО2 and CH4 emissions from peat surfaces were carried out bi-monthly in growing periods from 2008-2013 in two dominate vegetation zones, pine- shrub-sphagnum phytocenosis (ryam) and sedge-sphagnum fens. СО2 emissions were measured using OPTOGAS-500.4 infrared gas analyzer and dark chamber. Methane emissions were measured using static chamber method. Air samples were collected by syringes and analyzed at gas chromatograph Shimadzu-GC14B. Observations were accompanied by measurement of air temperature and humidity, surface temperature, peat temperature at various depths and the water table level. CО2 emission over the vegetative growing period had clearly pronounced seasonal dynamics with maximum values in the middle of the growing season (mid-July) and minimum values in spring and autumn. The average total flux over the studied period is 123±55 gС/m2 at sedge-sphagnum fen of Kirsanovskoe wetland and 323±66 gС/m2 at fen of Timiryazevskoe wetland. Total СО2 flux for the snow-free period at ryam sites of Timiryazevskoe and Kirsanovskoe wetlands is 238±84 and 260±47 gС/m2 accordingly. Methane

  2. Freshwater Wetland Habitat Loss and Fragmentation: Implications for Aquatic Biodiversity Conservation

    NASA Astrophysics Data System (ADS)

    Wolaver, B. D.; Pierre, J. P.; Labay, B. J.; Ryberg, W. A.; Hibbits, T. J.; Prestridge, H. L.

    2015-12-01

    Anthropogenic land use changes have caused widespread wetland loss and fragmentation. This trend has important implications for aquatic biota conservation, including the semi-aquatic Western Chicken Turtle (Deirochelys reticularia miaria). This species inhabits seasonally inundated, ephemeral water bodies and adjacent uplands in the southeastern U.S. However, wetland conversion to agriculture and urbanization is thought to cause the species' decline, particularly in Texas, which includes the westernmost part of its range. Because the species moves only a few kilometers between wetlands, it particularly sensitive to habitat loss and fragmentation. Thus, as part of the only state-funded species research program, this study provides the U.S. Fish and Wildlife Service (FWS) with scientific data to determine if the species warrants protection under the Endangered Species Act (ESA). We use a species distribution model to map potentially suitable habitat for most of East Texas. We evaluate landscape-scale anthropogenic activities in this region which may be contributing to the species' decline. We identify areas of urbanization, agricultural expansion, forestry, and resulting wetland loss. We find that between 2001 and 2011 approximately 80 km2 of wetlands were lost in potentially suitable habitat, including the urbanizing Houston area. We use spatial geostatistics to quantify wetland habitat fragmentation. We also introduce the Habitat Alteration Index (HAI), which calculates total landscape alteration and mean probability of occurrence to identify high-quality habitat most at risk of recent anthropogenic alteration. Population surveys by biologists are targeting these areas and future management actions may focus on mitigating anthropogenic activities there. While this study focuses on D. r. miaria, this approach can evaluate wetland habitat of other aquatic organisms.

  3. Stimulating a Great Lakes coastal wetland seed bank using portable cofferdams: implications for habitat rehabilitation

    USGS Publications Warehouse

    Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.

    2009-01-01

    Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.

  4. ISOLATED WETLANDS: STATE-OF-THE-SCIENCE AND FUTURE DIRECTIONS

    EPA Science Inventory

    In Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC), the U.S. Supreme Court held that isolated, intrastate, non-navigable waters could not be protected under the Clean Water Act based solely on their use by migratory birds. The SWANCC decision ...

  5. Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment.

    PubMed

    Giraud, F; Guiraud, P; Kadri, M; Blake, G; Steiman, R

    2001-12-01

    Pilot-scale constructed wetlands were used to treat water contaminated by polycyclic aromatic hydrocarbons (PAHs), particularly fluoranthene, and the possible role of fungi present in these ecosystems was investigated. A total of 40 fungal species (24 genera) were isolated and identified from samples (gravel and sediments) from a contaminated wetland and a control wetland. All of them were assayed for their ability to remove anthracene (AC) and fluoranthene (FA) from liquid medium. FA was degraded efficiently by 33 species while only 2 species were able to remove AC over 70%. A selection of 10 strains of micromycetes belonging to various taxonomic groups was further investigated for FA and AC degradation, toxicity assays and phenoloxidases (POx) detection. Interesting and not previously reported species were revealed (Absidia cylindrospora, Cladosporium sphaerospermum, and Ulocladium chartarum). They were all able to highly degrade the PAH-model compounds chosen. An interesting inducibility was noted for Ulocladium chartarum. Degradative ability of fungi was not related to their extracellular POx activity. This study may contribute to the improvement of constructed wetlands for water treatment, which may be enriched in efficient fungi. PMID:11791842

  6. Bathymetry and vegetation in isolated marsh and cypress wetlands in the northern Tampa Bay Area, 2000-2004

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.; Herndon, Donald C.

    2005-01-01

    Wetland bathymetry and vegetation mapping are two commonly used lines of evidence for assessing the hydrologic and ecologic status of expansive coastal and riverine wetlands. For small isolated freshwater wetlands, however, bathymetric data coupled with vegetation assessments are generally scarce, despite the prevalence of isolated wetlands in many regions of the United States and the recognized importance of topography as a control on inundation patterns and vegetation distribution. In the northern Tampa Bay area of west-central Florida, bathymetry was mapped and vegetation was assessed in five marsh and five cypress wetlands. These 10 isolated wetlands were grouped into three categories based on the effects of ground-water withdrawals from regional municipal well fields: natural (no effect), impaired (drier than natural), and augmented (wetlands with artificially augmented water levels). Delineation of the wetland perimeter was a critical component for estimating wetland-surface area and stored water volume. The wetland perimeter was delineated by the presence of Serenoa repens (the 'palmetto fringe') at 9 of the 10 sites. At the 10th site, where the palmetto fringe was absent, hydric-soils indicators were used to delineate the perimeter. Bathymetric data were collected using one or more techniques, depending on the physical characteristics of each wetland. Wetland stage was measured hourly using continuous stage recorders. Wetland vegetation was assessed semiannually for 2 1/2 years in fixed plots located at three distinct elevations. Vegetation assessments were used to determine the community composition and the relative abundance of obligate, facultative wet, and facultative species at each elevation. Bathymetry maps were generated, and stage-area and stage-volume relations were developed for all 10 wetlands. Bathymetric data sets containing a high density of data points collected at frequent and regular spatial intervals provided the most useful stage

  7. Spatiotemporal patterns of wetland occurrence in the prairie pothole region of eastern South Dakota

    USGS Publications Warehouse

    Kahara, S.N.; Mockler, R.M.; Higgins, K.F.; Chipps, S.R.; Johnson, R.R.

    2009-01-01

    We evaluated changes in wetland abundance, size, and classification between average (19791986) and above-average (19951999) precipitation periods for two physiographic regions in eastern South Dakota. Temporal shifts in wetland numbers, area, and class varied by topographic location. In high wetland density areas (> 8 wetlands/100 ha), our data suggests that larger, semipermanent wetlands expanded and absorbed nearby wetland basins into their margins, resulting in a net "loss" or disappearance of temporary and seasonal wetlands in above-average water condition years. "Losses" described here are not deemed permanent as in cases of draining or filling, and wetlands may re-form when water conditions return to normal. Nevertheless, temporary disappearance of smaller more isolated wetlands may have implications for breeding waterfowl and other fauna. Percent change of semipermanent basin numbers was positively correlated with wetland density, whereas the opposite was true for seasonal wetlands. Loss of temporary wetlands was correlated with wetland aggregation within the sample area. However, in low wetland density areas, the number and size of seasonal and temporary wetlands generally increased following above-average precipitation. We suggest that wetlands' spatial arrangement be considered along with traditional wetland quantification techniques to better account for shifts in wetland habitat in dry versus wet years. ?? 2009 The Society of Wetland Scientists.

  8. Characterization of Pasteurella multocida isolates from wetland ecosystems during 1996 to 1999

    USGS Publications Warehouse

    Samuel, M.D.; Shadduck, D.J.; Goldberg, D.R.; Wilson, M.A.; Joly, D.O.; Lehr, M.A.

    2003-01-01

    We cultured 126 Pasteurella multocida isolates, 92 from water and 34 from sediment samples collected from wetlands in the Pacific and Central flyways of the United States between 1996 and 1999. Most (121) of the isolates were P. multocida serotype 1, but serotypes 3, 3/4, 10, and 11 were also found. Many (82) of the isolates were further characterized by DNA fingerprinting procedures and tested in Pekin ducks for virulence. Almost all the serotype 1 isolates we tested caused mortality in Pekin ducks. Serotype 1 isolates varied in virulence, but the most consistent pattern was higher mortality in male ducks than in females. We found no evidence that isolates found in sediment vs. water, between Pacific and Central flyways, or during El Nino years had consistently different virulence. We also found a number of non-serotype 1 isolates that were avirulent in Pekin ducks. Isolates had DNA fingerprint profiles similar to those found in birds that died during avian cholera outbreaks.

  9. Characterization of Thermotolerant Chitinases Encoded by a Brevibacillus laterosporus Strain Isolated from a Suburban Wetland

    PubMed Central

    Liu, Pulin; Cheng, Deyong; Miao, Lihong

    2015-01-01

    To isolate and characterize chitinases that can be applied with practical advantages, 57 isolates of chitin-degrading bacteria were isolated from the soil of a suburban wetland. 16S rRNA gene analysis revealed that the majority of these strains belonged to two genera, Paenibacillus and Brevibacillus. Taking thermostability into account, the chitinases (ChiA and ChiC) of a B. laterosporus strain were studied further. Ni-NTA affinity-purified ChiA and ChiC were optimally active at pH 7.0 and 6.0, respectively, and showed high temperature stability up to 55 °C. Kinetic analysis revealed that ChiC has a lower affinity and stronger catalytic activity toward colloidal chitin than ChiA. With their stability in a broad temperature range, ChiA and ChiC can be utilized for the industrial bioconversion of chitin wastes into biologically active products. PMID:26690223

  10. A Continuum of Connectivity: Geographically Isolated Wetlands and the Conservation of Landscape Functions

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Creed, I. F.; Basu, N. B.; Jawitz, J. W.; Mclaughlin, D. L.; Rains, M. C.

    2014-12-01

    Landscape functions depend on how matter, energy, and organisms exchange between elements in hydrologic and habitat networks. Wetlands are important network elements, providing hydrological, biogeochemical and biological functions that vary along a continuum of connectivity with nearby and downstream waters. Geographically isolated wetlands (GIWs), those surrounded by uplands, occupy the entire connectivity continuum, but generally fall outside US legal protections unless a "significant nexus" to navigable waters is demonstrated. Geographic isolation does not imply hydrological, biogeochemical or biological isolation. Here we show multiple lines of evidence to support the inference that GIWs are integral to the function of navigable waters. Moreover, while GIW hydro-chemical connectivity may be episodic or slow (e.g., via groundwater), and biological connectivity limited by overland dispersal, reducing material or organism exchange is specifically what enables important, sometimes unique, functions. This relational connectivity, wherein precluded exchange creates functionality, may be as important to downstream waters as more obvious connections. Logic and evidence support the presumption that anthropogenic changes to GIW prevalence, condition and connectivity have significant downstream impacts.

  11. Stochastic Modeling of Isolated Wetland Hydrologic Variability: Effects of Hydro-climatic Forcing, Wetland Bathymetry, and Groundwater-Surface Water Connectivity

    NASA Astrophysics Data System (ADS)

    Park, Jeryang; Botter, Gianluca; Jawitz, Jim; Rao, Suresh

    2014-05-01

    Hydrological regimes regulate many wetland eco-hydrological functions, such as aquatic habitat integrity and biogeochemical processes. We examined hydrologic temporal variability of geographically isolated wetlands (GIWs), and derived analytical expressions for probability density functions (pdfs) of water storage volume, water stage, and water surface area. We conceptualize a GIW as a non-linear reservoir, subject to stochastic "shot-noise" (Poisson rainfall inputs) modulated by recession through evapotranspiration and drainage during inter-event periods. The derived analytical pdfs are defined by three dimensionless parameters: scaled aridity index; mean daily stage increment (during rainfall events); and wetland shape coefficient. These key parameters define the similarity or diversity of hydrologic regimes of different GIWs at a location, or at different sites by capturing the essential features of the wetlandscape: stochastic hydro-climatic forcing, bathymetry, and connectivity to groundwater and/or upland. Numerical simulation of hydrologic variability of groundwater-dependent GIWs allowed us to further examine the role of groundwater-surface water connectivity, and how an adjustment to the effective rate of water loss can be made to match the derived analytical pdf solutions. We also compared the analytical pdfs with observed data from an isolated wetland in Florida. This model framework has utility for managers seeking to achieve target eco-hydrological regimes of GIWs.

  12. Enhanced detection of wetland-stream connectivity using lidar:Implications for improved wetland conservation and management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of wetland–stream connectivity has been heightened due to the current dependence of wetland regulatory status on this connectivity, although the importance of wetland function to adjacent stream health has been and will continue to be substantial regardless of government policies and ...

  13. Variance in water chemistry parameters in isolated wetlands of Florida, USA, and relationships with macroinvertebrate and diatom community structure

    EPA Science Inventory

    Eighty small isolated wetlands throughout Florida were sampled in 2005 to explore within-site variability of water chemistry parameters and relate water chemistry to macroinvertebrate and diatom community structure. Three samples or measures of water were collected within each si...

  14. Multi-temporal sub-pixel landsat ETM+ classification of isolated wetlands in Cuyahoga County, Ohio, USA

    EPA Science Inventory

    The goal of this project was to determine the utility of subpixel processing of multi-temporal Landsat Enhanced Thematic Mapper Plus (ETM+) data for the detection of isolated wetlands greater than 0.50 acres in Cuyahoga County, located in the Erie Drift Plains ecoregion of northe...

  15. Remote Sensing of Wetland Hydrology: Implications for Water Quality Management in Agricultural Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the substantial effect of agriculture on the ability of wetlands to function, the U.S. Department of Agriculture (USDA) serves a key role in wetland conservation and restoration. In order for the USDA to allocate funds to best manage wetlands, a better understanding of wetland functioning is ...

  16. Phosphorus mass balance and internal load in an impacted subtropical isolated wetland subject to transient hydrologic conditions

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Jawitz, J. W.; Min, J.

    2009-12-01

    Internal loading is a critical component of the phosphorus (P) budget of aquatic systems, and can control the trophic conditions. While diffusion is generally considered the dominant process controlling internal P load to the water column, advection due to water table fluctuations resulting from episodic flooding and drying cycles can be a significant component of the P budget of depressional wetlands. Within the drainage basin of Lake Okeechobee, Florida, P is exported annually to the lake from impacted isolated wetlands located on beef farming facilities via ditches and canals. The objective of this study was to evaluate the role of diffusive and advective fluxes in relation to the total P loads entering and exiting one of these isolated wetlands. Diffusive fluxes were calculated from depth-variable pore water concentrations measured using multilevel samplers and pore water equilibrators. Advective fluxes were estimated based on groundwater fluctuations calculated within a hydrologic-budget framework. Results from an eleven-month monitoring period (May 2005-March 2006) indicated that the diffusive flux of soluble reactive P (SRP) was 0.42 ± 0.24 mg m-2 d-1 and occurred for 230 days out of 335. In comparison, the advective flux occurred over a shorter duration of just 21 days, yet generated a greater flux controlled by the concentrations of shallow pore water and the velocity of the ground water moving upwards into the wetland water column. The highest advective flux of SRP was estimated at 27.4 mg m-2 d-1. Based on these fluxes the corresponding P load to the wetland via internal modes was estimated at 5.2 kg and 0.93 kg from diffusion and advection respectively, representing a significant fraction of the total P load entering the wetland water column. Plant colonization during dry periods in P enriched soils is also a significant mechanism for P release from the soil at the time of flooding, however, this component to the wetland P budget was not evaluated as

  17. Assessment of the Impact of the Spatial Distribution of Isolated and Riparian Wetlands on Watershed Hydrology using a Mathematical Modelling Framework

    NASA Astrophysics Data System (ADS)

    Fossey, M.; Rousseau, A. N.; Savary, S.; Royer, A.

    2014-12-01

    Wetlands play a significant role on the hydrological cycle, reducing peak flows through water storage functions and sustaining low flows through slow release of water. However, their impacts on water resource availability and flood control are mainly driven by wetland types and locations within a watershed. So, despite the general agreement about these major hydrological functions, little is known about their spatial and typological influences. Consequently, assessing the quantitative impact of wetlands on hydrological regimes has become a relevant issue for both the scientific community and the decision-maker community. To investigate the hydrologic response at the watershed scale, mathematical modelling has been a well-accepted framework. Specific isolated and riparian wetland modules were implemented in the PHYSITEL/HYDROTEL distributed hydrological modelling platform to assess the impact of the spatial distribution of isolated and riparian wetlands on the stream flows of the Becancour River watershed, Quebec, Canada. More specifically, the focus was on assessing whether stream flow parameters, including peak flow, low flow and flow volume, were related to: (i) the percentage and the distribution of wetlands in the watershed, (ii) geographic location of wetlands, and (iii) seasons. Preliminary results suggest that: (i) integration of specific wetland modules can slightly improve HYDROTEL's ability to replicate basic hydrograph characteristics; and (ii) isolated and riparian wetlands have individual space- and time-dependent impacts on the hydrologic response of the study watershed.

  18. An application of baseflow isolation and passive wetland treatment to watershed restoration

    SciTech Connect

    Hoover, K.L.; Rightnour, T.A.; Zug, F.R. III

    1999-07-01

    The project site, located in West Virginia, is a reclaimed wood waste disposal area situated on Pennsylvanian coal strata. Following reclamation of the disposal area, flow in the adjacent stream was observed to have elevated iron and manganese concentrations. The source of the groundwater baseflow entering this portion of the stream appeared to be hydrologically related to the landfill by its close proximity. The source of the metals contamination was not determined, but may be related to percolation from the disposal area into the underlying coal strata. The observable contamination was typical of alkaline coal mine drainage and met the criteria for passive wetland treatment. However, the contaminated baseflow entered the stream along the sides and bottom of the channel at several locations over a 100-meter section and could not be collected for accurate characterization of pollutant loading. Treatment of the entire contaminated stream flow to comply with NPDES permit requirements would have been prohibitively expensive, and insufficient space was available for a treatment facility of adequate size within the narrow stream valley. Given these constraints, it was decided to isolate the contaminated baseflow from the surface flow by construction of a lined stream relocation on top of a gravity-drained collection zone in the existing stream channel. The collection zone consists of a bed of coarse aggregate with a central collection pipe discharging to a submerged outlet, which prevents air from entering the collection zone and minimizes the formation of iron precipitates. The relocated stream channel was formed in place on top of the collection zone with compacted earth, and lined with one layer of polypropylene geomembrane covered by two layers of geotextile. Gabion baskets were then placed on top of the liner for stream stabilization and shaping of the final channel. Accurate discharge characterization at the end of the collection pipe allowed the design of a

  19. Isolation of Sphaerotilus-Leptothrix strains from iron bacteria communities in Tierra del Fuego wetlands.

    PubMed

    Schmidt, Bertram; Sánchez, Leandro A; Fretschner, Till; Kreps, Gastón; Ferrero, Marcela A; Siñeriz, Faustino; Szewzyk, Ulrich

    2014-11-01

    Sheath-forming iron- and manganese-depositing bacteria belonging to the Sphaerotilus-Leptothrix group (SLG) are widespread in natural and artificial water systems. Known requirements for their growth include the presence of organic substrates and molecular oxygen. High concentrations of reduced iron or manganese, although not necessary for most species, make their growth a noticeable phenomenon. Such microbial communities have been studied mostly in the Northern Hemisphere. Here, we present descriptions of diverse ochre-depositing microbial communities in Tierra del Fuego, Argentina, using a combined approach of microscopical examination, clone library construction and cultivation focused on SLG bacteria. To date, only few SLG type strains are available. The present work increases the number and diversity of cultivated SLG bacteria by obtaining isolates from biofilms and sediment samples of wetlands in Tierra del Fuego. Thirty isolates were selected based on morphological features such as sheath formation and iron/manganese deposition. Five operational taxonomic units (OTUs) were deduced. Sequencing of 16S rRNA genes showed that one OTU is identical to the Leptothrix mobilis Feox-1(T) -sequence while the four remaining OTUs show similarity values related to previously described type strains. Similarity values ranged from 96.5% to 98.8%, indicating possible new species and subspecies. PMID:25098830

  20. Radar monitoring of wetland hydrology: Water quality implications for the Chesapeake Bay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetlands are hydrologically dynamic ecosystems which have the potential to improve water quality. Unfortunately, many of the Chesapeake Bay’s wetlands, especially forested wetlands, have been lost or degraded due to human impacts primarily associated with agriculture and urban/suburban development. ...

  1. Effects of Upland Forest Management on Small Isolated Wetland Herptofauna in the Coastal Plain of South Carolina

    SciTech Connect

    Russell, K.R.

    2000-08-01

    Forest management practices were compared in five isolated wetlands. These isolated wetlands support a large number of reptiles and amphibians in the forest landscape. However, the effect of adjacent conditions on juvenile and adult mortality was unknown. Several treatments were applied around each bay. The latter included harvesting, harvesting plus site preparation, and a control or intact forest cover. The richness of the communities were similar at the five sites; however, significant differences were observed and associated with upland conditions prior to harvest. No differences in the richness abundance or diversity were detected among treatments. Short term decreases in the abundance of turtles and snakes were noted, but not after 1.5 years.

  2. Quantifying groundwater discharge through fringing wetlands to estuaries: Seasonal variability, methods comparison, and implications for wetland-estuary exchange

    USGS Publications Warehouse

    Tobias, C.R.; Harvey, J.W.; Anderson, I.C.

    2001-01-01

    Because groundwater discharge along coastal shorelines is often concentrated in zones inhabited by fringing wetlands, accurately estimating discharge is essential for understanding its effect on the function and maintenance of these ecosystems. Most previous estimates of groundwater discharge to coastal wetlands have been temporally limited and have used only a single approach to estimate discharge. Furthermore, groundwater input has not been considered as a major mechanism controlling pore-water flushing. We estimated seasonally varying groundwater discharge into a fringing estuarine wetland using three independent methods (Darcy's Law, salt balance, and Br- tracer). Seasonal patterns of discharge predicted by both Darcy's Law and the salt balance yielded similar seasonal patterns with discharge maxima and minima in spring and early fall, respectively. They differed, however, in the estimated magnitude of discharge by two- to fourfold in spring and by 10-fold in fall. Darcy estimates of mean discharge ranged between -8.0 and 80 L m-2 d-1, whereas the salt balance predicted groundwater discharge of 0.6 to 22 L m-2 d-1. Results from the Br- tracer experiment estimated discharge at 16 L m-2 d-t, or nearly equal to the salt balance estimate at that time. Based upon the tracer test, pore-water conductivity profiles, and error estimates for the Darcy and salt balance approaches, we concluded that the salt balance provided a more certain estimate of groundwater discharge at high flow (spring). In contrast, the Darcy method provided a more reliable estimate during low flow (fall). Groundwater flushing of pore water in the spring exported solutes to the estuary at rates similar to tidally driven surface exchange seen in previous studies. Based on pore-water turnover times, the groundwater-driven flux of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and NH4+ to the estuary was 11.9, 1.6, and 1.3 g C or g N m-2 wetland for the 90 d encompassing peak

  3. Surface elevation change and vegetation distribution dynamics in a subtropical coastal wetland: Implications for coastal wetland response to climate change

    NASA Astrophysics Data System (ADS)

    Rogers, Kerrylee; Saintilan, Neil; Woodroffe, Colin D.

    2014-08-01

    The response of coastal wetlands to sea-level rise is receiving global attention and observed changes in the distribution of mangrove and salt marsh are increasingly associated with global climate change, particularly sea-level and temperature rise, and potentially elevated carbon dioxide. Processes operating over smaller-spatial scales, such as rainfall variability and nutrient enrichment are also proposed as possible short-term drivers of changes in the distribution of mangrove and salt marsh. We consider the response of mangrove and salt marsh in a subtropical estuary to changes in environmental variables over a 12 year period by comparing rates of surface elevation change and vegetation distribution dynamics to hydrological and climatic variables, specifically water level and rainfall. This period of analysis captured inter-annual variability in sea level and rainfall associated with different phases of the El Niño Southern Oscillation (ENSO). We found that the mangrove and salt marsh trend of increasing elevation was primarily controlled by position within the tidal prism, in this case defined by inundation depth and distance to the tidal channel. Rainfall was not a primary driver of elevation trends in mangrove and salt marsh, but rainfall and water level variability did influence variability in elevation over the study period, though cross-correlation of these factors confounds identification of a single process driving this variability. These results highlight the scale-dependence of coastal wetland vegetation distribution dynamics; the longer-term trend of surface elevation increase and mangrove encroachment of salt marsh correlated with global sea-level trends, while short-term variability in surface elevation was related to local variability in water level and rainfall. Rates of surface elevation increase were found to lag behind rates of water level change within the Tweed River, which may facilitate further expansion of mangrove into salt marsh. This

  4. Assessment of environmental DNA for detecting presence of imperiled aquatic amphibian species in isolated wetlands

    USGS Publications Warehouse

    Mckee, Anna; Calhoun, Daniel L.; Barichivich, William J.; Spear, Stephen F.; Goldberg, Caren S.; Glenn, Travis C

    2015-01-01

    Environmental DNA (eDNA) is an emerging tool that allows low-impact sampling for aquatic species by isolating DNA from water samples and screening for DNA sequences specific to species of interest. However, researchers have not tested this method in naturally acidic wetlands that provide breeding habitat for a number of imperiled species, including the frosted salamander (Ambystoma cingulatum), reticulated flatwoods salamanders (Ambystoma bishopi), striped newt (Notophthalmus perstriatus), and gopher frog (Lithobates capito). Our objectives for this study were to develop and optimize eDNA survey protocols and assays to complement and enhance capture-based survey methods for these amphibian species. We collected three or more water samples, dipnetted or trapped larval and adult amphibians, and conducted visual encounter surveys for egg masses for target species at 40 sites on 12 different longleaf pine (Pinus palustris) tracts. We used quantitative PCRs to screen eDNA from each site for target species presence. We detected flatwoods salamanders at three sites with eDNA but did not detect them during physical surveys. Based on the sample location we assumed these eDNA detections to indicate the presence of frosted flatwoods salamanders. We did not detect reticulated flatwoods salamanders. We detected striped newts with physical and eDNA surveys at two wetlands. We detected gopher frogs at 12 sites total, three with eDNA alone, two with physical surveys alone, and seven with physical and eDNA surveys. We detected our target species with eDNA at 9 of 11 sites where they were present as indicated from traditional surveys and at six sites where they were not detected with traditional surveys. It was, however, critical to use at least three water samples per site for eDNA. Our results demonstrate eDNA surveys can be a useful complement to traditional survey methods for detecting imperiled pond-breeding amphibians. Environmental DNA may be particularly useful in situations

  5. The role of protected area wetlands in waterfowl habitat conservation: implications for protected area network design

    USGS Publications Warehouse

    Beatty, William S.; Kesler, Dylan C.; Webb, Elisabeth B.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2014-01-01

    The principal goal of protected area networks is biodiversity preservation, but efficacy of such networks is directly linked to animal movement within and outside area boundaries. We examined wetland selection patterns of mallards (Anas platyrhynchos) during non-breeding periods from 2010 to 2012 to evaluate the utility of protected areas to migratory waterfowl in North America. We tracked 33 adult females using global positioning system (GPS) satellite transmitters and implemented a use-availability resource selection design to examine mallard use of wetlands under varying degrees of protection. Specifically, we examined effects of proximities to National Wildlife Refuges, private land, state wildlife management areas, Wetland Reserve Program easements (WRP), and waterfowl sanctuaries on mallard wetland selection. In addition, we included landscape-level variables that measured areas of sanctuary and WRP within the surrounding landscape of each used and available wetland. We developed 8 wetland selection models according to season (autumn migration, winter, spring migration), hunting season (present, absent), and time period (diurnal, nocturnal). Model averaged parameter estimates indicated wetland selection patterns varied across seasons and time periods, but ducks consistently selected wetlands with greater areas of sanctuary and WRP in the surrounding landscape. Consequently, WRP has the potential to supplement protected area networks in the midcontinent region. Additionally, seasonal variation in wetland selection patterns indicated considering the effects of habitat management and anthropogenic disturbances on migratory waterfowl during the non-breeding period is essential in designing protected area networks.

  6. Juvenile salmonid use of freshwater emergent wetlands in the floodplain and its implications for conservation management

    USGS Publications Warehouse

    Henning, J.A.; Gresswell, R.E.; Fleming, I.A.

    2006-01-01

    A recent trend of enhancing freshwater emergent wetlands for waterfowl and other wildlife has raised concern about the effects of such measures on juvenile salmonids. We undertook this study to quantify the degree and extent of juvenile Pacific salmon Oncorhynchus spp. utilization of enhanced and unenhanced emergent wetlands within the floodplain of the lower Chehalis River, Washington, and to determine the fate of the salmon using them. Enhanced emergent wetlands contained water control structures that provided an outlet for fish emigration and a longer hydroperiod for rearing than unenhanced wetlands. Age-0 and age-1 coho salmon O. kisutch were the most common salmonid at all sites, enhanced wetlands having significantly higher age-1 abundance than unenhanced wetlands that were a similar distance from the main-stem river. Yearling coho salmon benefited from rearing in two enhanced wetland habitats, where their specific growth rate and minimum estimates of survival (1.43%/d by weight and 30%; 1.37%/d and 57%) were comparable to those in other side-channel rearing studies. Dissolved oxygen concentrations decreased in emergent wetlands throughout the season and approached the limits lethal to juvenile salmon by May or June each year. Emigration patterns suggested that age-0 and age-1 coho salmon emigrated as habitat conditions declined. This observation was further supported by the results of an experimental release of coho salmon. Survival of fish utilizing emergent wetlands was dependent on movement to the river before water quality decreased or stranding occurred from wetland desiccation. Thus, our results suggest that enhancing freshwater wetlands via water control structures can benefit juvenile salmonids, at least in the short term, by providing conditions for greater growth, survival, and emigration. ?? Copyright by the American Fisheries Society 2006.

  7. Epilithonimonas xixisoli sp. nov., isolated from wetland bank-side soil.

    PubMed

    Feng, Hao; Zeng, Yanhua; Huang, Yili

    2014-12-01

    A novel Gram-staining-negative, non-motile and rod-shaped bacterial strain containing flexirubin-type pigments, designated S31(T), was isolated from bank-side soil of the Xixi wetland in Zhejiang province, China. Growth occurred at 10-37 °C (optimum, 32 °C), pH 6-8 (optimum, pH 7) and with 0-2 % (w/v) NaCl (optimum, 1 %). Strain S31(T) shared highest 16S rRNA gene sequence similarities with Epilithonimonas lactis H1(T) (96.2 %) and Chryseobacterium molle DW3(T) (96.4 %). Phylogenetic analysis suggested that strain S31(T) was a member of the genus Epilithonimonas. The dominant respiratory quinone was MK-6 and the DNA G+C content was 33.3 mol%. The major fatty acids were iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and anteiso-C15 : 0. The major polar lipids of strain S31(T) were phosphatidylethanolamine, three unidentified aminolipids and four unidentified polar lipids. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain S31(T) represents a novel species of the genus Epilithonimonas, for which the name Epilithonimonas xixisoli sp. nov. (type strain S31(T) = CGMCC 1.12802(T) = NBRC 110387(T)) is proposed. PMID:25256707

  8. Simplified Volume-Area-Depth Method for Estimating Water Storage of Isolated Prairie Wetlands

    NASA Astrophysics Data System (ADS)

    Minke, A. G.; Westbrook, C. J.; van der Kamp, G.

    2009-05-01

    There are millions of wetlands in shallow depressions on the North American prairies but the quantity of water stored in these depressions remains poorly understood. Hayashi and van der Kamp (2000) used the relationship between volume (V), area (A) and depth (h) to develop an equation for estimating wetland storage. We tested the robustness of their full and simplified V-A-h methods to accurately estimate volume for the range of wetland shapes occurring across the Prairie Pothole Region. These results were contrasted with two commonly implemented V-A regression equations to determine which method estimates volume most accurately. We used detailed topographic data for 27 wetlands in Smith Creek and St. Denis watersheds, Saskatchewan that ranged in surface area and basin shape. The full V-A-h method was found to accurately estimate storage (errors <3%) across wetlands of various shapes, and is therefore suitable for calculating water storage in the variety of wetland surface shapes found in the prairies. Both V-A equations performed poorly, with volume underestimated by an average of 15% and 50% Analysis of the simplified V-A-h method showed that volume errors of <10% can be achieved if the basin and shape coefficients are derived properly. This would involve measuring depth and area twice, with sufficient time between measurements that the natural fluctuations in water storage are reflected. Practically, wetland area and depth should be measured in spring, following snowmelt when water levels are near the peak, and also in late summer prior to water depths dropping below 10 cm. These guidelines for applying the simplified V-A-h method will allow for accurate volume estimations when detailed topographic data are not available. Since the V-A equations were outperformed by the full and simplified V-A-h methods, we conclude that wetland depth and basin morphology should be considered when estimating volume. This will improve storage estimations of natural and human

  9. Methanomethylovorans uponensis sp. nov., a methylotrophic methanogen isolated from wetland sediment.

    PubMed

    Cha, In-Tae; Min, Ui-Gi; Kim, So-Jeong; Yim, Kyung June; Roh, Seong Woon; Rhee, Sung-Keun

    2013-12-01

    A novel mesophilic, methylotrophic, methanogenic archaeon, designated strain EK1(T), was enriched and isolated from wetland sediment. Phylogenetic analysis showed that strain EK1(T) was affiliated with the genus Methanomethylovorans within the family Methanosarcinaceae, and shared the highest 16S rRNA and methyl-coenzyme M reductase alpha-subunit gene sequence similarity with the type strain of Methanomethylovorans hollandica (98.8 and 92.6 %, respectively). The cells of strain EK1(T) were observed to be Gram-negative, non-motile and irregular cocci that did not lyse in 0.1 % (w/v) sodium dodecyl sulfate. Methanol, mono-, di- and trimethylamine, dimethyl sulfide and methanethiol were found to be used as catabolic and methanogenic substrates, whereas H2/CO2, formate, 2-propanol and acetate were not. Growth was observed at 25-40 °C (optimum, 37 °C), at pH 5.5-7.5 (optimum, pH 6.0-6.5) and in the presence of 0-0.1 M NaCl (optimum, 0 M). Growth and methane production rates were stimulated in the presence of H2/CO2 although methane production and growth yields were not significantly affected; acetate, formate, 2-propanol and CO/CO2/N2 did not affect methane production. CoCl2 (0.6-2.0 μM) and FeCl2 (25 mg/l) stimulated growth, while yeast extract and peptone did not. The DNA-DNA hybridization experiment revealed a relatedness of <20 % between EK1(T) and the type strains of the genus Methanomethylovorans. The DNA G+C content of strain EK1(T) was determined to be 39.2 mol%. Based on the polyphasic taxonomic study, strain EK1(T) represents a novel species belonging to the genus Methanomethylovorans, for which the name Methanomethylovorans uponensis sp. nov. is proposed. The type strain is strain EK1(T)(=NBRC 109636(T) = KCTC 4119(T) = JCM 19217(T)). PMID:24000091

  10. Patterns in Habitat and Fish Assemblages within Great Lakes Coastal Wetlands and Implications for Sampling Design

    EPA Science Inventory

    Discerning fish - habitat associations at a variety of spatial scales is relevant to evaluating stressor responses and assessment protocols in Great Lakes coastal wetlands. NMDS ordination of electrofishing catch-per-effort data identified an overriding influence of geography an...

  11. [Book review] Wetland birds: Habitat resources and conservation implications, by Milton W. Weller

    USGS Publications Warehouse

    Erwin, R.M.

    1999-01-01

    Milton Weller's love of wetlands and their inhabitants comes through in this book, and he continues a leadership role in a world of field ecologists where fewer and fewer are really experiencing the wet and wild.

  12. Potential pathogens, antimicrobial patterns and genotypic diversity of Escherichia coli isolates in constructed wetlands treating swine wastewater.

    PubMed

    Ibekwe, A M; Murinda, Shelton E; DebRoy, Chitrita; Reddy, Gudigopura B

    2016-02-01

    Escherichia coli populations originating from swine houses through constructed wetlands were analyzed for potential pathogens, antimicrobial susceptibility patterns, and genotypic diversity. Escherichia coli isolates (n = 493) were screened for the presence of the following virulence genes: stx1, stx2 and eae (Shiga toxin-producing E. coli [STEC]), heat-labile enterotoxin (LT) genes and heat stable toxin STa and STb (enterotoxigenic E. coli (ETEC), cytotoxin necrotizing factors 1 and 2 (cnf1 and cnf2 [necrotoxigenic E. coli- NTEC]), as well as O and H antigens, and the presence of the antibiotic resistance genes blaTEM, blaSHV, blaCMY-2, tet A, tet B, tet C, mph(A), aadA, StrA/B, sul1, sul2 and sul3. The commensal strains were further screened for 16 antimicrobials and characterized by BOX AIR-1 PCR for unique genotypes. The highest antibiotic resistance prevalence was for tetracycline, followed by erythromycin, ampicillin, streptomycin, sulfisoxazole and kanamycin. Our data showed that most of the isolates had high distribution of single or multidrug-resistant (MDR) genotypes. Therefore, the occurrence of MDR E. coli in the wetland is a matter of great concern due to possible transfer of resistance genes from nonpathogenic to pathogenic strains or vice versa in the environment. PMID:26839381

  13. Temporal and spatial variability in water quality of wetlands in the Minneapolis/St. Paul, MN metropolitan area: Implications for monitoring strategies and designs.

    PubMed

    Detenbeck, N E; Taylor, D L; Lima, A; Hagley, C

    1996-03-01

    Temporal and spatial variability in wetland water-quality variables were examined for twenty-one wetlands in the Minneapolis/St. Paul metropolitan area and eighteen wetlands in adjacent Wright County. Wetland water quality was significantly affected by contact with the sediment (surface water vs. groundwater), season, degree of hydrologic isolation, wetland class, and predominant land-use in the surrounding watershed (p<0.05). Between years, only nitrate and particulate nitrogen concentrations varied significantly in Wright County wetland surface waters. For eight water-quality variables, the power of a paired before-and-after comparison design was greater than the power of a completely randomized design. The reverse was true for four other water-quality variables. The power of statistical tests for different classes of water-quality variables could be ranked according to the predominant factors influencing these: climate factors>edaphic factors>detritivory>land-use factors>biotic-redox or other multiple factors.For two wetlands sampled intensively, soluble reactive phosphate and total dissolved phosphorus were the most spatially variable (c.v.=76-249%), while temperature, color, dissolved organic carbon, and DO were least variable (c.v.=6-43%). Geostatistical analyses demonstrated that the average distance across which water-quality variables were spatially correlated (variogram range) was 61-112% of the mean radius of each wetland. Within the shallower of the two wetlands, nitrogen speciation was explained as a function of dissolved oxygen, while deeper marsh water-quality variables were explained as a function of water depth or distance from the wetland edge. Compositing water-quality samples produced unbiased estimates of individual sample means for all water quality variables examined except for ammonium. PMID:24198069

  14. Dry down impacts on apple snail (Pomacea paludosa) demography: Implications for wetland water management

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Percival, H.F.

    2008-01-01

    Florida apple snails (Pomacea paludosa Say) are prey for several wetland-dependent predators, most notably for the endangered Florida snail kite (Rostrhamus sociabilis Vieillot). Management concerns for kites have been raised regarding the impacts of wetland dry downs on snails, but little data exists to validate these concerns. We simulated drying events in experimental tanks, where we observed that snail survival patterns, regardless of hydrology, were driven by a post-reproductive die off. In contrast to earlier reports of little to no dry down tolerance, we found that 70% of pre-reproductive adult-sized snails survived a 12-week dry down. Smaller size classes of snails exhibited significantly lower survival rates (< 50% after eight weeks dry). Field surveys showed that 77% of egg production occurs in April-June. Our hydrologic analyses of six peninsular Florida wetlands showed that most dry downs overlapped a portion of the peak snail breeding season, and 70% of dry downs were ??? 12 weeks in duration. Dry down timing can affect recruitment by truncating annual egg production and stranding juveniles. Dry down survival rates and seasonal patterns of egg cluster production helped define a range of hydrologic conditions that support robust apple snail populations, and illustrate why multiple characteristics of dry down events should be considered in developing target hydrologic regimes for wetland fauna. ?? 2008, The Society of Wetland Scientists.

  15. River and Wetland Food Webs in Australia's Wet-Dry Tropics: General Principles and Implications for Management.

    NASA Astrophysics Data System (ADS)

    Douglas, M. M.; Bunn, S. E.; Davies, P. M.

    2005-05-01

    The tropical rivers of northern Australia are internationally recognised for their high ecological and cultural values. They have largely unmodified flow regimes and are comparatively free of the impacts associated with intensive land use. However, there is growing demand for agricultural development and existing pressures, such as weeds and feral animals, threaten their ecological integrity. Using the international literature to provide a conceptual framework and drawing on limited published and unpublished data on rivers in northern Australia, we have derived five general principles about food webs and related ecosystem processes that both characterise tropical rivers of northern Australia and have important implications for their management. These are: (1) Seasonal hydrology is a strong driver of ecosystem processes and food web structure; (2) Hydrological connectivity is largely intact and underpins important terrestrial-aquatic food web subsidies; (3) River and wetland food webs are strongly dependent on algal production; (4) A few common macroconsumers species have a strong influence on benthic food webs; (5) Omnivory is widespread and food chains are short. These principles have implications for the management and protection of tropical rivers and wetlands of northern Australia and provide a framework for the formation of testable hypotheses in future research programs.

  16. Changes in wetland sediment elevation following major storms: implications for estimating trends in relative sea-level rise

    USGS Publications Warehouse

    Cahoon, D.R.

    2003-01-01

    Hurricanes can be important agents of geomorphic change in coastal marshes and mangrove forests. Hurricanes can cause large-scale redistribution of sediments within the coastal environment resulting in sedimentation, erosion, disruption of vegetated substrates, or some combination of these processes in coastal wetlands. It has been proposed that such sediment pulsing events are important at maintaining wetland sediment elevations in sediment-poor settings with high rates of relative sea-level rise, such as the Mississippi River Delta. But do these pulsing events result in a net gain in sediment elevation even when substantial amounts of sediment are deposited? Clearly sediment erosion and scour would result in a loss of elevation. But will a substantial sediment deposit on poorly consolidated sediments always result in a net gain in elevation? If the wetland vegetation is killed by wind, tidal surge, or the introduction of saline water, will there be a collapse of sediment elevation in the absence of root production and ongoing decomposition of root matter? During the past decade several wetlands where my colleagues and I have monitored sedimentation and elevation change have been struck by one to several hurricanes. This paper describes the range of sediment elevation responses to hurricane strikes, the suggested mechanisms driving those responses, the implications for estimating long-term trends in relative sea-level rise, and future research needs for improving our understanding of the role that major storms play in wetland sediment elevation dynamics. For many wetlands the change in sediment elevation was directly proportional to the amount of sediment deposited by the storm. But surprisingly, there was a loss of elevation in some wetlands with substantial sediment deposits. In these wetlands, the impact of the storm was either direct (sedimentation and compaction) or indirect (vegetation death), and the effect on sediment elevation was either permanent or

  17. Spatiotemporal dynamics of prairie wetland networks: power-law scaling and implications for conservation planning.

    PubMed

    Wright, Christopher K

    2010-07-01

    Although habitat networks show promise for conservation planning at regional scales, their spatiotemporal dynamics have not been well studied, especially in climate-sensitive landscapes. Here I use satellite remote sensing to compile wetland habitat networks from the Prairie Pothole Region (PPR) of North America. An ensemble of networks assembled across a hydrologic gradient from deluge to drought and a range of representative dispersal distances exhibits power-law scaling of important topological parameters. Prairie wetland networks are "meso-worlds" with mean topological distance increasing faster with network size than small-world networks, but slower than a regular lattice (or "large world"). This scaling implies rapid dispersal through wetland networks without some of the risks associated with "small worlds" (e.g., extremely rapid propagation of disease or disturbance). Retrospective analysis of wetland networks establishes a climatic envelope for landscape connectivity in the PPR, where I show that a changing climate might severely impact metapopulation viability and restrict long-distance dispersal and range shifts. More generally, this study demonstrates an efficient approach to conservation planning at a level of abstraction addressing key drivers of the global biodiversity crisis: habitat fragmentation and climatic change. PMID:20715611

  18. Hydrogeochemistry of groundwater in coastal wetlands: implications for coastal conservation in Scotland.

    PubMed

    Malcolm, R; Soulsby, C

    2001-01-29

    Groundwater in a shallow coastal aquifer in north east Scotland was monitored over the hydrological year October 1996-September 1997. Groundwater flow from inland areas sustained freshwater conditions in a dune-wetland complex of conservation importance. In particular, seasonal flooding of the coastal wetlands due to water table rise provided important roosting and breeding habitats for waterfowl. Hydrogeochemical analysis revealed that groundwater in the shallow sand aquifer was circum-neutral, and non-saline, despite being within 50 m of the sea and only 1 m above the mean high water mark. Calcium and HCO3 were the dominant cation and anion respectively, reflecting weathering processes in the aquifer. Use of the geochemical code NETPATH indicated that calcite weathering in shell fragments within the sand was the primary source of Ca and alkalinity generation. The concentrations of Na and Cl were also important, though these can be explained primarily by atmospheric inputs from precipitation. In detail, the spatial and temporal variation in groundwater chemistry was remarkably complex for what intuitively appeared a simple aquifer system. Temporal variations in groundwater chemistry mainly related to the seasonal event of groundwater recharge. Thus, the main period of rising groundwater levels resulted in a marked dilution of solutes in the aquifer, implying that water storage greatly increased in a relatively short period. A period of several weeks appeared to be required for dissolution processes to proceed to equilibrium. Spatial variation in groundwater chemistry appears to relate to the spatial distribution of geochemical processes in different hydrogeological units. Sulphate reduction, alkalinity generation and Fe precipitation appear to be locally important processes. The chemistry of groundwater maintains the wetland habitat by providing freshwater conditions that allow populations of various plant species to flourish. The potentially large recharge

  19. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  20. A new ranavirus isolated from Pseudacris clarkii tadpoles in playa wetlands in the southern High Plains, Texas.

    PubMed

    Torrence, Shannon M; Green, D Earl; Benson, Catherine J; Ip, Hon S; Smith, Loren M; McMurry, Scott T

    2010-06-01

    Mass die-offs of amphibian populations pose a challenging problem for conservation biologists. Ranaviruses often cause systemic infections in amphibians and, in North America, are especially virulent and lethal to larvae and metamorphs. In this paper we describe a novel ranavirus isolate as well as the first recorded occurrence of ranavirus in the southern High Plains of Texas and in associated populations of the spotted chorus frog Pseudacris clarkii. The breeding sites were playas, that is, wetlands that fill via isolated thunderstorms that can occur infrequently; thus, not every playa has water or breeding amphibians annually. We did not detect ranavirus in sympatric anurans, but other reports document ranaviruses in Pseudacris spp. elsewhere. The occurrence of multiple isolates of ranavirus in a number of Pseudacris species suggests that this genus of frogs is highly susceptible to ranaviruses and may experience exceptionally high mortality rates from infection. Thus, the virus may contribute to substantial seasonal population declines and low seasonal recruitment, with negative impacts on populations of breeding adults in successive years. PMID:20848879

  1. Isotopic composition of methane released from wetlands: Implications for the increase in atmospheric methane

    SciTech Connect

    Quay, P.D.; King, S.L.; Lansdown, J.M.; Wilbur, D.O. )

    1988-12-01

    Measurements of the delta-C{sup 13} of methane released from tropical, temperate, and arctic wetland sites are reported. The mean delta C{sup 13} values (relative to PDB carbonate standard) for peat bogs and Alaskan tundra are {minus}53 + or{minus}8, {minus}66 + or{minus}5 and {minus}64 + or{minus}5{per thousand}, respectively. These measurements combined with methane flux estimates yield a flux-weighted global average delta-C{sup 13} value of {minus}59 + or{minus}6{per thousand} for methane released from wetlands, a major natural methane source. The agreement between the measured delta-C{sup 13} for methane emitted from wetlands and the calculated steady state value of approximately {minus}6{per thousand} for the delta-C{sup 13} of preindustrial methane sources suggests that methane was predominantly produced biogenically in the preindustrial era. The industrial era time rate of change of the delta-C{sup 13} of the global methane flux is calculated from estimates of the growth rate of the major anthropogenically derived methane sources and the C{sup 13} composition of these sources, and compared to the measured change in the delta-C{sup 13} of methane during the last 300 years. Based on these results, it is estimated that 13 + or{minus}8% of the current global methane flux is derived abiogenically from natural gas and biomass burning, whereas the remainder is derived biogenically primarily from wetlands, rice paddies, and livestock. 40 refs., 5 figs., 2 tabs.

  2. Mercury Geochemistry in a Wetland and its Implications for In-Situ Remediation

    SciTech Connect

    Kaplan, D.I.

    2002-03-28

    The objective of this study was to characterize the nature of Hg sorption on a wetland sediment with the intent of providing guidance for the selection of an appropriate in-situ remediation strategy. Total Hg concentrations in the sediments were as high as 10-mg/kg, whereas associated pore water Hg concentrations were below detection, less than 0.010-mg/L. Sediment Hg was not in an exchangeable form, and less than 8 percent of it was associated with organic matter. The remainder of the Hg was strongly associated with Fe-oxides and/or with a precipitated phase, presumably a sulfide. Sediment Hg concentrations were significantly correlated (r = 0.94) to Fe-oxide concentrations. Thermodynamic calculations based on field Eh/pH measurements and laboratory results suggest that under present field conditions meta-cinnabar (HgS) would not be stable due to the relatively low pH (approximately 4.2) and sulfate concentrations (0.14-mM) and high Eh levels at the study site. However, these calculations indicate that meta-cinnabar may have formed when the Hg first entered the wetland at elevated concentrations (approximately 5-mg/L). Given the ecologically sensitive nature of the wetland and the fact that the Hg is strongly bound to the sediment, it was concluded that a monitored natural attenuation approach for site remediation may be appropriate.

  3. Implications of climate change for wetland-dependent birds in the Prairie Pothole Region

    USGS Publications Warehouse

    Steen, Valerie; Skagen, Susan; Melcher, Cynthia P.

    2016-01-01

    The habitats and food resources required to support breeding and migrant birds dependent on North American prairie wetlands are threatened by impending climate change. The North American Prairie Pothole Region (PPR) hosts nearly 120 species of wetland-dependent birds representing 21 families. Strategic management requires knowledge of avian habitat requirements and assessment of species most vulnerable to future threats. We applied bioclimatic species distribution models (SDMs) to project range changes of 29 wetland-dependent bird species using ensemble modeling techniques, a large number of General Circulation Models (GCMs), and hydrological climate covariates. For the U.S. PPR, mean projected range change, expressed as a proportion of currently occupied range, was −0.31 (± 0.22 SD; range − 0.75 to 0.16), and all but two species were projected to lose habitat. Species associated with deeper water were expected to experience smaller negative impacts of climate change. The magnitude of climate change impacts was somewhat lower in this study than earlier efforts most likely due to use of different focal species, varying methodologies, different modeling decisions, or alternative GCMs. Quantification of the projected species-specific impacts of climate change using species distribution modeling offers valuable information for vulnerability assessments within the conservation planning process.

  4. Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels

    NASA Astrophysics Data System (ADS)

    Comeaux, Rebecca S.; Allison, Mead A.; Bianchi, Thomas S.

    2012-01-01

    Black mangroves ( Avicennia spp.) are hypothesized to expand their latitudinal range with global climate change in the 21st century, induced by a reduction in the frequency and severity of coastal freezes, which are known to limit mangrove colony extent and individual tree size. The Gulf of Mexico is a prime candidate for population expansion to occur because it is located at the northward limit of black mangrove habitat. This may come at the expense of existing coastal saline wetlands that are dominantly Spartina spp. marsh grasses. The present study was conducted to focus on the implications of a marsh to mangrove transition in Gulf wetlands, specifically: (1) wetland resistance to accelerating eustatic sea level rise (ESLR) rates; (2) resistance to wave attack in large storms (increased cyclonic storm frequency/intensity is predicted with future climate warming); and (3) organic carbon sequestration and wetland soil geochemistry. Field sites of adjacent and inter-grown Avicennia germinans mangrove and Spartina marsh populations in similar geomorphological setting were selected in back-barrier areas near Port Aransas and Galveston, TX. Elevation surveys in the more mature Port Aransas site indicate mangrove vegetated areas are 4 cm higher in elevation than surrounding marsh on an average regional scale, and 1-2 cm higher at the individual mangrove scale. 210Pb and 137Cs accumulation rates and loss on ignition data indicate that mineral trapping is 4.1 times higher and sediment organics are 1.7 times lower in mangroves at Port Aransas. This additional mineral trapping does not differ in grain size character from marsh accumulation. Elevation change may also be effected by soil displacement of higher root volumes in mangrove cores. Port Aransas porosities are lower in mangrove rooted horizons, with a corresponding increase in sediment strength, suggesting mangrove intervals are more resistant to wave-induced erosion during storm events. Port Aransas mangroves

  5. A Conceptual Model for Evaluating Hydrologic Connectivity in Geographically Isolated Wetlands

    EPA Science Inventory

    Knowledge about hydrologic connectivity between aquatic resources is critical to understanding and managing watershed hydrology and to the legal status of those resources. In particular, information is needed on the hydrologic connectivity and effects of geographically isolated ...

  6. Prey preferences of aquatic insects: potential implications for the regulation of wetland mosquitoes.

    PubMed

    Saha, N; Aditya, G; Saha, G K

    2014-03-01

    Wetlands are potential sites for mosquito breeding and are thus important in the context of public health. The use of chemical and microbial controls is constrained in wetlands in view of their potential impact on the diverse biota. Biological control using generalist aquatic insects can be effective, provided a preference for mosquito larvae is exhibited. The mosquito prey preferences of water bugs and larvae of odonate species were evaluated using chironomid larvae, fish fingerlings and tadpoles as alternative prey. Manly's selectivity (αi ) values with 95% confidence intervals (CIs) were estimated to judge prey preference patterns. Multivariate analysis of variance (manova) and standardized canonical coefficients were used to test the effects of density on prey selectivity. The αi values indicated a significant preference (P < 0.05) in all of the insect predators tested for mosquito larvae over the alternative prey as a density-dependent function. On a comparative scale, chironomid larvae had the highest impact as alternative prey. In a multiple-prey experiment, predators showed a similar pattern of preference for mosquito larvae over alternative prey, reflecting a significant (P < 0.05) niche overlap. The results suggest that, in a laboratory setting, these insect predators can effectively reduce mosquito density in the presence of multiple alternative prey. PMID:23437887

  7. Application of fish index of biological integrity (FIBI) in the Sanmenxia Wetland with water quality implications.

    PubMed

    Zhang, Hong; Shan, Baoqing; Ao, Liang

    2014-08-01

    Long-term changes of fish biotic integrity in the Sanmenxia Wetland, North China, since the 1950s were assessed using the fish index of biological integrity (FIBI). The water and sediment quality was evaluated by the water quality index (WQI) and sediment pollution index (SPI). The results showed that FIBI continuously decreased from 46 to 20 during the past 5 decades, which indicated that the fish community state shifted from fair to very poor conditions, and damming by itself did not affect the fish biotic integrity. At the same time, WQI fell from 83 to 44.1, and SPI increased from 0.99 to 2.14 since the 1960s, resulting from fast regional socio-economic development and insufficient wastewater treatment. Correlation analysis suggested that water quality significantly affected biotic integrity (r=0.867, p<0.05) through direct effects on the fish community. As a representative example of many wetlands in North China, our study clearly demonstrated that the biological integrity was degraded, induced both by water quality deterioration and sediment pollution, further driven by the contradiction between rapid development of regional economy and lagging development of sewage treatment facilities, which were thought to be the main factor responsible for the degradation of biological integrity. PMID:25108715

  8. [Isolated fetal pyelectasis: pathologic significance and therapeutic implications].

    PubMed

    Chérif, Ahmed; Marrakchi, Zahra; Chaouachi, Sihem; Ayadi, Imène; Hamzaoui, M; Houissa, T; Chaouachi, B; Sfar, Rachida; Boukef-Larguèche, Safia

    2003-09-01

    We report a retrospective study of nine neonatal observations of antenatal isolated pyelectasis during a period of two years. Pyelectasis associated with other congenital abnormalities and in utero died foetus were excluded. Finding interesting sex, gestational age at diagnosis, echographic aspect, antenatal management and postnatal follow-up were assigned. Foetal kidneys was noted in two cases and an oligoamnios was noted in two other cases. No foetal urinary intervention was assessed. Postnatal exploration revealed a transitional pyelectasis in four cases, an ureteropelvic junction obstruction in four cases and a congenital megauretere in one case. Postnatal renal function was decreased in two cases. Postnatal surgery was assessed in two cases and a spontaneous regression under a sequential treatment occurred in the other three cases. Isolated foetal pyelectasis can have a pathologic significance.This examination permits, in plus, to evaluate the renal prognosis. Antenatal therapeutic implications of interruption of pregnancy or urinary intervention are still not clear and those after birth depend essentially on renal function determined by scintigraphy. PMID:17722783

  9. The utility of state parks as a conservation tool for isolated and ephemeral wetlands: A case study from the southern Blue Ridge

    NASA Astrophysics Data System (ADS)

    Howard, J. H.; Baldwin, R.; Pitt, A. L.; Baldwin, E. D.

    2013-12-01

    were deeper on average than park pools. We found significant differences in total taxonomic richness, invertebrate tolerance values and wetland depth between park and non-park wetlands. We relied heavily on local ecological knowledge (LEK) for identification and information on wetlands within parks. Furthermore, state parks played a vital role in the development of this project and our study was enriched as a result of utilizing state park personnel and their LEK. We were also able to interact with the public during our site visits and this two-way dialogue between scientists and the general public was useful for educating citizens about the importance of isolated/ephemeral wetlands and helped us better understand public perceptions of wetlands. State parks provided a number of study sites, various personnel who were knowledgeable about the locations and dynamics of wetlands and an a priori framework for conservation at the local scale which can help bolster conservation efforts at larger scales. We posit that state parks are an under-utilized but extremely important resource for filling the gaps in conservation.

  10. Seed germination of cirsium arvense and Lepidium latifolium: Implications for management of montane wetlands

    USGS Publications Warehouse

    Laubhan, M.K.; Shaffer, T.L.

    2006-01-01

    Cirsium arvense and Lepidium latifolium are species that can aggressively invade wetland margins and potentially reduce biodiversity and alter ecosystem function. Although expansion of these species primarily occurs via rhizomatous growth, seeds are thought to be important in initial establishment. We conducted this study to investigate differences in seed germination of C. arvense and L. latifolium in montane wetlands of Colorado and Wyoming, USA. We used germination chambers to simulate environmental conditions (photoperiod, day/night temperature) during three periods of the growing season at each site and evaluated seed germination in relation to three soil moisture levels and two soil depths. A combination of shallow (<1 cm) seed burial and wet conditions resulted in the greatest germination probability of C. arvense (x = 63.0%), 95% CI = 41.2-80.5%), whereas deep (2-3 cm) seed burial and saturated moisture conditions resulted in almost no germination (x?? = 0.3%, 95% CI = 0.1-1.3%). The maximum germination probability of 44.0% (CI = 28.1-61.4%) for L. latifolium also occurred in the shallow burial and wet treatment; however, only effects of seed burial were significant (P < 0.05). The estimated mean germination probability of deeply buried seeds was <1.0% (CI = 0.3-1.4%) compared to 32% (CI = 19.7-47.9%) for shallowly buried seeds. Our results suggest that each species has the ability to germinate at similar rates throughout the growing season and across a large portion of the moisture gradient. This suggests that management actions, including water-level manipulations, at any time during the growing season may stimulate germination. Although burial of seed to depths of 2-3 cm reduced the germination potential of both species, the use of mechanical implements may be problematic in established stands because new plants of both species easily sprout from root buds. Further, disturbance resulting from such actions diminishes the density and vigor of other plants

  11. Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands.

    PubMed

    Dib, Julián; Motok, Jessica; Zenoff, Verónica Fernández; Ordoñez, Omar; Farías, María Eugenia

    2008-05-01

    High-altitude Andean wetlands are pristine environments with extreme conditions such as high UV radiation, high heavy metal content (mainly arsenic), high salinity, and oligotrophy. In this paper, the UV-B resistance and tolerance to arsenic of phylogenetically characterized bacteria (Actinobacteria [six isolates], Firmicutes [four isolates], and gamma-Proteobacteria [three isolates]) isolated from Laguna Vilama (4400-m altitude) and Laguna Azul (4560 m) were determined. In addition, given that multiple antibiotic resistances were also determined, a relationship between antibiotic resistances as a consequence of mutagenic ability or in relation to metal resistance is proposed. High UV-B resistances were found, since after 30 min (0.7 KJ m(-2)) and 60 min (1.4 KJ m(-2)) of irradiation, most of the studied bacteria did not show a decreased survival; what is more, many of them had an improved survival with the increased doses. Augmentations in mutagenesis rates were observed after UV-B irradiation in only 4 of the 13 tested isolates. Arsenite tolerance was also established in 8 of the 13 tested strains: Staphylococcus saprophyticus A3 and Micrococcus sp. A7, which were able to grow in media containing up to 10 mM As(III). Finally, predominance of antibiotic resistances (azithromycin, erythromycin, clarithromycin, roxithromycin, streptomycin, chloramphenicol, gentamycin, kanamycin, tetracycline, and ampicillin) was found, in all the isolated strains from both wetlands, with unexpectedly high minimal inhibitory concentrations (MICs; >2 mg mL(-1)) for macrolides. These results demonstrate that in extreme environments like high-altitude wetlands there is a correlation of multiresistances to UV-B radiation and arsenic, and that antibiotic resistances are also widespread in these pristine environments, where antibiotic selective pressure is supposed to be absent. PMID:18330637

  12. Water movement and solute transport in permafrost wetlands: implications for inorganic carbon cycling

    NASA Astrophysics Data System (ADS)

    Jessen, Søren; Dahl Holmslykke, Hanne; Rasmussen, Kristine; Richardt, Niels; Engelund Holm, Peter

    2014-05-01

    Carbon dioxide emissions from thawing permafrost wetlands are an expected consequence of global warming. Addressing the pathways by which carbon is emitted, we investigated the hydrological and geochemical controls on the pore water chemistry of a permafrost wetland, with a shallow geological sequence comprising loam overlain by sphagnum peat, in Ilulissat, Greenland. A 400 m transect parallel to the general flow direction was established, along which water table measurements and slug tests were conducted, and the active layer thickness recorded (typically ~0.5 m). Also, in three detailed profiles along the transect, the vertical distributions of stable isotopes of water and major ion chemistry were investigated, by analysis of active layer pore water and water of melted core sections of permafrost. Concentrations of chloride (0.3-0.4 mM) did not show variation with depth, dismissing solute movement by ion freeze-out during fall freeze-up as a main control on the water chemistry. In addition, the observed vertical δ18O distribution did not to any extent conform to modelled Rayleigh distillation curves for the preferential inclusion of H218O into ice, which could be a scenario for fall freeze-up. The δ18O data therefore suggests either a rapid freeze-up or a simultaneous phase transition at all depths of the active layer, which in either case also would minimize potential ion freeze-out effects. Nevertheless, concentrations of major ions generally increased with depth. A conceptual model for water and solute transport was therefore established, according to which solutes are mobilized by weathering reactions in the loam and then transported upwards to the peat by diffusion. In the peat, lateral advective solute transport dominates. We applied the model to observed profiles of Ca, Mg, HCO3 and the partial CO2 pressure (PCO2). Concentrations of Ca, Mg and HCO3 increased with depth, reaching ~2 mM, ~2 mM and ~8 meq/L at the bottom of the active layer. Pore water at

  13. Radar monitoring of hydrology in Maryland's forested coastal plain wetlands: Implications for predicted climate change and improved mapping

    NASA Astrophysics Data System (ADS)

    Weiner Lang, Megan

    Wetlands provide important services to society but Mid-Atlantic wetlands are at high risk for loss, with forested wetlands being especially vulnerable. Hydrology (flooding and soil moisture) controls wetland function and extent but it may be altered due to changes in climate and anthropogenic influence. Wetland hydrology must better understood in order to predict and mitigate the impact of these changes. Broad-scale forested wetland hydrology is difficult to monitor using ground-based and traditional remote sensing methods. C-band synthetic aperture radar (SAR) data could improve the capability to monitor forested wetland hydrology but the abilities and limitations of these data need further investigation. This study examined: (1) the link between climate and wetland hydrology; (2) the ability of ENVISAT SAR (C-HH and C-VV) data to monitor inundation and soil moisture in forested wetlands; (3) limitations inherent to C-band data (incidence angle, polarization, and phenology) when monitoring forested wetland hydrology; and (4) the accuracy of forested wetland maps produced using SAR data. The study was primarily conducted near the Patuxent River in Maryland but the influence of incidence angle was considered along the Roanoke River in North Carolina. This study showed: (1) climate was highly correlated with wetland inundation; (2) significant differences in C-VV and C-HH backscatter existed between forested areas of varying hydrology (uplands and wetlands) throughout the year; (3) C-HH backscatter was better correlated to hydrology than C-VV backscatter; (4) correlations were stronger during the leaf-off season; (5) the difference in backscatter between flooded and non-flooded areas did not sharply decline with incidence angle, as predicted; and (6) maps produced using SAR data had relatively high accuracy levels. Based on these findings, I concluded that hydrology is influenced by climate at the study site, and C-HH data should be able to monitor changes in

  14. Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis

    PubMed Central

    Pigati, Jeffrey S.; Latorre, Claudio; Rech, Jason A.; Betancourt, Julio L.; Martínez, Katherine E.; Budahn, James R.

    2012-01-01

    The Younger Dryas impact hypothesis contends that an extraterrestrial object exploded over North America at 12.9 ka, initiating the Younger Dryas cold event, the extinction of many North American megafauna, and the demise of the Clovis archeological culture. Although the exact nature and location of the proposed impact or explosion remain unclear, alleged evidence for the fallout comes from multiple sites across North America and a site in Belgium. At 6 of the 10 original sites (excluding the Carolina Bays), elevated concentrations of various “impact markers” were found in association with black mats that date to the onset of the Younger Dryas. Black mats are common features in paleowetland deposits and typically represent shallow marsh environments. In this study, we investigated black mats ranging in age from approximately 6 to more than 40 ka in the southwestern United States and the Atacama Desert of northern Chile. At 10 of 13 sites, we found elevated concentrations of iridium in bulk and magnetic sediments, magnetic spherules, and/or titanomagnetite grains within or at the base of black mats, regardless of their age or location, suggesting that elevated concentrations of these markers arise from processes common to wetland systems, and not a catastrophic extraterrestrial impact event. PMID:22529347

  15. Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis

    USGS Publications Warehouse

    Pigati, Jeffrey S.; Latorre, Claudio; Rech, Jason A.; Betancourt, Julio L.; Martinez, Katherine E.; Budahn, James R.

    2012-01-01

    The Younger Dryas impact hypothesis contends that an extraterrestrial object exploded over North America at 12.9 ka, initiating the Younger Dryas cold event, the extinction of many North American megafauna, and the demise of the Clovis archeological culture. Although the exact nature and location of the proposed impact or explosion remain unclear, alleged evidence for the fallout comes from multiple sites across North America and a site in Belgium. At 6 of the 10 original sites (excluding the Carolina Bays), elevated concentrations of various "impact markers" were found in association with black mats that date to the onset of the Younger Dryas. Black mats are common features in paleowetland deposits and typically represent shallow marsh environments. In this study, we investigated black mats ranging in age from approximately 6 to more than 40 ka in the southwestern United States and the Atacama Desert of northern Chile. At 10 of 13 sites, we found elevated concentrations of iridium in bulk and magnetic sediments, magnetic spherules, and/or titanomagnetite grains within or at the base of black mats, regardless of their age or location, suggesting that elevated concentrations of these markers arise from processes common to wetland systems, and not a catastrophic extraterrestrial impact event.

  16. Permafrost Melt in the Wetland-Dominated Zone of Discontinuous Permafrost - Implications for Basin Runoff

    NASA Astrophysics Data System (ADS)

    Quinton, W. L.; Hayashi, M.; Chasmer, L.; Hopkinson, C.

    2009-05-01

    Field studies were initiated in 1999 at Scotty Creek in the lower Liard River basin, NWT, Canada, to improve the understanding and model-representation of the major water flux and storage processes within this wetland- dominated zone of discontinuous permafrost. Over this period, permafrost melt has led to appreciable landscpae change. As a result, permafrost plateaus have been replaced by flat bogs and channel fens. Because these three peatland types have very different functions in the overall cycling and storage of water in the basins of this region, there is good reason to suspect that permafrost melt will lead to changes in basin runoff production. This paper documents the rates and patterns of permafrost loss in this region using a variety of ground-based and remotely sensed measurements. A mechanistic-based conceptual model of landscape evolution is presented that offers insights for water scientists and managers into how the on-going landscape change in this region resulting from climate and human disturbances may influence the basin hydrograph.

  17. Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis.

    PubMed

    Pigati, Jeffrey S; Latorre, Claudio; Rech, Jason A; Betancourt, Julio L; Martínez, Katherine E; Budahn, James R

    2012-05-01

    The Younger Dryas impact hypothesis contends that an extraterrestrial object exploded over North America at 12.9 ka, initiating the Younger Dryas cold event, the extinction of many North American megafauna, and the demise of the Clovis archeological culture. Although the exact nature and location of the proposed impact or explosion remain unclear, alleged evidence for the fallout comes from multiple sites across North America and a site in Belgium. At 6 of the 10 original sites (excluding the Carolina Bays), elevated concentrations of various "impact markers" were found in association with black mats that date to the onset of the Younger Dryas. Black mats are common features in paleowetland deposits and typically represent shallow marsh environments. In this study, we investigated black mats ranging in age from approximately 6 to more than 40 ka in the southwestern United States and the Atacama Desert of northern Chile. At 10 of 13 sites, we found elevated concentrations of iridium in bulk and magnetic sediments, magnetic spherules, and/or titanomagnetite grains within or at the base of black mats, regardless of their age or location, suggesting that elevated concentrations of these markers arise from processes common to wetland systems, and not a catastrophic extraterrestrial impact event. PMID:22529347

  18. Environmental impacts and regulatory policy implications of spray disposal of dredged material in Louisiana wetlands

    USGS Publications Warehouse

    Cahoon, D.R.; Cowan, J.H., Jr.

    1988-01-01

    The capabilities of a new wetland dredging technology were assessed along with associated newly developed state and federal regulatory policies to determine if policy expectations realistically match the technological achievement. Current regulatory practices require amelioration of spoil bank impacts upon abandonment of an oil/gas well, but this may not occur for many years or decades, if at all. Recently, a dreding method (high-pressure spray spoil disposal) was developed that does not create a spoil bank in the traditional sense. Its potential for reducing environmental impacts was recognized immediately by regulatory agencies for whom minimizing spoil bank impacts is a major concern. The use of high-pressure spray disposal as a suitable alternative to traditional dreding technology has been adopted as policy even though its value as a management tool has never been tested or verified. A qualitative evaluation at two spoil disposal sites in saline marsh indicates that high-pressure spray disposal may indeed have great potential to minimize impacts, but most of this potential remains unverified. Also, some aspects of current regulatory policy may be based on unrealistic expectations as to the ability of this new technology to minimize or eliminate spoil bank impacts.

  19. Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland.

    PubMed

    Mauricio Gutiérrez, Amparo; Peña Cabriales, Juan José; Maldonado Vega, María

    2010-01-01

    Scirpus americanus Pers. occurs naturally in "San Germán," a pond that serves as a receptor of industrial wastewater in Guanajuato, México. This plant accumulates metals mainly in the root: concentrations (mg/kg) of Cr, As, Cd and Se were 970, 49, 41, and 85 respectively. Analysis of rhizosphere samples indicated bacterial population of 10(8) cfu g(-1) in media with 0.2 mM Cr(VI) and 10 mM sodium gluconate. Thirteen isolates were obtained and phylogenetic analyses (16S rRNA) indicated they corresponded to genera of Agrobacterium, Arthrobacter, Microbacterium, Curtobacterium, Rhodococcus, Xanthomonas and Pseudomonas. Cr(VI) reduction was evaluated using the diphenyl carbazide method. The isolates accomplished 5-40% (20 microM) of reduction in assays of resting cell and tolerated 0.5-5.0 mM Cr(VI). Eight strains used nitrate and thirteen used iron and chromium as electron acceptors to grow under anaerobic conditions. Cr(VI) reduction by five strains occurred at pH values (7-9) and NaCl concentrations (0.5-1.0 M) in basal medium. A mixed culture of strains (S17 and S28) reached a chromium removal of 100% at 0.2 mM Cr(VI) initial concentration. Aerobically, this consortium was capable of 93.8% Cr(VI) reduction of 81 microg L(-1) Cr(VI) of the industrial effluent, indicating their possible use in environmental cleanup. PMID:20734910

  20. Plant growth under salinity and inundation stress: implications for sea-level rise on tidal wetland function

    EPA Science Inventory

    Climate change and sea-level rise (SLR) may increase salinity or inundation duration for tidal wetland organisms. To test the effects of these stressors on wetland productivity, we transplanted seedlings of seven common plant species to polyhaline, mesohaline and oligohaline tida...

  1. A multi-year comparison of IPCI scores for prairie pothole wetlands: implications of temporal and spatial variation

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.

    2011-01-01

    In the prairie pothole region of North America, development of Indices of Biotic Integrity (IBIs) to detect anthropogenic impacts on wetlands has been hampered by naturally dynamic inter-annual climate fluctuations. Of multiple efforts to develop IBIs for prairie pothole wetlands, only one, the Index of Plant Community Integrity (IPCI), has reported success. We evaluated the IPCI and its ability to distinguish between natural and anthropogenic variation using plant community data collected from 16 wetlands over a 4-year-period. We found that under constant anthropogenic influence, IPCI metric scores and condition ratings varied annually in response to environmental variation driven primarily by natural climate variation. Artificially forcing wetlands that occur along continuous hydrologic gradients into a limited number of discrete classes (e.g., temporary, seasonal, and semipermanent) further confounded the utility of IPCI metrics. Because IPCI scores vary significantly due to natural climate dynamics as well as human impacts, methodology must be developed that adequately partitions natural and anthropogenically induced variation along continuous hydrologic gradients. Until such methodology is developed, the use of the IPCI to evaluate prairie pothole wetlands creates potential formisdirected corrective or regulatory actions, impairment of natural wetland functional processes, and erosion of public confidence in the wetland sciences.

  2. A multi-year comparison of IPCI scores for prairie pothole wetlands: implications of temporal and spatial variation

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.

    2011-01-01

    In the prairie pothole region of North America, development of Indices of Biotic Integrity (IBIs) to detect anthropogenic impacts on wetlands has been hampered by naturally dynamic inter-annual climate fluctuations. Of multiple efforts to develop IBIs for prairie pothole wetlands, only one, the Index of Plant Community Integrity (IPCI), has reported success. We evaluated the IPCI and its ability to distinguish between natural and anthropogenic variation using plant community data collected from 16 wetlands over a 4-year-period. We found that under constant anthropogenic influence, IPCI metric scores and condition ratings varied annually in response to environmental variation driven primarily by natural climate variation. Artificially forcing wetlands that occur along continuous hydrologic gradients into a limited number of discrete classes (e.g., temporary, seasonal, and semi-permanent) further confounded the utility of IPCI metrics. Because IPCI scores vary significantly due to natural climate dynamics as well as human impacts, methodology must be developed that adequately partitions natural and anthropogenically induced variation along continuous hydrologic gradients. Until such methodology is developed, the use of the IPCI to evaluate prairie pothole wetlands creates potential for misdirected corrective or regulatory actions, impairment of natural wetland functional processes, and erosion of public confidence in the wetland sciences.

  3. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change.

    PubMed

    Chandler, Houston C; Rypel, Andrew L; Jiao, Yan; Haas, Carola A; Gorman, Thomas A

    2016-01-01

    The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi), a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006-2014) of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896-2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis). Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions. PMID:26910245

  4. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change

    PubMed Central

    Chandler, Houston C.; Rypel, Andrew L.; Jiao, Yan; Haas, Carola A.; Gorman, Thomas A.

    2016-01-01

    The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi), a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006–2014) of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896–2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis). Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions. PMID:26910245

  5. Social isolation among Latino workers in rural North Carolina: exposure and health implications.

    PubMed

    Mora, Dana C; Grzywacz, Joseph G; Anderson, Andrea M; Chen, Haiying; Arcury, Thomas A; Marín, Antonio J; Quandt, Sara A

    2014-10-01

    Immigrant Latinos frequently experience social isolation in their receiving communities. This paper investigates the prevalence of social isolation among immigrant workers in a new settlement area and delineates the association between social isolation and physical and mental health outcomes. Interviews were conducted in Spanish with immigrant Latino manual workers (N = 743) in western North Carolina. The CES-D and the SF-12 questionnaires assessed health outcomes. A social isolation scale was used to assess degree of social isolation. Nearly 1 in 5 workers (19.5 %) reported the highest level of social isolation. Social isolation was associated with higher depressive symptoms and poorer physical and mental health, related to quality of life. Social isolation is a common experience among immigrant Latinos that may have negative implications for physical and mental health. Community outreach efforts to minimize experiences of isolation may be useful in protecting immigrant physical and mental health. PMID:23417706

  6. AMPHIBIAN OCCURRENCE AND AQUATIC INVADERS IN A CHANGING LANDSCAPE: IMPLICATIONS FOR WETLAND MITIGATION IN THE WILLAMETTE VALLEY, OREGON, USA

    EPA Science Inventory

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon Willamette Valley and used an information theoretic appro...

  7. Isolation of histamine-producing Lactobacillus buchneri from Swiss cheese implicated in a food poisoning outbreak.

    PubMed Central

    Sumner, S S; Speckhard, M W; Somers, E B; Taylor, S L

    1985-01-01

    A histamine-producing strain of Lactobacillus buchneri was isolated from Swiss cheese that had been implicated in an outbreak of histamine poisoning. It produced up to 4,070 nmol of histamine per ml in MRS broth supplemented with 0.1% histidine. The identification of this isolate was based on its biochemical, bacteriological, and DNA characterizations. PMID:4083875

  8. Colonization of a newly constructed urban wetland by mosquitoes in England: implications for nuisance and vector species.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2014-12-01

    Urban wetlands are being created in the UK as part of sustainable urban drainage strategies, to create wetland habitats lost during development, to provide a habitat for protected species, and to increase the public's access to 'blue-space' for the improvement of health and well-being. Sewage treatment reedbeds are also being incorporated into newly constructed wetlands to offer an alternative approach to dealing with sewage. This field study aims to provide the first UK evidence of how such newly constructed aquatic habitats are colonized by mosquitoes. A number of new aquatic habitats were surveyed for immature mosquitoes every fortnight over the first two years following wetland construction. The majority of mosquitoes collected were Culex sp. and were significantly associated with the sewage treatment reedbed system, particularly following storm events and sewage inflow. Other more natural aquatic habitats that were subject to cycles of drying and re-wetting contributed the majority of the remaining mosquitoes colonizing. Colonization of permanent habitats was slow, particularly where fluctuations in water levels inhibited emergent vegetation growth. It is recommended that during the planning process for newly constructed wetlands consideration is given on a case-by-case basis to the impact of mosquitoes, either as a cause of nuisance or as potential vectors. Although ornithophagic Culex dominated in this wetland, their potential role as enzootic West Nile virus vectors should not be overlooked. PMID:25424253

  9. The concentrations of five heavy metals in components of an economically important urban coastal wetland in Ghana: public health and phytoremediation implications.

    PubMed

    Gbogbo, Francis; Otoo, Samuel D

    2015-10-01

    Sakumo II is an urban wetland and a receptacle for domestic and industrial wastes from two cities in Ghana. It however supports viable populations of fish and crabs, is cultivated for food crops and grazed by farm animals. Components of the wetland can therefore accumulate pollutants, but the public health and phytoremediation implications of this are yet to be evaluated. We analysed Cd, As, Hg, Cu and Pb in the lagoon water, sediment, green algae, eight species of aquatic macrophytes, seven species of arthropods and one species of fish. The concentrations of Pb were generally below detection limit whilst Cu was detected only in the lagoon water and Pheropsophus vertialis. Cadmium ranged from 21 ± 4 ppb in algae to 69 ± 12 ppb in Typha domingensis and was generally higher than As and Hg. The highest concentration of As was 11.7 ± 2.1 ppb in Pistia stratiotes whilst Hg was highest in lagoon water (4 ± 2 ppb). The Cd concentrations generally, and Hg concentrations in macrophytes, were higher than US EPA guidelines indicating the wetland's resources were unsafe for regular consumption. Among the emergent aquatic macrophytes, T. domingensis, Ludwigia sp. and Paspalum vaginatum, respectively, had the highest accumulation capacity for Cd, As and Hg, but the floating aquatic plant P. stratiotes appeared to be a better accumulator of Cd and As. PMID:26423633

  10. Response of an invasive native wetland plant to environmental flows: implications for managing regulated floodplain ecosystems.

    PubMed

    Vivian, Lyndsey M; Marshall, David J; Godfree, Robert C

    2014-01-01

    The natural flow regimes of rivers underpin the health and function of floodplain ecosystems. However, infrastructure development and the over-extraction of water has led to the alteration of natural flow regimes, resulting in the degradation of river and floodplain habitats globally. In many catchments, including Australia's Murray-Darling Basin, environmental flows are seen as a potentially useful tool to restore natural flow regimes and manage the degradation of rivers and their associated floodplains. In this paper, we investigated whether environmental flows can assist in controlling an invasive native floodplain plant in Barmah Forest, south-eastern Australia. We experimentally quantified the effects of different environmental flow scenarios, including a shallow (20 cm) and deeper (50 cm) flood of different durations (12 and 20 weeks), as well as drought and soil-saturated conditions, on the growth and survival of seedlings of Juncus ingens, a native emergent macrophyte that has become invasive in some areas of Barmah Forest following river regulation and alteration of natural flow regimes. Three height classes of J. ingens (33 cm, 17 cm and 12 cm) were included in the experiment to explicitly test for relationships between treatments, plant survival and growth, and plant height. We found that seedling mortality occurred in the drought treatment and in the 20-week flood treatments of both depths; however, mortality rates in the flood treatments depended on initial plant height, with medium and short plants (initial heights of ≤17 cm) exhibiting the highest mortality rates. Both the 20 cm and 50 cm flood treatments of only 12 weeks duration were insufficient to cause mortality in any of the height classes; indeed, shoots of plants in the 20 cm flood treatment were able to elongate through the water surface at rapid rates. Our findings have important implications for management of Barmah Forest and floodplain ecosystems elsewhere, as it demonstrates

  11. Potential pathogens, antimicrobial patterns, and genotypic diversity of Escherichia coli isolates in constructed wetlands treating swine wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The treatment and removal of contaminants such as nutrients, salts, microbes, and pharmaceutically active compounds from swine waste by constructed wetlands involves complex biological processes. However, little is known about the population structure and antibiotic resistant patterns of E. coli em...

  12. Late Quaternary dynamics of a South African floodplain wetland and the implications for assessing recent human impacts

    NASA Astrophysics Data System (ADS)

    Tooth, S.; Rodnight, H.; McCarthy, T. S.; Duller, G. A. T.; Grundling, A. T.

    2009-05-01

    Knowledge of the long-term geomorphological dynamics of wetlands is limited, so currently there is an inadequate scientific basis for assessing anthropogenically induced changes and for developing conservation, remediation, and/or sustainable management guidelines for these fragile ecosystems. Along the upper Klip River, eastern South Africa, geomorphological and sedimentological investigations, geochronology, and remote sensing have been used to establish the late Quaternary dynamics of some internationally important floodplain wetlands, thus providing a reference condition against which to assess the extent of recent human impacts. Optically stimulated luminescence dating reveals that the wetlands have developed over at least the last 30 ky as a result of slow meander migration (< 0.2 m y - 1 ), irregular cutoff events, and infrequent avulsions (approximately one every 3-6 ky) that have occurred autogenically as a natural part of meander-belt development. Following European settlement in the Klip valley (late nineteenth century), however, modifications to local flora and fauna, as well as the initiation of local wetland drainage schemes, have had major impacts. In particular, proliferation of exotic willows and associated debris jams, and the artificial excavation of a 1.2-km-long channel section across the wetlands have initiated an ongoing avulsion that is characterised by failure (gradual abandonment) of the main channel and rapid incision of a headcutting channel. Compared to the pre-settlement condition, little change in lateral migration activity has occurred, but this avulsion provides a clear example of anthropogenically accelerated change, occurring only ~ 1 ky after the last natural avulsion and in a part of the wetlands where avulsions have not occurred previously. Subsequent human interventions have included installing weirs in an attempt to control the resulting erosion and promote reflooding, but ongoing maintenance has been required. In areas that

  13. Functional and Phylogenetic Relatedness in Temporary Wetland Invertebrates: Current Macroecological Patterns and Implications for Future Climatic Change Scenarios

    PubMed Central

    Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P.

    2013-01-01

    In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these

  14. Functional and phylogenetic relatedness in temporary wetland invertebrates: current macroecological patterns and implications for future climatic change scenarios.

    PubMed

    Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P

    2013-01-01

    In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these

  15. Amphibian occurrence and aquatic invaders in a changing landscape: Implications for wetland mitigation in the Willamette Valley, Oregon

    USGS Publications Warehouse

    Pearl, Christopher A.; Adams, Michael J.; Leuthold, N.; Bury, R. Bruce

    2005-01-01

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon's Willamette Valley and used an information theoretic approach (AIC) to rank the associations between native amphibian breeding occurrence and wetland characteristics, non-native aquatic predators, and landscape characteristics in a mixed urban-agricultural landscape. Best predictors varied among the five native amphibians and were generally consistent with life history differences. Pacific tree frog (Pseudacris regilla) and long-toed salamander (Ambystoma macrodactylum) occurrence was best predicted by the absence of non-native fish. Northern red-legged frog (Rana a. aurora) and northwestern salamander (Ambystoma gracile) were most strongly related to wetland vegetative characteristics. The occurrence of rough-skinned newts (Taricha granulosa), a migratory species that makes extensive use of terrestrial habitats, was best predicted by greater forest cover within 1 km. The absence of non-native fish was a strong predictor of occurrence for four of the five native species. In contrast, amphibians were not strongly related to native fish presence. We found little evidence supporting negative effects of the presence of breeding populations of bullfrog (Rana catesbeiana) on any native species. Only the two Ambystoma salamanders were associated with wetland permanence. Northwestern salamanders (which usually have a multi-year larval stage) were associated with permanent waters, while long-toed salamanders were associated with temporary wetlands. Although all the species make some use of upland habitats, only one (rough-skinned newt) was strongly associated with surrounding landscape conditions. Instead, our analysis suggests that within-wetland characteristics best predict amphibian occurrence in this region. We recommend that wetland preservation and

  16. Isolated Spring Wetlands in the Great Basin and Mojave Deserts, USA: Potential Response of Vegetation to Groundwater Withdrawal

    NASA Astrophysics Data System (ADS)

    Patten, Duncan T.; Rouse, Leigh; Stromberg, Juliet C.

    2008-03-01

    Desert springs, often the sole sources of water for wildlife and cattle, support wetland and wetland/upland transition ecosystems including rare and endemic species. In the basin and range province in Nevada, USA, springs in the Great Basin and Mojave deserts are sustained by interconnected deep carbonate and shallow basin-fill aquifers which are threatened by proposed groundwater withdrawal to sustain rapidly expanding urban areas, a common problem in arid regions worldwide. This paper draws on historic groundwater data, groundwater modeling, and studies of environmental controls of spring ecosystems to speculate on the potential effects of groundwater withdrawal and water table decline on spring-supported vegetation. The focus is on springs in the Great Basin and Mojave deserts representative of those that may be affected by future, planned groundwater withdrawal. Groundwater withdrawal is expected to reduce spring discharge directly through reduced flows from the shallow basin-fill aquifer or through reduction of the hydraulic head of the deep carbonate aquifer. This flow reduction will truncate the outflow stream, reducing the areal cover of wetland and wetland/upland transition vegetation. Lowering the local water table may also reduce the amount of upland phreatophytic vegetation by causing water levels to drop below plant rooting depths. Percolation of salts to surface soils may be reduced, eventually altering desert shrub cover from halophytes to nonhalophytes. The extent of these effects will vary among springs, based on their distance from extraction sites and location relative to regional groundwater flow paths. On-site monitoring of biotic variables (including cover of selected hygrophytes and phreatophytes) should be a necessary complement to the planned monitoring of local hydrologic conditions.

  17. Isolated spring wetlands in the Great Basin and Mojave deserts, USA: potential response of vegetation to groundwater withdrawal.

    PubMed

    Patten, Duncan T; Rouse, Leigh; Stromberg, Juliet C

    2008-03-01

    Desert springs, often the sole sources of water for wildlife and cattle, support wetland and wetland/upland transition ecosystems including rare and endemic species. In the basin and range province in Nevada, USA, springs in the Great Basin and Mojave deserts are sustained by interconnected deep carbonate and shallow basin-fill aquifers which are threatened by proposed groundwater withdrawal to sustain rapidly expanding urban areas, a common problem in arid regions worldwide. This paper draws on historic groundwater data, groundwater modeling, and studies of environmental controls of spring ecosystems to speculate on the potential effects of groundwater withdrawal and water table decline on spring-supported vegetation. The focus is on springs in the Great Basin and Mojave deserts representative of those that may be affected by future, planned groundwater withdrawal. Groundwater withdrawal is expected to reduce spring discharge directly through reduced flows from the shallow basin-fill aquifer or through reduction of the hydraulic head of the deep carbonate aquifer. This flow reduction will truncate the outflow stream, reducing the areal cover of wetland and wetland/upland transition vegetation. Lowering the local water table may also reduce the amount of upland phreatophytic vegetation by causing water levels to drop below plant rooting depths. Percolation of salts to surface soils may be reduced, eventually altering desert shrub cover from halophytes to nonhalophytes. The extent of these effects will vary among springs, based on their distance from extraction sites and location relative to regional groundwater flow paths. On-site monitoring of biotic variables (including cover of selected hygrophytes and phreatophytes) should be a necessary complement to the planned monitoring of local hydrologic conditions. PMID:18060450

  18. Rapid Stable Isotope Turnover of Larval Fish in a Lake Superior Coastal Wetland: Implications for Diet and Life History Studies

    EPA Science Inventory

    Trophic linkages of larval fish in Lake Superior coastal wetlands, rivers and embayments can be identified using naturally occurring differences in the stable isotope ratios of nitrogen (15N:14N, ?15N) and carbon (13C:12C, ?13C). We sampled pelagic fish larvae weekly during sprin...

  19. Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols

    USGS Publications Warehouse

    Anderson, Frank; Bergamaschi, Brian; Sturtevant, Cove; Knox, Sarah; Hastings, Lauren; Windham-Myers, Lisamarie; Detto, Matteo; Hestir, Erin L.; Drexler, Judith; Miller, Robin L.; Matthes, Jaclyn; Verfaillie, Joseph; Baldocchi, Dennis; Snyder, Richard L.; Fujii, Roger

    2016-01-01

    Temperate freshwater wetlands are among the most productive terrestrial ecosystems, stimulating interest in using restored wetlands as biological carbon sequestration projects for greenhouse gas reduction programs. In this study, we used the eddy covariance technique to measure surface energy carbon fluxes from a constructed, impounded freshwater wetland during two annual periods that were 8 years apart: 2002–2003 and 2010–2011. During 2010–2011, we measured methane (CH4) fluxes to quantify the annual atmospheric carbon mass balance and its concomitant influence on global warming potential (GWP). Peak growing season fluxes of latent heat and carbon dioxide (CO2) were greater in 2002–2003 compared to 2010–2011. In 2002, the daily net ecosystem exchange reached as low as −10.6 g C m−2 d−1, which was greater than 3 times the magnitude observed in 2010 (−2.9 g C m−2 d−1). CH4 fluxes during 2010–2011 were positive throughout the year and followed a strong seasonal pattern, ranging from 38.1 mg C m−2 d−1 in the winter to 375.9 mg C m−2 d−1 during the summer. The results of this study suggest that the wetland had reduced gross ecosystem productivity in 2010–2011, likely due to the increase in dead plant biomass (standing litter) that inhibited the generation of new vegetation growth. In 2010–2011, there was a net positive GWP (675.3 g C m−2 yr−1), and when these values are evaluated as a sustained flux, the wetland will not reach radiative balance even after 500 years.

  20. Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols

    NASA Astrophysics Data System (ADS)

    Anderson, Frank E.; Bergamaschi, Brian; Sturtevant, Cove; Knox, Sara; Hastings, Lauren; Windham-Myers, Lisamarie; Detto, Matteo; Hestir, Erin L.; Drexler, Judith; Miller, Robin L.; Matthes, Jaclyn Hatala; Verfaillie, Joseph; Baldocchi, Dennis; Snyder, Richard L.; Fujii, Roger

    2016-03-01

    Temperate freshwater wetlands are among the most productive terrestrial ecosystems, stimulating interest in using restored wetlands as biological carbon sequestration projects for greenhouse gas reduction programs. In this study, we used the eddy covariance technique to measure surface energy carbon fluxes from a constructed, impounded freshwater wetland during two annual periods that were 8 years apart: 2002-2003 and 2010-2011. During 2010-2011, we measured methane (CH4) fluxes to quantify the annual atmospheric carbon mass balance and its concomitant influence on global warming potential (GWP). Peak growing season fluxes of latent heat and carbon dioxide (CO2) were greater in 2002-2003 compared to 2010-2011. In 2002, the daily net ecosystem exchange reached as low as -10.6 g C m-2 d-1, which was greater than 3 times the magnitude observed in 2010 (-2.9 g C m-2 d-1). CH4 fluxes during 2010-2011 were positive throughout the year and followed a strong seasonal pattern, ranging from 38.1 mg C m-2 d-1 in the winter to 375.9 mg C m-2 d-1 during the summer. The results of this study suggest that the wetland had reduced gross ecosystem productivity in 2010-2011, likely due to the increase in dead plant biomass (standing litter) that inhibited the generation of new vegetation growth. In 2010-2011, there was a net positive GWP (675.3 g C m-2 yr-1), and when these values are evaluated as a sustained flux, the wetland will not reach radiative balance even after 500 years.

  1. Implication of Mitochondrial Cytoprotection in Human Islet Isolation and Transplantation

    PubMed Central

    Wang, Yong; Mendoza-Elias, Joshua E.; Qi, Meirigeng; Harvat, Tricia A.; Ahn, Sang Joon; Lee, Dongyoung; Gutierrez, Diana; Jeon, Hyojin; Paushter, Daniel; Oberholzer, José

    2012-01-01

    Islet transplantation is a promising therapy for type 1 diabetes mellitus; however, success rates in achieving both short- and long-term insulin independence are not consistent, due in part to inconsistent islet quality and quantity caused by the complex nature and multistep process of islet isolation and transplantation. Since the introduction of the Edmonton Protocol in 2000, more attention has been placed on preserving mitochondrial function as increasing evidences suggest that impaired mitochondrial integrity can adversely affect clinical outcomes. Some recent studies have demonstrated that it is possible to achieve islet cytoprotection by maintaining mitochondrial function and subsequently to improve islet transplantation outcomes. However, the benefits of mitoprotection in many cases are controversial and the underlying mechanisms are unclear. This article summarizes the recent progress associated with mitochondrial cytoprotection in each step of the islet isolation and transplantation process, as well as islet potency and viability assays based on the measurement of mitochondrial integrity. In addition, we briefly discuss immunosuppression side effects on islet graft function and how transplant site selection affects islet engraftment and clinical outcomes. PMID:22611495

  2. Phylogenetic and antigenic characterization of reassortant H9N2 avian influenza viruses isolated from wild waterfowl in the East Dongting Lake wetland in 2011–2012

    PubMed Central

    2014-01-01

    Background Wild waterfowl are recognized as the natural reservoir for influenza A viruses. Two distinct lineages, the American and Eurasian lineages, have been identified in wild birds. Gene flow between the two lineages is limited. The H9N2 virus has become prevalent in poultry throughout Eurasia, and mainly circulates in wild ducks and shorebirds in North America. Methods In this study, 22 H9N2 avian influenza viruses were isolated from wild waterfowl feces in East Dongting Lake Nature Reserve in November 2011 and March 2012. The phylogenetic, molecular, and antigenic characteristics of these viruses were analyzed based on analyses of the whole genome sequence of each isolate. Results Phylogenetic analyses indicated that these H9N2 viruses were generated by reassortment events. The HA, NA, PA, and NS genes were derived from the American gene pool, and the other four genes were derived from the Eurasian gene pool. Antigenic analyses indicated that these viruses were significantly different from the Eurasian lineage viruses. Conclusions This study presents the isolation of novel intercontinental recombinant H9N2 viruses from wild waterfowl in the East Dongting Lake wetland. The novel genotype H9N2 virus has not been detected in poultry in the region yet, and may be transmitted to naïve birds in poultry farms. Therefore, our results highlight the need for ongoing surveillance of wild birds and poultry in this region. PMID:24779444

  3. Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater. Parameters and implications for emission factors

    NASA Astrophysics Data System (ADS)

    Johansson, A. E.; Kasimir Klemedtsson, Å.; Klemedtsson, L.; Svensson, B. H.

    2003-07-01

    Static chamber measurements of N2O fluxes were taken during the 1998 and 1999 growth seasons in a Swedish constructed wetland receiving wastewater. The dominating plant species in different parts of the wetland were Lemna minor L., Typha latifolia L., Spirogyra sp. and Glyceria maxima (Hartm.) and Phalaris arundinacea (L.), respectively. There were large temporal and spatial variations in N2O fluxes, which ranged from consumption at -350 to emissions at 1791 μg N2O m-2 h-1. The largest positive flux occurred in October 1999 and the lowest in the middle of July 1999. The average N2O flux for the two years was 130 μg N2O m-2 h-1 (SD = 220). No significant differences in N2O fluxes were found between the years, even though the two growing seasons differed considerably with respect to both air temperature and precipitation. 15% of the fluxes were negative, showing a consumption of N2O. Consumption occurred on a few occasions at most measurement sites and ranged from 1-350 μg N2O m-2 h-1. 13-43% of the variation in N2O fluxes was explained by multiple linear regression analysis including principal components. Emission factors were calculated according to IPCC methods from the N2O fluxes in the constructed wetland. The calculated emission factors were always lower (0.02-0.27%) compared to the default factor provided by the IPCC (0.75%). Thus, direct application of the IPCC default factor may lead to overestimation of N2O fluxes from constructed wastewater-treating wetlands.

  4. Intracrystalline diffusion in clinoptilolite: Implications for radionuclide isolation

    SciTech Connect

    Roberts, S.K.; Viani, B.E.; Phinney, D.

    1995-11-16

    Experiments have been performed to measure the rate of exchange diffusion in the zeolite clinoptilolite (CL) for elements important to radionuclide isolation at Yucca Mountain, NV. Clinoptilolite is one of the major sorptive minerals in the tuffs at Yucca Mountain, and occurs both as a major component in zeolitized units (Calico Hills), and in fractures in non-zeolitized tuffs (Topopah Spring). Field evidence and numerical modeling suggests that the movement of fluids through the tuff rocks adjacent to the potential repository may occur via episodic flow through fractures. Under conditions of rapid fracture flow the effective sorptive capacity of fracture-lining clinoptilolite may be controlled by exchange diffusion rather than exchange equilibrium.

  5. Are wetlands the reservoir for avian cholera?

    USGS Publications Warehouse

    Samuel, M.D.; Shadduck, D.J.; Goldberg, D.R.

    2004-01-01

    Wetlands have long been suspected to be an important reservoir for Pasteurella multocida and therefore the likely source of avian cholera outbreaks. During the fall of 1995a??98 we collected sediment and water samples from 44 wetlands where avian cholera epizootics occurred the previous winter or spring. We attempted to isolate P. multocida in sediment and surface water samples from 10 locations distributed throughout each wetland. We were not able to isolate P. multocida from any of the 440 water and 440 sediment samples collected from these wetlands. In contrast, during other investigations of avian cholera we isolated P. multocida from 20 of 44 wetlands, including 7% of the water and 4.5% of the sediment samples collected during or shortly following epizootic events. Our results indicate that wetlands are an unlikely reservoir for the bacteria that causes avian cholera.

  6. Detection and Antimicrobial Resistance of Vibrio Isolates in Aquaculture Environments: Implications for Public Health.

    PubMed

    Igbinosa, Etinosa O

    2016-04-01

    The aim of this study was to evaluate the presence of Vibrio isolates recovered from four different fish pond facilities in Benin City, Nigeria, determine their antibiogram profiles, and evaluate the public health implications of these findings. Fish pond water samples were collected from four sampling sites between March and September 2014. A total of 56 samples were collected and screened for the isolation of Vibrio species using standard culture-based methods. Polymerase chain reaction (PCR) was used to confirm the identities of the Vibrio species using the genus-specific and species-specific primers. Vibrio species were detected at all the study sites at a concentration on the order of 10(3) and 10(6) CFU/100 ml. A total of 550 presumptive Vibrio isolates were subjected to PCR confirmation. Of these isolates, 334 isolates tested positive, giving an overall Vibrio prevalence rate of 60.7%. The speciation of the 334 Vibrio isolates from fish ponds yielded 32.63% Vibrio fluvialis, 20.65% Vibrio parahaemolyticus, 18.26% Vibrio vulnificus, and 28.44% other Vibrio species. In all, 167 confirmed Vibrio isolates were selected from a pool of 334 confirmed Vibrio isolates for antibiogram profiling. The susceptibility profiles of 20 antimicrobial agents on the isolates revealed a high level of resistance for AMP(R), ERY(R), NAL(R), SUL(R), TMP(R), SXT(R), TET(R), OTC(R), and CHL(R). The percentage of multiple drug resistance Vibrio isolates was 67.6%. The multiple antibiotic resistance index mean value of 0.365 for the Vibrio isolates found in this study indicated that the Vibrio isolates were exposed to high-risk sources of contamination when antibiotics were frequently used. The resistant Vibrio strains could be transmitted through the food chain to humans and therefore constitutes a risk to public health. PMID:26540391

  7. Identification and genotyping of Giardia spp. and Cryptosporidium spp. isolates in aquatic birds in the Salburua wetlands, Álava, Northern Spain.

    PubMed

    Cano, Lourdes; de Lucio, Aida; Bailo, Begoña; Cardona, Guillermo A; Muadica, Aly Salimo Omar; Lobo, Luis; Carmena, David

    2016-05-15

    Aquatic birds are known to be suitable hosts for a number of avian-specific species and genotypes of the enteric protozoan parasites Giardia and Cryptosporidium. Waterbirds have also been reported as sporadic carriers of species of both pathogens from human or domestic animal origin via environmental contamination. Because aquatic birds can shed substantial amounts of infective Giardia and Cryptosporidium (oo)cysts to the environment including surface waters intended for human consumption, this situation may pose a potential risk of waterborne zoonotic disease. A total of 265 waterbird faecal samples were collected from May 2014 to June 2015 at Salburua (Álava), one of the most valued continental wetlands in northern Spain. The detection of Giardia oocyst and Cryptosporidium oocysts was carried out by direct fluorescence microscopy and molecular (PCR and sequence analysis) methods targeting the small subunit ribosomal RNA gene of the parasites. Typing of Giardia duodenalis isolates at the sub-assemblage level was based on the specific amplification and sequencing of a partial fragment of the glutamate dehydrogenase gene. Overall, Giardia cysts and Cryptosporidium oocysts were detected in 22 (8.3%) and 6 (2.3%), respectively, of the 265 faecal samples analysed. The two only Giardia isolates characterized (one novel, one known) were assigned to the sub-assemblage BIV of G. duodenalis, none of them previously reported in Spanish human isolates. This finding raises doubts about the actual origin of the infection and whether waterbirds may serve as potential source of infective Giardia cysts to humans via waterborne transmission or through direct contact. The six Cryptosporidium isolates obtained were characterized as avian genotype III (n=4), duck genotype b (n=1), and goose genotype Id (n=1), all considered avian-specific and therefore of negligible risk of zoonotic infection. PMID:27084487

  8. Train-borne Measurements of Enhanced Wet Season Methane Emissions in Northern Australia - Implications for Australian Tropical Wetland Emissions

    NASA Astrophysics Data System (ADS)

    Deutscher, N. M.; Griffith, D. W.; Paton-Walsh, C.

    2008-12-01

    We present the first transect measurements of CH4, CO2, CO and N2O taken on the Ghan railway travelling on a N-S transect of the Australian continent between Adelaide (34.9°S, 138.6°E) and Darwin (12.5°S, 130.9°E). The Ghan crosses Australia from the mainly agricultural mid-latitude south through the arid interior to the wet-dry tropical savannah south of and around Darwin. In the 2008 wet season (February) we observed a significant latitudinal gradient of CH4 increasing towards the north. The same pattern was observed in the late 2008 wet season (March-April), with a smaller latitudinal gradient. These will be compared with a dry season transect, to be undertaken in September/October 2008. The Air Pollution Model (TAPM), a regional scale prognostic meteorological model, is used to estimate the surface methane source strength required to explain the observed latitudinal gradient in CH4 in the wet season, and investigate the source type. Fluxes from cattle and termites together contribute up to 25% of the enhancements seen, leaving wetlands as the major source of wet season methane in the Australian tropics. Wetlands are the largest natural source of methane to the atmosphere, and tropical wetlands are responsible for the majority of the interannual variation in methane source strength. We attempt to quantify the annual methane flux contributed by anaerobic organic breakdown due to wet- season flooding in tropical Northern Territory.

  9. INFLUENCES OF LANDSCAPE CONTEXT, HYDROLOGY, AND NON-NATIVE SPECIES ON WETLAND FAUNAL COMMUNITIES: IMPLICATIONS FOR REGIONAL CONSERVATION AND MITIGATION PRACTICES

    EPA Science Inventory

    The two main issues affecting wetland fauna appear to be spacial arrangement of wetlands and widespread changes in wetland hydrology at the landscape context. EPA-ORD and the USGS in Corvalis are conducting field surveys, laboratory trials, enclosure experiments, and spatiall...

  10. Freshwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions about freshwater wetlands, such as marshes, swamps, and bogs. Contains three learning activities which deal with unusual wetland plants, the animals and plants in a typical marsh, and the effects of a draught on a swamp. Included are reproducible handouts and worksheets for two of the activities. (TW)

  11. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates

    USGS Publications Warehouse

    Kirwan, Matthew L.; Murray, A. Brad; Donnelly, Jeffrey P.; Corbett, D. Reide

    2011-01-01

    Fluctuations in sea-level rise rates are thought to dominate the formation and evolution of coastal wetlands. Here we demonstrate a contrasting scenario in which land-use-related changes in sediment delivery rates drive the formation of expansive marshland, and vegetation feedbacks maintain their morphology despite recent sediment supply reduction. Stratigraphic analysis and radiocarbon dating in the Plum Island Estuary (Massachusetts, United States) suggest that salt marshes expanded rapidly during the eighteenth and nineteenth centuries due to increased rates of sediment delivery following deforestation associated with European settlement. Numerical modeling coupled with the stratigraphic observations suggests that existing marshland could survive, but not form under the low suspended sediment concentrations observed in the estuary today. These results suggest that many of the expansive marshes that characterize the modern North American coast are metastable relicts of high nineteenth century sediment delivery rates, and that recent observations of degradation may represent a slow return to pre-settlement marsh extent. In contrast to ecosystem management practices in which restoring pre-anthropogenic conditions is seen as a way to increase ecosystem services, our results suggest that widespread efforts to restore valuable coastal wetlands actually prevent some systems from returning to a natural state.

  12. [Sedimentological Implications of the change in the coverage of mangrove forest in Boca Zacate, Térraba-Sierpa National Wetlands, Costa Rica].

    PubMed

    Silva Benavides, Ana Margarita; Picado Barboza, Jorge; Mora Rodríguez, Fernando; González Gairaud, Carmen

    2015-09-01

    In the last sixty years many geomorphological changes have occurred in Costa Rica's Térraba-Sierpe National Wetlands. Changes in coastal geomorphology are generally associated with erosion or accretion of sediment, which has led to the removal of sections of mangrove forests or sediment banks colonized by mangroves. The aim of this study was to analyze sedimentation as a leading process in the dynamics of coastal morphology and its implications for mangrove forest cover in the Boca Zacate area of Térraba-Sierpe wetlands. The study was conducted in the sectors of Bocón, Brujo and Coco Island in Boca Zacate, from 2008 to 2013. The research was based on a multi-temporal analysis of coastal morphology using aerial photographs from the years 1948, 1960, 1974, 1978, 1984, 1992 and 2011. The following measurements were also performed: monthly sedimentation rate (g/cm2/day), and granulometric composition and content of chemical elements in the sediments of the study area. These last two measurements were performed once each in the dry and rainy seasons during the years of study. The results indicated that over the past 60 years, Boca Zacate has witnessed a process of sustained erosion; from 1948 through 2001, losing 10.6 % of its land and approximately 8.9 % of its forest cover. It has also experienced accretion in the area of Coco Island. The Brujo sector showed the highest sedimentation rate and the Camibar estuary, the lowest. The dominant type of sediment in all study sites was sand, followed by clay and silt. The most widespread chemical elements (mg/L) included magnesium, calcium and potassium; others, such as manganese, iron, aluminum, phosphorus, zinc and copper, were measured in smaller amounts. Transport, composition and quantity of sediment in Boca Zacate are crucial to the changes that have occurred on the coastal area of La Boca, where the presence of dead trees was evident. This geomorphological analysis holds great importance for future guidelines and

  13. Hydraulic Geometry and Microtopography of Tidal Freshwater Forested Wetlands and Implications for Restoration, Columbia River, U.S.A.

    SciTech Connect

    Diefenderfer, Heida L.; Coleman, Andre M.; Borde, Amy B.; Sinks, Ian A.

    2008-01-01

    The hydrologic reconnection of tidal channels, riverine floodplains, and main stem channels are among responses by ecological restoration practitioners to the increasing fragmentation and land conversion occurring in coastal and riparian zones. Design standards and monitoring of such ecological restoration depend upon the characterization of reference sites that vary within and among regions. Few locales, such as the 235 km tidal portion of the Columbia River on the West Coast U.S.A., remain in which the reference conditions and restoration responses of tidal freshwater forested wetlands on temperate zone large river floodplains can be compared. This study developed hydraulic geometry relationships for Picea sitchensis (Sitka spruce) dominated tidal forests (swamps) in the vicinity of Grays Bay on the Columbia River some 37 km from the Pacific Coast using field surveys and Light Detection and Ranging (LiDAR) data. Scaling relationships between catchment area and the parameters of channel cross-sectional area at outlet and total channel length were comparable to tidally influenced systems of San Francisco Bay and the United Kingdom. Dike breaching, culvert replacement, and tide gate replacement all affected channel cross-sectional geometry through changes in the frequency of over-marsh flows. Radiocarbon dating of buried wood provided evidence of changes in sedimentation rates associated with diking, and restoration trajectories may be confounded by historical subsidence behind dikes rendering topographical relationships with water level incomparable to reference conditions. At the same time, buried wood is influencing the development of channel morphology toward characteristics resembling reference conditions. Ecological restoration goals and practices in tidal forested wetland regions of large river floodplains should reflect the interactions of these controlling factors.

  14. Zambia Wetland

    Atmospheric Science Data Center

    2013-04-16

    ... Imaging SpectroRadiometer (MISR) illustrate surface changes to the wetlands and other surfaces in central Zambia resulting from an unusually lengthy wet season. The Kafue Flats appear relatively dry on July 19, 2003 (upper images), ...

  15. Remote Sensing and Wetland Ecology: a South African Case Study

    PubMed Central

    De Roeck, Els R.; Verhoest, Niko E.C.; Miya, Mtemi H.; Lievens, Hans; Batelaan, Okke; Thomas, Abraham; Brendonck, Luc

    2008-01-01

    Remote sensing offers a cost efficient means for identifying and monitoring wetlands over a large area and at different moments in time. In this study, we aim at providing ecologically relevant information on characteristics of temporary and permanent isolated open water wetlands, obtained by standard techniques and relatively cheap imagery. The number, surface area, nearest distance, and dynamics of isolated temporary and permanent wetlands were determined for the Western Cape, South Africa. Open water bodies (wetlands) were mapped from seven Landsat images (acquired during 1987 – 2002) using supervised maximum likelihood classification. The number of wetlands fluctuated over time. Most wetlands were detected in the winter of 2000 and 2002, probably related to road constructions. Imagery acquired in summer contained fewer wetlands than in winter. Most wetlands identified from Landsat images were smaller than one hectare. The average distance to the nearest wetland was larger in summer. In comparison to temporary wetlands, fewer, but larger permanent wetlands were detected. In addition, classification of non-vegetated wetlands on an Envisat ASAR radar image (acquired in June 2005) was evaluated. The number of detected small wetlands was lower for radar imagery than optical imagery (acquired in June 2002), probably because of deterioration of the spatial information content due the extensive pre-processing requirements of the radar image. Both optical and radar classifications allow to assess wetland characteristics that potentially influence plant and animal metacommunity structure. Envisat imagery, however, was less suitable than Landsat imagery for the extraction of detailed ecological information, as only large wetlands can be detected. This study has indicated that ecologically relevant data can be generated for the larger wetlands through relatively cheap imagery and standard techniques, despite the relatively low resolution of Landsat and Envisat imagery

  16. Forested wetlands

    SciTech Connect

    Lugo, A.E.; Brinson, M.; Brown, S.

    1990-01-01

    Forested wetlands have important roles in global biogeochemical cycles, supporting freshwater and saltwater commercial fisheries, and in providing a place for wildlife of all kinds to flourish. Scientific attention towards these ecosystems has lagged with only a few comprehensive works on forested wetlands of the world. A major emphasis of this book is to develop unifying principles and data bases on the structure and function of forested wetlands, in order to stimulate scientific study of them. Wetlands are areas that are inundated or saturated by surface-water or ground-water, at such a frequency and duration that under natural conditions they support organisms adapted to poorly aerated and/or saturated soil. The strategy of classifying the conditions that control the structure and behavior of forested wetlands by assuming that the physiognomy and floristic composition of the system will reflect the total energy expenditure of the ecosystem; and the structural and functional characteristics of forested wetlands from different parts of the world are the major topics covered.

  17. What Makes a Wetland a Wetland?

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions of and activities about various kinds of wetlands. Contains seven learning activities ranging from creating wetland scenes with picture cutouts to actually exploring a wetland. Includes reproducible handouts and worksheets for several of the activities. (TW)

  18. Community structure of fishes inhabiting aquatic refuges in a threatened Karst wetland and its implications for ecosystem management

    USGS Publications Warehouse

    Kobza, Robert M.; Trexler, J.C.; Loftus, W.F.; Perry, S.A.

    2004-01-01

    We illustrate the importance of subsurface refuges for conservation of aquatic fauna with our studies of karstic wetlands in Everglades National Park, Florida, USA. Managers have proposed that water levels there should not fall more than 46 cm below ground level for more than 90 days annually. In four areas, 84% of solution holes were less than 46 cm deep and holes deeper than lm were rare (<3 km-2). Null-model analysis indicated no "structure" in the solution-hole fish communities early in the dry season, but that structure emerged as drying progressed. Native cyprinodontiforms were abundant in shallow solution holes that dry annually under current management, while predatory species (often non-native) tended to dominate deeper holes. Water quality was correlated with hole volume and with composition of late dry-season fish communities. Tremendous losses of fish biomass occurred when water levels fell below 46 cm from ground surface. Most native taxa were unlikely to survive in the deep refuges that held predatory non-native taxa. ?? 2003 Elsevier Ltd. All rights reserved.

  19. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    USGS Publications Warehouse

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  20. Isolation of functional single domain antibody by whole cell immunization: implications for cancer treatment.

    PubMed

    Baral, Toya Nath; Murad, Yanal; Nguyen, Thanh-Dung; Iqbal, Umar; Zhang, Jianbing

    2011-08-31

    Carcinoembryonic antigen related cell adhesion molecule (CEACAM) 6 is over-expressed in different types of cancer cells. In addition, it has also been implicated in some infectious diseases. Targeting this molecule by an antibody might have applications in diverse tumor models. Single domain antibody (sdAb) is becoming very useful format in antibody engineering as potential tools for treating acute and chronic disease conditions such as cancer for both diagnostic as well as therapeutic application. Generally, sdAbs with good affinity are isolated from an immune library. Discovery of a new target antigen would require a new immunization with purified antigen which is not always easy. In this study, we have isolated, by phage display, an sdAb against CEACAM6 with an affinity of 5 nM from a llama immunized with cancer cells. The antibody has good biophysical properties, and it binds to the cells expressing the target antigen. Furthermore, it reduces cancer cells proliferation in vitro and shows an excellent tumor targeting in vivo. This sdAb could be useful in diagnosis as well as therapy of CEACAM6 expressing tumors. Finally, we envisage it would be feasible to isolate good sdAbs against other interesting tumor associated antigens from this library. Therefore, this immunization method could be a general strategy for isolating sdAbs against any surface antigen without immunizing the animal with the antigen of interest each time. PMID:21741385

  1. Wetlands ecology

    NASA Technical Reports Server (NTRS)

    Anderson, R. R. (Principal Investigator); Carter, V. L.; Mcginness, J. W., Jr.

    1972-01-01

    The author has identified the following significant results. The ERTS imagery analyzed provides approximately 2/3 coverage of the test site. Analysis was made using visual methods, density slicing, and multispectral analysis. Preliminary conclusions reached are that most, if not all, of the investigation objectives can be met. Saline and near-saline wetlands can be delineated from ERTS-1 images as the wetland-upland boundaries and land-water interface are clearly defined. Major plant species or communities such as Spartina alterniflora (high and low vigor forms), Spartina patens/Distichlis spicata, and Juncus roemarianus can be discriminated and spoil disposal areas identified.

  2. Isolating wetland CH4 emissions using the additional constraints of δ13CH4, and C2H6 in a inverse modeling framework

    NASA Astrophysics Data System (ADS)

    Guillermo Nuñez Ramirez, Tonatiuh; Marshall, Julia; Houweling, Sander; Dlugokencky, Edward J.; Worthy, Douglas E. J.; Vaughn, Bruce; Simpson, Isobel; White, James; Brand, Willi A.; Sasakawa, Motoki; Nichol, Silvia; Ramonet, Michel; Tyler, Stanley C.; Hueber, Jacques; Helmig, Detlev; Read, Katie; Punjabi, Schalini; Vanni Gatti, Luciana; Krummel, Paul; Heimann, Martin

    2015-04-01

    Wetlands are the largest single source of atmospheric methane (CH_4). However, estimates of their relative contribution to the atmospheric CH4 budget are highly uncertain. Models of CH4 fluxes from wetlands, which reflect our understanding of the processes driving these fluxes, disagree strongly in their estimates of the total contribution of wetlands to the CH4 budget and in the variability of the fluxes in space and time. Atmospheric CH4 observations can provide a top-down constraint on wetland CH4 flux estimates. Results from atmospheric inverse modeling studies highlight the importance of tropical wetlands in driving interannual variability of atmospheric CH_4. Nevertheless, atmospheric observations in the tropics are scarce, with large areas of strong emissions not covered by the atmospheric observation network. Furthermore, the Bayesian framework, often used in atmospheric inverse modeling, preferentially projects signals onto spatiotemporal regions with large a-priori uncertainty, which is the case of tropical wetlands. Since a large lack of knowledge exists as well for other non-wetland sources of atmospheric CH_4, signals from these could be wrongly allocated to tropical wetlands. The CH4 stable carbon isotope signal (δ13CH_4) and co-emitted species such as ethane (C_2H_6) can provide additional constraints which may be use to discriminate wetland from non-wetland CH4 emissions. We describe the set-up of an inverse modeling framework based on the Jena Inversion System and the TM3 transport model that optimizes CH4 fluxes to fit the observed atmospheric CH_4, δ13CH_4, and C_2H6 signals. The fluxes are optimized with the constraint that each source process was assigned a characteristic range of δ13CH4 signals and methane-to-ethane ratios (MERs). An additional characteristic of our set-up is that no seasonal or interannual variability was included in the wetland a-priori estimate to ensure that all variability is derived exclusively from observations. A

  3. Salininema proteolyticum gen. nov., sp. nov., a halophilic rare actinomycete isolated from wetland soil, and emended description of the family Glycomycetaceae.

    PubMed

    Nikou, Mahdi Moshtaghi; Ramezani, Mohaddaseh; Amoozegar, Mohammad Ali; Rasouli, Mehrnoush; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; de la Haba, Rafael R; Ventosa, Antonio

    2015-10-01

    A Gram-stain-positive actinobacterial strain, Miq-4T, was isolated from soil around Meighan wetland in the centre of Iran. Strain Miq-4T was strictly aerobic, catalase- and oxidase-positive. The isolate grew in the presence of 3–15 % (w/v) NaCl, at 20–40 °C and pH 6.0–11.0. The optimum NaCl, temperature and pH for growth were 7.0 %, 30 °C and 7.0–8.5, respectively. The cell wall of strain Miq-4T contained meso-diaminopimelic acid as the diamino acid and glucose and ribose as the whole-cell sugars. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. Strain Miq-4T synthesized cellular fatty acids of anteiso- and iso-branched types, including anteiso-C17 : 0, anteiso- C15 : 0 and iso-C16 : 0, and the major respiratory quinone was MK-9(H4). The G+C content of the genomic DNA was 68.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and characteristic patterns of 16S rRNA gene signature nucleotides revealed that strain Miq-4T belongs to the family Glycomycetaceae and showed the closest phylogenetic similarity with Haloglycomyces albus YIM 92370T (94.1 % 16S rRNA gene sequence similarity). On the basis of phylogenetic analysis and phenotypic and chemotaxonomic characteristics, strain Miq-4T represents a novel species of a new genus in the family Glycomycetaceae, for which the name Salininema proteoliyticum gen. nov., sp. nov. is proposed. The type strain of the type species is Miq-4T ( = IBRC-M 10908T = LMG 28391T). An emended description of the family Glycomycetaceae is also proposed in order to include features of the new genus. PMID:26219545

  4. Coastal Wetlands.

    ERIC Educational Resources Information Center

    Area Cooperative Educational Services, New Haven, CT. Environmental Education Center.

    This material includes student guide sheets, reference materials, and tape script for the audio-tutorial unit on Inland Wetlands. A set of 35mm slides and an audio tape are used with the materials. The material is designed for use with Connecticut schools, but it can be adapted to other localities. The unit materials emphasize the structure,…

  5. Inland Wetlands.

    ERIC Educational Resources Information Center

    Area Cooperative Educational Services, New Haven, CT. Environmental Education Center.

    This material includes student guide sheets, reference materials, and tape script for the audio-tutorial unit on Inland Wetlands. A set of 35mm slides and an audio tape are used with the material. The material is designed for use with Connecticut schools, but it can be adapted to other localities. The materials emphasize characteristics of inland…

  6. Saltwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides information about saltwater wetlands. Contains seven learning activities which deal with "making" a mud snail, plants and animals of mangroves, and the effects of tides on salt marshes. Included are reproducible handouts and worksheets for several of the activities. (TW)

  7. Genetic Evidence for Contrasting Wetland and Savannah Habitat Specializations in Different Populations of Lions (Panthera leo).

    PubMed

    Moore, Andy E; Cotterill, Fenton P D Woody; Winterbach, Christiaan W; Winterbach, Hanlie E K; Antunes, Agostinho; O'Brien, Stephen J

    2016-03-01

    South-central Africa is characterized by an archipelago of wetlands, which has evolved in time and space since at least the Miocene, providing refugia for animal species during Pleistocene arid episodes. Their importance for biodiversity in the region is reflected in the evolution of a variety of specialist mammal and bird species, adapted to exploit these wetland habitats. Populations of lions (Panthera leo) across south-central and east Africa have contrasting signatures of mitochondrial DNA haplotypes and biparental nuclear DNA in wetland and savannah habitats, respectively, pointing to the evolution of distinct habitat preferences. This explains the absence of genetic admixture of populations from the Kalahari savannah of southwest Botswana and the Okavango wetland of northern Botswana, despite separation by only 500 km. We postulate that ancestral lions were wetland specialists and that the savannah lions evolved from populations that were isolated during arid Pleistocene episodes. Expansion of grasslands and the resultant increase in herbivore populations during mesic Pleistocene climatic episodes provided the stimulus for the rapid population expansion and diversification of the highly successful savannah lion specialists. Our model has important implications for lion conservation. PMID:26695079

  8. Our Valuable Wetlands.

    ERIC Educational Resources Information Center

    Texley, Juliana

    1988-01-01

    Defines wetlands and lists several types of wetland habitat. Describes explorations that can be done with secondary school students including the baby boom, a food pyramid, and microenvironments. Includes a classroom poster with text on the variety of wetlands. (CW)

  9. Riparian Wetlands: Mapping

    EPA Science Inventory

    Riparian wetlands are critical systems that perform functions and provide services disproportionate to their extent in the landscape. Mapping wetlands allows for better planning, management, and modeling, but riparian wetlands present several challenges to effective mapping due t...

  10. Wetlands as Habitat in Urbanizing Landscapes: Patterns of Bird Abundance and Occupancy

    EPA Science Inventory

    As natural habitats become fewer in number and more fragmented through urbanization, functions and services provided by small isolated wetlands may become increasingly important in maintaining ecosystem processes. For example, wildlife habitat provided by wetlands in urban lands...

  11. Detection of Molecular Gas in Void Galaxies : Implications for Star Formation in Isolated Environments

    NASA Astrophysics Data System (ADS)

    Das, M.; Saito, T.; Iono, D.; Honey, M.; Ramya, S.

    2015-12-01

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1-0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1-0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 108 and 109 M⊙. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M⊙ yr-1 which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  12. Implications of discontinuous elevation gradients on fragmentation and restoration in patterned wetlands Read More: http://www.esajournals.org/doi/abs/10.1890/ES11-00119.1

    USGS Publications Warehouse

    Zweig, Christa L.; Reichert, Brian E.; Kitchens, Wiley M.

    2011-01-01

    Large wetlands around the world face the possibility of degradation, not only from complete conversion, but also from subtle changes in their structure and function. While fragmentation and isolation of wetlands within heterogeneous landscapes has received much attention, the disruption of spatial patterns/processes within large wetland systems and the resulting fragmentation of community components are less well documented. A greater understanding of pattern/process relationships and landscape gradients, and what occurs when they are altered, could help avoid undesirable consequences of restoration actions. The objective of this study is to determine the amount of fragmentation of sawgrass ridges due to artificial impoundment of water and how that may be differentially affected by spatial position relative to north and south levees. We also introduce groundbreaking evidence of landscape-level discontinuous elevation gradients within WCA3AS by comparing generalized linear and generalized additive models. These relatively abrupt breaks in elevation may have non-linear effects on hydrology and vegetation communities and would be crucial in restoration considerations. Modeling suggests there are abrupt breaks in elevation as a function of northing (Y-coordinate). Fragmentation indices indicate that fragmentation is a function of elevation and easting (X-coordinate), and that fragmentation has increased from 1988-2002. When landscapes change and the changes are compounded by non-linear landscape variables that are described herein, the maintenance processes change with them, creating a degraded feedback loop that alters the system's response to structuring variables and diminishes our ability to predict the effects of restoration projects or climate change. Only when these landscape variables and linkages are clearly defined can we predict the response to potential perturbations and apply the knowledge to other landscape-level wetland systems in need of future

  13. Quantifying Wetland Dynamics and Hydrologic Function with Landsat Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Rover, J. A.; Wright, C.; Wylie, B. K.; Euliss, N. H.

    2007-12-01

    The Prairie Pothole Region (PPR) of North America spans the glaciated prairies from Alberta, Canada, to central Iowa. The region contains hundreds of thousands of wetlands that provide habitat for an estimated 50 to 80 percent of North America's waterfowl. The composition of species that use the PPR are a function of wetland water chemistry. The water chemistry is driven by wetland functional processes that determine hydrogeochemical interactions of surface water, ground water, and their connectivity to other wetlands. As wetlands cycle from drought to deluge, significant surface water fluctuations can alter water chemistry and hydroperiods, influencing the composition of wetland communities. We quantified these temporal water dynamics with Landsat TM and ETM+ imagery, spanning a 17-year period during a drought-deluge cycle. Using clustering techniques, we grouped wetlands based on their functional responses to climate and quantified the traits of each cluster. We found that wetlands receiving groundwater discharge respond very differently to climatic shifts than wetlands functioning as recharge basins. In addition, wetlands with closed basins are less dynamic than wetlands located in open basins. Accuracies of the initial classification ranged from 75 to 100 percent. This study offers the first insight into wetland dynamics at a regional scale with implications for modeling biogeochemistry and ecosystem services across the PPR. Although this method was developed in the Missouri Coteau and nearby drift plains of the PPR, we believe this technique is applicable to other regions.

  14. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects

    USGS Publications Warehouse

    Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Krauss, Ken W.; Johnson, Darren J.; Raynie, Richard C.; Killebrew, Charles J.

    2016-01-01

    Sulfate from seawater inhibits methane production in tidal wetlands, and by extension, salinity has been used as a general predictor of methane emissions. With the need to reduce methane flux uncertainties from tidal wetlands, eddy covariance (EC) techniques provide an integrated methane budget. The goals of this study were to: 1) establish methane emissions from natural, freshwater and brackish wetlands in Louisiana based on EC; and 2) determine if EC estimates conform to a methane-salinity relationship derived from temperate tidal wetlands with chamber sampling. Annual estimates of methane emissions from this study were 62.3 g CH4/m2/yr and 13.8 g CH4/m2/yr for the freshwater and brackish (8–10 psu) sites, respectively. If it is assumed that long-term, annual soil carbon sequestration rates of natural marshes are ~200 g C/m2/yr (7.3 tCO2e/ha/yr), healthy brackish marshes could be expected to act as a net radiative sink, equivalent to less than one-half the soil carbon accumulation rate after subtracting methane emissions (4.1 tCO2e/ha/yr). Carbon sequestration rates would need case-by-case assessment, but the EC methane emissions estimates in this study conformed well to an existing salinity-methane model that should serve as a basis for establishing emission factors for wetland carbon offset projects.

  15. Assessing the cumulative effect of the weather variability on wetlands and the hydrological connection between wetlands and downstream waters

    NASA Astrophysics Data System (ADS)

    Yeo, I. Y.; Lang, M. W.; Lee, S.; Mccarty, G.; Peng, Y.; Huang, C.

    2014-12-01

    Wetlands are crucial ecosystem features that provide important ecological benefits to improve water quality and reduce the climate change impact. This ecosystem functioning of wetlands is largely dependent upon their hydrological characteristics and linkage to the downstream waters. However, the cumulative impacts of the climate on wetlands and the hydrological connection between wetlands and downstream waters have been rarely quantified at the landscape scale. This study reports findings from time series satellite observation that can illustrate the changes in extent of wetland inundation at a high spatial resolution (30-m) over the period 1985-2010. This remote sensing based observation provides crucial information to gain insights onto inter-annual variability of inundation dynamics, and we analyze this product with the drought indices, streamflows, the USFS NWI-hydrologic modifier. This study focuses on natural palustrine wetlands, densely distributed in the coastal plain of the Chesapeake Bay Watershed (CBW). We observe inundation patterns change in response to the weather variability, and it is proportionally related to the downstream flow discharge. While those wetlands with a longer hydro-period (i.e., permanently ponded wetlands during the growing season) show the strongest relationship with stream discharge (including baseflow, contributed from the shallow groundwater), inundation patterns of headwater/isolated wetlands are also strongly related to stream discharge. It shows the strong relationship between wetlands and downstream water regardless of geographic isolation and their mutual reliance on groundwater. The study provides the support for the conservation of wetlands through section 404 of the Clean Water Act.

  16. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation.

    PubMed

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J; Herbert, Matthew E; May, Christopher A; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional "pipeline" consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens. PMID:26452279

  17. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation

    PubMed Central

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J.; Herbert, Matthew E.; May, Christopher A.; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional “pipeline” consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens. PMID:26452279

  18. Stable isotopes as indicators of water and salinity sources in a southeast Australian coastal wetland: identifying relict marine water, and implications for future change

    NASA Astrophysics Data System (ADS)

    Currell, Matthew J.; Dahlhaus, Peter; , Hiroyuki, Ii

    2015-03-01

    The Lake Connewarre Complex is an internationally protected wetland in southeast Australia, undergoing increasing environmental change due to urbanisation. Stable isotopes of water (δ18O and δ2H) and other geochemical indicators were used to assess sources of water and salinity in the shallow groundwater and surface-water systems, and to better understand groundwater/surface-water interactions. While much of the shallow groundwater is saline (from 1.27 to 50.3 g/L TDS) with overlapping salinities across water groups, stable isotopes allow clear delineation of two distinct sources of water and salinity: marine water with δ18O between -1.4 and +1.3 ‰ and ion ratios characteristic of seawater; and meteoric water with δ18O between -6.1 and -3.6 ‰ containing cyclic salts, probably concentrated by plant transpiration. Groundwater bodies in shallow sediments beneath the wetlands have salinities and stable isotopic compositions intermediate between fresh wetland surface water and a marine water end-member. This marine-type water is likely relict seawater emplaced when the wetlands were connected to the estuary, prior to modern river regulation. Freshwater input to underlying groundwater is a recent consequence of this regulation. Future predicted changes such as increased stormwater inflow, will increase rates of freshwater leakage to shallow groundwater, favouring the proliferation of exotic reed species.

  19. Species Composition, Distribution and Habitat Types of Odonata in the iSimangaliso Wetland Park, KwaZulu-Natal, South Africa and the Associated Conservation Implications

    PubMed Central

    Hart, Lorinda A.; Bowker, Meyrick B.; Tarboton, Warwick; Downs, Colleen T.

    2014-01-01

    Maputaland–Pondoland–Albany, South Africa has been identified as a biodiversity hotspot and centre for endemism. Odonata make good indicators of freshwater ecosystem health. Consequently we compiled a list of Odonata species recorded to date in the iSimangaliso Wetland Park. We then detailed important species in terms of endemism, conservation status, and potential as indicator species. Finally, we compared Odonata assemblages of different sites sampled within the park to illustrate habitat importance. Species identified during two formal surveys and incidental observations made during the study period were combined with an existing database to compile an accurate and up to date species list for the iSimangaliso Wetland Park. Data from this study were then analyzed to determine which water bodies had the most similar species composition. The Dragonfly Biotic Index (DBI) value of each study area was also determined. We recorded 68 odonate species in the iSimangaliso Wetland Park, adding 13 species to the Ezemvelo KwaZulu-Natal Wildlife database for the area. This brings the total number of Odonata species for the iSimangaliso Wetland Park to 86. Eight species are red-listed, 12 are restricted in South Africa to the coastal plains of northern KwaZulu-Natal, and the remainder occurs widely across the southern African savanna. Analyses indicate that species odonate assemblages were most similar in water bodies with comparable habitats. iSimangaliso Wetland Park is identified as an important area for Odonata diversity and endemism, a trend also reflected by the DBI values. Shifts in the existing species assemblages would indicate changes within the ecosystem and thus this species account provides necessary baseline data for the area. Species Conservation efforts should thus target water bodies of varying habitat types to protect greater species diversity. PMID:24662948

  20. FORT BELKNAP WETLANDS MANAGEMENT PROGRAM

    EPA Science Inventory

    The product activities include: 1) Conducting wetland inventories and wetland assessments in the Milk River Watershed. This will include wetland delineations, and the collection of vascular plants and plant identification. Currently there is no baseline data of wetland activite...

  1. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    ERIC Educational Resources Information Center

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  2. Hydrogeomorphic Classification of Wetlands on Mt. Desert Island, Maine, Including Hydrologic Susceptibility Factors for Wetlands in Acadia National Park

    USGS Publications Warehouse

    Nielsen, Martha G.

    2006-01-01

    Depressional (Open, Semiclosed, and Closed), 231 were Riverine (Upper Perennial and Nonperennial), 210 were Soil Flat (Mineral and Organic), 68 were Lacustrine Fringe, 51 were Tidal Fringe, 22 were Hilltop/Upper Hillslope, and another 35 were small open water bodies. Most small, isolated wetlands classified on the island are Slope wetlands. The least common, Hilltop/Upper Hillslope wetlands, only occur on a few hilltops and shoulders of hills and mountains. Large wetland complexes generally consist of groups of Depressional wetlands and Mineral Soil Flat or Organic Soil Flat wetlands, often with fringing Slope wetlands at their edges and Riverine wetlands near streams flowing through them. The two analyses of wetland hydrologic susceptibility on Mt. Desert Island were applied to 186 wetlands located partially or entirely within ANP. These analyses were conducted using individually mapped catchments for each wetland. The 186 wetlands were aggregated from the original 1,202 mapped wetland polygons on the basis of their HGM classes. Landscape-level hydrologic, geomorphic, and soil variables were defined for the catchments of the wetlands, and transformed into scaled scores from 0 to 10 for each variable. The variables included area of the wetland, area of the catchment, area of the wetland divided by the area of the catchment, the average topographic slope of the catchment, the amount of the catchment where bedrock crops out with no soil cover or excessively thin soil cover, the amount of storage (in lakes and wetlands) in the catchment, the topographic relief of the catchment, the amount of clay-rich soil in the catchment, the amount of manmade impervious surface, whether the wetland had a stream inflow, and whether the wetland had a hydraulic connection to a lake or estuary. These data were determined using a GIS and data layers mapped at a scale of 1:24,000 or larger. These landscape variables were combined in different ways for the two hydrologic susceptibility fact

  3. Mitigating oil and gas impacts in coastal wetlands

    USGS Publications Warehouse

    Cahoon, Donald R.; Holmes, Joseph C., Jr.

    1989-01-01

    This abstract refers to technical recommendations for avoiding, minimizing, and restoring (i.e., mitigating) drilling site access impacts related to oil and gas activities in coastal wetlands through regulatory review, drawing mostly from the Louisiana experience. The two standard methods used to access wetland drilling locations are canals and roads, both of which require dredging. Each access method impacts wetland values and functions and each has been implicated directly and indirectly in wetland loss by converting marsh habitat to open water or upland habitat and by altering the local hydrologic regime. However, numerous regulatory management techniques exist and should be employed to avoids minimize, and restore canal and road-dump impacts.

  4. WETLAND INVENTORY USING REMOTELY SENSED LANDSAT DATA AND GEOGRAPHIC INFORMATION SYSTEMS (GIS)

    EPA Science Inventory

    Wetlands perform many functions on the landscape related to water quality and quantity, and provide habitat for myriad organisms. The identification of wetlands can be problematic, especially in areas with numerous isolated wetlands, in mixed landuse areas, or over large geograp...

  5. Diversity of Endophytic Fungi Associated with the Roots of Four Aquatic Plants Inhabiting Two Wetlands in Korea

    PubMed Central

    You, Young-Hyun; Park, Jong Myong; Park, Jong-Han

    2015-01-01

    A total of 4 aquatic plants, Eleocharis kuroguwai Ohwi, Hydrocharis dubia Backer, Salvinia natans All., and Zizania latifolia Turcz., were sampled from representative two wetlands of South Korea. A total of 38 endophytic fungal strains were isolated from aquatic plants native to the Daepyeong wetland, and 27 strains were isolated from the Jilnal wetland. The internal transcribed spacer regions of fungal isolates were sequenced and a phylogenetic analysis was performed. In addition, endophytic fungal diversity from each wetland and host plant species was deduced. A total of 25 fungal genera were purely isolated, and 16 fungal genera were isolated from each of the two wetlands. Commonly isolated genera from both wetlands were Aspergillus, Cladosporium, Clonostachys, Fusarium, Leptosphaeria, Penicillium, and Talaromyces. This study revealed that fungal diversity varied with environmental conditions and by host plant in representative two wetlands. PMID:26539039

  6. Diversity of Endophytic Fungi Associated with the Roots of Four Aquatic Plants Inhabiting Two Wetlands in Korea.

    PubMed

    You, Young-Hyun; Park, Jong Myong; Park, Jong-Han; Kim, Jong-Guk

    2015-09-01

    A total of 4 aquatic plants, Eleocharis kuroguwai Ohwi, Hydrocharis dubia Backer, Salvinia natans All., and Zizania latifolia Turcz., were sampled from representative two wetlands of South Korea. A total of 38 endophytic fungal strains were isolated from aquatic plants native to the Daepyeong wetland, and 27 strains were isolated from the Jilnal wetland. The internal transcribed spacer regions of fungal isolates were sequenced and a phylogenetic analysis was performed. In addition, endophytic fungal diversity from each wetland and host plant species was deduced. A total of 25 fungal genera were purely isolated, and 16 fungal genera were isolated from each of the two wetlands. Commonly isolated genera from both wetlands were Aspergillus, Cladosporium, Clonostachys, Fusarium, Leptosphaeria, Penicillium, and Talaromyces. This study revealed that fungal diversity varied with environmental conditions and by host plant in representative two wetlands. PMID:26539039

  7. Nevada Test Site Wetlands Assessment

    SciTech Connect

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  8. The land value impacts of wetland restoration.

    PubMed

    Kaza, Nikhil; BenDor, Todd K

    2013-09-30

    U.S. regulations require offsets for aquatic ecosystems damaged during land development, often through restoration of alternative resources. What effect does large-scale wetland and stream restoration have on surrounding land values? Restoration effects on real estate values have substantial implications for protecting resources, increasing tax base, and improving environmental policies. Our analysis focuses on the three-county Raleigh-Durham-Chapel Hill, North Carolina region, which has experienced rapid development and extensive aquatic ecological restoration (through the state's Ecosystem Enhancement Program [EEP]). Since restoration sites are not randomly distributed across space, we used a genetic algorithm to match parcels near restoration sites with comparable control parcels. Similar to propensity score analysis, this technique facilitates statistical comparison and isolates the effects of restoration sites on surrounding real estate values. Compared to parcels not proximate to any aquatic resources, we find that, 1) natural aquatic systems steadily and significantly increase parcel values up to 0.75 mi away, and 2) parcels <0.5 mi from EEP restoration sites have significantly lower sale prices, while 3) parcels >0.5 mi from EEP sites gain substantial amenity value. When we control for intervening water bodies (e.g. un-restored streams and wetlands), we find a similar inflection point whereby parcels <0.5 mi from EEP sites exhibit lower values, and sites 0.5-0.75 mi away exhibit increased values. Our work points to the need for higher public visibility of aquatic ecosystem restoration programs and increased public information about their value. PMID:23792789

  9. Wetland Characteristics and Denitrification

    EPA Science Inventory

    This presentation serves as an initial summary of our wetland field work's watershed characteristics hydrologic characteristics, water quality measurements, and denitrification assays. We present our measurement results in the context of wetland type (Estuarine, Freshwater Mars...

  10. Wetlands, Wildlife, and People.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Discusses the problems created when wetlands are drained or altered by humans. Provides a brief case study of the Everglades as an example of the effects of human intervention. Presents four learning activities (along with reproducible worksheets) that deal with the benefits of wetlands, and some debated issues over wetlands. (TW)

  11. Wetlands: An Interdisciplinary Exploration

    ERIC Educational Resources Information Center

    Czerniak, Charlene M.

    2004-01-01

    The topic of wetlands provides a rich context for curriculum integration. This unit contains seven activities that integrate environmental science with math, technology, social studies, language arts, and other disciplines. In this series, students will identify plants and animals found in wetlands, understand the function of wetlands through the…

  12. Rodentborne fungal pathogens in wetland agroecosystem

    PubMed Central

    Thomas, Manuel; Abraham Samuel, K.; Kurian, Punnen

    2012-01-01

    The past few decades have witnessed an overwhelming increase in the incidence of fungal infections, particularly in immunocompromised individuals. Consequently, zoonotic diseases, especially through rodents constitute a prominent group among the emerging diseases. Rodents are commensal to man and related health risks are common. Water rats (Rattus norvegicus) are typical to Vembanadu-Kol wetland agroecosystems, where they can act as a good carrier nexus for pathogens. The present study evaluates the carrier status of water rats with respect to fungal pathogens. A total of fifty two fungi covering eighteen families were isolated. Among the isolates, eight were dermaptophytes and Chrysosporium sp. (89.18%) was the frequent isolate. The source-wise analyses showed an increased isolation from ventral hair (67 isolates). Water rats of Vembanadu-Kol wetland agroecosystem are potent carrier of dermaptophytes and other opportunistic fungi, and strong carrier paths are existing too. PMID:24031825

  13. American Bullfrogs (Lithobates catesbeianus) Resist Infection by Multiple Isolates of Batrachochytrium dendrobatidis, Including One Implicated in Wild Mass Mortality.

    PubMed

    Eskew, Evan A; Worth, S Joy; Foley, Janet E; Todd, Brian D

    2015-09-01

    The emerging amphibian disease chytridiomycosis varies in severity depending on host species. Within species, disease susceptibility can also be influenced by pathogen variation and environmental factors. Here, we report on experimental exposures of American bullfrogs (Lithobates catesbeianus) to three different isolates of Batrachochytrium dendrobatidis (Bd), including one implicated in causing mass mortality of wild American bullfrogs. Exposed frogs showed low infection prevalence, relatively low infection load, and lack of clinical disease. Our results suggest that environmental cofactors are likely important contributors to Bd-associated American bullfrog mortality and that this species both resists and tolerates Bd infection. PMID:26065669

  14. Phenotypic variation amongst genotypically homogeneous Legionella pneumophila serogroup 1 isolates: implications for the investigation of outbreaks of Legionnaires' disease.

    PubMed Central

    Harrison, T. G.; Saunders, N. A.; Haththotuwa, A.; Hallas, G.; Birtles, R. J.; Taylor, A. G.

    1990-01-01

    One hundred and seventy-nine isolates of Legionella pneumophila serogroup 1, obtained from a site associated with an outbreak of Legionnaires' disease, were examined by monoclonal antibody subgrouping, restriction fragment length polymorphism typing, restriction endonuclease analysis and plasmid content. Nine distinct phenotypes were detected but at the genotypic level all strains were closely related. The data presented indicate that phenotypic variation of a single parent strain can occur within an environmental site. The implications of these findings are discussed in relation to the investigation of outbreaks of Legionnaires' disease. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1969803

  15. Freshwater Wetlands: A Citizen's Primer.

    ERIC Educational Resources Information Center

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of wetland…

  16. Detailed study of irrigation drainage in and near wildlife management areas, west-central Nevada, 1987-90; Part B, Effect on biota in Stillwater and Fernley Wildlife Management Areas and other nearby wetlands

    USGS Publications Warehouse

    Hallock, Robert J., (Edited By); Hallock, Linda L.

    1993-01-01

    A water-quality reconnaissance study during 1986-87 found high concentrations of several potentially toxic elements in water, bottom sediment, and biota in and near Stillwater Wildlife Management Area (WMA). This study prompted the U.S. Department of the Interior to initiate a more detailed study to determine the hydrogeochemical processes that control water quality in the Stillwater WMA, and other nearby wetlands, and the resulting effects on biota, especially migratory birds. Present wetland size is about 10% of historical size; the dissolved- solids load in the water in these now-isolated wetlands has increased only moderately, but the dissolved-solids concentration has increased more than seven-fold. Wetland vegetation has diminished and species composition in flow water has shifted to predominant salt-tolerant species in many areas. Decreased vegetative cover for nesting is implicated in declining waterfowl production. Decreases in numbers or virtual absence of several wildlife species are attributed to degraded water quality. Results of toxicity tests indicate that water in some drains and wetland areas is acutely toxic to some fish and invertebrates. Toxicity is attributed to the combined presence of arsenic, boron, lithium, and molybdenum. Biological pathways are involved in the transport of mercury and selenium from agricultural drains to wetlands. Hatch success of both artificially incubated and field-reared duck eggs was greater than/= 90 percent; no teratogenesis was observed. Mercury in muscle tissue of waterfowl harvested from Carson Lake in October 1987 exceeded the human health criterion six-fold.

  17. [Fragmentation process of wetland landscape in watersheds of Sanjiang Plain, China].

    PubMed

    Liu, Hongyu; Lü, Xianguo; Zhang, Shikui; Yang, Qing

    2005-02-01

    The Sanjiang Plain is the largest fresh water wetland distribution area in China and the center of waterfowls breeding and habitat area in Asia, but over the past 50 years, more than 73% of its wetland had lost because of agricultural development, and as a result, the wetland biodiversity declines dramatically, and the remnant wetlands are in a very fragment state. Based on historical maps, remote sensing data and GIS techniques, this paper selected two watersheds to analyze their wetland landscape fragmentation process during 1950-2000. It was indicated that land reclamation resulted in a decrease of 98% wetland corridors in Qixing River, 90% in Naoli River, 87% in the middle reach of Bielahong River, and 94% in the lower reach of Bielahong River; The amount of isolated wetlands in watershed increased dramatically; The maximum patch areas of wetland decreased by 92.6% in Naoli River watershed and 74.6% in Bielahong River watershed, and the mean wetland patch area in the two watersheds decreased by 99%. Before 1983, the wetland landscape was in an extensive area distribution state (the index of patch density was < 0.1), but after 1983, it fragmented dramatically, with the index of patch density larger than 1.5. The shape fragmentation indices of wetland decreased from 1950 to 2000, indicating a very big change in wetland patch shapes in the watersheds. The area fragmentation indices of wetland also increased from 1950 to 2000, especially after 1983, showing that the wetlands were in a serious fragmentation state. The wetland landscape fragmentation changed from a landmass and island model to a satellite model, and finally to a completely isolated model, which indicated the great changes in spatial structure of wetland in the Sanjiang Plain. PMID:15852925

  18. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L.; Isaacson, H.R.

    1992-12-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  19. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L. ); Isaacson, H.R. )

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  20. AVIRIS spectra of California wetlands

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1988-01-01

    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.

  1. Biofilm formation by clinical isolates and the implications in chronic infections

    PubMed Central

    2013-01-01

    Background Biofilm formation is a major virulence factor contributing to the chronicity of infections. To date few studies have evaluated biofilm formation in infecting isolates of patients including both Gram-positive and Gram-negative multidrug-resistant (MDR) species in the context of numerous types of infectious syndromes. Herein, we investigated the biofilm forming capacity in a large collection of single patient infecting isolates and compared the relationship between biofilm formation to various strain characteristics. Methods The biofilm-forming capacity of 205 randomly sampled clinical isolates from patients, collected from various anatomical sites, admitted for treatment at Brooke Army Medical Center (BAMC) from 2004–2011, including methicillin-resistant/methicillin susceptible Staphylococcus aureus (MRSA/MSSA) (n=23), Acinetobacter baumannii (n=53), Pseudomonas aeruginosa (n=36), Klebsiella pneumoniae (n=54), and Escherichia coli (n=39), were evaluated for biofilm formation using the high-throughput microtiter plate assay and scanning electron microscopy (SEM). Relationships between biofilm formation to clonal type, site of isolate collection, and MDR phenotype were evaluated. Furthermore, in patients with relapsing infections, serial strains were assessed for their ability to form biofilms in vitro. Results Of the 205 clinical isolates tested, 126 strains (61.4%) were observed to form biofilms in vitro at levels greater than or equal to the Staphylococcus epidermidis, positive biofilm producing strain, with P. aeruginosa and S. aureus having the greatest number of biofilm producing strains. Biofilm formation was significantly associated with specific clonal types, the site of isolate collection, and strains positive for biofilm formation were more frequently observed to be MDR. In patients with relapsing infections, the majority of serial isolates recovered from these individuals were observed to be strong biofilm producers in vitro. Conclusions This

  2. Dental morphology and variation in theropod dinosaurs: implications for the taxonomic identification of isolated teeth.

    PubMed

    Smith, Joshua B; Vann, David R; Dodson, Peter

    2005-08-01

    Isolated theropod teeth are common Mesozoic fossils and would be an important data source for paleoecology biogeography if they could be reliably identified as having come from particular taxa. However, obtaining identifications is confounded by a paucity of easily identifiable characters. Here we discuss a quantitative methodology designed to provide defensible identifications of isolated teeth using Tyrannosaurus as a comparison taxon. We created a standard data set based as much as possible on teeth of known taxonomic affinity against which to compare isolated crowns. Tooth morphology was described using measured variables describing crown length, base length and width, and derived variables related to basal shape, squatness, mesial curve shape, apex location with respect to base, and denticle size. Crown curves were described by fitting the power function Y = a + bX(0.5) to coordinate data collected from lateral-view images of mesial curve profiles. The b value from these analyses provides a measure of curvature. Discriminant analyses compared isolated teeth of various taxonomic affinities against the standard. The analyses classified known Tyrannosaurus teeth with Tyrannosaurus and separated most teeth known not to be Tyrannosaurus from Tyrannosaurus. They had trouble correctly classifying teeth that were very similar to Tyrannosaurus and for which there were few data in the standard. However, the results indicate that expanding the standard should facilitate the identification of numerous types of isolated theropod teeth. PMID:15986487

  3. Diverse Exopolysaccharide Producing Bacteria Isolated from Milled Sugarcane: Implications for Cane Spoilage and Sucrose Yield

    PubMed Central

    Bauer, Rolene; Mulako, Inonge; Slabbert, Etienne; Kossmann, Jens; George, Gavin M

    2015-01-01

    Bacterial deterioration of sugarcane during harvesting and processing is correlated with significant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary polysaccharide associated with sugarcane deterioration. A culture-based approach was used to isolate extracellular polysaccharide (EPS) producing bacterial strains from milled sugarcane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This study identified 2 bacterial genera not previously associated with EPS production or sucrose degradation. All isolates produced polysaccharide when grown in the presence of sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed 17 EPSs consisting solely of glucose (homoglucans), while the remainder contained traces of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion profiles for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides suggest the release of longer oligosaccharides which may interfere with sucrose crystal formation. PMID:26710215

  4. Diverse Exopolysaccharide Producing Bacteria Isolated from Milled Sugarcane: Implications for Cane Spoilage and Sucrose Yield.

    PubMed

    Hector, Stanton; Willard, Kyle; Bauer, Rolene; Mulako, Inonge; Slabbert, Etienne; Kossmann, Jens; George, Gavin M

    2015-01-01

    Bacterial deterioration of sugarcane during harvesting and processing is correlated with significant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary polysaccharide associated with sugarcane deterioration. A culture-based approach was used to isolate extracellular polysaccharide (EPS) producing bacterial strains from milled sugarcane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This study identified 2 bacterial genera not previously associated with EPS production or sucrose degradation. All isolates produced polysaccharide when grown in the presence of sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed 17 EPSs consisting solely of glucose (homoglucans), while the remainder contained traces of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion profiles for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides suggest the release of longer oligosaccharides which may interfere with sucrose crystal formation. PMID:26710215

  5. A FRAMEWORK FOR DEVELOPING A RAPID ASSESSMENT PROTCOL FOR SOUTHERN NEW ENGLAND SEASONALLY FLOODED POOLS TO ASSIST STATEWIDE WETLAND MONITORING PROGRAMS

    EPA Science Inventory

    Small isolated wetlands that are seasonally-flooded provide important hydrological, biological, and ecosystem functions that increasingly are being impacted by human development. In southern New England, these wetlands provide specialized breeding habitat for several invertebrat...

  6. Comparative Hydrology, Water Quality, and Ecology of Selected Natural and Augmented Freshwater Wetlands in West-Central Florida

    USGS Publications Warehouse

    Lee, T.M.; Haag, K.H.; Metz, P.A.; Sacks, L.A.

    2009-01-01

    Comparing altered wetlands to natural wetlands in the same region improves the ability to interpret the gradual and cumulative effects of human development on freshwater wetlands. Hydrologic differences require explicit attention because they affect nearly all wetland functions and are an overriding influence on other comparisons involving wetland water quality and ecology. This study adopts several new approaches to quantify wetland hydrologic characteristics and then describes and compares the hydrology, water quality, and ecology of 10 isolated freshwater marsh and cypress wetlands in the mantled karst landscape of central Florida. Four of the wetlands are natural, and the other six have water levels indirectly lowered by ground-water withdrawals on municipally owned well fields. For several decades, the water levels in four of these altered wetlands have been raised by adding ground water in a mitigation process called augmentation. The two wetlands left unaugmented were impaired because their water levels were lowered. Multifaceted comparisons between the altered and natural wetlands are used to examine differences between marshes and cypress wetlands and to describe the effects of augmentation practices on the wetland ecosystems. In the karstic geologic setting, both natural and altered wetlands predominantly lost water to the surficial aquifer. Water leaking out of the wetlands created water-table mounds below the wetlands. The smallest mounds radiated only slightly beyond the vegetated area of the wetlands. The largest and steepest mounds occurred below two of the augmented wetlands. There, rapid leakage rates regenerated a largely absent surficial aquifer and mounds encompassed areas 7-8 times as large as the wetlands. Wetland leakage rates, estimated using a daily water-budget analysis applied over multiple years and normalized as inches per day, varied thirtyfold from the slowest leaking natural wetland to the fastest leaking augmented wetland. Leakage

  7. Gas Research Institute wetland research program

    SciTech Connect

    Wilkey, P.L.; Zimmerman, R.E.; Isaacson, H.R.

    1992-12-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry`s impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables.

  8. Gas Research Institute wetland research program

    SciTech Connect

    Wilkey, P.L.; Zimmerman, R.E. ); Isaacson, H.R. )

    1992-01-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry's impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables.

  9. Removal processes for arsenic in constructed wetlands.

    PubMed

    Lizama A, Katherine; Fletcher, Tim D; Sun, Guangzhi

    2011-08-01

    Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species--iron, sulphur, phosphate--,a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems. PMID:21549410

  10. Redox Transformations of Mercury in Wetlands

    NASA Astrophysics Data System (ADS)

    Amyot, M.

    2007-12-01

    Wetlands are valued for their high biodiversity and for their ecosystem services. However, we still have a poor understanding of their role in the redox transformation of contaminants such as mercury. We first propose a brief overview of past studies conducted on wetlands from different latitudes. In most instances, photochemical processes are determinant in the upper portion of the water column. At the sediment/water interface, evidence is currently supporting a significant contribution of bacterial communities, as promoters of Hg(II) reduction, particularly in the presence of anoxia. A multi-year study was recently conducted on Hg redox cycling in a fluvial wetland of the St. Lawrence River, where wetland restoration could have unintended consequences. In addition to photochemistry and bacterial reduction, Hg redox cycling was affected by epiphytes living on macrophytes, through adsorption/absorption processes. Redox studies such as this one have been historically seen as having implication for water/air flux studies, since Hg(0) is volatile. We here also discuss the potential bioavailability of Hg(0) towards bacteria. An emerging axis of our wetland research effort deals with beaver dams, which are in expansion and shown to produce high levels of methylHg

  11. Genetic diversity of Escherichia coli isolates in irrigation water and associated sediments: implications for source tracking.

    PubMed

    Lu, Lingeng; Hume, Michael E; Sternes, Keith L; Pillai, Suresh D

    2004-11-01

    Identifying the sources of fecal contaminants in surface water bodies such as rivers and lakes is of significant importance for environmental quality, food safety and regulatory purposes. Current DNA library-based source tracking approaches rely on the comparison of the genetic relatedness among the fecal contaminants. The objective of this study was to determine the genetic relatedness of Escherichia coli isolated from irrigation water and associated sediments using pulse field gel electrophoresis (PFGE) and to evaluate the genetic stability of the E. coli PFGE patterns. The isolates were obtained over a 4-month period from specific locations within irrigation canals and sediments associated with the Rio Grande River along the Texas-Mexico border. Fifty E. coli isolates were genotyped using PFGE. Different E. coli genotypes were identified among samples collected in 11 different locations. Some isolates obtained over successive months showed similar genotypic patterns. In the laboratory experiment, the PFGE pattern of one E. coli strain changed during survival in irrigation water. The genetic relatedness of this strain changed from >95% to <83% over 8-week survival. These results imply that PFGE is of such extreme resolution that it may be a challenging task to rely solely on a PFGE-based source tracking DNA fingerprint library for large watersheds. PMID:15380980

  12. Hydrology and Ecology of Freshwater Wetlands in Central Florida - A Primer

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.

    2010-01-01

    Freshwater wetlands are an integral part of central Florida, where thousands are distributed across the landscape. However, their relatively small size and vast numbers challenge efforts to characterize them collectively as a statewide water resource. Wetlands are a dominant landscape feature in Florida; in 1996, an estimated 11.4 million acres of wetlands occupied 29 percent of the area of the State. Wetlands represent a greater percentage of the land surface in Florida than in any other state in the conterminous United States. Statewide, 90 percent of the total wetland area is freshwater wetlands and 10 percent is coastal wetlands. About 55 percent of the freshwater wetlands in Florida are forested, 25 percent are marshes and emergent wetlands, 18 percent are scrub-shrub wetlands, and the remaining 2 percent are freshwater ponds. Freshwater wetlands are distributed differently in central Florida than in other parts of the State. In the panhandle and in northern Florida, there are fewer isolated wetlands than in the central and southern parts of the State, and few of those wetlands are affected by activities such as groundwater withdrawals. In southern Florida, the vast wetlands of the Everglades and the Big Cypress Swamp blanket the landscape and form contiguous shallow expanses of water, which often exhibit slow but continuous flow toward the southwestern coast. In contrast, the wetlands of central Florida are relatively small, numerous, mostly isolated, and widely distributed. In many places, wetlands are flanked by uplands, generating a mosaic of contrasting environments-unique wildlife habitat often adjacent to dense human development. As the population of central Florida increases, the number of residents living near wetlands also increases. Living in close proximity to wetlands provides many Floridians with an increased awareness of nature and an opportunity to examine the relationship between people and wetlands. Specifically, these residents can observe

  13. Wetlands and Web Pages.

    ERIC Educational Resources Information Center

    Tisone-Bartels, Dede

    1998-01-01

    Argues that the preservation of areas like the Shoreline Park (California) wetlands depends on educating students about the value of natural resources. Describes the creation of a Web page on the wetlands for third-grade students by seventh-grade art and ecology students. Outlines the technical process of developing a Web page. (DSK)

  14. Wetlands: Earth's Kidneys

    EPA Science Inventory

    Wetlands are unique, diverse, and productive habitats that emerge at the fringe of aquatic and upland land systems. The U.S. Environmental Protection Agency (EPA) defines wetlands as "areas that are regularly inundated by surface water or groundwater and characterized by a preva...

  15. Genetic variation in Pneumocystis carinii isolates from different geographic regions: implications for transmission.

    PubMed Central

    Beard, C. B.; Carter, J. L.; Keely, S. P.; Huang, L.; Pieniazek, N. J.; Moura, I. N.; Roberts, J. M.; Hightower, A. W.; Bens, M. S.; Freeman, A. R.; Lee, S.; Stringer, J. R.; Duchin, J. S.; del Rio, C.; Rimland, D.; Baughman, R. P.; Levy, D. A.; Dietz, V. J.; Simon, P.; Navin, T. R.

    2000-01-01

    To study transmission patterns of Pneumocystis carinii pneumonia (PCP) in persons with AIDS, we evaluated P. carinii isolates from patients in five U.S. cities for variation at two independent genetic loci, the mitochondrial large subunit rRNA and dihydropteroate synthase. Fourteen unique multilocus genotypes were observed in 191 isolates that were examined at both loci. Mixed infections, accounting for 17.8% of cases, were associated with primary PCP. Genotype frequency distribution patterns varied by patients' place of diagnosis but not by place of birth. Genetic variation at the two loci suggests three probable characteristics of transmission: that most cases of PCP do not result from infections acquired early in life, that infections are actively acquired from a relatively common source (humans or the environment), and that humans, while not necessarily involved in direct infection of other humans, are nevertheless important in the transmission cycle of P. carinii f. sp. hominis. PMID:10827116

  16. Unprecedented Silver Resistance in Clinically Isolated Enterobacteriaceae: Major Implications for Burn and Wound Management

    PubMed Central

    Norton, Rhy; Austin, Cindy; Mitchell, Amber; Zank, Sara; Durham, Paul

    2015-01-01

    Increased utilization of inorganic silver as an adjunctive to many medical devices has raised concerns of emergent silver resistance in clinical bacteria. Although the molecular basis for silver resistance has been previously characterized, to date, significant phenotypic expression of these genes in clinical settings is yet to be observed. Here, we identified the first strains of clinical bacteria expressing silver resistance at a level that could significantly impact wound care and the use of silver-based dressings. Screening of 859 clinical isolates confirmed 31 harbored at least 1 silver resistance gene. Despite the presence of these genes, MIC testing revealed most of the bacteria displayed little or no increase in resistance to ionic silver (200 to 300 μM Ag+). However, 2 isolates (Klebsiella pneumonia and Enterobacter cloacae) were capable of robust growth at exceedingly high silver concentrations, with MIC values reaching 5,500 μM Ag+. DNA sequencing of these two strains revealed the presence of genes homologous to known genetic determinants of heavy metal resistance. Darkening of the bacteria's pigment was observed after exposure to high silver concentrations. Scanning electron microscopy images showed the presence of silver nanoparticles embedded in the extracellular polymeric substance of both isolates. This finding suggested that the isolates may neutralize ionic silver via reduction to elemental silver. Antimicrobial testing revealed both organisms to be completely resistant to many commercially available silver-impregnated burn and wound dressings. Taken together, these findings provide the first evidence of clinical bacteria capable of expressing silver resistance at levels that could significantly impact wound management. PMID:26014954

  17. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  18. Use of seasonal freshwater wetlands by fishes in a temperate river floodplain

    USGS Publications Warehouse

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2007-01-01

    This study examined the use of freshwater wetland restoration and enhancement projects (i.e. non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement (i.e. addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi. Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.

  19. Four new Candida cretensis strains isolated from Spanish fermented sausages (chorizo): taxonomic and phylogenetic implications.

    PubMed

    Quirós, Manuel; Martorell, Patricia; Querol, Amparo; Barrio, Eladio; Peinado, José M; de Silóniz, María-Isabel

    2008-05-01

    Four yeast strains were isolated from Spanish traditional fermented sausages (chorizo) spoiled by gas production. Using the classical identification procedures, they were identified as Debaryomyces hansenii. However, they fermented galactose and did not produce positive results in Debaryomyces differential medium (DDM), a growth medium highly specific for this species. Phylogenetic analysis showed identical sequences for the D1/D2 domain of the 26S rRNA gene and almost identical sequences for the 5.8S-ITS region with those of the recently described yeast species Candida cretensis. This result was confirmed by sequencing the gene encoding actin of the type and the new strains. Candida cretensis is a new species included in the so-called Candida kruisii clade that was described from a single strain, isolated from a decaying mushroom in Crete, Greece. The discovery of new strains of C. cretensis in fermented food expands its physiological and ecological diversity. With the description of these new strains isolated from food, three groups of strains can be distinguished within C. cretensis according to the restriction patterns of the intergenic spacer rRNA gene region and on the basis of some physiological properties that are of ecological relevance. PMID:18248417

  20. Acanthamoeba polyphaga mimivirus Stability in Environmental and Clinical Substrates: Implications for Virus Detection and Isolation

    PubMed Central

    de Almeida, Gabriel M.; Campos, Rafael K.; Boratto, Paulo V. M.; Franco-Luiz, Ana P. M.; La Scola, Bernard; Ferreira, Paulo C. P.; Kroon, Erna G.; Abrahão, Jônatas S.

    2014-01-01

    Viruses are extremely diverse and abundant and are present in countless environments. Giant viruses of the Megavirales order have emerged as a fascinating research topic for virologists around the world. As evidence of their ubiquity and ecological impact, mimiviruses have been found in multiple environmental samples. However, isolation of these viruses from environmental samples is inefficient, mainly due to methodological limitations and lack of information regarding the interactions between viruses and substrates. In this work, we demonstrate the long-lasting stability of mimivirus in environmental (freshwater and saline water) and hospital (ventilator plastic device tube) substrates, showing the detection of infectious particles after more than 9 months. In addition, an enrichment protocol was implemented that remarkably increased mimivirus detection from all tested substrates, including field tests. Moreover, biological, morphological and genetic tests revealed that the enrichment protocol maintained mimivirus particle integrity. In conclusion, our work demonstrated the stability of APMV in samples of environmental and health interest and proposed a reliable and easy protocol to improve giant virus isolation. The data presented here can guide future giant virus detection and isolation studies. PMID:24498379

  1. Molecular characterization of rabies virus isolates from Mexico: implications for transmission dynamics and human risk.

    PubMed

    De Mattos, C C; De Mattos, C A; Loza-Rubio, E; Aguilar-Setién, A; Orciari, L A; Smith, J S

    1999-10-01

    Twenty-eight samples from humans and domestic and wild animals collected in Mexico between 1990 and 1995 were characterized by using anti-nucleoprotein monoclonal antibodies and limited sequence analysis of the nucleoprotein gene. The variants of rabies viruses identified in these samples were compared with other isolates from Mexico and the rest of the Americas to establish epidemiologic links between cases and outbreaks and to increase the understanding of rabies epidemiology in the Western Hemisphere. Antigenic and genetic diversity was found in all samples from dogs and dog-related cases, suggesting a long-term endemic situation with multiple, independent cycles of virus transmission. Two isolates from bobcats were antigenically and genetically homologous to the rabies variant circulating in the Arizona gray fox population, indicating a wider distribution of this variant than previously reported. Rabies isolates from skunks were unrelated to any variant analyzed in this study and represent a previously unrecognized cycle of rabies transmission in skunks in Baja California Sur. Two antigenic and genetic variants co-circulating in southern and eastern Mexico were found in viruses obtained from cases epidemiologically related to vampire bats. These results serve as a baseline for the better understanding of the molecular epidemiology of rabies in Mexico. PMID:10548293

  2. Conceptual hierarchical modeling to describe wetland plant community organization

    USGS Publications Warehouse

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  3. HISTORIC WETLANDS OF PRUDENCE ISLAND

    EPA Science Inventory

    Ten wetland sites around Narragansett Bay, Rhode Island have been selected for a multidisciplinary study. These wetland sites are being studied to develop indicators of "wetland health." The study includes assessing the ecological conditions of the wetlands in the past, and the c...

  4. α-Synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson's disease.

    PubMed

    Bir, Aritri; Sen, Oishimaya; Anand, Shruti; Khemka, Vineet Kumar; Banerjee, Priyanjalee; Cappai, Roberto; Sahoo, Arghyadip; Chakrabarti, Sasanka

    2014-12-01

    This study has shown that purified recombinant human α-synuclein (20 μM) causes membrane depolarization and loss of phosphorylation capacity of isolated purified rat brain mitochondria by activating permeability transition pore complex. In intact SHSY5Y (human neuroblastoma cell line) cells, lactacystin (5 μM), a proteasomal inhibitor, causes an accumulation of α-synuclein with concomitant mitochondrial dysfunction and cell death. The effects of lactacystin on intact SHSY5Y cells are, however, prevented by knocking down α-synuclein expression by specific siRNA. Furthermore, in wild-type (non-transfected) SHSY5Y cells, the effects of lactacystin on mitochondrial function and cell viability are also prevented by cyclosporin A (1 μM) which blocks the activity of the mitochondrial permeability transition pore. Likewise, in wild-type SHSY5Y cells, typical mitochondrial poison like antimycin A (50 nM) produces loss of cell viability comparable to that of lactacystin (5 μM). These data, in combination with those from isolated brain mitochondria, strongly suggest that intracellularly accumulated α-synuclein can interact with mitochondria in intact SHSY5Y cells causing dysfunction of the organelle which drives the cell death under our experimental conditions. The results have clear implications in the pathogenesis of sporadic Parkinson's disease. α-Synuclein is shown to cause mitochondrial impairment through interaction with permeability transition pore complex in isolated preparations. Intracellular accumulation of α-synuclein in SHSY5Y cells following proteasomal inhibition leads to mitochondrial impairment and cell death which could be prevented by knocking down α-synuclein gene. The results link mitochondrial dysfunction and α-synuclein accumulation, two key pathogenic mechanisms of Parkinson's disease, in a common damage pathway. PMID:25319443

  5. Effects of isolation and confinement on humans-implications for manned space explorations.

    PubMed

    Pagel, J I; Choukèr, A

    2016-06-15

    Human psychology and physiology are significantly altered by isolation and confinement. In light of planned exploration class interplanetary missions, the related adverse effects on the human body need to be explored and defined as they have a large impact on a mission's success. Terrestrial space analogs offer an excellent controlled environment to study some of these stressors during a space mission in isolation without the complex environment of the International Space Station. Participants subjected to these space analog conditions can encounter typical symptoms ranging from neurocognitive changes, fatigue, misaligned circadian rhythm, sleep disorders, altered stress hormone levels, and immune modulatory changes. This review focuses on both the psychological and the physiological responses observed in participants of long-duration spaceflight analog studies, such as Mars500 or Antarctic winter-over. They provide important insight into similarities and differences encountered in each simulated setting. The identification of adverse effects from confinement allows not only the crew to better prepare for but also to design feasible countermeasures that will help support space travelers during exploration class missions in the future. PMID:26846554

  6. Genome-Wide Analysis of Oceanimonas sp. GK1 Isolated from Gavkhouni Wetland (Iran) Demonstrates Presence of Genes for Virulence and Pathogenicity

    PubMed Central

    Parsa Yeganeh, Laleh; Azarbaijani, Reza; Mousavi, Hossein; Shahzadeh Fazeli, Seyed Abolhassan; Amoozgar, Mohammad Ali; Salekdeh, Ghasem Hosseini

    2015-01-01

    Objective The bacterium Oceanimonas sp. (O. sp.) GK1 is a member of the Aeromonadaceae family and its genome represents several virulence genes involved in fish and human pathogenicity. In this original research study we aimed to identify and characterize the putative virulence factors and pathogenicity of this halotolerant marine bacterium using genome wide analysis. Materials and Methods The genome data of O. sp. GK1 was obtained from NCBI. Comparative genomic study was done using MetaCyc database. Results Whole genome data analysis of the O. sp. GK1 revealed that the bacterium possesses some important virulence genes (e.g. ZOT, RTX toxin, thermostable hemolysin, lateral flagella and type IV pili) which have been implicated in adhesion and biofilm formation and infection in some other pathogenic bacteria. Conclusion This is the first report of the putative pathogenicity of O. sp.GK1. The genome wide analysis of the bacterium demonstrates the presence of virulence genes causing infectious diseases in many warmand cold-blooded animals. PMID:26464816

  7. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.

    PubMed

    Cusell, Casper; Kooijman, Annemieke; Fernandez, Filippo; van Wirdum, Geert; Geurts, Jeroen J M; van Loon, E Emiel; Kalbitz, Karsten; Lamers, Leon P M

    2014-05-15

    The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland

  8. Myriad and its implications for patent protection of isolated natural products in the United States.

    PubMed

    Wong, Alice Yuen-Ting; Chan, Albert Wai-Kit

    2014-01-01

    Extracts and compounds of natural products have potential as alternatives to current Western medicines. However, these products may not be patentable under the statutory requirements because of their naturally-occurring nature. This article analyzes the current patenting practices for natural products in the United States, particularly in light of the recent Supreme Court ruling in Myriad, and suggests an advantageous strategy for patenting these products. Briefly, isolated natural products per se are not patentable in the United States. Therefore, patenting focus should be placed on the modification, formulation, manufacture, and application of natural products. A detailed description of each invention is highly recommended for stronger support and broader coverage of the claims. PMID:25006347

  9. First isolation of tandemly repeated DNA sequences in New World vultures and phylogenetic implications.

    PubMed

    Keyser, C; Montagnon, D; Schlee, M; Ludes, B; Pfitzinger, H; Mangin, P

    1996-02-01

    A highly repeated DNA sequence composed of closely related subunits that ranged from 171 to 176 base pairs has been cloned and characterized in the king vulture (Sarcoramphus papa). Related sequences were also isolated in the black vulture (Coragyps atratus). This new family of avian repetitive DNA elements is here termed the "HaeIII family." Genomic DNAs from a number of avian species were probed with one of the king vulture restriction fragments. In the cathartids, the hybridization patterns showed no individual or sexual variations. A strong HaeIII ladder was present in the two aforementioned species as well as in the Andean condor (Vultur gryphus), but in the black vulture the bands of the ladder alternated in intensity. Weaker hybridization signals were obtained in two ciconids, the jabiru stork (Jabiru mycteria) and the white stork (Ciconia ciconia). The HaeIII repeat was not detected in accipitrid birds of prey, a Polyborinae falconid, pelecanids, and psittacids. PMID:8851796

  10. Pre-Holocene Origin for the Coronopus navasii Disjunction: Conservation Implications from Its Long Isolation.

    PubMed

    Martín-Hernanz, Sara; G Fernández de Castro, Alejandro; Moreno-Saiz, Juan Carlos; Valcárcel, Virginia

    2016-01-01

    Integration of unexpected discoveries about charismatic species can disrupt their well-established recovery plans, particularly when this requires coordinate actions among the different governments responsible. The Critically Endangered Coronopus navasii (Brassicaceae) was considered a restricted endemism to a few Mediterranean temporary ponds in a high mountain range of Southeast Spain, until a new group of populations were discovered 500 km North in 2006. Ten years after this finding, its management has not been accommodated due to limited information of the new populations and administrative inertia. In this study, DNA sequences and species distribution models are used to analyse the origin of the C. navasii disjunction as a preliminary step to reassess its recovery plan. Molecular results placed the disjunction during Miocene-Pleistocene (6.30-0.49 Mya, plastid DNA; 1.45-0.03 Mya, ribosomal DNA), which discards a putative human-mediated origin. In fact, the haplotype network and the low gene flow estimated between disjunct areas suggest long-term isolation. Dispersal is the most likely explanation for the disjunction as interpreted from the highly fragmented distribution projected to the past. Particularly, a northward dispersal from Southeast is proposed since C. navasii haplotype network is connected to the sister-group through the southern haplotype. Although the reassessment of C. navasii conservation status is more optimistic under the new extent of occurrence, its long-term survival may be compromised due to the: (1) natural fragmentation and rarity of the species habitat, (2) genetic isolation between the two disjunct areas, and (3) northward shift of suitable areas under future climate change scenarios. Several ex-situ and in-situ conservation measures are proposed for integrating Central East Spanish populations into the on-going recovery plan, which still only contemplates Southeast populations and therefore does not preserve the genetic structure and

  11. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy.

    PubMed

    Boucher, Y; Baxter, L T; Jain, R K

    1990-08-01

    High interstitial fluid pressure (IFP) in solid tumors is associated with reduced blood flow as well as inadequate delivery of therapeutic agents such as monoclonal antibodies. In the present study, IFP was measured as a function of radial position within two rat tissue-isolated tumors (mammary adenocarcinoma R3230AC, 0.4-1.9 g, n = 9, and Walker 256 carcinoma, 0.5-5.0 g, n = 6) and a s.c. tumor (mammary adenocarcinoma R3230AC, 0.6-20.0 g, n = 7). Micropipettes (tip diameters 2 to 4 microns) connected to a servo-null pressure-monitoring system were introduced to depths of 2.5 to 3.5 mm from the tumor surface and IFP was measured while the micropipettes were retrieved to the surface. The majority (86%) of the pressure profiles demonstrated a large gradient in the periphery leading to a plateau of almost uniform pressure in the deeper layers of the tumors. Within isolated tumors, pressures reached plateau values at a distance of 0.2 to 1.1 mm from the surface. In s.c. tumors the sharp increase began in skin and levelled off at the skin-tumor interface. These results demonstrate for the first time that the IFP is elevated throughout the tumor and drops precipitously to normal values in the tumor's periphery or in the immediately surrounding tissue. These results confirm the predictions of our recently published mathematical model of interstitial fluid transport in tumors (Jain and Baxter, Cancer Res., 48: 7022-7032, 1988), offer novel insight into the etiology of interstitial hypertension, and suggest possible strategies for improved delivery of therapeutic agents. PMID:2369726

  12. Pre-Holocene Origin for the Coronopus navasii Disjunction: Conservation Implications from Its Long Isolation

    PubMed Central

    G. Fernández de Castro, Alejandro; Moreno-Saiz, Juan Carlos; Valcárcel, Virginia

    2016-01-01

    Integration of unexpected discoveries about charismatic species can disrupt their well-established recovery plans, particularly when this requires coordinate actions among the different governments responsible. The Critically Endangered Coronopus navasii (Brassicaceae) was considered a restricted endemism to a few Mediterranean temporary ponds in a high mountain range of Southeast Spain, until a new group of populations were discovered 500 km North in 2006. Ten years after this finding, its management has not been accommodated due to limited information of the new populations and administrative inertia. In this study, DNA sequences and species distribution models are used to analyse the origin of the C. navasii disjunction as a preliminary step to reassess its recovery plan. Molecular results placed the disjunction during Miocene-Pleistocene (6.30–0.49 Mya, plastid DNA; 1.45–0.03 Mya, ribosomal DNA), which discards a putative human-mediated origin. In fact, the haplotype network and the low gene flow estimated between disjunct areas suggest long-term isolation. Dispersal is the most likely explanation for the disjunction as interpreted from the highly fragmented distribution projected to the past. Particularly, a northward dispersal from Southeast is proposed since C. navasii haplotype network is connected to the sister-group through the southern haplotype. Although the reassessment of C. navasii conservation status is more optimistic under the new extent of occurrence, its long-term survival may be compromised due to the: (1) natural fragmentation and rarity of the species habitat, (2) genetic isolation between the two disjunct areas, and (3) northward shift of suitable areas under future climate change scenarios. Several ex-situ and in-situ conservation measures are proposed for integrating Central East Spanish populations into the on-going recovery plan, which still only contemplates Southeast populations and therefore does not preserve the genetic structure

  13. Poly-extremotolerant bacterium isolated from reverse osmosis reject: an implication toward waste water management.

    PubMed

    Jain, D; Mishra, S K; Shrivastav, A; Rathod, M; Shethia, B D; Mishra, S; Jha, B

    2010-11-01

    We demonstrate the tolerance of bacterial strain SM2014 to various unsustainable conditions and suggest its implication in waste water management. Its sustainability to reverse osmosis pressure (2.1 MPa) during desalination, and survival percentage of 73 % under hyperbaric conditions (pressure tension of 3.1 MPa under absolute oxygen atmosphere) confirmed its pressure tolerance. The growth of this strain at pH 9 or 10 and at 60 °C alone or in combination revealed its unique physiology as poly-extremotolerant strain. As an adaptive mechanism, the ratio of saturated to unsaturated fatty acids changed with growth conditions. Under poly-extreme condition long chain saturated fatty acid (C₁₈:₀, C₁₆:₀, C₁₄:₀, C₁₂:₀) predominated at the expense of unsaturated fatty acids. The nucleotide BLAST of 16S rRNA gene sequence of strain SM2014 with the NCBI gene bank sequences showed its close identity to Bacillus licheniformis with a similarity match of 94 %. The secretion of industrially valuable enzymes proteinase, lipase and amylase under such harsh conditions further signified potential of this strain as a source of extremozymes. Its unique characteristics underscore its relevance in waste water management. PMID:21253908

  14. Wetland functional health assessment using remote sensing and other techniques: Literature search and overview. Technical memo

    SciTech Connect

    Patience, N.; Klemas, V.

    1993-03-01

    Contents: introduction; remote sensing of wetland biomass and other wetland condition indicators; conceptual approaches in wetland assessment; wetland extent and type; landscape and wetland patterns; wetland biomass and productivity; wetland vegetation; wetland habitat quality; wetland hydrology; and conclusions and recommendations.

  15. Wetlands: their use and regulation

    SciTech Connect

    Not Available

    1984-01-01

    Although destruction of United States wetlands has slowed, their continued conversion, especially in certain inland regions of the country, may pose adverse ecological effects over the next few decades. The Army Corps of Engineers' regulatory program (Section 404 of the Clean Water Act) protects most coastal wetlands, but provides no protection for 95% of the country's wetlands which remain inland. These inland, freshwater wetlands, converted for agricultural purposes, comprise 80% of the wetland losses over the past 30 years. This report outlines options for more effective federal management, such as the mapping and categorizing of wetlands to determine relative values. In effect, agencies can focus protection programs on higher-value wetlands, especially those threatened by agricultural conversion. The report also discusses the contradictory federal policies aimed at wetlands; for example, the tax code encourages the development and draining of wetlands at the same time that federal regulations discourage their destruction.

  16. Soil-Gas Identification of Environmental Factors Affecting CO2 Concentrations Beneath a Playa Wetland: Implications for Soil-Gas Monitoring at Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Romanak, K.; Bennett, P.

    2009-12-01

    Strategies for identifying and interpreting the effects of environmental factors on near-surface CO2 concentrations are essential to developing accurate monitoring protocols at carbon storage sites. Based on the results of a three-year study of a natural analogue we present, 1) a method for using soil-gas to identify near-surface CO2 cycling, and 2) a framework for developing monitoring protocols and site evaluation for near-surface monitoring. Near-surface CO2 production, consumption, and re-distribution was observed in the vadose-zone of a highly CO2-reactive playa wetland in the Texas High Plains. Atmospheric conditions, organic and inorganic soil carbon, subsurface pressure, water flux, and surface and groundwater chemistry were compared to real-time background measurements of CO2, CH4, O2+Ar, and N2 from depths up to 45 feet. Carbon isotopes and spatially and temporally variable concentrations of CO2 ≤ 17%, CH4 ≤ 2%, and O2 from 21-0% indicate CO2 and CH4 are produced by microbes. Molar gas ratios of O2 and CO2 distinguish between oxidation of organic matter (CH2O + O2 → CO2 + H2O), CH4 oxidation (CH4 + 2O2 → CO2 + 2H2O), and potentially acetate fermentation (CH3COOH → CH4 + CO2). O2 consumption and distribution is regulated by water flux that supplies dissolved organics to microbes at depth and regulates oxygen supply by blocking vertical permeability and atmospheric gas exchange. A surface flux experiment indicates that when playa floors are dry, subsurface wetting fronts from rain events or previous ponding periods block vertical permeability resulting in surface flux measurements that do not represent subsurface conditions. Samples with CO2+O2 < 21% and N2 > 78% identify dissolution of CO2 and carbonate minerals into recharging groundwater resulting in loss of pore pressure and chemically-induced advection of atmosphere into pores. Inverse geochemical reaction modeling (PHREEQC) of playa surface water and perched groundwater in high PCO2 zones

  17. Wetlands and infectious diseases.

    PubMed

    Zimmerman, R H

    2001-01-01

    There is a historical association between wetlands and infectious disease that has led to the modification of wetlands to prevent disease. At the same time there has been the development of water resources projects that increase the risk of disease. The demand for more water development projects and the increased pressure to make natural wetlands economically beneficial creates the need for an ecological approach to wetland management and health assessment. The environmental and health interactions are many. There is a need to take into account the landscape, spatial boundaries, and cross-boundary interactions in water development projects as well as alternative methods to provide water for human needs. The research challenges that need to be addressed are discussed. PMID:11426273

  18. Avian utilization of subsidence wetlands

    SciTech Connect

    Nawrot, J.R.; Conley, P.S.; Smout, C.L.

    1995-09-01

    Diverse and productive wetlands have resulted from coal mining in the midwest. The trend from surface to underground mining has increased the potential for subsidence. Planned subsidence of longwall mining areas provides increased opportunities for wetland habitat establishment. Planned subsidence over a 180 meter (590 foot) deep longwall mine in southern Illinois during 1984 to 1986 produced three subsidence wetlands totaling 15 hectares (38 acres). The resulting palustrine emergent wetlands enhanced habitat diversity within the surrounding palustrine forested unsubsided area. Habitat assessments and evaluations of avian utilization of the subsidence wetlands were conducted during February 1990 through October 1991. Avian utilization was greatest within the subsided wetlands. Fifty-three bird species representing seven foraging guilds utilized the subsidence wetlands. Wading/fishing, dabbling waterfowl, and insectivorous avian guilds dominated the subsidence wetlands. The subsidence wetlands represented ideal habitat for wood ducks and great blue herons which utilized snags adjacent to and within the wetlands for nesting (19 great blue heron nests produced 25 young). Dense cover and a rich supply of macroinvertebrates provide excellent brood habitat for wood ducks, while herpetofauna and ichthyofauna provided abundant forage in shallow water zones for great blue herons and other wetland wading birds. The diversity of game and non-game avifauna utilizing the subsidence areas demonstrated the unique value of these wetlands. Preplanned subsidence wetlands can help mitigate loss of wetland habitats in the midwest.

  19. Wetlands in Changed Landscapes: The Influence of Habitat Transformation on the Physico-Chemistry of Temporary Depression Wetlands

    PubMed Central

    Bird, Matthew S.; Day, Jenny A.

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality. PMID:24533161

  20. Coastal wetlands of Chesapeake Bay

    USGS Publications Warehouse

    Baldwin, Andrew H.; Kangas, Patrick J.; Megonigal, J. Patrick; Perry, Matthew C.; Whigham, Dennis F.; Batzer, Darold P., (Edited By)

    2012-01-01

    Wetlands are prominent landscapes throughout North America. The general characteristics of wetlands are controversial, thus there has not been a systematic assessment of different types of wetlands in different parts of North America, or a compendium of the threats to their conservation. Wetland Habitats of North America adopts a geographic and habitat approach, in which experts familiar with wetlands from across North America provide analyses and syntheses of their particular region of study. Addressing a broad audience of students, scientists, engineers, environmental managers, and policy makers, this book reviews recent, scientifically rigorous literature directly relevant to understanding, managing, protecting, and restoring wetland ecosystems of North America.

  1. The Carolina Bay Restoration Project: Implementation and Management of a Wetland Mitigation Bank.

    SciTech Connect

    Barton, Christopher; DeSteven, Diane; Sharitz, Rebecca; Kilgo, John; Imm, Donald; Kolka, Randy; Blake, John, I.

    2003-01-01

    A wetlands Mitigation Bank was established at the Savannah River Site (SRS) in 1997 as a compensatory alternative for unavoidable wetland losses associated with future authorized construction and environmental restoration projects in SRS wetlands. The Bank was intended not only to hasten mitigation efforts with respect to regulatory requirements and implementation, but also to provide onsite and fully functional compensation of impacted wetland acreage prior to any impact. Restoration and enhancement of small isolated wetlands, as well as major bottomland wetland systems scattered throughout the nonindustrialized area of SRS were designated for inclusion in the Bank. Based on information and techniques gained from previous research efforts involving Carolina bay wetlands (DOE 1997), a project to restore degraded Carolina bays on SRS has been undertaken to serve as the initial ''deposit'' in The Bank. There are over 300 Carolina bays or bay-like depression wetlands on the SRS, of which an estimated two-thirds were ditched or disturbed prior to federal occupation of the Site (Kirkman et al., 1996). These isolated wetlands range from small ephemeral depressions to large permanent ponds of 10-50 hectares in size. They provide habitat to support a wide range of rare plant species, and many vertebrates (birds, amphibians, bats). Historical impacts to the Carolina bays at SRS were primarily associated with agricultural activities. Bays were often drained tilled and planted to crops. The consequence was a loss in the wetland hydrologic cycle, the native wetland vegetation, and associated wildlife. The purpose of this mitigation and research project is to restore the functions and vegetation typical of intact depression wetlands and, in doing so, to enhance habitat for wetland dependent wildlife on SRS.

  2. Wetland InSAR

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  3. Association between wetland disturbance and biological attributes in floodplain wetlands

    USGS Publications Warehouse

    Chipps, S.R.; Hubbard, D.E.; Werlin, K.B.; Haugerud, N.J.; Powell, K.A.; Thompson, John; Johnson, T.

    2006-01-01

    We quantified the influence of agricultural activities on environmental and biological conditions of floodplain wetlands in the upper Missouri River basin. Seasonally-flooded wetlands were characterized as low impact (non-disturbed) or high impact (disturbed) based on local land use. Biological data collected from these wetlands were used to develop a wetland condition index (WCI). Fourteen additional wetlands were sampled to evaluate the general condition of seasonally-flooded floodplain wetlands. Structural and functional attributes of macrophyte, algae, and macroinvertebrate communities were tested as candidate metrics for assessing biotic responses. The WCI we developed used six biological metrics to discriminate between disturbed and non-disturbed wetlands: 1) biomass of Culicidae larvae, 2) abundance of Chironomidae larvae, 3) macroinvertebrate diversity, 4) total number of plant species, 5) the proportion of exotic plant species, and 6) total number of sensitive diatom species. Disturbed wetlands had less taxa richness and species diversity and more exotic and nuisance (e.g., mosquitoes) species. Environmental differences between low and high impact wetlands included measures of total potassium, total phosphorus, total nitrogen, alkalinity, conductance, and sediment phosphorus concentration. Canonical analyses showed that WCI scores were weakly correlated (P = 0.057) with environmental variables in randomly selected wetlands. In addition, mean WCI score for random wetlands was higher than that for high impact wetlands, implying that floodplain wetlands were less impacted by the types of agricultural activities affecting high impact sites. Inter-year sampling of some wetlands revealed that WCI metrics were correlated in 2000 and 2001, implying that biological metrics provided useful indicators of disturbance in floodplain wetlands. ?? 2006, The Society of Wetland Scientists.

  4. Isolation on the West Florida Shelf with implications for red tides and pollutant dispersal in the Gulf of Mexico

    PubMed Central

    Olascoaga, M. J.

    2011-01-01

    Analysis of year-long drifter trajectories and records of simulated surface Lagrangian Coherent Structures (LCSs) have suggested the presence of a resilient Cross-Shelf Transport Barrier (CSTB) on the West Florida Shelf (WFS). The CSTB was conjectured to provide a large degree of isolation, which is consequential for the fueling of red tides on the southern WFS by nutrients possibly released by rivers and canals directly on the region. Here this conjecture is thoroughly tested by identifying LCSs as well as performing tracer advection calculations based on seven-year-long records of surface and subsurface currents produced by a HYbrid-Coordinate Ocean Model (HYCOM) simulation of the Gulf of Mexico (GoM). The identified LCSs suggest that the CSTB extends downward in the water column. The tracer calculations suggest that, while the majority of the nutrients possibly released by rivers and canals directly on the southern WFS are retained within the region for long times, only a small fraction of the nutrients possibly released by rivers outside the WFS reach the southern WFS, mainly accompanying shoreward excursions of the CSTB. These results add importance to the role played by the CSTB in controlling red tide development on the WFS. Implications of the results for the dispersal of pollutants, such as oil, in the GoM are discussed. PMID:22287830

  5. Maintenance of variable responses for coping with wetland drying in freshwater turtles.

    PubMed

    Roe, John H; Georges, Arthur

    2008-02-01

    Aquatic animals inhabiting temporary wetlands must respond to habitat drying either by estivating or moving to other wetlands. Using radiotelemetry and capture mark recapture, we examined factors influencing the decisions made by individuals in a population of freshwater turtles (Chelodina longicollis) in response to wetland drying in southeastern Australia. Turtles exhibited both behaviors, either remaining quiescent in terrestrial habitats for variable lengths of time (terrestrial estivation) or moving to other wetlands. Both the proportion of individuals that estivated terrestrially and the time individuals spent in terrestrial habitats increased with decreasing wetland hydroperiod and increasing distance to the nearest permanent wetland, suggesting behavioral decisions are conditional or state dependent (i.e., plastic) and influenced by local and landscape factors. Variation in the strategy or tactic chosen also increased with increasing isolation from other wetlands, suggesting that individuals differentially weigh the costs and benefits of residing terrestrially vs. those of long-distance movement; movement to other wetlands was the near universal strategy chosen when only a short distance must be traveled to permanent wetlands. The quality of temporary wetlands relative to permanent wetlands at our study site varies considerably and unpredictably with annual rainfall and with it the cost-benefit ratio of each strategy or tactic. Residency in or near temporary wetlands is more successful during wet periods due to production benefits, but movement to permanent wetlands is more successful, or least costly, during dry periods due to survival and body condition benefits. This shifting balance may maintain diversity in response of turtles to the spatial and temporal pattern in wetland quality if their response is in part genetically determined. PMID:18409437

  6. Hydrologic functions of prairie wetlands

    USGS Publications Warehouse

    LaBaugh, J.W.; Winter, T.C.; Rosenberry, D.O.

    1998-01-01

    Wetlands in the prairie known as potholes or sloughs represent an ever-changing mosaic of surface waters interacting with the atmosphere, groundwater, and each other in a variety of ways. Studies of groups of adjacent wetlands in different parts of the glaciated North American prairie have enabled some connections to be made between hydrologic processes, biological communities, and use of these wetlands by wetland-dependent wildlife. Understanding controls on variability in water levels, water volume, and salinity in these wetlands sets the stage for understanding controls on biological communities utilizing these wetlands. The role that natural variability in water and salinity plays in making these wetlands an important resource for waterfowl will provide an important context for those who are responsible for artificially altering the variability of water and salinity in prairie wetlands.

  7. North Atlantic Coastal Tidal Wetlands

    EPA Science Inventory

    The book chapter provides college instructors, researchers, graduate and advanced undergraduate students, and environmental consultants interested in wetlands with foundation information on the ecology and conservation concerns of North Atlantic coastal wetlands. The book c...

  8. Reducing sedimentation of depressional wetlands in agricultural landscapes

    USGS Publications Warehouse

    Skagen, S.K.; Melcher, C.P.; Haukos, D.A.

    2008-01-01

    Depressional wetlands in agricultural landscapes are easily degraded by sediments and contaminants accumulated from their watersheds. Several best management practices can reduce transport of sediments into wetlands, including the establishment of vegetative buffers. We summarize the sources, transport dynamics, and effect of sediments, nutrients, and contaminants that threaten wetlands and the current knowledge of design and usefulness of grass buffers for protecting isolated wetlands. Buffer effectiveness is dependent on several factors, including vegetation structure, buffer width, attributes of the surrounding watershed (i.e., area, vegetative cover, slope and topography, soil type and structure, soil moisture, amount of herbicides and pesticides applied), and intensity and duration of rain events. To reduce dissolved contaminants from runoff, the water must infiltrate the soil where microbes or other processes can break down or sequester contaminants. But increasing infiltration also diminishes total water volume entering a wetland, which presents threats to wetland hydrology in semi-arid regions. Buffer effectiveness may be enhanced significantly by implementing other best management practices (e.g., conservation tillage, balancing input with nutrient requirements for livestock and crops, precision application of chemicals) in the surrounding watershed to diminish soil erosion and associated contaminant runoff. Buffers require regular maintenance to remove sediment build-up and replace damaged or over-mature vegetation. Further research is needed to establish guidelines for effective buffer width and structure, and such efforts should entail a coordinated, regional, multi-scale, multidisciplinary approach to evaluate buffer effectiveness and impacts. Direct measures in "real-world" systems and field validations of buffer-effectiveness models are crucial next steps in evaluating how grass buffers will impact the abiotic and biotic variables attributes that

  9. Wetlands: The changing regulatory landscape

    SciTech Connect

    Glick, R.M. )

    1993-05-01

    Protection of wetlands became a national issue in 1988 when President George Bush pledged no net loss of wetlands in the US under his [open quotes]environmental presidency.[close quotes] As wetlands became a national issue, the job of protecting them became an obligation for many groups, including hydro-power developers. Now, when a site selected for development includes an area that may be classified as a wetland, the developer quickly discovers the importance of recognizing and protecting these natural habitats. Federal legislation severely limits development of wetland, and most states increase the restrictions with their own wetlands regulations. The difficulty of defining wetlands complicates federal and state enforcement. Land that appears to be dry may in fact be classified as a wetland. So, even if a site appears dry, potential hydro developers must confirm whether or not any jurisdictional wetlands are present. Regulated lands include much more than marshes and swamps. Further complicating the definition of wetlands, a recent court decision found that even artificially created wetlands, such as man-made ponds, may be subject to regulation. Hydro developers must be aware of current regulatory requirements before they consider development of any site that may contain wetlands. To be certain that a site is [open quotes]buildable[close quotes] from the standpoint of wetlands regulation, a developer must verify (with the help of state agencies) that the property does not contain any jurisdictional wetlands. If it does, the regulatory process before development becomes much more complicated. For the short term, uncertainty abounds and extreme caution is in order. Because the regulatory process has become so complex and an agreeable definition of wetlands so elusive, the trend among the Corps and collaborating agencies is to constrict nationwide permits in favor of narrowing the jurisdictional definition of wetlands.

  10. Wetlands: water, wildlife, plants, & people

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank, (artist)

    1996-01-01

    Wetlands are part of all our lives. They can generally be described as transitional areas between land and deepwater habitats. There are many different kinds of wetlands, and they can be found in many different habitat types, from forests to deserts; some are maintained by saltwater, others by freshwater. This poster shows general types of diverse wetlands and demonstrates how people and wetlands can benefit by living together. The diversity of plants and animals is shown in cartooned pictures. As with plants and animals, there are many different common names for the various wetland types. The common names used on this poster were used by the U.S. Fish and Wildlife Service in the publication "Wetlands-Status and Trends in the Conterminous United States, Mid-1970's to Mid-1980's." Estuarine wetland types--salt marshes and mangrove swamps--are labeled in red letters. The estuary is where ocean saltwater and river freshwater mix. The estuary is labeled in orange letters. The inland wetland types-inland marshes and wet meadows, forested wetlands, and shrub wetlands-are labeled in yellow. Other wetlands are present in rivers, lakes, and reservoirs. The water bodies associated with these wetlands are labeled in black. The poster is folded into 8.5" x 11" panels; front and back panels can easily be photocopied.