Science.gov

Sample records for isotope dilution thermal

  1. Blank Correction in Isotope Dilution.

    PubMed

    Pagliano, Enea; Mester, Zoltn; Meija, Juris

    2015-11-01

    A novel method for compensation of the procedural blank in isotope dilution is presented. This method, entitled "blank-matching", copes with the blank through experimental design. Both sample and calibration solutions are exposed to the same amount of isotopic standard and same procedural blank. The identical treatment of sample and calibrators eliminates the need for subtracting the procedural blank from the result obtained by isotope dilution. A further advantage of the method is that quantitation of the analyte in the procedural blank is not required. Blank-matching is simple and fast to implement, and it permits direct determination of results without further corrections. This aspect has an important metrological outcome: blank-matching isotope dilution can be considered a primary method of analysis that does not involve the procedural blank as a potential source of bias. PMID:26447950

  2. Calibration graphs in isotope dilution mass spectrometry.

    PubMed

    Pagliano, Enea; Mester, Zoltn; Meija, Juris

    2015-10-01

    Isotope-based quantitation is routinely employed in chemical measurements. Whereas most analysts seek for methods with linear theoretical response functions, a unique feature that distinguishes isotope dilution from many other analytical methods is the inherent possibility for a nonlinear theoretical response curve. Most implementations of isotope dilution calibration today either eliminate the nonlinearity by employing internal standards with markedly different molecular weight or they employ empirical polynomial fits. Here we show that the exact curvature of any isotope dilution curve can be obtained from three-parameter rational function, y=f(q)=(a0+a1q)/(1+a2q), known as the Pad[1,1] approximant. The use of this function allows eliminating an unnecessary source of error in isotope dilution analysis when faced with nonlinear calibration curves. In addition, fitting with Pad model can be done using linear least squares. PMID:26481988

  3. Gluconeogenesis from labeled carbon: estimating isotope dilution

    SciTech Connect

    Kelleher, J.K.

    1986-03-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.

  4. Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy.

    PubMed

    Shen, Chuan-Chou; Cheng, Hai; Edwards, R Lawrence; Moran, S Bradley; Edmonds, Henrietta N; Hoff, John A; Thomas, Rebecca B

    2003-03-01

    A technique has been developed to quantify ultratrace 231Pa (50-2000 ag; 1 ag = 10(-18) g) concentrations in seawater using isotope-dilution thermal ionization mass spectrometry (TIMS). The method is a modification of a process developed by Pickett et al. (Pickett, D. A.; Murrell, M. T.; Williams, R. W. Anal. Chem. 1994, 66, 1044-1049) and extends the technique to very low levels of protactinium. The procedural blank is 16 +/- 15 ag (2sigma), and the ionization efficiency (ions generated/atom loaded) approaches 0.5%. Measurement time is <1 h. The amount of 231Pa needed to produce 231Pa data with an uncertainty of +/-4-12% is 100-1000 ag (approximately 3 x 10(5) to 3 x 10(6) atoms). Replicate measurements made on known standards and seawater samples demonstrate that the analytical precision approximates that expected from counting statistics and that, based on detection limits of 38 and 49 ag, protactinium can be detected in a minimum sample size of surface seawater of approximately 2 L for suspended particulate matter and <0.1 L for filtered (<0.4 microm) seawater, respectively. The concentration of 231Pa (tens of attograms per liter) can be determined with an uncertainty of +/-5-10% (2sigma) for suspended particulate matter filtered from 5 to 10 L of seawater. For the dissolved fraction, 0.5-1 L of seawater yields 231Pa measurements with a precision of 1-10%. Sample size requirements are orders of magnitude less than traditional decay-counting techniques and significantly less than previously reported ICP-MS techniques. Our technique can also be applied to other environmental samples, including cave waters, rivers, and igneous rocks. PMID:12641225

  5. Isotope dilution study of exchangeable oxygen in premium coal samples

    SciTech Connect

    Finseth, D.

    1987-01-01

    A difficulty with improving the ability to quantitate water in coal is that truly independent methods do not always exist. The true value of any analytical parameter is always easier to determine if totally independent methods exist to determine that parameter. This paper describes the possibility of using a simple isotope dilution technique to determine the water content of coal and presents a comparison of these isotope dilution measurements with classical results for the set of Argonne coals from the premium coal sample program. Isotope dilution is a widely used analytical method and has been applied to the analysis of water in matrices as diverse as chicken fat, living humans, and coal. Virtually all of these applications involved the use of deuterium as the diluted isotope. This poses some problems if the sample contains a significant amount of exchangeable organic hydrogen and one is interested in discriminating exchangeable organic hydrogen from water. This is a potential problem in the coal system. To avoid this potential problem /sup 18/O was used as the diluted isotope in this work.

  6. Determination of lead, cadmium, indium, thallium and silver in ancient ices from Antarctica by isotope dilution-thermal ionization mass spectrometry

    USGS Publications Warehouse

    Matsumoto, A.; Hinkley, T.K.

    1997-01-01

    The concentrations of five chalcophile elements (Pb, Cd, In, Tl and Ag) and the lead isotope rarios in ancient ices from the Taylor Dome near coastal Antarctica, have been determined by the isotope dilutionthermal ionization mass spectrometry (ID-TIMS), with ultra-clean laboratory techniques. The samples were selected from segments of cores, one of which included a visible ash layer. Electric conductivity measurement (ECM) or dielectric properties (DEP) gave distinctive sharp peaks for some of the samples c hosen. Exterior portions of the sample segments were trimmed away by methods described here. Samples w ere evaporated to dryness and later separated into fractions for the five elements using an HBr-HNO3 a nion exchange column method. The concentrations are in the range 2.62-36.7 pg Pb/g of ice, 0.413-2.83 pg Cd/g, 0.081-0.34 pg In/g, 0.096-2.8 pg Tl/g and 0.15-0.84 pg Ag/g. respectively. The dispersions in duplicate analyses are about ??1% for lead and cadmium, ??2% for indium. ??4% for thallium and ??6% for silver, respectively. The concentrations of lead obtained are commonly higher than those in the present-day Antarctic surface snows, but the isotope ratios are distinctively higher than those of the present-day snows and close to those of the other ancient ice collected from a different Antarctic area.

  7. Short course on St-02 applications of isotope dilutions and isotopic measurements

    SciTech Connect

    Miller, P.

    1998-01-05

    This short course includes information on these topics and subtopics: (I) Nuclear Properties: (A) Historic roots; (B) Nomenclature; (C) Nuclear Stability and abundance; (D) Uses of isotopic techniques; (II) Instrumentation: (A) Sources; (B) Mass resolving elements; (C) Detectors; (III) Making Isotopic Measurements by ICP-MS: (A) Deadtime Correction; (B) Mass Discrimination; (C) Signal /Noise considerations; (IV) Applications and examples: (A) Isotope dilution; (B) Double Spike; (C) Biological Application; (D) Environmental Application; (E) Geological.

  8. Using isotope dilution mass spectrometry to determine aqueous trichloroacetic acid

    SciTech Connect

    Norwood, D.L.; Christman, R.F.; Johnson, J.D.; Hass, J.R.

    1986-01-01

    The development, verification, and application of a method based on isotope-dilution gas chromatography-mass spectrometry to determine aqueous trichloroacetic acid (TCAA) at the micrograms per litre level are described. The simultaneous determination of aqueous chloroform is also demonstrated. Trichloroacetic acid is shown to be a significant by-product of the chlorination of raw waters in the laboratory and to constitute a large fraction of the total organic halide (TOX) formed. Analysis of finished-water samples indicated that TCAA, like trihalomethanes is ubiquitous. Positive correlations exist between the levels of TCAA in laboratory-chlorinated raw waters and in finished waters and measured TOX.

  9. Simple isotope dilution assay for propionic acid and isovaleric acid.

    PubMed

    Arthur, K; Hommes, F A

    1995-11-01

    A gas chromatographic-mass spectrometric method is described for the assay of propionic acid and of isovaleric acid in physiological fluids by isotope dilution. The acids are derivatized to the pentafluorobenzyl esters to decrease volatility to render them suitable for GC-MS analysis. The following reference values were found. Propionic acid: plasma 0.54 +/- 0.38 mumol/l (n = 13, range 0.03-1.38 mumol/l), urine 1.7 +/- 1.6 mumol/mmol creatinine (n = 9, range 0.1-4.9 mumol/mmol creatinine). Isovaleric acid: plasma 0.89 +/- 0.93 mumol/l (n = 10, range 0.01-3.03 mumol/l), urine 0.38 +/- 0.51 mumol/mmol creatinine (n = 10, range 0.01-1.70 mumol/mmol creatinine). PMID:8925066

  10. Nutritional assessment by isotope dilution analysis of body composition

    SciTech Connect

    Szeluga, D.J.; Stuart, R.K.; Utermohlen, V.; Santos, G.W.

    1984-10-01

    The three components of body mass, body cell mass (BCM), extracellular fluid (ECF), and fat + extracellular solids (ECS: bone, tendon, etc) can be quantified using established isotope dilution techniques. With these techniques, total body water (TBW) and ECF are measured using 3H/sub 2/O and /sup 82/Bromine, respectively, as tracers. BCM is calculated from intracellular fluid (ICF) where ICF . TBW - ECF. Fat + ECS is estimated as: body weight - (BCM + ECF). TBW and ECF can be determined by either of two calculation methods, one requiring several timed plasma samples (extrapolation method) and one requiring a single plasma sample and a 4-h urine collection (urine-corrected method). The comparability of the two calculation methods was evaluated in 20 studies in 12 bone marrow transplant recipients. We found that for determination of TBW and ECF there was a very strong linear relationship (r2 greater than 0.98) between the calculation methods. Further comparisons (by t test, 2-sided) indicated that for the determination of ECF, the methods were not significantly (p greater than 0.90) different; however, TBW determined by the urine-corrected method was slightly (0.1 to 6%), but significantly (p less than 0.01) greater than that determined by the extrapolation method. Therefore, relative to the extrapolation method, the urine-corrected method ''over-estimates'' BCM and ''under-estimates'' fat + ECS since determination of these compartment sizes depends on measurement of TBW. We currently use serial isotope dilution studies to monitor the body composition changes of patients receiving therapeutic nutritional support.

  11. Oxygen and hydrogen isotopes in thermal waters at Zunil, Guatemala

    SciTech Connect

    Fournier, R.O.; Hanshaw, B.B.; Urrutia Sole, J.F.

    1982-10-01

    Enthalpy-chloride relations suggest that a deep reservoir exists at Zunil with a temperature near 300/sup 0/C. Water from that reservoir moves to shallower and cooler local reservoirs, where it mixes with diluted water and then attains a new water-rock chemical equilibrium. This mixed water, in turn, generally is further diluted before being discharged from thermal springs. The stable-isotopic composition of the thermal water indicates that recharge for the deep water at Zunil comes mainly from local sources. The presence of measurable tritium, which suggests that the deep water has been underground about 20 to 30 years, also indicates a local source for the recharge.

  12. Application of Uranium Isotope Dilution Mass Spectrometry in the preparation of New Certified Reference Materials

    NASA Astrophysics Data System (ADS)

    Hasözbek, A.; Mathew, K. J.; Orlowicz, G.; Srinivasan, B.; Narayanan, U.

    2012-04-01

    Proven measurement techniques play a critical role in the preparation of Certified Reference Materials (CRMs) - those requiring high accuracy and precision in the measurement results. Isotope Dilution Mass Spectrometry (IDMS) is one such measurement method commonly used in the quantitative analysis of uranium in nuclear safeguards and isotope geology applications. In this project, we evaluated the possibility of using some of the uranium isotopic and assay CRMs made earlier by the New Brunswick laboratory as IDMS spikes to define the uranium mass fraction in future preparations of CRMs. Uranium solutions prepared from CRM 112-A (a highly pure uranium metal assay standard) and CRM 115 (a highly pure uranium oxide isotopic and assay standard) were used as spikes in the determination of uranium. Two different thermal ionization mass spectrometer instruments (MAT 261 and TRITON) were used for the isotopic measurements. Standard IDMS equation was used for data reduction to yield results for uranium mass fraction along with uncertainties, the latter calculated according to GUM. The results show that uranium mass fraction measurements can be made with the required accuracy and precision for defining the uranium concentration in new CRMs as well as in routine samples analyses.

  13. Isotope Dilution Mass Spectrometry for the Quantification of Sulfane Sulfurs

    PubMed Central

    Liu, Chunrong; Zhang, Faya; Munske, Gerhard; Zhang, Hui

    2014-01-01

    Sulfane sulfurs are one type of important reactive sulfur species. These molecules have unique reactivity that can attach reversibly to other sulfur atoms and exhibit regulatory effects in diverse biological systems. Recent studies have suggested that sulfane sulfurs are involved in signal transduction processes regulated by hydrogen sulfide (H2S). Accurate and reliable measurements of sulfane sulfurs in biological samples are thus needed to reveal their production and mechanisms of actions. Herein we report a convenient and accurate method for the determination of sulfane sulfurs concentrations. The method employs a triphenylphosphine derivative (P2) to capture sulfane sulfurs as a stable phosphine sulphide product PS2. The concentration of PS2 was then determined by isotope dilution mass spectrometry, using a 13C3-labelled phosphine sulfide PS1 as the internal standard. The specificity and efficiency of the method were proved by model reactions. It was also applied in the measurement of sulfane sulfurs in mice tissues including brain, kidney, lung, liver, heart, spleen, and blood. PMID:25152234

  14. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  15. LIDIA: large isotope dilution ion-probe analyses

    NASA Astrophysics Data System (ADS)

    Allgre, Claude J.; Prinzhofer, Alain; Pierre, Alain

    1989-03-01

    A new analytical technique for trace element analysis has been developed based on isotope dilution and on the use of an ion probe. It allows the determination of concentrations at the ppm level with a precision of a few percent. The chemical procedure involves dissolution, spiking of the sample and separation of groups of trace elements. The samples are subsequently loaded on a silicon substrate, and a programmable motion of the sample holder in the ion probe allows a routine analysis of around 80 loads per "run", which corresponds to 15 elemental concentrations (REE, Li, K, Rb, Sr, Ba) on 10 different samples. Various parameters influencing the precision of the technique have been tested. The precision and the swiftness of the technique have allowed us to easily test its reproducibility. From a sample of tholeiitic basalt, split in ten fractions after dissolution, the total variation of the concentrations are 1.5% for Sr, 2% for the REE, 4% for Ba and Rb, and 10% for Li.

  16. Development of a stable isotope dilution assay for tenuazonic acid.

    PubMed

    Asam, Stefan; Liu, Yang; Konitzer, Katharina; Rychlik, Michael

    2011-04-13

    A stable isotope dilution assay (SIDA) for the Alternaria mycotoxin tenuazonic acid was developed. Therefore, [(13)C(6),(15)N]-tenuazonic acid was synthesized from [(13)C(6),(15)N]-isoleucine by Dieckmann intramolecular cyclization after acetoacetylation with diketene. The synthesized [(13)C(6),(15)N]-tenuazonic acid was used as the internal standard for determination of tenuazonic acid in tomato products by liquid chromatography tandem mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. Method validation revealed a limit of detection of 0.1 μg/kg and a limit of quantitation of 0.3 μg/kg. Recovery was close to 100% in the range of 3-300 μg/kg. Determination of tenuazonic acid in two samples of different tomato ketchups (naturally contaminated) was achieved with a coefficient of variation of 2.3% and 4.7%. Different tomato products (n = 16) were analyzed for their content of tenuazonic acid using the developed SIDA. Values were between 15 and 195 μg/kg (tomato ketchup, n = 9), 363 and 909 μg/kg (tomato paste, n = 2), and 8 and 247 μg/kg (pureed tomatoes and comparable products, n = 5). PMID:21370870

  17. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    ERIC Educational Resources Information Center

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  18. Thermal conductivity and sound attenuation in dilute atomic Fermi gases

    SciTech Connect

    Braby, Matt; Chao Jingyi; Schaefer, Thomas

    2010-09-15

    We compute the thermal conductivity and sound attenuation length of a dilute atomic Fermi gas in the framework of kinetic theory. Above the critical temperature for superfluidity, T{sub c}, the quasiparticles are fermions, whereas below T{sub c}, the dominant excitations are phonons. We calculate the thermal conductivity in both cases. We find that at unitarity the thermal conductivity {kappa} in the normal phase scales as {kappa}{proportional_to}T{sup 3/2}. In the superfluid phase we find {kappa}{proportional_to}T{sup 2}. At high temperature the Prandtl number, the ratio of the momentum and thermal diffusion constants, is 2/3. The ratio increases as the temperature is lowered. As a consequence we expect sound attenuation in the normal phase just above T{sub c} to be dominated by shear viscosity. We comment on the possibility of extracting the shear viscosity of the dilute Fermi gas at unitarity using measurements of the sound absorption length.

  19. Traceable values for nitrate in water samples by isotope dilution analysis using a small thermionic quadrupole mass spectrometer.

    PubMed

    Wolff, J C; Taylor, D P; De Bivre, P

    1996-09-15

    An isotope dilution mass spectrometric procedure was developed for the determination of nitrate in water samples. The isotope dilution experiments were carried out using the Institute for Reference Materials and Measurements's 15N-enriched nitrate spike reference material IRMM-627. Nitrate was isolated from the matrix by precipitating it as nitron nitrate, from which emission of negative thermal NO2-ions was found to be best. The ions were produced in the ion source of a small, low-cost, easy-to-handle thermionic quadrupole mass spectrometer equipped with a secondary electron multiplier coupled to an ion counter. The procedure developed was applied to the measurement of nitrate in a certified reference material (stimulated rainwater, CRM 409 from Community Bureau of Reference), in sparkling mineral water, and in tap water. Results were compared with those obtained using ion chromatography. Good agreement (within 1%) was found between the concentration determined by isotope dilution mass spectrometry, the values from ion chromatography, and the certified value. The procedure developed allowed accurate and traceable determinations of nitrate in water samples, with an expanded uncertainty (coverage factor k = 2) of 2-5%, and the detection limit was found to be 2 mumol kg-1. PMID:8797384

  20. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  1. Dry Blending to Achieve Isotopic Dilution of Highly Enriched Uranium Oxide Materials

    SciTech Connect

    Henry, Roger Neil; Chipman, Nathan Alan; Rajamani, R. K.

    2001-04-01

    The end of the cold war produced large amounts of excess fissile materials in the United States and Russia. The Department of Energy has initiated numerous activities to focus on identifying material management strategies for disposition of these excess materials. To date, many of these planning strategies have included isotopic dilution of highly enriched uranium as a means of reducing the proliferation and safety risks. Isotopic dilution by dry blending highly enriched uranium with natural and/or depleted uranium has been identified as one non-aqueous method to achieve these risk (proliferation and criticality safety) reductions. This paper reviews the technology of dry blending as applied to free flowing oxide materials.

  2. Candidate processes for diluting the {sup 235}U isotope in weapons-capable highly enriched uranium

    SciTech Connect

    Snider, J.D.

    1996-02-01

    The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile {sup 235}U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile {sup 235}U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel.

  3. Isotopic Dilution Analysis and Secular Equilibrium Study: Two Complementary Radiochemistry Experiments.

    ERIC Educational Resources Information Center

    Williams, Kathryn R.; Lipford, Levin C.

    1985-01-01

    Describes a complementary pair of radiochemistry experiments for instruction of isotopic dilution analysis and secular equilibrium. Both experiments use the readily available cesium-137 nuclide and the simple precipitation technique for cesium with the tetraphenylborate anion. Procedures used and typical results obtained are provided and

  4. DETERMINATION OF NIACIN IN FOOD MATERIALS BY ISOTOPE DILUTION MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of deuterium-labeled nicotinic acid makes stable isotope dilution mass spectrometry (SIDMS) coupled with liquid chromatography (LC) an attractive option for the determination of the water-soluble B-vitamin, niacin, in food samples. We present a method based on acid digestion, solid ...

  5. Putting a spin on LA-ICP-MS analysis combined to isotope dilution.

    PubMed

    Claverie, Fanny; Malherbe, Julien; Bier, Naomi; Molloy, John L; Long, Stephen E

    2013-03-01

    The determination of Zn, Sr, Ba, and Pb in solid samples has been achieved by laser ablation inductively coupled plasma isotope dilution mass spectrometry using a spinning platform. The fast rotation of a sample and an isotopically enriched spike placed close together on a sample holder allowed performing the isotope dilution directly inside the ablation cell. The proportion of spike versus sample of the aerosol mixture obtained has been determined online by isotope dilution in order to correct for differences in ablation rate although both materials were placed on the axis of rotation of the motor. Homogeneous, time-stable, and reusable samples were prepared by lithium borate fusion. A unique isotopically enriched spike glass was used to analyze four Standard Reference Materials of different matrix (after a simple polishing): two sediments Standard Reference Material (SRM) 1944 and SRM 2702 and two soils SRM 2586 and SRM 2711a. The proposed method yielded mass fractions with a deviation from the certified value usually lower than 12% and a precision of less than 9% RSD (except for Zn in SRM 2586 and 2711a). Although direct spiking of the solid before fusion could presumably provide better isotopic mixing, the presented methodology allows the reuse of the spike glass (thus, decreasing drastically the cost of the analysis) and is relatively faster because the spike does not need to be weighted, added, and evaporated each time. These results demonstrate the potential of this newly developed method for fast analysis of solid samples using isotope dilution at a low cost. PMID:23307123

  6. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry

    SciTech Connect

    Fassett, J.D.; Murphy, T.J. )

    1990-02-15

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g.

  7. Quantification of ferritin bound iron in human serum using species-specific isotope dilution mass spectrometry.

    PubMed

    Ren, Yao; Walczyk, Thomas

    2014-09-01

    Ferritin is a hollow sphere protein composed of 24 subunits that can store up to 4500 iron atoms in its inner cavity. It is mainly found in the liver and spleen but also in serum at trace levels. Serum ferritin is considered as the best single indicator in assessing body iron stores except liver or bone marrow biopsy. However, it is confounded by other disease conditions. Ferritin bound iron (FBI) and ferritin saturation have been suggested as more robust biomarkers. The current techniques for FBI determination are limited by low antibody specificity, low instrument sensitivity and possible analyte losses during sample preparation. The need for a highly sensitive and reliable method is widely recognized. Here we describe a novel technique to detect serum FBI using species-specific isotope dilution mass spectrometry (SS-IDMS). [(57)Fe]-ferritin was produced by biosynthesis and in vitro labeling with the (57)Fe spike in the form of [(57)Fe]-citrate after cell lysis and heat treatment. [(57)Fe]-ferritin for sample spiking was further purified by fast liquid protein chromatography. Serum ferritin and added [(57)Fe]-ferritin were separated from other iron species by ultrafiltration followed by isotopic analysis of FBI using negative thermal ionization mass spectrometry. Repeatability of our assay is 8% with an absolute detection limit of 18 ng FBI in the sample. As compared to other speciation techniques, SS-IDMS offers maximum control over sample losses and species conversion during analysis. The described technique may therefore serve as a reference technique for clinical applications of FBI as a new biomarker for assessing body iron status. PMID:25008269

  8. Cadmium fixation in soils measured by isotopic dilution

    SciTech Connect

    Smolders, E.; Brans, K.; Foeldi, A.; Merckx, R.

    1999-01-01

    There is conflicting evidence on the effect of time of contact between soil and Cd on Cd availability to plants. If Cd can be fixed in soil by aging, higher soil contamination may be tolerated. Fixation of Cd by soil can be studied by adding small quantities of {sup 109}Cd to the indigenous soil Cd. The ratio of {sup 109}Cd to indigenous Cd in soil extracts or in plants gives information on the lability of Cd in soil. This isotope exchange technique was used to measure the labile and fixed Cd fractions in 10 Belgian agricultural soils (Soils A--I) with both background and elevated Cd content. The isotopically exchangeable Cd pool (E value) was measured after equilibrating {sup 109}Cd spiked soil suspensions in CaCl{sub 2} 0.01 M for 7 d. The %E values (the E value relative to aqua regia soluble Cd) ranged from 62 to 90% in the eight soils where %E values could be detected. The plant labile Cd pool, relative to aqua regia soluble Cd (%L value) was measured from the specific activities in wheat (Triticum aestivum L.) seedlings grown for 16 to 21 d on soils spiked with {sup 109}Cd. The Cd %L value varied from 55 to 109% (mean: 82%) with five soils having a significant (P < 0.05) fixed Cd fraction. Varying the soil incubation procedure after soil spiking and before plant growth marginally affected the specific activity of Cd in plants. The %L values always exceeded the respective %E value between 1.05- and 1.4-fold. It is concluded that Cd fixation, where found, is not very pronounced.

  9. Chemically selective polymer substrate based direct isotope dilution alpha spectrometry of Pu.

    PubMed

    Paul, Sumana; Pandey, Ashok K; Shah, R V; Aggarwal, S K

    2015-06-01

    Quantification of actinides in the complex environmental, biological, process and waste streams samples requires multiple steps like selective preconcentration and matrix elimination, solid source preparations generally by evaporation or electrodeposition, and finally alpha spectrometry. To minimize the sample manipulation steps, a membrane based isotope dilution alpha spectrometry method was developed for the determination of plutonium concentrations in the complex aqueous solutions. The advantages of this method are that it is Pu(IV) selective at 3M HNO3, high preconcentration factor can be achieved, and obviates the need of solid source preparation. For this, a thin phosphate-sulfate bifunctional polymer layer was anchored on the surface of microporous poly(ethersulfone) membrane by UV induced surface grafting. The thickness of the bifunctional layer on one surface of the poly(ethersulfone) membrane was optimized. The thickness, physical and chemical structures of the bifunctional layer were studied by secondary ionization mass spectrometry (SIMS), scanning electron microscopy (SEM) and SEM-EDS (energy-dispersive spectroscopy). The optimized membrane was used for preconcentration of Pu(IV) from aqueous solutions having 3-4M HNO3, followed by direct quantification of the preconcentrated Pu(IV) by isotope dilution alpha spectrometry using (238)Pu spike. The chemical recovery efficiency of Pu(IV) was found to be 863% below Pu(IV) loading capacity (1.08 ?g in 21 cm(2)) of the membrane sample. The experiments with single representative actinides indicated that Am(III) did not sorb to significant extent (7%) but U(VI) sorbed with 783% efficiency from the solutions having 3M HNO3 concentration. However, Pu(IV) chemical recovery in the membrane remained unaffected from the solution containing 1:1000 wt. proportion of Pu(IV) to U(VI). Pu concentrations in the (U, Pu)C samples and in the irradiated fuel dissolver solutions were determined. The results thus obtained were found to be in good agreement with those obtained by conventional alpha spectrometry, biamperometry and thermal ionization mass spectrometry. PMID:26002326

  10. Development of stable isotope dilution assays for the quantitation of Amadori compounds in foods.

    PubMed

    Meitinger, Michael; Hartmann, Sandra; Schieberle, Peter

    2014-06-01

    During thermal processing of foods, reducing carbohydrates and amino acids may form 1-amino-1-desoxyketoses named Amadori rearrangement products after the Italian chemist Mario Amadori. Although these compounds are transient intermediates of the Maillard reaction, they are often used as suitable markers to measure the extent of a thermal food processing, such as for spray-dried milk or dried fruits. Several methods are already available in the literature for their quantitation, but measurements are often done with external calibration without addressing losses during the workup procedure. To cope with this challenge, stable isotope dilution assays in combination with LC-MS/MS were developed for the glucose-derived Amadori products of the seven amino acids valine, leucine, isoleucine, phenylalanine, tyrosine, methionine, and histidine using the respective synthesized [(13)C6]-labeled isotopologues as internal standards. The quantitation of the analytes added to a model matrix showed a very good sensitivity with the lowest limits of detection for the Amadori compound of phenylalanine of 0.1 μg/kg starch and 0.2 μg/kg oil, respectively. Also, the standard deviation measured in, for example, wheat beer was only ±2% for this analyte. Application of the method to several foods showed the highest concentrations of the Amadori product of valine in unroasted cocoa (342 mg/kg) as well as in dried bell pepper (3460 mg/kg). In agreement with literature data, drying of foods led to the formation of Amadori products, whereas they were degraded during roasting of, for example, coffee or cocoa. The study presents for the first time results on concentrations of the Amadori compounds of tyrosine and histidine in foods. PMID:24865106

  11. Accurate analysis of trace pentachlorophenol in textiles by isotope dilution liquid chromatography-mass spectrometry.

    PubMed

    Su, FuHai; Zhang, Pan

    2011-03-01

    A highly accurate method for measuring pentachlorophenol (PCP) concentrations in textile samples was developed. This highly accurate method for the analysis of textile samples is valuable, given the inherent challenges associated with the complexity of the sample matrix. This method can be applied to certify the concentration of pentachlorophenol in textile CRMs. A measurement procedure based on isotope dilution liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) was developed. Samples were pretreated with acid and then with n-hexane. Excellent precision was obtained. The validated concentration ranges for the method were 1.0-50 ng/g, the LOD was 1.0 ng/g, and the LOQ was 5.0 ng/g. The precision of this method is in the range of 0.80-1.40%. The method can trace to mass. PMID:21259431

  12. Reverse isotope dilution method for determining benzene and metabolites in tissues

    SciTech Connect

    Bechtold, W.E.; Sabourin, P.J.; Henderson, R.F.

    1988-07-01

    A method utilizing reverse isotope dilution for the analysis of benzene and its organic soluble metabolites in tissues of rats and mice is presented. Tissues from rats and mice that had been exposed to radiolabeled benzene were extracted with ethyl acetate containing known, excess quantities of unlabeled benzene and metabolites. Butylated hydroxytoluene was added as an antioxidant. The ethyl acetate extracts were analyzed with semipreparative reversed-phase HPLC. Isolated peaks were collected and analyzed for radioactivity (by liquid scintillation spectrometry) and for mass (by UV absorption). The total amount of each compound present was calculated from the mass dilution of the radiolabeled isotope. This method has the advantages of high sensitivity, because of the high specific activity of benzene, and relative stability of the analyses, because of the addition of large amounts of unlabeled carrier analogue.

  13. Determination of perchlorate in infant formula by isotope dilution ion chromatography/tandem mass spectrometry

    PubMed Central

    Wang, Z.; Lau, B.P.-Y.; Tague, B.; Sparling, M.; Forsyth, D.

    2011-01-01

    A sensitive and selective isotope dilution ion chromatography/tandem mass spectrometry (ID IC-MS/MS) method was developed and validated for the determination of perchlorate in infant formula. The perchlorate was extracted from infant formula by using 20 ml of methanol and 5 ml of 1% acetic acid. All samples were spiked with 18O4 isotope-labelled perchlorate internal standard prior to extraction. After purification on a graphitised carbon solid-phase extraction column, the extracts were injected into an ion chromatography system equipped with an Ionpac AS20 column for separation of perchlorate from other anions. The presence of perchlorate in samples was quantified by isotope dilution mass spectrometry. Analysis of both perchlorate and its isotope-labelled internal standard was carried out on a Waters Quattro Ultima triple quadrupole mass spectrometer operating in a multiple reaction monitoring (MRM) negative ionisation mode. The method was validated for linearity and range, accuracy, precision, sensitivity, and matrix effects. The limit of quantification (LOQ) was 0.4 ?g 1?1 for liquid infant formula and 0.95 ?g kg?1 for powdered infant formula. The recovery ranged from 94% to 110% with an average of 98%. This method was used to analyse 39 infant formula, and perchlorate concentrations ranging from

  14. Total synthesis of isotopically enriched Si-29 silica NPs as potential spikes for isotope dilution quantification of natural silica NPs.

    PubMed

    Plmai, Marcell; Szalay, Roland; Bartczak, Dorota; Varga, Zoltn; Nagy, Lvia Naszlyi; Gollwitzer, Christian; Krumrey, Michael; Goenaga-Infante, Heidi

    2015-05-01

    A new method was developed for the preparation of highly monodisperse isotopically enriched Si-29 silica nanoparticles ((29)Si-silica NPs) with the purpose of using them as spikes for isotope dilution mass spectrometry (IDMS) quantification of silica NPs with natural isotopic distribution. Si-29 tetraethyl orthosilicate ((29)Si-TEOS), the silica precursor was prepared in two steps starting from elementary silicon-29 pellets. In the first step Si-29 silicon tetrachloride ((29)SiCl4) was prepared by heating elementary silicon-29 in chlorine gas stream. By using a multistep cooling system and the dilution of the volatile and moisture-sensitive (29)SiCl4 in carbon tetrachloride as inert medium we managed to reduce product loss caused by evaporation. (29)Si-TEOS was obtained by treating (29)SiCl4 with absolute ethanol. Structural characterisation of (29)Si-TEOS was performed by using (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. For the NP preparation, a basic amino acid catalysis route was used and the resulting NPs were analysed using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. Finally, the feasibility of using enriched NPs for on-line field-flow fractionation coupled with multi-angle light scattering and inductively coupled plasma mass spectrometry (FFF/MALS/ICP-MS) has been demonstrated. PMID:25617615

  15. A stable isotope dilution method for measuring bioavailability of organic contaminants.

    PubMed

    Delgado-Moreno, Laura; Gan, Jay

    2013-05-01

    Methods for determining bioavailability of organic contaminants suffer various operational limitations. We explored the use of stable isotope labeled references in developing an isotope dilution method (IDM) to measure the exchangeable pool (E) of pyrene and bifenthrin as an approximation of their bioavailability in sediments. The exchange of deuterated bifenthrin or pyrene with its native counterpart was completed within 48 h. The derived E was 38-82% for pyrene and 28-59% for bifenthrin. Regression between E and the sum of rapid and slow desorption fractions obtained from sequential desorption showed a slope close to 1.0. The ability of IDM to predict bioavailability was further shown from a strong relationship (r(2) > 0.93) between E and bioaccumulation into Chironomus tentans. Given the abundance of stable isotope labeled references and their relatively easy analysis, the IDM has the potential to become a readily adoptable tool for estimating organic contaminants bioaccessibility in various matrices. PMID:23434573

  16. Isotopic dilution studies of the chloroform-chloroform-d system by Raman difference spectroscopy

    NASA Astrophysics Data System (ADS)

    Laane, J.; Kiefer, W.

    1980-11-01

    Raman difference spectroscopy has been used to measure small frequency shifts in the ?1 and ?2 bands of CHCl3 and CDCl3 in various mixtures of liquid chloroform and deuterochloroform. The frequency shifts relative to the pure liquids vary linearly with concentration, and at infinitive dilution are determined to be for CHCl3: ??1=+0.56 and ??2=+1.92 cm-1; and for CDCl3: ??1=+0.33 and ??2=+1.82 cm-1. The fact that all frequency shifts are positive indicates that an exchange effect between like molecules is responsible for the phenomenon. The ?4 bands show no frequency shifts but narrow substantially in bandwidth upon isotopic dilution. The position of the composite (CHCl3+CDCl3) ?6 band relative to the pure liquids was also measured as a function of concentration. The data confirm that the frequency difference between this band in liquid CHCl3 and in CDCl3 is 1.05 cm-1. The ?6 frequency appear not to be significantly shifted by isotopic dilution.

  17. Assessment of vitamin A status in rats by isotope dilution: A simplified model

    SciTech Connect

    Furr, H.C.; Cooper, D.A.; Olson, J.A. )

    1990-02-26

    Isotope-dilution analysis of vitamin A status requires giving a known quantity of labeled vitamin A to the subject and measuring the ratio of labeled to unlabeled retinol in the blood after a period for equilibration. To calculate total body stores from the isotopic ratio of plasma retinol, several assumptions must be made. In considering new ways of better calculating liver vitamin A stores from isotope-dilution data, the authors used the data of Green et al. to estimate loss of vitamin A tracer as a function of time and of vitamin A status. This correction markedly improves the correlation between calculated and analyzed liver vitamin A stores and also quantitively explains the hyperbolic relationship between fraction of tracer dose recovered in liver and mass of liver vitamin A stores. Agreement of this model with experimental data suggests that efficiency of absorption and storage of vitamin A is not affected by vitamin A status. This model can be used to estimate both the amount of tracer needed for a given lower limit of detection and an optimum sampling time.

  18. Determination of phthalate esters in Chinese spirits using isotope dilution gas chromatography with tandem mass spectrometry.

    PubMed

    Wang, Jing; Li, Xiaomin; Zhang, Qinghe; Xiong, Jinping; Li, Hongmei

    2015-05-01

    Phthalate esters are additives used in polyvinylchloride and are found as contaminants in many food products. An isotope dilution mass spectrometry technique has been developed for accurate analysis of 16 phthalate esters in Chinese spirits by adopting the 16 corresponding isotope-labeled phthalate esters. The ethanol in the spirit sample was first removed by heating with a water bath at 100C with a stream of nitrogen, after which the residue was extracted with n-hexane twice. The phthalates collected were identified and quantified by gas chromatography with tandem mass spectrometry in multiple reaction monitoring mode. The spiking recoveries of 16 analytes ranged from 94.3 to 105.3% with relative standard deviation values of <6.5%. The detection limits for 16 analytes were <10.0 ng/g. The expanded relative uncertainties were from 3.0 to 14%. A survey was performed on Chinese spirits from the market. Six of the nine analyzed samples were contaminated by phthalates. Di-n-butyl phthalate and di-2-ethylhexyl phthalate showed higher detection frequency and concentrations. This isotope dilution gas chromatography with tandem mass spectrometry method is simple, rapid, accurate, and highly sensitive, which qualifies as a candidate reference method for the determination of phthalates in spirits. PMID:25755215

  19. Use of Isotope Dilution Method To Predict Bioavailability of Organic Pollutants in Historically Contaminated Sediments

    PubMed Central

    2015-01-01

    Many cases of severe environmental contamination arise from historical episodes, where recalcitrant contaminants have resided in the environment for a prolonged time, leading to potentially decreased bioavailability. Use of bioavailable concentrations over bulk chemical levels improves risk assessment and may play a critical role in determining the need for remediation or assessing the effectiveness of risk mitigation operations. In this study, we applied the principle of isotope dilution to quantify bioaccessibility of legacy contaminants DDT and PCBs in marine sediments from a Superfund site. After addition of 13C or deuterated analogues to a sediment sample, the isotope dilution reached a steady state within 24 h of mixing. At the steady state, the accessible fraction (E) derived by the isotope dilution method (IDM) ranged from 0.28 to 0.89 and was substantially smaller than 1 for most compounds, indicating reduced availability of the extensively aged residues. A strong linear relationship (R2 = 0.86) was found between E and the sum of rapid (Fr) and slow (Fs) desorption fractions determined by sequential Tenax desorption. The IDM-derived accessible concentration (Ce) was further shown to correlate closely with tissue residue in the marine benthic polychaete Neanthes arenaceodentata exposed in the same sediments. As shown in this study, the IDM approach involves only a few simple steps and may be readily adopted in laboratories equipped with mass spectrometers. This novel method is expected to be especially useful for historically contaminated sediments or soils, for which contaminant bioavailability may have changed significantly due to aging and other sequestration processes. PMID:24946234

  20. Substoichiometric determination of traces of gold by radioactive isotope-dilution analysis.

    PubMed

    Beardsley, D A; Briscoe, G B; Růzicka, J; Williams, M

    1967-08-01

    A radioactive isotope-dilution method for the determination of traces of gold has been developed. It is based on the solvent extraction of gold diethyldithiocarbamate from 0-5N sulphuric acid containing ascorbic acid, by means of a substoichiometric amount of zinc diethyldithiocarbamate in chloroform. The separation has been applied to the analysis of gold-doped semiconductor-grade silicon and of gold-bearing ores. Amounts of gold down to 5 x 10(-7)g 20 ml of test solution can be determined. PMID:18960178

  1. Stable-isotope dilution LCMS for quantitative biomarker analysis

    PubMed Central

    Ciccimaro, Eugene; Blair, Ian A

    2010-01-01

    The ability to conduct validated analyses of biomarkers is critically important in order to establish the sensitivity and selectivity of the biomarker in identifying a particular disease. The use of stable-isotope dilution (SID) methodology in combination with LCMS/MS provides the highest possible analytical specificity for quantitative determinations. This methodology is now widely used in the discovery and validation of putative exposure and disease biomarkers. This review will describe the application of SID LCMS methodology for the analysis of small-molecule and protein biomarkers. It will also discuss potential future directions for the use of this methodology for rigorous biomarker analysis. PMID:20352077

  2. Isotopic Dilution GC/MS Method for Methionine Determination in Biological Media

    NASA Astrophysics Data System (ADS)

    Horj, Elena; Iordache, Andreea; Culea, Monica

    2011-10-01

    The isotopic dilution mass spectrometry technique is the method of choice for sensitive and accurate determination of analytes in biological samples. The aim of this work was to establish a sensitive analytical method for the determination of methionine in different biological media. Quantitation of methionine from the resultant tracer spectrum requires deconvolution of the enrichment of the isotopomers. Deconvolution of the ion abundance ratios to yield tracer-to-tracee ratio for the isotopomer was done using Brauman's least squares approach. Comparison with regression curve calculation method is presented. The method was applied for amino-acids determination in beef, pork and fish meat.

  3. Evidence for dilution of deep, confined ground water by vertical recharge of isotopically heavy Pleistocene water

    SciTech Connect

    Siegel, D.I. )

    1991-05-01

    New analyses of the isotopic composition of water, {sup 14}C-dating of dissolved inorganic carbon, and order-of-magnitude Darcy calculations suggest that a dilute body of water, trending north-south in the Cambrian-Ordovician aquifer of Iowa, was emplaced as vertical recharge of Pleistocene-age water from the base of the Des Moines lobe of late Wisconsin time. The recharge occurred through more than 300 m of overlaying Silurian to Mississippian age rocks. The {delta}{sup 18}O values range from {minus}10{per thousand} to {minus}9{per thousand} for the dilute water body and are consistent with a mixture of Des Moines lobe meltwater and precipitation found today in the north-central US. These results suggest that (1) the climate at the end of the last glaciation was mild and (2) a ground-water stable isotope signature similar to that of modern precipitation in an aquifers recharge area is not a priori evidence for relatively recent recharge.

  4. A human in vivo model for the determination of lead bioavailability using stable isotope dilution.

    PubMed

    Graziano, J H; Blum, C B; Lolacono, N J; Slavkovich, V; Manton, W I; Pond, S; Moore, M R

    1996-02-01

    Beverages stored in lead-crystal glass accumulate extraordinary concentrations of lead. We obtained a lead-crystal decanter manufactured with lead from Australia, where the ratio of 206Pb/207Pb is distinctly different from that in the United States. We sought to determine the bioavailability of crystal-derived lead, using the technique of stable isotope dilution in blood. We conducted a single-dose, nonrandomized cross-over study in which participants were admitted to the Clinical Research Center twice, 1 week apart. During the first admission, subjects ingested sherry obtained from the original bottle. During the second admission, they ingested sherry that had been stored in the crystal decanter and that had achieved a lead concentration of 14.2 mu mol/l. After ingesting decanter-stored sherry, mean blood lead rose significantly (p = 0.0003) from 0.10 to 0.18 mu mol/l, while mean 206Pb/207Pb fell from 1.202 to 1.137 (p = 0.0001). On average, 70% of the ingested dose of lead was absorbed. We conclude that lead derived from crystal glass is highly bioavailable; repeated ingestions could cause elevated blood lead concentration. The technique of stable isotope dilution lends itself to the study of the bioavailability of lead in other matrices, including soil. PMID:8820585

  5. High-accuracy gas analysis via isotope dilution mass spectrometry: Carbon dioxide in air

    SciTech Connect

    Verkouteren, R.M.; Dorko, W.D. )

    1989-11-01

    An absolute method, based on isotope dilution mass spectrometry, is described for the determination of atmospheric concentrations of carbon dioxide (CO{sub 2}) in dry air. In this study, the relative amounts of sample and spike gases are measured manometrically under temperature control before blending. The spike CO{sub 2} composition is approximately 0.1 atom % {sup 13}C while the oxygen isotopic composition is normal. Exhaustive assessment of potential error sources leads to accountability of observed imprecision and determination of accuracy confidence intervals (CI). The imprecision interval (95% CI) about the mean is smaller than {plus minus} 0.1% ({plus minus}0.4 {mu}mol/mol) while the accuracy interval (95% CI) is {plus minus}0.15% ({plus minus}0.52 {mu}mol/mol) for air having a CO{sub 2} concentration of about 350 {mu}mol/mol. Calculated concentrations of CO{sub 2} are statistically indistinguishable from those generated by gravimetry, an independent method of analysis. In this study, the major contributors to uncertainty and imprecision are the predetermination of the gas volume ratio and the measurement of the isotopic composition of the blended CO{sub 2}, respectively.

  6. Recent developments in stable isotope dilution assays in mycotoxin analysis with special regard to Alternaria toxins.

    PubMed

    Asam, Stefan; Rychlik, Michael

    2015-10-01

    Stable isotope dilution assays (SIDAs) are becoming ever commoner in mycotoxin analysis, and the number of synthesized or commercially available isotopically labelled compounds has greatly increased in the 7 years since our last review dealing with this topic. Thus, this review is conceived as an update for new applications or improvements of SIDAs for compounds discussed earlier, but the main focus is on newly introduced labelled substances and the development of SIDAs for, for example, fusarin C, moniliformin or the enniatins. Mycotoxin research has concentrated on the emerging group of Alternaria toxins in recent years, and a series of SIDAs have been developed, including ones for tenuazonic acid, alternariol, altertoxins and tentoxin that are discussed in detail in this review. Information about synthetic routes, isotopic purity and mass-spectrometric characterization of labelled compounds is given, as well as about the development and validation of SIDAs and their application to foods, feeds or biological samples. As the number of commercially available labelled standards is increasing continuously, a general tendency for the use of analytical methods based on liquid chromatography coupled with mass spectrometry capable of identifying a series of mycotoxins simultaneously ("multimethods") and using one or more labelled internal standards can be observed. An overview of these applications is given, thus demonstrating that SIDAs are increasingly being used in routine analysis. PMID:26265031

  7. Quantification of four artificial sweeteners in Finnish surface waters with isotope-dilution mass spectrometry.

    PubMed

    Perkola, Noora; Sainio, Pirjo

    2014-01-01

    The artificial sweeteners sucralose (SCL), acesulfame (ACS), saccharin (SAC), and cyclamate (CYC) have been detected in environmental waters in Europe and North America. Higher environmental levels are expected in view of the increasing consumption of these food additives. In this study, an isotope-dilution mass spectrometry (IDMS) LC-MS/MS method was developed and validated for quantifying the four artificial sweeteners in boreal lakes (n=3) and rivers (n=12). The highest concentrations of ACS, SAC, CYC and SCL were 9,600, 490, 210 and 1000ng/L, respectively. ACS and SAC were detected in all studied samples, and CYC and SCL in 98% and 56% of the samples. Seasonal trends of ACS and SAC were observed in some rivers. ACS and SCL concentrations in rivers correlated linearly with population equivalents of the wastewater treatment plants in the catchment areas, whereas SAC and CYC concentrations depend more on the source. PMID:24100049

  8. Adenosine 3',5'-monophosphate waves in dictyostelium discoideum: a demonstration by isotope dilution-fluorography

    SciTech Connect

    Tomchik, K.J.; Devreotes, P.N.

    1981-04-24

    The distribution of adenosine 3',5'-monophosphate (cyclic AMP) in fields of aggregating amoebae of Dictyostelium discoidenum was examined by a novel isotope dilution-fluorographic technique. Cellular cyclic AMP was visualized by its competition with exogenous /sup 3/H-labeled cyclic AMP for high-affinity binding sites on protein kinase immobilized on a Millipore filter used to blot the monolayer. The cyclic AMP was distributed in spiral or concentric circular wave patterns which centered on the foci of the aggregations. These patterns were correlated with those of cell shape change that propagate through the monolayers. These observations support the hypothesis that the aggregation process in Dictyostelium is mediated by the periodic relay of cyclic AMP signals and suggest a simple scheme for the dynamics of the aggregation process.

  9. Determination of dithiocarbamate fungicide residues by liquid chromatography/mass spectrometry and stable isotope dilution assay.

    PubMed

    Crnogorac, Goranka; Schwack, Wolfgang

    2007-01-01

    A rapid and very sensitive high-performance liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) method for the simultaneous determination of dithiocarbamate (DTC) fungicide residues in fruits and vegetables was developed. The surface extraction of samples used an alkaline buffer consisting of sodium hydrogen carbonate and DL-penicillamine. The three DTC subclasses, i.e. dimethyldithiocarbamates (DMDs), ethylenebis(dithiocarbamates) (EBDs), and propylenebis(dithiocarbamates) (PBDs), were separated on a Sequant ZIC-pHILIC column using an acetonitrile/10 mM ammonia gradient. Because of the instability of DTC residues extracted from plant samples, a stable isotope dilution assay was applied. For each DTC subclass, the limits of detection and quantification were approximately 0.03 mg kg(-1) and 0.05 mg kg(-1), respectively. Recoveries from grapes, cucumbers, tomatoes, and rucola, spiked in the range of 0.01-0.9 mg kg(-1), averaged between 90 and 100%. PMID:18000839

  10. Synthesis of deuterated gamma-lactones for use in stable isotope dilution assays.

    PubMed

    Hislop, Jo-Anna; Hunt, Martin B; Fielder, Simon; Rowan, Daryl D

    2004-11-17

    Two syntheses of deuterated gamma-lactones for use as internal standards in stable isotope dilution assays (SIDA) were developed. [2,2,3,3-2H4]-gamma-Octa-, -gamma-deca-, and -gamma-dodecalactones with >89% deuterium incorporation were prepared in 27, 17, and 19% overall yields, respectively, by the reduction of a doubly protected hydroxypropiolic acid with deuterium gas. [3,3,4-2H3]-gamma-Octa- and -gamma-dodecalactones were prepared in 6 and 23% yields with >92% deuterium incorporation by the free radical addition of 2-iodoacetamide to [1,1,2-2H3]-1-hexene and [1,1,2-2H3]-1-decene, respectively. Reaction yields were highly dependent upon the purity of the 1-alkene starting material. The deuterated gamma-lactones were evaluated as internal standards for SIDA. PMID:15537321

  11. Determination of lead in rocks by radiometric isotope dilution and substoichiometric extraction

    USGS Publications Warehouse

    Aruscavage, P.

    1976-01-01

    A rapid procedure is described for the determination of lead in rocks by an isotope-dilution substoichiometric method. After the sample has been digested with acid in the presence of 210Pb tracer, the lead is separated by dithizone extractions. After the lead has been back-extracted into aqueous solution, it is reacted with a substoichiometric amount of EDTA. Excess of unreacted lead is removed by extraction with dithizone in carbon tetrachloride, and the specific activity of the aqueous complex is determined by counting 210Pb. The standard deviation of the method is less than 10 % for replicate determinations of lead in several U.S. Geological Survey standard rocks. The agreement with literature values indicates that the method is accurate. ?? 1976.

  12. Assay of tyrosol and hydroxytyrosol in olive oil by tandem mass spectrometry and isotope dilution method.

    PubMed

    Mazzotti, Fabio; Benabdelkamel, Hicham; Di Donna, Leonardo; Maiuolo, Loredana; Napoli, Anna; Sindona, Giovanni

    2012-12-01

    Hydroxytyrosol and tyrosol, the strong antioxidant present in large amount in virgin olive oil have been assayed by LC-MS/MS under MRM condition and isotope dilution method, using d(2)-labelled internal standards obtained by simple synthetic procedures. The assay has been performed under MRM condition monitoring two transitions for each analyte to improve the specificity. This paper deals with a modern approach for assaying the content of this polyphenols in virgin olive oil down to a limit of a few hundreds of parts per billion. Tyrosol and hydroxytyrosol ranged from 10 to 47ppm and from 5 to 25ppm in commercial olive oil, respectively. The accuracy (98-107%) and analytical parameters values confirm the reliability of the proposed approach. The method can be extended to any natural matrices, including mill wastes, after a simple step of sample preparation. PMID:22953817

  13. An isotope-dilution standard GC/MS/MS method for steroid hormones in water

    USGS Publications Warehouse

    Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Lindley, Chris E.; Losche, Scott A.

    2013-01-01

    An isotope-dilution quantification method was developed for 20 natural and synthetic steroid hormones and additional compounds in filtered and unfiltered water. Deuterium- or carbon-13-labeled isotope-dilution standards (IDSs) are added to the water sample, which is passed through an octadecylsilyl solid-phase extraction (SPE) disk. Following extract cleanup using Florisil SPE, method compounds are converted to trimethylsilyl derivatives and analyzed by gas chromatography with tandem mass spectrometry. Validation matrices included reagent water, wastewater-affected surface water, and primary (no biological treatment) and secondary wastewater effluent. Overall method recovery for all analytes in these matrices averaged 100%; with overall relative standard deviation of 28%. Mean recoveries of the 20 individual analytes for spiked reagent-water samples prepared along with field samples analyzed in 2009–2010 ranged from 84–104%, with relative standard deviations of 6–36%. Detection levels estimated using ASTM International’s D6091–07 procedure range from 0.4 to 4 ng/L for 17 analytes. Higher censoring levels of 100 ng/L for bisphenol A and 200 ng/L for cholesterol and 3-beta-coprostanol are used to prevent bias and false positives associated with the presence of these analytes in blanks. Absolute method recoveries of the IDSs provide sample-specific performance information and guide data reporting. Careful selection of labeled compounds for use as IDSs is important because both inexact IDS-analyte matches and deuterium label loss affect an IDS’s ability to emulate analyte performance. Six IDS compounds initially tested and applied in this method exhibited deuterium loss and are not used in the final method.

  14. Determination of technetium-99 in aqueous samples by isotope dilution inductively coupled plasma-mass spectrometry

    SciTech Connect

    Beals, D.M.

    1992-09-01

    An isotope dilution/inductively coupled plasma mass spectrometric method (ID/ICP-MS) for measuring the concentration of technetium-99 in aqueous samples was developed at the Savannah River Technology Center (SRTC). The procedure is faster than radiometric techniques, is also less subject to interferences, and has equal or better detection limits. It is currently being used to measure the concentration of {sup 99}Tc in samples of Savannah River water collected in the vicinity of the Savannah River Site. In this method, one liter samples of water are spiked with {sup 97}Tc. After equilibration, the technetium is extracted from the sample with a chromatographic resin. Interfering elements, molybdenum and ruthenium, are either not retained by the resin or are washed off with dilute nitric acid. The technetium is then eluted with more concentrated nitric acid, and the {sup 99}Tc/{sup 97}Tc ratio in the eluant is measured with an ICP-MS. The {sup 99}Tc concentration in the original sample is calculated from the {sup 99}Tc/{sup 97}Tc ratio. The chemical recovery of the extraction procedure is greater than 90%. The detection limit of the instrument, taken as three times the background counts at m/z = 99, is 0.6 part per trillion (ppt). The detection limit of the procedure, taken as three times the standard deviation of several reagent blank analyses, is 0.33 pCi/L.

  15. Determination of technetium-99 in aqueous samples by isotope dilution inductively coupled plasma-mass spectrometry

    SciTech Connect

    Beals, D.M.

    1992-01-01

    An isotope dilution/inductively coupled plasma mass spectrometric method (ID/ICP-MS) for measuring the concentration of technetium-99 in aqueous samples was developed at the Savannah River Technology Center (SRTC). The procedure is faster than radiometric techniques, is also less subject to interferences, and has equal or better detection limits. It is currently being used to measure the concentration of {sup 99}Tc in samples of Savannah River water collected in the vicinity of the Savannah River Site. In this method, one liter samples of water are spiked with {sup 97}Tc. After equilibration, the technetium is extracted from the sample with a chromatographic resin. Interfering elements, molybdenum and ruthenium, are either not retained by the resin or are washed off with dilute nitric acid. The technetium is then eluted with more concentrated nitric acid, and the {sup 99}Tc/{sup 97}Tc ratio in the eluant is measured with an ICP-MS. The {sup 99}Tc concentration in the original sample is calculated from the {sup 99}Tc/{sup 97}Tc ratio. The chemical recovery of the extraction procedure is greater than 90%. The detection limit of the instrument, taken as three times the background counts at m/z = 99, is 0.6 part per trillion (ppt). The detection limit of the procedure, taken as three times the standard deviation of several reagent blank analyses, is 0.33 pCi/L.

  16. Determination of Selected B-complex Vitamins in the NIST Multivitamin Reference Standard Material by Stable Isotope Dilution Mass Spectrometry (Experimental Biology, April, 2007, Washington, D.C.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increased interest in accurately assessing the total dietary intake of vitamins from all sources, including foods and dietary supplements. Isotope dilution can be a definitive analytical method for very accurate concentration determinations. Thus, a liquid chromatographic (LC) isotope dilut...

  17. Convenient synthesis of stable deuterium-labeled alkylpyrazines for use in stable isotope dilution assays.

    PubMed

    Fang, Mingchih; Cadwallader, Keith R

    2013-04-17

    Stable isotope dilution assays (SIDA) provide for accurate and precise quantitation of aroma components, such as alkylpyrazines, which are often present in low concentrations in complex food matrices. The unavailability of labeled standards is the main limitation to the widespread use of SIDA. This study describes the chlorination of several alkylpyrazines to form the corresponding chloroalkylpyrazine compounds, which are efficient starting materials for the synthesis of deuterium-labeled alkylpyrazines, namely [H?]-2-methylpyrazine (d-1), [H?]-2-ethylpyrazine (d-2), [H?]-2,3(or 6)-dimethylpyrazine (d-3A, d-3B), [H?]-2,[H?]-6-dimethylpyrazine (d-3C), [H?]-2,[H?]-6-diethylpyrazine (d-4), [H?]-2-ethyl-3(or 6)-methylpyrazine (d-5A, d-5B), 2,[H?]-3,5-trimethylpyrazine (d-6), [H?]-2-ethyl-3,6-dimethylpyrazine (d-7), [H?]-2-ethyl-3,5-dimethylpyrazine (d-8), and 2,3-diethyl-[H?]-5-methylpyrazine (d-9), which were obtained in good yields (57-100%) and high purities (86-98%). These stable isotopes were used as internal standards in SIDA to accurately and precisely determine selected alkylpyrazines in commercial peanut butter, cocoa powder, and instant coffee. 2,3-Diethyl-5-methylpyrazine (p-9) and 2-ethyl-3,5-dimethylpyrazine (p-8), despite their low abundance, had the highest odor-active values among the 13 pyrazines quantified in all products due to their very low odor thresholds. PMID:23528050

  18. Thermal neutron capture cross sections of tellurium isotopes

    SciTech Connect

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  19. Quantitation of 5-Methyltetrahydrofolic Acid in Dried Blood Spots and Dried Plasma Spots by Stable Isotope Dilution Assays

    PubMed Central

    Kopp, Markus; Rychlik, Michael

    2015-01-01

    Because of minimal data available on folate analysis in dried matrix spots (DMSs), we combined the advantages of stable isotope dilution assays followed by LC-MS/MS analysis with DMS sampling to develop a reliable method for the quantitation of plasma 5-methyltetrahydrofolic acid in dried blood spots (DBSs) and dried plasma spots (DPSs) as well as for the quantitation of whole blood 5-methyltetrahydrofolic acid in DBSs. We focused on two diagnostically conclusive parameters exhibited by the plasma and whole blood 5-methyltetrahydrofolic acid levels that reflect both temporary and long-term folate status. The method is performed using the [2H4]-labeled isotopologue of the vitamin as the internal standard, and three steps are required for the extraction procedure. Elution of the punched out matrix spots was performed using stabilization buffer including Triton X-100 in a standardized ultrasonication treatment followed by enzymatic digestion (whole blood only) and solid-phase extraction with SAX cartridges. This method is sensitive enough to quantify 27 nmol/L whole blood 5-methyltetrahydrofolic acid in DBSs and 6.3 and 4.4 nmol/L plasma 5-methyltetrahydrofolic acid in DBSs and DPSs, respectively. The unprecedented accurate quantification of plasma 5-methyltetrahydrofolic acid in DBSs was achieved by thermal treatment prior to ultrasonication, inhibiting plasma conjugase activity. Mass screenings are more feasible and easier to facilitate for this method in terms of sample collection and storage compared with conventional clinical sampling for the assessment of folate status. PMID:26605791

  20. Determination of Mercury Content in a Shallow Firn Core from Summit, Greenland by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mann, Jacqueline L.; Long, Stephen E.; Shuman, Christopher A.; Kelly, W. Robert

    2003-01-01

    The total mercury Hg content was determined in 6 cm sections of a near-surface 7 m firn core and in surrounding surface snow from Summit, Greenland (elevation: 3238 m, 72.58 N, 38.53 W) in May 2001 by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS). The focus of this research was to evaluate the capability of the ID-CV-ICPMS technique for measuring trace levels of Hg typical of polar snow and firn. Highly enriched Hg-201 isotopic spike is added to approximately 10 ml melted core and thoroughly mixed. The Hg(+2) in the sample is reduced on line with tin (II) chloride (SnCl2) and the elemental Hg (Hg(0)) vapor pre-concentrated on to gold gauze using a commercial amalgam system. The Hg is then thermally desorbed and introduced into a quadrupole ICP-MS. The blank corrected Hg concentrations determined for all samples ranged from 0.25 ng/L to 1.74 ng/L (ppt) (average 0.59 ng/L plus or minus 0.28 ng/L) and fall within the range of those previously determined by Boutron et al., 1998 (less than or equal to 0.05 ng/L to 2.0 ng/L) for the Summit site. The average blank value was 0.19 ng/L plus or minus 0.045 ng/L (n=6). The Hg values specifically for the firn core range from 0.25 ng/L to 0.87 ng/L (average 0.51 ng/L plus or minus 0.13 ng/L) and show both values declining with time and larger variability in concentration in the top 1.8 m.

  1. Mercury speciation analysis in seafood by species-specific isotope dilution: method validation and occurrence data.

    PubMed

    Clmens, Stphanie; Monperrus, Mathilde; Donard, Olivier F X; Amouroux, David; Gurin, Thierry

    2011-11-01

    Methylmercury (MeHg) and total mercury (THg) in seafood were determined using species-specific isotope dilution analysis and gas chromatography combined with inductively coupled plasma mass spectrometry. Sample preparation methods (extraction and derivation step) were evaluated on certified reference materials using isotopically enriched Hg species. Solid-liquid extraction, derivation by propylation and automated agitation gave excellent accuracy and precision results. Satisfactory figures of merit for the selected method were obtained in terms of limit of quantification (1.2 ?g Hg kg(-1) for MeHg and 1.4 ?g Hg kg(-1) for THg), repeatability (1.3-1.7%), intermediate precision reproducibility (1.5% for MeHg and 2.2% for THg) and trueness (bias error less than 7%). By means of a recent strategy based on accuracy profiles (?-expectation tolerance intervals), the selected method was successfully validated in the range of approximately 0.15-5.1 mg kg(-1) for MeHg and 0.27-5.2 mg kg(-1) for THg. Probability ? was set to 95% and the acceptability limits to 15%. The method was then applied to 62 seafood samples representative of consumption in the French population. The MeHg concentrations were generally low (1.9-588 ?g kg(-1)), and the percentage of MeHg varied from 28% to 98% in shellfish and from 84% to 97% in fish. For all real samples tested, methylation and demethylation reactions were not significant, except in one oyster sample. The method presented here could be used for monitoring food contamination by MeHg and inorganic Hg in the future to more accurately assess human exposure. PMID:21533797

  2. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry

    PubMed Central

    Wang, Zeneng; Levison, Bruce S.; Hazen, Jennie E.; Donahue, Lillian; Li, Xin-Min; Hazen, Stanley L.

    2014-01-01

    Trimethylamine-N-oxide (TMAO) levels in blood predict future risk for major adverse cardiac events including myocardial infarction, stroke and death. Thus, the rapid determination of circulating TMAO concentration is of clinical interest. Here we report a method to measure TMAO in biological matrices by stable isotope dilution liquid chromatography tandem mass spectrometry (LC/MS/MS) with lower and upper limits of quantification of 0.05 and >200 M, respectively. Spike and recovery studies demonstrate an accuracy at low (0.5 M), mid (5 M) and high (100 M) levels of 98.2%, 97.3% and 101.6%, respectively. Additional assay performance metrics include intra-day and inter-day coefficients of variance of < 6.4% and < 9.9%, respectively, across the range of TMAO levels. Stability studies reveal TMAO in plasma is stable both during storage at ?80 C for 5 years and to multiple freeze thaw cycles. Fasting plasma normal range studies among apparently healthy subjects (n=349) shows a range of 0.73 126 M, median (interquartile range) levels of 3.45 (2.255.79) M, and increasing values with age. The LC/MS/MS based assay reported should be of value for further studies evaluating TMAO as a risk marker and for examining the effect of dietary, pharmacologic and environmental factors on TMAO levels. PMID:24704102

  3. Quantitation of Thioprolines in Grape Wine by Isotope Dilution-Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Liu, Jingjing; Meng, Xiangpeng; Chan, Wan

    2016-02-17

    Cysteine reacts with reactive carbonyls to form thioprolines, which have been demonstrated to possess various pharmaceutical properties. Therefore, thioproline formation is considered as a major detoxification pathway for carcinogenic reactive carbonyls. In this study, we report the initial identification of thiazolidine-4-carboxylic acid (1) and 2-methylthiazolidine-4-carboxylic acid (2), two very common thioprolines, formed by reacting formaldehyde and acetaldehyde with cysteine in grape wine samples. We have developed an isotope dilution-liquid chromatography-tandem mass spectrometry method featuring high sensitivity (limit of detection of ?1.5 ng/mL) and selectivity to quantitate compounds 1 and 2. The method after validated to be highly accurate (recovery of ?92%) and precise [intraday relative standard deviation (RSD) of ?4.1% and interday RSD of ?9.7%] was applied to determine the varying compound 1 and 2 contents in grape wine samples. Results revealed the grape type and storage duration-dependent formation of thioprolines in grape wines. Overall, the results are expected to facilitate compound-dependent investigations of the health benefits of grape wine, and our findings could be adopted to predict the age of grape wine. PMID:26806197

  4. Determination of total mercury in biological tissue by isotope dilution ICPMS after UV photochemical vapor generation.

    PubMed

    Liu, Rui; Xu, Mo; Shi, Zeming; Zhang, Jiayun; Gao, Ying; Yang, Lu

    2013-12-15

    A method is developed for the determination of trace mercury in biological samples using photo chemical vapor generation (PVG) and isotope dilution inductively coupled plasma mass spectrometry (ID ICPMS) detection. Biological tissues were solubilized in formic acid. Subsequently, the sample solutions were exposed to an ultraviolet (UV) source for the reduction of mercury into vapor species prior to ICPMS measurements. The formic acid served not only as a tissue solubilizer in the sample preparation procedure, but also as a photochemical reductant for mercury in the PVG process. The problem arising from the opaque formic acid digested solution was efficiently solved by using ID method. The optimum conditions for sample treatment and PVG were investigated. A limit of detection (LOD) of 0.5 pg g(-1), based on an external calibration, provided 350-fold improvement over that obtained by utilizing conventional pneumatic nebulization sample introduction. Method validation was demonstrated by the determination of total mercury in several biological tissue certified reference materials (CRMs). The results were in good agreement with the certified values. PMID:24209355

  5. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  6. Precise determination of seawater calcium using isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Hou-Chun; You, Chen-Feng; Cai, Wei-Jun; Chung, Chuan-Hsiung; Huang, Kuo-Fang; Chen, Bao-Shan; Li, Yen

    2014-02-21

    We describe a method for rapid, precise and accurate determination of calcium ion (Ca(2+)) concentration in seawater using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). A 10 ?L aliquot of seawater was spiked with an appropriate (43)Ca enriched solution for (44)Ca/(43)Ca ID-ICP-MS analyses, using an Element XR (Thermo Fisher Scientific), operated at low resolution in E-scan acquisition mode. A standard-sample bracketing technique was applied to correct for potential mass discrimination and ratio drift at every 5 samples. A precision of better than 0.05% for within-run and 0.10% for duplicate measurements of the IAPSO seawater standard was achieved using 10 ?L solutions with a measuring time less than 3 minutes. Depth profiles of seawater samples collected from the Arctic Ocean basin were processed and compared with results obtained by the classic ethylene glycol tetra-acetic acid (EGTA) titration. Our new ID-ICP-MS data agreed closely with the conventional EGTA data, with the latter consistently displaying 1.5% excess Ca(2+) values, possibly due to a contribution of interference from Mg(2+) and Sr(2+) in the EGTA titration. The newly obtained Sr/Ca profiles reveal sensitive water mass mixing in the upper oceanic column to reflect ice melting in the Arctic region. This novel technique provides a tool for seawater Ca(2+) determination with small sample size, high throughput, excellent internal precision and external reproducibility. PMID:24434804

  7. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry.

    PubMed

    Wang, Zeneng; Levison, Bruce S; Hazen, Jennie E; Donahue, Lillian; Li, Xin-Min; Hazen, Stanley L

    2014-06-15

    Trimethylamine-N-oxide (TMAO) levels in blood predict future risk for major adverse cardiac events including myocardial infarction, stroke, and death. Thus, the rapid determination of circulating TMAO concentration is of clinical interest. Here we report a method to measure TMAO in biological matrices by stable isotope dilution liquid chromatography tandem mass spectrometry (LC/MS/MS) with lower and upper limits of quantification of 0.05 and >200?M, respectively. Spike and recovery studies demonstrate an accuracy at low (0.5?M), mid (5?M), and high (100?M) levels of 98.2, 97.3, and 101.6%, respectively. Additional assay performance metrics include intraday and interday coefficients of variance of <6.4 and <9.9%, respectively, across the range of TMAO levels. Stability studies reveal that TMAO in plasma is stable both during storage at -80C for 5years and to multiple freeze thaw cycles. Fasting plasma normal range studies among apparently healthy subjects (n=349) show a range of 0.73-126?M, median (interquartile range) levels of 3.45 (2.25-5.79)?M, and increasing values with age. The LC/MS/MS-based assay reported should be of value for further studies evaluating TMAO as a risk marker and for examining the effect of dietary, pharmacologic, and environmental factors on TMAO levels. PMID:24704102

  8. Absolute peptide quantification by lutetium labeling and nanoHPLC-ICPMS with isotope dilution analysis.

    PubMed

    Rappel, Christina; Schaumlffel, Dirk

    2009-01-01

    The need of analytical methods for absolute quantitative protein analysis spurred research on new developments in recent years. In this work, a novel approach was developed for accurate absolute peptide quantification based on metal labeling with lutetium diethylenetriamine pentaacetic acid (Lu-DTPA) and nanoflow high-performance liquid chromatography-inductively coupled plasma isotope dilution mass spectrometry (nanoHPLC-ICP-IDMS). In a two-step procedure peptides were derivatized at amino groups with diethylenetriamine pentaacetic anhydride (DTPAA) followed by chelation of lutetium. Electrospray ionization mass spectrometry (ESI MS) of the reaction product demonstrated highly specific peptide labeling. Under optimized nanoHPLC conditions the labeled peptides were baseline-separated, and the excess labeling reagent did not interfere. A 176Lu-labeled spike was continuously added to the column effluent for quantification by ICP-IDMS. The recovery of a Lu-DTPA-labeled standard peptide was close to 100% indicating high labeling efficiency and accurate absolute quantification. The precision of the entire method was 4.9%. The detection limit for Lu-DTPA-tagged peptides was 179 amol demonstrating that lutetium-specific peptide quantification was by 4 orders of magnitude more sensitive than detection by natural sulfur atoms present in cysteine or methionine residues. Furthermore, the application to peptides in insulin tryptic digest allowed the identification of interfering reagents decreasing the labeling efficiency. An additional advantage of this novel approach is the analysis of peptides, which do not naturally feature ICPMS-detectable elements. PMID:19117464

  9. Multi-mycotoxin stable isotope dilution LC-MS/MS method for Fusarium toxins in cereals.

    PubMed

    Habler, Katharina; Rychlik, Michael

    2016-01-01

    A multi-mycotoxin stable isotope dilution LC-MS/MS method was developed for 14 Fusarium toxins including modified mycotoxins in cereals (deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, HT2-toxin, T2-toxin, enniatin B, enniatin B1, enniatin A1, enniatin A, beauvericin, fusarenone X, nivalenol, deoxynivalenol-3-glucoside, and zearalenone). The chromatographic separation of the toxins with particular focus on deoxynivalenol and deoxynivalenol-3-glucoside was achieved using a C18-hydrosphere column. An expedient sample preparation method was developed that uses solid-phase extraction for the purification of trichothecenes combined with zearalenone, enniatins, and beauvericin and provides excellent validation data. Linearity, intra-day precision, inter-day precision, and recoveries were ?0.9982, 1-6%, 5-12%, and 79-117%, respectively. Method accuracy was verified by analyzing certified reference materials for deoxynivalenol, HT2-toxin, and T2-toxin with deviations below 7%. The results of this method found barley malt samples from 2012, 2013, and 2014 frequently contaminated with high concentrations of enniatin B, deoxynivalenol, and its modified mycotoxin deoxynivalenol-3-glucoside. Samples from 2012 were especially contaminated. Fusarenone X was not detected in any of the analyzed samples. PMID:26514672

  10. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry

    SciTech Connect

    Esteban, N.V.; Loughlin, T.; Yergey, A.L.; Zawadzki, J.K.; Booth, J.D.; Winterer, J.C.; Loriaux, D.L. )

    1991-01-01

    Growth retardation as well as the development of Cushingoid features in adrenally insufficient patients treated with the currently accepted replacement dose of cortisol (33-41 mumol/day.m2; 12-15 mg/m2.day) prompted us to reevaluate the cortisol production rate (FPR) in normal subjects and patients with Cushing's syndrome, using a recently developed thermospray liquid chromatography-mass spectrometry method. The stable isotope (9,12,12-2H3)cortisol was infused continuously for 31 h at about 5% of the anticipated FPR. Blood samples were obtained at 20-min intervals for 24 h, spun, and pooled in 4-h groups. Tracer dilution in plasma was determined by liquid chromatography/mass spectrometry. The method was validated with controlled infusions in 6 patients with adrenal insufficiency. Results from 12 normal volunteers revealed a FPR of 27.3 +/- 7.5 mumol/day (9.9 +/- 2.7 mg/day) or 15.7 mumol/day.m2; 5.7 mg/m2. day. A previously unreported circadian variation in FPR was observed. Patients with Cushing's syndrome demonstrated unequivocal elevation of FPR and cortisol concentration correlated during each sample period in normal volunteers, indicating that cortisol secretion, rather than metabolism, is mainly responsible for changes in plasma cortisol. Our data suggest that the FPR in normal subjects may be lower than previously believed.

  11. Quantifying gross fluxes of nitrous oxide and dinitrogen gas using a novel isotope pool dilution technique

    NASA Astrophysics Data System (ADS)

    Arn Teh, Yit; Yang, Wendy; Silver, Whendee L.

    2010-05-01

    One of the existing challenges in trace gas biogeochemistry lies in understanding the environmental controls on the net and gross fluxes of soil-derived compounds. This is because gross production and consumption fluxes of these gases often occur simultaneously or in close spatial proximity, making it difficult to make inferences about the effects of environmental variables (e.g. temperature, soil water content, porosity, redox, etc.) on gross fluxes based on bulk concentration measurements alone. One novel approach for quantifying gross fluxes of N2O and N2 is 'stable isotope pool dilution;' a technique that has been successfully applied to study bidirectional fluxes of other biogenic compounds, such as CH4 and halocarbons. To evaluate the efficacy of this method for quantifying gross N2O and N2 fluxes, we conducted a combined field and laboratory test of the pool dilution technique along side conventional measures of nitrification and denitrification. Experiments were conducted in a N-rich managed peatland pasture in the Sacramento-San Joaquin Delta, California, USA. Field and laboratory measurements were performed in a broad range of microforms and microtopes spanning a range of hydrologic and environmental conditions. Field experiments focussed on gross fluxes of N2O and N2 in upper soil horizons; the soil layers that exchange most rapidly with the atmosphere. Laboratory experiments indicated that 15N pool dilution compares favourably with more conventional measures of N2O and N2 flux, such as acetylene inhibition or the 15NO3- pulse-trace approach. Gross N2O fluxes greatly exceeded N2 fluxes by as much as an order of magnitude or more, and averaged 6.1 2.2 mg N m-2 d-1, with a range from 0.06 to 63.13 mg N m-2 d-1. N2O:N2 emissions ratios generally exceeded 1 except along slopes, with an overall range of 0.2 to 30.9. NH4+ concentrations and denitrifying enzyme activity were the best predictors of gross N2O fluxes in the field (r2 = 0.65). Net N2O production rates explained 53 percent of the variability in gross N2 fluxes, whereas N2O:N2 ratios were best predicted by the combination of water-filled pore space and mineral N concentration (r2 = 0.44). This research highlights the potential of the pool dilution approach for quantifying gross fluxes of N2O and N2 from surface soils under both field and laboratory conditions. Future experiments will couple these measures of soil surface fluxes with push-pull methods for determining gross N2O and N2 fluxes at depth, and natural abundance isotopomer measurements to determine sources of N2O.

  12. Comparison of isotope dilution and excretion methods for determining the half-life of ascorbic acid in the guinea pig

    SciTech Connect

    Kipp, D.E.; Rivers, J.M.

    1984-08-01

    The half-life of ascorbic acid (AA) in guinea pigs was investigated by the isotope dilution and excretion methods. The dilution method measures (1-14C)AA disappearance from the plasma, whereas the excretion method measures the elimination of (1-14C)AA and the metabolites from the body. Two groups of animals underwent both isotope studies in reverse order. Animals were conditioned to the experimental procedures and fed 2.5 mg AA/100 g body weight orally to maintain a daily intake of the vitamin independent of food consumption. The two isotope procedures imposed similar stress on the animals, as determined by plasma cortisol levels and body weight changes. The AA half-life calculations of the rapidly exchangeable pool by the isotope dilution method yielded values of 1.23 and 0.34 hours for the two groups, respectively. The half-life of the slowly exchangeable pool for the two groups was 60.2 and 65.8 hours, respectively. The half-life of AA in the rapidly exchangeable pool, as measured by the excretion studies, was 4.57-8.75 hours. For the slowly exchangeable pool, it was 146-149 hours. The longer half-life of both pools obtained with the excretion method indicates that the isotope is disappearing from the plasma more rapidly than it is being excreted. This suggests that a portion of the (1-14C)AA leaving the plasma is removed to a body pool that is not sampled by the isotope excretion method.

  13. Microwave-assisted deuterium exchange: the convenient preparation of isotopically labelled analogues for stable isotope dilution analysis of volatile wine phenols.

    PubMed

    Crump, Anna M; Sefton, Mark A; Wilkinson, Kerry L

    2014-11-01

    This study reports the convenient, low cost, one-step synthesis of labelled analogues of six volatile phenols, guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethylphenol, eugenol and vanillin, using microwave-assisted deuterium exchange, for use as internal standards for stable isotope dilution analysis. The current method improves on previous strategies in that it enables incorporation of deuterium atoms on the aromatic ring, thereby ensuring retention of the isotope label during mass spectrometry fragmentation. When used as standards for SIDA, these labelled volatile phenols will improve the accuracy and reproducibility of quantitative food and beverage analysis. PMID:24874385

  14. Thermal and structural properties of the MY750 Epoxy diluted with xylene

    NASA Astrophysics Data System (ADS)

    de Oliveira, J. E.; Azevedo, A.; Machado, F. L. A.

    1995-09-01

    We report heat capacity ( cp), thermal conductivity ( kT), density (?) and sound velocity ( vs) measurements in MY 750 Epoxy. The Epoxy was diluted with xylene in the concentration range 0? x?20% and was cured with ethylene diamine (EDA). ? and vs were measured at room temperature and cp and kT were measured for temperatures in the interval 2? T?20 K. Both ? and vs diminish linearly with increasing concentration x. The Debye contribution to the heat capacity, {c p}/{T 3}, shows a peak at a temperature TMAX which shifts to lower T with increasing x. A plateau characteristic of an amorphous system is observed at the temperature dependence of kT. The thermal conductivity decreases while the plateau shifts to higher temperatures when x is increased. The results are compared with those obtained for epoxy diluted with excess of EDA.

  15. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure spike solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for age determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  16. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE PAGESBeta

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  17. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  18. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect

    J.J. Horkley; K.P E.M. Gantz; J.E. Davis; R.R. Lewis; J.P. Crow; C.A. Poole; T.S. Grimes; J.J. Giglio

    2015-03-01

    t Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure ‘‘spike’’ solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for ‘‘age’’ determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution,

  19. Thermal neutron-induced fission cross sections of Cm isotopes

    NASA Astrophysics Data System (ADS)

    Popescu, L.; Heyse, J.; Wagemans, J.; Wagemans, C.

    2009-10-01

    A new measurement program was set up at SCK?CEN to determine the thermal neutron-induced fission cross section of a number of Cm isotopes. These transuranium isotopes are produced in nuclear reactors and are candidates for transmutation. This paper presents preliminary results of our 245Cm(n,f) cross-section measurement.

  20. Cellular lipid extraction for targeted stable isotope dilution liquid chromatography-mass spectrometry analysis.

    PubMed

    Gelhaus, Stacy L; Mesaros, A Clementina; Blair, Ian A

    2011-01-01

    The metabolism of fatty acids, such as arachidonic acid (AA) and linoleic acid (LA), results in the formation of oxidized bioactive lipids, including numerous stereoisomers(1,2). These metabolites can be formed from free or esterified fatty acids. Many of these oxidized metabolites have biological activity and have been implicated in various diseases including cardiovascular and neurodegenerative diseases, asthma, and cancer(3-7). Oxidized bioactive lipids can be formed enzymatically or by reactive oxygen species (ROS). Enzymes that metabolize fatty acids include cyclooxygenase (COX), lipoxygenase (LO), and cytochromes P450 (CYPs)(1,8). Enzymatic metabolism results in enantioselective formation whereas ROS oxidation results in the racemic formation of products. While this protocol focuses primarily on the analysis of AA- and some LA-derived bioactive metabolites; it could be easily applied to metabolites of other fatty acids. Bioactive lipids are extracted from cell lysate or media using liquid-liquid (l-l) extraction. At the beginning of the l-l extraction process, stable isotope internal standards are added to account for errors during sample preparation. Stable isotope dilution (SID) also accounts for any differences, such as ion suppression, that metabolites may experience during the mass spectrometry (MS) analysis(9). After the extraction, derivatization with an electron capture (EC) reagent, pentafluorylbenzyl bromide (PFB) is employed to increase detection sensitivity(10,11). Multiple reaction monitoring (MRM) is used to increase the selectivity of the MS analysis. Before MS analysis, lipids are separated using chiral normal phase high performance liquid chromatography (HPLC). The HPLC conditions are optimized to separate the enantiomers and various stereoisomers of the monitored lipids(12). This specific LC-MS method monitors prostaglandins (PGs), isoprostanes (isoPs), hydroxyeicosatetraenoic acids (HETEs), hydroxyoctadecadienoic acids (HODEs), oxoeicosatetraenoic acids (oxoETEs) and oxooctadecadienoic acids (oxoODEs); however, the HPLC and MS parameters can be optimized to include any fatty acid metabolites(13). Most of the currently available bioanalytical methods do not take into account the separate quantification of enantiomers. This is extremely important when trying to deduce whether or not the metabolites were formed enzymatically or by ROS. Additionally, the ratios of the enantiomers may provide evidence for a specific enzymatic pathway of formation. The use of SID allows for accurate quantification of metabolites and accounts for any sample loss during preparation as well as the differences experienced during ionization. Using the PFB electron capture reagent increases the sensitivity of detection by two orders of magnitude over conventional APCI methods. Overall, this method, SID-LC-EC-atmospheric pressure chemical ionization APCI-MRM/MS, is one of the most sensitive, selective, and accurate methods of quantification for bioactive lipids. PMID:22127066

  1. The geochemical behaviour of W in subduction zones: constraints from high precision isotope dilution measurements

    NASA Astrophysics Data System (ADS)

    Konig, S.; Munker, C.; Schuth, S.

    2007-12-01

    Assessing the behaviour of W during silicate Earth's differentiation is hampered by low abundances of W in terrestrial reservoirs, making sufficiently precise and accurate measurements difficult. Previous results (e.g., Newsom et al. 1996) indicate a lower W/Th of the mantle (ca. 0.19) compared to the Earth's crust, (ca. 0.26), suggesting that W appears to be more incompatible than Th. New data for MORB (Munker et al. 2007), however, demonstrate that W/Th is not significantly fractionated during dry peridotite melting, tentatively suggesting a fractionation of the two elements during crust formation by subduction related processes. We present high precision W and Nb-Ta, Zr-Hf data obtained by isotope dilution, using a mixed 183W-180Ta- 94Zr-180Hf-176Lu tracer and multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). This enables the direct determination of W and HFSE from one sample digestion. For some samples, a "nugget effect" as previously reported for PGE was observed, reflecting sample heterogeneity. Measured Ta and W abundances determined in basaltic glasses and whole rock powders from various island arc settings yield Ta/W ratios of 0.6 to 1.7, significantly lower than the values reported for MORB (4-6). In contrast, Nb/Ta for the samples overlap with MORB values, suggesting that Nb and Ta were not mobile in the magma sources. These systematic differences indicate that W does not behave as other HFSE (Nb-Ta, Zr-Hf) in subduction zones but rather displays a higher mobility in slab components. Intra-oceanic arc suites involving subducted pelagic sediment in their sources generally display higher W/Th compared to magmas without sediment-derived components in their sources, reflecting the higher initial W abundances in subducted pelagic sediments. A fractionation of W/Th during crust formation could consequently be explained by a selective W enrichment relative to Th during subduction processes.

  2. Determination of serum levels of unesterified lathosterol by isotope dilution-mass spectrometry.

    PubMed

    Lund, E; Sisfontes, L; Reihner, E; Bjorkhem, I

    1989-04-01

    The synthesis of 2H3-labelled lathosterol is described. This compound was used together with 2H7-labelled cholesterol for simultaneous assay of unesterified lathosterol and cholesterol in serum by isotope dilution-mass spectrometry. After addition of a fixed amount of the two internal standards to a fixed amount of serum (in general 25 microliter), the steroids were extracted with chloroform and subjected to Lipidex 5000 chromatography. The fraction containing cholesterol and lathosterol was converted into trimethylsilyl ether and subjected to mass spectrometric analysis with selected monitoring of the ions at m/z 458 (molecular ion of the trimethylsilyl ether derivative of unlabelled cholesterol and lathosterol), m/z 461 (molecular ion of derivative of 2H3-labelled lathosterol) and m/z 465 (molecular ion of derivative of 2H7-labelled cholesterol). Individual standard curves were used for assay of each steroid. Under the conditions employed, the coefficient of variation of the two assays was less than 6%. In different recovery experiments the maximal difference between expected and found values was less than 7%. Using a less accurate method for analysis of lathosterol, we have shown previously that there is a high correlation between the hepatic HMG CoA reductase and the relative concentration of unesterified lathosterol in serum (concentration of lathosterol relative to cholesterol). This was confirmed with the present method and a correlation coefficient of about 0.94 was found between the two parameters. It is concluded that the present method may be suitable for detection of cases with accelerated rate of synthesis of cholesterol. PMID:2520369

  3. Simultaneous Quantification of Steroids in Rat Intratesticular Fluid by HPLCIsotope Dilution Tandem Mass Spectrometry

    PubMed Central

    RENNE, ALISSA; LUO, LINDI; JAROW, JONATHAN; WRIGHT, WILLIAM W.; BROWN, TERRY R.; CHEN, HAOLIN; ZIRKIN, BARRY R.; FRIESEN, MARLIN D.

    2014-01-01

    An isotope dilution mass spectrometry method has been developed for the simultaneous measurement of picolinoyl derivatives of testosterone (T), dihydrotestosterone (DHT), 17?-estradiol (E2), and 5?-androstan-3?,17?-diol (3?-diol) in rat intratesticular fluid. The method uses reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Following derivatization of 10-?L samples of testicular fluid with picolinoyl chloride hydrochloride, the samples were purified by solid phase extraction before analysis. The accuracy of the method was satisfactory for the 4 analytes at 3 concentrations, and both inter- and intraday reproducibility were satisfactory for T, DHT, and E2. Measurements of intratesticular T concentrations in a group of 8 untreated adult rats by this method correlated well with measurements of the same samples by radioimmunoassay. As in men, there was considerable rat-to-rat variability in T concentration, despite the fact that the rats were inbred. Although its levels were more than an order of magnitude lower than those of T, DHT was measured reliably in all 8 intratesticular fluid samples. DHT concentration also varied from rat to rat and was highly correlated with T levels. The levels of E2 and 3?-diol also were measurable. The availability of a sensitive method by which to measure steroids accurately and rapidly in the small volumes of intratesticular fluid obtainable from individual rats will make it possible to examine the effects, over time, of such perturbations as hormone and drug administration and environmental toxicant exposures on the intratesticular hormonal environment of exposed individual males and thereby to begin to understand differences in response between individuals. PMID:22016356

  4. Isotope dilution measurement of copper absorption and excretion in rats fed different carbohydrates

    SciTech Connect

    Johnson, P.E.; Bowman, T.D.

    1986-03-01

    An isotope dilution method using /sup 67/Cu was developed to measure true absorption (A) and endogenous excretion (EE) of Cu in rats. Specific activity (SA) of injected /sup 67/Cu was least variable in 7 tissues on days 6-8 after injection. SA of feces compared to tissues was used to calculate EE and A. This method was used to study Cu metabolism in rats fed 5 ppm or 0.4 ppm Cu and diets containing fructose (FR), glucose (GL), sucrose (SU), or cornstarch (CS). In rats fed 5 ppm Cu, the A, EE, and balance (B) were greatest for CS animals. There were no differences in A, B, or EE between FR and SU rats (p > .05). Rats fed GL had B and A lower than other groups (p < .05) but EE was different only from CS rats. Liver and kidney Cu and ceruloplasmin levels were highest in CS rats; other groups did not differ significantly. For rats fed 0.4 ppm Cu, the A, B, and EE did not differ among groups fed different carbohydrates (p > .05). Liver Cu did not differ among groups fed 0.4 ppm Cu. Kidney Cu was higher ( p < .001) in CS rats than GL rats; other groups did not differ. B was significantly lower in rats on the 0.4 ppm Cu diet than on 5 ppm Cu for CS, FR, SU (p < .05). Rats fed the GL-low Cu diet had significantly higher A (p < .01) and unchanged B (p > .05) compared to rats fed GL and 5 ppm Cu. EE was significantly lower in all groups on 0.4 ppm Cu than 5 ppm Cu. EE was 1 ..mu..g Cu/d on the 0.4 ppm Cu diet.

  5. Quantitative determination of free and total bisphenol A in human urine using labeled BPA glucuronide and isotope dilution mass spectrometry.

    PubMed

    Kubwabo, Cariton; Kosarac, Ivana; Lalonde, Kaela; Foster, Warren G

    2014-07-01

    Bisphenol A (BPA) is a widely used industrial chemical in the manufacturing of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt normal hormonal function and hence, potentially, have negative effects on the human health. While total BPA is frequently reported, it is recognized that free BPA is the biologically active form and is rarely reported in the literature. The objective of this study was to develop a sensitive and improved method for the measurement of free and total BPA in human urine. Use of a labeled conjugated BPA (bisphenol A-d6 β-D-glucuronide) allowed for the optimization of the enzymatic reaction and permitted an accurate determination of the conjugated BPA concentration in urine samples. In addition, a (13)C12-BPA internal standard was used to account for the analytical recoveries and performance of the isotope dilution method. Solid-phase extraction (SPE) combined with derivatization and analysis using a triple quadrupole GC-EI/MS/MS system achieved very low method detection limit of 0.027 ng/mL. BPA concentrations were measured in urine samples collected during the second and third trimesters of pregnancy in 36 Canadian women. Total maternal BPA concentrations in urine samples ranged from not detected to 9.40 ng/mL (median, 1.21 ng/mL), and free BPA concentrations ranged from not detected to 0.950 ng/mL (median, 0.185 ng/mL). Eighty-six percent of the women had detectable levels of conjugated BPA, whereas only 22 % had detectable levels of free BPA in their urine. BPA levels measured in this study agreed well with data reported internationally. PMID:24817354

  6. Simultaneous Determination of Selected B Vitamins in the NIST SRM 3280 Multivitamin/Multielement Tablets by Liquid Chromatography Isotope Dilution Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increased interest in accurately assessing the total dietary intake of vitamins from all sources, including foods and dietary supplements. Isotope dilution mass spectrometry (IDMS) can be a definitive analytical method for very accurate concentration determinations. A liquid chromatographic...

  7. Determination of cadmium, mercury and lead in seawater by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Hung-Wei; Jiang, Shiuh-Jen; Liu, Shin-Hung

    1999-09-01

    Electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in seawater samples. The isotope ratios of the elements studied in each analytical run were calculated from the peak areas of each isotope. Various modifiers were tested for the best signal of these elements. After preliminary studies, 0.15% m/v TAC and 4% v/v HCl were added to the sample solution to work as the modifier. The ETV-ID-ICP-MS method has been applied to the determination of Cd, Hg and Pb in NASS-4 and CASS-3 reference seawater samples and seawater samples collected from Kaohsiung area. The results for reference sample NASS-4 and CASS-3 agreed satisfactorily with the reference values. Results for other samples determined by isotope dilution and method of standard additions agreed satisfactorily. Detection limits were approximately 0.002, 0.005 and 0.001 ng ml -1 for Cd, Hg and Pb in seawater, respectively, with the ETV-ICP-MS method. Precision between sample replicates was better than 20% for most of the determinations.

  8. Determination of Polychlorinated Biphenyls in Solid Samples by Isotope Dilution Mass Spectrometry Using ?Cl-Labeled Analogues.

    PubMed

    Somoano-Blanco, Lourdes; Rodriguez-Gonzalez, Pablo; Garca Fonseca, Sergio; Alonso, J Ignacio Garcia

    2015-08-01

    This work describes the first application of (37)Cl-labeled compounds to isotope dilution mass spectrometry (IDMS). The synthesis of 12 (37)Cl-labeled polychlorinated biphenyls (PCBs) was carried out by the chlorination of biphenyl with isotopically enriched chlorine gas, generated by the direct oxidation of Na(37)Cl with potassium peroxymonosulfate. After an exhaustive purification due to the presence of other congeners, the concentration and the isotopic enrichment of all (37)Cl-labeled PCBs in the mixture was determined. The proposed procedure allows the simultaneous quantification of every isotope diluted PCB congener in a single gas chromatography-tandem mass spectrometry (GC-MS/MS) injection without resorting to a methodological calibration graph. The results obtained here demonstrate that the use of (37)Cl-labeled analogues provides results in agreement with the certified values of three different Certified Reference Materials (marine sediment SRM 1944, fish tissue 1947, and loamy soil CRM 962-50) and analytical figures of merit comparable to those obtained using regular IDMS procedures based on the use of commercially available (13)C-labeled analogues. PMID:26165349

  9. High-Precision Th-Pb Dating by Isotope-Dilution TIMS+MC-ICPMS - Preliminary Results

    NASA Astrophysics Data System (ADS)

    Ickert, R. B.; Mundil, R.; Sharp, W. D.

    2014-12-01

    Relative to the U-Pb decay series, the Th-Pb decay series has received relatively little attention for geochronology although it offers promising applications in both high-resolution geochronology as well as thermochronology. The limitations are partly because Th measurements by thermal ionization have proven notoriously difficult, and for many geochronological applications, the additional information provided by Th-Pb has not been worth the effort required. However, the current generation of MC-ICPMS instruments provides nearly two orders of magnitude better sensitivity of Th than TIMS, eliminating this barrier to measurement and opening up this chronometer for new use. We have developed a method to measure relative abundances of Th, U and Pb by isotope dilution for high-precision geochronology. This method leverages the strengths of two instruments, the high sensitivity and stable mass fractionation of MC-ICPMS instruments for Th and U, and the low background, lack of isobaric interference, and signal stability of TIMS instruments for Pb. To make these measurements, we have calibrated a new synthetic isotope tracer that comprises a mixture of 229Th-233U-236U-202Pb-205Pb. The analytical strategy developed for accessory minerals is a hybrid of techniques previously developed for U-Pb ID-TIMS and U/230Th ID-MC-ICPMS, with a two-column HCl-HNO3 anion exchange procedure (one to separate U and Pb from matrix+Th, and the other to separate Th from matrix), followed by a recombination of the U and Th fractions for MC-ICPMS analysis while the Pb fraction is measured by TIMS. Th-Pb measurements are complementary to, and potentially as precise as the U-Pb gold standard, and the method will find application in certain geological problems, including (1) precisely determining the relative decay rates of 232Th and 238U, (2) dating materials that are young enough to be substantially affected by 230Th or 231Pa disequilibria, and (3) dating small quantities of high-Th minerals like monazite, allanite, and perovskite. We present here a description of the analytical strategy and preliminary measurements of calibration and reference materials.

  10. Chemical and isotopic composition of water from thermal springs and mineral springs of Washington

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1982-01-01

    Water from thermal springs of Washington range in chemical composition from dilute NaHC03, to moderately saline C02-charged NaHC03-Cl waters. St. Martin 's Hot Spring which discharges a slightly saline NaCl water, is the notable exception. Mineral springs generally discharge a moderately saline C02-charged NaHC03-Cl water. The dilute Na-HC03 waters are generally associated with granite. The warm to hot waters charged with C02 issue on or near the large stratovolcanoes and many of the mineral springs also occur near the large volcanoes. The dilute waters have oxygen isotopic compositions which indicate relatively little water-rock exchange. The C02-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. Carbon-13 in the C02-charged thermal waters is more depleted (-10 to -12 permil) than in the cold C02-charged soda springs (-2 to -8 permil) which are also scattered throughout the Cascades. The hot and cold C02-charged waters are supersaturated with respect to CaC03, but only the hot springs are actively depositing CaC03. Baker, Gamma, Sulphur , and Ohanapecosh seem to be associated with thermal aquifers of more than 100C. (USGS)

  11. Chemical and isotopic composition of water from thermal and mineral springs of Washington

    SciTech Connect

    Mariner, R.H.; Presser, T.S.; Evans, W.C.

    1982-02-01

    Waters from the thermal springs of Washington range in chemical composition from dilute Na-HCO/sub 3/ to moderately saline CO/sub 2/-charged Na-HCO/sub 3/-Cl type waters. St. Martin's Hot Spring which discharges a slightly saline Na-Cl water, is the notable exception. The dilute Na-HCO/sub 3/ waters are generally associated with granitic intrusions; the warm to hot CO/sub 2/-charged waters issue on or near the large stratovolcanoes. The dilute waters have oxygen-isotopic compositions that indicate relatively little water-rock exchange. The CO/sub 2/-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. The carbon-13 in the CO/sub 2/-charged thermal waters is more depleted (-10 to -12 %) than in the cold CO/sub 2/-charged soda springs (-2 to -8%) which are also scattered throughout the Cascades. The hot and cold CO/sub 2/-charged waters are supersaturated with respect to CaCO/sub 3/, but only the hot springs are actively depositing CaCO/sub 3/. Baker, Gamma, Sulphur, and Ohanapecosh hot springs seem to be associated with thermal aquifers of more than 100/sup 0/C. As these springs occur as individual springs or in small clusters, the respective aquifers are probably of restricted size.

  12. A crowding factor model for the thermal conductivity of particulate composites at non-dilute limit

    NASA Astrophysics Data System (ADS)

    Ordonez-Miranda, J.; Yang, Ronggui; Alvarado-Gil, J. J.

    2013-08-01

    The effective thermal conductivity models for particulate composites are usually restricted to the dilute limit, with volumetric concentrations of particles typically less than 15%. By considering the particle interactions through a crowding factor, in this work, a new formula is developed to describe the thermal conductivity of composites with a dielectric matrix, for volume fractions of particles up to their maximum packing fraction. The crowding factor model is then applied to analyze two particulate composites with dielectric or metallic particles, where the effects of both interfacial thermal resistance and the electron-phonon coupling are taken into account. It is shown that the predictions of the proposed crowding factor model are larger than the ones predicted by the dilute-limit models, for composites with high volume fractions of particles, due to the particle interactions. The proposed crowding factor model extends the applicability of various thermal conductivity models for composites reported in the literature and its predictions are in good agreement with published experimental data.

  13. NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY

    SciTech Connect

    Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

    2003-08-01

    DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

  14. Evaluation of three isotope-dilution techniques for studying the kinetics of glucose metabolism in sheep

    PubMed Central

    White, R. G.; Steel, J. W.; Leng, R. A.; Luick, J. R.

    1969-01-01

    1. Comparisons have been made of three isotope-dilution techniques for measuring parameters of glucose metabolism in sheep given their daily ration in 12 equal amounts (i.e. from 07.00 to 18.00hr.) 2. [U-14C]Glucose was used in all experiments. After a single injection the specific radioactivity of plasma glucose was measured at specific times for up to 24hr. Primed infusions were made with various ratios of P, priming injection (nc), to F, infusion rate (nc/min.) (P/F ratios varying from 23:1 to 147:1) and the specific radioactivity of plasma glucose was measured at 60, 120, 150, 180, 210 and 240min. In continuous infusions the specific radioactivity of plasma glucose was followed for 9hr.; a constant specific radioactivity was observed after approximately 180min. 3. A computer programme was used to fit a multi-exponential equation to the log(specific radioactivity)time curve after a single injection. A second- or third-order exponential equation was found to fit the results. 4. Conventional analyses of all results showed that similar estimates of the irreversible loss of glucose were obtained by using all three techniques. Estimates of glucose pool size and space by using the primed infusion technique were both significantly higher than estimates obtained by the single injection technique. In these experiments total entry rate could only be determined from the single-injection results and a wide variation in estimates was obtained. 5. Comparisons of the specific radioactivitytime relationships after a single injection of [U-14C]glucose in sheep given their ration either once daily or as a proportion at hourly intervals indicated that there were fluctuations in glucose synthesis in the former over the period of the experiment. The multi-exponential curves fitted to these results had larger residual variances than in sheep given food at hourly intervals. All parameters of glucose metabolism estimated were similar under both feeding regimes. 6. A number of methods of analysis are discussed and a model for glucose metabolism in sheep in suggested. PMID:4898281

  15. Detection of human urinary 5-hydroxymethylcytosine by stable isotope dilution HPLC-MS/MS analysis.

    PubMed

    Yin, Ruichuan; Mo, Jiezhen; Lu, Meiling; Wang, Hailin

    2015-02-01

    The sixth DNA base 5-hydroxymethylcytosine (5hmC) is the major oxidation product of the epigenetic modification 5-methylcytosine (5mC), mediating DNA demethylation in mammals. Reduced 5hmC levels are found to be linked with various tumors and neurological diseases; therefore, 5hmC is an emerging biomarker for disease diagnosis, treatment, and prognosis. Due to its advantages of being sterile, easily accessible in large volumes, and noninvasive to patients, urine is a favored diagnostic biofluid for 5hmC analysis. Here we developed an accurate, sensitive, and specific assay for quantification of 5mC, 5hmC, and other DNA demethylation intermediates in human urine. The urinary samples were desalted and enriched using off-line solid-phase extraction, followed by stable isotope dilution HPLC-MS/MS analysis for 5hmC and 5mC. By the use of ammonium bicarbonate (NH4HCO3) as an additive to the mobile phase, we improved the online-coupled MS/MS detection of 5mC, 5hmC, and 5-formylcytosine (5fC) by 1.8-14.3 times. The recovery of the method is approximately 100% for 5hmC, and 70-90% for 5mC. The relative standard deviation (RSD) of the interday precision is about 2.9-10.6%, and that of the intraday precision is about 1.4-7.7%. By the analysis of 13 volunteers using the developed method, we for the first time demonstrate the presence of 5hmC in human urine. Unexpectedly, we observed that the level of 5hmC (22.6 13.7 nmol/L) is comparable to that of its precursor 5mC (52.4 50.2 nmol/L) in human urine. Since the abundance of 5hmC (as a rare DNA base) is 1 or 2 orders of magnitude lower than 5mC in genomic DNA, our finding probably implicates a much higher turnover of 5hmC than 5mC in mammalian genomic DNA and underscores the importance of DNA demethylation in daily life. PMID:25551771

  16. Stable isotope dilution assays of alternariol and alternariol monomethyl ether in beverages.

    PubMed

    Asam, Stefan; Konitzer, Katharina; Schieberle, Peter; Rychlik, Michael

    2009-06-24

    Stable isotope dilution assays (SIDAs) for the determination of the most important mycotoxins of the black mold Alternaria, namely, alternariol and alternariol monomethyl ether, have been developed. For this purpose, deuterated alternariol and alternariol methyl ether were synthesized by palladium catalyzed protium-deuterium exchange from the unlabeled toxins. Reaction conditions were chosen in such a manner that the formation of the [(2)H(4)]-isotopologues was favored. The synthesized products were characterized by LC-MS, NMR, and UV-spectroscopy. On the basis of the use of [(2)H(4)]-alternariol and [(2)H(4)]-alternariol methyl ether as internal standards, SIDAs were developed and applied to the determination of alternariol and alternariol methyl ether in beverages using LC-MS/MS. Method validation revealed a high sensitivity, i.e., low limits of detection (alternariol, 0.03 microg/kg; alternariol methyl ether, 0.01 microg/kg) and limits of quantitation (alternariol, 0.09 microg/kg; alternariol methyl ether, 0.03 microg/kg), respectively. Recovery from spiked apple juice was 100.5 +/- 3.4% for alternariol (range 0.1-1 microg/kg) and 107.3 +/- 1.6% for alternariol methyl ether (range 0.05-0.5 microg/kg). Interassay precision (expressed as coefficient of variation, CEV) for alternariol was 4.0% (7.82 +/- 0.31 microg/kg; vegetable juice, naturally contaminated) and 4.6% (1.04 +/- 0.05 microg/kg; grape juice, naturally contaminated). For alternariol methyl ether, a CEV of 2.3% (0.79 +/- 0.02 microg/kg; vegetable juice, naturally contaminated) was obtained. Analysis of fruit juices showed low contamination with alternariol and alternariol methyl ether in general, but higher values of both toxins were found in wine and vegetable juices. The values for alternariol were higher than those for alternariol methyl ether in nearly any case. However, the developed SIDA has proven to be optimally suited for further studies on alternariol and alternariol methyl ether content in food samples to obtain further insight into possible health hazards for the consumer. PMID:19530709

  17. Modification of a commercial gas chromatography isotope ratio mass spectrometer for on-line carbon isotope dilution: Evaluation of its analytical characteristics for the quantification of organic compounds.

    PubMed

    Alonso Sobrado, Laura; Robledo Fernández, Mario; Cueto Díaz, Sergio; Ruiz Encinar, Jorge; García Alonso, J Ignacio

    2015-11-01

    We describe the instrumental modification of a commercial gas chromatography isotope ratio mass spectrometer (GC-IRMS) and its application for on-line carbon isotope dilution. The main modification consisted in the addition of a constant flow of enriched (13)CO2 diluted in helium after the chromatographic column through the splitter holder located inside the chromatographic oven of the instrument. In addition, and in contrast to the conventional mode of operation of GC-IRMS instruments where the signal at m/z 45 is amplified 100-fold with respect to the signal at m/z 44, the same signal amplification was used in both Faraday cups at m/z 44 and 45. Under these conditions isotope ratio precision for the ratio 44/45 was around 0.05% RSD (n=50). The evaluation of the instrument was performed with mixtures of organic compounds including 11 n-alkanes, 16 PAHs, 12 PCBs and 3 benzothiophenes. It was observed that compounds of very different boiling points could be analysed without discrimination in the injector when a Programmable Temperature Vaporizer (PTV) injector was employed. Moreover, the presence of heteroatoms (Cl or S) in the structure of the organic compounds did not affect their combustion efficiency and therefore the trueness of the results. Quantitative results obtained for all the analytes assayed were excellent in terms of precision (<3% RSD) and accuracy (average relative error≤4%) and what is more important using a single and simple generic internal standard for quantification. PMID:26435309

  18. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  19. High accuracy determination of malachite green and leucomalachite green in salmon tissue by exact matching isotope dilution mass spectrometry.

    PubMed

    Hall, Zoe; Hopley, Chris; O'Connor, Gavin

    2008-10-15

    A high accuracy method for the quantification of malachite green (MG) and leucomalachite green (LMG) in salmon is described. Analytical challenges including the effects of analyte instability and matrix suppression were minimised by the use of exact matching isotope dilution mass spectrometry. The developed method included overnight extraction in acidified acetonitrile/ammonium acetate buffer and analysis by LC-MS/MS utilising isotopic internal standards. This method was used to determine the level of MG and LMG in a sample of salmon used in an international inter-comparison organised by the Comité Consultatif pour la Quantité de Matière (CCQM). The sum of MG and LMG was found to be 9.32+/-0.98ngg(-1) at the 95% confidence interval (relative expanded uncertainty 10.5% (k=2)). This encompassed the mean and median of the CCQM inter-comparison. PMID:18818128

  20. Species-specific isotope dilution with permeation tubes for determination of gaseous mercury species.

    PubMed

    Larsson, T; Frech, W

    2003-10-15

    Instrumentation and methodology for determination of the gaseous mercury species Hg0, (CH3)2Hg, and CH3Hg+ has been developed. The method is based on continuous addition of gaseous isotopically enriched Hg species (tracers) at the point of sample acquisition, in combination with reduced pressure sampling on Carbotrap adsorbent tubes. Permeation tubes are used for generation of the tracers. Collected species are thermally desorbed and purged through an aqueous sodium tetraethylborate solution for derivatization of CH3Hg+. The purged gas is dried with a Nafion membrane, and the Hg species are subsequently collected on a smaller Tenax TA adsorbent tube. Species are then thermally desorbed from the Tenax TA and introduced into a gas chromatograph connected to an inductively coupled plasma mass spectrometer for separation and detection. To be able to add tracers during field sampling, we developed a portable device, supplying the permeation tubes with a thermostated and mass flow-controlled air stream of 5.0 +/- 0.1 degrees C and 50.0 mL min(-1), respectively. Typical permeation rates obtained during a period of more than 6 weeks were 12.93 +/- 0.56, 0.42 +/- 0.01, and 0.49 +/- 0.03 (mean +/- standard deviation) pg of Hg min(-1) for a set of 199Hg0, (CH3)2 198Hg, and CH3 200Hg+ tubes, respectively. Methodological detection limits (3sigma) were determined to 700 pg of Hg m(-3) for Hg0 and 50 pg of Hg m(-3) for (CH3)2Hg and CH3Hg+. The collection efficiencies for sampled volumes of 400 L of synthetic air on the Carbotrap tubes used in this study were 13 +/- 2, 102 +/- 2, and 99 +/- 4% for Hg0, (CH3)2Hg, and CH3Hg+, respectively. Desorption efficiencies for the above species and tubes were 98 +/- 2, 98 +/- 1, and 90 +/- 4%, respectively. Fractions (20-40%) of the added (CH3)2 198Hg and CH3 200Hg+ tracers were found to be transformed during the analytical processing of collected air samples. Determined concentrations in the research laboratory air, corrected for species transformations, were 3-53, 8-11, and 1-2 ng of Hg m(-3) for Hg0, (CH3)2Hg, and CH3Hg+, respectively. Concentrations in the ambient air were determined to be 2.1-2.6 ng m(-3) for Hg0 and below the detection limit for (CH3)2Hg and CH3Hg+. PMID:14710842

  1. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    PubMed

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-01

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. PMID:25440666

  2. Trace analysis of acidic pharmaceutical residues in waters with isotope dilution gas chromatography-mass spectrometry via methylation derivatization.

    PubMed

    Hu, Ruikang; Yang, Zhaoguang; Zhang, Lifeng

    2011-09-30

    Acidic pharmaceutical residues are pollutants of emerging concern and are generally monitored by HPLC-MS/MS. However, due to the limited separation efficiency of HPLC column and lack of suitable mass transition for confirmation analysis, some interference may not be separated completely and differentiated from ibuprofen, which may cause the results with interference, especially in sample with complex matrix. The objective of this study is to develop a sensitive and reliable method for the determination of acidic pharmaceutical residues in water samples by GC-MS with better resolution by using methylation derivatization and isotope dilution techniques. TMSDM, a mild reagent, was used as the derivatization reagent coupling with the isotope dilution technique, for the first time, to improve the precision and accuracy of the analytical method to determine the pharmaceutical residues in water. The MDLs for the five acidic organic compounds: ibuprofen, gemfibrozil, naproxen, ketoprofen and diclofenac were from 0.7 to 1.1 ng/L, with recoveries ranging from 93 to 110%. Alternative to the HPLC-MS/MS method, the developed GC-MS protocols provides an additional option for the analysis of acidic pharmaceutical residues in water, with better separation efficiency in reducing interferences from complicated sample matrix, for determination of ibuprofen residues. PMID:21872014

  3. Determination of dicyandiamide in infant formula by stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry.

    PubMed

    Inoue, Koichi; Sakamoto, Tasuku; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2014-08-01

    Dicyandiamide is a compound for reducing the negative effects of greenhouse gas emissions and nitrate leaching into waterways. In this study, the trace contamination of dicyandiamide in infant formula was analysed by stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS). Dicyandiamide and a stable isotope internal standard were monitored by multiple reaction-monitoring with mass transitions: m/z 85?68/43 and m/z 89?71/45 in the electrospray positive ion mode. For sample preparation of the infant formula, a diluted/filtered procedure was developed for this assay. The calculated LOD and LOQ values were 0.01 or 0.05ng/mL for the standard solution, respectively. The averaged recovery and precision were 110.8% and 7.4%, respectively. This assay was applied to monitor 23 infant formulas, and the dicyandiamide contamination in one sample was detected and quantified at 79.11.2ng/g (ppb) powder. We suggest that it is necessary to cautiously monitor the DCD in common products from international countries. PMID:24629985

  4. Uranium disequilibrium in groundwater: An isotope dilution approach in hydrologic investigations

    USGS Publications Warehouse

    Osmond, J.K.; Rydell, H.S.; Kaufman, M.I.

    1968-01-01

    The distribution and environmental disequilibrium patterns of naturally occurring uranium isotopes (U234 and U238) in waters of the Floridan aquifer suggest that variations in the ratios of isotopic activity and concentrations can be used quantitatively to evaluate mixing proportions of waters from differing sources. Uranium is probably unique in its potential for this approach, which seems to have general usefulness in hydrologic investigations.

  5. High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry.

    PubMed

    Paul, Maxence; Bridgestock, Luke; Rehkmper, Mark; van DeFlierdt, Tina; Weiss, Dominik

    2015-03-10

    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 2821 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about 1 to 10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (124 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated with (207)Pb/(206)Pb, underlining the significant improvement achieved in the measurement of the minor (204)Pb isotope. PMID:25732313

  6. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Feng, Liuxing; Zhang, Dan; Wang, Jun; Shen, Dairui; Li, Hongmei

    2015-07-16

    Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with (34)S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and (34)S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (m(sp)/m(sam)) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5-3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation process. Moreover, the application of species-unspecific isotope dilution GE-LA-ICP-MS has the potential to offer reliable, direct and simultaneous quantification of proteins after conventional 1D and 2D gel electrophoretic separations. PMID:26073803

  7. Determination of mercury in coal by isotope dilution cold-vapor generation inductively coupled plasma mass spectrometry.

    PubMed

    Long, Stephen E; Kelly, W Robert

    2002-04-01

    A method based on isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICPMS) has been developed for high-accuracy determinations of mercury in bituminous and sub-bituminous coals. A closed-system digestion process employing a Carius tube is used to completely oxidize the coal matrix and chemically equilibrate the mercury in the sample with a 201Hg isotopic spike. The digestates are diluted with high-purity quartz-distilled water, and the mercury is released as a vapor by reduction with tin(II) chloride. Measurements of 201Hg/202Hg isotope ratios are made using a quadrupole ICPMS system in time-resolved analysis mode. The new method has some significant advantages over existing methods. The instrument detection limit is less than 1 pg/mL. The average blank (n = 17) is 30 pg, which is roughly 1 order of magnitude lower than the equivalent microwave digestion procedure. The detection limit in coal is blank limited and is approximately 40 pg/g. Memory effects are very low. The relative reproducibility of the analytical measurements is approximately 0.5% for mercury concentrations in the range 10-150 ng/g. The method has been used to measure mercury concentrations in six coal reference materials, SRM 1632b (77.4 ng/g), SRM 1632c (94.3 ng/g), BCR 40 (433.2 ng/g), BCR 180 (125.0 ng/g), BCR 181 (135.8 ng/g), and SARM 20 (252.6 ng/g), as well as a coal fly ash, SRM 1633b (143.1 ng/g). The method is equally applicable to other types of fossil fuels including both crude and refined oils. PMID:12033233

  8. Comparisons among Equations Used for Retinol Isotope Dilution in the Assessment of Total Body Stores and Total Liver Reserves.

    PubMed

    Gannon, Bryan M; Tanumihardjo, Sherry A

    2015-05-01

    Vitamin A plays an essential role in animal biology and has negative effects associated with both hypo- and hypervitaminosis A. Many notable interventions are being done globally to eliminate vitamin A deficiency, including supplementation, fortification, and biofortification. At the same time, it is important to monitor vitamin A status in nations where preformed vitamin A intake is high because of consumption of animal source foods (e.g., liver, dairy, eggs), fortified foods (e.g., milk, cereals, oil, sugar, margarine), or vitamin supplements (e.g., one-a-day multivitamins) to ensure the population does not reach hypervitaminosis A. To accurately assess population status and evaluate interventions aimed at improving vitamin A status, accurate assessment methods are needed. The primary storage site of vitamin A is the liver; however, routinely obtaining liver samples from humans is impractical and unethical. Isotope dilution using deuterium- or (13)C-labeled retinol is currently the most sensitive indirect biomarker of vitamin A status across a wide range of liver reserves. The major drawback to its application is the increased technicality in sample analysis and data calculations when compared to less sensitive methodology, such as serum retinol concentrations and dose response tests. Two main equations have emerged for calculating vitamin A body pool size or liver concentrations from isotope dilution data: the "Olson equation" and the "mass balance equation." Different applications of these equations can lead to confusion and lack of consistency if the underlying principles and assumptions used are not clarified. The purpose of this focused review is to describe the evolution of the equations used in retinol stable-isotope work and the assumptions appropriate to different applications of the test. Ultimately, the 2 main equations are shown to be fundamentally the same and differ only in assumptions made for each specific research application. PMID:25809683

  9. Examining the stability of thermally fissile Th and U isotopes

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Biswal, S. K.; Singh, S. K.; Patra, S. K.

    2015-11-01

    The properties of recently predicted thermally fissile Th and U isotopes are studied within the framework of the relativistic mean-field approach using the axially deformed basis. We calculate the ground, first intrinsic excited state for highly neutron-rich thorium and uranium isotopes. The possible modes of decay such as ? decay and ? decay are analyzed. We found that neutron-rich isotopes are stable against ? decay, however, they are very unstable against ? decay. The lifetime of these nuclei is predicted to be tens of seconds against ? decay. If these nuclei are utilized before their decay time, a lot of energy can be produced with the help of multifragmentation fission. Also, these nuclei have great implications from the astrophysical point of view. In some cases, we found that the isomeric states with energy range from 2 to 3 MeV and three maxima in the potential energy surface of Th-230228 and U-234228 isotopes.

  10. Separation of Hydrogen Isotopes by Thermal Diffusion

    SciTech Connect

    Rutherford, W. M.; Lindsay, C. N.

    1985-09-01

    At high hot wall temperatures the gas phase thermal diffusion column acts as an atomic rather than a molecular separator. A modified theory was developed to describe the process. Equivalent transport equations were derived for the two nuclides in a binary atomic mixture. The equations are identical in form to those normally encountered in thermal diffusion column theory. Experiments to test the theory were carried out with two 3-meter columns. Experimental results with deuterium-tritium mixtures were found to be in satisfactory agreement with theory, and it was concluded that the theory was sufficiently accurate for design purposes.

  11. Accuracy of some routine method used in clinical chemistry as judged by isotope dilution-mass spectrometry

    SciTech Connect

    Bjoerkhem, I.; Bergman, A.; Falk, O.; Kallner, A.; Lantto, O.; Svensson, L.; Akerloef, E.; Blomstrand, R.

    1981-05-01

    Serum from patients was pooled, filtered, dispensed, and frozen. This pooled specimen was used for accuracy control in 64 participating laboratories in Sweden. Mean values (state-of-the-art values) were obtained for creatinine, cholesterol, glucose, urea, uric acid, and cortisol. These values were compared with values obtained with highly accurate reference methods based on isotope dilution-mass spectrometry. Differences were marked in the case of determination of creatinine and cortisol. Concerning the other components, the differences between the state-of-the-art value and the values obtained with the reference methods were negligible. Moreover, the glucose oxidase and the oxime methods for determination of glucose and urea were found to give significantly lower values than the hexokinase and urease methods, respectively. Researchers conclude that methods with a higher degree of accuracy are required for routine determination of creatinine and cortisol.

  12. Ultra trace determination of fluorobenzoic acids in reservoir and ground water using isotope dilution gas chromatography mass spectrometry.

    PubMed

    Mller, Karsten; Seubert, Andreas

    2014-06-01

    The accurate ultra-trace analysis of six fluorobenzoic acids (FBAs) via isotope dilution gas chromatography mass spectrometry through their deuterated analogues is described. North Sea reservoir and ground water samples were spiked with six deuterated FBAs (dFBAs), enriched using solid-phase extraction (SPE) and analysed using GC/MS after derivatisation with BF 3 MeOH. All FBAs were enriched and determined simultaneously. SPE allowed a 250-fold enrichment of the acids if 100 mL of sample volume was used. The method enables the determination of FBAs down to the range of 8-37 ng L (-1) with recoveries between 66 % and 85 %. It uses low amounts of chemicals and is adaptable to larger and smaller sample volumes. PMID:24620719

  13. Quantification of free and bound pantothenic acid in foods and blood plasma by a stable isotope dilution assay.

    PubMed

    Rychlik, M

    2000-04-01

    A stable isotope dilution assay for quantification of pantothenic acid in food and blood plasma uses a 4-fold labeled isotopomer of the vitamin as an internal standard. Pantothenic acid and its labeled analogue were detected as trimethylsilyl derivatives by gas chromatography-mass spectrometry, showing a minimized spectral overlap. In starch a detection limit of 44 microg/kg, an intrasample relative standard deviation of 6.7%, and recovery values ranging between 97.5 and 99.4% were determined. Total pantothenic acid content was determined in rice, milk powder, apple juice, and blood plasma after enzymatic hydrolysis of the vitamin's conjugates; free pantothenic acid was quantified prior to enzyme treatment. Almost all results were found to be in good agreement with literature data. PMID:10775368

  14. The assay of pterostilbene in spiked matrices by liquid chromatography tandem mass spectrometry and isotope dilution method.

    PubMed

    Mazzotti, Fabio; Di Donna, Leonardo; Benabdelkamel, Hicham; Gabriele, Bartolo; Napoli, Anna; Sindona, Giovanni

    2010-04-01

    Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is an active component found in several plant species, exhibiting important pharmacological properties. A new and reliable method of assaying this phyto compound in various matrices is presented; the assay is based on (1) the selectivity of liquid chromatography (LC) hyphenated with electrospray ionisation (ESI), (2) the specificity of a two-step mass spectrometric analysis (MS/MS) and (3) the accuracy of the isotope dilution method. The labelled analogue may be conveniently synthesised in a few steps. The sensitivity of the method is confirmed by the very low limit of detection (LOD) and limit of quantitation (LOQ) values achieved in the assay of pterostilbene in two distinct fortified matrices, and is further supported by the observed accuracy values. PMID:20198601

  15. Short communication: milk output in llamas (Lama glama) in relation to energy intake and water turnover measured by an isotope dilution technique.

    PubMed

    Riek, A; Klinkert, A; Gerken, M; Hummel, J; Moors, E; Sdekum, K-H

    2013-03-01

    Despite the fact that llamas have become increasingly popular as companion and farm animals in both Europe and North America, scientific knowledge on their nutrient requirements is scarce. Compared with other livestock species, relatively little is known especially about the nutrient and energy requirements for lactating llamas. Therefore, we aimed to measure milk output in llama dams using an isotope dilution technique and relate it to energy intakes at different stages of lactation. We also validated the dilution technique by measuring total water turnover (TWT) directly and comparing it with values estimated by the isotope dilution technique. Our study involved 5 lactating llama dams and their suckling young. Milk output and TWT were measured at 4 stages of lactation (wk 3, 10, 18, and 26 postpartum). The method involved the application of the stable hydrogen isotope deuterium ((2)H) to the lactating dam. Drinking water intake and TWT decreased significantly with lactation stage, whether estimated by the isotope dilution technique or calculated from drinking water and water ingested from feeds. In contrast, lactation stage had no effect on dry matter intake, metabolizable energy (ME) intake, or the milk water fraction (i.e., the ratio between milk water excreted and TWT). The ratios between TWT measured and TWT estimated (by isotope dilution) did not differ with lactation stage and were close to 100% in all measurement weeks, indicating that the D(2)O dilution technique estimated TWT with high accuracy and only small variations. Calculating the required ME intakes for lactation from milk output data and gross energy content of milk revealed that, with increasing lactation stage, ME requirements per day for lactation decreased but remained constant per kilogram of milk output. Total measured ME intakes at different stages of lactation were similar to calculated ME intakes from published recommendation models for llamas. PMID:23332845

  16. Mass Independent Fractionation of Cadmium Isotopes During Thermal Ionization

    NASA Astrophysics Data System (ADS)

    Abouchami, W.; Galer, S. J.; Feldmann, H.; Schmitt, A. D.

    2008-12-01

    We have previously reported that Cd isotopes exhibit anomalous, non-mass dependent fractionation of odd versus even isotopes when measured by TIMS using silica gel-phosphoric acid activator. The deviation from mass dependent fractionation (MDF) on the odd masses 111 and 113 varies by fractions of a per-cent between runs. The effects cannot be explained by isobaric interferences, but seem, instead, to reflect mass independent fractionation (MIF) of Cd isotopes, much like that recently documented for Hg isotopes in natural systems (Bergquist and Blum, 2007). The absence of comparable Cd isotope anomalies in the ICP torch, and during extreme in-vacuo volatilization of Cd metal (Wombacher et al., 2004) conclusively implicates the silica gel activator in the process. So far, MIF has been documented for Cd, Zn and Pb isotopes when measured using the silica gel technique (Thirlwall, 2000; Schmitt et al., 2006; Manhes and Gpel, 2007). These MIF effects on Cd isotopes might perhaps be related to the non-mass dependence of nuclear volume with mass number, as described by Bigeleisen (1996) - also known as the "nuclear field shift". The MIF caused by the nuclear field shift results is a departure from MDF broadly characterized by a odd-even staggering with mass number. These effects have been quantified by Schauble (2007) who showed that the magnitude of the non-mass dependence for Hg and Tl isotopes lies in the ppm range for some simple reactions. Such MIF effects would appear, overall, far too small to account for our data, which require MIF offsets on the odd masses 111 and 113 approaching a per-cent. Moreover, an in-depth examination along the lines of Fujii et al. (2006) predicts tell-tale offsets for the even-even isotope pairs 114Cd/112Cd and 116Cd/112Cd as well, based upon the theory and the respective nuclear radii, but such accompanying offsets are unequivocally absent in our data. The odd-even isotope effects seen in our runs using silica gel activator are better explained by appealing to the nuclear spin (and magnetic moment) of odd nuclei alone. The "magnetic isotope effect" is a consequence of hyperfine coupling, in which an electron interacts with a nucleus of non-zero magnetic moment - i.e. one that has an odd number of nucleons (Turro, 1983; Buchachenko, 1995, 2001). This is purely a kinetic phenomenon in which the life-time, and thus the outcome, of reaction transition states is altered by the hyperfine splitting present in atoms with odd nuclei. The mechanism by which silica gel activator enhances the thermal ionization of elements such as Cd, Pb and Zn has been outlined by Kessinger and Delmore (2002). The first step involves the in-situ reduction of Cd2+ ions to Cd metal in the molten silica gel-phosphoric acid glass. It is most likely in this step - whereby two electrons are added - that a suitably long-lived transition state exists, during which the magnetic isotope effect enhances (or inhibits) reduction of masses 111 and 113 to metal species compared to those of even isotopes of Cd. The resulting "odd" and "even" populations of Cd-metal in the molten silica gel then cannot be related simply in terms of MDF. Overall, the magnetic isotope effect provides the best explanation of the MIF effects observed for Pb, Cd and Zn during thermal ionization with silica gel activator, and, probably, why the measured fractionation is always biased towards light isotopes.

  17. Measurement of the body composition of living gray seals by hydrogen isotope dilution

    SciTech Connect

    Reilly, J.J.; Fedak, M.A. )

    1990-09-01

    The body composition of living gray seals (Halichoerus grypus) can be accurately predicted from a two-step model that involves measurement of total body water (TBW) by {sup 2}H or {sup 3}H dilution and application of predictive relationships between body components and TBW that were derived empirically by slaughter chemical analysis. TBW was overestimated by both {sup 2}HHO and {sup 3}HHO dilution; mean overestimates were 2.8 +/- 0.9% (SE) with 2H and 4.0 +/- 0.6% with {sup 3}H. The relationships for prediction of total body fat (TBF), protein (TBP), gross energy (TBGE), and ash (TBA) were as follows: %TBF = 105.1 - 1.47 (%TBW); %TBP = 0.42 (%TBW) - 4.75; TBGE (MJ) = 40.8 (mass in kg) - 48.5 (TBW in kg) - 0.4; and TBA (kg) = 0.1 - 0.008 (mass in kg) + 0.05 (TBW in kg). These relationships are applicable to gray seals of both sexes over a wide range of age and body conditions, and they predict the body composition of gray seals more accurately than the predictive equations derived from ringed seals (Pusa hispida) and from the equation of Pace and Rathbun, which has been reported to be generally applicable to mammals.

  18. Analysis of organophosphate flame retardants and plasticisers in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry.

    PubMed

    Teo, Tiffany L L; McDonald, James A; Coleman, Heather M; Khan, Stuart J

    2015-10-01

    The widespread use of organophosphate flame retardants (PFRs) in commercial products have led to their increased presence in the environment. In this study, a rapid and reliable analytical method was developed for the analysis of five PFRs in water using gas chromatography tandem mass spectrometry (GC-MS/MS) with electron ionisation (EI) and a run time of 13 min. The PFRs investigated were tributyl phosphate (TBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP) and triphenyl phosphate (TPP). Solid phase extraction (SPE) was undertaken to extract and concentrate target analytes from aqueous matrices. All water samples were extracted from a volume of 500 mL. Isotopically labelled compounds were used to account for analytical variability and for accurate quantification by isotope dilution. Method recoveries for all compounds were above 80% in all tested water samples. Method detection limits for all target analytes ranged from 0.3 to 24 ng/L in ultrapure water, tap water, seawater, surface water, secondary effluent and swimming pool water. Validation of this method confirmed satisfactory method stability with less than 1% coefficients of variation, verifying that this approach produced good reproducibility. PMID:26078137

  19. Simultaneous determination of ?-, ?- and ?-hexabromocyclododecane diastereoisomers in water samples by isotope dilution mass spectrometry using (81)Br-labeled analogs.

    PubMed

    Somoano-Blanco, Lourdes; Rodriguez-Gonzalez, Pablo; Centineo, Giusepe; Fonseca, Sergio Garca; Garcia Alonso, J Ignacio

    2016-01-15

    This work describes the synthesis, characterization and application of three (81)Br-labeled diastereosiomers of hexabromocyclododecane (HBCD) for the accurate and precise determination of ?-, ?- and ?-HBCD in water samples by isotope dilution mass spectrometry. The synthesis of the labeled analogs was carried out by bromination of cis, trans, trans-1,5,9-cyclododecatriene with (81)Br-enriched bromine. After isolation and purification by semipreparative HPLC, each diastereoisomer was characterized in terms of concentration and isotopic enrichment. Then, they were added to the samples to simultaneously quantify the three HBCD diastereoisomers in a single LC-MS/MS injection without resorting to a methodological calibration graph. The results obtained here demonstrate that the use of (81)Br-labeled analogs provides accurate and precise determinations of ?-, ?- and ?-HBCD in real water samples. The limits of quantification obtained in real samples for ?-, ?- and ?-HBCD were 0.022, 0.073 and 0.015ngL(-1), respectively, significantly lower than those required by the European Directive 2013/39/EC. PMID:26739916

  20. Quantification of Cr(VI) in soil samples from a contaminated area in northern Italy by isotope dilution mass spectrometry.

    PubMed

    Guidotti, Laura; Queipo Abad, Silvia; Rodríguez-González, Pablo; García Alonso, J Ignacio; Beone, Gian Maria

    2015-11-01

    The aims of the work were to detect and quantify hexavalent chromium in 14 soil samples from an area in Lombardia (northern Italy) contaminated by two polluted water plumes. Cr(VI) was extracted from the solid samples by applying focused microwaves in an alkaline medium after Cr(III) complexation with EDTA. Cr(VI) was reduced to Cr(III) when previously reported extraction conditions for the analysis of certified reference materials were used, and Cr(VI) could not be reliably quantified in the soil samples. The influence of organic matter and iron contents in the samples on the reduction of Cr(VI) was subsequently studied using a new set of soil samples with different iron and organic matter concentrations. Isotope dilution mass spectrometry (IDMS) measured two different enriched stable isotopes of Cr (54 and 53) to evaluate the reduction extent of hexavalent chromium during the analytical procedure. The extraction conditions were optimized to obtain the lowest amount of Cr(VI) reduction and quantify Cr(VI) in the polluted soil samples from Lombardia. PMID:26141979

  1. Measurement of Niacin in a Variety of Food Samples by High Performance Liquid Chromatography-Stable Isotope Dilution Mass Spectrometry (Experimental Biology, April, 2007, Washington, D.C.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of deuterium-labeled nicotinic acid makes stable isotope dilution mass spectrometry (SIDMS) coupled with liquid chromatography (LC) an attractive option for the determination of the water-soluble B-vitamin, niacin, in food samples. We have developed a method based on AOAC Peer-Verif...

  2. Measurement of Niacin in a Variety of Food Samples by High Performance Liquid Chromatography-Stable Isotope Dilution Mass Spectrometry (AOAC Annual Meeting, Minneapolis, MN, Sept. 2006)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of deuterium-labeled nicotinic acid makes stable isotope dilution mass spectrometry (SIDMS) coupled with liquid chromatography (LC) an attractive option for the determination of the water-soluble B-vitamin, niacin, in food samples. We have developed a method based on AOAC Peer-Verif...

  3. Evaluation of matrix effect in isotope dilution mass spectrometry based on quantitative analysis of chloramphenicol residues in milk powder.

    PubMed

    Li, Xiu Qin; Yang, Zong; Zhang, Qing He; Li, Hong Mei

    2014-01-01

    In the present study, we developed a comprehensive strategy to evaluate matrix effect (ME) and its impact on the results of isotope dilution mass spectrometry (IDMS) in analysis of chloramphenicol (CAP) residues in milk powder. Stable isotope-labeled internal standards do not always compensate ME, which brings the variation of the ratio (the peak area of analyte/the peak area of isotope). In our investigation, impact factors of this variation were studied in the extraction solution of milk powder using three mass spectrometers coupled with different ion source designs, and deuterium-labeled chloramphenicol (D5-CAP) was used as the internal standard. ME from mobile phases, sample solvents, pre-treatment methods, sample origins and instruments was evaluated, and its impact on the results of IDMS was assessed using the IDMS correction factor (?). Our data showed that the impact of ME of mobile phase on the correction factor was significantly greater than that of sample solvent. Significant ion suppression and enhancement effects were observed in different pre-treated sample solutions. The IDMS correction factor in liquid-liquid extraction (LLE) and molecular imprinted polymer (MIP) extract with different instruments was greater or less 1.0, and the IDMS correction factor in hydrophilic lipophilic balance (HLB) and mix-mode cation exchange (MCX) extract with different instruments was all close to 1.0. To the instrument coupled with different ion source design, the impact of ME on IDMS quantitative results was significantly different, exhibiting a large deviation of 11.5%. Taken together, appropriate chromatographic conditions, pre-treatment methods and instruments were crucial to overcome ME and obtain reliable results, when IDMS methods were used in the quantitative analysis of trace target in complex sample matrix. PMID:24356223

  4. Characterising the exchangeability of phenanthrene associated with naturally occurring soil colloids using an isotopic dilution technique.

    PubMed

    Tavakkoli, Ehsan; Juhasz, Albert; Donner, Erica; Lombi, Enzo

    2015-04-01

    The association of polycyclic aromatic hydrocarbons (PAHs) with inorganic and organic colloids is an important factor influencing their bioavailability, mobility and degradation in the environment. Despite this, our understanding of the exchangeability and potential bioavailability of PAHs associated with colloids is limited. The objective of this study was to use phenanthrene as a model PAH compound and develop a technique using (14)C phenanthrene to quantify the isotopically exchangeable and non-exchangeable forms of phenanthrene in filtered soil water or sodium tetraborate extracts. The study was also designed to investigate the exchangeability of colloidal phenanthrene as a function of particle size. Our findings suggest that the exchangeability of phenanthrene in sodium tetraborate is controlled by both inorganic and organic colloids, while in aqueous solutions inorganic colloids play the dominant role (even though coating of these by organic matter cannot be excluded). Filter pore size did not have a significant effect on phenanthrene exchangeability. PMID:25689461

  5. Simultaneous detection of five one-carbon metabolites in plasma using stable isotope dilution liquid chromatography tandem mass spectrometry.

    PubMed

    Adaikalakoteswari, Antonysunil; Webster, Craig; Goljan, Ilona; Saravanan, Ponnusamy

    2016-02-15

    Disturbance in one-carbon (1-C) cycle occurs due to nutritional deficiencies (vitamin B12/folate) or specific genetic polymorphisms. This leads to altered levels of key 1-C metabolites such as SAM (s-adenosyl methionine), SAH (s-adenosyl homocysteine), methionine, homocysteine and MMA (methyl malonic acid). These 1-C metabolites are determinants of cellular methylation potential and epigenetic modifications of DNA which impairs metabolic pathways in several pathological diseases and developmental programming. Though methods were able to measure these analytes only independently, none of the methods detect simultaneously. Therefore we developed a method to measure these five 1-C metabolites in a single run using liquid chromatography tandem mass spectrometry (LC-MS/MS). We used stable isotopes dilution LC-MS/MS to measure the 1-C metabolites in human plasma. Blood samples were collected from pregnant women (n=30) at early gestation in the ongoing, multicentre, prospective PRiDE study. Linearity exhibited across the calibration range for all the analytes with the limit of detection (LOD) of 1.005nmol/l for SAM, 0.081nmol/l for SAH, 0.002?mol/l for methionine, 0.046?mol/l for homocysteine and 3.920nmol/l for MMA. The average recovery for SAM was 108%, SAH-110%, methionine-97%, homocysteine-91% and MMA-102%. The inter-assay CV for SAM was 7.3, SAH-5.6%, methionine-3.5%, homocysteine-7.0% and MMA-4.0%. The intra-assay CV for SAM was 8.7%, SAH-4.7%, methionine-5.4%, homocysteine-8.1% and MMA-6.1%. Pregnant women at early gestation with low B12 levels had significantly higher homocysteine, MMA, lower levels of methionine, SAM and SAM:SAH ratio and higher triglycerides. We developed a simple and rapid method to simultaneously quantify 1-C metabolites such as SAM, SAH, methionine, homocysteine and MMA in plasma by stable isotope dilution LC-MS/MS which would be useful to elucidate the epigenetic mechanisms related in the gene-nutrient interactions. PMID:26851522

  6. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study

    PubMed Central

    Tam, J.; Pantazopoulos, P.; Scott, P.M.; Moisey, J.; Dabeka, R.W.; Richard, I.D.K.

    2011-01-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products ‘as consumed’, pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[13C20]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply. PMID:21623499

  7. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study.

    PubMed

    Tam, J; Pantazopoulos, P; Scott, P M; Moisey, J; Dabeka, R W; Richard, I D K

    2011-06-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products 'as consumed', pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[(13)C(20)]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply. PMID:21623499

  8. Unusual isotope effect on thermal transport of single layer molybdenum disulphide

    NASA Astrophysics Data System (ADS)

    Wu, Xufei; Yang, Nuo; Luo, Tengfei

    2015-11-01

    Thermal transport in single layer molybdenum disulfide (MoS2) is critical to advancing its applications. In this paper, we use molecular dynamics simulations with first-principles force constants to study the isotope effect on the thermal transport of single layer MoS2. Through phonon modal analysis, we found that isotopes can strongly scatter phonons with intermediate frequencies, and the scattering behavior can be radically different from that predicted by conventional scattering model based on perturbation theory, where Tamura's formula is combined with Matthiessen's rule to include isotope effects. Such a discrepancy becomes smaller for low isotope concentrations. Natural isotopes can lead to a 30% reduction in thermal conductivity for large size samples. However, for small samples where boundary scattering becomes significant, the isotope effect can be greatly suppressed. It was also found that the Mo isotopes, which contribute more to the phonon eigenvectors in the intermediate frequency range, have stronger impact on thermal conductivity than S isotopes.

  9. Determination of ultratrace levels of tributyltin in waters by isotope dilution and gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Rodrguez-Cea, Andrs; Rodrguez-Gonzlez, Pablo; Font Cardona, Nuria; Aranda Mares, Jos Lus; Ballester Nebot, Salom; Garca Alonso, J Ignacio

    2015-12-18

    The current EU legislation lays down the Environmental Quality Standards (EQS) of 45 priority substances in surface water bodies. In particular, the concentration of tributyltin (TBT) must not exceed 0.2ngL(-1) and analytical methodologies with a Limit of Quantification (LOQ) equal or below 0.06ngL(-1) are urged to be developed. This work presents a procedure for the determination of ultratrace levels of TBT in water samples by Isotope Dilution and GC-MS/MS operating in Selected Reaction Monitoring (SRM) mode which meets current EU requirements. The method requires the monitorization of five consecutive transitions (287>175 to 291>179) for the sensitive and selective detection of TBT. The measured isotopic distribution of TBT fragment ions was in agreement with the theoretical values computed by a polynomial expansion algorithm. The combined use of Tandem Mass Spectrometry, a sample volume of 250mL, the preconcentration of 1mL of organic phase to 30?L and an injection volume of 25?L by Programmed Temperature Vaporization provided a LOQ of 0.0426ngL(-1) for TBT (calculated as ten times the standard deviation of nine independent blanks). The recovery for TBT calculated in Milli-Q water at the EQS level was 106.34%. A similar procedure was also developed for the quantification of dibutyltin (DBT) and monobutyltin (MBT) in water samples showing satisfactory results. The method was finally implemented in a routine testing laboratory to demonstrate its applicability to real samples obtaining quantitative recoveries for TBT at the EQS level in mineral water, river water and seawater. PMID:26614170

  10. Reliable quantitation of β-hydroxyethoxyacetic acid in human urine by an isotope-dilution GC-MS procedure.

    PubMed

    Eckert, Elisabeth; Gries, Wolfgang; Göen, Thomas; Leng, Gabriele

    2013-09-15

    An analytical method for the determination of β-hydroxyethoxyacetic acid (HEAA), the main urinary metabolite of 1,4-dioxane was developed and validated. The presented method involves liquid-liquid extraction of HEAA from the urine samples, followed by silylation and subsequent analytical separation and detection using GC-MS. The method is characterized by its simple and fast sample preparation in combination with a robust chromatography. The use of isotope dilution analysis enables an efficient compensation of matrix related effects and analyte losses due to sample workup. The excellent reliability and reproducibility of the method is demonstrated by the good accuracy and precision data. Within-day precision and day-to-day precision ranged from 0.6 to 1.2% and 1.5 to 2.6%, respectively. The mean relative recovery of the method was found to be 98-101%. The LOD and LOQ of HEAA were determined to be 0.2mg/L and 0.6mg/L, respectively. In summary, the presented analytical method is well suited to be used for routine biomonitoring of occupational exposure to 1,4-dioxane. PMID:23954659

  11. Determining mycotoxins in baby foods and animal feeds using stable isotope dilution and liquid chromatography tandem mass spectrometry.

    PubMed

    Zhang, Kai; Wong, Jon W; Krynitsky, Alexander J; Trucksess, Mary W

    2014-09-10

    We developed a stable isotope dilution assay with liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine multiple mycotoxins in baby foods and animal feeds. Samples were fortified with [(13)C]-uniformly labeled mycotoxins as internal standards ([(13)C]-IS) and prepared by solvent extraction (50% acetonitrile in water) and filtration, followed by LC-MS/MS analysis. Mycotoxins in each sample were quantitated with the corresponding [(13)C]-IS. In general, recoveries of aflatoxins (2-100 ng/g), deoxynivalenol, fumonisins (50-2000 ng/g), ochratoxin A (20-1000 ng/kg), T-2 toxin, and zearalenone (40-2000 ng/g) in tested matrices (grain/rice/oatmeal-based formula, animal feed, dry cat/dog food) ranged from 70 to 120% with relative standard deviations (RSDs) <20%. The method provides sufficient selectivity, sensitivity, accuracy, and reproducibility to screen for aflatoxins at ng/g concentrations and deoxynivalenol and fumonisins at low ?g/g concentrations in baby foods and animal feeds, without using conventional standard addition or matrix-matched calibration standards to correct for matrix effects. PMID:25153173

  12. Human hepatic N-acetylglutamate content and N-acetylglutamate synthase activity. Determination by stable isotope dilution.

    PubMed Central

    Tuchman, M; Holzknecht, R A

    1990-01-01

    N-Acetyl-L-glutamate (N-acetylglutamate) content and N-acetylglutamate synthase activity ranges were established in human liver tissue homogenates by stable isotope dilution. The methods employ N-[methyl-2H3]acetyl[15N]glutamate as internal standard, extraction of N-acetylglutamate by anion-exchange technique and its determination by g.l.c.-mass spectrometry by using selected ion monitoring. Hepatic N-acetylglutamate content in 16 different human livers, normal in structure and function, ranged from 6.8 to 59.7 nmol/g wet wt. (25.0 +/- 13.4 mean +/- S.D.) or from 64.6 to 497.6 nmol/g of protein (223.2 +/- 104.2 mean +/- S.D.). In vitro, N-acetylglutamate synthase activity in liver tissue homogenate ranged from 44.5 to 374.5 (132.0 +/- 90.6 mean +/- S.D.) nmol/min per g wet wt. or from 491.7 to 3416.9 (1159.6 +/- 751.1 mean +/- S.D.) nmol/min per g of protein. No correlation was found between hepatic N-acetylglutamate concentrations and the respective maximal enzymic activities in vitro of N-acetylglutamate synthase. The marked variability in this system among individual livers may reflect its regulatory role in ureagenesis. PMID:2241918

  13. Quantitative determination of sodium monofluoroacetate "1080" in infant formulas and dairy products by isotope dilution LC-MS/MS.

    PubMed

    Bessaire, Thomas; Tarres, Adrienne; Goyon, Alexandre; Mottier, Pascal; Dubois, Mathieu; Tan, Wan Ping; Delatour, Thierry

    2015-01-01

    A fast and easy-to-use confirmatory liquid-chromatography tandem mass-spectrometry (LC-MS/MS) based-method was developed for the analysis of the pesticide sodium monofluoroacetate (MFA, also called "1080") in infant formulas and related dairy products. Extraction of the compound encompassed sample reconstitution and liquid-liquid extraction under acidic conditions. Time-consuming solid-phase extraction steps for clean-up and enrichment and tedious derivatisation were thus avoided. Resulting sample extracts were analysed by electrospray ionisation (ESI) in negative mode. Quantification was performed by the isotopic dilution approach using (13)C-labelled MFA as internal standard. The procedure was validated according to the European document SANCO/12571/2013 and performance parameters such as linearity (r(2)>0.99), precision (RSD(r) ? 9%, RSD(iR) ? 11%) and recovery (96-117%) fulfilled its requirements. Limit of quantifications (LOQ) was 1gkg(-1) for infant formulas and related dairy products except for whey proteins powders with a LOQ of 5gkg(-1). Method ruggedness was further assessed in another laboratory devoted to routine testing for quality control. PMID:26366530

  14. [Determination of polychlorinated naphthalenes in environmental samples by isotope dilution gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Liu, Zhitong; Zhang, Bing; Wang, Wenwen; Liu, Guorui; Gao, Lirong; Zheng, Minghui

    2013-09-01

    An isotope dilution gas chromatography combined with triple quadrupole mass spectrometry (GC-MS/MS) method was established for the analysis of twenty polychlorinated naphthalenes (PCNs) congeners in environmental samples. The linear correlation coefficients (R2) of calibration curves were greater than 0.99 in the concentration range of 0.5 - 200 microg/L for all the twenty PCN congeners. The average relative response factors (RRF) were calculated based on a seven-point calibration for the twenty PCN congeners. The relative standard deviations (RSDs) of all the congeners were below 15% (n = 7). The limits of detection (LOD) of the established method ranged from 0.04 to 0.48 microg/L for the twenty PCN congeners. The recoveries of matrix spiked samples ranged from 45.2% to 87.9%, and the RSDs ranged from 0.4% to 21.2%. The sediment samples and stack gas samples collected from secondary aluminum smelting were analyzed by the established method. The obtained results were also compared with the data analyzed by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) method. The comparison indicated that the data of the established method was in good agreement with those of HRGC/HRMS method with the RSDs of 0.5% - 41.4%. Consequently, the established GC-MS/MS method can be applied to the determination of PCNs in environmental samples. PMID:24392626

  15. Development of an SI-Traceable HPLC-Isotope Dilution Mass Spectrometry Method To Quantify ?-Lactoglobulin in Milk Powders.

    PubMed

    Yang, Wang; Liqing, Wu; Fei, Duan; Bin, Yang; Yi, Yang; Jing, Wang

    2014-03-31

    ?-Lactoglobulin (?-LG) is one of the major allergenic proteins in milk. There is an urgent demand for an accurate and traceable method to develop ?-LG certified reference material (CRM). In this work, ?-LG was enzymatically digested and a specific peptide was chosen for quantitation by isotope-dilution mass spectrometry (IDMS). With amino acid CRMs as standards, the results could be traced to SI unit. By the proposed method, the recovery ranged from 86.0% to 118.3% with CVs <9.0%. The LOD and LOQ were 4.8 10(-5) g/g and 1.6 10(-4) g/g of ?-LG in milk powder, respectively. Ten samples from domestic market were analyzed with CVs <5.6%, and the relative expanded uncertainties ranged from 4.2% to 5.9% (k = 2). With the CRMs, it is expected that the comparability of ?-LG quantitation results will be improved among different laboratories. PMID:24628306

  16. Sensitive isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry method for the determination of acrylamide in chocolate.

    PubMed

    Ren, Yiping; Zhang, Yu; Jiao, Jingjing; Cai, Zengxuan; Zhang, Ying

    2006-03-01

    Isotope dilution liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) was applied to the quantification of acrylamide in chocolate matrixes (dark chocolate, milk chocolate, chocolate with nuts, chocolate with almonds, and chocolate with wheat best element). The method included defatting with petroleum ether, extracting with aqueous solution of 2 mol l(-1) sodium chloride and clean-up by solid-phase (SPE) with OASIS HLB 6 cm3 cartridges. Acrylamide was detected with an Atlantis dC18 5 microm 210 x 1.5 mm column using 10% methanol/0.1% formic acid in water as the mobile phase. The analytical method was in-house validated and good results were obtained with respect to repeatability (RSD < 3.5%) and recovery (86-93%), which fulfilled the requirements defined by European Union legislation. The acrylamide levels in chocolate were 23-537 microg kg(-1). Therefore, the method was successfully used for the quantitative analysis of acrlyamide in various chocolate products. PMID:16517524

  17. Parkinson-dementia complex and development of a new stable isotope dilution assay for BMAA detection in tissue

    SciTech Connect

    Snyder, Laura R.; Cruz-Aguado, Reyniel; Sadilek, Martin; Galasko, Douglas; Shaw, Christopher A.; Montine, Thomas J.

    2009-10-15

    {beta}-Methylamino-L-alanine (BMAA) has been proposed as a global contributor to neurodegenerative diseases, including Parkinson-dementia complex (PDC) of Guam and Alzheimer's disease (AD). The literature on the effects of BMAA is conflicting with some but not all in vitro data supporting a neurotoxic action, and experimental animal data failing to replicate the pattern of neurodegeneration of these human diseases, even at very high exposures. Recently, BMAA has been reported in human brain from individuals afflicted with PDC or AD. Some of the BMAA in human tissue reportedly is freely extractable (free) while some is protein-associated and liberated by techniques that hydrolyze the peptide bond. The latter is especially intriguing since BMAA is a non-proteinogenic amino acid that has no known tRNA. We attempted to replicate these findings with techniques similar to those used by others; despite more than adequate sensitivity, we were unable to detect free BMAA. Recently, using a novel stable isotope dilution assay, we again were unable to detect free or protein-associated BMAA in human cerebrum. Here we review the development of our new assay for tissue detection of BMAA and show that we are able to detect free BMAA in liver but not cerebrum, nor do we detect any protein-associated BMAA in mice fed this amino acid. These studies demonstrate the importance of a sensitive and specific assay for tissue BMAA and seriously challenge the proposal that BMAA is accumulating in human brain.

  18. Quantitation of Gingerols in Human Plasma by Newly Developed Stable Isotope Dilution Assays and Assessment of Their Immunomodulatory Potential.

    PubMed

    Schoenknecht, Carola; Andersen, Gaby; Schmidts, Ines; Schieberle, Peter

    2016-03-23

    In a pilot study with two volunteers, the main pungent and bioactive ginger (Zingiber officinale Roscoe) compounds, the gingerols, were quantitated in human plasma after ginger tea consumption using a newly established HPLC-MS/MS(ESI) method on the basis of stable isotope dilution assays. Limits of quantitation for [6]-, [8]-, and [10]-gingerols were determined as 7.6, 3.1, and 4.0 nmol/L, respectively. The highest plasma concentrations of [6]-, [8]-, and [10]-gingerols (42.0, 5.3, and 4.8 nmol/L, respectively) were reached 30-60 min after ginger tea intake. Incubation of activated human T lymphocytes with gingerols increased the intracellular Ca(2+) concentration as well as the IFN-γ secretion by about 20-30%. This gingerol-induced increase of IFN-γ secretion could be blocked by the specific TRPV1 antagonist SB-366791. The results of the present study point to an interaction of gingerols with TRPV1 in activated T lymphocytes leading to an augmentation of IFN-γ secretion. PMID:26939769

  19. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM).

    PubMed

    Delgado-Moreno, Laura; Wu, Laosheng; Gan, Jay

    2015-08-01

    Natural waters such as surface water and sediment porewater invariably contain dissolved organic matter (DOM). Association of strongly hydrophobic contaminants (HOCs) with DOM leads to decreased toxicity and bioavailability, but bioavailability of DOM-sorbed HOCs is difficult to measure. Current methods to estimate bioavailability of HOCs in water are based on only the freely dissolved concentration (Cfree). The ignorance of the exchangeable fraction of HOCs sorbed on DOM may result in an underestimation of the toxicity potential of HOCs to aquatic organisms. Here we explore the applicability of an isotope dilution method (IDM) to measuring the desorption fraction of DOM-sorbed pyrene and bifenthrin and determining their exchangeable pool (E) as an approximation of bioavailability. E values, expressed as percentage of the total concentration, ranged between 0.80 and 0.92% for pyrene and 0.74 and 0.85% for bifenthrin, depending primarily on the amount of chemical in the freely dissolved form. However, between 34 and 78% of the DOM-sorbed pyrene was exchangeable. This fraction ranged between 23% and 82% for bifenthrin. The ability of IDM to predict bioavailability was further shown from a significant relationship (r(2)>0.72, P<0.0001) between E and bioaccumulation into Daphnia magna. Therefore, IDM may be used to improve the bioavailability measurement and risk assessment of HOCs in aquatic systems. PMID:26037097

  20. Accurate determination of ochratoxin A in Korean fermented soybean paste by isotope dilution-liquid chromatography tandem mass spectrometry.

    PubMed

    Ahn, Seonghee; Lee, Suyoung; Lee, Joonhee; Kim, Byungjoo

    2016-01-01

    Ochratoxin A (OTA), a naturally occurring mycotoxin, has been frequently detected in doenjang, a traditional fermented soybean paste, when it is fermented under improper conditions. Reliable screening of OTA in traditional fermented soybean paste (doenjang) is a special food-safety issue in Korea. Our laboratory, the National Metrology Institute of Korea, established an isotope dilution-liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method as a higher-order reference method to be used for SI-traceable value-assignment of OTA in certified reference materials (CRMs). (13)C20-OTA was used as an internal standard. Sample preparation conditions and LC/MS measurement parameters were optimised for this purpose. The analytical method was validated by measuring samples fortified with OTA at various levels. Repeatability and reproducibility studies showed that the ID-LC/MS/MS method is reliable and reproducible within 2% relative standard deviation. The analytical method was applied to determine OTA in various commercial doenjang products and home-made doenjang products. PMID:26212984

  1. Thermal Neutron Capture Cross Sections Of The Palladium Isotopes

    SciTech Connect

    Firestone, R. B.; Krtiaka, M.; McNabb, D. P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T.; Revay, Zs.

    2006-03-13

    We have measured precise thermal neutron capture {gamma}-ray cross sections cry for all stable Palladium isotopes with the guided thermal neutron beam from the Budapest Reactor. The data were compared with other data from the literature and have been evaluated into the Evaluated Gamma-ray Activation File (EGAF). Total radiative neutron capture cross-sections {sigma}{gamma} can be deduced from the sum of transition cross sections feeding the ground state of each isotope if the decay scheme is complete. The Palladium isotope decay schemes are incomplete, although transitions deexciting low-lying levels are known for each isotope. We have performed Monte Carlo simulations of the Palladium thermal neutron capture deexcitation schemes using the computer code DICEBOX. This program generates level schemes where levels below a critical energy Ecrit are taken from experiment, and those above Ecrit are calculated by a random discretization of an a priori known level density formula {rho}(E,J{pi}). Level de-excitation branching intensities are taken from experiment for levels below Ecrit the capture state, or calculated for levels above Ecrit assuming an a priori photon strength function and applying allowed selection rules and a Porter-Thomas distribution of widths. The advantage of this method is that calculational uncertainties can be investigated systematically. Calculated feeding to levels below Ecrit can be normalized to the measured cross section deexciting those levels to determine the total radiative neutron cross-section {sigma}{gamma}. In this paper we report the cross section measurements {sigma}{gamma}[102Pd(n,{gamma})]=0.9{+-}0.3 b, {sigma}{gamma}[104Pd(n,{gamma})=0.61{+-}0.11 b, {sigma}{gamma}[105Pd(n,{gamma})]=2.1.1{+-}1.5 b, {sigma}{gamma}[106Pd(n,{gamma})]=0.36{+-}0.05 b, {sigma}{gamma}[108Pd(n,{gamma})(0)]=7.6{+-}0.6 b, {sigma}{gamma}[108Pd(n,{gamma})(189)]=0.185{+-}0.011 b, and {sigma}{gamma}[110Pd(n,{gamma})]=0.10{+-}0.03 b. We have also determined from our statistical calculations that the neutron capture states in 107Pd are best described as 2+[59(4)%]+3+[41(4)%]. Agreement with literature values was excellent in most cases. We found significant discrepancies between our results for 102Pd and 110Pd and earlier values that could be resolved by re-evaluation of the earlier results.

  2. Thermal Neutron Capture Cross Sections Of The Palladium Isotopes

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Krtika, M.; McNabb, D. P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T.; Rvay, Zs.

    2006-03-01

    We have measured precise thermal neutron capture ?-ray cross sections cry for all stable Palladium isotopes with the guided thermal neutron beam from the Budapest Reactor. The data were compared with other data from the literature and have been evaluated into the Evaluated Gamma-ray Activation File (EGAF). Total radiative neutron capture cross-sections ?? can be deduced from the sum of transition cross sections feeding the ground state of each isotope if the decay scheme is complete. The Palladium isotope decay schemes are incomplete, although transitions deexciting low-lying levels are known for each isotope. We have performed Monte Carlo simulations of the Palladium thermal neutron capture deexcitation schemes using the computer code DICEBOX. This program generates level schemes where levels below a critical energy Ecrit are taken from experiment, and those above Ecrit are calculated by a random discretization of an a priori known level density formula ?(E,J?). Level de-excitation branching intensities are taken from experiment for levels below Ecrit the capture state, or calculated for levels above Ecrit assuming an a priori photon strength function and applying allowed selection rules and a Porter-Thomas distribution of widths. The advantage of this method is that calculational uncertainties can be investigated systematically. Calculated feeding to levels below Ecrit can be normalized to the measured cross section deexciting those levels to determine the total radiative neutron cross-section ??. In this paper we report the cross section measurements ??[102Pd(n,?)]=0.90.3 b, ??[104Pd(n,?)=0.610.11 b, ??[105Pd(n,?)]=2.1.11.5 b, ??[106Pd(n,?)]=0.360.05 b, ??[108Pd(n,?)(0)]=7.60.6 b, ??[108Pd(n,?)(189)]=0.1850.011 b, and ??[110Pd(n,?)]=0.100.03 b. We have also determined from our statistical calculations that the neutron capture states in 107Pd are best described as 2+[59(4)%]+3+[41(4)%]. Agreement with literature values was excellent in most cases. We found significant discrepancies between our results for 102Pd and 110Pd and earlier values that could be resolved by re-evaluation of the earlier results.

  3. Characterization of candidate reference materials for bone lead via interlaboratory study and double isotope dilution mass spectrometry

    PubMed Central

    Bellis, David J.; Hetter, Katherine M.; Verostek, Mary Frances; Parsons, Patrick J.

    2012-01-01

    Summary Four candidate ground bone reference materials (NYS RMs 05-01 through 04), were produced from lead-dosed bovine and caprine sources, and characterized by interlaboratory study. The consensus value ( X ) and expanded standard uncertainty (UX ) were determined from the robust average and standard deviation of the participants data for each NYS RM 05-01 through 04. The values were 1.08 0.04, 15.3 0.5, 12.4 0.5, and 29.9 1.1 ?g g?1 Pb, respectively. Youden plots of z-scores showed a statistically significant correlation between the results for pairs of NYS RM 05-02 through 04, indicating common sources of between-laboratory variation affecting reproducibility. NYS RM 05-01 exhibited more random variability affecting repeatability at low concentration. Some participants using electrothermal atomic absorption spectrometry (ETAAS) exhibited a negative bias compared to the all-method consensus value. Other methods used included inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution (ID-) ICP-MS, and ICP atomic (optical) emission spectroscopy (-OES). The NYS RMs 05-01 through 04 were subsequently re-analyzed in house using double ID-ICP-MS to assign certified reference values (C ) and expanded uncertainty (UC ) of 1.09 0.03, 16.1 0.3, 13.2 0.3 and 31.5 0.7, respectively, indicating a low bias in the interlaboratory data. SRM 1486 Bone Meal was analyzed for measurement quality assessment obtaining results in agreement with the certified values within the stated uncertainty. Analysis using a primary reference method based on ID-ICP-MS with full quantification of uncertainty calculated according to ISO guidelines provided traceability to SI units. PMID:23087531

  4. Measurement of Mercury Species in Human Blood using Triple Spike Isotope Dilution with SPME-GC-ICP-DRC-MS

    PubMed Central

    Sommer, Yuliya L.; Verdon, Carl P.; Fresquez, Mark R.; Ward, Cynthia D.; Wood, Elliott B.; Pan, Yi; Caldwell, Kathleen L.; Jones, Robert L.

    2015-01-01

    The measurement of different mercury compounds in human blood can provide valuable information about the type of mercury exposure. To this end, our laboratory developed a biomonitoring method for the quantification of inorganic (iHg), methyl (MeHg) and ethyl (EtHg) mercury in whole blood using a triple spike isotope dilution (TSID) quantification method employing capillary gas chromatography (GC) and inductively coupled dynamic reaction cell mass spectrometry (ICP-DRC-MS). We used a robotic CombiPAL sample handling station featuring twin fiber-based solid phase microextraction (SPME) injector heads. The use of two SPME fibers significantly reduces sample analysis cycle times making this method very suitable for high sample throughput, which is a requirement for large public health biomonitoring studies. Our sample preparation procedure involved solubilization of blood samples with tetramethylammonium hydroxide (TMAH) followed by the derivatization with sodium tetra(n-propyl)borate (NaBPr4) to promote volatility of mercury species. We thoroughly investigated mercury species stability in the blood matrix during the course of sample treatment and analysis. The method accuracy for quantifying iHg, MeHg and EtHg was validated using NIST standard reference materials (SRM 955c Level 3) and the Centre de Toxicologie du Qubec (CTQ) proficiency testing (PT) samples. The limit of detection (LOD) for iHg, MeHg and EtHg in human blood was determined to be 0.27, 0.12, and 0.16 ?g/L, respectively. PMID:24948088

  5. Sulphur Speciation and Turnover in Soils: Evidence from Sulphur K-Edge XANES Spectroscopy and Isotope Dilution Studies

    SciTech Connect

    Zhao,F.; Lehmann, J.; Solomon, D.; Fox, M.; McGrath, S.

    2005-01-01

    Sulphur K-edge X-ray absorption near edge structure (XANES) spectroscopy was used to quantify S species in humic substance extracts from ten soils from the UK, China and New Zealand, which differ in land use and agricultural management. XANES spectroscopy showed the presence of most reduced (sulphides, disulphides, thiols and thiophenes), intermediate (sulphoxides and sulphonates) and highly oxidised S (ester sulphates) forms, with the three groups representing 14-32%, 33-50% and 22-53% of the organic S in the humic substance extracts, respectively. Land use had a profound influence on the relative proportions of S species. Well-drained arable soils generally had a higher proportion of organic S present in the most oxidised form than the grassland soils collected nearby, whereas paddy soils showed a more reduced profile due to episodic flooding. In the Broadbalk Classical Experiment at Rothamsted, reversion of an arable system to grassland or woodland in the 1880s resulted in an increase of the most reduced and intermediate S species at the expense of the most oxidised S species. Long-term applications of farmyard manure to an arable plot also shifted S species from the most oxidised to the intermediate and the most reduced species. Sulphur immobilization and gross mineralization were determined in seven soils using the {sup 35}S isotope dilution method. Gross mineralization during a 53-day incubation correlated more closely with the amounts of the most reduced and intermediate S species than with the most oxidised S species, suggesting that the former (C-bonded S) were the main source of organic S for mineralization in the short-term.

  6. Synthesis of deuterium-labeled 17-hydroxyprogesterone suitable as an internal standard for isotope dilution mass spectrometry

    SciTech Connect

    Shimizu, K.; Yamaga, N.; Kohara, H.

    1988-03-01

    A synthesis is reported of 17-hydroxyprogesterone, labeled with four atoms of deuterium at ring C and suitable for use as an internal standard for isotope dilution mass spectrometry. Base-catalyzed equilibration of methyl 3 alpha-acetoxy-12-oxo-cholanate (III) with /sup 2/H/sub 2/O, followed by reduction of the 12-oxo group by the modified Wolff-Kisher method using (/sup 2/H)diethylene glycol and (/sup 2/H)hydrazine hydrate afforded (11,11,12,12,23,23(-2)H)lithocholic acid (V). The Meystre-Miescher degradation of the side chain of V yielded 3 alpha-hydroxy-5 beta-(11,11,12,12(-2)H)pregnan-20-one (X). Oxidation of the 3,20-enol-diacetate of X with perbenzoic acid followed by saponification afforded 3 alpha,17-dihydroxy-5 beta-(11,11,12,12(-2)H)pregnan-20-one (XI). Oxidation of XI with N-bromoacetamide yielded 17-hydroxy-5 beta-(11,11,12,12(-2)H)pregnane-3,20-dione (XII). Bromination of XII followed by dehydrobromination yielded 17-hydroxy-(11,11,12,12(-2)H) progesterone (XIV), consisting of 0.3% /sup 2/H0-, 1.1% /sup 2/H/sub 1/-, 8.6% /sup 2/H/sub 2/-, 37.1% /sup 2/H/sub 3/-, 52.1% /sup 2/H/sub 4/-, and 0.8% /sup 2/H/sub 5/-species.

  7. An Isotope Dilution Method for High-frequency Measurements of Dissolved Inorganic Carbon concentration in the Surface Ocean

    NASA Astrophysics Data System (ADS)

    Huang, K.; Bender, M. L.; Wanninkhof, R. H.; Cassar, N.

    2013-12-01

    Dissolved inorganic carbon (DIC) is one of the most important species in the ocean carbon system. An autonomous system using isotope dilution as its core method has been developed to obtain high-frequency measurements of dissolved inorganic carbon (DIC) concentrations in the surface ocean. This system accurately mixes a seawater sample and a 13C-labeled sodium bicarbonate solution (spike). The mixed solution is then acidified and sent through a gas permeable membrane contactor. CO2 derived from DIC in the mixture is extracted by a CO2-free gas stream, and is sent to a cavity ring-down spectrometer to analyze its 13C/12C ratio. [DIC] of the seawater can then be derived from the measured 13C/12C, the known mixing ratio and the [DI13C] of the spike. The method has been tested under a wide [DIC] range (1800-2800 ?mol/kg) in the laboratory. It has also been deployed on a cruise that surveyed ocean waters to the south of Florida. At a sampling resolution of 4 minutes (15 samples per hour), the relative standard deviation of DIC determined from the laboratory tests and the field deployment is 0.07% and 0.09%, respectively. The accuracy of the method is better than 0.1% except where [DIC] varies faster than 5 ?mol/kg per minute. Based on the laboratory and field evaluations, we conclude that this method can provide accurate underway [DIC] measurements at high resolution in most oceanic regions. Schematic illustration of the work flow.

  8. Sulphur Speciation and Turnover in Soils: Evidence from Sulfur K-Edge XANES Spectroscopy and Isotope Dilution Studies

    SciTech Connect

    Zhao,F.; Lehmann, J.; Solomon, D.; Fox, M.; McGrath, S.

    2006-01-01

    Sulphur K-edge X-ray absorption near edge structure (XANES) spectroscopy was used to quantify S species in humic substance extracts from ten soils from the UK, China and New Zealand, which differ in land use and agricultural management. XANES spectroscopy showed the presence of most reduced (sulphides, disulphides, thiols and thiophenes), intermediate (sulphoxides and sulphonates) and highly oxidised S (ester sulphates) forms, with the three groups representing 14-32%, 33-50% and 22-53% of the organic S in the humic substance extracts, respectively. Land use had a profound influence on the relative proportions of S species. Well-drained arable soils generally had a higher proportion of organic S present in the most oxidised form than the grassland soils collected nearby, whereas paddy soils showed a more reduced profile due to episodic flooding. In the Broadbalk Classical Experiment at Rothamsted, reversion of an arable system to grassland or woodland in the 1880s resulted in an increase of the most reduced and intermediate S species at the expense of the most oxidised S species. Long-term applications of farmyard manure to an arable plot also shifted S species from the most oxidised to the intermediate and the most reduced species. Sulphur immobilisation and gross mineralisation were determined in seven soils using the {sup 35}S isotope dilution method. Gross mineralisation during a 53-day incubation correlated more closely with the amounts of the most reduced and intermediate S species than with the most oxidised S species, suggesting that the former (C-bonded S) were the main source of organic S for mineralisation in the short-term.

  9. Nitrogen Transformations in Wetland Soil Cores Measured by (sup15)N Isotope Pairing and Dilution at Four Infiltration Rates

    PubMed Central

    Stepanauskas, R.; Davidsson, E. T.; Leonardson, L.

    1996-01-01

    The effect of water infiltration rate (IR) on nitrogen cycling in a saturated wetland soil was investigated by applying a (sup15)N isotope dilution and pairing method. Water containing [(sup15)N]nitrate was infiltrated through 10-cm-long cores of sieved and homogenized soil at rates of 72, 168, 267, and 638 mm day(sup-1). Then the frequencies of (sup30)N(inf2), (sup29)N(inf2), (sup15)NO(inf3)(sup-), and (sup15)NH(inf4)(sup+) in the outflow water were measured. This method allowed simultaneous determination of nitrification, coupled and uncoupled denitrification, and nitrate assimilation rates. From 3% (at the highest IR) to 95% (at the lowest IR) of nitrate was removed from the water, mainly by denitrification. The nitrate removal was compensated for by the net release of ammonium and dissolved organic nitrogen. Lower oxygen concentrations in the soil at lower IRs led to a sharper decrease in the nitrification rate than in the ammonification rate, and, consequently, more ammonium leaked from the soil. The decreasing organic-carbon-to-nitrogen ratio (from 12.8 to 5.1) and the increasing light A(inf250)/A(inf365) ratio (from 4.5 to 5.2) indicated an increasing bioavailability of the outflowing dissolved organic matter with increasing IR. The efflux of nitrous oxide was also very sensitive to IR and increased severalfold when a zone of low oxygen concentration was close to the outlet of the soil cores. N(inf2)O then constituted 8% of the total gaseous N lost from the soil. PMID:16535352

  10. Biosynthesis of 15N-labeled cylindrospermopsin and its application as internal standard in stable isotope dilution analysis.

    PubMed

    Kittler, Katrin; Hoffmann, Holger; Lindemann, Franziska; Koch, Matthias; Rohn, Sascha; Maul, Ronald

    2014-09-01

    Cylindrospermopsin (CYN) is a cyanobacterial toxin associated with human and animal poisonings. Due to its toxicity in combination with its widespread occurrence, the development of reliable methods for selective, sensitive detection and accurate quantification is mandatory. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis using stable isotope dilution analysis (SIDA) represents an ideal tool for this purpose. U-[(15)N5]-CYN was synthesized by culturing Aphanizomenon flos-aquae in Na(15)NO3-containing cyanobacteria growth medium followed by a cleanup using graphitized carbon black columns and mass spectrometric characterization. Subsequently, a SIDA-LC-MS/MS method for the quantification of CYN in freshwater and Brassica matrices was developed showing satisfactory performance data. The recovery ranged between 98 and 103%; the limit of quantification was 15ng/L in freshwater and 50?g/kg dry weight in Brassica samples. The novel SIDA was applied for CYN determination in real freshwater samples as well as in kale and in vegetable mustard exposed to toxin-containing irrigation water. Two of the freshwater samples taken from German lakes were found to be CYN-contaminated above limit of quantification (17.9 and 60.8ng/L). CYN is systemically available to the examined vegetable species after exposure of the rootstock leading to CYN mass fractions in kale and vegetable mustard leaves of 15.0?g/kg fresh weight and 23.9?g/kg fresh weight, respectively. CYN measurements in both matrices are exemplary for the versatile applicability of the developed method in environmental analysis. PMID:25064600

  11. Profiles of Steroid Hormones in Canine X-Linked Muscular Dystrophy via Stable Isotope Dilution LC-MS/MS

    PubMed Central

    Martins-Jnior, Helio A.; Simas, Rosineide C.; Brolio, Marina P.; Ferreira, Christina R.; Perecin, Felipe; Nogueira, Guilherme de P.; Miglino, Maria A.; Martins, Daniele S.; Eberlin, Marcos N.; Ambrsio, Carlos E.

    2015-01-01

    Golden retriever muscular dystrophy (GRMD) provides the best animal model for characterizing the disease progress of the human disorder, Duchenne muscular dystrophy (DMD). The purpose of this study was to determine steroid hormone concentration profiles in healthy golden retriever dogs (control group - CtGR) versus GRMD-gene carrier (CaGR) and affected female dogs (AfCR). Therefore, a sensitive and specific analytical method was developed and validated to determine the estradiol, progesterone, cortisol, and testosterone levels in the canine serum by isotope dilution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To more accurately understand the dynamic nature of the serum steroid profile, the fluctuating levels of these four steroid hormones over the estrous cycle were compared across the three experimental groups using a multivariate statistical analysis. The concentration profiles of estradiol, cortisol, progesterone, and testosterone revealed a characteristic pattern for each studied group at each specific estrous phase. Additionally, several important changes in the serum concentrations of cortisol and estradiol in the CaGR and AfCR groups seem to be correlated with the status and progression of the muscular dystrophy. A comprehensive and quantitative monitoring of steroid profiles throughout the estrous cycle of normal and GRMD dogs were achieved. Significant differences in these profiles were observed between GRMD and healthy animals, most notably for estradiol. These findings contribute to a better understanding of both dog reproduction and the muscular dystrophy pathology. Our data open new venues for hormonal behavior studies in dystrophinopathies and that may affect the quality of life of DMD patients. PMID:26010907

  12. Folate bioavailability from foods rich in folates assessed in a short term human study using stable isotope dilution assays.

    PubMed

    Mnch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael

    2015-01-01

    Different sources of folate may have different bioavailability and hence may impact the standard definition of folate equivalents. In order to examine this, a short term human study was undertaken to evaluate the relative native folate bioavailabilities from spinach, Camembert cheese and wheat germs compared to pteroylmonoglutamic acid as the reference dose. The study had a single-centre, randomised, four-treatment, four-period, four-sequence, cross-over design, i.e. the four (food) items to be tested (referred to as treatments) were administered in sequences according to the Latin square, so that each experimental treatment occurred only once within each sequence and once within each study period. Each of the 24 subjects received the four experimental items separated by a 14-day equilibrium phase and received a pteroylmonoglutamic acid supplement for 14 days before the first testing and between the testings for saturation of body pools. Folates in test foods, plasma and urine samples were determined by stable isotope dilution assays, and in urine and plasma, the concentrations of 5-methyltetrahydrofolate were evaluated. Standard non-compartmental methods were applied to determine the biokinetic parameters C(max), t(max) and AUC from baseline corrected 5-methyltetrahydrofolate concentrations within the interval from 0 to 12 hours. The variability of AUC and C(max) was moderate for spinach and oral solution of pteroylmonoglutamic acid but high for Camembert cheese and very high for wheat germs. The median t(max) was lowest for spinach, though t(max) showed a high variability among all treatments. When comparing the ratio estimates of AUC and C(max) for the different test foods, highest bioavailability was found for spinach followed by that for wheat germs and Camembert cheese. The results underline the dependence of folate bioavailability on the type of food ingested. Therefore, the general assumption of 50% bioavailability as the rationale behind the definition of folate equivalents has to be questioned and requires further investigation. PMID:25407846

  13. Simultaneous detection of multiple hydroxylated polychlorinated biphenyls from a complex tissue matrix using gas chromatography/isotope dilution mass spectrometry.

    PubMed

    Eguchi, Akifumi; Nomiyama, Kei; Ochiai, Mari; Mizukawa, Hazuki; Nagano, Yasuko; Nakagawa, Katsuhiro; Tanaka, Kouki; Miyagawa, Haruhiko; Tanabe, Shinsuke

    2014-01-01

    In this study, we developed a comprehensive, highly sensitive, and robust method for determining 53 congeners of three to eight chlorinated OH-PCBs in liver and brain samples by using isotope dilution gas chromatography (GC) coupled with electron capture negative ionization mass spectrometry (ECNI-MS). These results were compared with those from GC coupled with electron ionization high-resolution mass spectrometry (EI-HRMS). Clean-up procedures for analysis of OH-PCBs homologs in liver and brain samples involve a pretreatment step consisting of acetonitrile partition and 5% hydrated silica-gel chromatography before derivatization. Recovery rates of tri- and tetra-chlorinated OH-PCBs in the acetonitrile partition method followed by the 5% hydrated silica-gel column (82% and 91%) were higher than conventional sulfuric acid treatment (2.0% and 3.5%). The method detection limits of OH-PCBs for each matrix obtained by GC/ECNI-MS and GC/EI-HRMS were 0.58-2.6 pg g(-1) and 0.36-1.6 pg g(-1) wet wt, respectively. Recovery rates of OH-PCB congeners in spike tests using sample matrices (10 and 50 pg) were 64.7-117% (CV: 4.7-14%) and 70.4-120% (CV: 2.3-12%), respectively. This analytical method may enable the simultaneous detection of various OH-PCBs from complex tissue matrices. Furthermore, this method allows more comprehensive assessment of the biological effects of OH-PCB exposure on critical organs. PMID:24274296

  14. An ammonium bicarbonate-enhanced stable isotope dilution UHPLC-MS/MS method for sensitive and accurate quantification of acrolein-DNA adducts in human leukocytes.

    PubMed

    Yin, Ruichuan; Liu, Shengquan; Zhao, Chao; Lu, Meiling; Tang, Moon-shong; Wang, Hailin

    2013-03-19

    Acrolein (Acr), a ubiquitous environmental pollutant, can react directly with genomic DNA to form mutagenic adducts without undergoing metabolic activation. To sensitively and accurately quantify Acr-DNA adducts (including structural isomers and stereoisomers) in human leukocytes, we developed an enhanced stable isotope dilution ultrahigh performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS) method using ammonium bicarbonate (NH4HCO3), which is thermally unstable and degrades readily to carbon dioxide and ammonia in heated gas phase. Interestingly, ammonium bicarbonate (as an additive to the mobile phase) not only improves the protonation of AcrdG adducts but also suppresses the formation of MS signal-deteriorating metal-AcrdG complexes during electrospray ionization, leading to the enhancement of their MS detection by 2.3-8.7 times. In contrast, routinely used ammonium salts (ammonium acetate and ammonium formate) and formic acid do not show similar enhancement. The developed method is potentially useful for enhancing ESI-MS detection of other modified 2'-deoxyribonucleosides that have difficulty in protonation and may form excess metal complexes during electrospray ionization. The limits of detection (LODs, S/N = 3) are estimated to be about 40-80 amol. By the use of the developed method, we found that the Acr adducts of three nucleotides (dG, dA, and dC) can be detected in human leukocytes. In addition to the known ?-AcrdG, ?-AcrdA is also identified as an Acr-adduct of high abundance (2.5-20 adducts per10(8) nts). PMID:23431959

  15. Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Loftin, Keith A.; Lee, Edward A.; Hinshaw, Gary H.; Dietze, Julie E.; Scribner, Elisabeth A.

    2009-01-01

    The U.S. Geological Survey method (0-2141-09) presented is approved for the determination of glyphosate, its degradation product aminomethylphosphonic acid (AMPA), and glufosinate in water. It was was validated to demonstrate the method detection levels (MDL), compare isotope dilution to standard addition, and evaluate method and compound stability. The original method USGS analytical method 0-2136-01 was developed using liquid chromatography/mass spectrometry and quantitation by standard addition. Lower method detection levels and increased specificity were achieved in the modified method, 0-2141-09, by using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The use of isotope dilution for glyphosate and AMPA and pseudo isotope dilution of glufosinate in place of standard addition was evaluated. Stable-isotope labeled AMPA and glyphosate were used as the isotope dilution standards. In addition, the stability of glyphosate and AMPA was studied in raw filtered and derivatized water samples. The stable-isotope labeled glyphosate and AMPA standards were added to each water sample and the samples then derivatized with 9-fluorenylmethylchloroformate. After derivatization, samples were concentrated using automated online solid-phase extraction (SPE) followed by elution in-line with the LC mobile phase; the compounds separated and then were analyzed by LC/MS/MS using electrospray ionization in negative-ion mode with multiple-reaction monitoring. The deprotonated derivatized parent molecule and two daughter-ion transition pairs were identified and optimized for glyphosate, AMPA, glufosinate, and the glyphosate and AMPA stable-isotope labeled internal standards. Quantitative comparison between standard addition and isotope dilution was conducted using 473 samples analyzed between April 2004 and June 2006. The mean percent difference and relative standard deviation between the two quantitation methods was 7.6 plus or minus 6.30 (n = 179), AMPA 9.6 plus or minus 8.35 (n = 206), and glufosinate 9.3 plus or minus 9.16 (n = 16). The analytical variation of the method, comparison of quantitation by isotope dilution and multipoint linear regressed standard curves, and method detection levels were evaluated by analyzing six sets of distilled-water, groundwater, and surface-water samples spiked in duplicate at 0.0, 0.05, 0.10 and 0.50 microgram per liter and analyzed on 6 different days during 1 month. The grand means of the normalized concentration percentage recovery for glyphosate, AMPA, and glufosinate among all three matrices and spiked concentrations ranged from 99 to 114 plus or minus 2 to 7 percent of the expected spiked concentration. The grand mean of the percentage difference between concentrations calculated by standard addition and linear regressed multipoint standard curves ranged from 8 to 15 plus or minus 2 to 9 percent for the three compounds. The method reporting levels calculated from all the 0.05- microgram per liter spiked samples were 0.02 microgram per liter for all three compounds. Compound stability experiments were conducted on 10 samples derivatized four times for periods between 136 to 269 days. The glyphosate and AMPA concentrations remained relatively constant in samples held up to 136 days before derivatization. The half life of glyphosate varied from 169 to 223 days in the underivatized samples. Derivatized samples were analyzed the day after derivitization, and again 54 and 64 days after derivatization. The derivatized samples analyzed at days 52 and 64 were within 20 percent of the concentrations of the derivatized samples analyzed the day after derivatization.

  16. Multiple spiking species-specific isotope dilution analysis by molecular mass spectrometry: simultaneous determination of inorganic mercury and methylmercury in fish tissues.

    PubMed

    Castillo, Angel; Rodrguez-Gonzlez, Pablo; Centineo, Giuseppe; Roig-Navarro, Antoni Francesc; Garca Alonso, J Ignacio

    2010-04-01

    This work demonstrates, for the first time, the applicability of multiple spiking isotope dilution analysis to molecular mass spectrometry exemplified by the speciation analysis of mercury using GC(EI)MS instrumentation. A double spike isotope dilution approach using isotopically enriched mercury isotopes has been applied for the determination of inorganic mercury Hg(II) and methylmercury (MeHg) in fish reference materials. The method is based on the application of isotope pattern deconvolution for the simultaneous determination of degradation-corrected concentrations of methylmercury and inorganic mercury. Mass isotopomer distributions are employed instead of isotope ratios to calculate the corrected concentrations of the Hg species as well as the extent of species degradation reactions. The isotope pattern deconvolution equations developed here allow the calculation of the different molar fractions directly from the GC(EI)MS mass isotopomer distribution pattern and take into account possible impurities present in the spike solutions employed. The procedure has been successfully validated with the analysis of two different certified reference materials (BCR-464 and DOLT-4) and with the comparison of the results obtained by GC(ICP)MS. For the tuna fish matrix (BCR-464), no interconversion reactions were observed at the optimized conditions of open focused microwave extraction at 70 degrees C during 8 min. However, significant demethylation was found under the same conditions in the case of the certified dogfish liver DOLT-4. Methylation and demethylation factors were confirmed by GC(ICP)MS. Transformation reactions have been found to depend on the sample matrix and on the derivatization reagent employed. Thus, it is not possible to recommend optimum extraction conditions suitable for all types of matrices demonstrating the need to apply multiple spiking methodologies for the determination of MeHg and Hg(II) in biological samples. Double spike isotope dilution analysis methodologies using widespread GC(EI)MS instrumentation are proposed here for the routine analysis of inorganic mercury and methylmercury in fish samples. The estimated method detection limits were below 10 ng g(-1) for both mercury species. Precision was evaluated for the concentrations present in the certified reference materials (CRMs) which vary from 0.1 to 5 microg g(-1), achieving values of coefficients of variation ranging from 7% to 2%. The concentrations obtained in both CRMs analyzed were in excellent agreement with the certified values, demonstrating the accuracy of the method at these concentration levels. PMID:20192179

  17. Isotopic test of a thermally driven intraplate orogenic model, Australia

    NASA Astrophysics Data System (ADS)

    Camacho, A.; Hensen, B. J.; Armstrong, R.

    2002-10-01

    A recently proposed model for intraplate orogenesis couples long-term self-heating of basement rocks by radioactive decay with thermal blanketing by overlying sedimentary deposits. This model has been tested in one of the type areas in central Australia, the Proterozoic Musgrave Complex, which was reworked in an Early Cambrian orogeny. We have determined the source of the pre orogenic and postorogenic sediments in the Amadeus basin immediately to the north of the reworked basement, including the fan deposits associated with uplift, comprising Uluru (Ayers Rock) and Kata Tjuta (Olgas). Detrital-zircon age populations indicate that all basin sediments were derived from the Musgrave Complex, which was therefore emergent rather than covered by sediments as required by the model. In the basement, the preservation of Mesoproterozoic mica ages during transpressive burial to depths of 40 km ca. 550 Ma indicates that the associated thermal pulse was short-lived, not long-lived as envisaged in the model. We conclude therefore that the thermal-blanketing model is inconsistent with the isotopic data and that the localization of deformation in intracratonic settings is associated with regions of contrasting strengths; in central Australia, these are along the margins of the Amadeus basin with the Musgrave Complex and Arunta inlier.

  18. Geochemical behaviour of Radium isotopes and Radon in a coastal thermal system (Balaruc-les-Bains, South of France)

    NASA Astrophysics Data System (ADS)

    Condomines, Michel; Gourdin, Elian; Gataniou, Delphine; Seidel, Jean-Luc

    2012-12-01

    The behaviour of the four Ra isotopes (measured by gamma spectrometry) and 222Rn (measured with an AlphaGUARD ionisation chamber) has been investigated in NaCl-rich thermal waters of Balaruc-les-Bains on the Mediterranean coast (South of France). This study allows identification of the deep thermal water signature and reveals the influence of seawater or karst water inflows on Ra isotopes and 222Rn. The deep thermal water has 226Ra and 222Rn activities of 840 and 1900 mBq/l, respectively, a (228Ra/226Ra) activity ratio of 0.59, and low (224Ra/228Ra) and (223Ra/226Ra) ratios of 0.67 and 0.025, respectively. Several arguments suggest a dominant role of radioactive decay for short-lived Ra isotopes and Rn during the relatively rapid ascent of thermal water through wide open fractures and drains. The low (223Ra/226Ra) ratio constrains the maximum ascent velocity of thermal water to 8-10 m/h. Seawater inflow into the hydrothermal system results in an enrichment in short-lived Ra isotopes and 222Rn. The high (223Ra/226Ra) ratio (0.23) suggests that 223Ra, 224Ra and 222Rn produced by alpha-recoil in the upper-Jurassic limestone are entrained by seawater percolation through the coastal basement, due to active pumping in one of the near shore production well. This process would be enhanced by a low water/rock ratio (i.e. in a low-porosity, micro-fractured limestone). Mixing of this enriched seawater with thermal water induces barite precipitation with co-precipitation of a large fraction of Ra. Short-lived Ra isotopes may thus be useful tracers of seawater flux towards the continent. Conversely, the inflow and mixing of karst groundwater result in a general dilution of all dissolved elements, only a small enrichment in 224Ra and 223Ra, but a large enrichment in 222Rn (up to 26 Bq/l). The combination of Ra isotopes and 222Rn data provides a good way to trace the dynamics of different water masses along coastal areas.

  19. Non-Mass Dependent Isotope Fractionations of Rarefied Gases (O2, SF6) Under a Thermal Gradient

    NASA Astrophysics Data System (ADS)

    Sun, T.; Bao, H.; Oxy-Anion Stable Isotope Consortium

    2010-12-01

    Thermal diffusion induced isotope fractionation has long been intensely studied both experimentally and theoretically. It was usually used for small scale isotope separations in nuclear industry, both in gas and liquid phase. Previous research focus has mainly been on convective, high pressure and binary mixture systems, serving the purpose of efficient isotope separations. However, multiple-isotope behavior of rarefied gases under a thermal gradient has not been carefully examined, especially for a non-convective system. In addition to the limited practical applications of such a system, the lack of interest is largely due to the fact that thermal diffusion has never been considered outside the classical thermodynamic and kinetic realm and that the associated multiple isotope fractionation has to be mass dependent. When an otherwise homogeneous gas is superimposed by a thermal gradient, the coupled thermal and chemical diffusions occur. The multiple isotope (16O, 17O, 18O, or 32S, 33S, 34S, and 36S) fractionations associated with the dynamic process are indeed predicted to be entirely mass dependent as we calculate from Jones and Furry (1946) and Huang et al (2010). However, our thermal-gradient experiments on O2 and SF6 have proven otherwise. We found that a simple superimposed external thermal gradient on low pressure O2 or SF6 gas in a closed (but not isolated) system can produce measurable non-mass-dependent 17O or 33S anomalies. A series tests were conducted using two sets of apparatus to constrain the controlling factors. We obtained up to -0.51 or +0.82 (s. d., 1? = 0.03) for the ?17O and -0.111 (1? = 0.018) for the ?33S from different ends of our thermal gradients. We found that the magnitude of the 17O or 33S anomaly is a function of the initial gas pressure, temperature gradient, experimental duration, average temperature of the whole apparatus, and the geometry of the apparatus. The ? value (ln?17/ln?18 or ln?33/ln?34) ranges from ~ -0.3 to ~ +0.3 for ?17O-?18O and is at ~1.4 for ?33S-?34S in our apparatus. We propose that the observed non-mass-dependent fractionation is probably the result of nuclear spin effect amplified by a sharp thermal gradient. We predict that thermal-gradient effect exists in many other molecules, especially at dilute states. The discovery of thermal-gradient induced non-mass-dependent isotope fractionation helps to explain some of the puzzling non-mass-dependent fractionation reported in recent literature, and provokes us to consider alternative interpretations of the triple oxygen or quadruple sulfur isotope heterogeneity in the Solar system.

  20. Measurement of mercury species in whole blood using speciated isotope dilution methodology integrated with microwave-enhanced solubilization and spike equilibration, headspace-solid-phase microextraction, and GC-ICP-MS analysis.

    PubMed

    Rahman, G M Mizanur; Wolle, Mesay Mulugeta; Fahrenholz, Timothy; Kingston, H M Skip; Pamuku, Matt

    2014-06-17

    A biomonitoring method was developed for the determination of inorganic-, methyl-, and ethylmercury (Hg(2+), CH3Hg(+), and C2H5Hg(+), respectively) in whole blood by triple-spiking speciated isotope dilution mass spectrometry (SIDMS) using headspace (HS) solid-phase microextraction (SPME) in combination with gas chromatographic (GC) separation and inductively coupled plasma mass spectrometric (ICP-MS) detection. After spiking the blood sample with isotopically enriched analogues of the analytes ((199)Hg(2+), CH3(200)Hg(+) and C2H5(201)Hg(+)), the endogenous Hg species were solubilized in 2.0 mol L(-1) HNO3 and equilibrated with the spikes using a microwave-enhanced protocol. The microwaved sample was treated with a 1% (w/v) aqueous solution of sodium tetrapropylborate (buffered to pH 5.2), and the propylated Hg species were sampled in the HS using a Carboxen/polydimethylsiloxane-coated SPME fiber. The extracted species were thermally desorbed from the fiber in the GC injection port and determined by GC-ICP-MS. The analytes were quantified, with simultaneous correction for their method-induced transformation, on the basis of the mathematical relationship in triple-spiking SIDMS. The method was validated using a bovine blood standard reference material (SRM 966, Level 2). Analysis of human blood samples demonstrated the accuracy and reproducibility of the method, which can detect the Hg species down to 30 pg g(-1) in blood. The validity of the analytical results found for the blood samples was demonstrated using mass balance by comparing the sum of the concentrations of the individual Hg species with the total Hg in the corresponding samples; the latter was determined by isotope dilution mass spectrometry (IDMS) after decomposing the blood using EPA Method 3052 with single-spiking. PMID:24845130

  1. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Wiltafsky, Markus; Fogliano, Vincenzo

    2015-12-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors. PMID:26041204

  2. Improved Isotopic Measurement of Plutonium by Thermal Ionization Mass Spectrometry

    SciTech Connect

    Shick, C. Jr.

    2002-02-07

    Thermal ionization mass spectrometry (TIMS) is accepted widely as the benchmark method for precise and accurate isotopic determination of plutonium. TIMS is one of the few analytical methods capable of determining Pu in bioassay samples at the level required for detecting a 50 yr committed dose of 100 mRem resulting from an inhalation exposure to highly insoluble forms of Pu. Typically, Pu is measured in bioassay samples by radiochemical separation, electrodeposition onto a planchet, and radiometric determination by alpha spectrometry. If, based on the alpha spectrometry results, a sample is deemed to need a more sensitive analysis (i.e. suspected uptake, borderline alpha spectrometry positive for Pu uptake, etc.), then the sample is prepared for analysis by TIMS. Part of the development process for establishing a program to determine Pu in bioassay samples by TIMS at the Savannah River Site involved a careful evaluation of the Pu blank value in the reagents used for sample preparation and in urine blanks. This exercise allowed for the evaluation of the newly developed radiochemical separation procedure, the resin bead loading procedure, and the detection limits of the thermal ionization mass spectrometer.

  3. Determination of the urinary cortisol production rate using (1,2,3,4-13C)cortisol. Isotope dilution analyses at very small enrichments.

    PubMed

    Chapman, T E; Kraan, G P; Drayer, N M; Nagel, G T; Wolthers, B G

    1987-02-01

    An isotope dilution mass spectrometric method to determine the urinary cortisol production rate (CPR) in babies and children is described. The method uses stable isotopically labelled (1,2,3,4-13C)cortisol. The tracer is intravenously administered to the patient and urine is collected for the following three days. Following extraction, enzymic hydrolysis, purification and isolation by high-performance liquid chromatography (HPLC) the urinary cortisol metabolites tetrahydrocortisone, tetrahydrocortisol, alpha- and beta-cortolone are separately oxidized the common product, 11-oxo-aetiocholanolone. The methyl oxime tert-butyldimethylsilyl ether derivative (MO TBDMS) was analysed by gas chromatography mass spectrometry. Quantification of the isotope enrichment was carried out by unlabelled, and at m/z 348 for labelled 11-oxo-aetiocholanolone. HPLC isolation of the metabolites together with the oxidation step allowed very small isotope enrichments, sometimes down to 0.1% (1:1000), to be reliably measured against a linear calibration graph containing 0 to 1% (13C4) enrichments. The standards for the calibration graph were synthesized from mixtures of labelled (13C4) cortisol and natural cortisol, and the calibration graph was prepared each time samples were measured. The long term instrumental precision of the isotope dilution analyses was 0.91% for a derivatized sample containing a (13C4) enrichment of 0.5% (measured on six different days over seven months). The coefficient of variation of the complete procedure for the four cortisol metabolites was between 1.17 and 2.14%. The clinical applicability of the method is demonstrated by presenting the results of a CPR determination in a patient. PMID:2952197

  4. The Magmatic Structure of Mt. Vesuvius: Isotopic and Thermal Constraints

    NASA Astrophysics Data System (ADS)

    Civetta, L.; D'Antonio, M.; de Lorenzo, S.; Gasparini, P.

    2002-12-01

    Mt. Vesuvius is an active volcano famous for the AD 79 eruption that destroyed Pompeii, Herculaneum and Stabiae. Because of the intense urbanization around and on the volcano, the risk today is very high. Therefore, the knowledge of the structure and behavior of the magmatic system is fundamental both for the interpretation of any change in the dynamics of the volcano and for prediction of eruptions. A review of available and new isotopic data on rocks from Mt. Vesuvius, together with mineralogical and geochemical data and recent geophysical results, allow us to constrain a thermal modeling that describes history and present state of Mt. Vesuvius magmatic system. This system is formed by a "deep", complex magmatic reservoir where mantle-derived magmas arrive, stagnate and differentiate. The reservoir extends discontinuously between 10 and 20 km of depth, is hosted in densely fractured crustal rocks, where magmas and crust can interact, and has been fed more than once since 400 ka. The hypothesis of crustal contamination is favored by the high temperatures reached by crustal rocks as a consequence of repetitive intrusions of magma. From the "deep" reservoir magmas of K-basaltic to K-tephritic to K-phonotephritic composition rise to shallow depths where they stagnate at 3-5 km of depth before plinian eruptions, and through crystallization and mixing processes with the residual portion of the feeding systems, generate isotopically and geochemically layered reservoirs. Alternatively, during "open conduit" conditions deep, volatile-rich magma batches rise from the "deep" reservoir to less than 1 km of depth and mix with the crystal-rich, volatile-poor resident magma, triggering eruptions.

  5. Investigation of the tungsten isotopes via thermal neutron capture

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Summers, N. C.; Rvay, Zs.; Szentmiklsi, L.; Basunia, M. S.; Belgya, T.; Escher, J. E.; Krti?ka, M.

    2014-01-01

    Total radiative thermal neutron-capture ?-ray cross sections for the 182,183,184,186W isotopes were measured using guided neutron beams from the Budapest Research Reactor to induce prompt and delayed ? rays from natural and isotopically-enriched tungsten targets. These cross sections were determined from the sum of measured ?-ray cross sections feeding the ground state from low-lying levels below a cutoff energy, Ecrit, where the level scheme is completely known, and continuum ? rays from levels above Ecrit, calculated using the Monte Carlo statistical-decay code dicebox. The new cross sections determined in this work for the tungsten nuclides are ?0(182W)=20.5(14) b and ?11/2+(183Wm,5.2s )=0.177(18) b; ?0(183W)=9.37(38) b and ?5-(184Wm,8.33?s )=0.0247(55) b; ?0(184W)=1.43(10) b and ?11/2+(185Wm,1.67min)=0.0062(16) b; and, ?0(186W)=33.33(62) b and ?9/2+(187Wm,1.38?s)=0.400(16) b. These results are consistent with earlier measurements in the literature. The 186W cross section was also independently confirmed from an activation measurement, following the decay of 187W, yielding values for ?0(186W) that are consistent with our prompt ?-ray measurement. The cross-section measurements were found to be insensitive to choice of level density or photon strength model and only weakly dependent on Ecrit. Total radiative-capture widths calculated with dicebox showed much greater model dependence; however, the recommended values could be reproduced with selected model choices. The decay schemes for all tungsten isotopes were improved in these analyses. We were also able to determine new neutron-separation energies from our primary ?-ray measurements for the respective (n ,?) compounds: 183W [Sn=6190.88(6) keV]; 184W [Sn=7411.11(13) keV]; 185W [Sn=5753.74(5) keV]; and, 187W [Sn=5466.62(7) keV].

  6. New commercial method for the enzymatic determination of creatinine in serum and urine evaluated: Comparison with a kinetic Jaffe method and isotope dilution-mass spectrometry

    SciTech Connect

    Lindbaeck, B.B.; Bergman, A.

    1989-05-01

    We evaluated a new, simple, enzymatic kinetic method from Wako Chemicals GmbH in comparison with a kinetic Jaffe method by using isotope dilution-mass spectrometry (ID-MS) as a reference method. An ID-MS-calibrated serum standard was used. Both the enzymatic and the Jaffe method correlated well with ID-MS, except for sera with high concentrations of bilirubin. Ethyl acetoacetate, acetone, and glucose in serum interfered somewhat with the Jaffe method but not with the enzymatic method. We conclude that the present enzymatic method has merit as compared with a Jaffe method for routine work, but is more expensive.

  7. Methods to reduce interference effects in thermal conversion elemental analyzer/continuous flow isotope ratio mass spectrometry delta18O measurements of nitrogen-containing compounds.

    PubMed

    Accoe, Frederik; Berglund, Michael; Geypens, Benny; Taylor, Philip

    2008-07-01

    On-line determination of the oxygen isotopic composition (delta(18)O value) in organic and inorganic samples is commonly performed using a thermal conversion elemental analyzer (TC-EA) linked to a continuous flow isotope ratio mass spectrometry (IRMS) system. Accurate delta(18)O analysis of N-containing compounds (like nitrates) by TC-EA-IRMS may be complicated because of interference of the N(2) peak on the m/z 30 signal of the CO peak. In this study we evaluated the effectiveness of two methods to overcome this interference which do not require any hardware modifications of standard TC-EA-IRMS systems. These methods were (1) reducing the amount of N(2) introduced into the ion source through He dilution of the N(2) peak and (2) an improved background correction on the CO m/z 30 sample peak integration. Our results show that He dilution is as effective as diverting the N(2) peak in order to eliminate this interference. We conclude that the He-dilution technique is a viable method for the delta(18)O analysis of nitrates and other N-containing samples (which are not routinely measured using He dilution) using TC-EA-IRMS, since it can easily be programmed in the standard software of IRMS systems. With the He-dilution technique delta(18)O values of the nitrate isotope standards USGS34, IAEA-N3 and USGS35 were measured using the shortest possible traceability chain to the VSMOW-SLAP scale, and the results were -28.1 +/- 0.1 per thousand, +25.5 +/- 0.1 per thousand and +57.5 +/- 0.2 per thousand, respectively. An improved background correction was also an effective method, but required manual correction of the raw data. PMID:18561208

  8. Hydrogen-bonding and vibrational coupling of water in a hydrophobic hydration shell as observed by Raman-MCR and isotopic dilution spectroscopy.

    PubMed

    Ahmed, Mohammed; Singh, Ajay K; Mondal, Jahur A

    2016-01-20

    Hydrogen-bonding and intra/intermolecular vibrational coupling of water next to a hydrophobic molecule (tert-butyl alcohol, TBA) have been studied by Raman multivariate curve resolution (Raman-MCR) and isotopic dilution spectroscopy. Raman-MCR provides the vibrational spectrum of water pertinent to the hydration shell of TBA, which shows a distinct Raman band at around 3660 cm(-1) corresponding to the dangling OH in the hydration shell. The presence of positive charge on the hydrophobe decreases the propensity of dangling OH in the hydration shell, presumably due to unfavorable electrostatic interaction. Analysis of the dangling OH band with isotopic dilution reveals that the 'dangling OH' is intramolecularly coupled with the 'H-bonded OH' of the same water molecule. The hydration water spectrum in the H-bonded OH stretch region (3000-3600 cm(-1)) shows a depletion of weakly H-bonded water (?3580 cm(-1)) and an increase of strongly H-bonded water (?3250 cm(-1)), making the average H-bonding stronger in a hydrophobic hydration shell than that in bulk. This strongly H-bonded hydration water exhibits weaker intra- and intermolecular vibrational coupling than that of bulk water. PMID:26725484

  9. Determination of the alkylpyrazine composition of coffee using stable isotope dilution-gas chromatography-mass spectrometry (SIDA-GC-MS).

    PubMed

    Pickard, Stephanie; Becker, Irina; Merz, Karl-Heinz; Richling, Elke

    2013-07-01

    A stable isotope dilution analysis based on gas chromatography-mass spectrometry analysis (SIDA-GC-MS) was developed for the quantitative analysis of 12 alkylpyrazines found in commercially available coffee samples. These compounds contribute to coffee flavor. The accuracy of this method was tested by analyzing model mixtures of alkylpyrazines. Comparisons of alkylpyrazine-concentrations suggested that water as extraction solvent was superior to dichloromethane. The distribution patterns of alkylpyrazines in different roasted coffees were quite similar. The most abundant alkylpyrazine in each coffee sample was 2-methylpyrazine, followed by 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-5-methylpyrazine, and 2,3,5-trimethylpyrazine, respectively. Among the alkylpyrazines tested, 2,3-dimethylpyrazine, 2-ethyl-3-methylpyrazine, 2-ethyl-3,6-dimethylpyrazine, and 2-ethyl-3,5-dimethylpyrazine revealed the lowest concentrations in roasted coffee. By the use of isotope dilution analysis, the total concentrations of alkylpyrazines in commercially available ground coffee ranged between 82.1 and 211.6 mg/kg, respectively. Decaffeinated coffee samples were found to contain lower amounts of alkylpyrazines than regular coffee samples by a factor of 0.3-0.7, which might be a result of the decaffeination procedure. PMID:23745606

  10. Quantitative detection of trichloroacetic acid in human urine using isotope dilution high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Kuklenyik, Zsuzsanna; Ashley, David L; Calafat, Antonia M

    2002-05-01

    The chemical disinfection of drinking water to control microbial contaminants results in the formation of disinfection byproducts (DBPs). The volatile trihalomethanes and the nonvolatile haloacetic acids (HAAs) are the most prevalent DBPs. It is important to monitor human exposure to HAAs because of their potential adversehealth effects, such as cancer. Among the HAAs, urinary trichloroacetic acid (TCAA) is a potential valid biomarker for assessing chronic ingestion exposure to HAAs from drinking water. We have developed a rugged, high-throughput, sensitive, accurate, and precise assay for the measurement of trace levels of TCAA in human urine using a simple solid-phase extraction (SPE) cleanup followed by isotope dilution high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). TCAA is extracted from the urine using SPE, separated from other extract components by reversed-phase HPLC, and analyzed by negative ion electrospray ionization-isotope dilution-MS/MS using a multiple reaction monitoring experiment. The method is simple and fast and is not labor intensive (sample preparation and analysis can be performed in approximately 15 min) with a limit of detection of 0.5 ng/mL in 1 mL of urine. PMID:12033307

  11. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    SciTech Connect

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  12. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  13. Vitamin A isotope dilution predicts liver stores in line with long-term vitamin A intake above the current Recommended Dietary Allowance for young adult women123

    PubMed Central

    Valentine, Ashley R; Davis, Christopher R

    2013-01-01

    Background: The Estimated Average Requirement (EAR) and Recommended Dietary Allowance (RDA) for vitamin A are 1.7 and 2.4 ?mol/d (500 and 700 ?g retinol activity equivalents/d), respectively, for nonpregnant, nonlactating women aged >19 y. This intake is presumed to maintain a minimally acceptable liver concentration of 0.07 ?mol (20 ?g) retinol/g; however, liver reserves have not been evaluated with respect to vitamin A intake in women of any age group defined in the Dietary Reference Intakes. Objective: This cross-sectional study examined vitamin A intake and liver reserves estimated by stable-isotope dilution testing. Design: Forty nonpregnant, nonlactating women (mean SD age: 22.4 2.3 y) completed a Harvard food-frequency questionnaire (FFQ) and 3-d diet record (3DDR) before undergoing vitamin A status assessment by using a [13C2]retinol stable-isotope dilution test. Results: Vitamin A intake was 70% higher than the RDA by both dietary-assessment methods (P < 0.001). The mean (SD) liver concentration of vitamin A was 0.45 0.31 ?mol/g (129 89 ?g/g) and ranged from 0.09 (26 ?g/g) to 1.79 ?mol/g (513 ?g/g). Liver and total-body vitamin A were highly correlated with intake measured by FFQ (P ? 0.009), but 3DDR was not (P ? 0.22). Prediction equations were developed for 3- and 7-d data. Conclusions: In this well-nourished population, vitamin A consumption was considerably higher than recommended, and liver reserves were consistent with intake. Because of their sensitivity, stable-isotope techniques can help to describe the vitamin A status and better characterize the intake needs of all groups defined in the Dietary Reference Intakes. Registration was not required for this trial. PMID:24047915

  14. A novel sample decomposition technique at atmospheric pressure for the determination of Os abundances in iron meteorites using isotope dilution inductively coupled plasma-mass spectrometry.

    PubMed

    Hattori, M; Hirata, T

    2001-06-01

    A safe and reliable analytical technique for the determination of Os abundances in ten iron meteorites of various chemical groups was developed using isotope dilution inductively coupled plasma-mass spectrometry coupled with a sample decomposition technique. A major advantage of the sample decomposition technique developed here is that the pressure inside the reaction flask is not increased through the decomposition reaction because the flask is a fully opened system, obviating the risk of explosion of the glass apparatus. Another advantage is that there is no restriction in the sample size being decomposed. In this study, about 2 g of metallic sample were decomposed safely, and this sample size, > 10 times larger than that typically used for the Carius tube technique, allows one to obtain more reliable Os data for heterogeneous samples. The metallic samples were decomposed in a glass flask purged with Ar. Since the O2 was purged from the reaction flask, Os was not oxidised to volatile OsO4, thereby preventing significant evaporation loss of Os. The typical recovery of Os throughout the sample decomposition and separation processes was > 80%, and the total Os blank through the decomposition of a 1 g amount of sample was less than 20 pg. Os abundances were determined by means of stable isotope dilution mass spectrometry using a 190Os-enriched isotopic tracer. Except for Sikhote-Alin, the measured Os abundances in almost all the iron meteorites exhibited a good agreement with the previously published Os abundance data, within the analytical uncertainty achieved in this study (2-5%). For the Sikhote-Alin meteorite, on the basis of a better correlation between Os and Ir abundances, we believe that our Os abundance data should be more reliable. The Os abundance data obtained in this work clearly demonstrated the suitability of the newly developed sample decomposition procedure for low level Os determinations. PMID:11445949

  15. Thermal neutron capture cross sections of the potassium isotopes

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Krti?ka, M.; Rvay, Zs.; Szentmiklosi, L.; Belgya, T.

    2013-02-01

    Precise thermal neutron capture ?-ray cross sections ?? for 39,40,41K were measured on a natural potassium target with the guided neutron beam at the Budapest Reactor. The cross sections were internally standardized using a stoichiometric KCl target with well-known 35Cl(n,?) ?-ray cross sections [Rvay and Molnr, Radiochimica ActaRAACAP0033-823010.1524/ract.91.6.361.20027 91, 361 (2003); Molnr, Rvay, and Belgya, Nucl. Instrum. Meth. Phys. Res. BNIMBEU0168-583X10.1016/S0168-583X(03)01529-5 213, 32 (2004)]. These data were combined with ?-ray intensities from von Egidy [von Egidy, Daniel, Hungerford, Schmidt, Lieb, Krusche, Kerr, Barreau, Borner, Brissot , J. Phys. G. Nucl. Phys.JPHGBM0305-461610.1088/0305-4616/10/2/013 10, 221 (1984)] and Krusche [Krusche, Lieb, Ziegler, Daniel, von Egidy, Rascher, Barreau, Borner, and Warner, Nucl. Phys. ANUPABL0375-947410.1016/0375-9474(84)90506-2 417, 231 (1984); Krusche, Winter, Lieb, Hungerford, Schmidt, von Egidy, Scheerer, Kerr, and Borner, Nucl. Phys. ANUPABL0375-947410.1016/0375-9474(85)90429-4 439, 219 (1985)] to generate nearly complete capture ?-ray level schemes. Total radiative neutron cross sections were deduced from the total ?-ray cross section feeding the ground state, ?0=???(GS) after correction for unobserved statistical ?-ray feeding from levels near the neutron capture energy. The corrections were performed with Monte Carlo simulations of the potassium thermal neutron capture decay schemes using the computer code dicebox where the simulated populations of low-lying levels are normalized to the measured cross section depopulating those levels. Comparisons of the simulated and experimental level feeding intensities have led to proposed new spins and parities for selected levels in the potassium isotopes where direct reactions are not a significant contribution. We determined the total radiative neutron cross sections ?0(39K)=2.280.04 b, ?0(40K)=907 b, and ?0(41K)=1.620.03 b from the prompt ?-ray data and the ?-ray transition probability P?(1524.66)=0.164(4) in the ?- decay of 42K in a low-background counting experiment.

  16. Overcoming matrix effects in electrospray: quantitation of ?-agonists in complex matrices by isotope dilution liquid chromatography-mass spectrometry using singly (13)C-labeled analogues.

    PubMed

    Gonzlez-Antua, Ana; Domnguez-Romero, Juan C; Garca-Reyes, Juan F; Rodrguez-Gonzlez, Pablo; Centineo, Giuseppe; Garca Alonso, J Ignacio; Molina-Daz, Antonio

    2013-05-01

    In this work, the implementation of isotope dilution mass spectrometry (IDMS) using minimal labeling and isotope pattern deconvolution (IPD) is evaluated as a strategy for the minimization of matrix effects during trace determination of ?2-agonists in complex matrices by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). First, the parameters affecting the measurement of isotopic composition of organic compounds by liquid chromatography electrospray ionization high resolution mass spectrometry with a time-of-flight analyzer were evaluated using as a case of study three different ?2-agonists: clenbuterol, clenproperol and brombuterol. Then, a calibration graph-free IDMS methodology was evaluated in order to overcome matrix effects in LC-ESI-MS in complex samples. In this procedure singly (13)C-labeled analogues of clenbuterol, clenproperol and brombuterol were employed in combination with IPD. Using this approach accurate and precise results were obtained in the simultaneous quantification of ?2-agonists in human urine and bovine liver, even at the sub ngg(-1) and particularly in spite of the previously reported matrix effects. Recovery rates in the range of 97-114% in fortified human urine and from 95% to 111% in fortified bovine liver were obtained with RSD (%) of independent recovery experiments always lower than 6%. These results demonstrate that the proposed methodology based on the use of (13)C1-labeled standards and IPD is a reliable approach for accurate LC-MS quantitation of small molecules and compatible with full-scan high-resolution mass spectrometry. PMID:23523066

  17. The 2H thermal diffusion isotope effect in benzene and methanol

    NASA Astrophysics Data System (ADS)

    Ma, Ning-Yuan Richard; Beyerlein, Adolph L.

    1983-06-01

    The 2H thermal diffusion isotope effect is investigated for mixtures benzene-benzeed benzene-o dideuterobenzene, benzene-p didouterobenzen, mathanol d-methanold4, methanol-melhanol d. The thermal diffusion measurements wre made using a cylindrical thermo gravitational diffusion apparatus. (AIP)

  18. Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires

    SciTech Connect

    Sun, Tao; Kang, Wei; Wang, Jianxiang

    2015-01-21

    We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence of the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion.

  19. Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah

    SciTech Connect

    Rohrs D.T.; Bowman, J.R.

    1980-05-01

    The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

  20. Extreme Expression of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Breast Cancer As Measured by Liquid Chromatography and Isotope Dilution Tandem Mass Spectrometry.

    PubMed

    Coskun, Erdem; Jaruga, Pawel; Reddy, Prasad T; Dizdaroglu, Miral

    2015-09-29

    Apurinic/apyrimidinic endonuclease 1 (APE1) is a DNA repair protein and plays other important roles. Increased levels of APE1 in cancer have been reported. However, available methods for measuring APE1 levels are indirect and not quantitative. We previously developed an approach using liquid chromatography and tandem mass spectrometry with isotope dilution to accurately measure APE1 levels. Here, we applied this methodology to measure APE1 levels in normal and cancerous human breast tissues. Extreme expression of APE1 in malignant tumors was observed, suggesting that breast cancer cells may require APE1 for survival. Accurate measurement of APE1 may be essential for the development of novel treatment strategies and APE1 inhibitors as anticancer drugs. PMID:26359670

  1. A stable-isotope dilution GC-MS approach for the analysis of DFRC (derivatization followed by reductive cleavage) monomers from low-lignin plant materials.

    PubMed

    Schfer, Judith; Urbat, Felix; Rund, Katharina; Bunzel, Mirko

    2015-03-18

    The derivatization followed by reductive cleavage (DFRC) method is a well-established tool to characterize the lignin composition of plant materials. However, the application of the original procedure, especially the chromatographic determination of the DFRC monomers, is problematic for low-lignin foods. To overcome these problems a modified sample cleanup and a stable-isotope dilution approach were developed and validated. To quantitate the diacetylated DFRC monomers, their corresponding hexadeuterated analogs were synthesized and used as internal standards. By using the selected-ion monitoring mode, matrix-associated interferences can be minimized resulting in higher selectivity and sensitivity. The modified method was applied to four low-lignin samples. Lignin from carrot fibers was classified as guaiacyl-rich whereas the lignins from radish, pear, and asparagus fibers where classified as balanced lignins (guaiacyl/syringyl ratio=1-2). PMID:25727138

  2. Convenient preparation of deuterium-labeled analogs of peptides containing N-substituted glycines for a stable isotope dilution LC-MS quantitative analysis.

    PubMed

    B?chor, Remigiusz; D?bowski, Dawid; ??gowska, Anna; Stefanowicz, Piotr; Rolka, Krzysztof; Szewczuk, Zbigniew

    2015-11-01

    N-substituted glycines constitute mimics of natural amino acids that are of great interest in the peptide-based drug development. Peptoids-oligo(N-substituted glycines) have been recently demonstrated to be highly active peptidomimetics in biological systems, resistant to proteolytic degradation. We developed a method of the deuterium labeling of peptidomimetics containing N-substituted glycine residues via H/D exchange of their ?-carbon hydrogen atoms. The labeling was shown to be easy, inexpensive, and without the use of derivatization reagents or the need for a further purification. The deuterons introduced at the ?-carbon atoms do not undergo a back exchange under acidic conditions during liquid chromatography mass spectrometry (LC-MS) analysis. The LC-MS analysis of a mixture of isotopologues revealed a co-elution of deuterated and nondeuterated forms of the peptidomimetics, which may be useful in the quantitative isotope dilution analysis of peptoids and other derivatives of N-substituted glycines. PMID:26415697

  3. Sectional power-law correction for the accurate determination of lutetium by isotope dilution multiple collector-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yuan, Hong-Lin; Gao, Shan; Zong, Chun-Lei; Dai, Meng-Ning

    2009-11-01

    In this study, we employ a sectional power-law (SPL) correction that provides accurate and precise measurements of 176Lu/ 175Lu ratios in geological samples using multiple collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Three independent power laws were adopted based on the 176Lu/ 176Yb ratios of samples measured after chemical chromatography. Using isotope dilution (ID) techniques and the SPL correction method, the measured lutetium contents of United States Geological Survey rock standards (BHVO-1, BHVO-2, BCR-2, AGV-1, and G-2) agree well with the recommended values. Results obtained by conventional ICP-MS and INAA are generally higher than those obtained by ID-TIMS and ID-MC-ICP-MS; this discrepancy probably reflects oxide interference and inaccurate corrections.

  4. A rapid, sensitive method for the quantitation of specific metabolites of sulfur mustard in human urine using isotope-dilution gas chromatography-tandem mass spectrometry.

    PubMed

    Young, Carrie L; Ash, Doris; Driskell, W J; Boyer, Anne E; Martinez, Rodolfo A; Silks, L A; Barr, John R

    2004-01-01

    Sulfur mustard agent (HD) (2,2'-dichloroethyl sulfide), a Schedule I compound on the Chemical Weapons Convention Schedule of Chemicals, remains a public health concern because it is simple to synthesize and it is in the chemical weapon stockpiles of several countries. A sensitive, rapid, accurate, and precise method was developed to quantitate trace levels of 1,1'-sulfonylbis [2-(methylthio) ethane] (SBMTE) in human urine as a means of assessing exposure to HD. The method used immobilized liquid-liquid extraction with diatomaceous earth, followed by the analysis of the urine extract using isotope-dilution gas chromatography-tandem mass spectrometry. Relative standard deviations were less than 8.6% at 1 ng/mL and 3.6% at 20 ng/mL. The limit of detection for SBMTE was 0.038 ng/mL in 0.5 mL of urine. PMID:15239853

  5. Determination of ultratrace neodymium in high-purity lanthanum compounds by high-accuracy isotope dilution inductively coupled plasma mass spectrometric analysis with chemical preconcentration

    SciTech Connect

    Beary, E.S.; Paulsen, P.J. )

    1994-02-15

    Direct, accurate quantitation of ultratrace Nd in La compounds was not possible by ICPMS. The La/Nd ratio of > 10[sup 6] required chemical separations to provide a suitable sample solution for instrumental analysis. Separation of Nd from the La matrix is problematic since the two elements are close in mass and similar in chemical behavior. The ICPMS in a semiquantitative survey mode proved to be a valuable tool in developing the required separations. Nd was quantified using isotope dilution which requires neither 100% recovery nor absolute isolation of the Nd, resulting in considerable flexibility in the design of preconcentration procedures. Nanogram per gram quantities of Nd in high-purity La compounds were determined using this procedure. 18 refs., 8 figs., 3 tabs.

  6. Tracing the flow rate and mixing ratio of the Changjiang diluted water in the northwestern Pacific marginal seas using radium isotopes

    NASA Astrophysics Data System (ADS)

    Lee, Hojun; Kim, Guebuem; Kim, Jeonghyun; Park, Gwanserk; Song, Ki-Hoon

    2014-07-01

    We measured Ra isotopes (223Ra and 228Ra) in surface seawater of the northwestern Pacific marginal seas to trace the flow rate and mixing of the Changjiang diluted water (CDW) in the summer of 2012. Based on the horizontal distribution of 223Ra activities, the arrival time of CDW from the river mouth to 450 km offshore northeast was estimated to be 20-35 days, which is similar to that determined in previous studies. Moreover, we successfully calculated the relative contribution of CDW at each sampling station using a salinity and 228Ra diagram. Using this unique method, we found that the relative contribution of CDW was more than 30% in most surface seawaters of the northern East China Sea, the Yellow Sea, and the southern sea off Korea. Our results suggest that CDW is of high significance in the biogeochemistry of surface seawater of these northwestern Pacific marginal seas during the summer monsoon period.

  7. Quantification of cysteine S-conjugate of 3-sulfanylhexan-1-ol in must and wine of petite arvine vine by stable isotope dilution analysis.

    PubMed

    Luisier, Jean-Luc; Buettner, Hermann; Völker, Sebastian; Rausis, Thierry; Frey, Urban

    2008-05-14

    Making use of a convenient synthetic approach to prepare the deuterated S-3-(hexan-1-ol)-cysteine by a Michael addition reaction, an analytical method was developed to measure the presence of the cysteine S-conjugate, precursor of 3-sulfanylhexan-1-ol (3-mercaptohexan-1-ol), in must and wine from Petite Arvine vine. The method uses a stable isotope dilution assay with a suitable one-step sample preparation and HPLC-MS detection. The method has limits of detection and quantification of 3 and 10 microg/L, respectively. A correlation between the increase of the precursor concentration and the increase of the degree of rot has been established. PMID:18416552

  8. Zn isotope compositions of the thermal spring waters of La Soufrire volcano, Guadeloupe Island

    NASA Astrophysics Data System (ADS)

    Chen, Jiu-Bin; Gaillardet, Jrme; Dessert, Cline; Villemant, Benoit; Louvat, Pascale; Crispi, Olivier; Birck, Jean-Louis; Wang, Yi-Na

    2014-02-01

    To trace the sources and pathways of Zn in hydrothermal systems, the Zn isotope compositions of seventeen water samples from eight thermal springs and six gas samples from two fumaroles from La Soufrire, an active volcano on Guadeloupe Island (French West Indies, FWI), were analyzed using a method adapted for purifying Zn from Fe- and SO4-enriched thermal solutions. The fumaroles are enriched in Zn 100 to 8000 times compared to the local bedrock and have isotopic compositions (?66Zn values from +0.21 to +0.35) similar to or slightly higher than fresh andesite (+0.21). The enrichment of Zn in the thermal springs compared with the surface waters shows that Zn behaves as a soluble element during hydrothermal alteration but is significantly less mobile than Na. The ?66Zn values of most of the spring waters are relatively constant (approximately 0.70), indicating that the thermal springs from La Soufrire are enriched in heavy isotopes (i.e., 66Zn) compared to the host rocks (from -0.14 to +0.42). Only three thermal springs have lower ?66Zn values (as low as -0.43%). While the Zn in the fumaroles is essentially derived from magma degassing, which is consistent with a previous study on Merapi volcano (Toutain et al., 2008), we show that the Zn in the thermal springs is mainly derived from water-rock interactions. The 66Zn-enriched isotopic signature in most of the spring waters can be explained qualitatively by the precipitation at depth of sulfide minerals that preferentially incorporate the light isotopes. This agrees with the isotopic fractionation that was recently calculated for aqueous complexes of Zn. The few thermal springs with lower ?66Zn values also have low Zn concentrations, indicating the preferential scavenging of heavy Zn isotopes in the hydrothermal conduits. This study shows that unlike chemical weathering under surface conditions, hydrothermal alteration at high temperatures significantly fractionates Zn isotopes and enriches thermal waters in heavy Zn isotopes (e.g., 66Zn). Continental hydrothermal systems therefore constitute a source of heavy Zn isotopes to the oceans; this should be taken into account in the global oceanic budget of Zn.

  9. Quantification of carcinogenic 4- to 6-ring polycyclic aromatic hydrocarbons in human urine by solid-phase microextraction gas chromatography-isotope dilution mass spectrometry.

    PubMed

    Campo, Laura; Fustinoni, Silvia; Bertazzi, Pieralberto

    2011-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are pollutants found in living and working environments. The aim of this study was to develop a solid-phase microextraction (SPME) gas chromatography (GC)-isotope dilution mass spectrometry method for the quantification of 10 four- to six-ring PAHs in urine samples. Seven of the selected PAHs have been classified as carcinogenic. Under the final conditions, analytes were sampled with a 100-?m polydimethylsiloxane SPME fibre for 60 min at 80 C and desorbed in the injection port of the GC at 270 C. Fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene were separated using a highly arylene-modified phase capillary column and quantified by MS using eight deuterated PAHs as surrogate internal standards. Limits of quantification (LOQ) were in the 0.5- to 2.2-ng/L range. Validation showed linear dynamic ranges up to 340 ng/L, inter- and intra-run precisions <20%, and accuracies within 20% of spiked concentrations. Matrix effect evaluation and the use of control charts to monitor process performances showed that the isotope dilution approach allowed for the control of bias sources. Urinary PAHs were above or equal to LOQ, depending on different compounds, in 58-100% (min-max), 40-100% and 5-39% of samples from coke oven workers (n?=?12), asphalt workers (n?=?10) and individuals not occupationally exposed to PAHs (n?=?18), respectively. Chrysene was the most abundant PAH determined with median levels of 62.6, 6.9 and <0.6 ng/L, respectively. These results show that the method is suitable for quantifying carcinogenic PAHs in specimens from individuals with different levels of PAH exposure. PMID:21626187

  10. Validation of an isotope dilution gas chromatography-mass spectrometry method for combined analysis of oxysterols and oxyphytosterols in serum samples.

    PubMed

    Schtt, Hans-Frieder; Ltjohann, Dieter

    2015-07-01

    We describe the validation of a method for the analysis of oxysterols, i.e. oxycholesterols and oxyphytosterols, in human serum using gas chromatography-mass spectrometry selected ion monitoring (GC-MS-SIM). Concentrations of 7?- and 7?-hydroxy-, and 7oxo-cholesterol, -campesterol, and -sitosterol as well as 4?-hydroxycholesterol and side-chain oxygenated 24S-, 25-, and 27-hydroxycholesterol were determined by isotope dilution methodology. After saponification at room temperature the oxysterols were extracted, separated from their substrates, cholesterol, campesterol, and sitosterol, by solid phase extraction, and subsequently derivatised to their corresponding trimethylsilyl-ethers prior to GC-MS-SIM. In order to prevent artificial autoxidation butylated hydroxytoluene and ethylenediaminetetraacetic acid were added. The validation of the method was performed according to the International Conference on Harmonisation guidance, including limits of detection and quantification, ranges, recovery and precision. Due to improved instrumental settings and work-up procedure, limits of detection and quantification ranged between 8.0-202.0pg/mL and 28.0-674pg/mL, respectively. Recovery data in five calibration points varied between 91.9% and 116.8% and in serum samples between 93.1% and 118.1%. The mean coefficient of variation (CV) for the recovery of all compounds was <10%. Well satisfying CVs for within-day precision (2.1-10.8%) and for between-day precision (2.3-12.1%) were obtained. More than 20 samples could be processed in a single routine day and test series of about 300 samples can be realised without impairment of the validation parameters during a sequence. Comparison of oxysterol and oxyphytosterol content in serum and plasma revealed no difference. A fully validated isotope dilution methodology for the quantification of oxycholesterols and oxyphytosterols from human serum or plasma is presented. PMID:25701095

  11. Quantification of free coumarin and its liberation from glucosylated precursors by stable isotope dilution assays based on liquid chromatography-tandem mass spectrometric detection.

    PubMed

    Rychlik, Michael

    2008-02-13

    A stable isotope dilution assay for the quantification of free coumarin and glucosylated coumarin precursors has been developed using [13C2]-coumarin as the internal standard. The doubly labeled coumarin was synthesized by reacting [13C2]-acetic anhydride with salicylic aldehyde and characterized by means of mass spectrometry and nuclear magnetic resonance (NMR) experiments. The specifity of liquid chromatography-tandem mass spectrometry enabled unequivocal determination and sensitive quantitation of the odorant. Because of the very simple extraction procedure, free coumarin could be analyzed within 1h. For quantification of total coumarin, the odorant was liberated from its precursors by an incubation with hydrochloric acid or beta-glucosidase. In analyses of breakfast cereals, the intra-assay coefficient of variation was 9.9% ( n = 5) for total coumarin. When coumarin was added to butter cookies at a level of 10 microg/kg, a recovery of 94.1% was found. Further addition studies revealed a detection limit of 2.9 microg/kg and a quantification limit of 8.6 microg/kg. Application of the stable isotope dilution assay to several plants, foods, and essential oils revealed high contents in cassia products and those foods in which cassia has been used as an ingredient. In contrast to this, Ceylon cinnamon contained much less coumarin. The odorant was also quantified in woodruff, clover seeds, and the essential oils of lavender, citron, and chamomile. Only trace amounts were detected in carrots and the essential oils of peppermint and dill, whereas in bilberries, black raspberries, and Angelica roots, coumarin was below detectable levels. In Ceylon cinnamon and cassia, the odorant occurred mainly in its free form, whereas in fenugreek seeds and woodruff, 68 and 88% of the total coumarin content was liberated from glucosylated precursors, respectively. PMID:18197622

  12. Simultaneous speciation of mercury and butyltin compounds in natural waters and snow by propylation and species-specific isotope dilution mass spectrometry analysis.

    PubMed

    Monperrus, M; Tessier, E; Veschambre, S; Amouroux, D; Donard, O

    2005-02-01

    A robust method has been developed for simultaneous determination of mercury and butyltin compounds in aqueous samples. This method is capable of providing accurate results for analyte concentrations in the picogram per liter to nanogram per liter range. The simultaneous determination of the mercury and tin compounds is achieved by species-specific isotope dilution, derivatization, and gas chromatography-inductively coupled plasma mass spectrometer (GC-ICP-MS). In derivatization by ethylation and propylation, reaction conditions such as pH and the effect of chloride were carefully studied. Ethylation was found to be more sensitive to matrix effects, especially for mercury compounds. Propylation was thus the preferred derivatization method for simultaneous determination of organomercury and organotin compounds in environmental samples. The analytical method is highly accurate and precise, with RSD values of 1 and 3% for analyte concentrations in the picogram per liter to nanogram per liter range. By use of cleaning procedures and SIDMS blank measurements, detection limits in the range 10-60 pg L(-1) were achieved; these are suitable for determination of background levels of these contaminants in environmental samples. This was demonstrated by using the method for analysis of real snow and seawater samples. This work illustrates the great advantage of species-specific isotope dilution for the validation of an analytical speciation method-the possibility of overcoming species transformations and non-quantitative recovery. Analysis time is saved by use of the simultaneous method, because of the use of a single sample-preparation procedure and one analysis. PMID:15602618

  13. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods.

    PubMed

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa

    2015-04-01

    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method. PMID:25434268

  14. Experimental investigation of sulphur isotope partitioning during outgassing of hydrogen sulphide from diluted aqueous solutions and seawater.

    PubMed

    Baune, Claudia; Bottcher, Michael E

    2010-12-01

    The diffusion of hydrogen sulphide across the sediment-water interface and subsequent liberation to the atmosphere may occur in iron-deficient coastal marine environments with enhanced microbial activity in surface sediments and corresponding accumulation of dissolved H2S in near-surface pore waters. The involvement of analogue processes in periods of global mass extinctions during Earth's history (e.g. at the Permian-Triassic boundary) is currently in discussion [L.R. Kump, A. Pavlov, and M. Arthur,Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere During Intervals of Oceanic Anoxia, Geology 33, 397 (2005)]. The outgassing of H₂S is associated with a fractionation of the stable sulphur isotopes, which has so far only been investigated experimentally at selected acidic and neutral pH values, and no experiments with seawater had been carried out. In this communication, we report on sulphur isotope fractionation that takes place during the experimental degassing of H₂S from aqueous solution by an inert gas (N₂) at 21 °C. Experiments were conducted in the pH range between 2.6 and 10.8, corresponding to the dominance fields of dissolved hydrogen sulphide (H₂S(aq)), bisulphide (HS-(aq)), and mixtures of both sulphide species. Overall isotope enrichment factors between -1.6 and +3.0‰ were observed, with the residual dissolved sulphide being enriched or depleted in ³⁴S compared to the liberated H₂S at low and high pH values, respectively. The difference in the low and high pH isotope fractionation effects can be explained by isotope exchange between H₂S(aq) and HS-(aq) [B. Fry, H. Gest, and J.M. Hayes, Sulfur Isotope Effects Associated with Protonation of HS- and Volatilization of H₂S, Chem. Geol. (Isot. Geosci. Sec.) 58, 253 (1986); R. Geßler and K. von Gehlen, Investigation of Sulfur Isotope Fractionation Between H2S Gas and Aqueous Solutions, Fresenius J. Anal. Chem. 324, 130 (1986)] followed by the subsequent transfer of H₂S(aq) to the gaseous phase. The assumption of pure physical outgassing of H₂S(aq) at low pH values leads to an isotope enrichment factor of -0.9 ± 0.4‰ (n = 14) which is caused by the combined differences in dehydration and diffusion coefficients of H₂³²S(aq) and H₂³⁴S(aq). In the pH range of natural surface and shallow pore waters, ³⁴S will be equal to or enriched in the gaseous phase compared to the aqueous solution, therefore creating no or a slight enrichment of ³²S in the aqueous solution. Experiments in seawater solution showed no significant influence of increased ionic strength and changed corresponding aqueous speciation on sulphur isotope effects. PMID:21154004

  15. Inoculation of Bacillus sphaericus UPMB-10 to Young Oil Palm and Measurement of Its Uptake of Fixed Nitrogen Using the 15N Isotope Dilution Technique

    PubMed Central

    Zakry, Fitri Abdul Aziz; Shamsuddin, Zulkifli H.; Rahim, Khairuddin Abdul; Zakaria, Zin Zawawi; Rahim, Anuar Abdul

    2012-01-01

    There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N2 fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the 15N isotope dilution method. Eight months after 15N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower 15N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N2 fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field. PMID:22446306

  16. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues.

    PubMed

    Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2016-01-01

    In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), ?-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2) ?>?0.999, range from 10 pmol/mL to 50?nmol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus. Copyright 2015 John Wiley & Sons, Ltd. PMID:26033549

  17. Rapid and Precise Measurement of Serum Branched-Chain and Aromatic Amino Acids by Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Yang, Ruiyue; Dong, Jun; Guo, Hanbang; Li, Hongxia; Wang, Shu; Zhao, Haijian; Zhou, Weiyan; Yu, Songlin; Wang, Mo; Chen, Wenxiang

    2013-01-01

    Background Serum branched-chain and aromatic amino acids (BCAAs and AAAs) have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. Methods An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standards and the amino acids were extracted with acetonitrile, followed by analysis using LC/MS/MS. The LC separation was performed on a reversed-phase C18 column, and the MS/MS detection was performed via the positive electronic spray ionization in multiple reaction monitoring mode. Results Specific analysis of the amino acids was achieved within 2 min. Intra-run and total CVs for the amino acids were less than 2% and 4%, respectively, and the analytical recoveries ranged from 99.6 to 103.6%. Conclusion A rapid and precise method for the measurement of serum BCAAs and AAAs was developed and may serve as a quick tool for screening serum BCAAs and AAAs in studies assessing diabetes risk. PMID:24339906

  18. Capture of the volatile carbonyl metabolite of flecainide on 2,4-dinitrophenylhydrazine cartridge for quantitation by stable-isotope dilution mass spectrometry coupled with chromatography

    PubMed Central

    Prokai, Laszlo; Szarka, Szabolcs; Wang, Xiaoli; Prokai-Tatrai, Katalin

    2012-01-01

    Carbonyl compounds are common byproducts of many metabolic processes. These volatile chemical entities are usually derivatized before mass spectrometric analysis to enhance the sensitivity of their detections. The classically used reagent for this purpose is 2,4-dinitrophenylhydrazine (DNPH) that forms the corresponding hydrazones. When DNPH is immobilized on specific cartridges it permits solvent-free collection and simultaneous derivatization of aldehydes and ketones from gaseous samples. The utility of this approach was tested by assembling a simple apparatus for the in vitro generation of trifluoroacetaldehyde (TFAA) and its subsequent capture on the attached DNPH cartridge. TFAA was generated via cytochrome P450-catalyzed dealkylation of flecainide, an antiarrhythmic agent, in pooled human liver microsomes. Stable-isotope dilution mass spectrometry coupled with GC and LC using negative chemical ionization (NCI) and electrospray ionization (ESI) was evaluated for quantitative analyses. To eliminate isotope effects observed with the use of deuterium-labeled DNPH, we selected its 15N4-labeled analog to synthesize the appropriate TFAA adduct, as internal standard. Quantitation by GCNCI-MS using selected-ion monitoring outperformed LCESI-MS methods considering limits of detection and linearity of the assays. The microsomal metabolism of 1.5 ?mol of flecainide for 1.5 h resulted in 2.6 0.5 ?g TFAA-DNPH, corresponding to 9.3 1.7 nmol TFAA, captured by the cartridge. PMID:22342210

  19. Custom-made interface between electrothermal vaporiser and inductively coupled plasma-mass spectrometer: determination of nickel by isotope dilution in plant samples.

    PubMed

    Mestek, O; Tresl, I; Koplk, R; Pavelkov, H; Suchnek, M; Vanas, B

    2001-09-13

    ICP-mass spectrometer Perkin Elmer Elan 6000 was adapted for ETV analysis by coupling with GBC GF 3000 graphite furnace atomiser. Both instruments were connected by a 25 cm long PTFE tubing of 6 mm i.d. and a custom-made interface. The apparatus was applied to nickel determination using isotope dilution technique. The efficiency of analyte transfer through the interface was approximately 20%, however the incomplete transfer did not influence the blank values. Measured isotope ratio was very stable, whereas the magnitude of ion signal showed a little shift. CRM samples were analysed after microwave decomposition and by slurry technique as well. Obtained results were compared with those of pneumatic sample nebulisation after nickel separation on Chelex column. All tested techniques gave accurate results with comparable precision. However, the slurry technique allowed significant decreasing of the blank values and the limit of detection. The duration of analysis run can also be substantially shortened from several hours to a few minutes. PMID:18968405

  20. Simultaneous analysis of phthalates, adipate and polycyclic aromatic hydrocarbons in edible oils using isotope dilution-gas chromatography-mass spectrometry.

    PubMed

    Oh, Min-Seok; Lee, Seon-Hwa; Moon, Myeong Hee; Lee, Dong Soo; Park, Hyun-Mee

    2014-01-01

    A method for simultaneous determination of 12 priority phthalates, adipate and polycyclic aromatic hydrocarbons (PAHs) in edible oils by isotope dilution-gas chromatography-mass spectrometry (ID-GC-MS) was developed for fast, accurate and trace analysis. The extraction and clean-up procedures were optimised, and using stable isotope-labelled internal standards for each analyte, relative standard deviations (RSDs) of 0.92-10.6% and spiked sample recoveries of 80.6-97.8% were obtained. Limits of detection for PAHs were in the range of 0.15-0.77 g/kg and those for phthalates were in the range of 4.6-10.0 g/kg. The calibration curves exhibited good linearities with regression coefficients of R(2) ? 0.99. Twelve edible oils were examined to evaluate the efficiency of this method. Among the 12 analytes, dibutyl phthalates (DBP), diethylhexyl phthalates (DEHP), diethylhexyl adipate (DEHA), benzo[a]anthracene (B[a]A), chrysene (Chry) and benzo[b]fluoranthene (B[b]F) were detected in the range of 1.17-806 g/kg. PMID:25029399

  1. Determination of cadmium in oyster tissue using isotope dilution inductively coupled plasma mass spectrometry: comparison of results obtained in the standard and He/H2 cell modes.

    PubMed

    Yip, Yiu-chung; Chu, Hei-shing; Chan, Kwok-chu; Chan, Kam-kit; Cheung, Ping-yuk; Sham, Wing-cheong

    2006-11-01

    An inductively coupled plasma quadrupole mass spectrometer equipped with an octopole collision/reaction cell was used for the determination of cadmium in oyster tissue samples using isotope dilution inductively coupled plasma mass spectrometry. The oyster samples in question were found to contain Mo and Zr. In our feasibility study on a Cd standard solution (10 microg L(-1)) containing a matrix of Mo (1000 microg L(-1)) or Zr (250 microg L(-1)), the potentially interfering species (MoO(+) or ZrO(+)) present at the analytical mass of cadmium concerned (m/z 111, 112 or 114) was reduced effectively through the use of a mixture of He and H(2) as cell gases. The accuracy of the method was validated by the analysis of a matrix-matched certified reference material (CRM) of NIST SRM 1566b. The CRM was analyzed under the standard and He/H(2) cell modes. Two isotopic pairs of (114)Cd/(111)Cd and (112)Cd/(111)Cd were selected for quantification purposes. The recoveries of cadmium obtained in the two cell modes were compared with each other. The validated method was applied successfully to the APMP.QM-P5 pilot study for international comparability purposes. PMID:16953319

  2. Simultaneous determination of platinum group elements and rhenium in rock samples using isotope dilution inductively coupled plasma mass spectrometry after cation exchange separation followed by solvent extraction.

    PubMed

    Shinotsuka, Kazunori; Suzuki, Katsuhiko

    2007-11-12

    A simple and precise determination method for platinum group elements (PGEs) and Re in rock samples was developed using isotope dilution coupled with inductively coupled plasma mass spectrometry (ID-ICP-MS). Cation exchange separation was employed for simplicity, because it is applicable to group separation and simultaneous isotopic measurement in contrast with the widely used anion exchange separation which entails separate elution. However, its application to ID-ICP-MS has been limited due to spectral interferences from impurities retained in the PGE fraction even after ion chromatography. To overcome this limitation, solvent extraction using N-benzoyl-N-phenylhydroxylamine (BPHA) in chloroform was successfully applied for further purification. After the examination of optimum experimental parameters in cation exchange separation and solvent extraction using synthetic PGE solution, the established procedure was applied to the determination of PGEs and Re in some geochemical reference materials. The obtained results agreed well with the literature data determined using the different digestion methods (NiS fire assay and the use of a high-pressure asher) within the analytical uncertainties of each other. Significant difference in reproducibility between Ru, Ir, Pt and Os group, and Pd and Re group was observed in the results for BHVO-2 and JA-2. By considering the error factors affecting analytical reproducibility, we concluded that the difference is ascribed to the sample heterogeneity of minor minerals enriched in Ru, Ir, Pt and Os. PMID:17963832

  3. Determination of steroid hormones in a human-serum reference material by isotope dilution--mass spectrometry: A candidate definitive method for cortisol

    SciTech Connect

    Patterson, D.G.; Patterson, M.B.; Culbreth, P.H.; Fast, D.M.; Holler, J.S.; Sampson, E.J.; Bayse, D.D.

    1984-05-01

    We report a method, based on isotope dilution--mass spectrometry, for determining cortisol in a pooled specimen of human serum. Isotopically labeled cortisol is added to 5.0 mL of serum so that the molar concentrations of labeled cortisol and unlabeled cortisol are approximately equal. The specimen and two calibration standards are extracted with dichloromethane, and the extracted cortisol is converted to the methoxime-trimethylsilyl ether derivative. Samples and standards are analyzed by gas chromatography--mass spectrometry by monitoring the peak areas for m/z 605 and 608. The cortisol concentration is calculated by linear interpolation between the two bracketing standards. Variances of data collected during six weeks showed that the overall coefficient of variation (CV) was 0.69% (n . 32); the within-vial CV, 0.63%; the among-vial CV, 0.22%; and the among-day CV, 0.15% (means . 3.973 nmol/vial). Method specificity was demonstrated by liquid chromatographic as well as C/sub 8/ mini-column cleanup of samples before derivation, by alternative ion monitoring at m/z 636 and 639, and by negative-ion chemical ionization at m/z 459 and 462. Derivatives of all observed degradation products of cortisol under basic, neutral, and acidic conditions did not interfere.

  4. Determination of steroid hormones in a human-serum reference material by isotope dilution--mass spectrometry: a candidate definitive method for cortisol.

    PubMed

    Patterson, D G; Patterson, M B; Culbreth, P H; Fast, D M; Holler, J S; Sampson, E J; Bayse, D D

    1984-05-01

    We report a method, based on isotope dilution--mass spectrometry, for determining cortisol in a pooled specimen of human serum. Isotopically labeled cortisol is added to 5.0 mL of serum so that the molar concentrations of labeled cortisol and unlabeled cortisol are approximately equal. The specimen and two calibration standards are extracted with dichloromethane, and the extracted cortisol is converted to the methoxime-trimethylsilyl ether derivative. Samples and standards are analyzed by gas chromatography--mass spectrometry by monitoring the peak areas for m/z 605 and 608. The cortisol concentration is calculated by linear interpolation between the two bracketing standards. Variances of data collected during six weeks showed that the overall coefficient of variation (CV) was 0.69% (n = 32); the within-vial CV, 0.63%; the among-vial CV, 0.22%; and the among-day CV, 0.15% (means = 3.973 nmol/vial). Method specificity was demonstrated by liquid chromatographic as well as C8 mini-column cleanup of samples before derivation, by alternative ion monitoring at m/z 636 and 639, and by negative-ion chemical ionization at m/z 459 and 462. Derivatives of all observed degradation products of cortisol under basic, neutral, and acidic conditions did not interfere. PMID:6370495

  5. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  6. Cadmium determination in natural waters at the limit imposed by European legislation by isotope dilution and TiO2 solid-phase extraction.

    PubMed

    Garca-Ruiz, Silvia; Petrov, Ivan; Vassileva, Emilia; Qutel, Christophe R

    2011-11-01

    The cadmium content in surface water is regulated by the last European Water Framework Directive to a maximum between 0.08 and 0.25 ?g L(-1) depending on the water type and hardness. Direct measurement of cadmium at this low level is not straightforward in real samples, and we hereby propose a validated method capable of addressing cadmium content below ?g L(-1) level in natural water. It is based on solid-phase extraction using TiO(2) nanoparticles as solid sorbent (0.05 g packed in mini-columns) to allow the separation and preconcentration of cadmium from the sample, combined to direct isotope dilution and detection by inductively coupled plasma mass spectrometry (ID-ICP-MS). The extraction setup is miniaturised and semi-automated to reduce risks of sample contamination and improve reproducibility. Procedural blanks for the whole measurement process were 5.3 2.8 ng kg(-1) (1 s) for 50 g of ultrapure water preconcentrated ten times. Experimental conditions influencing the separation (including loading pH, sample flow rates, and acid concentration in the eluent) were evaluated. With isotope dilution the Cd recovery rate does not have to be evaluated carefully. Moreover, the mathematical model associated to IDMS is known, and provides transparency for the uncertainty propagation. Our validation protocol was in agreement with guidelines of the ISO/IEC 17025 standard (chapter 5.4.5). Firstly, we assessed the experimental factors influencing the final result. Secondly, we compared the isotope ratios measured after our separation procedure to the reference values obtained with a different protocol for the digested test material IMEP-111 (mineral feed). Thirdly, we analysed the certified reference material BCR-609 (groundwater). Finally, combined uncertainties associated to our results were estimated according to ISO-GUM guidelines (typically, 3-4% k = 2 for a cadmium content of around 100 ng kg(-1)). We applied the developed method to the groundwater and wastewater samples ERM-CA615 and BCR-713, respectively, and results agreed with certificate values within uncertainty statements. PMID:21858497

  7. Isotope separation by thermal diffusion in liquid metal.

    PubMed

    Ott, A

    1969-04-18

    Isotopic enrichment of several percent has been obtained in liquid lithium metal by applying a temperature gradient over a single-stage separation column. For other metals the method should have the highest eficiency, if these have low melting points and are liquids over a wide temperature range. PMID:17812087

  8. Thermal Conductivity and Large Isotope Effect in GaN from First Principles

    SciTech Connect

    Lindsay, L.; Broido, D. A.; Reinecke, T. L.

    2012-08-28

    We present atomistic first principles results for the lattice thermal conductivity of GaN and compare them to those for GaP, GaAs, and GaSb. In GaN we find a large increase to the thermal conductivity with isotopic enrichment, ~65% at room temperature. We show that both the high thermal conductivity and its enhancement with isotopic enrichment in GaN arise from the weak coupling of heat-carrying acoustic phonons with optic phonons. This weak scattering results from stiff atomic bonds and the large Ga to N mass ratio, which give phonons high frequencies and also a pronounced energy gap between acoustic and optic phonons compared to other materials. Rigorous understanding of these features in GaN gives important insights into the interplay between intrinsic phonon-phonon scattering and isotopic scattering in a range of materials.

  9. Stable isotope dilution liquid chromatography-mass spectrometry analysis of cellular and tissue medium- and long-chain acyl-coenzyme A thioesters

    PubMed Central

    Snyder, Nathaniel W.; Basu, Sankha S.; Zhou, Zinan; Worth, Andrew J.; Blair, Ian A.

    2014-01-01

    RATIONALE Acyl-Coenzyme A (CoA) thioesters are the principal form of activated carboxylates in cells and tissues. They are employed as acyl carriers that facilitate the transfer of acyl groups to lipids and proteins. Quantification of medium-chain and long-chain acyl-CoAs represents a significant bioanalytical challenge because of their instability. METHODS Stable isotope dilution-liquid chromatography-selected reaction monitoring-mass spectrometry (LC-SRM/MS) provides the most specific and sensitive method for the analysis of CoA species. However, relevant heavy isotope standards are not available and they are challenging to prepare by chemical synthesis. Stable isotope labeling by essential nutrients in cell culture (SILEC) developed originally for the preparation of stable isotope labeled short-chain acyl-CoA thioester standards has now been extended to medium-chain and long-chain acyl-CoAs and used for LC-SRM/MS analyses. RESULTS Customized SILEC standards with > 98 % isotopic purity were prepared using mouse Hepa 1c1c7 cells cultured in pantothenic-free media fortified with [13C315N1]-pantothenic acid and selected fatty acids. A SILEC standard in combination with LC-SRM/MS was employed to quantify cellular concentrations of arachidonoyl-CoA (a representative long-chain acyl-CoA) in two human colon cancer cell lines. A panel of SILEC standards was also employed in combination LC-SRM/MS to quantify medium- and long-chain acyl-CoAs in mouse liver. CONCLUSION This new SILEC-based method in combination with LC-SRM/MS will make it possible to rigorously quantify medium- and long-chain acyl-CoAs in cells and tissues. The method will facilitate studies of medium- and long-chain acyl-CoA dehydrogenase deficiencies as well as studies on the role of medium- and long-chain acyl-CoAs in cellular metabolism. PMID:25559454

  10. Thermal Property Characterization of Single Crystal Diamond with Varying Isotopic Composition.

    NASA Astrophysics Data System (ADS)

    Wei, Lanhua

    1993-01-01

    The mirage-effect/thermal wave technique as a modern technique for thermal property characterization is described. In this technique, the thermal diffusivity of a material is determined by measuring the time and space varying temperature distribution (thermal wave) in the material generated by a intensity modulated heating laser beam. These thermal waves, whose propagating features are directly related to the thermal properties of the material, are detected through the deflection of a probe laser beam due to modulation of gradient of the index of refraction (mirage effect) either in the air above the specimen (the in-air technique) or in the specimen itself (the in-solid technique). Three-dimensional theories, for both in-air and in-solid mirage techniques, are represented. In order to extract the material parameters by comparing the theory with experimental data, an extensive data analysis procedure based on multiparameter-least-squares has been developed. The experimental and data analysis details are discussed. Topics concerned with the quality and reliability of the measurements are addressed. This technique has been successfully applied to the thermal property characterization of single crystal diamond with varying isotope contents. The results showed a 50% enhancement in the thermal conductivity by removal of C^{13} content from 1.1% to 0.1% in diamond at room temperature. The technique has also been adapted to function in cryogenic temperatures. The temperature dependence of thermal conductivity in the temperature range 80-378K for natural IIA specimen and 187-375K for isotopically enriched specimen are obtained, the former results agree with previous works and the latter results demonstrate the isotope effect on the thermal conductivity of single crystal diamond consistently in a large temperature range. The physical source of this enhancement in diffusivity due to the isotope effect in diamond is discussed. The discussion is based on the full Callaway's theory with emphasizing the role of N-processes in the phonon scattering mechanism.

  11. Chemical and isotopic data for water from thermal springs and wells of Oregon

    SciTech Connect

    Mariner, R.H.; Swanson, J.R.; Orris, G.J.; Presser, T.S.; Evans, W.C.

    1981-01-01

    The thermal springs of Oregon range in composition from dilute NaHCO/sub 3/ waters to moderately saline CO/sub 2/-charged NaCl-NaHCO/sub 3/ waters. Most of the thermal springs are located in southeastern or southcentral Oregon, with a few in northeastern Oregon and near the contact of the Western Cascades with the High Cascades. Thermal springs in the central and northern parts of the Cascades generally issue moderately saline NaCl waters. Farther south in the Cascades, the thermal waters are high in CO/sub 2/ as well as chloride. Most thermal springs in northeastern Oregon issue dilute NaHCO/sub 3/ waters of high pH (>8.5). These waters are similar to the thermal waters which issue from the Idaho batholith, farther east. Most of the remaining thermal waters are Na mixed-anion waters. Based on the chemical geothermometers, Mickey Srpings, Hot Borax Lake, Alvord Hot Springs, Neal Hot Springs, Vale Hot Springs, Crump Well, Hunters (Lakeview) Hot Springs, and perhaps some of the springs in the Cascades are associated with the highest temperature systems (>150/sup 0/C).

  12. Isotopic Fractionation of 20Ne, 21Ne, and 22Ne in a Simulated Thermal Gradient

    NASA Astrophysics Data System (ADS)

    Jester, B.; Dominguez, G.

    2014-12-01

    Computer simulations allow for the analysis of the thermodynamic properties of systems which are difficult or impossible to do experimentally. Isotopic fractionation in thermal gradients is an example of a system which is not fully understood but could provide background for understanding variations in fractionations like those observed for noble gases in terrestrial and extraterrestrial material. Using a recently developed molecular dynamics simulation focused on the accuracy of the simulated physics, the isotopic fractionation of Neon in a thermal gradient was analyzed in order to provide a correlation between the fractionation and the experimental system's properties. Various ratios of isotopes 20Ne, 21Ne, and 22Ne were simulated in a thermal gradient ranging from 218 K to 233 K for a variety of time scales. Data was collected for various configurations including box sizes on the order of 1 nm to 100 μm. The simulated thermal conductivity was determined and compared with known values. The analysis indicates that the dimensions of the box heavily influence the magnitude of the isotopic fractionation in the thermal gradient.

  13. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    PubMed

    Huertas Prez, J F; Sejere-Olsen, B; Fernndez Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the selected pesticides in soya beans at appropriate uncertainty levels, making it suitable for the characterization of candidate reference materials. PMID:25770614

  14. Thermal property characterization of single crystal diamond with varying isotopic composition

    SciTech Connect

    Wei, L.

    1993-01-01

    The mirage-effect/thermal wave technique as a modern technique for thermal property characterization is described. The thermal diffusivity of a material is determined by measuring the time and space varying temperature distribution (thermal wave) in the material generated by an intensity modulated heating laser beam. These thermal waves are detected through the deflection of a probe laser beam due to modulation of gradient of the index of refraction (mirage effect) either in the air above the specimens (the in-air technique) or in the specimen itself (the in-solid technique). Three-dimensional theories, for both in-air and in-solid mirage techniques, are represented. In order to extract the material parameters by comparing the theory with experimental data, an extensive data analysis procedure based on multiparameter-least-squares has been developed. The experimental and data analysis details are discussed. Topics concerns with the quality and reliability of the measurements are addressed. This technique has been successfully applied to the thermal property characterization of single crystal diamond with varying isotope contents. The results showed a 50% enhancement in the thermal conductivity by removal of C[sup 13] content from 1.1% to 0.1% in diamond at room temperature. The technique has also been adapted to function in cryogenic temperatures. The temperature dependence of thermal conductivity in the temperature range 80-378K for natural IIA specimen and 187-375K for isotopically enriched specimen are obtained, the former results agree with previous works and the latter results demonstrate the isotope effect on the thermal conductivity of single crystal diamond consistently in a large temperature range. The physical source of this enhancement in diffusivity due to the isotope effect in diamond is discussed. The discussion is based on the full Callaway's theory with emphasizing the role of N-processes in the phonon scattering mechanism.

  15. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.; Driedger, Arthur R., III

    1993-01-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  16. Lead and strontium isotope data for thermal waters of the regional geothermal system in the Twin Falls and Oakley areas, South-Central Idaho

    SciTech Connect

    Mariner, R.H.; Young, H.W.

    1995-12-31

    Thermal fluids obviously related to aquifers in both rhyolite and limestone occur in the Twin Falls-Oakley area of south-central Idaho. Limestone-related waters (high calcium with low silica and fluoride) occur in the middle and upper (southern) parts of the area. Rhyolite-related waters (low calcium but high in silica and fluoride) occur in the lower (northern) part of the area. The relation of thermal fluids in Paleozoic limestone to thermal fluids in Tertiary rhyolite is unknown. Thermal fluids from limestone are dilute, so water-rock reaction in rhyolite could obliterate chemical evidence of fluid residence in a limestone. However, isotopic tracers such as {sup 206}Pb/{sup 204}Pb, {sup 207}Pb/{sup 204}Pb, {sup 208}Pb/{sup 204}Pb, and {sup 87}Sr/{sup 86}Sr might preserve evidence of fluid residence in limestone. Systematic relations between these isotopes and dissolved constituents in the water demonstrate the presence of limestone beneath most if not all of the study area and that aquifers in the limestone and rhyolite are hydrologically connected.

  17. Simple and accurate measurement of carbamazepine in surface water by use of porous membrane-protected micro-solid-phase extraction coupled with isotope dilution mass spectrometry.

    PubMed

    Teo, Hui Ling; Wong, Lingkai; Liu, Qinde; Teo, Tang Lin; Lee, Tong Kooi; Lee, Hian Kee

    2016-03-17

    To achieve fast and accurate analysis of carbamazepine in surface water, we developed a novel porous membrane-protected micro-solid-phase extraction (μ-SPE) method, followed by liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS) analysis. The μ-SPE device (∼0.8 × 1 cm) was fabricated by heat-sealing edges of a polypropylene membrane sheet to devise a bag enclosing the sorbent. The analytes (both carbamazepine and isotope-labelled carbamazepine) were first extracted by μ-SPE device in the sample (10 mL) via agitation, then desorbed in an organic solvent (1 mL) via ultrasonication. Several parameters such as organic solvent for pre-conditioning of μ-SPE device, amount of sorbent, adsorption time, and desorption solvent and time were investigated to optimize the μ-SPE efficiency. The optimized method has limits of detection and quantitation estimated to be 0.5 ng L(-1) and 1.6 ng L(-1), respectively. Surface water samples spiked with different amounts of carbamazepine (close to 20, 500, and 1600 ng L(-1), respectively) were analysed for the validation of method precision and accuracy. Good precision was obtained as demonstrated by relative standard deviations of 0.7% for the samples with concentrations of 500 and 1600 ng kg(-1), and 5.8% for the sample with concentration of 20 ng kg(-1). Good accuracy was also demonstrated by the relative recoveries in the range of 96.7%-103.5% for all samples with uncertainties of 1.1%-5.4%. Owing to the same chemical properties of carbamazepine and isotope-labelled carbamazepine, the isotope ratio in the μ-SPE procedure was accurately controlled. The use of μ-SPE coupled with IDMS analysis significantly facilitated the fast and accurate measurement of carbamazepine in surface water. PMID:26920772

  18. [International comparison APMP. QM-S6: determination of clenbuterol in porcine meat by isotopic dilution mass spectrometry].

    PubMed

    Xu, Sen; Li, Xiuqin; Luo, Ximing; Zhang, Qinghe

    2014-10-01

    A method was developed for the determination of clenbuterol in porcine meat by iso- topic dilution mass spectrometry (IDMS). National Institute of Metrology of China (NIM) par- ticipated in the international comparison activity organized by Asia Pacific Metrology (APMP) and got an international mutual recognition result using this method. The important factors of the method, such as the spray voltage, mobile phase, chromatographic column, extraction, purification and filtration conditions were investigated to acquire optimum conditions. The opti- mization results showed that the composition and pH value of the mobile phase had effects on the response of the mass spectrum of clenbuterol and the optimal value of the spray voltage. The solvent of sample had influences on the chromatographic retention behavior of clenbuterol. It was found that methanol caused a serious solvent effect, even made chromatographic peak split. Since clenbuterol was easily adsorbed on hydrophilic filter membranes and solid phase extraction columns, there were interference suppressions for the quantification of clenbuterol because of the eluate of the solid phase extraction columns. The homogenate method with extraction solvent of 0.1% (v/v) formic acid in acetonitrile had the highest extraction efficiency. The limit of the detection (LOD, S/N > 3) of the method was 0.2 ?g/kg. The determination results of clenbuterol in the porcine meat by this method were 5.18 ?g/kg 0.50 ?g/kg (k = 2). This method is accurate, reliable, reproducible, and suitable for the determination of clenbuterol with trace quantity in porcine meat. PMID:25739271

  19. Thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry and isotope dilution to analyze organophosphorus insecticides in fatty foods.

    PubMed

    Kiguchi, Osamu; Oka, Kazuko; Tamada, Masafumi; Kobayashi, Takashi; Onodera, Jun

    2014-11-28

    To assess food safety emergencies caused by highly hazardous chemical-tainted foods, simultaneous analysis of organophosphorus insecticides in fatty foods such as precooked foods was conducted using thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry (TLC/DART-TOFMS) and isotope dilution technique. Polar (methamidophos and acephate) and nonpolar organophosphorus insecticides (fenitrothion, diazinon, and EPN) were studied. Experiments to ascertain chromatographic patterns using TLC/DART-TOFMS reveal that it was more useful than GC/MS or GC/MS/MS for the simultaneous analyses of polar and nonpolar pesticides, while obviating the addition of a protective agent for tailing effects of polar pesticides. Lower helium gas temperature (260C) for DART-TOFMS was suitable for the simultaneous analysis of target pesticides. Linearities were achieved respectively at a lower standard concentration range (0.05-5 ?g) for diazinon and EPN and at a higher standard concentration range (2.5-25 ?g) for methamidophos, acephate, and fenitrothion. Their respective coefficients of determination were ? 0.9989 and ? 0.9959. A few higher repeatabilities (RSDs) for diazinon and EPN were found (>20%), although isotope dilution technique was used. Application to the HPTLC plate without an automatic TLC sampler might be inferred as a cause of their higher RSDs. Detection limits were estimated in the higher picogram range for diazinon and EPN, and in the lower nanogram range for methamidophos, acephate, and fenitrothion. Aside from methamidophos, recovery results (n=3) obtained using a highly insecticide-tainted fatty food (dumpling) and raw food (grapefruit) samples (10mg/kg) using TLC/DART-TOFMS with both complex and simpler cleanups were not as susceptible to matrix effects (95-121%; RSD, 1.3-14%) as those using GC/MS/MS (102-117%; RSD, 0.4-8.5%), although dumpling samples using GC/MS were remarkably susceptible to matrix effects. The coupled method of TLC with simpler cleanup and DART-TOFMS can be regarded as the same analytical tool as GC/MS/MS, which is useful to assess food safety emergencies caused by highly hazardous chemical-tainted foods. PMID:25454149

  20. STABLE ISOTOPE GEOCHEMISTRY OF THERMAL FLUIDS FROM LASSEN VOLCANIC NATIONAL PARK, CALIFORNIA.

    USGS Publications Warehouse

    Janik, Cathy J.; Nehring, Nancy L.; Truesdell, Alfred H.

    1983-01-01

    In the Lassen vapor-dominated geothermal system, surface manifestations of thermal fluids at high elevations (1800-2500 m) include superheated and drowned fumaroles, steam-heated acid-sulfate hot springs, and low-chloride bicarbonate springs. Neutral high-chloride hot water discharges at lower elevations. Deuterium and oxygen-18 data establish genetic connections between these fluids and with local meteoric waters. Steam from the highest temperature fumarole at Bumpass Hell and water from the highest chloride hot spring have isotopic compositions corresponding to vapor-liquid equilibrium at 235 degree C. Carbon and sulfur isotope data suggest that the CO//2 and H//2S in the system did not entirely originate from magmatic sources, but probably include contributions from thermal metamorphism of marine sedimentary rocks. Observations suggest that carbon and sulfur isotope variations are useful indicators of gas reactions and flow paths in geothermal systems. Refs.

  1. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    PubMed Central

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from −19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  2. Nitrification and Denitrification in Lake and Estuarine Sediments Measured by the 15N Dilution Technique and Isotope Pairing

    PubMed Central

    Rysgaard, Søren; Risgaard-Petersen, Nils; Nielsen, Lars Peter; Revsbech, Niels Peter

    1993-01-01

    The transformation of nitrogen compounds in lake and estuarine sediments incubated in the dark was analyzed in a continuous-flowthrough system. The inflowing water contained 15NO3-, and by determination of the isotopic composition of the N2, NO3-, and NH4+ pools in the outflowing water, it was possible to quantify the following reactions: total NO3- uptake, denitrification based on NO3- from the overlying water, nitrification, coupled nitrification-denitrification, and N mineralization. In sediment cores from both lake and estuarine environments, benthic microphytes assimilated NO3- and NH4+ for a period of 25 to 60 h after darkening. Under steady-state conditions in the dark, denitrification of NO3- originating from the overlying water accounted for 91 to 171 μmol m-2 h-1 in the lake sediments and for 131 to 182 μmol m-2 h-1 in the estuarine sediments, corresponding to approximately 100% of the total NO3- uptake for both sediments. It seems that high NO3- uptake by benthic microphytes in the initial dark period may have been misinterpreted in earlier investigations as dissimilatory reduction to ammonium. The rates of coupled nitrification-denitrification within the sediments contributed to 10% of the total denitrification at steady state in the dark, and total nitrification was only twice as high as the coupled process. PMID:16348987

  3. Analysis of nitromethane from samples exposed in vitro to chloropicrin by stable isotope dilution headspace gas chromatography with mass spectrometry.

    PubMed

    Halme, Mia; Pesonen, Maija; Grandell, Toni; Kuula, Matti; Pasanen, Markku; Vhkangas, Kirsi; Vanninen, Paula

    2015-10-01

    Chloropicrin (trichloronitromethane) is a widely used soil fumigant and an old chemical warfare agent. The metabolism of chloropicrin is not well known in mammals but nitromethane has been shown to be one of its main metabolites. Here, a fast and simple headspace gas chromatography with mass spectrometry method was applied for the measurement of nitromethane from aqueous samples. The analytical method was validated using stable isotope labeled internal standard and a small sample volume of 260 ?L. No conventional sample preparation steps were needed. The method was accurate (relative standard deviations ?1.5%) and linear (R(2) = 0.9996) within the concentration range of 0.1-6.0 ?g/mL. This method was used to measure nitromethane in in vitro incubations with human and pig liver cell fractions containing enzymes for xenobiotic metabolism, exposed to chloropicrin. The results indicate that the presence of glutathione is necessary for the formation of nitromethane from chloropicrin. Also, nitromethane was formed mostly in liver cytosol fractions, but not in microsomal fractions after the incubation with chloropicrin. Our results suggest that although nitromethane is not the unequivocal biomarker of chloropicrin exposure, this method could be applied for screening the elevated levels in humans after chloropicrin exposure. PMID:26255649

  4. An LC/MS/MS method for stable isotope dilution studies of ?-carotene bioavailability, bioconversion, and vitamin A status in humans[S

    PubMed Central

    Oxley, Anthony; Berry, Philip; Taylor, Gordon A.; Cowell, Joseph; Hall, Michael J.; Hesketh, John; Lietz, Georg; Boddy, Alan V.

    2014-01-01

    Isotope dilution is currently the most accurate technique in humans to determine vitamin A status and bioavailability/bioconversion of provitamin A carotenoids such as ?-carotene. However, limits of MS detection, coupled with extensive isolation procedures, have hindered investigations of physiologically-relevant doses of stable isotopes in large intervention trials. Here, a sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS) analytical method was developed to study the plasma response from coadministered oral doses of 2 mg [13C10]?-carotene and 1 mg [13C10]retinyl acetate in human subjects over a 2 week period. A reverse phase C18 column and binary mobile phase solvent system separated ?-carotene, retinol, retinyl acetate, retinyl linoleate, retinyl palmitate/retinyl oleate, and retinyl stearate within a 7 min run time. Selected reaction monitoring of analytes was performed under atmospheric pressure chemical ionization in positive mode at m/z 537?321 and m/z 269?93 for respective [12C]?-carotene and [12C] retinoids; m/z 547?330 and m/z 274?98 for [13C10]?-carotene and [13C5] cleavage products; and m/z 279?100 for metabolites of [13C10]retinyl acetate. A single one-phase solvent extraction, with no saponification or purification steps, left retinyl esters intact for determination of intestinally-derived retinol in chylomicrons versus retinol from the liver bound to retinol binding protein. Coadministration of [13C10]retinyl acetate with [13C10]?-carotene not only acts as a reference dose for inter-individual variations in absorption and chylomicron clearance rates, but also allows for simultaneous determination of an individual's vitamin A status. PMID:24158962

  5. An Ultrahigh Precision, High-Frequency Dissolved Inorganic Carbon Analyzer Based on Dual Isotope Dilution and Cavity Ring-Down Spectroscopy.

    PubMed

    Huang, Kuan; Cassar, Nicolas; Jonsson, Bror; Cai, Wei-jun; Bender, Michael L

    2015-07-21

    We present a novel method for continuous and automated shipboard measurements of dissolved inorganic carbon concentration ([DIC]) in surface water. The method is based on dual isotope dilution and cavity ring-down spectroscopy (DID-CRDS). In this method, seawater is continuously sampled and mixed with a flow of NaH(13)CO3 solution that is also enriched in deuterated water (the spike). The isotopic composition of CO2 (δ(13)C(spiked_sample)) derived from the DIC in the mixture, and the D/H ratio of the mixed water (δD(spiked_sample)), are measured by CRDS analyzers. The D/H of the water in the mixture allows accurate estimates of the mixing ratio of the sample and the spike. [DIC] of the sample is then calculated from the mixing ratio, [DI(13)C] of the spike, and δ(13)C(spiked_sample). In the laboratory, the precision of the method is <0.02% (±0.4 μmol kg(-1) when [DIC] = 2000 μmol kg(-1)). A shipboard test was conducted in the Delaware Bay and Estuary. For 2 min average [DIC], a precision of <0.03% was achieved. Measurements from the DID-CRDS showed good agreement with independent measurements of discrete samples using the well-established coulometric method (mean difference = -1.14 ± 1.68 μmol kg(-1)), and the nondispersive infrared(NDIR)-based methods (mean difference = -0.9 ± 4.73 μmol kg(-1)). PMID:26119512

  6. Body composition in Nepalese children using isotope dilution: the production of ethnic-specific calibration equations and an exploration of methodological issues

    PubMed Central

    Grijalva-Eternod, Carlos S.; Roberts, Sebastian; Chaube, Shiva Shankar; Saville, Naomi M.; Manandhar, Dharma S.; Costello, Anthony; Osrin, David; Wells, Jonathan C.K.

    2015-01-01

    Background. Body composition is important as a marker of both current and future health. Bioelectrical impedance (BIA) is a simple and accurate method for estimating body composition, but requires population-specific calibration equations. Objectives. (1) To generate population specific calibration equations to predict lean mass (LM) from BIA in Nepalese children aged 79 years. (2) To explore methodological changes that may extend the range and improve accuracy. Methods. BIA measurements were obtained from 102 Nepalese children (52 girls) using the Tanita BC-418. Isotope dilution with deuterium oxide was used to measure total body water and to estimate LM. Prediction equations for estimating LM from BIA data were developed using linear regression, and estimates were compared with those obtained from the Tanita system. We assessed the effects of flexing the arms of children to extend the range of coverage towards lower weights. We also estimated potential error if the number of children included in the study was reduced. Findings. Prediction equations were generated, incorporating height, impedance index, weight and sex as predictors (R2 93%). The Tanita system tended to under-estimate LM, with a mean error of 2.2%, but extending up to 25.8%. Flexing the arms to 90 increased the lower weight range, but produced a small error that was not significant when applied to children <16 kg (p 0.42). Reducing the number of children increased the error at the tails of the weight distribution. Conclusions. Population-specific isotope calibration of BIA for Nepalese children has high accuracy. Arm position is important and can be used to extend the range of low weight covered. Smaller samples reduce resource requirements, but leads to large errors at the tails of the weight distribution. PMID:25780755

  7. Quantification of cellular poly(ADP-ribosyl)ation by stable isotope dilution mass spectrometry reveals tissue- and drug-dependent stress response dynamics.

    PubMed

    Martello, Rita; Mangerich, Aswin; Sass, Sabine; Dedon, Peter C; Bürkle, Alexander

    2013-07-19

    Poly(ADP-ribosyl)ation is an essential post-translational modification with the biopolymer poly(ADP-ribose) (PAR). The reaction is catalyzed by poly(ADP-ribose) polymerases (PARPs) and plays key roles in cellular physiology and stress response. PARP inhibitors are currently being tested in clinical cancer treatment, in combination therapy, or as monotherapeutic agents by inducing synthetic lethality. We have developed an accurate and sensitive bioanalytical platform based on isotope dilution mass spectrometry in order to quantify steady-state and stress-induced PAR levels in cells and tissues and to characterize pharmacological properties of PARP inhibitors. In contrast to existing PAR-detection techniques, the LC-MS/MS method uses authentic isotope-labeled standards, which provide unequivocal chemical specificity to quantify cellular PAR in absolute terms with femtomol sensitivity. Using this platform we analyzed steady-state levels as well as stress-induced dynamics of poly(ADP-ribosyl)ation in a series of biological systems including cancer cell lines, mouse tissues, and primary human lymphocytes. Our results demonstrate a rapid and transient stress-induced increase in PAR levels by >100-fold in a dose- and time-dependent manner with significant differences between cell types and individual human lymphocyte donors. Furthermore, ex vivo pharmacodynamic studies in human lymphocytes provide new insight into pharmacological properties of clinically relevant PARP inhibitors. Finally, we adapted the LC-MS/MS method to quantify poly(ADP-ribosyl)ation in solid tissues and identified tissue-dependent associations between PARP1 expression and PAR levels in a series of different mouse organs. In conclusion, this study demonstrates that mass spectrometric quantification of cellular poly(ADP-ribosyl)ation has a wide range of applications in basic research as well as in drug development. PMID:23631432

  8. Measurement of 2-carboxyarabinitol 1-phosphate in plant leaves by isotope dilution. [Spinacea oleracea; Triticum aestivum; Arabidopsis thaliana; Maize; Phaseolus vulgaris; Petunia hybrida

    SciTech Connect

    Moore, B.D.; Kobza, J.; Seemann, J.R. )

    1991-05-01

    The level of 2-carboxyarabinitol 1-phosphate (CA1P) in leaves of 12 species was determined by an isotope dilution assay. {sup 14}C-labeled standard was synthesized from (2-{sup 14}C)carboxyarabinitol 1,5-bisphosphate using acid phosphatase, and was added at the initial point of leaf extraction. Leaf CA1P was purified and its specific activity determined. CA1P was found in dark-treated leaves of all species examined, including spinach (Spinacea oleracea), wheat (Triticum aestivum), Arabidopsis thaliana, and maize (Zea mays). The highest amounts were found in bean (Phaseolus vulgaris) and petunia (Petunia hybrida), which had 1.5 to 1.8 moles CA1P per mole ribulose 1,5-bisphosphate carboxylase catalytic sites. Most species had intermediate amounts of CA1P (0.2 to 0.8 mole CA1P per mole catalytic sites). Such intermediate to high levels of CA1P support the hypothesis that CA1P functions in many species as a light-dependent regulator of ribulose 1,5-bisphosphate carboxylase activity and whole leaf photosynthetic CO{sub 2} assimilation. However, CA1P levels in spinach, wheat, and A. thaliana were particularly low (less than 0.09 mole CA1P per mole catalytic sites). In such species, CA1P does not likely have a significant role in regulating ribulose 1,5-bisphosphate carboxylase activity, but could have a different physiological role.

  9. Detection and Quantitative Analysis of the Non-cytotoxic allo-Tenuazonic Acid in Tomato Products by Stable Isotope Dilution HPLC-MS/MS.

    PubMed

    Hickert, Sebastian; Krug, Isabel; Cramer, Benedikt; Humpf, Hans-Ulrich

    2015-12-23

    Tenuazonic acid (1) is a mycotoxin produced mainly by fungi of the genus Alternaria. It occurs in a variety of agricultural products. allo-Tenuazonic acid (2) is an isomer of 1 that is not chromatographically separated from 1 in most analytical methods. Therefore, both isomers are quantitated as a sum parameter. In this study a QuEChERS (quick, easy, cheap, effective, rugged and safe) based stable isotope dilution HPLC-MS/MS method including the chromatographic separation of both isomers was developed and applied to 20 tomato products from the German market. All products showed contamination with both toxins. 1 was found in a range from 5.3 ± 0.1 to 550 ± 15 μg/kg (average = 120 μg/kg) and 2 in a range from 1.5 ± 0.4- to 270 ± 0.8 μg/kg (average = 58 μg/kg). 2 represents 7.0-44% of the sum of both isomers (average = 29%). This is the first reported occurrence of 2 in food samples. To evaluate and compare the cytotoxicities of 1 and 2, both compounds were isolated from a synthetic racemic mixture. 1 showed moderate cytotoxic effects on HT-29 cells starting at 100 μM, whereas 2 exhibited no activity. 2 was not produced in liquid cultures of Alternaria alternata in yeast extract sucrose (YES) medium, but could be detected in small amounts in tomato puree inoculated with the fungus. PMID:26633086

  10. Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatographytandem mass spectrometry using enzyme-assisted derivatisation

    PubMed Central

    Abdel-Khalik, Jonas; Crick, Peter J.; Carter, Graham D.; Makin, Hugh L.; Wang, Yuqin; Griffiths, William J.

    2014-01-01

    The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D3 and 25-hydroxyvitamin D2) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantification of 25-hydroxyvitamins D are needed. Here we present a novel enzyme-assisted derivatisation method for the analysis of vitamins D metabolites in adult serum utilising 25-[26,26,26,27,27,27-2H6]hydroxyvitamin D3 as the internal standard. Extraction of 25-hydroxyvitamins D from serum is performed with acetonitrile, which is shown to be more efficient than ethanol. Cholesterol oxidase is used to oxidize the 3?-hydroxy group in the vitamins D metabolites followed by derivatisation of the newly formed 3-oxo group with Girard P reagent. 17?-Hydroxysteroid dehydrogenase type 10 is shown to oxidize selectively the 3?-hydroxy group in the 3?-hydroxy epimer of 25-hydroxyvitamin D3. Quantification is achieved by isotope-dilution liquid chromatographytandem mass spectrometry. Recovery experiments for 25-hydroxyvitamin D3 performed on adult human serum give recovery of 102106%. Furthermore in addition to 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3 and other uncharacterised dihydroxy metabolites, were detected in adult human serum. PMID:24486315

  11. Measurement of (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines in DNA in vivo by liquid chromatography/isotope-dilution tandem mass spectrometry

    SciTech Connect

    Jaruga, Pawel; Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz ; Xiao, Yan; Nelson, Bryant C.; Dizdaroglu, Miral

    2009-09-04

    Oxidatively induced DNA lesions (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines (R-cdA and S-cdA) are detectable and accumulate in vivo due to disease states and defects in DNA repair. They block transcription and inhibit gene expression, and may play a role in disease processes. Accurate measurement of these lesions in DNA in vivo is necessary to understand their biological effects. We report on a methodology using liquid chromatography/isotope-dilution tandem mass spectrometry to measure R-cdA and S-cdA in DNA. This methodology permitted the detection of these compounds at a level of 0.1 fmol on-column. Levels of R-cdA and S-cdA in mouse liver DNA amounted to 0.133 {+-} 0.024 and 0.498 {+-} 0.065 molecules/10{sup 7} DNA 2'-deoxynucleosides, respectively. The successful measurement of R-cdA and S-cdA in DNA in vivo suggests that this methodology will be used for understanding of their repair and biological consequences, and that these compounds may be used as putative biomarkers for disease states.

  12. Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry

    PubMed Central

    Taghizadeh, Koli; McFaline, Jose L.; Pang, Bo; Sullivan, Matthew; Dong, Min; Plummer, Elaine; Dedon, Peter C.

    2009-01-01

    The analysis of damage products as biomarkers of inflammation has been hampered by a poor understanding of the chemical biology of inflammation, the lack of sensitive analytical methods, and a focus on single chemicals as surrogates for inflammation. To overcome these problems, we developed a general and sensitive liquid chromatographic tandem mass spectrometry (LC/MS-MS) method to quantify, in a single DNA sample, the nucleoside forms of seven DNA lesions reflecting the range of chemistries associated with inflammation: 2?-deoxyuridine, 2?-deoxyxanthosine, and 2?-deoxyinosine from nitrosative deamination; 8-oxo-2?-deoxyguanosine from oxidation; and 1,N2-etheno-2?-deoxyguanosine, 1,N6-etheno-2?-deoxyadenosine, and 3,N4-etheno-2?-deoxycytidine arising from reaction of DNA with lipid peroxidation products. Using DNA purified from cells or tissues under conditions that minimize artifacts, individual nucleosides are purified by HPLC and quantified by isotope-dilution, electrospray ionization LC/MS-MS. The method can be applied to other DNA damage products and requires 4-6 days to complete depending upon the number of samples. PMID:18714297

  13. Simplified method for the determination of Ru, Pd, Re, Os, Ir and Pt in chromitites and other geological materials by isotope dilution ICP-MS and acid digestion.

    PubMed

    Meisel, T; Moser, J; Fellner, N; Wegscheider, W; Schoenberg, R

    2001-03-01

    A method for the determination of low Ru, Pd, Re, Os, Ir and Pt abundances in geological reference materials by isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion in a high pressure asher (HPA-S) is presented. The digestion technique is similar to that using Carius tubes but easier to handle and reaches higher temperatures. Osmium can be determined as OsO4 with ICP-MS directly after digestion through a sparging technique. The remaining elements are preconcentrated by means of anion column chromatography. The resin is digested directly without elution leading to high yields but this causes problems if Zr is present at higher levels in the silicate rich materials. The analytical results for international platinum group element (PGE) reference materials, chromitite CHR-Bkg, basalt TDB-1 and gabbro WGB-1, are presented and compared with literature data, demonstrating the validity of the described method. Although higher in concentration, PGEs determined for reference material WGB-1 were worse than for TDB-1 indicating a more inhomogeneous distribution of the platinum group mineral phases. The low PGE abundance chromitite standard, CHR-Bkg, is likely to be homogeneous for Ru, Re, Os and Ir and is recommended as a reference material for the study of chromitites. Detection limits (3s x total procedure blank) range from 0.012 ng (Re and Os) to 0.77 ng (Pt), which could be further improved by applying higher quality acids. PMID:11284333

  14. Isotope dilution gas chromatography with mass spectrometry for the analysis of 4-octyl phenol, 4-nonylphenol, and bisphenol A in vegetable oils.

    PubMed

    Wu, Pinggu; Zhang, Liqun; Yang, Dajin; Zhang, Jing; Hu, Zhengyan; Wang, Liyuan; Ma, Bingjie

    2016-03-01

    By the combination of solid-phase extraction as well as isotope dilution gas chromatography with mass spectrometry, a sensitive and reliable method for the determination of endocrine-disrupting chemicals including bisphenol A, 4-octylphenol, and 4-nonylphenol in vegetable oils was established. The application of a silica/N-(n-propyl)ethylenediamine mixed solid-phase extraction cartridge achieved relatively low matrix effects for bisphenol A, 4-octylphenol, and 4-nonylphenol in vegetable oils. Experiments were designed to evaluate the effects of derivatization, and the extraction parameters were optimized. The estimated limits of detection and quantification for bisphenol A, 4-octylphenol, and 4-nonylphenol were 0.83 and 2.5 μg/kg, respectively. In a spiked experiment in vegetable oils, the recovery of the added bisphenol A was 97.5-110.3%, recovery of the added 4-octylphenol was 64.4-87.4%, and that of 4-nonylphenol was 68.2-89.3%. This sensitive method was then applied to real vegetable oil samples from Zhejiang Province of China, and none of the target compounds were detected. PMID:26698324

  15. Phenylboronic Acid Solid Phase Extraction Cleanup and Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry for the Determination of Florfenicol Amine in Fish Muscles.

    PubMed

    Sin, Della Wai-Mei; Ho, Clare; Wong, Yiu-Tung

    2015-01-01

    Florfenicol (FFC) residues in foods are regulated as the sum of florfenicol and its metabolites measured as florfenicol amine (FFA). An isotope dilution LC-MS/MS method utilizing phenylboronic acid (PBA) SPE cleanup is established for the accurate determination of FFA in fish muscles (i.e., salmon and tilapia) after acid catalyzed hydrolysis. Comparisons of the PBA SPE cleanup procedure with other cleanup procedures such as mixed-mode cationic (MCX) SPE and solid supported liquid-liquid extraction were performed. Quantification of FFA in fish muscles was accomplished by using matrix-matched calibration with FFA-D3 as the internal standard. The method was validated with FFA fortified fish muscles at three different levels (50, 100, and 200 ?g/kg). Conversion of FFC to FFA by acid catalyzed hydrolysis was evaluated and found to be ?88%. The recoveries of FFA in fish muscles at the three fortification levels ranged from 89 to 106%, and RSDs were ?9% in all cases. The LOD values in salmon and tilapia muscles were 0.13 and 1.64 ?g/kg, respectively. The LOQ values in salmon and tilapia muscles were 0.29 and 4.13 ?g/kg, respectively. This method is suitable for the application in routine control of FFC in fishes according to its residue definition. PMID:26025252

  16. Precision of glucose measurements in control sera by isotope dilution/mass spectrometry: proposed definitive method compared with a reference method

    SciTech Connect

    Pelletier, O.; Arratoon, C.

    1987-08-01

    This improved isotope-dilution gas chromatographic/mass spectrometric (GC/MS) method, in which (/sup 13/C)glucose is the internal standard, meets the requirements of a Definitive Method. In a first study with five reconstituted lyophilized sera, a nested analysis of variance of GC/MS values indicated considerable among-vial variation. The CV for 32 measurements per serum ranged from 0.5 to 0.9%. However, concentration and uncertainty values (mmol/L per gram of serum) assigned to one serum by the NBS Definitive Method (7.56 +/- 0.28) were practically identical to those obtained with the proposed method (7.57 +/- 0.20). In the second study, we used twice more (/sup 13/C)glucose diluent to assay four serum pools and two lyophilized sera. The CV ranged from 0.26 to 0.5% for the serum pools and from 0.28 to 0.59% for the lyophilized sera. In comparison, results by the hexokinase/glucose-6-phosphate dehydrogenase reference method agreed within acceptable limits with those by the Definitive Method but tended to be slightly higher (up to 3%) for lyophilized serum samples or slightly lower (up to 2.5%) for serum pools.

  17. Determination of mercury in SRM crude oils and refined products by isotope dilution cold vapor ICP-MS using closed-system combustion.

    PubMed

    Kelly, W Robert; Long, Stephen E; Mann, Jacqueline L

    2003-07-01

    Mercury was determined by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS) in four different liquid petroleum SRMs. Samples of approximately 0.3 g were spiked with stable (201)Hg and wet ashed in a closed system (Carius tube) using 6 g of high-purity nitric acid. Three different types of commercial oils were measured: two Texas crude oils, SRM 2721 (41.7+/-5.7 pg g(-1)) and SRM 2722 (129+/-13 pg g(-1)), a low-sulfur diesel fuel, SRM 2724b (34+/-26 pg g(-1)), and a low-sulfur residual fuel oil, SRM 1619b (3.5+/-0.74 ng g(-1)) (mean value and 95% CI). The Hg values for the crude oils and the diesel fuel are the lowest values ever reported for these matrices. The method detection limit, which is ultimately limited by method blank uncertainty, is approximately 10 pg g(-1) for a 0.3 g sample. Accurate Hg measurements in petroleum products are needed to assess the contribution to the global Hg cycle and may be needed in the near future to comply with reporting regulations for toxic elements. PMID:12802572

  18. Direct determination of fatty acid esters of 3-chloro-1, 2-propanediol in edible vegetable oils by isotope dilution - ultra high performance liquid chromatography - triple quadrupole mass spectrometry.

    PubMed

    Li, Heli; Chen, Dawei; Miao, Hong; Zhao, Yunfeng; Shen, Jianzhong; Wu, Yongning

    2015-09-01

    A selective and sensitive ultra-high performance liquid chromatography - triple quadrupole mass spectrometry (UHPLC-MS/MS) method coupled with matrix solid phase dispersion (MSPD) extraction was developed for the direct determination of fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD esters) in edible vegetable oils. The method integrated the isotope dilution technique, MSPD extraction and UHPLC - MS/MS analysis with multi-reaction monitoring mode (MRM). Matrix-matched calibration curves showed good linearity within the range of 0.01-10mgL(-1) with the correlation coefficient not less than 0.999. Limits of detection (LODs) and limit of quantification (LOQs) of the 3-MCPD esters fell into the range of 0.0001-0.02mgkg(-1) and 0.0004-0.05mgkg(-1), respectively. The recoveries for the spiked extra virgin olive oils ranged from 94.4% to 108.3%, with the relative standard deviations (RSD) ranging from 0.6% to 10.5%. The method was applied for the oil sample (T2642) of the official Food Analysis Performance Assessment Scheme (FAPAS) in 2014 and other real samples from supermarket, and the results showed that the present method was comparative to the gas chromatography-mass spectrometry (GC-MS) method based on the improved German Society for Fat Science (DGF) standard method C-III 18 (09) except for palm oil. PMID:26239698

  19. Comparison of digestion procedures and methods for quantification of trace lead in breast milk by isotope dilution inductively coupled plasma mass spectrometry

    PubMed Central

    Amarasiriwardena, Chitra J.; Jayawardene, Innocent; Lupoli, Nicola; Barnes, Ramon M.; Hernandez-Avila, Mauricio; Hu, Howard

    2014-01-01

    Measurement of lead in breast milk is an important public health consideration and can be technically quite challenging. The reliable and accurate determination of trace lead in human breast milk is difficult for several reasons including: potential for contamination during sample collection, storage, and analysis; complexities related to the high fat content of human milk; and poor analytic sensitivity at low concentrations. Breast milk lead levels from previous published studies should therefore be reviewed with caution. Due to the difficulty in identifying a method that would successfully digest samples with 100% efficiency, we evaluated three different digestion procedures including: (1) dry ashing in a muffle furnace, (2) microwave oven digestion, and (3) digestion in high pressure asher. High temperature, high pressure asher digestion was selected as the procedure of choice for the breast milk samples. Trace lead analysis was performed using isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS). Measured lead concentrations in breast milk samples (n = 200) from Mexico ranged from 0.2 to 6.7 ng ml?1. The precision for these measurements ranged from 0.277.8% RSD. Use of strict contamination control techniques and of a very powerful digestion procedure, along with an ID-ICP-MS method for lead determination, enables us to measure trace lead levels as low as 0.2 ng ml?1 in milk (instrument detection limit = 0.01 ng ml?1). PMID:24808927

  20. Regional water-quality analysis of 2,4-D and dicamba in river water using gas chromatography-isotope dilution mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Zimmerman, L.R.; Aga, D.S.; Gilliom, R.J.

    2001-01-01

    Gas chromatography with isotope dilution mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA) were used in regional National Water Quality Assessment studies of the herbicides, 2,4-D and dicamba, in river water across the United States. The GC-MS method involved solid-phase extraction, derivatized with deutemted 2,4-D, and analysis by selected ion monitoring. The ELISA method was applied after preconcentration with solid-phase extraction. The ELISA method was unreliable because of interference from humic substances that were also isolated by solid-phase extraction. Therefore, GC-MS was used to analyzed 80 samples from river water from 14 basins. The frequency of detection of dicamba (28%) was higher than that for 2,4-D (16%). Concentrations were higher for dicamba than for 2,4-D, ranging from less than the detection limit (<0.05 ??g/L) to 3.77 ??g/L, in spite of 5 times more annual use of 2,4-D as compared to dicamba. These results suggest that 2,4-D degrades more rapidly in the environment than dicamba.

  1. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  2. A novel approach for high sensitive determination of sulfur mustard by derivatization and isotope-dilution LC-MS/MS analysis.

    PubMed

    Xu, Bin; Zong, Cheng; Nie, Zhiyong; Guo, Lei; Xie, Jianwei

    2015-01-01

    A new isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for determination of sulfur mustard (SM) has been developed using a direct chemical derivatization method by nucleophile potassium thioacetate (PTA) in aqueous solution. The reaction conditions for derivatization, such as reaction temperature, time, solvent and concentration of PTA, were optimized for high performance. Reversed phase liquid chromatography was suitable for analysis of such a PTA derivatized SM in complex environmental samples. Compared with other conventional gas chromatography or gas chromatography-mass spectrometry methods for direct detection on SM, better sensitivity and selectivity were achieved by this direct derivatization and LC-MS/MS method, where SM can be detected as low as 0.05 ng/mL in acetonitrile. The linear range was from 0.1 to 1000 ng/mL. The relative standard deviation (RSD) of the intra-day precision was less than 11.8%, and RSD of the inter-day precision was less than 12.3%. The whole procedure for both derivatization and analysis was quick and simple, and the total time was less than 1h. This established method has been successfully employed for determination of spiking samples both in water and soil. A detection limit of 0.1 ng/mL was achieved for river water, while the SM in soil sample could be detected at 0.1 ng/g. PMID:25476305

  3. Elevated urinary levels of carcinogenic N-nitrosamines in patients with urinary tract infections measured by isotope dilution online SPE LC-MS/MS.

    PubMed

    Hu, Chiung-Wen; Shih, Ying-Ming; Liu, Hung-Hsin; Chiang, Yi-Chen; Chen, Chih-Ming; Chao, Mu-Rong

    2016-06-01

    N-nitrosamines (NAms) are well-documented for their carcinogenic potential. Human exposure to NAms may arise from the daily environment and endogenous formation via the reaction of secondary amines with nitrites or from bacteria infection. We describe the use of isotope dilution online solid-phase extraction (SPE) LC-MS/MS to quantify nine NAms in human urine. This method was validated and further applied to healthy subjects and patients with urinary tract infection (UTI). N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR) and N-nitrosomorpholine (NMOR) were analyzed with an APCI source, while N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosodi-n-propylamine (NDPA), N-nitrosodibutylamine (NDBA) and N-nitrosodiphenylamine (NDPhA) were quantified with an ESI source, due to their effect on the sensitivity and chromatography. NDMA was the most abundant N-nitrosamine, while NDPhA was firstly identified in human. UTI patients had three to twelve-fold higher concentrations for NDMA, NPIP, NDEA, NMOR and NDBA in urine than healthy subjects, and the NAms were significantly decreased after antibiotics treatment. NDMA concentrations were also significantly correlated with the pH value, leukocyte esterase activity or nitrite in urines of UTI patients. Our findings by online SPE LC-MS/MS method evidenced that UTI patients experienced various NAms exposures, especially the potent carcinogen NDMA, which was likely induced by bacteria infection. PMID:26937867

  4. An optimised method for the accurate determination of zeranol and diethylstilbestrol in animal tissues using isotope dilution-liquid chromatography/mass spectrometry.

    PubMed

    Han, Hyesun; Kim, Byungjoo; Lee, Sueg Geun; Kim, Jeongkwon

    2013-09-01

    Isotope dilution-liquid chromatography/mass spectrometry (ID-LC/MS) has been established as a candidate reference method for the accurate determination of growth promoters (zeranol, taleranol, and diethylstilbesterol) in raw meat samples. Sample preparation processes including an enzymatic hydrolysis, extraction, and SPE clean-up were optimised. The sensitivity difference of trans- and cis-diethylstilbestrol (isomerizing in sample preparation processes) by the LC/MS was measured by running a trans/cis mixture (ratio measured by a quantitative NMR) with and without sample matrices, and applied for the determination of total diethylstilbestrol. Validity, repeatability, and reproducibility of the analytical method were tested by measuring gravimetrically fortified samples (chicken breast, bovine muscles, and porcine muscle) in a number of different time periods. Measurement results agreed with the fortified values within their uncertainties. The method provided accurate results of the target analytes in the range of 0.05-15 ?g/kg with the relative expanded uncertainty of 2-15%. PMID:23578613

  5. Development of a stable isotope dilution LC-MS assay for the quantitation of multiple polyethylene glycol (PEG) homologues to be used in permeability studies.

    PubMed

    Lichtenegger, Martina; Rychlik, Michael

    2015-09-15

    A new quantitation method based on a multiple stable isotope dilution assay (SIDA) was developed for polyethylene glycol (PEG) homologues from PEG mixtures with average molecular weights (MW) of 400, 1500, 3000 and 4000Da in urine. Seven [(13)C4(2)H4] and two [(13)C8(2)H8]PEG homologues were synthesized and served as labelled internal standards for SIDA. PEG oligomers were resolved by reversed phase high performance liquid chromatography (RP-HPLC) coupled to mass spectrometry (MS) in multiple ion (MI) scan modus. Very low limits of detection (LODs) in a range of 0.4-12ng/mL were achieved for the single homologues. Higher PEG homologues showed increased LODs and LOQs and less effective recovery (77-87%) than PEG with lower molecular masses (95-121%). Precision (relative standard deviation) varied between 3 and 13% and showed no dependence of the chain length. The method was successfully applied to human and mice urine samples. Beside an accurate quantitation of single PEG homologues it was possible to show an alteration in the MW distribution in urine samples compared to the dosed PEG solutions. The highest MW, with which a PEG can pass the intestinal wall (so called "cut off") for humans appeared to be higher than for mice. PMID:26279010

  6. Simplified Method for Quantifying Sulfur Mustard Adducts to Blood Proteins by Ultrahigh Pressure Liquid Chromatography−Isotope Dilution Tandem Mass Spectrometry.

    PubMed

    Pantazides, Brooke G; Crow, Brian S; Garton, Joshua W; Quiñones-González, Jennifer A; Blake, Thomas A; Thomas, Jerry D; Johnson, Rudolph C

    2015-02-16

    Sulfur mustard binds to reactive cysteine residues, forming a stable sulfur-hydroxyethylthioethyl [SHETE]adduct that can be used as a long-term biomarker of sulfur mustard exposure in humans. The digestion of sulfur mustard-exposed blood samples with proteinase K following total protein precipitation with acetone produces the tripeptide biomarker [S-HETE]-Cys-Pro-Phe. The adducted tripeptide is purified by solid phase extraction, separated by ultra high pressure liquid chromatography, and detected by isotope dilution tandem mass spectrometry. This approach was thoroughly validated and characterized in our laboratory. The average interday relative standard deviation was ≤ 9.49%, and the range of accuracy was between 96.1 and 109% over a concentration range of 3.00 to 250. ng/mL with a calculated limit of detection of1.74 ng/mL. A full 96-well plate can be processed and analyzed in 8 h, which is 5 times faster than our previous 96-well plate method and only requires 50 μL of serum, plasma, or whole blood. Extensive ruggedness and stability studies and matrix comparisons were conducted to create a robust, easily transferrable method. As a result, a simple and high-throughput method has been developed and validated for the quantitation of sulfur mustard blood protein adducts in low volume blood specimens which should be readily adaptable for quantifying human exposures to other alkylating agents. PMID:25622494

  7. [Preparation and certification of mussel reference material for organochlorine pesticides and polychlorinated biphenyls using isotope dilution-high resolution mass spectrometry].

    PubMed

    Lu, Xianbo; Chen, Jiping; Wang, Shuqiu; Zou, Lili; Tian, Yuzeng; Ni, Yuwen; Su, Fan

    2012-09-01

    A method for the preparation and certification of the reference material of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in mussel tissue is described. The mussel tissue from Dalian Bay was frozen-dried, comminuted, sieved, homogenized, packaged, and sterilized by 60Co radiation sterilization in turn. The certified values for 18 OCPs and 16 PCBs were determined by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using isotope dilution and internal standard quantitation techniques. The certified values were validated and given based on seven accredited laboratories, and these values are traceable to the SI (international system of units) through gravimetrically prepared standards of established purity and measurement intercomparisons. The certified values of PCBs and OCPs in mussel span 4 orders of magnitude with a relative uncertainty of about 10%. This material is a natural biological material with confirmed good homogeneity and stability, and it was approved as the grade "primary reference material" (GBW10069) in June 2012 in China. This reference material provided necessary quality control products for our country to implement the Stockholm Treaty on the monitoring of persistent organic pollutants (POPs). The material is intended to be used for the method validation and quality control in the determination of OCPs and PCBs in biota samples. PMID:23285973

  8. Iron isotope signatures within chondrules from Allende and Chainpur as indicators of thermal history.

    NASA Astrophysics Data System (ADS)

    Mullane, E.; Russell, S. S.; Gounelle, M.; Mason, T. F. D.

    2003-04-01

    Introduction: We have studied the petrography and Fe-isotope composition of seven chondrules, four from Allende (CV3) and three from Chainpur (LL3.4). A range of textural-chemical chondrule types are represented, allowing us to examine the Fe-isotope signature in material with different thermal histories, with a view to constraing the chondrule forming process and elucidating the nature of chondrule precursor material. Analytical procedures are detailed elsewhere [1,2,3] Fe-isotope Fractionation: The overall variation in ?56Fe is 1.98 ppm and in ?57Fe is 2.87 ppm. EM-1 (non-porphyritic) is most isotopically heavy and EM-3 (porphyritic) is most isotopically light, with all other chondrules falling in a mass fractionation line between these two end-members. This line is defined by the equation ?57Fe = (1.4500.050)?56Fe - (0.0090.016) (R^2 = 0.9995). Discussion: The Fe-fractionation exhibited here is less than would be expected during open system evaporation. This suggests that Rayleigh conditions were not fulfilled during chondrule melting. Chainpur chondrules exhibit less fractionation than Allende chondrules, a total of 0.46 ppm (?56Fe) in contrast to 1.98 ppm (?56Fe), respectively, suggesting that Chainpur may be more equilibrated than Allende. Chainpur Fe-isotopes may have been increasingly homogenised by later addition of Fe, either from the nebular reservoir or parent body alteration. Porphyritic and nonporphyritic chondrules have differing thermal histories. The former are a product of incomplete melting, whereas the latter derive from almost total/complete melting of precursor material. However, Fe-isotope fractionation does not appear to vary systematically with texture. We conclude that chondrule Fe-isotopic signatures represent that of the precursor material, with later equilibration of the Chainpur chondrules. Melting history may also influence the Fe-isotopic signature. The isotopically heaviest chondrules (e.g. EM-1 &EC-3) may derive from a melt which attained liquidus temperatures more than once. The precursor to EM-2 (isotopically lightest), may not have been subject to as many aggressive heating events. References: [1] Mullane et al. (2001) LPS XXXII, Abs. #1545. [2] Mullane et al. (2002) In: Plasma Source Mass Spec. Royal Soc. Chem. (in press). [3] Mullane et al. (2002) Met. Plan. Sci. 37, 105 Abs. [4] Alexander C.M.O'D. &Wang J. (2001) Met. Plan. Sci. 36, 419--428.

  9. An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient

    NASA Technical Reports Server (NTRS)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun

    2013-01-01

    Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.

  10. Thermally based isotopic speciation of carbon in complex matrices: a tool for environmental investigation.

    PubMed

    Natali, Claudio; Bianchini, Gianluca

    2015-08-01

    Elemental and isotopic analyses of carbon in environmental matrices usually highlight multiple pools of different composition and (13)C/(12)C (?(13)C) isotopic ratio. Interpretation necessarily needs the characterization of the diverse end-members that usually are constituted by inorganic and organic components. In this view, we developed a routine protocol based on coupling of elemental and isotopic analyses that is able to discriminate the inorganic (IC) and organic (OC) contributions to the total carbon (TC) content. The procedure is only based on thermal destabilization of the different carbon pools and has been successfully applied on different environmental matrices (rocks, soils, and biological samples) with a mean C elemental and isotopic recoveries of 99.5% (SD?=?1.3%) and 0.2 (SD?=?0.2), respectively. The thermally based speciation (TBS) leads us to define precise isotopic end-members, which are unaffected by any chemical treatment of the sample, to be used for accurate mass balance calculation that represents a powerful tool to quantify the distinct carbon pools. The paper critically evaluates the method explaining the potentials and the current limits of the proposed analytical protocol. PMID:25893627

  11. Automated high-speed analysis of selected organic compounds in urban air by on-line isotopic dilution cryofocusing gas chromatography/mass spectrometry.

    PubMed

    Davoli, E; Cappellini, L; Maggi, M; Fanelli, R

    1994-11-01

    An automated environmental air monitor has been developed to measure selected organic compounds in urban air. The instrument is based on a cryofocusing-thermal desorption gas chromatographic mass spectrometry technique where the mass spectrometer is a slightly modified residual gas analyzer (RGA). The RGA was chosen as a detector because the whole system must be robust for long periods, with 24-h continuous air monitoring. RCA are extremely simple and seemed the most reliable mass spectrometers for this purpose. Moreover, because they have no physically limited ion source, contamination is considerably reduced, so maintenance intervals are longer.The gas chromatograph is equipped with a computer-controlled six-way sampling valve, with a 100-mL sampling loop and thermal desorption cold trap injector. Environmental air is enriched with an isotopically labeled internal standard in the sampling line. This internal standard is added with a validated, custom-made, permeation tube device. The "on-line" internal standard provides for high quality quantitative data because all variations in instrument sensitivity in cryofocusing or in thermal desorption efficiency are taken into account. High repetition rates (down to 5 min for a full analytical cycle) are obtained with the use of an isothermal gas chromatography program, microbore capillary column, and environmental air sampling during the gas chromatography run. PMID:24226389

  12. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    USGS Publications Warehouse

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  13. Correction of NPL-2013 estimate of the Boltzmann constant for argon isotopic composition and thermal conductivity

    NASA Astrophysics Data System (ADS)

    de Podesta, Michael; Yang, Inseok; Mark, Darren F.; Underwood, Robin; Sutton, Gavin; Machin, Graham

    2015-10-01

    In 2013, a team from NPL, Cranfield University and SUERC published an estimate of the Boltzmann constant based on precision measurements of the speed of sound in argon. A key component of our results was an estimate of the molar mass of the argon gas used in our measurements. To achieve this we made precision comparison measurements of the isotope ratios found in our experimental argon against the ratios of argon isotopes found in atmospheric air. We then used a previous measurement of the atmospheric argon isotope ratios to calibrate the relative sensitivity of the mass spectrometer to different argon isotopes. The previous measurement of the atmospheric argon isotope ratios was carried out at KRISS using a mass spectrometer calibrated using argon samples of known isotopic composition, which had been prepared gravimetrically. We report here a new measurement made at KRISS in October 2014, which directly compared a sample of our experimental gas against the same gravimetrically-prepared argon samples. We consider that this direct comparison has to take precedence over our previous more indirect comparison. This measurement implies a molar mass which is 2.73(60) parts in 106 lighter than our 2013 estimate, a shift which is seven times our 2013 estimate of the uncertainty in the molar mass. In this paper we review the procedures used in our 2013 estimate of molar mass; describe the 2014 measurement; highlight some questions raised by the large change in our estimate of molar mass; and describe how we intend to address the inconsistencies between them. We also consider the effect of a new estimate of the low pressure thermal conductivity of argon at 273.16 K. Finally we report our new best estimate of the Boltzmann constant with revised uncertainty, taking account of the new estimates for the molar mass and the thermal conductivity of the argon.

  14. Application of the Reference Method Isotope Dilution Gas Chromatography Mass Spectrometry (ID/GC/MS) to Establish Metrological Traceability for Calibration and Control of Blood Glucose Test Systems

    PubMed Central

    Andreis, Elisabeth; Kllmer, Kai

    2014-01-01

    Self-monitoring of blood glucose (BG) by means of handheld BG systems is a cornerstone in diabetes therapy. The aim of this article is to describe a procedure with proven traceability for calibration and evaluation of BG systems to guarantee reliable BG measurements. Isotope dilution gas chromatography mass spectrometry (ID/GC/MS) is a method that fulfills all requirements to be used in a higher-order reference measurement procedure. However, this method is not applicable for routine measurements because of the time-consuming sample preparation. A hexokinase method with perchloric acid (PCA) sample pretreatment is used in a measurement procedure for such purposes. This method is directly linked to the ID/GC/MS method by calibration with a glucose solution that has an ID/GC/MS-determined target value. BG systems are calibrated with whole blood samples. The glucose levels in such samples are analyzed by this ID/GC/MS-linked hexokinase method to establish traceability to higher-order reference material. For method comparison, the glucose concentrations in 577 whole blood samples were measured using the PCA-hexokinase method and the ID/GC/MS method; this resulted in a mean deviation of 0.1%. The mean deviation between BG levels measured in >500 valid whole blood samples with BG systems and the ID/GC/MS was 1.1%. BG systems allow a reliable glucose measurement if a true reference measurement procedure, with a noninterrupted traceability chain using ID/GC/MS linked hexokinase method for calibration of BG systems, is implemented. Systems should be calibrated by means of a traceable and defined measurement procedure to avoid bias. PMID:24876614

  15. Identification and Quantification of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Cells by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry

    PubMed Central

    Kirkali, Gldal; Jaruga, Pawel; Reddy, Prasad T.; Tona, Alessandro; Nelson, Bryant C.; Li, Mengxia; Wilson, David M.; Dizdaroglu, Miral

    2013-01-01

    Unless repaired, DNA damage can drive mutagenesis or cell death. DNA repair proteins may therefore be used as biomarkers in disease etiology or therapeutic response prediction. Thus, the accurate determination of DNA repair protein expression and genotype is of fundamental importance. Among DNA repair proteins involved in base excision repair, apurinic/apyrimidinic endonuclease 1 (APE1) is the major endonuclease in mammals and plays important roles in transcriptional regulation and modulating stress responses. Here, we present a novel approach involving LC-MS/MS with isotope-dilution to positively identify and accurately quantify APE1 in human cells and mouse tissue. A completely 15N-labeled full-length human APE1 was produced and used as an internal standard. Fourteen tryptic peptides of both human APE1 (hAPE1) and 15N-labeled hAPE1 were identified following trypsin digestion. These peptides matched the theoretical peptides expected from trypsin digestion and provided a statistically significant protein score that would unequivocally identify hAPE1. Using the developed methodology, APE1 was positively identified and quantified in nuclear and cytoplasmic extracts of multiple human cell lines and mouse liver using selected-reaction monitoring of typical mass transitions of the tryptic peptides. We also show that the methodology can be applied to the identification of hAPE1 variants found in the human population. The results describe a novel approach for the accurate measurement of wild-type and variant forms of hAPE1 in vivo, and ultimately for defining the role of this protein in disease development and treatment responses. PMID:23922845

  16. Achieving comparability with IFCC reference method for the measurement of hemoglobin A1c by use of an improved isotope-dilution mass spectrometry method.

    PubMed

    Liu, Hong; Wong, Lingkai; Yong, Sharon; Liu, Qinde; Lee, Tong Kooi

    2015-10-01

    The development of reference measurement methods for hemoglobin A1c (HbA1c) is important for quality assurance in diabetes management. The IFCC reference method using purified proteins as calibration standards is the recommended accuracy-based reference method for the standardization of HbA1c measurement. We developed a highly precise and accurate liquid chromatography-isotope-dilution tandem mass spectrometry (LC-IDMS/MS) procedure, which can serve as an alternative accuracy-based method for HbA1c measurement. In this method, enzymatic proteolysis was applied to sample preparation, followed by LC-IDMS/MS measurement of hemoglobin A0 (HbA0) and HbA1c, using two "signature" hexapeptides for calibration. The concentrations of the signature hexapeptide calibration solutions were, in turn, determined using a hydrolysis method with HCl, followed by LC-IDMS/MS measurement using amino acid solutions as calibration standards. These solutions were gravimetrically prepared from pure amino acid certified reference materials (CRMs). The developed LC-IDMS/MS method was used in participation in an IFCC ring trial for reference laboratories (RELA 2013 and 2014) for HbA1c, where our results were compared with those using the IFCC reference method. The deviations were found to be 0.4-1.7 mmol mol(-1) [or 0.04-0.16% in National Glygohemoglobin Standardization Program (NGSP) units], revealing good comparability with the IFCC reference method. The relative expanded uncertainty of the LC-IDMS/MS was in the range of 2.6% to 2.8% (1.6% to 2.2% after converting to NGSP units). With excellent method precision, good comparability with the IFCC reference method, and a small measurement uncertainty, the developed LC-IDMS/MS method may be used as an alternative accuracy-based reference method for HbA1c measurement. PMID:26302961

  17. Validation and uncertainties evaluation of an isotope dilution-SPE-LC-MS/MS for the quantification of drug residues in surface waters.

    PubMed

    Brieudes, V; Lardy-Fontan, S; Lalere, B; Vaslin-Reimann, S; Budzinski, H

    2016-01-01

    The present work describes the development and validation of a reference method conducted at the French National Institute of Metrology (LNE) for the quantitative determination of psychoactive compounds in the dissolved fraction of surface waters. More specifically an isotope dilution-SPE-LC-MS/MS based method has been implemented for the characterization of a broad range of analytes belonging to different classes of psychotropic drugs such as benzodiazepines, antidepressants, stimulants, opiates and opioids, anticonvulsants, anti-dementia drugs, analgesics as well as the anti-inflammatory drug diclofenac in the low ngL(-1) range of concentration. Full validation of the method was performed following procedures described by the French standard NF T90-210. Limits of quantification between 0.14 and 3.54ngL(-1) were obtained. Method recoveries from 71 to 123% were observed with standard deviation below 10% in intermediate precision conditions. Accuracy was determined for every compound: measurement errors were between -4 and +1% and standard deviations in intermediate precision conditions were included within a 1-9% interval. Finally, measurement uncertainties were evaluated following the Guide to the expression of uncertainty in measurement (GUM). Expanded uncertainties (k=2) ranged from 2% for carbamazepine, EDDP (2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine) and venlafaxine to 17% for diazepam. The validated method was implemented to Seine river surface waters demonstrating its fitness for purpose. All compounds were detected and 22 out of 25 analytes were quantified. More specifically, measured concentration ranged from 0.39ngL(-1) for MDMA (3,4-methylene-dioxy-N-methylamphetamine) to 182ngL(-1) for gabapentine. PMID:26695245

  18. [Determination of 18 pesticide residues in red wine by ultra high performance liquid chromatography-high resolution mass spectrometry with isotope dilution technique].

    PubMed

    Chen, Dawei; L, Bing; Ding, Hao; Zou, Jianhong; Yang, Xin; Zhao, Yunfeng; Miao, Hong

    2014-05-01

    A method for the simultaneous determination of 18 pesticide residues in red wine was developed using ultra high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) with isotope dilution technique. The red wine samples were extracted with acetonitrile, and the extracts were cleaned up with dispersive solid phase extraction (dSPE) using the mixture of N-propyl ethylene diamine (PSA) and C18 powder as sorbent. The extracted components were separated on a BEH C18 column by gradient elution. The qualitative and quantitative analyses were operated under full scan/data dependent MS/MS (ddms2) and targeted selective ion monitoring (tSIM) by high resolution mass spectrometry, respectively. Carbendazim-D4, chlorpyrifos-D10, imidacloprid-D4, methoxyfenozide-D9, pyrimethanil-D5 and tebuconazole-D6 were used as the internal standards to reduce the matrix effects. The response of each pesticide showed a good linearity in the range of 0.5-50 microg/kg with the correlation coefficient more than 0.999. The limits of detection and quantification for the 18 pesticides in the spiked blank red wine were 0.5 microg/kg and 1.0 microg/kg, respectively. The recovery results with spiked blank red wine samples at the levels of 1 to 40 microg/kg were satisfactory with average recoveries of 85.4% - 117.9% and the RSDs of 0.5%-6.1%. The method was applied for the determination of the red wine real samples from the market. Carbendazim, imidacloprid, pyrimethanil, tebuconazole and triadimenol were detected in the samples. The results show that the method is suitable for the rapid screening and quantitative analysis of pesticide residues in red wine. PMID:25185308

  19. Application of the reference method isotope dilution gas chromatography mass spectrometry (ID/GC/MS) to establish metrological traceability for calibration and control of blood glucose test systems.

    PubMed

    Andreis, Elisabeth; Kllmer, Kai; Appel, Matthias

    2014-05-01

    Self-monitoring of blood glucose (BG) by means of handheld BG systems is a cornerstone in diabetes therapy. The aim of this article is to describe a procedure with proven traceability for calibration and evaluation of BG systems to guarantee reliable BG measurements. Isotope dilution gas chromatography mass spectrometry (ID/GC/MS) is a method that fulfills all requirements to be used in a higher-order reference measurement procedure. However, this method is not applicable for routine measurements because of the time-consuming sample preparation. A hexokinase method with perchloric acid (PCA) sample pretreatment is used in a measurement procedure for such purposes. This method is directly linked to the ID/GC/MS method by calibration with a glucose solution that has an ID/GC/MS-determined target value. BG systems are calibrated with whole blood samples. The glucose levels in such samples are analyzed by this ID/GC/MS-linked hexokinase method to establish traceability to higher-order reference material. For method comparison, the glucose concentrations in 577 whole blood samples were measured using the PCA-hexokinase method and the ID/GC/MS method; this resulted in a mean deviation of 0.1%. The mean deviation between BG levels measured in >500 valid whole blood samples with BG systems and the ID/GC/MS was 1.1%. BG systems allow a reliable glucose measurement if a true reference measurement procedure, with a noninterrupted traceability chain using ID/GC/MS linked hexokinase method for calibration of BG systems, is implemented. Systems should be calibrated by means of a traceable and defined measurement procedure to avoid bias. PMID:24876614

  20. Stable isotope dilution ultra-high performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan-related neuroactive substances in human serum and cerebrospinal fluid.

    PubMed

    Hnykov, Eva; Vrnov, Hana P?ikrylov; Amakorov, Petra; Pospil, Tom; ukauskait?, Asta; Vl?kov, Magdalna; Urbnek, Lubor; Novk, Ond?ej; Mare, Jan; Ka?ovsk, Petr; Strnad, Miroslav

    2016-03-11

    Many compounds related to L-tryptophan (L-TRP) have interesting biological or pharmacological activity, and their abnormal neurotransmission seems to be linked to a wide range of neurodegenerative and psychiatric diseases. A high-throughput method based on ultra-high performance liquid chromatography connected to electrospray tandem mass spectrometry (UHPLC-ESI-MS/MS) was developed for the quantitative analysis of L-TRP and 16 of its metabolites in human serum and cerebrospinal fluid (CSF), representing both major and minor routes of L-TRP catabolism. The combination of a fast LC gradient with selective tandem mass spectrometry enabled accurate analysis of almost 100 samples in 24h. The standard isotope dilution method was used for quantitative determination. The method's lower limits of quantification for serum and cerebrospinal fluid ranged from 0.05 to 15nmol/L and 0.3 to 45nmol/L, respectively. Analytical recoveries ranged from 10.4 to 218.1% for serum and 22.1 to 370.0% for CSF. The method's accuracy ranged from 82.4 to 128.5% for serum matrix and 90.7 to 127.7% for CSF matrix. All intra- and inter-day coefficients of variation were below 15%. These results demonstrate that the new method is capable of quantifying endogenous serum and CSF levels of a heterogeneous group of compounds spanning a wide range of concentrations. The method was used to determine the physiological levels of target analytes in serum and CSF samples from 18 individuals, demonstrating its reliability and potential usefulness in large-scale epidemiological studies. PMID:26879452

  1. Development of three stable isotope dilution assays for the quantitation of (E)-2-butenal (crotonaldehyde) in heat-processed edible fats and oils as well as in food.

    PubMed

    Granvogl, Michael

    2014-02-12

    Three stable isotope dilution assays (SIDAs) were developed for the quantitation of (E)-2-butenal (crotonaldehyde) in heat-processed edible fats and oils as well as in food using synthesized [C?]-crotonaldehyde as internal standard. First, a direct headspace GC-MS method, followed by two indirect methods on the basis of derivatization with either pentafluorophenylhydrazine (GC-MS) or 2,4-dinitrophenylhydrazine (LC-MS/MS), was developed. All methods are also suitable for the quantitation of acrolein using the standard [C?]-acrolein. Applying these three methods on five different types of fats and oils varying in their fatty acid compositions revealed significantly varying crotonaldehyde concentrations for the different samples, but nearly identical quantitative data for all methods. Formed amounts of crotonaldehyde were dependent not only on the type of oil, e.g., 0.29-0.32 mg/kg of coconut oil or 33.9-34.4 mg/kg of linseed oil after heat-processing for 24 h at 180 C, but also on the applied temperature and time. The results indicated that the concentration of formed crotonaldehyde seemed to be correlated with the amount of linolenic acid in the oils. Furthermore, the formation of crotonaldehyde was compared to that of its homologue acrolein, demonstrating that acrolein was always present in higher amounts in heat-processed oils, e.g., 12.3 mg of crotonaldehyde/kg of rapeseed oil in comparison to 23.4 mg of acrolein/kg after 24 h at 180 C. Finally, crotonaldehyde was also quantitated in fried food, revealing concentrations from 12 to 25 ?g/kg for potato chips and from 8 to 19 ?g/kg for donuts, depending on the oil used. PMID:24428123

  2. Studies on the analysis of 25-hydroxyvitamin D{sub 3} by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation

    SciTech Connect

    Abdel-Khalik, Jonas; Crick, Peter J.; Carter, Graham D.; Makin, Hugh L.; Wang, Yuqin; Griffiths, William J.

    2014-04-11

    Highlights: • New method for the analysis of 25-hydroxyvitamin D{sub 3} exploiting Girard P derivatisation. • Method also applicable to vitamin D{sub 3}, 1α,25- and 24,25-dihydroxyvitamin D{sub 3}. • By modification of the method 3-epi-25-hydroxyvitamin D{sub 3} can also be analysed. - Abstract: The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D{sub 3} and 25-hydroxyvitamin D{sub 2}) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantification of 25-hydroxyvitamins D are needed. Here we present a novel enzyme-assisted derivatisation method for the analysis of vitamins D metabolites in adult serum utilising 25-[26,26,26,27,27,27-{sup 2}H{sub 6}]hydroxyvitamin D{sub 3} as the internal standard. Extraction of 25-hydroxyvitamins D from serum is performed with acetonitrile, which is shown to be more efficient than ethanol. Cholesterol oxidase is used to oxidize the 3β-hydroxy group in the vitamins D metabolites followed by derivatisation of the newly formed 3-oxo group with Girard P reagent. 17β-Hydroxysteroid dehydrogenase type 10 is shown to oxidize selectively the 3α-hydroxy group in the 3α-hydroxy epimer of 25-hydroxyvitamin D{sub 3}. Quantification is achieved by isotope-dilution liquid chromatography–tandem mass spectrometry. Recovery experiments for 25-hydroxyvitamin D{sub 3} performed on adult human serum give recovery of 102–106%. Furthermore in addition to 25-hydroxyvitamin D{sub 3}, 24,25-dihydroxyvitamin D{sub 3} and other uncharacterised dihydroxy metabolites, were detected in adult human serum.

  3. Determination of agmatine using isotope dilution UPLC-tandem mass spectrometry: application to the characterization of the arginine decarboxylase pathway in Pseudomonas aeruginosa.

    PubMed

    Dalluge, Joseph J; McCurtain, Jennifer L; Gilbertsen, Adam J; Kalstabakken, Kyle A; Williams, Bryan J

    2015-07-01

    A method has been developed for the direct determination of agmatine in bacterial culture supernatants using isotope dilution ultra performance liquid chromatography (UPLC)-tandem mass spectrometry (UPLC-MS/MS). Agmatine determination in bacterial supernatants is comprised of spiking culture or isolate supernatants with a fixed concentration of uniformly labeled (13)C5,(15)N4-agmatine (synthesized by decarboxylation of uniformly labeled (13)C6,(15)N4-arginine using arginine decarboxylase from Pseudomonas aeruginosa) as an internal standard, followed by derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBDF) to improve the reversed-phase chromatographic retention characteristics of agmatine, as well as the selectivity and sensitivity of UPLC-MS/MS detection of this amine in complex biologically derived mixtures. Intrasample precisions for measurement of agmatine in culture supernatants average 4.1% (relative standard deviation). Calibration curves are linear over the range 5 nM to 10 μM, and the detection limit is estimated at 1.5 nM. To demonstrate the utility of the method, agmatine levels in supernatants of overnight cultures of wild-type (UCBPP-PA14), as well as arginine decarboxylase and agmatine deiminase mutant strains of P. aeruginosa strain UCBPP-PA14 were measured. This method verified that the mutant strains are lacking the specific metabolic capabilities to produce and metabolize agmatine. In addition, measurement of agmatine in supernatants of a panel of clinical isolates from patients with cystic fibrosis revealed that three of the P. aeruginosa isolates hyper-secreted agmatine into the supernatant, hypothesized to be a result of a mutation in the aguA gene. Because agmatine has potential inflammatory activities in the lung, this phenotype may be a virulence factor for P. aeruginosa in the lung environment of cystic fibrosis patients. PMID:25957842

  4. Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry

    SciTech Connect

    Sapkota, Amir; Heidler, Jochen; Halden, Rolf U. . E-mail: rhalden@jhsph.edu

    2007-01-15

    The antimicrobial compound triclocarban (TCC; 3,4,4'-trichlorocarbanilide; CAS-bar 101-20-2) is a high-production-volume chemical, recently suggested to cause widespread contamination of US water resources. To test this hypothesis, we developed an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method for ultratrace analysis of TCC (0.9ng/L detection limit) and analyzed low-volume water samples (200mL) along with primary sludge samples from across the United States. All river water samples (100%) collected downstream of wastewater treatment plants had detectable levels of TCC, as compared to 56% of those taken upstream. Concentrations of TCC (mean+/-standard deviation) downstream of sewage treatment plants (84+/-110ng/L) were significantly higher (P<0.05; Wilcoxon rank sum test) than those of samples taken upstream (12+/-15ng/L). Compared to surface water, mean TCC concentrations found in dried, primary sludge obtained from municipal sewage treatment plants in five states were six orders of magnitude greater (19,300+/-7100{mu}g/kg). Several river samples contained a co-contaminant, identified based on its chromatographic retention time, molecular base ion, and MS/MS fragmentation behavior as 4,4'-dichlorocarbanilide (DCC; CAS-bar 1219-99-4). In addition to TCC and DCC, municipal sludge contained a second co-contaminant, 3,3',4,4'-tetrachlorocarbanilide (TetraCC; CAS-bar 4300-43-0). Both newly detected compounds were present as impurities (0.2%{sub w/w} each) in technical grade TCC (99%). Application of the new method for chlorocarbanilide analysis yielded TCC occurrence data for 13 US states, confirmed the role of sewage treatment plants as environmental inputs of TCC, and identified DCC and TetraCC as previously unrecognized pollutants released into the environment alongside TCC.

  5. Quantitation of the sulfur mustard metabolites 1,1'-sulfonylbis[2-(methylthio)ethane] and thiodiglycol in urine using isotope-dilution Gas chromatography-tandem mass spectrometry.

    PubMed

    Boyer, Anne E; Ash, Doris; Barr, Dana B; Young, Carrie L; Driskell, W J; Whitehead, Ralph D; Ospina, Maria; Preston, Kerry E; Woolfitt, Adrian R; Martinez, Rodolfo A; Silks, L A Pete; Barr, John R

    2004-01-01

    Sulfur mustard (HD), or bis(2-chloroethyl)sulfide, has several urinary metabolites that can be measured to assess human exposure. These metabolites include the simple hydrolysis product thiodiglycol (TDG) and its oxidative analogue, TDG-sulfoxide, as well as metabolites of the glutathione/b-lyase pathway 1,1'-sulfonylbis[2-(methyl-sulfinyl)ethane] (SBMSE) and 1-methyl-sulfinyl-2-[(methylthio)ethyl-sulfonyl]ethane (MSMTESE). Current methods focus on either the TDG or the b-lyase metabolites. We have developed a single method that measures products of both metabolic branches, with the reduced compound of SBMSE and MSMTESE, 1,1'-sulfonylbis [2(methylthio)ethane] (SBMTE), as the definitive analyte and TDG as a confirmation analyte. Sample preparation included b-glucuronidase hydrolysis for TDG-glucuronide conjugates, titanium trichloride reduction of sulfoxides to SBMTE and TDG, solid-phase extraction, and a chemical derivatization. We analyzed samples using gas chromatography-tandem mass spectrometry with quantitation using isotope-dilution calibration. The method limits of detection for TDG and SBMTE were 0.5 ng/mL and 0.25 ng/mL, respectively, with relative standard deviations of less than 10%. Urine samples from individuals with no known exposure to mustard agent HD had measurable concentrations of TDG, but no SBMTE was detected. The geometric mean concentration of TDG was 3.43 ng/mL, with concentrations ranging from < 0.5 ng/mL to 20 ng/mL. PMID:15239851

  6. Determination of the cardiac glycosides digoxin and digitoxin by liquid chromatography combined with isotope-dilution mass spectrometry (LC-IDMS)--a candidate reference measurement procedure.

    PubMed

    Kaiser, Patricia; Kramer, Udo; Meissner, Dieane; Kress, Michael; Wood, William Graham; Reinauer, Hans

    2003-01-01

    This article describes a method of high analytical sensitivity, reproducibility and trueness for the determination of digoxin and digitoxin in serum or plasma at therapeutic levels using a combination of high-pressure liquid chromatography (HPLC), isotope-dilution mass spectrometry (IDMS) and caesium-adduct formation. A method for threefold deuterium substitution in the glycosides was developed, which could be performed within 24 hours without distillation giving yields > 98% of the theoretical value. Extraction from a serum or plasma matrix was performed using a liquid-phase extraction with ammonium acetate buffer/tertiary butylmethyl ether/ethyl acetate at pH 9.5. The HPLC-separation used a 10 x 2 mm LiChrospher RP-18 5 microm guard column in combination with a 125 x 2 mm main column of the same material and a gradient containing methanol, caesium ions and formic acid. Quantification of digoxin and digitoxin was made with IDMS using deuterated internal standards and the system run in single ion monitoring (SIM) mode. The methods had a lower limit of determination of 0.25 microg/l for digoxin and digitoxin, a trueness between 97.5 and 104% for digoxin and between 98 and 101% for digitoxin, respectively and had a coefficient of variation of less than 3% in the therapeutic range for both glycosides. Maximally 1 ml serum or plasma was needed for the procedure. The method is used to set target values for materials used in external quality assessment surveys (EQAS) run by INSTAND as part of a national EQAS-programme.) PMID:12908733

  7. Development and validation of a stable-isotope dilution liquid chromatography-tandem mass spectrometry method for the determination of bisphenols in ready-made meals.

    PubMed

    Regueiro, Jorge; Wenzl, Thomas

    2015-10-01

    Due to their growing consumption, ready-made meals are a major dietary component for many people in today's society, representing an important potential route of human exposure to several food contaminants. The recent restrictions in the use of bisphenol A have led the plastic industry to look for alternative chemicals, most of them belonging to the same family of p,p'-bisphenols. The aim of the current work was to develop and validate a method based on stable-isotope dilution liquid chromatography-tandem mass spectrometry for the analysis of bisphenol A and its main analogs - bisphenol S, 4,4'-sulfonylbis(2-methylphenol), bisphenol F, bisphenol E, bisphenol B, bisphenol Z, bisphenol AF, bisphenol AP, tetrabromobisphenol A and bisphenol P - in solid foodstuffs, and particularly in ready-made meals. Extraction was carried out by ultrasound-assisted extraction after sample disruption with sand. A selective solid-phase extraction procedure was then applied to reduce potential matrix interferences. Derivatization of bisphenols with pyridine-3-sulfonyl chloride increased their ionization efficiency by electrospray ionization. Validation of the proposed method was performed in terms of selectivity, matrix effects, linearity, precision, measurement uncertainty, trueness and limits of detection. Satisfactory repeatability and intermediate precision were obtained; the related relative standard deviations were ≤7.8% and ≤10%, respectively. The relative expanded uncertainty (k=2) was below 17% for all bisphenol analogs and the trueness of the method was demonstrated by spike recovery experiments. Low limits of detection, in the range from 0.025μgkg(-1) to 0.140μgkg(-1), were obtained for all compounds. To demonstrate the applicability of the proposed method, it was eventually applied to several ready-made meals purchased from different supermarkets in Belgium. PMID:26456223

  8. Simultaneous Measurement of Tabun, Sarin, Soman, Cyclosarin, VR, VX, and VM Adducts to Tyrosine in Blood Products by Isotope Dilution UHPLC-MS/MS

    PubMed Central

    Crow, Brian S.; Pantazides, Brooke G.; Quiñones-González, Jennifer; Garton, Joshua W.; Carter, Melissa D.; Perez, Jonas W.; Watson, Caroline M.; Tomcik, Dennis J.; Crenshaw, Michael D.; Brewer, Bobby N.; Riches, James R.; Stubbs, Sarah J.; Read, Robert W.; Evans, Ronald A.; Thomas, Jerry D.; Blake, Thomas A.; Johnson, Rudolph C.

    2015-01-01

    This work describes a new specific, sensitive, and rapid stable isotope dilution method for the simultaneous detection of the organophosphorus nerve agents (OPNAs) tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), VR, VX, and VM adducts to tyrosine (Tyr). Serum, plasma, and lysed whole blood samples (50 µL) were prepared by protein precipitation followed by digestion with Pronase. Specific Tyr adducts were isolated from the digest by a single solid phase extraction (SPE) step, and the analytes were separated by reversed-phase ultra high performance liquid chromatography (UHPLC) gradient elution in less than 2 min. Detection was performed on a triple quadrupole tandem mass spectrometer using time-triggered selected reaction monitoring (SRM) in positive electrospray ionization (ESI) mode. The calibration range was characterized from 0.100–50.0 ng/mL for GB– and VR– Tyr and 0.250–50.0 ng/mL for GA–, GD–, GF–, and VX/VM–Tyr (R2 ≥ 0.995). Inter- and intra-assay precision had coefficients of variation of ≤17 and ≤10%, respectively, and the measured concentration accuracies of spiked samples were within 15% of the targeted value for multiple spiking levels. The limit of detection was calculated to be 0.097, 0.027, 0.018, 0.074, 0.023, and 0.083 ng/mL for GA–, GB–, GD–, GF–, VR–, and VX/VM–Tyr, respectively. A convenience set of 96 serum samples with no known nerve agent exposure was screened and revealed no baseline values or potential interferences. This method provides a simple and highly specific diagnostic tool that may extend the time postevent that a confirmation of nerve agent exposure can be made with confidence. PMID:25286390

  9. Stable-isotope dilution analysis of D- and L-2-hydroxyglutaric acid: application to the detection and prenatal diagnosis of D- and L-2-hydroxyglutaric acidemias.

    PubMed

    Gibson, K M; ten Brink, H J; Schor, D S; Kok, R M; Bootsma, A H; Hoffmann, G F; Jakobs, C

    1993-09-01

    A stable-isotope dilution assay has been developed for quantitation of D- and L-2-hydroxyglutaric acids in physiologic fluids. D- and L-2-hydroxyglutaric acids are separated as the O-acetyl-di-(D)-2-butyl esters. The method uses D,L-[3,3,4,4-2H4]-2-hydroxyglutaric acid as internal standard with ammonia chemical ionization, selected ion monitoring gas chromatography-mass spectrometry. For 13 patients with L-2-hydroxyglutaric aciduria, the concentrations of L-2-hydroxyglutaric acid were urine, 1283 +/- 676 mmol/mol creatinine (range, 332-2742; n = 12 patients); plasma, 47 +/- 13 mumol/L (range, 27-62; n = 8); cerebrospinal fluid, 62 +/- 30 mumol/L (range, 34-100; n = 6). In a child with D-2-hydroxyglutaric aciduria, the levels of D-2-hydroxyglutaric acid were urine, 1565 +/- 847 mmol/mol creatinine (range, 729-2668; n = 4); plasma, 61 +/- 14 mumol/L (range, 46-73; n = 3); cerebrospinal fluid, 15 and 25 mumol/L (n = 2). Control concentrations of D- and L-2-hydroxyglutaric acids were (D:L): urine (n = 18), 6.0 +/- 3.6 mmol/mol creatinine (range, 2.8-17): 6.0 +/- 5.4 (range, 1.3-19); plasma (n = 10), 0.7 +/- 0.2 mumol/L (range, 0.3-0.9): 0.6 +/- 0.2 (range, 0.5-1.0); cerebrospinal fluid (n = 10), 0.1 +/- 0.1 mumol/L (range, 0.07-0.3): 0.7 +/- 0.6 (range, 0.3-2.3). Investigation of control amniotic fluid (n = 10) revealed the following values (D:L): 1.2 +/- 0.4 mumol/L (range, 0.6-1.8): 4.0 +/- 0.7 (range, 3.1-5.2), suggesting the feasibility of prenatal diagnosis in families at risk. PMID:8134166

  10. Simultaneous determination of four sulfur mustard-DNA adducts in rabbit urine after dermal exposure by isotope-dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Yajiao; Yue, Lijun; Nie, Zhiyong; Chen, Jia; Guo, Lei; Wu, Bidong; Feng, Jianlin; Liu, Qin; Xie, Jianwei

    2014-06-15

    Sulfur mustard (SM) is a classic vesicant agent, which has been greatly employed in several wars or military conflicts. The most lesion mechanism is its strong alkylation of DNAs in vivo. Until now there are four specific DNA adducts of SM identified for further retrospective detection, i.e., N(7)-(2-hydroxyethylthioethyl)-2'-guanine (N(7)-HETEG), bis(2-ethyl-N(7)-guanine)thioether (Bis-G), N(3)-(2-hydroxyethylthioethyl)-2'-adenine (N(3)-HETEA) and O(6)-(2-hydroxyethylthioethyl)-2'-guanine (O(6)-HETEG), respectively. Here, a novel and sensitive method of isotope-dilution ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combining with solid phase extraction was reported for the simultaneous determination of four SM-DNA adducts. A lower limit of detection of 2-5ngL(-1), and a lower limit of quantitation of 5-10ngL(-1) were achieved, respectively, and the recoveries ranged from 87% to 116%. We applied this method in the determination of four SM-DNA adducts in rabbit urine after dermal exposure by SM in three dose levels (2, 5, 15mgkg(-1)), so as to investigate the related metabolic behavior in vivo. For the first time, in SM exposed rabbit urine, our results revealed the relative accumulation abundance of four SM-DNA adducts, i.e., 67.4% for N(7)-HETEG, 22.7% for Bis-G, 9.8% for N(3)-HETEA, 0.1% for O(6)-HETEG, and significant dose and time dependent responses of these SM-DNA adducts. The four adducts were detectable after 8h, afterwards, their contents continuously increased, achieved maximum in the first two or three days and then gradually decreased till the end of one month. Meanwhile, the amounts of SM-DNA adducts were positively correlated with the exposure doses. PMID:24858262

  11. An optimized method for the accurate determination of patulin in apple products by isotope dilution-liquid chromatography/mass spectrometry.

    PubMed

    Seo, Miyeong; Kim, Byungjoo; Baek, Song-Yee

    2015-07-01

    Patulin, a mycotoxin produced by several molds in fruits, has been frequently detected in apple products. Therefore, regulatory bodies have established recommended maximum permitted patulin concentrations for each type of apple product. Although several analytical methods have been adopted to determine patulin in food, quality control of patulin analysis is not easy, as reliable certified reference materials (CRMs) are not available. In this study, as a part of a project for developing CRMs for patulin analysis, we developed isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC/MS/MS) as a higher-order reference method for the accurate value-assignment of CRMs. (13)C7-patulin was used as internal standard. Samples were extracted with ethyl acetate to improve recovery. For further sample cleanup with solid-phase extraction (SPE), the HLB SPE cartridge was chosen after comparing with several other types of SPE cartridges. High-performance liquid chromatography was performed on a multimode column for proper retention and separation of highly polar and water-soluble patulin from sample interferences. Sample extracts were analyzed by LC/MS/MS with electrospray ionization in negative ion mode with selected reaction monitoring of patulin and (13)C7-patulin at m/z 153→m/z 109 and m/z 160→m/z 115, respectively. The validity of the method was tested by measuring gravimetrically fortified samples of various apple products. In addition, the repeatability and the reproducibility of the method were tested to evaluate the performance of the method. The method was shown to provide accurate measurements in the 3-40 μg/kg range with a relative expanded uncertainty of around 1%. PMID:25925860

  12. [Determination of mono- to tri-chlorinated dibenzo-p-dioxins and dibenzofurans in stack gas using isotope dilution high resolution gas chromatography-high resolution mass spectrometry].

    PubMed

    Tang, Chen; Liu, Qipeng; Tian, Zhenyu; Xie, Huiting; Wang, Mengjing; Liu, Wenbin

    2014-09-01

    A method for the determination of mono- to tri-chlorinated dibenzo-p-dioxins and dibenzofurans (mono- to tri-CDD/Fs) in stack gas using isotope dilution high resolution gas chromatography-high resolution mass spectrometry (HRGC-HRMS) was developed. The sam- ples were extracted by Soxhlet extraction, and then the extracts were concentrated and purified using a multilayer silica gel column and a basic alumina column. The analytes were separated by HRGC on a DB-5MS column (30 m x 0.25 mm x 0.25 ?m) and determined by HRMS. The identi- fication of mono- to tri-CDD/Fs was based on the retention times of 13C-labelled standard and the abundance ratios of the two exacted mass-to-charge ratios. The quantitative analysis was performed using the ratios of the integrated areas of the 13C-labelled standards. This method had the recoveries ranging from 66.6% to 112.5% and the relative standard deviations (RSD) ranging from 19.9% to 40.5% (n = 5). The limits of detection (LODs) of this method for the mono- to tri-CDD/Fs were ranging from 0.027 to 0.485 ?g/L. Three stack gas samples from waste incinerators were measured using this method, with the recoveries ranging from 85.7% to 137.0% and the concentrations ranging from 11.4 to 9,183 pg/Nm3. The results indicated that the method can be applied to the precise determination of mono- to tri-CDD/Fs at trace level in stack gas. PMID:25752087

  13. Hydrogeochemical and isotopic tracers for identification of seasonal and long-term over-exploitation of the Pleistocene thermal waters.

    PubMed

    Rman, Nina

    2016-04-01

    The aim of the study was to develop and test an optimal and cost-effective regional quality monitoring system in depleted transboundary low-temperature Neogene geothermal aquifers in the west Pannonian basin. Potential tracers for identification of seasonal and long-term quality changes of the Pleistocene thermal waters were investigated at four multiple-screened wells some 720 to 1570 m deep in Slovenia. These thermal waters are of great balneological value owing to their curative effects and were sampled monthly between February 2014 and January 2015. Linear correlation and regression analyses, ANOVA and Kolmogorov-Smirnov two-sample test for two independent samples were used to determine their seasonal and long-term differences. Temperature, pH, electrical conductivity, redox potential and dissolved oxygen did not identify varying inflow conditions; however, they provided sufficient information to distinguish between the four end-members. Characteristic (sodium) and conservative (chloride) tracers outlined long-term trends in changes in quality but could not differentiate between the seasons. Stable isotopes of δ (18)O and δ (2)H were used to identify sequential monthly and long-term trends, and origin and mixing of waters, but failed to distinguish the difference between the seasons. A new local paleo-meteoric water line (δ (2)H = 9.2*δ (18)O + 26.3) was outlined for the active regional groundwater flow system in the Pannonian to Pliocene loose sandstone and gravel. A new regression line (δ (2)H = 2.3*δ (18)O-45.2) was calculated for thermomineral water from the more isolated Badenian to Lower Pannonian turbiditic sandstone, indicating dilution of formation water. Water composition was generally stable over the 1-year period, but long-term trends indicate that changes in quality occur, implying deterioration of the aquifers status. PMID:27007290

  14. Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry

    USGS Publications Warehouse

    Fantle, M.S.; Bullen, T.D.

    2009-01-01

    The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a specific isotope system, it should be noted that the same methods can be used to evaluate any isotope system of interest. ?? 2008 Elsevier B.V.

  15. New Measurement of the Thermal-capture Cross Section for the Minor Isotope 180W

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Szentmiklósi, L.; Révay, Zs.; Basunia, M. S.; Belgya, T.; Escher, J. E.; Krtička, M.; Summers, N. C.; Sleaford, B. W.

    2014-05-01

    Tungsten occurs naturally in five isotopic forms; four of them, 182,183,184,186W, contribute significantly to the overall elemental abundance (with each contribution between 14 and 30 %), whereas 180W only occurs at the 0.12 % level and is a minor isotope. Given its very low abundance, a precise measurement of the thermal neutron-capture cross section is extremely challenging. This work reports a new value of the thermal neutron-capture cross section from a direct 180W(n,γ) measurement using a guided-thermal beam at the Budapest Research Reactor, incident upon an 11.35 % enriched sample to induce prompt γ-ray activation within the sample. The thermal-capture cross section was determined as the sum of experimentally observed partial neutron-capture γ-ray cross sections feeding the ground state directly, and, the modeled contribution from the (unobserved) ground-state feeding predicted from statistical-model calculations using the Monte Carlo program DICEBOX. The preliminary value of the 180W(n,γ) thermal neutron-capture cross section is 20.5(42) b.

  16. The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids

    NASA Astrophysics Data System (ADS)

    Kyser, T. K.; Lesher, C. E.; Walker, D.

    Differences between the ?18O values of Si- and Fe-rich immiscible liquids in the system Fe2SiO4-KAlSi2O6-SiO2 (Fa-Lc-Q) in isothermal experiments at 0.1MPa have been determined experimentally to be 0.6 permil. The observed partition of 18O into the Si-rich liquid is consistent with previous experience with the preferential partition of 18O into Si-rich minerals in isothermal equilibrium with minerals of less polymerized structure. Crystallochemical principles affect the distribution of oxygen isotopes in coexisting isothermal liquids in the same way as they apply to isothermally coexisting crystals. The effects of Soret (thermal) diffusion on the distribution of oxygen isotopes in silicate liquids above the solvus in the system Fa-Lc-Q under conditions of an imposed temperature gradient of ca. 250C over 4mm and at 2GPa have also been investigated experimentally. Both the magnitude and the direction of separation of oxygen isotopes as a result of Soret diffusion are unexpected. For each of the silicate liquids, the cold end of the charge is enriched in 18O by up to 4.7 permil, and the highest ?18O values are associated with the most silica-poor compositions. The distribution of oxygen isotopes appears to be similar in each liquid, regardless of their chemical compositions, which is in contrast to the behaviour of cations whose distributions are compositionally dependent and characterized by strong crystallochemical effects wherein network-forming species such as Si and Al separate to the hot end and Mg, Fe and Ca are segregated preferentially to the cold end. Structural units in the melts are evidently less selective between oxygen isotopes than between cations, because oxygen redistribution over all possible sites in these units proceeds according to mass. Self-diffusion coefficients of oxygen in basaltic liquids estimated from the Soret experiments are in accord with those from other isotope tracer experiments, and comparable to those of Si. The possible effects of Soret diffusion on the oxygen isotopic composition of metasomatic veins in the mantle are examined in light of these data, and indicate that decay of the thermal gradients in the veins exceeds that of the diffusion of oxygen needed to produce variations in the ?18O values of mantle minerals. Variations in oxygen isotope ratios in most natural systems as a result of Soret effects are unlikely.

  17. Effect of the detector dead-time uncertainty on the analytical result of minor elements in low-alloy steel by isotope dilution/ICP sector field mass spectrometry.

    PubMed

    Nonose, Naoko; Hioki, Akiharu; Chiba, Koichi

    2014-01-01

    In the present study the effects of the detector dead-time and its uncertainties on the accuracy and uncertainty of isotope dilution mass spectrometry (IDMS) were considered through an interlaboratory study on the analysis of low-alloy steel by using an ICP-sector field mass spectrometer. Also, an optimized mixing ratio of the sample and the spike to obtain highly precise results was theoretically and experimentally investigated. The detector dead-time used in the interlaboratory study showed a negative value. However, it less affected the trueness of the analytical result if the dead-time correction for the measured isotope ratio was done properly. As many researchers have pointed out, the detector dead-time showed a clear mass dependence. Therefore, it is desirable to check the dead-time in every target element by using assay standards or isotopic standards, which would lead to an accurate result even if the detector dead-time is a negative value. On the other hand, the effect of the uncertainty of the detector dead-time can be minimized when both isotope ratios and ICP-MS signals of the [sample + spike] blend in IDMS are equal to those of [spike + assay standard] in reverse IDMS. From standpoints of error magnification theory and the precision of the isotope ratio measurement, an optimized isotope ratio of the sample-spike blend would be 1.0 for an element with a large difference in ten times and more between the atomic fractions of two isotopes used for IDMS. In the case of an element with no significant difference between the atomic fractions of two isotopes, an optimized isotope ratio can be calculated by a formula expressed as a function of the atomic fractions of the sample and the spike as well as the signal of ICP-MS. PMID:25213815

  18. OXYGEN ISOTOPIC COMPOSITIONS OF THE ALLENDE TYPE C CAIs: EVIDENCE FOR ISOTOPIC EXCHANGE DURING NEBULAR MELTING AND ASTEROIDAL THERMAL METAMORPHISM

    SciTech Connect

    Krot, A N; Chaussidon, M; Yurimoto, H; Sakamoto, N; Nagashima, K; Hutcheon, I D; MacPherson, G J

    2008-02-21

    Based on the mineralogy and petrography, coarse-grained, igneous, anorthite-rich (Type C) calcium-aluminum-rich inclusions (CAIs) in the CV3 carbonaceous chondrite Allende have been recently divided into three groups: (i) CAIs with melilite and Al,Ti-diopside of massive and lacy textures (coarse grains with numerous rounded inclusions of anorthite) in a fine-grained anorthite groundmass (6-1-72, 100, 160), (ii) CAI CG5 with massive melilite, Al,Ti-diopside and anorthite, and (iii) CAIs associated with chondrule material: either containing chondrule fragments in their peripheries (ABC, TS26) or surrounded by chondrule-like, igneous rims (93) (Krot et al., 2007a,b). Here, we report in situ oxygen isotopic measurements of primary (melilite, spinel, Al,Ti-diopside, anorthite) and secondary (grossular, monticellite, forsterite) minerals in these CAIs. Spinel ({Delta}{sup 17}O = -25{per_thousand} to -20{per_thousand}), massive and lacy Al,Ti-diopside ({Delta}{sup 17}O = -20{per_thousand} to -5{per_thousand}) and fine-grained anorthite ({Delta}{sup 17}O = -15{per_thousand} to -2{per_thousand}) in 100, 160 and 6-1-72 are {sup 16}O-enriched relative spinel and coarse-grained Al,Ti-diopside and anorthite in ABC, 93 and TS26 ({Delta}{sup 17}O ranges from -20{per_thousand} to -15{per_thousand}, from -15{per_thousand} to -5{per_thousand}, and from -5{per_thousand} to 0{per_thousand}, respectively). In 6-1-72, massive and lacy Al,Ti-diopside grains are {sup 16}O-depleted ({Delta}{sup 17}O {approx} -13{per_thousand}) relative to spinel ({Delta}{sup 17}O = -23{per_thousand}). Melilite is the most {sup 16}O-depleted mineral in all Allende Type C CAIs. In CAI 100, melilite and secondary grossular, monticellite and forsterite (minerals replacing melilite) are similarly {sup 16}O-depleted, whereas grossular in CAI 160 is {sup 16}O-enriched ({Delta}{sup 17}O = -10{per_thousand} to -6{per_thousand}) relative to melilite ({Delta}{sup 17}O = -5{per_thousand} to -3{per_thousand}). We infer that CAIs 100, 160 and CG5 experienced melting in an {sup 16}O-rich ({Delta}{sup 17}O < -20{per_thousand}) nebular gas in the CAI-forming region. The Type C and Type-B-like portions of CAI 6-1-72 experienced melting in an {sup 16}O-depleted ({Delta}{sup 17}O {ge} -13{per_thousand}) nebular gas. CAIs ABC, TS26 and 93 experienced isotopic exchange during re-melting in the presence of an {sup 16}O-poor ({Delta}{sup 17}O {ge} -10{per_thousand}) nebular gas in the chondrule-forming region(s). Subsequently, Allende Type C CAIs experienced post-crystallization isotopic exchange with an {sup 16}O-poor reservoir that affected largely melilite and anorthite. Because pseudomorphic replacement of lacy melilite by grossular, monticellite and forsterite occurred during thermal metamorphism, some oxygen isotopic exchange of melilite and anorthite must have continued after formation of these secondary minerals. We suggest that some or all oxygen isotopic exchange in melilite and anorthite occurred during fluid-assisted thermal metamorphism on the CV parent asteroid. Similar processes may have also affected melilite and anorthite of CAIs in metamorphosed CO chondrites.

  19. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  20. In vivo prediction of goat kids body composition from the deuterium oxide dilution space determined by isotope-ratio mass spectrometry.

    PubMed

    Lerch, S; Lastel, M L; Grandclaudon, C; Brechet, C; Rychen, G; Feidt, C

    2015-09-01

    Deuterium oxide dilution space (DOS) determination is one of the most accurate methods for in vivo estimation of ruminant body composition. However, the time-consuming vacuum sublimation of blood preceding infrared spectroscopy analysis, which is traditionally used to determine deuterium oxide (DO) concentration, limits its current use. The use of isotope-ratio mass spectrometry (IRMS) to determine the deuterium enrichment and thus quantify DO in plasma could counteract this limitation by reducing the sample preparation for plasma deproteinisation through centrifugal filters. The aim of this study was to validate the DOS technique using IRMS in growing goat kids to establish in vivo prediction equations of body composition. Seventeen weaned male Alpine goat kids (8.6 wk old) received a hay-based diet supplemented with 2 types of concentrates providing medium ( = 9) or high ( = 8) energy levels. Kids were slaughtered at 14.0 ( = 1, medium-energy diet), 17.2 ( = 4, medium-energy diet, and = 4, high-energy diet), or 21.2 wk of age ( = 4, medium-energy diet, and = 4, high-energy diet). Two days before slaughter, DOS was determined after an intravenous injection of 0.2 g DO/kg body mass (BM) and the resulting study of DO dilution kinetics from 4 plasma samples (+5, +7, +29, and +31 h after injection). The deuterium enrichment was analyzed by IRMS. After slaughter, the gut contents were discarded, the empty body (EB) was minced, and EB water, lipid, protein, ash, and energy contents were measured by chemical analyses. Prediction equations for body components measured postmortem were computed from in vivo BM and DOS. The lack of postmortem variation of fat-free EB composition was confirmed (mean of 75.3% [SD 0.6] of water), and the proportion of lipids in the EB tended ( = 0.06) to be greater for the high-energy diet (13.1%) than for the medium-energy diet (11.1%). There was a close negative relationship (residual CV [rCV] = 3.9%, = 0.957) between EB water and lipid content, whereas DOS was closely related to total body water (rCV = 2.9%, = 0.944) but DOS overestimated it by 5.8%. Adding DOS to BM improved the in vivo predictions of EB lipid and energy content (rCV = 13.1% and rCV = 7.9%, respectively) but not those of protein or ash. Accuracy of the obtained prediction equations was similar to those reported in studies determining DOS by infrared spectroscopy. Therefore, the use of IRMS to quantify DOS provides a highly accurate measure of the in vivo body composition in goat kids. PMID:26440346

  1. An update on the Thermal Gradient Induced Non -Mass-Dependent Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Sun, T.; Niles, P. B.; Bao, H.; Socki, R. A.

    2012-12-01

    Mass flow and compositional gradient (elemental and isotope separation) occur when fluid(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been experimentally and theoretically investigated for more than a century, although there has not been a satisfactory theory to date. Nevertheless, theories predict that when dealing with a multi-isotope system, such as O16-O17-O18, S32-S33-S34-S36, or Ne20-Ne21-Ne22, the mass difference is the only term in the thermal diffusion separation factors that distinguish one isotope pair from another. Thus a mass dependent relationship is expected. For O-bearing molecules the α17O/ α 18O is expected to be at 0.5 to 0.515, and for S-bearing molecules the α33S/ α 34S at 0.5 to 0.508, where α is isotope fractionation factor between cold and warm reservoirs. We recently reported that thermal diffusion generates non-mass dependent (NMD) isotope fractionation for low-pressure O2 and SF6 gases. The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. It was suggested that additional (not mass related) terms need to be theoretically considered in the order to account for the observations. In addition to the pressure and temperature dependency illustrated in our earlier report, the role of turbulence, batch gas effects, and whether it is only a transient, non-equilibrium effect have been examined in this study. We report here new results on low-pressure O2 gas thermal diffusion. (1) In a purely diffusive vertical two-bulb setting with colder reservoir at lower position, time course experiments showed that the NMD effect persists after the system reaches isotopic steady state between warmer and colder compartments, suggesting that the effect is not a transient one. (2) When the average temperature approaching condensation point for O2, the 17O switches to migrating preferentially towards the warmer reservoir instead of the colder one. (3) The NMD effects are observed within a range of turbulence in a light-bulb-type system with a hot center (~700C) and a cold wall (-20C).(4) When batch gases, e.g. N2, He, are added, the NMD effect for O2 does not vanish but its temperature and pressure dependencies are affected. Our new data further indicate that the NMD effect is largely controlled by the nature of molecular collisions during thermal diffusion and the effect may be considerable in natural environments, e.g. planetary atmosphere and interstellar nebulae.

  2. Deuterium isotopic exchangeability of resin and amber at low thermal stress under hydrous conditions

    NASA Astrophysics Data System (ADS)

    Gonzalez, G.; Tappert, R.; Wolfe, A. P.; Muehlenbachs, K.

    2012-04-01

    Hydrous deuterium-exchange experiments have shown that a significant fraction of the original D/H composition of bulk kerogens, bitumens and expelled oils may participate in isotopic exchange reactions during burial diagenesis. However, it is unknown to what extent plant-derived secondary metabolites, namely resins and their fossil counterpart amber, exchange hydrogen isotopes following their biosynthesis. This situation hinders the application of resin D/H measurements in paleoenvironmental reconstruction. Here, we assess explicitly hydrogen exchange in resins and ambers using a series of immersion experiments in deuterated (D-enriched) waters over a period of several months at several temperatures. We are especially interested in assessing whether significant H-isotopic exchange occurs between resins and meteoric waters during early thermal maturation and polymerization. At 90°C, equivalent to ~3km of burial in most diagenetic regimes, modern conifer and angiosperm resins have an average post-metabolic H exchange of 4.6%, compared to only 1.1% for mature, polymerized ambers. At 55°C the degree of exchange is considerably lower: 1.9% for resins and 0.6% for ambers. These results indicate that most D/H isotopic exchange occurs prior to polymerization reactions, thereby confirming that D/H measurements from amber constitute a potentially sensitive proxy for environmental change.

  3. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, A. N.; Haley, B. A.; Tripati, A. K.; Frank, M.

    2015-06-01

    Global warming during the Paleocene Eocene Thermal Maximum (PETM) ~55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role for changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites and comparing data with published data from fossil fish debris to reconstruct past deep ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth and benthic foraminiferal ?13C to constrain regions of convection. There is some evidence from combining Nd isotope and ?13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for global recovery of the ocean-atmosphere system after the PETM.

  4. Disturbance of isotope systematics in meteorites during shock and thermal metamorphism and implications for shergottite chronology

    SciTech Connect

    Gaffney, A M; Borg, L E; Asmerom, Y

    2008-12-10

    Shock and thermal metamorphism of meteorites from differentiated bodies such as the Moon and Mars have the potential to disturb chronometric information contained in these meteorites. In order to understand the impact-related mechanisms and extent of disturbance to isochrons, we undertook experiments to shock and heat samples of 10017, a 3.6 billion year old lunar basalt. One sub-sample was shocked to 55 GPa, a second subsample was heated to 1000 C for one week, and a third sub-sample was maintained as a control sample. Of the isotope systems analyzed, the Sm-Nd system was the least disturbed by shock or heat, followed by the Rb-Sr system. Ages represented by the {sup 238}U-{sup 206}Pb isotope system were degraded by shock and destroyed with heating. In no case did either shock or heating alone result in rotated or reset isochrons that represent a spurious age. In some cases the true crystallization age of the sample was preserved, and in other cases age information was degraded or destroyed. Although our results show that neither shock nor thermal metamorphism alone can account for the discordant ages represented by different isotope systems in martian meteorites, we postulate that shock metamorphism may render a meteorite more susceptible than unshocked material to subsequent disturbance during impact-related heating or aqueous alteration on Mars or Earth. The combination of these processes may result in the disparate chronometric information preserved in some meteorites.

  5. Influence of thermal maturity on the hydrogen isotope content of extractable hydrocarbons

    NASA Astrophysics Data System (ADS)

    Radke, J.; Bechtel, A.; Pttmann, W.; Gleixner, G.

    2003-04-01

    Based on hydrogen isotope analysis of hydrocarbons from recent sediments it is suggested that compound specific hydrogen isotope ratios are a new proxy to reconstruct the palaeoclimate (Sauer et al., 2001). However, it remains unclear if transformation of carbon bound hydrogen with environmental water during maturation or thermal methanogenesis might influence the observed values. Short-term experiments excluded exchange reactions of deuterium from alkanes (Schimmelmann et al., 1999), however, thermally stressed kerogens are enriched in deuterium (Schoell, 1984). Therefore, we investigated the influence of maturity on the deltaD-values of alkanes and acyclic isoprenoids. In the Kupferschiefer horizon from the Polish Zechstein Basin thermal maturity of organic matter is correlated to burial depth yielding a natural long-term exchange experiment. The deltaD-values of extracted hydrocarbons linearly correlated with thermal maturity. These results enable the correction of deltaD values from biomarkers with known maturity and therefore expanding palaeoclimatic reconstructions using deltaD values to the geological past. References: SAUER, P.E., EGLINTON, T.I., HAYES, J.M., SCHIMMELMANN, A. &SESSIONS, A.L. (2001) Compound specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochimica et Cosmochimica Acta, 65(2), 213-222. SCHIMMELMANN, A., LEWAN, M.D. &WINTSCH, R.P. (1999) D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III. Geochimica et Cosmochimica Acta, 63(22), 3751-3766. SCHOELL, M. (1984) Wasserstoff- und Kohlenstoffisotope in organischen Substanzen, Erdlen und Erdgasen. Schweitzerbart'sche Verlagsbuchhandlung, Stuttgart. Reihe D (67), 161pp.

  6. Monitoring urinary metabolites resulting from sulfur mustard exposure in rabbits, using highly sensitive isotope-dilution gas chromatography-mass spectrometry.

    PubMed

    Nie, Zhiyong; Zhang, Yajiao; Chen, Jia; Lin, Ying; Wu, Bidong; Dong, Yuan; Feng, Jianlin; Liu, Qin; Xie, Jianwei

    2014-08-01

    A highly sensitive method for the determination of sulfur mustard (SM) metabolites thiodiglycol (TDG) and thiodiglycol sulfoxide (TDGO) in urine was established and validated using isotope-dilution negative-ion chemical ionization (NICI) gas chromatography-mass spectrometry (GC-MS). TDGO in the samples was reduced with TiCl3, and then determined together with TDG as a single analyte. The sample preparation procedures, including two solid-phase-extraction (SPE) clean-up steps, were optimized to improve the sensitivity of the method. The limits of detection (LOD) for both TDG and TDG plus TDGO (TDG + TDGO) were 0.1 ng mL(-1), and the limits of quantitation (LOQ) for both were 0.3 ng mL(-1). The method was used in a rabbit cutaneous SM exposure model. Domestic rabbits were exposed to neat liquid SM at three dosage levels (0.02, 0.05, and 0.15 LD50), and the urinary excretion of four species of hydrolysis metabolites, namely free TDG, free plus conjugated TDG (total TDG), free TDG + TDGO, and free plus conjugated TDG + TDGO (total TDG + TDGO), was evaluated to investigate the metabolic processes. The total urinary excretion profiles of the metabolites, including the peak time, time window, and dose-response and time-response relationships, were clarified. The results revealed that the concentrations of TDG and TDG + TDGO in the urine increased quickly and then decreased rapidly in the first two days after SM exposure. The cumulative amount of total TDG + TDGO excreted in urine during the first five days accounted for 0.5-1% of the applied dose of SM. It is also concluded that TDG and TDGO in urine existed mainly in free form, the levels of glucuronide and of sulfate conjugates of TDG or TDGO were very low, and most hydrolysis metabolites were present in the oxidized form (TDGO). The study indicates that the abnormal increase of TDG and TDGO excretion levels can be used as a diagnostic indicator and establishes a reference time-window for retrospective analysis and sampling after SM exposure. PMID:24924210

  7. Selenium and Tellurium concentrations of ultradepleted peridotites determined by isotope dilution ICPMS: implications for Se-Te systematics of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Knig, S.; Luguet, A.; Lorand, J.-P.; Wombacher, F.; Lissner, M.

    2012-04-01

    As for highly siderophile elements, selenium and tellurium may constitute key tracers for planetary processes such as formation of the Earth's core and the Late Veneer composition, provided that their geochemical behaviour and abundances in the primitive upper mantle (PUM) are constrained. Within this scope, we have developed a high precision analytical method for the simultaneous determination of selenium and tellurium concentrations from a single sample aliquot and various rock matrices, including ultradepleted peridotites. The technique employs isotope dilution, thiol cotton fiber (TCF) separation and hydride generation MC-ICP-MS. A selection of international mafic and ultramafic rock reference materials BIR-1, BE-N, TDB-1, UB-N, FON B 93, BIR-1 and BHVO-2 with a range of 30 to 350 ppb Se and 0.7 to 12 ppb Te show external reproducibilities of 3 to 8% for Se and 0.4 to 11% for Te (2 relative standard deviations (r.s.d.)). We have applied this method to a suite of refractory mantle peridotites (Al2O3 <1.5 wt. %) from Lherz, previously shown to be strongly and uniformly depleted in Se, Te and incompatible elements by high degree of partial melting (20 5%). In contrast to fertile lherzolites which remain at broadly chondritic values (Se/Te = 9), the ultradepleted harzburgites show highly fractionated and up to suprachondritic Se/Te (< 35) that correlate with decreasing Te concentrations. The fractionation is displayed by the depleted peridotites as well as multiple analysis of a single Lherz harzburgite sample (64-3). This shows 1) a strong sample heterogeneity effect for Te and 2) a more incompatible behaviour of Te compared to Se on the whole rock scale, once base metal sulfides are highly depleted and in some cases entirely consumed by partial melting. The marked differences in Se-Te systematics observed between fertile lherzolites and depleted harzburgites can be explained by the combined effect of i) different abundances and proportions of residual and metasomatic base metal sulfides ii) discrete micrometric platinum-group minerals. In addition to re-fertilized lherzolites, harzburgites therefore offer new insights into the behaviour of Se and Te during mantle depletion which is a prerequisite to further constrain the Se and Te abundances of the primitive upper mantle.

  8. Discovery and microassay of a nitrite-dependent carbonic anhydrase activity by stable-isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Zinke, Maximilian; Hanff, Erik; Bhmer, Anke; Supuran, Claudiu T; Tsikas, Dimitrios

    2016-01-01

    The intrinsic activity of carbonic anhydrase (CA) is the hydration of CO2 to carbonic acid and its dehydration to CO2. CA may also function as esterase and phosphatase. Recently, we demonstrated that renal CA is mainly responsible for the reabsorption of nitrite (NO2 (-)) which is the most abundant reservoir of the biologically highly potent nitric oxide (NO). By means of a stable-isotope dilution GC-MS method, we discovered a novel CA activity which strictly depends upon nitrite. We found that bovine erythrocytic CAII (beCAII) catalyses the incorporation of (18)O from H 2 (18) O into nitrite at pH 7.4. After derivatization with pentafluorobenzyl bromide, gas chromatographic separation and mass spectrometric analysis, we detected ions at m/z 48 for singly (18)O-labelled nitrite ((16)O=N-(18)O(-)/(18)O=N-(16)O(-)) and at m/z 50 for doubly (18)O-labelled nitrite ((18)O=N-(18)O(-)) in addition to m/z 46 for unlabelled nitrite. Using (15)N-labelled nitrite ((15)NO2 (-), m/z 47) as an internal standard and selected-ion monitoring of m/z 46, m/z 48, m/z 50 and m/z 47, we developed a GC-MS microassay for the quantitative determination of the nitrite-dependent beCAII activity. The CA inhibitors acetazolamide and FC5 207A did not alter beCAII-catalysed formation of singly and doubly (18)O-labelled nitrite. Cysteine and the experimental CA inhibitor DIDS (a diisothiocyanate) increased several fold the beCAII-catalysed formation of the (18)O-labelled nitrite species. Cysteine, acetazolamide, FC5 207A, and DIDS by themselves had no effect on the incorporation of (18)O from H 2 (18) O into nitrite. We conclude that erythrocytic CA possesses a nitrite-dependent activity which can only be detected when nitrite is used as the substrate and the reaction is performed in buffers of neutral pH values prepared in H 2 (18) O. This novel CA activity, i.e., the nitrous acid anhydrase activity, represents a bioactivation of nitrite and may have both beneficial (via S-nitrosylation and subsequent NO release) and possibly adverse (via C- and N-nitrosylation) effects in living organisms. PMID:26334347

  9. Nuclear Isotopic Dilution of Highly-Enriched Uranium-235 and Uranium-233 by Dry Blending via the RM-2 Mill Technology

    SciTech Connect

    N. A. Chipman; R. N. Henry; R. K. Rajamani; S. Latchireddi; V. Devrani; H. Sethi; J. L. Malhotra

    2004-02-01

    The United States Department of Energy has initiated numerous activities to identify strategies to disposition various excess fissile materials. Two such materials are the off-specification highly enriched uranium-235 oxide powder and the uranium-233 contained in unirradiated nuclear fuel both currently stored at the Idaho National Engineering and Environmental Laboratory. This report describes the development of a technology that could dilute these materials to levels categorized as low-enriched uranium, or further dilute the materials to a level categorized as waste. This dilution technology opens additional pathways for the disposition of these excess fissile materials as existing processing infrastructure continues to be retired.

  10. An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects

    SciTech Connect

    Machrafi, Hatim; Cavadias, Simeon; Guibert, Philippe

    2008-11-15

    In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N{sub 2} and CO{sub 2}, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO, and CH{sub 2}O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH{sub 2}O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 C are maintained. The inlet temperature is held at 70 C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH{sub 2}O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (author)

  11. Gas and isotope chemistry of thermal features in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bergfeld, D.; Lowenstern, Jacob B.; Hunt, Andrew G.; Shanks, W.C. Pat, III; Evans, William

    2011-01-01

    This report presents 130 gas analyses and 31 related water analyses on samples collected from thermal features at Yellowstone between 2003 and 2009. An overview of previous studies of gas emissions at Yellowstone is also given. The analytical results from the present study include bulk chemistry of gases and waters and isotope values for water and steam (delta18O, dealtaD), carbon dioxide (delta13C only), methane (delta13C only), helium, neon, and argon. We include appendixes containing photos of sample sites, geographic information system (GIS) files including shape and kml formats, and analytical results in spreadsheets. In addition, we provide a lengthy discussion of previous work on gas chemistry at Yellowstone and a general discussion of the implications of our results. We demonstrate that gases collected from different thermal areas often have distinct chemical signatures, and that differences across the thermal areas are not a simple function of surface temperatures or the type of feature. Instead, gas chemistry and isotopic composition are linked to subsurface lithologies and varying contributions from magmatic, crustal, and meteoric sources.

  12. Ammonium in thermal waters of Yellowstone National Park: Processes affecting speciation and isotope fractionation

    NASA Astrophysics Data System (ADS)

    Holloway, JoAnn M.; Nordstrom, D. Kirk; Bhlke, J. K.; McCleskey, R. Blaine; Ball, James W.

    2011-08-01

    Dissolved inorganic nitrogen, largely in reduced form ( NH(T)?NH4(aq)++NH3(aq)o), has been documented in thermal waters throughout Yellowstone National Park, with concentrations ranging from a few micromolar along the Firehole River to millimolar concentrations at Washburn Hot Springs. Indirect evidence from rock nitrogen analyses and previous work on organic compounds associated with Washburn Hot Springs and the Mirror Plateau indicate multiple sources for thermal water NH 4(T), including Mesozoic marine sedimentary rocks, Eocene lacustrine deposits, and glacial deposits. A positive correlation between NH 4(T) concentration and ? 18O of thermal water indicates that boiling is an important mechanism for increasing concentrations of NH 4(T) and other solutes in some areas. The isotopic composition of dissolved NH 4(T) is highly variable (? 15N = -6 to +30) and is positively correlated with pH values. In comparison to likely ? 15N values of nitrogen source materials (+1 to +7), high ? 15N values in hot springs with pH >5 are attributed to isotope fractionation associated with NH3(aq)o loss by volatilization. NH 4(T) in springs with low pH typically is relatively unfractionated, except for some acid springs with negative ? 15N values that are attributed to NH3(g)o condensation. NH 4(T) concentration and isotopic variations were evident spatially (between springs) and temporally (in individual springs). These variations are likely to be reflected in biomass and sediments associated with the hot springs and outflows. Elevated NH 4(T) concentrations can persist for 10s to 1000s of meters in surface waters draining hot spring areas before being completely assimilated or oxidized.

  13. Ammonium in thermal waters of Yellowstone National Park: processes affecting speciation and isotope fractionation

    USGS Publications Warehouse

    Holloway, J.M.; Nordstrom, D.K.; Böhlke, J.K.; McCleskey, R.B.; Ball, J.W.

    2011-01-01

    Dissolved inorganic nitrogen, largely in reduced form (NH4(T)≈NH4(aq)++NH3(aq)o), has been documented in thermal waters throughout Yellowstone National Park, with concentrations ranging from a few micromolar along the Firehole River to millimolar concentrations at Washburn Hot Springs. Indirect evidence from rock nitrogen analyses and previous work on organic compounds associated with Washburn Hot Springs and the Mirror Plateau indicate multiple sources for thermal water NH4(T), including Mesozoic marine sedimentary rocks, Eocene lacustrine deposits, and glacial deposits. A positive correlation between NH4(T) concentration and δ18O of thermal water indicates that boiling is an important mechanism for increasing concentrations of NH4(T) and other solutes in some areas. The isotopic composition of dissolved NH4(T) is highly variable (δ15N = −6‰ to +30‰) and is positively correlated with pH values. In comparison to likely δ15N values of nitrogen source materials (+1‰ to +7‰), high δ15N values in hot springs with pH >5 are attributed to isotope fractionation associated with NH3(aq)o loss by volatilization. NH4(T) in springs with low pH typically is relatively unfractionated, except for some acid springs with negative δ15N values that are attributed to NH3(g)o condensation. NH4(T) concentration and isotopic variations were evident spatially (between springs) and temporally (in individual springs). These variations are likely to be reflected in biomass and sediments associated with the hot springs and outflows. Elevated NH4(T) concentrations can persist for 10s to 1000s of meters in surface waters draining hot spring areas before being completely assimilated or oxidized.

  14. Light-stable-isotope studies of spring and thermal waters from the Roosevelt Hot Springs and Cove Fort/Sulphurdale Thermal areas and of clay minerals from the Roosevelt Hot Springs thermal area

    SciTech Connect

    Bowman, J.R.; Rohrs, D.T.

    1981-10-01

    The isotopic compositions of hydrogen and oxygen have been determined for spring waters and thermal fluids from the Roosevelt Hot Springs and Cove Fort-Sulphurdale thermal areas, for clay mineral separates from shallow alteration of the acid-sulfate type in the Roosevelt Hot Springs area, and for spring and well waters from the Goshen Valley area of central Utah. The water analyses in the Roosevelt Hot Springs thermal area confirm the origin of the thermal fluids from meteoric water in the Mineral Range. The water analyses in the Cove Fort-Sulphurdale thermal area restrict recharge areas for this system to the upper elevations of the Pavant and/or Tushar Ranges. The low /sup 18/O shift observed in these thermal fluids (+0.7 permil) implies either high water/rock ratios or incomplete isotope exchange or both, and further suggests minimal interaction between the thermal fluid and marble country rock in the system. Hydrogen and oxygen-isotope data for clay mineral separates from shallow alteration zones in the Roosevelt Hot Springs thermal system suggest that the fluids responsible for the shallow acid-sulfate alteration were in part derived from condensed steam produced by boiling of the deep reservoir fluid. The isotope evidence supports the chemical model proposed by Parry et al. (1980) for origin of the acid-sulfate alteration at Roosevelt Hot Springs. The isotope analyses of spring and well waters from the Goshen Valley area indicate only a general correlation of isotope composition, salinity and chemical temperatures.

  15. Chemical and isotope compositions of nitric thermal water of Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Plyusnin, A. M.; Chernyavsky, M. K.; Peryazeva, E. G.

    2010-05-01

    Three types of hydrotherms (nitric, carbonaceous and methane) are distinguished within the Baikal Rift Zone. The unloading sites of nitric therms are mostly located in the central and north-eastern parts of the Rift. Several chemical types are found among nitric therms (Pinneker, Pisarsky, Lomonosov, 1968; Lomonosov, 1974, etc.). The formation of terms being various in chemical compositions is associated with effect of several factors, i.e. various chemical, mineralogical compositions of rocks, various temperatures, extent of interaction in water-rock system, etc. The ratio data of water oxygen and hydrogen isotopes of the studied thermal springs indicate that water is largely of meteoric origin. All established ratios of oxygen (?18OSMOW = -19.5 - -17.5) and hydrogen (?DSMOW = -155 - - 130) isotopes are along the line of meteoric waters. Oxygen values from -20 to -5 are characteristic of the current meteoric and surface waters in the region. The average value equals -16.5 in Lake Baikal. By our data, a large group with oxygen lighter isotope composition that corresponds to isotope ratio being specific for glaciers is revealed in fissure-vein waters. Significant shift toward the oxygen getting heavier is observed in some springs. It is mostly observed in the springs that form chemical composition within the area of the intrusive and metamorphic rock distribution. As a result of hydrolysis reaction of alumosilicates, heavy isotope passes from rocks into water molecule, whereas oxygen heavy isotope passes from rocks into solutes during decomposition of carbonates. High contents of fluoride and sulfate-ions are specific feature of the Baikal Rift Zone most nitric therms. Water is tapped in one of the drill holes, where fluoride-ion dominates in its anion composition (46.7 mg/dm3) and pH reaches 10, 12. The sulphate sulphur isotope composition studies carried out allow to conclude that its heavy isotope (?34SCDT = +25 - +30) prevails in the therms. Sulphate-ion enters solution not as a result of sulfide oxidation, but dissolution of sulphate minerals of may be originally sedimentary and magmatic rocks. Microelement contents in waters depend on total mineralization. In particular, this regulation is clearly observed for rare alkaline and alkaline-earth elements. We established dependence of one microelement concentrations on temperature of solutions (Sc, Al, W) and that of the other ones - on extent of water - rock (Sr, Ba) interaction. Active use of thermal water for purposes of thermal energetic can contribute to inflow of highly mineralized solutions into water collecting reservoir and result in breakdowns of heat-net work. The study has been carried out with financial support of RFBR. Grant N09-05-00726, Integration Project N87 of SB RAS.

  16. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE PAGESBeta

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  17. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    SciTech Connect

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production systems footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  18. On a thermal analysis of a second stripper for rare isotope accelerator.

    SciTech Connect

    Momozaki, Y.; Nolen, J.; Nuclear Engineering Division

    2008-08-04

    This memo summarizes simple calculations and results of the thermal analysis on the second stripper to be used in the driver linac of Rare Isotope Accelerator (RIA). Both liquid (Sodium) and solid (Titanium and Vanadium) stripper concepts were considered. These calculations were intended to provide basic information to evaluate the feasibility of liquid (thick film) and solid (rotating wheel) second strippers. Nuclear physics calculations to estimate the volumetric heat generation in the stripper material were performed by 'LISE for Excel'. In the thermal calculations, the strippers were modeled as a thin 2D plate with uniform heat generation within the beam spot. Then, temperature distributions were computed by assuming that the heat spreads conductively in the plate in radial direction without radiative heat losses to surroundings.

  19. Cold source moderator vessel development for the High Flux Isotope Reactor: Thermal-hydraulic studies

    SciTech Connect

    Williams, P.T.; Lucas, A.T.; Wendel, M.W.

    1998-07-01

    A project is underway at Oak Ridge National Laboratory (ORNL) to design, test, and install a cold neutron source facility in the High Flux Isotope Reactor (HFIR). This new cold source employs supercritical hydrogen at cryogenic temperatures both as the medium for neutron moderation and as the working fluid for removal of internally-generated nuclear heating. The competing design goals of minimizing moderator vessel mass and providing adequate structural integrity for the vessel motivated the requirement of detailed multidimensional thermal-hydraulic analyses of the moderator vessel as a critical design subtask. This paper provides a summary review of the HFIR cold source moderator vessel design and a description of the thermal-hydraulic studies that were carried out to support the vessel development.

  20. Hydrogen and oxygen isotope geochemistry of cold and warm springs from the Tuscarora, Nevada thermal area

    SciTech Connect

    Bowman, J.R.; Cole, D.

    1982-06-01

    Eighteen cold and warm spring water samples from the Tuscarora, Nevada KGRA have been analyzed for hydrogen and oxygen isotope composition and fluid chemistry. Warm springs have deltaD values (-128 to -137 permil) significantly lower than those of cold springs to the north and east of the area, but similar to the deltaD values of cold springs to the west and south (-131 to -135 permil). The recharge area for the warm springs is unlikely to be to the immediate north, which is the local topographic highland in the area. The hydrogen isotope data would permit recharge from areas to the southwest or from high elevations to the southeast (Independence Mountains), a sector consistent with electrical resistivity evidence of fluid flow. Warm springs are HCO/sub 3//sup -/-rich waters, enriched by a factor of 3 to 10 in Na, HCO{sub 3}/{sup -} and SiO{sub 2} relative to local cold springs. Average quartz (no steam loss) and Na/K/Ca geothermometer estimates suggest subsurface temperatures of 145{sup 0} and 196{sup 0}C, respectively. The warm springs exhibit poor correlations between either hydrogen or oxygen isotope composition and water temperature or chemistry. The absence of such correlations suggests that there is no single coherent pattern of cold water mixing or evaporation in the thermal spring system.

  1. Noble gas isotopic signatures in thermal waters of the Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Tsur, Neta; Kaudse, Tillmann; Aeschbach-Hertig, Werner

    2014-05-01

    Noble gas isotope composition in thermal groundwater provides information about crust-mantle interactions, in form of geotectonic activity, volcanism and advective heat transfer. The knowledge of the geothermal state of the crust is useful for the indication of thermal energy resources, which are of significant environmental and economic importance. In this study, groundwater samples were collected in Israel and Jordan in 2012, along the east and west sides of the central Dead Sea Transform. The helium isotope ratio, 3He/4He, is a well-established marker to discriminate three different geochemical reservoirs: Atmosphere, crust and mantle. The distinct isotope ratios in each reservoir make it possible to separate the total helium concentration in groundwater into mantle, crustal (radiogenic) and atmospheric components. The 3He/4He ratios of all sampled waters exceed the typical crustal ratio, indicating contributions of mantle-derived helium to the total helium concentration. Most of the samples contain less than 3% atmospheric helium, whereas the mantle-derived helium component ranges from 1% to 61%. In Israel, a clear trend is observed. Samples from the northern parts of the sampling area show higher 3He/4He ratios than samples from southern parts. These findings confirm Torfstein et al. [1], who analyzed thermal groundwaters from Israel. In our data from Jordan, however, no north-south trend is seen, but a local anomaly is observed in the area between the Dead Sea and the Sea of Galilee, with a 3He/4He ratio that is 5 times higher than the atmospheric 3He/4He ratio. Moreover, some samples from North Jordan exhibit only minor mantle contributions, compared to the samples from the north of Israel. Our results emphasize the importance of local faulting patterns, which enable a better transfer of mantle derived helium into the shallow crust. In addition to helium, the origin of CO2 in the water was examined. Measurements of ?13C suggest that CO2 originates from metamorphic processes rather than from the mantle. Furthermore, ?18O and ?2H data indicate a water reservoir temperature above 100C only at one location. References: [1] Torfstein, A. et al. 2013: Helium isotopes in Dead Sea Transform waters. Chemical Geology, 352, 188-201

  2. Stable carbon isotope compositions during the thermal alteration of organic matter

    SciTech Connect

    Conkright, M.E.

    1989-01-01

    The use of the amount and carbon isotopic composition of methane as a maturation index was tested by pyrolysis of sedimentary organic carbon (kerogen) at 600 C. The parameters used to describe the maturity are CMR (CH{sub 4}-C/kerogen carbon) and the {Delta}{sup 13}C ({delta}{sup 13}C{sub CH4-} {delta}{sup 13}C{sub OC}). With increasing maturities, smaller amounts of methane are generated and there is a decrease in the fraction between methane and the parent carbon. The pyrolysis of Bakken shale samples, with varying maturities, show high correlation coefficients between the CMR and {Delta}{sup 13}C vs. the atomic H/C ratios (r = +0.91 and {minus}0.89 respectively) which indicates that each of these parameters, independently, can be used as a maturity index. The Bakken shale pyrolysis experiments also show that methane generated from the most thermally altered samples is up to 2% heavier than the parent carbon. In addition, methane-CO{sub 2} exchange experiments, at 600 C, show a shift toward heavier methane values after heating of CH{sub 4} and CO{sub 2} for 504 hrs. The isotopic composition of methane formed under high temperature regimes may be determined by exchange reactions if any CO{sub 2} is present. For these reasons, it becomes difficult to use carbon isotope compositions of methane to distinguish between thermogenic and mantle methane without any other supporting evidence. The effect of metagenesis on the isotopic composition of organic carbon was determined for a suite kerogen samples from the Cape Verde Rise, DSDP Leg 41, Site 386. With increasing maturities, the {delta}{sup 13}C-OC values are heavier due to a loss of lighter carbon in the form of methane. This is shown by a decrease in the carbon mole ratio, with increasing maturities.

  3. Dilution Confusion: Conventions for Defining a Dilution

    ERIC Educational Resources Information Center

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect

  4. Dilution Confusion: Conventions for Defining a Dilution

    ERIC Educational Resources Information Center

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  5. Radium isotope geochemistry of thermal waters, Yellowstone National Park, Wyoming, USA

    SciTech Connect

    Sturchio, N.C.; Bohlke, J.K.; Markun, F.J. )

    1993-03-01

    Radium isotope activities ([sup 226]Ra, [sup 228]Ra, and [sup 224]Ra), chemical compositions, and sulfur isotope ratios in sulfate were determined for water samples from thermal areas in Yellowstone National Park, Wyoming. Activities of [sup 226]Ra in these waters range from <0.2 to 37.9 dpm/kg. Activity ratios of [sup 228]Ra/[sup 226]Ra range from 0.26 to 14.2, and those of [sup 224]Ra/[sup 228]Ra range from 0.73 to 3.1. Radium concentrations are inversely correlated with aquifer equilibration temperatures (estimated from dissolved silica concentrations), while [Ra/Ba][sub aq] and [sup 228]Ra/[sup 226]Ra activity ratios depend upon U/Ba and Th/U ratios in aquifer rocks. Major controls on Ra concentration in Yellowstone thermal waters are inferred to be (1) barite saturation (at Norris Geyser Basin, Mammoth Hot Springs, and other northern areas) and (2) zeolite-water ion exchange (at Upper Geyser Basin). The data are consistent with a model in which (1) radium and barium are supplied to water by bulk dissolution of aquifer rock, and (2) chemical equilibration of water with rock is rapid relative to the 1602 year half-life of [sup 226]Ra. The [sup 228]Ra/[sup 226]Ra activity ratios of the waters may in some cases reflect surface enrichments of [sup 232]Th and/or may indicate that [alpha]-recoil input of [sup 228]Ra is rapid relative to water-rock chemical equilibration. Activity ratios of [sup 224]Ra/[sup 228]Ra indicate a nearly ubiquitous [sup 224]Ra excess that generally increases with decreasing pH. Near-surface ([le]100 m) thermal water flow velocities at Mammoth Hot Springs are estimated from [sup 224]Ra/[sup 228]Ra variation to be [ge]1 m h[sup [minus]1]. 73 refs., 4 figs., 4 tabs.

  6. Isotope Geochemistry of Calcite Coatings and the Thermal History of the Unsaturated Zone at Yucca Mountain, Nevada

    SciTech Connect

    B.D. Marshall; J.F. Whelan

    2000-07-27

    Calcite and opal coatings found on fracture footwalls and lithophysal cavity bottoms in the volcanic section at Yucca Mountain (exposed in a tunnel) contain a record of gradual chemical and isotopic changes that have occurred in the unsaturated zone. The thin (less than 6 cm) coatings are composed primarily of calcite, opal, chalcedony, and quartz. Fluid inclusions in calcite that homogenize at greater than ambient temperatures provide impetus for geochronologic studies in order to determine the thermal history. In the welded Topopah Spring Tuff (12.7 Ma), U-Pb ages of opal and chalcedony layers provide evidence of a long history of deposition throughout the past 10 m.y. However, these ages can constrain the ages of associated calcite layers only in samples with an easily interpretable microstratigraphy. Strontium isotope ratios in calcite increase with microstratigraphic position from the base up to the outermost surface of the coatings. The strontium incorporated in these coatings records the systematic change in pore-water isotopic composition due to water-rock interaction primarily in the overlying nonwelded tuffs. A one-dimensional advection-reaction model simulates strontium isotope ratios measured in pore water extracted from core in three vertical boreholes adjacent to the tunnel. By calculating the strontium isotope compositions of the rocks at various past times, the model predicts a history of the strontium isotope ratios in the water that matches the record in the calcite and therefore provides approximate ages. Oxygen isotope ratios measured in calcite gradually increase with decreasing model strontium age. Assuming that the oxygen isotope ratio of the percolating water was relatively constant, this trend indicates a gradual cooling of the rocks over millions of years, in agreement with thermal modeling of magma beneath the 12-Ma Timber Mountain caldera just north of Yucca Mountain. This model predicts that temperatures significantly exceeding current geotherm values occurred prior to 6 Ma. We find no evidence for Quaternary or recent thermal perturbations to the cooling rocks.

  7. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    NASA Astrophysics Data System (ADS)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Cline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrire in Guadeloupe and Montagne Pele in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative ?37Cl values (? - 0.65 ), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common ?37Cl values of around 0. Using this ?37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well developed hydrothermal systems where magmatic Cl is easily transferred to the surface following its exsolution from shallow magma body, we suggest that ?37Cl has great potential to be a unique proxy to monitor the cessation and revival of infrequent arc volcanoes, particularly at centennial time scales.

  8. Chemical, isotopic, and gas compositions of selected thermal springs in Arizona, New Mexico, and Utah

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1977-01-01

    Twenty-seven thermal springs in Arizona, New Mexico, and Utah were sampled for detailed chemical and isotopic analysis. The springs issue sodium chloride, sodium bicarbonate, or sodium mixed-anion waters of near neutral (6.2) to alkaline (9.2) pH. High concentrations of fluoride, more than 8 milligrams per liter, occur in Arizona in waters from Gillard Hot Springs, Castle Hot Springs, and the unnamed spring of Eagle Creek, and in New Mexico from springs along the Gila River. Deuterium compositions of the thermal waters cover the same range as those expected for meteoric waters in the respective areas. The chemical compositions of the thermal waters indicate that Thermo Hot Springs in Utah and Gillard Hot Springs in Arizona represent hydrothermal systems which are at temperatures higher than 125 deg C. Estimates of subsurface temperature based on the quartz and Na-K-Ca geothermometer differ by up to 60 deg C for Monroe, Joseph, Red Hill, and Crater hot springs in Utah. Similar conflicting estimates of aquifer temperature occur for Verde Hot Springs, the springs near Clifton and Coolidge Dam, in Arizona; and the warm springs near San Ysidro, Radium Hot Springs, and San Francisco Hot Springs, in New Mexico. Such disparities could result from mixing, precipitation of calcium carbonate, or perhaps appreciable concentrations of magnesium. (Woodard-USGS)

  9. Xenon isotope constraints on the thermal evolution of the early Earth

    NASA Astrophysics Data System (ADS)

    Coltice, N.; Marty, B.; Yokochi, R.

    2009-12-01

    The thermal regime of the Earth's interior during the Hadean (the first 700 My after the birth of the solar system) is subject to debate. Evidence for a hotter mantle stems from the abundance of magnesian lavas (komatiites) in the Archean, although their generation might have also resulted from different (hydrous) melting conditions. In this study, the present-day mantle abundances of xenon isotopes contributed by extinct and extant radioactivities are used to constrain thermal and magmatic evolution models of the early Earth. Results show that, in the Hadean, heat could escape at a rate much faster than Today. Heat loss from the mantle was driven by magmatism rather than by conduction through the lithospheric lid, precluding modern style plate tectonics. Around the Hadean-Archean transition, a drastic change in the thermal regime led to a secular cooling rate comparable to the modern one, in probable relation to the onset of plate tectonics. Our model also suggests that solid-state convection started later than 50 My after the formation of the solar system, a view consistent with proposed ages for the Moon-forming impact.

  10. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    PubMed

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-01

    The nitrogen stable isotope composition of NOx (?(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the ?(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of ?(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of ?(15)N-NOx values was measured from -28.1 to 8.5 for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and ?(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases ?(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the ?(15)N-NOx measured in this study with previous published values, a ?(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources. PMID:26332865

  11. Isotope geochemistry of thermal and nonthermal waters in the Valles caldera, Jemez Mountains, northern New Mexico

    SciTech Connect

    Vuataz, F.D.; Goff, F.

    1986-02-10

    Over 100 stable isotope and 45 tritium analyses from thermal and nonthermal waters of the Jemez Mountains region, New Mexico, have been used to define the hydrodynamics of the Valles caldera (Baca) geothermal system and related geothermal fluids of the region. Evaluation of 36 cold meteoric waters yields an equation for the Jemez Mountains meteoric water line of deltaD = 8delta/sup 18/O+12, while further evaluation of nine cold meteoric waters yields an equation relating recharge elevation to deuterium content of E(meters) = -44.9 (deltaD)-1154. Based on the deuterium content of five Baca well waters (223/sup 0/--294/sup 0/C), the average recharge elevation of the Valles geothermal system ranges from 2530 to 2890 m. This range of elevations falls between the elevations of the lowest point of the caldera floor (2400 m) and the summit of the resurgent dome inside the caldera (3430 m). Thus stable isotopes indicate that the caldera depression probably serves as a recharge basin for the deep geothermal system. Although cold spring waters of the Jemez Mountains region consist of meteoric water, tritium analyses show that most of them contain water between 20 and 75 years old.

  12. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect

    Jain, Prashant K; Freels, James D

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  13. Isotopically exchangeable organic hydrogen in coal relates to thermal maturity and maceral composition

    USGS Publications Warehouse

    Mastalerz, Maria; Schimmelmann, A.

    2002-01-01

    Hydrogen isotopic exchangeability (Hex) and ??Dn values of non-exchangeable organic hydrogen were investigated in coal kerogens ranging in rank from lignite to graphite. The relative abundance of Hex is highest in lignite with about 18% of total hydrogen being exchangeable, and decreases to around 2.5% in coals with Ro of 1.7 to ca. 5.7%. At Still higher rank (Ro > 6%), Hex increases slightly, although the abundance of total hydrogen decreases. ??Dn is influenced by original biochemical D/H ratios and by thermal maturation in contact with water. Therefore, ??Dn does not show an overall consistent trend with maturity. ?? 2002 Elsevier Science Ltd. All rights reserved.

  14. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    SciTech Connect

    Xiao, X.; Kit Heung, L.; Sessions, H.T.

    2015-03-15

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects.

  15. Use of stable sulphur isotopes to monitor directly the behaviour of sulphur in coal during thermal desulphurization

    USGS Publications Warehouse

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.

    1987-01-01

    A method has been developed using stable sulphur isotope analyses to monitor the behaviour of sulphur forms in a coal during thermal desulphurization. In this method, the natural stable isotopic composition of the pyritic and organic sulphur in coal is used as a tracer to follow their mobility during the desulphurization process. This tracer method is based on the fact that the isotopic compositions of pyritic and organic sulphur are significantly different in some coals. Isotopic results of pyrolysis experiments at temperatures ranging from 350 to 750 ??C indicate that the sulphur released with the volatiles is predominantly organic sulphur. The pyritic sulphur is evolved in significant quantities only when pyrolysis temperatures exceed 500 ??C. The presence of pyrite seems to have no effect on the amount of organic sulphur evolved during pyrolysis. The chemical and isotopic mass balances achieved from three different samples of the Herrin (No. 6) coal of the Illinois Basin demonstrate that this stable isotope tracer method is quantitative. The main disadvantage of this tracing technique is that not all coals contain isotopically distinct organic and pyritic sulphur. ?? 1987.

  16. Hydrogeochemical and isotopic study of thermal and mineralized waters from the Nev?ehir (Kozakli) area, Central Turkey

    NASA Astrophysics Data System (ADS)

    Pasvano?lu, S.; Chandrasekharam, D.

    2011-05-01

    In the Kozakli geothermal province, thermal waters are manifested along a valley 1.5 km long and 200 m in width. Thermal waters utilised by the resort and some other hotels are mostly discharged from bore wells. The issuing temperatures of the thermal waters vary from 40-50 C in thermal springs and 45-96 C in bores and open wells. The geochemical and isotopic signatures of the thermal water suggest mixing of thermal waters with formation waters and cold near-surface groundwaters before emerging to the surface, and hence geochemical indicators fail to indicate the near true reservoir temperatures. However, the oxygen and hydrogen isotopic signatures strongly suggest a high temperature reservoir (> 220 C) in the crystalline basement rocks. Long circulation of meteoric waters within the basement rocks is indicated by low tritium values in the thermal waters. Major involvement of Miocene Marls in modifying the chemical signatures of the thermal waters is inferred from the trace element concentrations.

  17. DETERMINATION OF 5-METHYLTETRAHYDROFOLIC ACID IN HUMAN SERUM BY STABLE-ISOTOPE DILUTION HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes a stable isotope liquid chromatography-mass spectrometry (LC-MS) method that was developed for the quantitative determination of 5-methyltetrahydrofolic acid (5-MTHFA) and folic acid in a variety of citrus juices. Folates were extracted from juices and the polyglutamyl side ch...

  18. Thermal neutron capture cross section of the radioactive isotope 60Fe

    NASA Astrophysics Data System (ADS)

    Heftrich, T.; Bichler, M.; Dressler, R.; Eberhardt, K.; Endres, A.; Glorius, J.; Göbel, K.; Hampel, G.; Heftrich, M.; Käppeler, F.; Lederer, C.; Mikorski, M.; Plag, R.; Reifarth, R.; Stieghorst, C.; Schmidt, S.; Schumann, D.; Slavkovská, Z.; Sonnabend, K.; Wallner, A.; Weigand, M.; Wiehl, N.; Zauner, S.

    2015-07-01

    Background: Fifty percent of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. Purpose: One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as 60Fe with a half-life of 2.60 ×106 yr. To reproduce this γ activity in the universe, the nucleosynthesis of 60Fe has to be understood reliably. Methods: An 60Fe sample produced at the Paul Scherrer Institut (Villigen, Switzerland) was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universität Mainz (Mainz, Germany). Results: The thermal neutron capture cross section has been measured for the first time to σth=0.226 (-0.049+0.044) b . An upper limit of σRI<0.50 b could be determined for the resonance integral. Conclusions: An extrapolation towards the astrophysically interesting energy regime between k T =10 and 100 keV illustrates that the s -wave part of the direct capture component can be neglected.

  19. A sensitive method for quantitation of beta-lyase metabolites of sulfur mustard as 1,1'-sulfonylbis[2-(methylthio)ethane] (SBMTE) in human urine by isotope dilution liquid chromatography-positive ion-electrospray-tandem mass spectrometry.

    PubMed

    Daly, James D; O'Hehir, Colleen M; Frame, George M

    2007-05-01

    A method for measurement of an important biological marker, 1,1'-sulfonylbis[2-(methylthio)ethane] (SBMTE) of sulfur mustard agent HD [bis-(2-chloroethyl)sulfide] in human urine, to quantify HD exposure, is presented. It employs TiCl3 reduction of beta-lyase metabolites to SBMTE, and automated solid-phase extraction sample preparation, followed by isotope dilution liquid chromatography-positive ion-electrospray ionization-tandem mass spectrometry with 7.5 min/sample cycle time, to achieve SBMTE quantitation of up to 200 samples/24h a day. Percent relative standard deviations over the calibration range varied from 12.0% at 0.1 ng/mL to 0.9% at 100 ng/mL, and the limit of detection from a 0.5 mL sample was below the lowest level calibration standard of 0.1 ng/mL. PMID:17161028

  20. Determination of 1-methyl-1H-1,2,4-triazole in soils contaminated by rocket fuel using solid-phase microextraction, isotope dilution and gas chromatography-mass spectrometry.

    PubMed

    Yegemova, Saltanat; Bakaikina, Nadezhda V; Kenessov, Bulat; Koziel, Jacek A; Nauryzbayev, Mikhail

    2015-10-01

    Environmental monitoring of Central Kazakhstan territories where heavy space booster rockets land requires fast, efficient, and inexpensive analytical methods. The goal of this study was to develop a method for quantitation of the most stable transformation product of rocket fuel, i.e., highly toxic unsymmetrical dimethylhydrazine - 1-methyl-1H-1,2,4-triazole (MTA) in soils using solid-phase microextraction (SPME) in combination with gas chromatography-mass spectrometry. Quantitation of organic compounds in soil samples by SPME is complicated by a matrix effect. Thus, an isotope dilution method was chosen using deuterated analyte (1-(trideuteromethyl)-1H-1,2,4-triazole; MTA-d3) for matrix effect control. The work included study of the matrix effect, optimization of a sample equilibration stage (time and temperature) after spiking MTA-d3 and validation of the developed method. Soils of different type and water content showed an order of magnitude difference in SPME effectiveness of the analyte. Isotope dilution minimized matrix effects. However, proper equilibration of MTA-d3 in soil was required. Complete MTA-d3 equilibration at temperatures below 40C was not observed. Increase of temperature to 60C and 80C enhanced equilibration reaching theoretical MTA/MTA-d3 response ratios after 13 and 3h, respectively. Recoveries of MTA depended on concentrations of spiked MTA-d3 during method validation. Lowest spiked MTA-d3 concentration (0.24 mg kg(-1)) provided best MTA recoveries (91-121%). Addition of excess water to soil sample prior to SPME increased equilibration rate, but it also decreased method sensitivity. Method detection limit depended on soil type, water content, and was always below 1 mg kg(-1). The newly developed method is fully automated, and requires much lower time, labor and financial resources compared to known methods. PMID:26078153

  1. Analysis of dibenzo[def,p]chrysene-deoxyadenosine adducts in wild-type and cytochrome P450 1b1 knockout mice using stable-isotope dilution UHPLC-MS/MS.

    PubMed

    Harper, Tod A; Morré, Jeff; Lauer, Fredine T; McQuistan, Tammie J; Hummel, Jessica M; Burchiel, Scott W; Williams, David E

    2015-04-01

    The polycyclic aromatic hydrocarbon (PAH), dibenzo[def,p]chrysene (DBC; also known as dibenzo[a,l]pyrene), is a potent carcinogen in animal models and a class 2A human carcinogen. Recent investigations into DBC-mediated toxicity identified DBC as a potent immunosuppressive agent similar to the well-studied immunotoxicant 7,12-dimethylbenz[a]anthracene (DMBA). DBC, like DMBA, is bioactivated by cytochrome P450 (CYP) 1B1 and forms the reactive metabolite DBC-11,12-diol-13,14-epoxide (DBCDE). DBCDE is largely responsible for the genotoxicity associated with DBC exposure. The immunosuppressive properties of several PAHs are also linked to genotoxic mechanisms. Therefore, this study was designed to identify DBCDE-DNA adduct formation in the spleen and thymus of wild-type and cytochrome P450 1b1 (Cyp1b1) knockout (KO) mice using a highly sensitive stable-isotope dilution UHPLC-MS/MS method. Stable-isotope dilution UHPLC-MS/MS identified the major DBC adducts (±)-anti-cis-DBCDE-dA and (±)-anti-trans-DBCDE-dA in the lung, liver, and spleen of both WT and Cyp1b1 KO mice. However, adduct formation in the thymus was below the level of quantitation for our method. Additionally, adduct formation in Cyp1b1 KO mice was significantly reduced compared to wild-type (WT) mice receiving DBC via oral gavage. In conclusion, the current study identifies for the first time DBCDE-dA adducts in the spleen of mice supporting the link between genotoxicity and immunosuppression, in addition to supporting previous studies identifying Cyp1b1 as the primary CYP involved in DBC bioactivation to DBCDE. The high levels of DBC-DNA adducts identified in the spleen, along with the known high levels of Cyp1b1 expression in this organ, supports further investigation into DBC-mediated immunotoxicity. PMID:25868132

  2. Mass Dependency of Isotope Fractionation of Gases Under Thermal Gradient and Its Possible Implications for Planetary Atmosphere Escaping Process

    NASA Technical Reports Server (NTRS)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard

    2014-01-01

    Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may not be the significant contributor as the energies involved in the hyperfine effect are much smaller than those with molecular collisions, especially under convective conditions.

  3. Simultaneous determination of seven ?2-agonists in human and bovine urine by isotope dilution liquid chromatography-tandem mass spectrometry using compound-specific minimally (13)C-labelled analogues.

    PubMed

    Gonzlez-Antua, Ana; Rodrguez-Gonzlez, Pablo; Centineo, Giuseppe; Garca Alonso, J Ignacio

    2014-10-29

    Seven ?2-agonist (clenproperol, clenbuterol, salbutamol, bronbuterol, ractopamine, clenpenterol and clencyclohexerol) were determined simultaneously in human and bovine urine by isotope dilution LC-ESI-MS/MS in a triple quadrupole instrument. The method is based on the application of multiple linear regression in combination with compound-specific minimally (13)C-labelled analogues. Additionally, the increase of the bandpass of the first quadrupole during the selected reaction monitoring (SRM) measurement procedure allowed the simultaneous quantification of the seven compounds at sub ngg(-1) levels in a single chromatogram without resorting to a methodological calibration graph. Recovery values at concentration levels between 5.0 and 0.05ngg(-1) ranged from 95 to 110% in fortified bovine urine and from 91 to 108% in human urine, with relative standard deviations lower than 5% except for salbutamol and ractopamine. The proposed methodology was validated by analyzing the certified reference material BCR-503 (lyophilized bovine urine) certified for clenbuterol and salbutamol. The limits of detection (LOD) for a sample volume of 10mL of both human and bovine urine was found to be lower than 0.012ngg(-1) for all compounds, except to salbutamol in bovine urine which was of 0.029ngg(-1). The use of compound-specific isotopically labelled analogues minimally labelled in (13)C minimized the occurrence of isotope effects and corrected for matrix effects during ESI ionization and can be efficiently applied for the quantification of ultra-trace concentrations of ?2-agonists in human and bovine urine. PMID:25468499

  4. Isotope and chemical compositions of meteoric and thermal waters and snow from the greater Yellowstone National Park region

    USGS Publications Warehouse

    Kharaka, Yousif K.; Thordsen, James J.; White, Lloyd D.

    2002-01-01

    An intensive hydrogeologic investigation, mandated by U.S. Congress and centered on the Norris-Mammoth corridor was conducted by USGS and other scientists during 1988-90 to determine the effects of using thermal water from a private well located in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal springs of Yellowstone National Park (YNP), especially Mammoth Hot Springs. As part of this investigation, we carried out a detailed study of the isotopic and chemical compositions of meteoric water from cold springs and wells, of thermal water, especially from the Norris-Mammoth corridor and of snow. Additional sampling of meteoric and thermal waters from YNP and surrounding region in northwest Wyoming, southwest Montana and southeast Idaho was carried out in 1991-92 to characterize the distribution of water isotopes in this mountainous region and to determine the origin and possible recharge locations of thermal waters in and adjacent to the Park. The D and 18O values for 40 snow samples range from ?88 to ?178? and ?12.5 to ?23.9?, respectively, and define a well constrained line given by D = 8.2 18O + 14.7 (r2 = 0.99) that is nearly identical to the Global Meteoric Water Line. The D and 18O values of 173 cold water samples range from ?115 to ?153? and ?15.2 to ?20.2?, respectively, and exhibit a similar relationship although with more scatter and with some shift to heavier isotopes, most likely due to evaporation effects. The spatial distribution of cold-water isotopes shows a roughly circular pattern with isotopically lightest waters centered on the mountains and high plateau in the northwest corner of Yellowstone National Park and becoming heavier in all directions. The temperature effect due to altitude is the dominant control on stable water isotopes throughout the region; however, this effect is obscured in narrow 'canyons' and areas of high topographic relief. The effects due to distance (i.e. 'continental') and latitude on water isotopes probably are relatively minor and difficult to resolve from the major controls. The data indicate that the groundwater are derived predominantly from cold, isotopically light winter precipitation, and that the isotope values of groundwater from elevations above about 2.5-3.0 km in the Gallatin and northern Absaroka Ranges are light enough (The D ?149?) to be the presumed recharge water for the hydrothermal system in the Park. However, estimation of the present-day volume of this recharged, isotopically light water indicates that it is not adequate to supply the high (3-4 m3/s) thermal water discharges from YNP, and cooler temperatures at the time of recharge would be required. The volume of meteoric water with D values lighter than ?145? may be adequate for recharging the hydrothermal system, and this may be a more plausible value than the ?149? originally calculated from data that are subject to moderate uncertainties.

  5. Vitamin A concentrations in liver determined by isotope dilution assay with tetradeuterated vitamin A and by biopsy in generally healthy adult humans

    SciTech Connect

    Furr, H.C.; Amedee-Manesme, O.; Clifford, A.J.; Bergen, H.R. 3d.; Jones, A.D.; Anderson, D.P.; Olson, J.A.

    1989-04-01

    The vitamin A status in 11 generally healthy surgical patients was estimated by measuring the dilution of a 45-mg oral dose of tetradeuterated retinyl acetate (99% pure). After purification of retinol by high-performance liquid chromatography, the ratio of /sup 2/H/sub 4/-retinol:/sup 1/H-retinol in plasma was measured by gas chromatography-mass spectrometry. On the basis of the observed ratios of (/sup 2/H/sub 4/)retinol:(/sup 1/H)retinol over 19-47 d, the total body reserves and liver concentrations of vitamin A were calculated. Liver biopsy samples taken at surgery were directly analyzed for vitamin A. The correlation coefficient between calculated and measured liver vitamin A concentrations for 10 of the subjects was 0.88, and the Spearman's rank correlation coefficient was 0.95 (p less than 0.002). Thus, total body reserves of vitamin A in humans can be estimated validly in the marginal and satisfactory ranges by a benign, relatively noninvasive procedure.

  6. The Precambrian Biogeochemical Carbon Isotopic Record: Contributions of Thermal Versus Biological Processes

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Superplumes offer a new approach for understanding global C cycles. Isotopes help to discern the impacts of geological, environmental and biological processes ujpun the evolution of these cycles. For example, C-13/C-12 values of coeval sedimentary organics and carbonates give global estimates of the fraction of C buried as organics (Forg), which today lies near 0.2. Before Oxygenic photosynthesis arose, our biosphere obtained reducing power for biosynthesis solely from thermal volatiles and rock alteration. Thus Forg was dominated by the mantle redox state, which has remained remarkably constant for greater than Gy. Recent data confirm that the long-term change in Forg had been small, indicating that the mantle redox buffer remains important even today. Oxygenic photosynthesis enabled life to obtain additional reducing power by splitting the water molecule. Accordingly, biological organic production rose above the level constrained by the mantle-derived flux of reduced species. For example, today, chemoautotrophs harvesting energy from hydrothermal emanations can synthesize at most between 0.2 x 10(exp 12) and 2x 10(exp 12) mol C yr-1 of organic C globally. In contrast, global photosynthetic productivity is estimated at 9000 x 10(exp 12) mol C yr-1. Occasionally photosynthetic productivity did contribute to dramatically -elevated Forg values (to 0.4 or more) as evidenced by very high carbonate C-13/C-12. The interplay between biological, tectonic and other environmental factors is illustrated by the mid-Archean to mid-Proterozoic isotopic record. The relatively constant C-13/C-12 values of Archean carbonates support the view that photosynthetically-driven Forg increases were not yet possible. In contrast, major excursions in C-13/C-12, and thus also in Forg, during the early Proterozoic confirmed the global importance of oxygenic photosynthesis by that time. Remarkably, the superplume event at 1.9 Ga did not trigger another major Forg increase, despite the favorable conditions for organic burial that were evidenced by elevated sea levels and higher black shale abundances. Perhaps those superplume-rated processes that favored enhanced organic burial were offset by the ability of mantle-derived redox buffering, which was enhanced during the superplume event, to limit excursions in Forg.

  7. Lattice thermal conductivity of crystalline and amorphous silicon with and without isotopic effects from the ballistic to diffusive thermal transport regime

    SciTech Connect

    Park, Minkyu; Lee, In-Ho; Kim, Yong-Sung

    2014-07-28

    Thermal conductivity of a material is an important physical parameter in electronic and thermal devices, and as the device size shrinks down, its length-dependence becomes unable to be neglected. Even in micrometer scale devices, materials having a long mean free path of phonons, such as crystalline silicon (Si), exhibit a strong length dependence of the thermal conductivities that spans from the ballistic to diffusive thermal transport regime. In this work, through non-equilibrium molecular-dynamics (NEMD) simulations up to 17 μm in length, the lattice thermal conductivities are explicitly calculated for crystalline Si and up to 2 μm for amorphous Si. The Boltzmann transport equation (BTE) is solved within a frequency-dependent relaxation time approximation, and the calculated lattice thermal conductivities in the BTE are found to be in good agreement with the values obtained in the NEMD. The isotopic effects on the length-dependent lattice thermal conductivities are also investigated both in the crystalline and amorphous Si.

  8. Influence of longitudinal isotope substitution on the thermal conductivity of carbon nanotubes: Results of nonequilibrium molecular dynamics and local density functional calculations

    SciTech Connect

    Leroy, Frédéric Böhm, Michael C.; Schulte, Joachim; Balasubramanian, Ganesh

    2014-04-14

    We report reverse nonequilibrium molecular dynamics calculations of the thermal conductivity of isotope substituted (10,10) carbon nanotubes (CNTs) at 300 K. {sup 12}C and {sup 14}C isotopes both at 50% content were arranged either randomly, in bands running parallel to the main axis of the CNTs or in bands perpendicular to this axis. It is found that the systems with randomly distributed isotopes yield significantly reduced thermal conductivity. In contrast, the systems where the isotopes are organized in patterns parallel to the CNTs axis feature no reduction in thermal conductivity when compared with the pure {sup 14}C system. Moreover, a reduction of approximately 30% is observed in the system with the bands of isotopes running perpendicular to the CNT axis. The computation of phonon dispersion curves in the local density approximation and classical densities of vibrational states reveal that the phonon structure of carbon nanotubes is conserved in the isotope substituted systems with the ordered patterns, yielding high thermal conductivities in spite of the mass heterogeneity. In order to complement our conclusions on the {sup 12}C-{sup 14}C mixtures, we computed the thermal conductivity of systems where the {sup 14}C isotope was turned into pseudo-atoms of 20 and 40 atomic mass units.

  9. Development of a hydrophilic liquid interaction chromatography-high-performance liquid chromatography-tandem mass spectrometry based stable isotope dilution analysis and pharmacokinetic studies on bioactive pyridines in human plasma and urine after coffee consumption.

    PubMed

    Lang, Roman; Wahl, Anika; Skurk, Thomas; Yagar, Erkan Firat; Schmiech, Ludger; Eggers, Rudolf; Hauner, Hans; Hofmann, Thomas

    2010-02-15

    The paper reports on the development of an accurate hydrophilic liquid interaction chromatography tandem mass spectrometry (HILIC-MS/MS) based stable isotope dilution analysis for the simultaneous quantitation of the food-derived bioactive pyridines trigonelline, nicotinic acid, nicotinamide, and N-methylpyridinium, as well as their key metabolites nicotinamide-N-oxide, N-methylnicotinamide, N-methyl-2-pyridone-5-carboxamide, N-methyl-4-pyridone-5-carboxamide, and N-methyl-2-pyridone-5-carboxylic acid in human plasma and urine. Precision of the stable isotope dilution analysis (SIDA) was 1.9% and 11.9% relative standard deviation (n = 6), and accuracy was between 92.4% and 113.0%. The lower limit of quantitation (LLOQ) was 50 fmol (10 pmol/mL) injected onto the column for all analytes with the exception of N-methyl-2-pyridone-5-carboxylic acid and N-methyl-2-pyridone-5-carboxamide, for which an LLOQ of 100 fmol (20 pmol/mL) was found. The method was applied to monitor the plasma appearance and urinary excretion and to determine pharmacokinetic parameters of the bioactive pyridines as well as their metabolites in a clinical human intervention study with healthy volunteers (six women, seven men) after oral administration of 350 mL of a standard coffee beverage. Trigonelline plasma levels increased from 160 nmol/L to maximum concentrations of 5479 (males) or 6547 nmol/L (females), and N-methylpyridinium plasma levels raised from virtually complete absence to maximum values of 777 (females) or 804 nmol/L (males) within 2-3 and 1-2 h after coffee consumption, respectively. The high plasma levels of N-methylpyridinium found after coffee consumption clearly demonstrate for the first time that this cation is entering the vascular system, which is the prerequisite for biological in vivo effects claimed for that compound. In contrast, the coffee intervention did not significantly influence the plasma concentrations of N-methyl-2-pyridone-5-carboxamide and N-methyl-4-pyridone-5-carboxamide, the major niacin metabolites. Within 8 h after coffee intervention, an urinary excretion of 57.4 +/- 6.9% of trigonelline and 69.1 +/- 6.2% of N-methylpyridinium was found for the male volunteers, whereas females excreted slightly less with 46.2 +/- 7.4% and 61.9 +/- 12.2% of these pyridines. PMID:20073472

  10. Optimisation of sample preparation protocols for measurement of PGE and Re-Os in organic-rich shales by isotope dilution ICP-MS

    NASA Astrophysics Data System (ADS)

    Rammensee, Philipp; Aulbach, Sonja; Gudelius, Dominik; Brey, Gerhard

    2013-04-01

    Platinum-group elements (PGE) and Re-Os isotopes, which are variably redox-sensitive and fluid-soluble, have potential as proxies for the oxygenation of the atmosphere and oceans (e.g. [1]). However, analysis of these elements in organic rich shales (ORS) is challenging due to abundances of <1 ng/g and the presence of interfering isotopes or molecules of matrix elements. Furthermore, PGE-ReOs systematics in detrital and hydrogenous components may vary, and the choice of digestion parameters (reagents, temperature and pressure) during decomposition of rock powder affects the ratio of digested components [2,3]. Additional treatment to remove the matrix and pre-concentrate PGE-Re by column chromatography is necessary to minimise the effects of interfering elements, but presents its own challenges. We are in the process of conducting variations of acid digestion and column chromatographic protocols on reference sample SDO-1 (Devonian Ohio Shale, USGS). We aim to identify the optimum protocol to investigate PGE-Re-Os systematics of ORS that were sampled as part of the Barberton Drilling Project BARB5 drill core, in order to constrain the changes in detrital and hydrogenous contributions to the sediment with time, to assess the extent of euxinity in the sedimentary basin and to look for evidence of transient "whiffs of oxygen" [1]. The following digestion methods were tested: (1) 4h acid digestion in High Pressure Asher (HPA) apparatus with reverse aqua regia at 300°C and 130 bar (only this digestion allows extraction of volatilised Os in CHCl3 followed by HBr); (2) 3h reverse aqua regia digestion in centrifuge vials on hotplate at 80°C; (3) 48h reverse aqua regia digestion in closed Teflon beakers on hotplate at 140°C followed by a HF/HNO3 digestion step; (4) 48h HF/HNO3 digestion of ashed sample powder in closed Teflon beaker at 140°C on hotplate followed by an aqua regia digestion step. Column chromatographic approaches to decrease the concentrations of interfering elements (Y, Zr, Mo, Cd, Hf, Hg) include the use of cation- and anion resins, and variations of the molarity and composition of the eluent. Preliminary results show that digestion method (1) leaves behind small amounts of presumably PGE-free silica gel; (2) yields consistently higher Re concentrations with an expectedly large amount of solid residue; (3) produces an insoluble sludge; (4) allows complete digestion, but precludes the collection of Os. Column calibrations show the best recovery of PGE-Re in cation resin using 0.2 mol/l HCl as eluent, but intolerably high ratios of interfering over elements of interest, whereas the best matrix separation is achieved using 0.05 mol/l HCl as eluent, but is accompanied by low PGE-Re yields presumably due to the instability of Cl complexes in this medium. They also show that U elutes separately from PGE-Re in 6 mol/l HCl and could be collected with a view to analysing U isotopes as an additional redox proxy. Further tests will be carried out using alternative high-pressure digestion systems. [1] Anbar, et al. (2007) Science 317:1903-1906; [2] Meisel et al. (2003) JAAS 18:720-726; [3] Xu et al. (2012) CG 324:132-147

  11. H-isotope retention and thermal/ion-induced release in boronized films

    SciTech Connect

    Walsh, D.S. ); Doyle, B.L.; Wampler, W.R.; Hays, A.K. )

    1990-01-01

    Over the past decade, it has been clearly demonstrated that the composition of the very near surface ({approximately}100nm) of plasma-interactive components plays a determinant role in most processes which occur in the plasma-edge of Tokamaks. Two very successful techniques to effect control of the plasma-wall interaction are (1) in-situ deposition of amorphous carbon or boron-carbon films and (2) the use of He/C conditioning discharges or He glow discharge cleaning to modify the near surface of bulk graphite components. We have deposited boronized layers into Si using plasma-assisted CVD and sputter deposition. The PCVD deposition conditions were as close as possible to those used in TFTR, and some films deposited in TFTR have also been studied. Using these two deposition techniques, B{sub x}CH{sub y} films have been produced with x varying from 1/2 -- 4, and y from {approximately}1 (sputtered) to {approximately}3 (PCVD). Most films also contained significant amounts of 0. Thermal and ion-induced release of H-isotopes from BC films is qualitatively similar to that measured for graphite. Implanted H saturates in these films at a H/host atom ratio of 0.7 which is considerably higher than that of graphite({approximately}0.4). As-deposited PCVD films are already saturated with H, while sputtered films are not. Sputtered BC films therefore possess an inherent H-pumping capability which could prove to be extremely beneficial to TFTR. 16 refs., 5 figs., 1 tab.

  12. Statistical interpretation of the rate of carbon isotope changes at the onset of the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Urban, N. M.; Bralower, T. J.; Keller, K.; Kump, L. R.

    2009-12-01

    Abrupt warming during the Paleocene-Eocene Thermal Maximum (PETM) 55 Ma event was driven by major input of greenhouse gas. Primary evidence for this is a sharp 4-5 per mil decrease in carbon isotope values at the onset of the event. Interpretation of the dynamics of the warming and identification of the ultimate source of the carbon relies on precise estimates of the rate of carbon addition at the onset of the event. A step toward this goal is to determine the rate of change of carbon isotope values in the major PETM sections. Although terrestrial and continental shelf PETM records are undoubtedly more stratigraphically expanded, deep-sea records provide more precise time control. Key deep-sea sections have been studied at high levels of resolution. However, their stratigraphy is complicated by condensed sections or possible unconformities at the base of the PETM. As a result, many PETM records are characterized by sizeable variation in sample spacing in terms of depth and age. We have developed a Bayesian inversion technique that accounts for the effects of variable sample spacing and uncertainties about the statistical variability of the isotope excursion and the termination of the PETM interval. We apply this technique using extraterrestrial helium and orbital age models to deep sea PETM carbon isotope data (Ocean Drilling Program Site 690, Maud Rise, Southern Ocean and Site 1262, Walvis Ridge).We use this technique to place probabilistic limits on the rate of carbon isotope change during the PETM. We compare these rates with modern rates of carbon isotopic change.

  13. Changes in Nutrient Burial, Export Production, and the Sulfur Isotopic Composition of Seawater During the Paleocene Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Faul, K.; Sayo, J.; Paytan, A.; Gray, E.

    2005-12-01

    We are comparing nutrient burial, using phosphorus (P, micromol P cm-2 kyr-1) mass accumulation rates (MARs), to export productivity, using barite (BaSO4, micromol BaSO4 cm-2 kyr-1) MARs, across the Paleocene Eocene Thermal Maximum (PETM) in sediments from the eastern equatorial Pacific (ODP Leg 199 Sites 1221 and 1215), the western equatorial Pacific (ODP Leg 198, Site 1210), and the western equatorial Atlantic (ODP Leg 171B, Site 1051). Reactive phosphorus (the sum of oxide associated, authigenic, and organic P; sequentially extracted from bulk sediment) is used to distinguish the signal of bio-reactive P from detrital P. Barite, correlated with export productivity in the modern ocean, is separated from bulk sediment. The ratio of nutrient burial (phosphorus) to export productivity (barite) may provide an indication of relative organic C burial. Organic C must be efficiently sequestered in the sediments for the proposed PETM global warmth termination by productivity feedback to be effective. We are comparing relative organic C burial rates for sites in both the equatorial Pacific and the equatorial Atlantic. Initial results from ODP Site 1221 in the Pacific indicate that the nutrient burial to export productivity ratio is high before and immediately after the PETM, possibly indicating enhanced relative organic C burial. To better understand the possible relationship of the seawater sulfur isotopic minimum at the time of the PETM to productivity changes, we are measuring S isotopes in marine barite at high resolution. Seawater S isotopic values in marine barite from the PETM section for ODP Leg 199 Site 1221 yield values of ~17 per mil, reflecting the global marine sulfur isotopic value. These preliminary values indicate that minimum sulfur isotopic values occurred before the C isotopic excursion associated with the PETM, and are probably unrelated to short-term productivity and/or relative organic C burial changes occurring during the PETM.

  14. Multiresidue method for the determination of nitroimidazoles and their hydroxy-metabolites in poultry muscle, plasma and egg by isotope dilution liquid chromatography-mass spectrometry.

    PubMed

    Mitrowska, Kamila; Posyniak, Andrzej; Zmudzki, Jan

    2010-06-15

    A multiresidue analytical procedure for the determination of four nitroimidazoles (metronidazole, dimetridazole, ronidazole, ipronidazole) and their hydroxy-metabolites in poultry muscle, plasma and egg is presented. The procedure is based on ion-exchange solid phase extraction with acetonitrile as an extractant followed by liquid chromatography-mass spectrometry. The separation of analytes was performed on a C18 column using a mobile phase of 0.1% formic acid in acetonitrile and 0.1% formic acid in water with gradient elution. The electrospray ionization was used to obtain the protonated molecules [M+H](+) and two product ions were monitored for each compound. For the quantification stable isotope-labelled analogues of the analytes were used as internal standards. The whole procedure was evaluated according to EU Commission Decision 2002/657/EC requirements. Specificity, decision limit (CCalpha), detection capacity (CCbeta), recovery and precision were determined during validation process. The overall recoveries ranged between 93 and 103% with a good coefficient of variation, less than 14.0% under within-laboratory reproducibility conditions. CCalpha and CCbeta were 0.05-0.44 and 0.08-0.90microgkg(-1) depending on analyte and matrix. PMID:20441895

  15. The determination of carbon dioxide concentration using atmospheric pressure ionization mass spectrometry/isotopic dilution and errors in concentration measurements caused by dryers.

    PubMed

    DeLacy, Brendan G; Bandy, Alan R

    2008-01-01

    An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying. PMID:18574165

  16. Determination of urinary malondialdehyde by isotope dilution LC-MS/MS with automated solid-phase extraction: a cautionary note on derivatization optimization.

    PubMed

    Chen, Jian-Lian; Huang, Yu-Jie; Pan, Chih-Hong; Hu, Chiung-Wen; Chao, Mu-Rong

    2011-11-01

    A highly sensitive quantitative LC-MS/MS method was developed for measuring urinary malondialdehyde (MDA). With the use of an isotope internal standard and online solid-phase extraction, urine samples can be directly analyzed within 10 min after 2,4-dinitrophenylhydrazine (DNPH) derivatization. The detection limit was estimated as 0.08 pmol. This method was further applied to assess the optimal addition of DNPH for derivatization and to measure urinary MDA in 80 coke oven emission (COE)-exposed and 67 nonexposed workers. Derivatization optimization revealed that to achieve complete derivatization reaction, an excess of DNPH is required (DNPH/MDA molar ratio: 893-8929) for urine samples that is about 100 times higher than that of MDA standard solutions (molar ratio: 10-80). Meanwhile, the mean urinary concentrations of MDA in COE-exposed workers were significantly higher than those in nonexposed workers (0.230.17 vs 0.140.05 ?mol/mmol creatinine, P<0.005). Urinary MDA concentrations were also significantly associated with the COE (P<0.005) and smoking exposure (P<0.05). Taken together, this method is capable of routine high-throughput analysis and accurate quantification of MDA and would be useful for assessing the whole-body burden of oxidative stress. Our findings, however, raise the issue that derivatization optimization should be performed before it is put into routine biological analysis. PMID:21906673

  17. Thermodynamics of Dilute Solutions.

    ERIC Educational Resources Information Center

    Jancso, Gabor; Fenby, David V.

    1983-01-01

    Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.

  18. Measurement of urinary desmosine by isotope dilution and high performance liquid chromatography. Correlation between elastase-induced air-space enlargement in the hamster and elevation of urinary desmosine

    SciTech Connect

    Stone, P.J.; Bryan-Rhadfi, J.; Lucey, E.C.; Ciccolella, D.E.; Crombie, G.; Faris, B.; Snider, G.L.; Franzblau, C. )

    1991-08-01

    The accuracy of methods employed to measure the elastin-specific crosslinks, desmosine (DES) and isodesmosine (IDES), has been called into question because contaminants in the urine may cause elevated values. In the present study urine samples were spiked with a known amount of (14C)DES and refluxed in 6 N HCl. Sephadex G-15 chromatography of the hydrolyzed urine employed to remove contaminants. DES and IDES were quantified by high performance liquid chromatography (HPLC) as well as by amino acid analysis. The amount of isotope recovered was used to determine losses during the overall procedure and the isotope dilution to calculate the amounts of endogenous DES and IDES originally present in the urine. Because similar values were obtained by both methods, the more rapid HPLC method was used for all succeeding analyses. In one experiment, the DES amounts in urine collected from hamsters for 3 days after intratracheal treatment with human neutrophil elastase (300 micrograms) or porcine pancreatic elastase (300 micrograms) were 0.212 {plus minus} 0.012 (mean {plus minus} SEM, two measurements on a single pool) and 0.816 {plus minus} 0.005 (two measurements) microgram per hamster per day, respectively. Urine from control hamsters had a mean value of 0.074 {plus minus} 0.008 (eight measurements) microgram per hamster per day. The HNE- and PPE-treated hamsters had mean linear intercept values of 119 and 159% of control values, respectively, giving a positive correlation between increase in airspace size and elevation of urinary DES.

  19. Trace analysis of methylated and hydroxymethylated cytosines in DNA by isotope-dilution LC-MS/MS: first evidence of DNA methylation in Caenorhabditis elegans.

    PubMed

    Hu, Chiung-Wen; Chen, Jian-Lian; Hsu, Yu-Wen; Yen, Cheng-Chieh; Chao, Mu-Rong

    2015-01-01

    From 1986 to the present, the popular research model organism Caenorhabditis elegans has been thought to completely lack DNA methylation and seems to have lost DNA methylation enzymes from its genomes. In the present study, we report the development of a sensitive and selective assay based on LC-MS/MS to simultaneously measure 5-methyl-2'-deoxycytidine (5-mdC) and 5-hydroxymethyl-2'-deoxycytidine (5-hmdC) in DNA hydrolysates. With the use of isotope internal standards ([2H3]5-mdC and [2H3]5-hmdC) and online solid-phase extraction, the detection limits of 5-mdC and 5-hmdC were estimated to be 0.01 and 0.02 pg respectively, which correspond to a 0.000006% and 0.00001% methylation and hydroxymethylation level. This method was applied to investigate whether DNA methylation/hydroxymethylation exists in C. elegans. The present study for the first time demonstrates that 5-mdC is present in C. elegans genomic DNA (0.0019-0.0033% of cytosine methylated) using LC-MS/MS, whereas another epigenetic modification, 5-hmdC, is not detectable. Furthermore, we found that C. elegans DNA was hypo- or hyper-methylated in a dose-dependent manner by the DNA methyltransferase (DNMT)-inhibiting drug decitabine (5-aza-2'-deoxycytidine) or cadmium respectively. Our data support the possible existence of an active DNA-methylation mechanism in C. elegans, in which unidentified DNMTs could be involved. The present study highlights the importance of re-evaluating the evolutionary conservation of DNA-methylation machinery in nematodes which were traditionally considered to lack functional DNA methylation. PMID:25299492

  20. Multiplexed Immunoaffinity Enrichment of Peptides with Anti-peptide Antibodies and Quantification by Stable Isotope Dilution Multiple Reaction Monitoring Mass Spectrometry.

    PubMed

    Kuhn, Eric; Carr, Steven A

    2016-01-01

    Immunoaffinity enrichment of peptides using anti-peptide antibodies and their subsequent analysis by targeted mass spectrometry using stable isotope-labeled peptide standards is a sensitive and relatively high-throughput assay technology for unmodified and modified peptides in cells, tissues, and biofluids. Suppliers of antibodies and peptides are increasingly aware of this technique and have started incorporating customized quality measures and production protocols to increase the success rate, performance, and supply of the necessary reagents. Over the past decade, analytical biochemists, clinical diagnosticians, antibody experts, and mass spectrometry specialists have shared ideas, instrumentation, reagents, and protocols, to demonstrate that immuno-MRM-MS is reproducible across laboratories. Assay performance is now suitable for verification of candidate biomarkers from large scale discovery "omics" studies, measuring diagnostic proteins in plasma in the clinical laboratory, and for developing a companion assay for preclinical drug studies. Here we illustrate the process for developing these assays with a step-by-step guide for a 20-plex immuno-MRM-MS assay. We emphasize the need for analytical validation of the assay to insure that antibodies, peptides, and mass spectrometer are working as intended, in a multiplexed manner, with suitable assay performance (median values for 20 peptides: CV?=?12.4 % at 740 amol/?L, LOD?=?310 amol/?L) for applications in quantitative biology and candidate biomarker verification. The assays described conform to Tier 2 (of 3) level of analytical assay validation (1), meaning that the assays are capable of repeatedly measuring sets of analytes of interest within and across samples/experiments and employ internal standards for each analyte for confident detection and precise quantification. PMID:26867743

  1. Structural, Thermal, and Safety Analysis of Isotope Heat Source and Integrated Heat Exchangers for 6-kWe Dynamic Isotope Power System (DIPS)

    SciTech Connect

    Schock, Alfred

    1989-01-01

    The design of the 30-kWt isotope heat source integrated with a Rankine boiler and a Brayton gas heater, which was described in the preceding paper in these proceedings, was subjected to structural, thermal, and safety analyses. The present paper describes and discusses the results of these analyses. Detailed structural analyses of the heat source integrated with the boiler and gas heater showed positive safety margins at all locations during the launch. Detailed thermal analyses showed acceptable temperatures at all locations, during assembly, transfer and orbital operations. Reentry thermal analyses showed that the clads have acceptable peak and impact temperatures. Loss-of-cooling analyses indicated the feasibility of a passive safety concept for preventing over temperatures. Static structural analysis showed positive safety margins at all locations, and dynamic analysis showed that there were no low-frequency resources. Continuum-mechanics code analyses of the effects of the impact of Solid Rocket Booster (SRB) fragments on the heat source and of the very unlikely impact of the full heat source on concrete indicated relatively modest fuel clad deformations and little or no fuel release.

  2. Quantification of Oxidative DNA Lesions in Tissues of Long-Evans Cinnamon Rats by Capillary High-performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with Stable Isotope-dilution Method

    PubMed Central

    Wang, Jin; Yuan, Bifeng; Guerrero, Candace; Bahde, Ralf; Gupta, Sanjeev; Wang, Yinsheng

    2011-01-01

    The purpose of our study was to develop suitable methods to quantify oxidative DNA lesions in the setting of transition metal-related diseases. Transition metal-driven Fenton reactions constitute an important endogenous source of reactive oxygen species (ROS). In genetic diseases with accumulation of transition metal ions, excessive ROS production causes pathophysiological changes, including DNA damage. Wilsons disease is an autosomal recessive disorder with copper toxicosis due to deficiency of ATP7B protein needed for excreting copper into bile. The Long-Evans Cinnamon (LEC) rat bears a deletion in Atp7b gene and serves as an excellent model for hepatic Wilsons disease. We used a sensitive capillary LC-ESI-MS/MS/MS method in conjunction with stable-isotope dilution technique to quantify several types of oxidative DNA lesions in liver and brain of LEC rats. These lesions included 5-formyl-2?-deoxyuridine, 5-hydroxymethyl-2?-deoxyuridine, and the 5?R and 5?S diastereomers of 8,5?-cyclo-2?-deoxyguanosine and 8,5?-cyclo-2?-deoxyadenosine. Moreover, the levels of these DNA lesions in the liver and brain increased with age and correlated with age-dependent regulation of the expression of DNA repair genes in LEC rats. These results provide significant new knowledge for better understanding the implications of oxidative DNA lesions in transition metal-induced diseases, such as Wilsons disease, as well as in ageing and ageing-related pathological conditions. PMID:21323344

  3. Synthesis of trans-4,5-epoxy-(E)-2-decenal and its deuterated analog used for the development of a sensitive and selective quantification method based on isotope dilution assay with negative chemical ionization.

    PubMed

    Lin, J; Fay, L B; Welti, D H; Blank, I

    1999-10-01

    The volatile compound trans-4,5-epoxy-(E)-2-decenal (1) was synthesized in two steps with good overall yields. The newly developed method is based on trans-epoxidation of (E)-2-octenal with alkaline hydrogen peroxide followed by a Wittig-type chain elongation with the ylide formylmethylene triphenylphosphorane. For the synthesis of [4,5-2H2]-trans-4,5-epoxy-(E)-2-decenal (d-1), [2,3-2H2]-(E)-2-octenal was prepared by reduction of 2-octyn-1-ol with lithium aluminum deuteride and subsequent oxidation of [2,3-2H2]-(E)-2-octen-1-ol with manganese oxide. Compound d1 was used as internal standard for the quantification of 1 by isotope dilution assay. Among various mass spectrometry (MS) ionization techniques tested, negative chemical ionization with ammonia as reagent gas gave best results with respect to both sensitivity and selectivity. The detection limit was found to be at about 1 pg of the analyte introduced into the gas chromatography-MS system. PMID:10580339

  4. Determination of 2-Methylimidazole, 4-Methylimidazole, and 2-Acetyl-4-(1,2,3,4-tetrahydroxybutyl)imidazole in Licorice Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry Stable-Isotope Dilution Analysis.

    PubMed

    Raters, Marion; Elsinghorst, Paul W; Goetze, Stephanie; Dingel, Anna; Matissek, Reinhard

    2015-07-01

    A quick and selective analytical method was developed for the simultaneous quantitation of 2-methylimidazole, 4-methylimidazole, and 2-acetyl-4-(1,2,3,4-tetrahydroxybutyl)imidazole, which are known to be formed by Maillard reactions. The methodology reported here employs stable-isotope dilution analysis (SIDA) using 4-methylimidazole-d6 and [(13)C6]-2-acetyl-4-(1,2,3,4-tetrahydroxybutyl)imidazole as internal standards. It was successfully applied in a model assay to show that the addition of ammonium chloride during the manufacture of licorice promotes imidazole formation depending on the added amount of ammonium chloride without the well-known impact of present caramel food colorings. Furthermore, a monitoring assay of 29 caramel coloring-free licorice products showed that both 4-methylimidazole and 2-acetyl-4-(1,2,3,4-tetrahydroxybutyl)imidazole are endogenously generated in detectable quantities. None of the samples showed 2-methylimidazole levels above the limit of detection, 50 ?g/kg. PMID:26073294

  5. Isotope Variations in Terrestrial Carbonates and Thermal Springs as Biomarkers: Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Bissada, K. K.

    2006-01-01

    Stable isotope measurements of carbonate minerals contained within ALH84001 [1] suggest that fluids were present at 3.9 Gy on Mars [2, 3, 4, 5]. Both oxygen and carbon isotopes provide independent means of deciphering paleoenvironmental conditions at the time of carbonate mineral precipitation. In terrestrial carbonate rocks oxygen isotopes not only indicate the paleotemperature of the precipitating fluid, but also provide clues to environmental conditions that affected the fluid chemistry. Carbon isotopes, on the other hand, can indicate the presence or absence of organic compounds during precipitation (i.e. biogenically vs. thermogenically-generated methane), thus serving as a potential biomarker. We have undertaken a study of micro scale stable isotope variations measured in some terrestrial carbonates and the influence of organic compounds associated with the formation of these carbonates. Preliminary results indicate that isotope variations occur within narrow and discrete intervals, providing clues to paleoenvironmental conditions that include both biological and non-biological activity. These results carry implications for deciphering Martian isotope data and therefore potential biological prospecting on the planet Mars. Recently, Fourier Transform Spectrometer observations have detected methane occurring in the Martian atmosphere [6] that could be attributed to a possible biogenic source. Indeed, Mars Express has detected the presence of methane in the Martian atmosphere [7], with evidence indicating that methane abundances are greatest above those basins with high water concentrations.

  6. Validation of a simplified field-adapted procedure for routine determinations of methyl mercury at trace levels in natural water samples using species-specific isotope dilution mass spectrometry.

    PubMed

    Lambertsson, Lars; Bjrn, Erik

    2004-12-01

    A field-adapted procedure based on species-specific isotope dilution (SSID) methodology for trace-level determinations of methyl mercury (CH(3)Hg(+)) in mire, fresh and sea water samples was developed, validated and applied in a field study. In the field study, mire water samples were filtered, standardised volumetrically with isotopically enriched CH(3) (200)Hg(+), and frozen on dry ice. The samples were derivatised in the laboratory without further pre-treatment using sodium tetraethyl borate (NaB(C(2)H(5))(4)) and the ethylated methyl mercury was purge-trapped on Tenax columns. The analyte was thermo-desorbed onto a GC-ICP-MS system for analysis. Investigations preceding field application of the method showed that when using SSID, for all tested matrices, identical results were obtained between samples that were freeze-preserved or analysed unpreserved. For DOC-rich samples (mire water) additional experiments showed no difference in CH(3)Hg(+) concentration between samples that were derivatised without pre-treatment or after liquid extraction. Extractions of samples for matrix-analyte separation prior to derivatisation are therefore not necessary. No formation of CH(3)Hg(+) was observed during sample storage and treatment when spiking samples with (198)Hg(2+). Total uncertainty budgets for the field application of the method showed that for analyte concentrations higher than 1.5 pg g(-1) (as Hg) the relative expanded uncertainty (REU) was approximately 5% and dominated by the uncertainty in the isotope standard concentration. Below 0.5 pg g(-1) (as Hg), the REU was >10% and dominated by variations in the field blank. The uncertainty of the method is sufficiently low to accurately determine CH(3)Hg(+) concentrations at trace levels. The detection limit was determined to be 4 fg g(-1) (as Hg) based on replicate analyses of laboratory blanks. The described procedure is reliable, considerably faster and simplified compared to non-SSID methods and thereby very suitable for routine applications of CH(3)Hg(+) speciation analysis in a wide range of water samples. PMID:15517198

  7. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples.

    PubMed

    Gong, Bing; Zheng, Yong-Fei; Chen, Ren-Xu

    2007-01-01

    An online continuous-flow method, combining a thermal conversion elemental analyzer (TC/EA) with isotope ratio mass spectrometry (MS), is evaluated for the determination of both the hydrogen isotope composition and the water concentration of hydrous and nominally anhydrous minerals. The technique involves reduction of hydrous minerals or nominally anhydrous minerals by reaction with glassy carbon at 1450 degrees C in a helium stream. The product gases, H2 and CO, are separated on a gas chromatographic column prior to analysis in the mass spectrometer. Calibration curves for the H concentration analysis were generated from a standard of benzoic acid (C7H6O2) that has an H concentration of 5.0 wt%; the analytical uncertainties were better than +/-0.05% in our runs. Two standards of material with given D values, polyethylene IAEA-CH-7 and biotite NBS-30, were tested for the purpose of calibrating a natural garnet 04BXL02 representing nominally anhydrous minerals. Preheating at 90 degrees C for 12 h was found to be suitable for removing adsorption water on the sample surface. This results in constant D values and total H2O contents for the garnet, with weighted means of -94 +/- 1 and 522 +/- 11 ppm (wt), respectively. The TC/EA-MS technique allows routine analysis of sample sizes as small as 0.01 microL H2O. For natural minerals, absolute reproducibilities for D values are +/-0.5 to +/-2 (1) and relative uncertainties for total H2O concentrations are at levels of +/-1% to +/-3% (1). Therefore, this online method can be used for the quantitative determination of H isotope composition and H2O concentration of either hydrous or anhydrous minerals. PMID:17370247

  8. On-line monitoring of benzene air concentrations while driving in traffic by means of isotopic dilution gas chromatography/mass spectrometry.

    PubMed

    Davoli, E; Cappellini, L; Moggi, M; Ferrari, S; Fanelli, R

    1996-01-01

    There is no shortage of information about the average benzene concentrations in urban air, but there is very little about microenvironmental exposure, such as in-vehicle concentrations while driving in various traffic conditions, while refuelling, or while in a parking garage. The main reason for this lack of data is that no analytical instrumentation has been available to measure on-line trace amounts of benzene in such situations. We have recently proposed a highly accurate, high-speed cryofocusing gas chromatography/mass spectrometry (GC/MS) system for monitoring benzene concentrations in air. Accuracy of the analytical data is achieved by enrichment of the air sample before trapping, with a stable isotope permeation tube system. The same principles have been applied to a new instrument, specifically designed for operation on an electric vehicle (Ducato Elettra, Fiat). The zero emission vehicle and the fully transportable, battery-operated GC/MS system provide a unique possibility of monitoring benzene exposure in real everyday situations such as while driving, refuelling, or repairing a car. All power consumptions have been reduced so as to achieve a battery-operated GC/MS system. Liquid nitrogen cryofocusing has been replaced by a packed, inductively heated, graphitized charcoal microtrap. The instrument has been mounted on shock absorbers and installed in the van. The whole system has been tested in both fixed and mobile conditions. The maximum monitoring period without external power supply is 6 h. The full analytical cycle is 4 min, allowing close to real-time monitoring, and the minimum detectable level is 1 microgram/m3 for benzene. In-vehicle monitoring showed that, when recirculation was off and ventilation on, i.e., air from outside the vehicle was blown inside, concentrations varied widely in different driving conditions: moving from a parking lot into normal traffic on an urban traffic condition roadway yielded an increase in benzene concentration from 17 to 62.3 micrograms/m3 even if the actual distance was small. A larger increase was observed when a car was left with the engine running at a distance 2 m from the zero emission vehicle: We measured an increment of benzene concentrations from 15.2 to 174.4 micrograms/m3 with a car equipped with a catalytic converter, and from 19.1 to 386.3 micrograms/m3 with a car without such a converter. PMID:8738357

  9. Apport des isotopes stables dans l'estimation des altitudes de recharge de sources thermales du MarocRecharge altitude estimation of thermal springs using stable isotopes in Morocco

    NASA Astrophysics Data System (ADS)

    Winckel, Anne; Marlin, Christelle; Dever, Laurent; Morel, Jean-Luc; Morabiti, Karim; Makhlouf, Mohamed Ben; Chalouan, Ahmed

    The recharge altitude estimation of thermal springs from northern and eastern Morocco using 18O and 2H contents requires the definition of regional isotopic altitudinal gradients (-0.25 for 100 m for the Rif and -0.30 for the East) and the calculation of residence time using 14C. The altitudes of emergence vary widely between 170 and 1040 m under the altitude of the recharge areas. The 18O and 2H compositions of palaeowaters ( >10 000 yr BP) indicate two effects, altitude and palaeoclimate. To cite this article: A. Winckel et al., C. R. Geoscience 334 (2002) 469-474.

  10. Chitin: 'Forgotten' Source of Nitrogen: From Modern Chitin to Thermally Mature Kerogen: Lessons from Nitrogen Isotope Ratios

    USGS Publications Warehouse

    Schimmelmann, A.; Wintsch, R.P.; Lewan, M.D.; DeNiro, M.J.

    1998-01-01

    Chitinous biomass represents a major pool of organic nitrogen in living biota and is likely to have contributed some of the fossil organic nitrogen in kerogen. We review the nitrogen isotope biogeochemistry of chitin and present preliminary results suggesting interaction between kerogen and ammonium during thermal maturation. Modern arthropod chitin may shift its nitrogen isotope ratio by a few per mil depending on the chemical method of chitin preparation, mostly because N-containing non-amino-sugar components in chemically complex chitin cannot be removed quantitatively. Acid hydrolysis of chemically complex chitin and subsequent ion-chromatographic purification of the "deacetylated chitin-monomer" D-glucosamine (in hydrochloride form) provides a chemically well-defined, pure amino-sugar substrate for reproducible, high-precision determination of ??15N values in chitin. ??15N values of chitin exhibited a variability of about one per mil within an individual's exoskeleton. The nitrogen isotope ratio differed between old and new exoskeletons by up to 4 per mil. A strong dietary influence on the ??15N value of chitin is indicated by the observation of increasing ??15N values of chitin from marine crustaceans with increasing trophic level. Partial biodegradation of exoskeletons does not significantly influence ??15N values of remaining, chemically preserved amino sugar in chitin. Diagenesis and increasing thermal maturity of sedimentary organic matter, including chitin-derived nitrogen-rich moieties, result in humic compounds much different from chitin and may significantly change bulk ??15N values. Hydrous pyrolysis of immature source rocks at 330??C in contact with 15N-enriched NH4Cl, under conditions of artificial oil generation, demonstrates the abiogenic incorporation of inorganic nitrogen into carbon-bound nitrogen in kerogen. Not all organic nitrogen in natural, thermally mature kerogen is therefore necessarily derived from original organic matter, but may partly result from reaction with ammonium-containing pore waters.

  11. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, H.D. Jr.

    1993-04-20

    A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  12. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, Jr., Henry D.

    1993-01-01

    A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  13. Dilutions Made Easy.

    ERIC Educational Resources Information Center

    Kamin, Lawrence

    1996-01-01

    Presents problems appropriate for high school and college students that highlight dilution methods. Promotes an understanding of dilution methods in order to prevent the unnecessary waste of chemicals and glassware in biology laboratories. (JRH)

  14. Molybdenum and Osmium isotope evidence for palaeoceanographic changes in the Arctic Ocean over the Paleocene-Eocene Thermal Maximum (PETM)

    NASA Astrophysics Data System (ADS)

    Dickson, A. J.; Cohen, A. S.; Coe, A. L.

    2010-12-01

    The Paleocene Eocene Thermal Maximum (PETM) was a period of substantial global warming thought to have been caused by the sudden input of large amounts of carbon to the ocean/atmosphere system. This carbon may have been sourced from the dissociation of methane hydrate reservoirs, although there is some debate over the role of other carbon sources, e.g. from thermogenic combustion of organic rich marine sediments during the emplacement of the North Atlantic Igneous Province. We present the first Molybdenum (Mo) and Osmium (Os) isotope data measured over the PETM interval of IODP 302 (Arctic Ocean) that reflect changes in ocean oxygenation (Mo), and in the balance between the weathering of old terrestrial rocks and younger basaltic material (Os). Both records display downcore variations that reflect the widely-recognised PETM carbon isotope excursion, suggesting clear changes in oxygenation state and weathering inputs over this event. Furthermore, isotope mass-balance constraints and comparison with other published datasets provides evidence that the Arctic Ocean remained connected to the global ocean over the course of the PETM. We will examine the implications of the new datasets for our understanding of climate dynamics during this interval.

  15. A Case for the Rapid Release of Carbon during the Paleocene-Eocene Thermal Maximum Carbon Isotope Excursion

    NASA Astrophysics Data System (ADS)

    Wright, J. D.; Schaller, M. F.

    2013-12-01

    The Paleocene/Eocene Thermal Maximum (PETM) and associated Carbon Isotope Excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE's onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ18O cycles that imply a climatic cause. We have counted over 650 couplets at two different sites precluding orbital- and millennial-scale forcing for their origin. %CaCO3 decreases from ~6 to <1% across one couplet. High-resolution stable isotope records show 3.5‰ δ13C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of 13C-depleted carbon. Seasonal forcing of the sedimentary couplets best explains: 1) δ18O cycles and amplitudes; 2) the difference in response times between surface water carbonate chemistry (instantaneous) and carbon isotopic exchange (decadal); and 3) total layer counts. We conclude that the 'Marlboro Clay' sediments and its δ13C excursion record the initial release of carbon into the atmosphere, invasion into the surface waters, and only the initial mixing into the deep ocean. Therefore, the recovery observed in the Marlboro Clay is not equivalent to the 'recovery' observed in the open ocean records in either its timing or root cause.

  16. Serial Dilution Simulation Lab

    ERIC Educational Resources Information Center

    Keler, Cynthia; Balutis, Tabitha; Bergen, Kim; Laudenslager, Bryanna; Rubino, Deanna

    2010-01-01

    Serial dilution is often a difficult concept for students to understand. In this short dry lab exercise, students perform serial dilutions using seed beads. This exercise helps students gain skill at performing dilutions without using reagents, bacterial cultures, or viral cultures, while being able to visualize the process.

  17. Comprehensive two-dimensional gas chromatography with isotope dilution time-of-flight mass spectrometry for the measurement of dioxins and polychlorinated biphenyls in foodstuffs. Comparison with other methods.

    PubMed

    Focant, Jean-Franois; Eppe, Gauthier; Scippo, Marie-Louise; Massart, Anne-Ccile; Pirard, Catherine; Maghuin-Rogister, Guy; De Pauw, Edwin

    2005-09-01

    A comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC x GC-TOF-MS) experimental setup was tested for the measurement of seven 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs), ten 2,3,7,8-substituted polychlorinated dibenzofurans (PCDFs), four non-ortho-polychlorinated biphenyls (PCBs), eight mono-ortho-PCBs, and six indicator PCBs (Aroclor 1260) in foodstuff samples. A 40m RTX-500 (0.18mm I.D., 0.10 microm df) was used as the first dimension (1D) and a 1.5 m BPX-50 (0.10mm I.D., 0.10 microm df) as the second dimension (2D). The GC x GC chromatographic separation was completed in 45 min. Quantification was performed using 13C-label isotope dilution (ID). Isotope ratios of the selected quantification ions were checked against theoretical values prior to peak assignment and quantification. The dynamic working range spanned three orders of magnitude. The lowest detectable amount of 2,3,7,8-TCDD was 0.2 pg. Fish, pork, and milk samples were considered. On a congener basis, the GC x GC-ID-TOF-MS method was compared to the reference GC-ID high resolution mass spectrometry (HRMS) method and to the alternative GC-ID tandem-in-time quadrupole ion storage mass spectrometry (QIST-MS/MS). PCB levels ranged from low picogram (pg) to low nanogram (ng) per gram of sample and data compared very well between the different methods. For all matrices, PCDD/Fs were at a low pg level (0.05-3 pg) on a fresh weight basis. Although congener profiles were accurately described, RSDs of GC x GC-ID-TOF-MS and GC-QIST-MS/MS were much higher than for GC-ID-HRMS, especially for low level pork and milk. On a toxic equivalent (TEQ) basis, all methods, including the dioxin-responsive chemically activated luciferase gene expression (DR-CALUX) assay, produced similar responses. A cost comparison is also presented. PMID:16130655

  18. Effects of high-temperature diluted-H2 annealing on effective mobility of 4H-SiC MOSFETs with thermally-grown SiO2

    NASA Astrophysics Data System (ADS)

    Hirai, Hirohisa; Kita, Koji

    2016-04-01

    The impact of post-oxidation annealing (POA) in diluted-H2 ambient on a 4H-SiC/SiO2 interface was investigated with a cold wall furnace. Effective mobility (μeff) was extracted from lateral metal–oxide–semiconductor field-effect transistors (MOSFETs) by applying the split capacitance–voltage (C–V) technique to the determination of charge density and a calibration technique using two MOSFETs with different gate lengths to minimize the contribution of parasitic components. POA at 1150 °C in diluted-H2 ambient resulted in an enhancement of μeff compared with that for POA in N2 ambient. It was indicated that the effects of POA in diluted H2 should be attributed to the reduction in the density of near interface traps, which disturb the electron transportation in the inversion channel, from the measurement temperature dependence of μeff as well as from the C–V curves of MOS capacitors fabricated on n-type SiC.

  19. High mass accuracy assay for trimethylamine N-oxide using stable-isotope dilution with liquid chromatography coupled to orthogonal acceleration time of flight mass spectrometry with multiple reaction monitoring.

    PubMed

    Heaney, Liam M; Jones, Donald J L; Mbasu, Richard J; Ng, Leong L; Suzuki, Toru

    2016-01-01

    Trimethylamine N-oxide (TMAO) has attracted interest as circulating levels have reported prognostic value in patients with cardiovascular conditions, such as heart failure. With continual advances in accurate mass measurements, robust methods that can employ the capabilities of time of flight mass spectrometers would offer additional utility in the analysis of complex clinical samples. A Waters Acquity UPLC was coupled to a Waters Synapt G2-S high-resolution mass spectrometer. TMAO was measured in plasma by stable-isotope dilution-hydrophilic interaction liquid chromatography-time of flight mass spectrometry with multiple reaction monitoring (LC-ToF-MRM). Two transitions were monitored: m/z 76.1 to 58.066/59.073 and m/z 85.1 to 66.116/68.130. The method was assessed for linearity, lower limits of detection and quantitation, and reproducibility. A selected cohort of patients with systolic heart failure (SHF; n?=?43) and healthy controls (n?=?42) were measured to verify the assay is suitable for the analysis of clinical samples. Quantitative analysis of TMAO using LC-ToF-MRM enabled linearity to be established between 0.1 and 75?mol/L, with a lower limit of detection of 0.05?mol/L. Relative standard deviations reported an inter-day variation of ?20.8% and an intra-day variation of ?11.4% with an intra-study quality control variation of 2.7%. Run times were 2.5min. Clinical application of the method reported that TMAO in SHF was elevated compared to that of healthy controls (p?

  20. Development, validation and application of a stable isotope dilution liquid chromatography electrospray ionization/selected reaction monitoring/mass spectrometry (SID-LC/ESI/SRM/MS) method for quantification of keto-androgens in human serum?, ??

    PubMed Central

    Tamae, Daniel; Byrns, Michael; Marck, Brett; Mostaghel, Elahe A.; Nelson, Peter S.; Lange, Paul; Lin, Daniel; Taplin, Mary-Ellen; Balk, Steven; Ellis, William; True, Larry; Vessella, Robert; Montgomery, Bruce; Blair, Ian A.; Penning, Trevor M.

    2013-01-01

    Prostate cancer is the most frequently diagnosed form of cancer in males in the United States. The disease is androgen driven and the use of orchiectomy or chemical castration, known as androgen deprivation therapy (ADT) has been employed for the treatment of advanced prostate cancer for over 70 years. Agents such as GnRH agonists and non-steroidal androgen receptor antagonists are routinely used in the clinic, but eventually relapse occurs due to the emergence of castration-resistant prostate cancer. With the appreciation that androgen signaling still persists in these patients and the development of new therapies such as abiraterone and enzalutamide that further suppresses androgen synthesis or signaling, there is a renewed need for sensitive and specific methods to quantify androgen precursor and metabolite levels to assess drug efficacy. We describe the development, validation and application of a stable isotope dilution liquid chromatography electrospray ionization selected reaction monitoring mass spectrometry (SID-LC/ESI/SRM/MS) method for quantification of serum keto-androgens and their sulfate and glucuronide conjugates using Girard-T oxime derivatives. The method is robust down to 0.24 pg on column, depending on the androgen metabolite quantified, and can also quantify dehydroepiandrosterone sulfate (DHEA-S) in only 1 ?L of serum. The clinical utility of this method was demonstrated by analyzing serum androgens from patients enrolled in a clinical trial assessing combinations of pharmacological agents to maximally suppress gonadal and adrenal androgens (Targeted Androgen Pathway Suppression, TAPS clinical trial). The method was validated by correlating the results obtained with a hydroxylamine derivatization procedure coupled with tandem mass spectrometry using selected reaction monitoring that was conducted in an independent laboratory. PMID:23851165

  1. Contribution to the certification of B, Cd, Cu, Mg and Pb in a synthetic water sample, by use of isotope-dilution ICP-MS, for Comparison 12 of the International Measurement Evaluation Programme.

    PubMed

    Diemer, J; Qutel, C R; Taylor, P D P

    2002-09-01

    The contribution of the Institute for Reference Materials and Measurements to the certification of the B, Cd, Cu, Mg, and Pb content of a synthetic water sample used in Comparison 12 of the International Measurement Evaluation Programme (IMEP-12) is described. The aim of the IMEP programme is to demonstrate objectively the degree of equivalence and quality of chemical measurements of individual laboratories on the international scene by comparing them with reference ranges traceable to the SI (Systme International d'Units). IMEP is organized in support of European Union policies and helps to improve the traceability of values produced by field chemical measurement laboratories. The analytical procedure used to establish the reference values for the B, Cd, Cu, Mg, and Pb content of the IMEP-12 sample is based on inductively coupled plasma-isotope-dilution mass spectrometry (ICP-IDMS) applied as a primary method of measurement. The measurements performed for the IMEP-12 study are described in detail. Focus is on the element boron, which is particularly difficult to analyze by ICP-MS because of potential problems of low sensitivity, high mass discrimination, memory effects, and abundance sensitivity. For each of the certified amount contents presented here a total uncertainty budget was calculated using the method of propagation of uncertainties according to ISO (International Organization for Standardization) and Eurachem guidelines. For all investigated elements with concentrations in the low micro g kg(-1) and mg kg(-1) range (corresponding to pmol kg(-1) to the high micro mol kg(-1) level), SI-traceable reference values with relative expanded uncertainties ( k=2) of less than 2 % were obtained. PMID:12324840

  2. Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans.

    PubMed

    Schumacher, Fabian; Chakraborty, Sudipta; Kleuser, Burkhard; Gulbins, Erich; Schwerdtle, Tanja; Aschner, Michael; Bornhorst, Julia

    2015-11-01

    Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C. elegans to the monoamine oxidase B (MAO-B) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C. elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties. PMID:26452793

  3. Combining the quick, easy, cheap, effective, rugged and safe approach and clean-up by immunoaffinity column for the analysis of 15 mycotoxins by isotope dilution liquid chromatography tandem mass spectrometry.

    PubMed

    Desmarchelier, Aurlien; Tessiot, Sabine; Bessaire, Thomas; Racault, Lucie; Fiorese, Elisa; Urbani, Alessandro; Chan, Wai-Chinn; Cheng, Pearly; Mottier, Pascal

    2014-04-11

    Optimization and validation of a multi-mycotoxin method by LC-MS/MS is presented. The method covers the EU-regulated mycotoxins (aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone, T-2 and HT-2), as well as nivalenol and 3- and 15-acetyldeoxynivalenol for analysis of cereals, cocoa, oil, spices, infant formula, coffee and nuts. The proposed procedure combines two clean-up strategies: First, a generic preparation suitable for all mycotoxins based on the QuEChERS (for quick, easy, cheap, effective, rugged and safe) protocol. Second, a specific clean-up devoted to aflatoxins and ochratoxin A using immunoaffinity column (IAC) clean-up. Positive identification of mycotoxins in matrix was conducted according to the confirmation criteria defined in EU Commission Decision 2002/657/EC while quantification was performed by isotopic dilution using (13)C-labeled mycotoxins as internal standards. Limits of quantification were at or below the maximum levels set in the EC/1886/2006 document for all mycotoxin/matrix combinations under regulation. In particular, the inclusion of an IAC step allowed achieving LOQs as low as 0.05 and 0.25?g/kg in cereals for aflatoxins and ochratoxin A, respectively. Other performance parameters like linearity [(r)(2)>0.99], recovery [71-118%], precision [(RSDr and RSDiR)<33%], and trueness [78-117%] were all compliant with the analytical requirements stipulated in the CEN/TR/16059 document. Method ruggedness was proved by a verification process conducted by another laboratory. PMID:24636559

  4. Development and application of a stable isotope dilution analysis for the quantitation of advanced glycation end products of creatinine in biofluids of type 2 diabetic patients and healthy volunteers.

    PubMed

    Kunert, Christof; Skurk, Thomas; Frank, Oliver; Lang, Roman; Hauner, Hans; Hofmann, Thomas

    2013-03-01

    N-(1-Methyl-4-oxoimidazolidin-2-ylidene) α-amino acids were recently identified in roasted meat as so far unknown advanced glycation end products (AGEs) of creatinine. For the first time, this paper reports on the preparation of (13)C-labeled twin molecules of six N-(1-methyl-4-oxoimidazolidin-2-ylidene) α-amino acids and the development of a stable isotope dilution analysis (SIDA) for their simultaneous quantitation in meat, plasma, and urine samples by means of HPLC-MS/MS. Method validation demonstrated good precision (<14% RSD) and accuracy (97-118%) for all analytes and a lower limit of quantitation of 1 pg injected onto the column. The SIDA was applied to monitor plasma appearance and urinary excretion of these AGEs in type 2 diabetes mellitus patients (DM, n = 7) and healthy controls (n = 10) prior to and after ingestion of a bolus of processed beef meat. Interestingly, the basal concentration of N-(1-methyl-4-oxoimidazolidin-2-ylidene) aminopropionic acid was elevated in plasma and urine of DM patients compared to healthy individuals. Further, ingestion of processed meat led to a significantly higher concentration of this AGE in biofluids from DM patients when compared to healthy controls. These findings suggest a favored in vivo formation, as demonstrated by physiological model incubations of creatinine and carbohydrates (37 °C, pH 7.4), or a more efficient dietary up-take of N-(1-methyl-4-oxoimidazolidin-2-ylidene) α-amino acids in hyperglycemic diabetes patients. PMID:23379726

  5. S1 certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate certified reference material (organochlorine pesticides in tea) by isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Sin, Della Wai-Mei; Wong, Yee-Lok; Cheng, Eddie Chung-Chin; Lo, Man-Fung; Ho, Clare; Mok, Chuen-Shing; Wong, Siu-Kay

    2015-04-01

    This paper presents the certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate tea certified reference material (code: GLHK-11-03) according to the requirements of the ISO Guide 30 series. Certification of GLHK-11-03 was based on an analytical method purposely developed for the accurate measurement of the mass fraction of the target analytes in the material. An isotope dilution mass spectrometry (IDMS) method involving determination by (i) gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS) and (ii) gas chromatography-electron ionization-high-resolution mass spectrometry (GC-EI-HRMS) techniques was employed. The performance of the described method was demonstrated through participation in the key comparison CCQM-K95 "Mid-Polarity Analytes in Food Matrix: Mid-Polarity Pesticides in Tea" organized by the Consultative Committee for Amount of Substance-Metrology in Chemistry in 2012, where the study material was the same as the certified reference material (CRM). The values reported by using the developed method were in good agreement with the key comparison reference value (KCRV) assigned for beta-endosulfan (727??14?gkg(-1)) and endosulfan sulfate (505??11?gkg(-1)), where the degree of equivalence (DoE) values were 0.41 and 0.40, respectively. The certified values of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in dry mass fraction in GLHK-11-03 were 350, 730, and 502?gkg(-1), respectively, and the respective expanded uncertainties, due to sample inhomogeneity, long-term and short-term stability, and variability in the characterization procedure, were 27?gkg(-1) (7.8%), 48?gkg(-1) (6.6%), and 33?gkg(-1) (6.6%). PMID:25619984

  6. A comparison of lead-isotope measurements on exploration-type samples using inductively coupled plasma and thermal ionization mass spectrometry

    USGS Publications Warehouse

    Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.

    1989-01-01

    Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.

  7. Chemostratigraphic implications of spatial variation in the Paleocene-Eocene Thermal Maximum carbon isotope excursion, SE Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Baczynski, Allison A.; McInerney, Francesca A.; Wing, Scott L.; Kraus, Mary J.; Bloch, Jonathan I.; Boyer, Doug M.; Secord, Ross; Morse, Paul E.; Fricke, Henry C.

    2013-10-01

    The Paleocene-Eocene Thermal Maximum (PETM) is marked by a prominent negative carbon isotope excursion (CIE) of 3-5‰ that has a characteristic rapid onset, stable body, and recovery to near pre-CIE isotopic composition. Although the CIE is the major criterion for global correlation of the Paleocene-Eocene boundary, spatial variations in the position and shape of the CIE have not been systematically evaluated. We measured carbon isotope ratios of bulk organic matter (δ13Corg) and pedogenic carbonate (δ13Ccarb) at six PETM sections across a 16 km transect in the SE Bighorn Basin, Wyoming. Bed tracing and high-resolution floral and faunal biostratigraphy allowed correlation of the sections independent of chemostratigraphy. The onset of the CIE in bulk organic matter at all six sections occurs within a single laterally extensive geosol. The magnitude of the CIE varies from 2.1 to 3.8‰. The absolute and relative stratigraphic thickness of the body of the CIE in bulk organic matter varies significantly across the field area and underrepresents the thickness of the PETM body by 30%-80%. The variations cannot be explained by basinal position and instead suggest that δ13Corg values were influenced by local factors such as reworking of older carbon. The stratigraphic thickness and shape of the CIE have been used to correlate sections, estimate timing of biotic and climatic changes relative to the presumed carbon isotope composition of the atmosphere, and calculate rates of environmental and biotic change. Localized controls on δ13Corg values place these inferences in question by influencing the apparent shape and duration of the CIE.

  8. Alternative Methodology for Boron Isotopic Analysis of CaCO3 by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2012-12-01

    Negative thermal ionization mass spectrometry (NTIMS) has been a common tool for investigating boron isotopes in CaCO3 and other environmental samples, the high sensitivity of BO2- ionization enabling measurements of ng levels of boron. However, B isotope measurement by this technique suffers from a number of problems, including: (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; (2) CNO- interference on mass 42 ([10BO2]-) that may be present in some filament load solutions (such as B-free seawater processed through ion-exchange resin), and (3) potential matrix effects due to widely differing chemistry of samples and standards. Here we examine a potentially improved NTIMS methodology that incudes removal of sample-related calcium (and other cations) by ion exchange and uses an alternative filament loading solution prepared from high-purity single-element solutions of Ca, Mg, Na, and K. Initial results suggest that this new method may offer significant improvement over the more traditional NTIMS approach in which digested CaCO3 samples are directly loaded onto filaments in B-free seawater. Replicate analyses of standards and samples yield a typical standard deviation of approximately 0.3 ?11B and boron isotopic compositions comparable to reported or consensus values. Fractionation during analysis has thus far typically been less than 0.5 ?11B. The method delivers boron ionization efficiency similar to directly-loaded seawater, and negligible signal at mass 26 (CN-), a proxy for the possible interfering molecular CNO- ion. Standards and samples behave similarly and predictably during filament heating and analysis, thus allowing for fully automated data acquisition, which in turn may increase sample throughput and reduce potential analytical inconsistencies associated with operator-controlled heating and analysis.

  9. Relative humidity across the Paleocene-Eocene Thermal Maximum via combined hydrogen-oxygen isotope paleohygrometry (Invited)

    NASA Astrophysics Data System (ADS)

    McInerney, F. A.; Bloch, J. I.; Secord, R.; Wing, S. L.; Kraus, M. J.; Boyer, D. M.

    2009-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) presents an opportunity to characterize continental hydrologic changes during rapid and extreme global warming. The Bighorn Basin, Wyoming, USA, has long been recognized for the PETM sequences preserved there and sits in an ideal location for recording hydrologic changes in the interior of North America. The southeast Bighorn Basin is of particular interest because it contains not only alluvial paleosols and vertebrate fossils, but also macrofloral remains from the PETM. The carbon isotope excursion associated with this event is preserved in this part of the Basin in leaf wax lipids, tooth enamel, and bulk organic matter. To characterize the hydrologic changes that occurred during the PETM we are applying a suite of isotopic, paleobotanical and paleopedological approaches to sections in the southeast Bighorn Basin. Reported here are results from the combined hydrogen and oxygen isotope analysis aimed at reconstructing relative humidity. Oxygen isotope ratios (?18O) of biogenic apatite from mammalian tooth enamel and fish scales vary with environment, physiology and diet. Because mammals are homeothermic, they primarily track surface water values with predictable physiological offsets. Hydrogen isotope ratios (?D) of leaf-wax lipids (long-chain n-alkanes) reflect both meteoric water ?D values and additional D-enrichment caused by evapotranspiration. The enrichment factor between water ?D and n-alkane ?D can therefore be used as a proxy for relative humidity (RH). In this study, ?18O of surface water is estimated using the ?18O of Coryphodon tooth enamel. We use these ?18O values to estimate surface water ?D values using the Global Meteoric Water Line (?D = 8?18O + 10). We then calculate relative humidity from n-alkane ?D values using a Craig-Gordon type isotopic model for D-enrichment caused by transpiration from leaves. Results of the combined hydrogen-oxygen isotope paleohygrometer indicate a general rise in relative humidity during the first half of the PETM followed by a decline during the second half of the event. The rise is punctuated by at least one small drop in relative humidity. Other proxies for available soil moisture (soil weathering indices) and mean annual precipitation (leaf physiognomy) suggest an initial drying at the onset of the PETM followed by subsequent periods of wetter and dryer conditions in the southeastern Bighorn Basin. In contrast, the isotope results presented here suggest that the onset of the PETM was marked by an increase in relative humidity. This discrepancy might indicate increased seasonality during the PETM. Leaf wax hydrogen isotope values are likely biased to record primarily the growing season, which may have become more humid, while soil and plant proxies could reflect an overall decrease in available moisture as a result of increased seasonality of precipitation.

  10. The Absolute Isotopic Composition of Zn in Terrestrial Materials Determined Using Double Spike Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ghidan, O. Y.; Loss, R. D.

    2008-12-01

    Although long suspected to be widespread in nature, until recently, little was known about the extent of the variation of the isotopic composition, or isotopic fractionation, of Zn in natural materials. During the last decade an increasing number of high precision Zn isotopic fractionation data have been reported using MC- ICP-MS (MARECHAL et al., 1999; PETIT et al., 2008; PICHAT et al., 2003), but none have been reported on an absolute scale which is essential for interlaboratory comparison of results. In this work we report sub- permil Zn fractionation in a range of natural materials relative to the internationally proposed absolute Zn isotopic reference material (? zero) (PONZEVERA et al., 2006)using the Thermal Ionization Mass Spectrometry double spike technique. Repeated double spike analysis of the laboratory standard relative to itself demonstrated a long term reproducibility of +0.006 0.039 permil amu-1. The measured isotopic composition of Zn in minerals and igneous rocks SRMs was found to be the same as the proposed absolute (? zero) which makes it possible to consider the proposed absolute Zn isotopic standard as being representative of "bulk earth" Zn. A significant and consistent fractionation of ~+0.3 permil amu-1 was found in 5 sediments from a range of localities. The results obtained for metamorphic SRMs indicate that the fractionation of Zn in these rocks is the same as found in igneous rocks but are different from the Zn found in sedimentary rocks. A clay SRM sample TILL-3 appears to exhibit a consistently Zn fractionation of +0.12 0.10 permil amu-1. The isotopic composition of Zn was also measured in two plant SRMs and one animal SRM sample. The fractionation of (-0.088 0.070 permil amu-1) of Zn in the Rice (a C3 type plant material) sample suggested that Zn may be used to study Zn systematics in plants. The result obtained for MURST-ISS-A2 (Antarctic Krill) was +0.21 0.11 permil amu-1 relative to the laboratory standard which is similar to the average Zn fractionation results of +0.281 0.083 permil amu-1 obtained for marine sediments. The fractionation of Zn in seven ultra pure Zn standard materials was also measured relative to the laboratory standard and found to range from -5.11 0.36 permil amu-1 for AE 10760 to +0.12 0.16 permil amu-1 for Zn IRMM 10440 confirming that that significant care must be exercised in the selection of Zn isotope laboratory standards (TANIMIZU et al., 2002). A pilot study to determine the concentration and the isotopic composition of Zn in river and tap water, and a number of processed materials was also performed. The implications and applications of these results, such as on the atomic weight of Zn will be presented.

  11. Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen and chlorine isotope compositions

    USGS Publications Warehouse

    Cullen, Jeffrey T.; Barnes, Jaime D.; Hurwitz, Shaul; Leeman, William P.

    2015-01-01

    In order to provide constraints on the sources of chlorine in spring waters associated with arc volcanism, the major/minor element concentrations and stable isotope compositions of chlorine, oxygen, and hydrogen were measured in 28 thermal and mineral springs along the Cascade Range in northwestern USA. Chloride concentrations in the springs range from 64 to 19,000 mg/L and View the MathML source values range from +0.2‰ to +1.9‰ (average=+1.0±0.4‰), with no systematic variation along or across the arc, nor correlations with their presumed underlying basement lithologies. Additionally, nine geochemically well-characterized lavas from across the Mt. St. Helens/Mt. Adams region of the Cascade Range (Leeman et al., 2004 and Leeman et al., 2005) were analyzed for their halogen concentrations and Cl isotope compositions. In the arc lavas, Cl and Br concentrations from the volcanic front are higher than in lavas from the forearc and backarc. F and I concentrations progressively decrease from forearc to backarc, similar to the trend documented for B in most arcs. View the MathML source values of the lavas range from −0.1 to +0.8‰ (average = +0.4±0.3‰). Our results suggest that the predominantly positive View the MathML source values observed in the springs are consistent with water interaction with underlying 37Cl-enriched basalt and/or altered oceanic crust, thereby making thermal spring waters a reasonable proxy for the Cl isotope compositions of associated volcanic rocks in the Cascades. However, waters with View the MathML source values >+1.0‰ also suggest additional contributions of chlorine degassed from cooling magmas due to subsurface vapor–liquid HCl fractionation in which Cl is lost to the aqueous fluid phase and 37Cl is concentrated in the ascending magmatic HCl vapor. Future work is necessary to better constrain Cl isotope behavior during volcanic degassing and fluid–rock interaction in order to improve volatile flux estimates through subduction zones.

  12. Unusually large secondary deuterium isotope effect. Thermal trans-cis isomerization of trans-1-phenylcyclohexene

    SciTech Connect

    Caldwell, R.A.; Misawa, H.; Healy, E.F.; Dewar, M.J.

    1987-01-01

    The magnitudes of secondary deuterium isotope effects (SDIE) are generally in the range of 0.9 < kH/kD < 1.25, and are often satisfactorily rationalized by the zero-point energy (ZPE) change on going from reactant to transition state due to C-H rehybridization. We now report a far larger SDIE for the title reaction. Its rationalization on the basis of transition-state theory suggests that it more closely resembles a primary isotope effect. Laser flash photolysis of cis-1-phenylcyclohexene (direct, 266 nm, or sensitized by thioxanthone, 355 nm) affords its trans isomer which in heptane exclusively reverts to 1, k = 2.1 x 10/sup 5/ s at 300 K. Isotopically substituted 2-2-d1 or 2-2,6-6-d3 (generated similarly from the corresponding cis isomers5) both have rates of reversion longer than 2 itself by a factor of 2.0 at room temperature. No previously reported SDIE approaches this magnitude.

  13. Microfluidic serial dilution ladder.

    PubMed

    Ahrar, Siavash; Hwang, Michelle; Duncan, Philip N; Hui, Elliot E

    2014-01-01

    Serial dilution is a fundamental procedure that is common to a large number of laboratory protocols. Automation of serial dilution is thus a valuable component for lab-on-a-chip systems. While a handful of different microfluidic strategies for serial dilution have been reported, approaches based on continuous flow mixing inherently consume larger amounts of sample volume and chip real estate. We employ valve-driven circulatory mixing to address these issues and also introduce a novel device structure to store each stage of the dilution process. The dilution strategy is based on sequentially mixing the rungs of a ladder structure. We demonstrate a 7-stage series of 1?:?1 dilutions with R(2) equal to 0.995 in an active device area of 1 cm(2). PMID:24231765

  14. Effect of carbon and hydrogen isotopic substitutions on the thermal diffusion of benzene

    SciTech Connect

    Rutherford, W.M.

    1989-01-01

    Measurements of the thermal diffusion factor of the benzene/carbon 13 substituted benzene pair and of the benzene/deuterated benzene pair are reported. The results show some interesting effects of mass distribution. (AIP)

  15. Effects of ocean acidification on the marine calcium isotope record at the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Griffith, Elizabeth M.; Fantle, Matthew S.; Eisenhauer, Anton; Paytan, Adina; Bullen, Thomas D.

    2015-06-01

    Carbonates are used extensively to reconstruct paleoclimate and paleoceanographic conditions over geologic time scales. However, these archives are susceptible to diagenetic alteration via dissolution, recrystallization and secondary precipitation, particularly during ocean acidification events when intense dissolution can occur. Despite the possible effects of diagenesis on proxy fidelity, the impacts of diagenesis on the calcium isotopic composition (?44Ca) of carbonates are unclear. To shed light on this issue, bulk carbonate ?44Ca was measured at high resolution in two Pacific deep sea sediment cores (ODP Sites 1212 and 1221) with considerably different dissolution histories over the Paleocene-Eocene Thermal Maximum (PETM, ? 55 Ma). The ?44Ca of marine barite was also measured at the deeper Site 1221, which experienced severe carbonate dissolution during the PETM. Large variations (? 0.8 ) in bulk carbonate ?44Ca occur in the deeper of the two sites at depths corresponding to the peak carbon isotope excursion, which correlate with a large drop in carbonate weight percent. Such an effect is not observed in either the 1221 barite record or the bulk carbonate record at the shallower Site 1212, which is also less affected by dissolution. We contend that ocean chemical changes associated with abrupt and massive carbon release into the ocean-atmosphere system and subsequent ocean acidification at the PETM affected the bulk carbonate ?44Ca record via diagenesis in the sedimentary column. Such effects are considerable, and need to be taken into account when interpreting Ca isotope data and, potentially, other geochemical proxies over extreme climatic events that drive sediment dissolution.

  16. Thermal, chemical and isotopic homogenization of syn-extensional I-type plutons and mafic microgranular enclaves

    NASA Astrophysics Data System (ADS)

    Tatar Erkül, Sibel; Erkül, Fuat; Uysal, İbrahim

    2015-04-01

    Magma mixing and mingling processes are common phenomenon in the evolution of granitoid magmas. This study deals with examination of mineral chemical, geochemical and isotopic characteristics of enclaves and enclosing syn-extensional granite bodies in western Turkey to make an attempt to solve problems regarding their origin. Mafic microgranular enclaves have granodiorite, quartz monzonite, monzonite and monzodiorite compositions, are subalkaline/calc-alkaline and high-K in character and display typical mixing/mingling textures. Mafic enclaves have partially overlapping geochemical characteristics onto their host rocks in terms of mobile elements and their isotopes while distinct immobile element patterns occur within host rocks and enclaves. Contrasting geochemistry of enclaves is mainly defined by their low SiO2 and high MgO, Mg# and high Fe2O3 contents. Chondrite-normalized spidergrams of enclaves also reveal two contrasting patterns. One is relatively enriched in rare earth element content and the other is slightly enriched and displays relatively flat pattern. 87Sr/86Sr and 143Nd/144Nd contents of enclaves imply considerable amount of crustal input. Crustally derived felsic magma coeval with mafic magma have been chemically, thermally and mechanically exchanged with each other and resulting homogenization led to compositional and isotopic equilibration of mafic and felsic magmas. Fractional crystallization, mixing and the following crustal contamination were responsible for the final composition of syn-extensional granitoids. Such processes appear to have been widely occurred in continental extensional regime that caused melting and mixing of crustal and mantle sources at MOHO depth.

  17. Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bürger, S.; Riciputi, L. R.; Bostick, D. A.; Turgeon, S.; McBay, E. H.; Lavelle, M.

    2009-09-01

    A ThermoFisher "Triton" multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotope ratio analysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (104 atoms to 105 atoms) for 239-242+244Pu, 233+236U, 241-243Am, 89,90Sr, and 134,135,137Cs, and <=1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 × 106 or better using a SEM are reported here. Precisions of RSD [approximate]0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.

  18. 15N and 18O kinetic isotope effects in the thermal decomposition of N2O catalyzed by bromine

    NASA Astrophysics Data System (ADS)

    Lesar, Antonija; Senega?nik, Marjan

    1993-07-01

    15N and 18O kinetic isotope effects (KIEs) in the thermal decomposition of N2O catalyzed by bromine were experimentally determined in the temperature range 773-873 K, resulting in KIE (15N)=-2.07+4020/T and KIE (18O)=-0.41+3290/T. For theoretical interpretation, based on the Bigeleisen formalism, the following planar transition states were taken into account: trans (N-N-O-Br), trans (Br-N-N-O), and branched (N-Nisotope effects, activation energy, and pre-exponential factor.

  19. Comprehensive profiling of mercapturic acid metabolites from dietary acrylamide as short-term exposure biomarkers for evaluation of toxicokinetics in rats and daily internal exposure in humans using isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Zhang, Yu; Wang, Qiao; Cheng, Jun; Zhang, Jingshun; Xu, Jiaojiao; Ren, Yiping

    2015-09-24

    Mercapturic acid metabolites from dietary acrylamide are important short-term exposure biomarkers for evaluating the in vivo toxicity of acrylamide. Most of studies have focused on the measurement of two metabolites, N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA). Thus, the comprehensive profile of acrylamide urinary metabolites cannot be fully understood. We developed an isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous determination of all four mercapturic acid adducts of acrylamide and its primary metabolite glycidamide under the electroscopy ionization negative (ESI-) mode in the present study. The limit of detection (LOD) and limit of quantification (LOQ) of the analytes ranged 0.1-0.3 ng/mL and 0.4-1.0 ng/mL, respectively. The recovery rates with low, intermediate and high spiking levels were calculated as 95.5%-105.4%, 98.2%-114.0% and 92.2%-108.9%, respectively. Acceptable within-laboratory reproducibility (RSD<7.0%) substantially supported the use of current method for robust analysis. Rapid pretreatment procedures and short run time (8 min per sample) ensured good efficiency of metabolism profiling, indicating a wide application for investigating short-term internal exposure of dietary acrylamide. Our proposed UHPLC-MS/MS method was successfully applied to the toxicokinetic study of acrylamide in rats. Meanwhile, results of human urine analysis indicated that the levels of N-acetyl-S-(2-carbamoylethyl)-L-cysteine-sulfoxide (AAMA-sul), which did not appear in the mercapturic acid metabolites in rodents, were more than the sum of GAMA and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-L-cysteine (iso-GAMA). Thus, AAMA-sul may alternatively become a specific biomarker for investigating the acrylamide exposure in humans. Current proposed method provides a substantial methodology support for comprehensive profiling of toxicokinetics and daily internal exposure evaluations of acrylamide in vivo. PMID:26423628

  20. Chemical and isotopic composition of the Monfortinho thermal water (Portugal): contribution to the aquifer conceptual model and resource evaluation

    NASA Astrophysics Data System (ADS)

    do Rosário Carvalho, Maria; Martins Carvalho, José

    2015-04-01

    Groundwaters from quartzite aquifers are usually cold waters with very low mineralization as consequence of circulation in fractured aquifers and rocks with very low solubility. In the Monfortinho, Beira Baixa region in Portugal, a thermal water occurs associated to a Ordovician quartzite syncline, the Penha Garcia syncline (Sequeira et al., 1999). The thermal water is used for balneology and supplies a thermal Spa trough boreholes discharging about 36 l/s. The syncline of Penha Garcia has NW-SE axis and is fractured by a NE-SW fault, where the valley of Ponsul river is developed. The natural discharge of the thermal aquifer occur at the SE edge of the syncline. The Monfortinho thermal water has temperature around 30 °C, pH of 5.45, very low mineralization, with electric conductivity about 35 uS/cm; the main dissolved specie is the SiO2 that reaches 24 mg/L, corresponding to 53% of the total dissolved solids. The chemical facies is of Na-HCO3 type. The d18O and d2H diagram indicates that Monfortinho water is derived from the local meteoric waters. The δ18O and δ2H content also pointed out a recharge area of the thermal aquifer above 400 m of elevation, with a isotopic gradient value of -0.15‰ d18O/100m. This elevation corresponds to the top of the eastern block of the syncline, suggesting that Ponsul fault is a negative barrier to groundwater flow and the thermal aquifer is developed only in eastern block of the syncline. The groundwater flows at about 600-700 m depth along the syncline base toward SE. The average rainfall in the region is 790 mm/year and the estimated recharge is about 17% (Carvalho, 2001) of the precipitation, corresponding to 134 mm/year and 4x105 m3/ano of hydrothermal resource. References: Carvalho, JM (2001). A Hidrogeologia das águas minerais naturais de Monfortinho. Geonovas, Rev. Assoc. Portg. Geólogos, Lisboa, v15, pp. 61-70 (in portuguese). Sequeira, AF, Cunha, PP, Ribeiro, ML (1999). Notícia Explicativa da Folha 25-B Salvaterra do Extremo. Departamento de Geologia, Instituto Geológico e Mineiro, 47 pp. (in portuguese).

  1. ?D and ?13C analyses of atmospheric volatile organic compounds by thermal desorption gas chromatography isotope ratio mass spectrometry.

    PubMed

    von Eckstaedt, Christiane Vitzthum; Grice, Kliti; Ioppolo-Armanios, Marisa; Chidlow, Geoff; Jones, Mark

    2011-09-16

    This paper describes the establishment of a robust method to determine compound specific ?D and ?(13)C values of volatile organic compounds (VOCs) in a standard mixture ranging between C(6) and C(10) and was applied to various complex emission samples, e.g. from biomass combustion and car exhaust. A thermal desorption (TD) unit was linked to a gas chromatography isotope ratio mass spectrometer (GC-irMS) to enable compound specific isotope analysis (CSIA) of gaseous samples. TenaxTA was used as an adsorbent material in stainless steel TD tubes. We determined instrument settings to achieve a minimal water background level for reliable ?D analysis and investigated the impact of storage time on ?D and ?(13)C values of collected VOCs (176 days and 40 days of storage, respectively). Most of the standard compounds investigated showed standard deviations (SD)<6 (?D) when stored for 148 days at 4 C. However, benzene revealed occasionally D depleted values (21 SD) for unknown reasons. ?(13)C analysis demonstrated that storage of 40 days had no effect on VOCs investigated. We also showed that breakthrough (benzene and toluene, 37% and 7%, respectively) had only a negligible effect (0.7 and 0.4, respectively) on ?(13)C values of VOCs on the sample tube. We established that the sample portion collected at the split flow effluent of the TD unit can be used as a replicate sample for isotope analysis saving valuable sampling time and resources. We also applied TD-GC-irMS to different emission samples (biomass combustion, petrol and diesel car engines exhaust) and for the first time ?D values of atmospheric VOCs in the above range are reported. Significant differences in ?D of up to 130 were observed between VOCs in emissions from petrol car engine exhaust and biomass combustion (Karri tree). However, diesel car emissions showed a high content of highly complex unresolved mixtures thus a baseline separation of VOCs was not achieved for stable hydrogen isotope analysis. The ability to analyse ?D by TD-GC-irMS complements the characterisation of atmospheric VOCs and is maybe used for establishing further source(s). PMID:21807368

  2. High-Precision Tungsten Isotopic Analysis by Multicollection Negative Thermal Ionization Mass Spectrometry Based on Simultaneous Measurement of W and (18)O/(16)O Isotope Ratios for Accurate Fractionation Correction.

    PubMed

    Trinquier, Anne; Touboul, Mathieu; Walker, Richard J

    2016-02-01

    Determination of the (182)W/(184)W ratio to a precision of 5 ppm (2?) is desirable for constraining the timing of core formation and other early planetary differentiation processes. However, WO3(-) analysis by negative thermal ionization mass spectrometry normally results in a residual correlation between the instrumental-mass-fractionation-corrected (182)W/(184)W and (183)W/(184)W ratios that is attributed to mass-dependent variability of O isotopes over the course of an analysis and between different analyses. A second-order correction using the (183)W/(184)W ratio relies on the assumption that this ratio is constant in nature. This may prove invalid, as has already been realized for other isotope systems. The present study utilizes simultaneous monitoring of the (18)O/(16)O and W isotope ratios to correct oxide interferences on a per-integration basis and thus avoid the need for a double normalization of W isotopes. After normalization of W isotope ratios to a pair of W isotopes, following the exponential law, no residual W-O isotope correlation is observed. However, there is a nonideal mass bias residual correlation between (182)W/(i)W and (183)W/(i)W with time. Without double normalization of W isotopes and on the basis of three or four duplicate analyses, the external reproducibility per session of (182)W/(184)W and (183)W/(184)W normalized to (186)W/(183)W is 5-6 ppm (2?, 1-3 ?g loads). The combined uncertainty per session is less than 4 ppm for (183)W/(184)W and less than 6 ppm for (182)W/(184)W (2?m) for loads between 3000 and 50 ng. PMID:26751903

  3. Thermal history of the Mississippian-Pennsylvanian boundary at Arrow Canyon, NV, USA: Insights from carbonate clumped isotopes and fluid inclusion microthermometry

    NASA Astrophysics Data System (ADS)

    Shenton, B.; Grossman, E. L.; Passey, B. H.; Henkes, G. A.; Becker, S. P.; Pottorf, R. J.

    2013-12-01

    Constraining the temperature-time history of sedimentary basins is critical for understanding basin evolution and related problems, such as petroleum systems analysis and genesis of metallic ore deposits. The importance of burial history studies is confirmed by the abundance and diversity of techniques aimed at acquiring thermal history information. Often, multiple techniques are required to fully characterize sediment thermal histories because each tool targets different burial temperatures (e.g., maximum burial temperature, T-t points, or cooling rates) and different indicators may be limited by suitable study material or geologic setting. Therefore it is important to test new techniques, such as clumped isotopes, that may aid in reconstructing basin thermal histories. The potential utility of clumped isotopes as a thermal history tool is suggested by the observation of elevated clumped isotope temperatures in nominally well-preserved fossils, and also from recent laboratory heating experiments showing that C-O bonds can reorder in the solid-state during heating. While this phenomenon conceals primary paleoclimate information, it may record burial temperatures useful for constraining basin thermal histories. Here we present clumped isotope measurements from brachiopods, crinoids, diagenetic cements, and bulk matrix material collected from within ~ 50 m of the global stratotype section and point (GSSP) for the Mississippian-Pennsylvanian boundary along with new fluid inclusion microthermometry data. Preliminary clumped isotope temperatures range from ~100-165 °C and generally cluster based on component type. Secondary fluid inclusion assemblages in blocky calcite cement indicate that strata surrounding the GSSP experienced at least 175-180 °C during burial in the Antler foreland basin. The fact that clumped isotope temperatures in all carbonate components are lower than independently constrained peak temperature estimates from fluid inclusions suggests that clumped isotope compositions either (1) reordered extensively, but not completely, during heating or (2) equilibrated with ambient burial temperature during heating and now reflect ';closure temperatures' achieved during cooling. Our data also suggest that different carbonate components that experience the same T-t history can yield different clumped isotope temperatures.

  4. Determination of oxygen self-diffusion in akermanite, anorthite, diopside, and spinel: Implications for oxygen isotopic anomalies and the thermal histories of Ca-Al-rich inclusions

    SciTech Connect

    Ryerson, F.J. ); McKeegan, K.D. )

    1994-09-01

    Oxygen self-diffusion coefficients have been measured for three natural diopsidic clinopyroxenes, a natural anorthite, a synthetic magnesium aluminate spinel, and a synthetic akermanite for oxygen fugacities ranging from the NNO to IW buffers. The oxygen diffusion data are used to evaluate the effects of three different types of thermal histories upon the oxygen isotopic compositions of minerals found in Type B Ca-Al-rich inclusions (CAIBs) in carbonaceous chondrites: (1) gas-solid exchange during isothermal heating, (2) gas-solid exchange as a function of cooling rate subsequent to instantaneous heating, and (3) isotopic exchange with a gaseous reservoir during partial melting and recrystallization. With the assumptions that the mineral compositions within a CAIB were uniformly enriched in [sup 16]O prior to any thermal processing, that effective diffusion dimensions may be estimated from observed grain sizes, and that diffusion in diopside is similar to that in fassaitic clinopyroxene, none of the above scenarios can reproduce the relative oxygen isotopic anomalies observed in CAIBs without improbably long or unrealistically intense thermal histories relative to current theoretical models of nebular evolution. The failure of these simple models, coupled with recent observations of disturbed magnesium isotopic abundances and correlated petrographic features in anorthite and melilite indicative of alteration and recrystallization, suggests that the oxygen isotopic compositions of these phases may have also been modified by alteration and recrystallization possibly interspersed with multiple melting events. Because the modal abundance of spinel remains relatively constant for plausible melting scenarios, and its relatively sluggish diffusion kinetics prevent substantial equilibration, Mg-Al spinel is the most reliable indicator of the oxygen isotopic composition of precursor material which formed Type B CAIs.

  5. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  6. Examining possible effects of seawater pH decline on foraminiferal stable isotopes during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Uchikawa, Joji; Zeebe, Richard E.

    2010-06-01

    A large body of paleoceanographic data for the Paleocene-Eocene Thermal Maximum (PETM) is based on foraminiferal stable carbon and oxygen isotope composition (?13C and ?18O). However, the proxy records could be biased due to a pH effect on stable isotopes during times when the ocean became more acidic, as has been demonstrated for modern planktonic foraminifera. In this paper, we calculate the possible ranges of the pH effect on ?13C and ?18O during the PETM based on the relative pH decline (?pH) from the preperturbation steady state simulated by a carbon cycle model and the empirical relationships obtained from culture experiments with planktonic foraminifera. The model is configured with Eocene paleogeography and simulates ?pH for surface, intermediate, and deep water in the major ocean basins in response to various carbon input scenarios (2000 to 5000 Pg C). For an array of scenarios, the modeled ?pH of the surface ocean ranges from 0.1 to 0.28 units. This suggests that ?13C of planktonic foraminifera may be increased by up to 2.1 and ?18O may be increased by up to 0.7 (corresponding to over 3C error in paleotemperature estimate). Under conditions in which the model best simulates the global CaCO3 dissolution pattern, we find marked differences in the deep-sea ?pH between the Atlantic (-0.4) and Pacific oceans (-0.1). This would imply that the magnitude of the negative ?13C and ?18O excursions of benthic foraminifera in the Atlantic Ocean was dampened by up to 2.8 and 0.9 at maximum, respectively, relative to a constant pH scenario.

  7. Effect of pH decline on foraminiferal stable isotopes during the Paleocene-Eocene Thermal Maximum?

    NASA Astrophysics Data System (ADS)

    Uchikawa, J.; Zeebe, R. E.

    2009-12-01

    Pioneering culture experiments by Spero et al. (1997) demonstrated that seawater pH (or carbonate chemistry) has a marked effect on planktonic foraminiferal stable oxygen and carbon isotopes (?18O and ?13C). Both ?18O and ?13C become isotopically heavier as seawater pH decreases (the pH effect). Several studies now argue that ?18O and ?13C of benthic foraminifera are similarly influenced by the pH effect. As a result, paleooceanographic information based on foraminiferal ?18O and ?13C can be significantly biased for the time-window during which seawater pH was notably different from the modern condition or varied rapidly. A prime example of such is the Paleocene-Eocene Thermal Maximum (PETM). Widespread dissolution of sedimentary CaCO3 in the PETM strata (e.g., Zachos et al., 2005) suggests significant ocean acidification during this time interval. In this study, we examine the magnitude of the pH effect on foraminiferal ?18O and ?13C during the PETM. First we will estimate the relative pH decline from the pre-PETM steady state in the surface and deep ocean reservoirs in response to 2,000 ~ 5,000 Pg of carbon input using a carbon cycle model (Zeebe et al., 2009). We will then apply the empirical relationships obtained from the culture experiments by Spero et al. (1997) to calculate the ranges of errors in the foraminiferal ?18O and ?13C that could arise due to the pH effect during the PETM. {REFERENCES} Spero et al. (1997) Nature, v390, p497-500: Zachos et al. (2005) Science, v308, p1611-1615: Zeebe et al. (2009) Nature Geoscience, v2, p576-580.

  8. Constraining Groundwater Discharge in a Large Watershed: Integrated Isotopic, Hydraulic and Thermal Data from the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Gleeson, T.; Novakowski, K.; Cook, P. G.; Kyser, K.

    2009-05-01

    Understanding the rate and pattern of groundwater discharge to lakes and rivers is critical for watershed budgets and for protecting the ecological integrity of lake and river ecosystems. A 900 km2 study watershed contains a river and over 3000 lakes and wetlands, mostly underlain by exposed crystalline bedrock or a thin veneer of coarse-grained sediments. The objective of this study is to constrain the rate and pattern of groundwater discharge at the watershed-scale. Groundwater discharge points were identified by conducting detailed transects of the river and lakes using temperature, conductivity and radon-222 tracers. Surface water samples from representative lakes were analyzed for 2H, 18O, radon-222 and chloride during three consecutive summers. Radon and chloride concentrations are used in a new steady-state advective model to determine groundwater fluxes to the representative lakes. The detailed transects identified minor and highly localized groundwater discharge locations which did not coincide with mapped geological structures or exposed bedrock fractures. Stable isotope, temperature and conductivity data identified only one subsidiary stream with significant groundwater discharge. The steady-state model indicates that the groundwater flux to lakes is generally less than 0.1 percent of the total input. This integrated thermal, chemical, isotopic and hydraulic dataset indicates that the rate of groundwater discharge to lakes in this crystalline bedrock watershed is not significant and that discharge is localized but not focused at exposed geological structures or bedrock fractures. This conclusion implies that in the watershed groundwater and surface water is largely decoupled, which has significant ecological and water management implications.

  9. Magnitude and profile of organic carbon isotope records from the Paleocene-Eocene Thermal Maximum: Evidence from northern Spain

    NASA Astrophysics Data System (ADS)

    Manners, Hayley R.; Grimes, Stephen T.; Sutton, Paul A.; Domingo, Laura; Leng, Melanie J.; Twitchett, Richard J.; Hart, Malcolm B.; Dunkley Jones, Tom; Pancost, Richard D.; Duller, Robert; Lopez-Martinez, Nieves

    2013-08-01

    The Paleocene-Eocene Thermal Maximum (PETM), a hyperthermal event that occurred ca. 56 Ma, has been attributed to the release of substantial amounts of carbon, affecting the atmosphere, biosphere and the oceans. Current issues with respect to our understanding of the PETM include the amount of carbon released, the duration of carbon release, and the mechanism(s) of release, all of which are related to the magnitude and profile of the associated Carbon Isotope Excursion (CIE). High-resolution organic carbon profiles (?13C) of six PETM sections in northern Spain are presented that span a transect from continental to marine environments. These data represent the highest-resolution isotope records for these sections and allow a comparison of the magnitude of the excursion, the shape of the vertical ?13C profile during the PETM episode, and the relative timing of the onset of the excursion across a linked sediment routing system. Previous studies using carbonate ?13C data have suggested that the continental Claret Conglomerate, found in this region, formed synchronously with a marine clay-rich siliciclastic unit, with these key lithological changes interpreted to be driven by increased seasonal rainfall-runoff in the warmer PETM climate. Our data suggest that deposition of these units did not immediately follow the CIE onset, indicating that there may be a temporal lag between the onset of the PETM warming and the response of the depositional systems in northern Spain. No systematic variation in the magnitude of the CIE between different depositional environments was found; the marine CIE magnitudes are at the higher end of those previously described (3.71.4), and the continental ranges are lower (3.11.3).

  10. Retention, isotope exchange, and thermal release of hydrogen in candidate materials for TFTR

    SciTech Connect

    Wampler, W. R.; Doyle, B. L.; Brice, D. K.; Picraux, S. T.

    1980-08-01

    The materials studied included TiC, TiB/sub 2/, VB/sub 2/, B/sub 4/C, B, Si, graphite, and the metals Ti, V, and 304L stainless steel. The TiC and TiB/sub 2/ were formed by chemical vapor deposition on a graphite substrate. The C/Ti ratio of the TiC was measured to be 1.0 +- .05 by ion backscattering analysis. The Ti and V were explosively bonded to copper substrates, and the VB/sub 2/ was made by borodizing vanadium. Carbon (compression annealed pyrolytic graphite from Union Carbide and Papyex graphite ribbon from Le Carbone) and single crystal silicon samples were included in the study as reference materials. The hydrogen retention and isotope exchange behavior for these materials were studied by measuring the amount of H or D retained as a function of incident fluence using the D(/sup 3/He,P)/sup 4/He nuclear reaction analysis techniques for D and H(/sup 15/N,..cap alpha gamma..) profiling for H.

  11. MECHANICAL ALLOYING AND THERMAL TREATMENT FOR PRODUCTION OF ZIRCONIUM IRON HYDROGEN ISOTOPE GETTERS

    SciTech Connect

    Fox, K.

    2008-02-20

    The objective of this task was to demonstrate that metal hydrides could be produced by mechanical alloying in the quantities needed to support production-scale hydrogen isotope separations. Three starting compositions (ratios of elemental Zr and Fe powders) were selected and attritor milled under argon for times of 8 to 60 hours. In general, milling times of at least 24 hours were required to form the desired Zr{sub 2}Fe and Zr{sub 3}Fe phases, although a considerable amount of unalloyed Zr and Fe remained. Milling in liquid nitrogen does not appear to provide any advantages over milling in hexane, particularly due to the formation of ZrN after longer milling times. Carbides of Zr formed during some of the milling experiments in hexane. Elemental Zr was present in the as-milled material but not detected after annealing for milling times of 48 and 60 hours. It may be that after intimate mixing of the powders in the attritor mill the annealing temperature was sufficient to allow for the formation of a Zr-Fe alloy. Further investigation of this conversion is necessary, and could provide an opportunity for reducing the amount of unreacted metal powder after milling.

  12. Isotopic yield measurement in the heavy mass region for {sup 239}Pu thermal neutron induced fission

    SciTech Connect

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Koester, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-09-15

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the {sup 239}Pu(n{sub th},f) reaction. In order to do this, a new experimental method based on {gamma}-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  13. Isotopic yield measurement in the heavy mass region for 239Pu thermal neutron induced fission

    NASA Astrophysics Data System (ADS)

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Kster, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-09-01

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the 239Pu(nth,f) reaction. In order to do this, a new experimental method based on ?-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  14. Hydrochemical and isotopic properties of the Mahmutlu and Ba?dato?lu mineralized thermal springs, Kr?ehir, Turkey

    NASA Astrophysics Data System (ADS)

    nsal, N.; Af?in, M.

    1999-12-01

    The present study identifies the hydrochemical and isotopic properties of the Mahmutlu and Ba?dato?lu mineralized thermal springs in Kr?ehir province, a geothermal field in central Anatolia, Turkey. Based on these properties, a hydrogeological regime is proposed in order to explain the Mahmutlu-Ba?dato?lu geothermal system. The relation between the concentrations of the environmental stable isotopes deuterium and oxygen-18 in the water is similar to the relationship in global meteoric water, indicating that the water is of meteoric origin. Evaluation of the geochemical characteristics of the water reveals that these two thermal springs belong to the same hydrogeological system. The hydrogeological system comprises a fractured limestone member of the evirme Formation and the Kervansaray Formation as reservoir rocks, and the Delicermak Formation as an overlying aquitard. The waters of the Mahmutlu and Ba?dato?lu springs are mainly of the Na-Cl-SO4 type that originate from the Pohrenk evaporite. The thermal waters are undersaturated with respect to calcite, dolomite, halite, and gypsum. The ?18O and ?2H contents indicate a ?18O shift in the Mahmutlu and Ba?dato?lu waters. The temperature range of the two reservoirs is estimated to be 98-158 C, on the basis of Na+K+Ca and SiO2 geothermometers. RsumCette tude prsente les caractristiques chimiques et isotopiques des sources thermales minralises de Mahmutlu et de Ba?dato?lu, dans la province de Kr?ehir, un champ gothermal d'Anatolie centrale (Turquie). Un fonctionnement hydrogologique est propos partir de ces caractristiques, permettant d'expliquer le systme gothermal de Mahmatlu-Ba?dato?lu. La relation entre les teneurs en deutrium et celles en oxygne-18 des eaux est semblable celle des eaux mtoriques mondiales, ce qui indique que l'eau est d'origine mtorique. Les caractristiques gochimiques des eaux de ces deux sources montrent qu'elles appartiennent au mme systme hydrogologique. Ce systme hydrogologique est constitu d'un ensemble calcaire fractur, appartenant la formation d'Evirme, et la formation de Kervansaray, qui forment le rservoir, et la formation de Delicermak, qui est l'impermable de couverture. Les eaux de Mahmutlu et de de Ba?dato?lu sont essentiellement de facis Na-Cl-SO4, dont l'origine est l'vaporite de Pohrenk. Les eaux thermales sont sous-satures par rapport la calcite, la dolomite, la halite et au gypse. Les teneurs en ?18O et en ?2H indiquent un fractionnement de ?18O dans les eaux de ces sources. La gamme de tempratures des deux rservoirs est estime 98-158 C, partir des gothermomtres Na+K+Ca et SiO2.

  15. Thermal models, stable isotopes and cooling ages from the incrementally constructed Tuolumne batholith, Sierra Nevada: why large chambers did exist

    NASA Astrophysics Data System (ADS)

    Paterson, S. R.; Okaya, D. A.; Memeti, V.; Mundil, R.; Lackey, J.; Clemens-Knott, D.

    2009-12-01

    Our studies of the zoned, 1100 km2, 95-85 Ma Tuolumne batholith are in part designed to evaluate the thermal evolution of normally zoned, large magma bodies formed by the amalgamation of a few to many magma pulses. We use finite difference models with full spatial heterogeneity of rock properties, fine-scale internal grid spacing allowing for rock geometries at scales between sub-m to km’s, small internal time steps for runs over durations of days to millions of years and latent heat of fusion. Our initial stable isotopic studies, including δ18O variation in zircon (6-6.5‰), titanite (4.5-5.2‰), quartz (9-10‰), and whole rock (7-9 ‰) (Lackey et al. 2008, J. Pet.) and of the dD of biotites (-65 to -75‰) reveal isotopic exchange during magmatic cooling but the absence of a pervasive hydrothermal circulation system. We thus excluded advective cooling from our models. A range of incremental chamber construction scenarios are modeled including (1) repeated intrusions of rectangular or elliptical geometry (sills, dikes, or blobs); (2) a sequence of intrusions emplaced at specified but arbitrary times or according to a time rate with pulse shapes fixed or set to randomly vary within a range of dimensions and aspect ratios; (3) sheeted dike complexes in which the thermal model expands according to an extension rate to accommodate the emplacement of new dikes with width and time between dikes coupled to growth rate; (4) nested diapiric pulses; and (5) nested, irregularly shaped bodies based on maps or cross-sections that are digitally rendered into rock types, assigned thermal properties and intruded at specified times as new magma pulses. This wide range of batholith construction scenarios naturally results in a wide range of length and timescales of magma chambers. However, many likely scenarios for the TB, based on flux rates constrained by mapping and geochronology indicate that (1) the lobes of the Tuolumne batholith will crystallize in 100,00-500,000 years, (2) the outer margins of the main chamber solidified prior to emplacement of inner magma batches, but that (3) large parts of the main chamber stayed above the solidus for 1-2 million years resulting in large magma chambers. Our thermochronology (U-Pb zircon and titanite, 40Ar/39Ar of hornblende and large and small biotite populations) in general agree with the above conclusions but do show some intriguing differences from the thermal modeling predictions particularly in locations where we think parts of the chamber were removed by or recycled into younger pulses. Finally the conclusion that large magma chambers existed matches our geochemical studies, which indicate that in situ fractionation dominated in the rapidly crystallized magma lobes whereas additional mixing processes obscured fractionation patterns in the more slowly crystallized main chambers explaining the more complex compositional patterns and mineral histories in this part of the batholith.

  16. Determination of isotope enrichments of magnesium in microwave-digested biological samples by thermal ionization mass spectrometry using a direct loading technique.

    PubMed

    Stegmann, W; Goldstein, S L; Georgieff, M

    1996-07-01

    The isotope ratios of magnesium were determined in isotopically normal and 26 Mg-enriched samples of human blood, blood plasma, urine and faeces and bovine muscle. The measurements were made with a magnetic sector, thermal ionization mass spectrometer (TIMS) equipped with a multiple ion collector system for simultaneous detection of the ion currents. The samples were decomposed using microwave digestion with HNO3 and HCI. Without further chemical treatment, the mineralized samples were deposited together with silica gel and boric acid on rhenium filaments, which served as thermal ionization source filaments. This method, called the direct loading technique (DLT), results in stable ion signals of the magnesium isotopes with isotope ratios indistinguishable from those of natural Mg standards within experimental error. Fractionation-corrected 26 Mg/24 Mg ratios of natural Mg standards were determined with a relative external precision of 0.02%. The magnesium recoveries for all of the analysed matrices were > or = 97%; 26 Mg was added to calibrated sample solutions to produce isotopic enrichments within a range typically appearing in samples of human tracer studies. Linear regression analysis of measured versus expected per 1000 (/1000) enrichments yields y = 0.998x + 0.79. The DLT described here is a simpler and quicker method than other methods reported hitherto. It has the advantage of avoiding magnesium separation and purification steps prior to TIMS analysis for all of the analysed biological samples and thus reduces contamination and guarantees optimum magnesium recovery. The reported method improves the applicability of stable isotopes of magnesium in human tracer studies. PMID:8757922

  17. Changes in the carbon and nitrogen isotopic composition of organic matter in soils of different thermal stability after free-air CO2 enrichment for three years

    NASA Astrophysics Data System (ADS)

    Dorodnikov, M. V.; Kuzyakov, Ya. V.

    2008-02-01

    The hypothesis that the biological availability of soil organic matter (SOM) pools is inversely proportional to their thermal stability was tested using the isotopic difference between the atmospheric CO2 (?13C = -8.0) and 13C-enriched CO2 (?13C = -47) fertilizers, as well as 15N-labeled fertilizers. The soil samples from spring wheat plots subjected to treatment with ambient (370 ppm) and elevated (540 ppm) CO2 concentrations for three years were analyzed by the thermogravimetric method. Based on the weight loss, five SOM pools were distinguished where the total C and N contents and isotopic compositions (?13C and (?15N) were determined. The contents of new C and N and their mean residence times in pools were calculated. The incorporation of 13C and 15N and their turnover rates did not depend on the thermal stability of the SOM pools, which disproved the hypothesis being tested.

  18. High-resolution, high-fidelity carbon isotope stratigraphy of the Paleocene-Eocene Thermal Maximum in northern Wyoming from cores recovered by the Bighorn Basin Coring Project

    NASA Astrophysics Data System (ADS)

    Maibauer, B. J.; Bowen, G. J.; Srinivasaraghavan, V.; VanDeVelde, J. H.; Wing, S. L.; Gingerich, P. D.; Clyde, W. C.

    2012-12-01

    Isotopic records derived from marine core and terrestrial outcrop sediments spanning the Paleocene-Eocene boundary reveal a large (>2.5) negative carbon isotope excursion (CIE) in a relatively short period of time (total duration of ~200 Kyr). This event, known as the Paleocene-Eocene thermal maximum or PETM, reflects the geologically rapid release of isotopically light carbon into the atmosphere and is associated with global warming of ~5-8C. While numerous studies have investigated the timing and magnitude of the PETM CIE, significant uncertainty remains regarding the amount and pacing of the global carbon isotope shift. The Bighorn Basin Coring Project recently collected the first scientific drill cores preserving high-resolution, stratigraphically continuous records of the PETM in continental environments and providing a new suite of data from un-weathered rocks. We report data from pedogenic carbonate nodules sampled at >200 levels within two adjacent drilling locations at Polecat Bench in the Bighorn Basin. These data provide a continuous record of the evolution of carbon isotope ratios in Bighorn Basin paleosols over a period of approximately 500 Kyr spanning the P-E boundary. ?13C data from the nodules reveal a CIE of ~7 with considerable structured isotopic variability at the onset of the PETM and a smooth recovery back to pre-PETM baseline conditions. Relative to previous studies, this higher-resolution dataset better constrains the pattern and pace of the carbon isotope changes and records higher variability during the onset of the event, but confirms existing results of the general shape and ~7 magnitude of the CIE at this locality.

  19. Trapping state of hydrogen isotopes in carbon and graphite investigated by thermal desorption spectrometry

    SciTech Connect

    Atsumi, H.; Tanabe, T.; Shikama, T.

    2015-03-15

    Thermal desorption spectrometry (TDS) has been investigated to obtain fundamental information of tritium behavior in graphite and carbon materials especially at high temperatures. 29 brands of graphite, HOPG, glassy carbon and CFC materials charged with deuterium gas are tested up to the temperature of 1735 K with a heating rate of 0.1 K/s. TDS spectra have five peaks at 600-700 K, around 900 K, 1200 K, 1300-1450 K and 1600-1650 K. The amounts of released deuterium have been compared with crystallographic parameters derived from XRD analysis. The results can be summarized as follows. First, TDS spectra of deuterium were quite varied among the samples tested, such as existence of peaks, peak temperatures and release amounts of deuterium. Secondly, TDS spectra may consist of five peaks, which are peak 1 (600-700 K), peak 2 (around 900 K), peak 3 (around 1200 K), peak 4 (1300-1450 K) and peak 5 (1600-1650 K). Thirdly, the correlations between the estimated surface area of edge surface and the total amount of released deuterium could be observed for peaks 4 and 5. Fourthly, high energy trapping site (peak 5) may exist even at edge surface or a near surface region, not only for intercalary. And fifth, in order to obtain the lower tritium retention for graphite and CFC materials, the material should be composed of a filler grain with a smaller crystallite size or having the smaller net edge surface in its structure. It is shown that heat treatment does not reduce originally existing trapping sites but trapping sites generated by neutron irradiation for instance can be reduced in some degree.

  20. Rhenium-osmium isotope systematics of ordinary chondrites and iron meteorites

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Morgan, J. W.; Horan, M. F.; Grossman, J. N.

    1993-01-01

    Using negative thermal ionization mass spectrometry, Re and Os abundances were determined by isotope dilution and Os-187/Os-186 measured in 11 ordinary chondrites, and also in 1 IIB and 3 IIIB irons. In addition, Os-186/Os-188 and Os-189/Os-188 ratios were precisely determined for 3 unspiked ordinary chondrites as a means of constraining the intensity of any neutron irradiation these meteorites may have experienced.

  1. A 10-fold improvement in the precision of boron isotopic analysis by negative thermal ionization mass spectrometry.

    PubMed

    Shen, Jason Jiun-San; You, Chen-Feng

    2003-05-01

    Boron isotopes are potentially very important to cosmochemistry, geochemistry, and paleoceanography. However, the application has been hampered by the large sample required for positive thermal ionization mass spectrometry (PTIMS), and high mass fractionation for negative-TIMS (NTIMS). Running as BO(2)(-), NTIMS is very sensitive and requires only nanogram sized samples, but it has rather poor precision (approximately 0.7-2.0 per thousand) as a result of the larger mass fractionation associated with the relatively light ion. In contrast, running as the much heavier molecule of Cs(2)BO(2)(+), PTIMS usually achieves better precision around 0.1-0.4 per thousand. Moreover, there is a consistent 10 per thousand offset in the (11)B/(10)B ratio for NIST SRM 951 standard boric acid between the NTIMS and the certified value, but the cause of this offset is unclear. In this paper, we have adapted a technique we developed earlier to measure the (138)La/(139)La using LaO(+) (1) to improve the NTIMS technique for BO(2). We were able to correct for instrumental fractionation by measuring BO(2)(-) species not only at masses of 42 and 43, but also at 45, which enabled us to normalize (45)BO(2)/(43)BO(2) to an empirical (18)O/(16)O value. We found that both I(45)/I(42) = ((11)B(16)O(18)O/(10)B(16)O(16)O) and (I(43)/I(42))(C) = ((11)B(16)O(16)O/(10)B(16)O(16)O) vary linearly with (I(45)/I(43))(C) x 0.5 = ((11)B(16)O(18)O/(11)B(16)O(16)O) x 0.5 = (18)O/(16)O. In addition, different activators and different chemical forms of B yield different slopes for the fractionation lines. After normalizing (11)B(16)O(18)O/(11)B(16)O(16)O x 0.5 to a fixed (18)O/(16)O value, we obtained a mean (11)B/(10)B value of NIST SRM 951 that matches the NIST certified value at 4.0430 +/- 0.0015 (+/-0.36 per thousand, n = 11). As a result, our technique can achieve precision and accuracy comparable to that of PTIMS with only 1 per thousand of the sample required. This new NTIMS technique for B isotopes is critical to the studies of early solids in the solar system and individual foraminifera in sediments that require both high sensitivity and precision. PMID:12720329

  2. Sedimentology and Carbon Isotope in Lower Tertiary Sediments of Rajasthan:Implication to Post Paleocene/Eocene Thermal Maximum Event

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Sarkar, A.; Bera, M.

    2008-12-01

    The Paleocene-Eocene thermal maxima (PETM; ~55 My.), identified as the most abrupt and transient climatic events in Cenozoic era, associated with pronounced warming of ocean and atmosphere, change in ocean chemistry, and perturbation of global carbon cycle. Catastrophic (~5 -6 C) rise in the deep sea temperature and oxygen deficiency might cause 30-50% extinction of benthic foraminifera, increase in sea surface temperature by ~8 C at high latitude (lesser amount towards equator) affected the planktonic biota, and this global warming event led to a pulse of speciation or migration of mammal. PETM is characterized by a prominent drop in carbon isotope values by ~3-4 per mil in both marine and terrestrial sediments in less than 10 ka. The source and triggering mechanism of PETM event are still raging debate. Input of massive amount of greenhouse gas from the dissociation of 13C poor methane hydrate from the continental slop as well as from the terrestrial biosphere is currently the most acceptable explanation for the warming and the negative carbon isotope excursion (CIE). Like other catastrophic events the post-PETM recovery was gradual. Interestingly, ?13C of both carbonate and organic matter shifted towards positive during the recovery period possibly as a combined effect of increased organic burial and silicate weathering. Compared to most studied PETM and post-PETM sections of subtropical to high latitudes, data for equatorial regions and marginal marine are scanty. The marginal marine are important as the effect of silicate weathering or increased burial of shallow marine organic matter will be more pronounced here. The lower Tertiary marginal marine successions of Rajasthan (Akli formation; Giral lignite mine) (paleolatitude ~5 S) shed light on the PETM and post-PETM events and the response of the events on equatorial marginal marine environment. Sedimentological studies suggest that the Akli formation was deposited in a lagoonal environment occasionally inundated by marine incursions. High resolution ?13C Bulk organic matter profile in these lignitic beds and its comparison with the oceanic foraminiferal carbonate ?13C profile reveals that the upper part of the Akli formation was deposited during Early Eocene or recovery phase of PETM. This inference is also supported by the presence of larger benthic foraminifera Nummulites burdigalensis (~52My) in the sand beds. The preliminary data (presence of lignites and C/N Values) suggest that substantial organic carbon burial in shallow seas world over could have been responsible for atmospheric CO2 reduction and enriched ?13C values during the early Eocene period.

  3. Coupled variations in helium isotopes and fluid chemistry: Shoshone Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Hearn, E.H.; Kennedy, B.M.; Truesdell, A.H.

    1990-01-01

    Early studies of 3He/4He variations in geothermal systems have generally attributed these fluctuations to either differences in the source of the magmatic 3He-rich helium or to local differences in the deep flux of magmatic 3He-rich helium. Kennedy et al. (1987), however, show that near-surface processes such as boiling and dilution may also drastically affect 3He 4He ratios of geothermal vapors. Helium isotope ratios were determined for several hot springs at Shoshone Geyser Basin of Yellowstone National Park for this study, along with other noble gas data. Stable isotope data and water and gas chemistry data for each spring were also compiled. The water chemistry indicates that there is one deep, hot thermal water in the area which is mixing with dilute meteoric water that has entered the system at depth. Spring HCO3- concentrations correlate with 3He 4He values, as in nearby Lower Geyser Basin. This correlation is attributed to variable amounts of deep dilution of thermal waters with a relatively cool water that inhibits boiling at depth, thus preventing the loss of CO2 (and therefore HCO3-) and magmatic He in the most diluted samples. Oxygen and hydrogen isotope data also support a boiling and dilution model, but to produce the observed fractionations, the boiling event would have to be extensive, with steam loss at the surface, whereas the boiling that affected the helium isotope ratios was probably a small scale event with steam loss at depth. It is possible that deep boiling occurred in the basin and that small amounts of steam escaped along fractures at about 500 m below the surface while all subsequently produced steam was lost near or at the surface. ?? 1990.

  4. Coupled variations in helium isotopes and fluid chemistry: Shoshone Geyser Basin, Yellowstone National Park

    SciTech Connect

    Hearn, E.H.; Kennedy, B.M. ); Truesdell, A.H. )

    1990-11-01

    Early studies of {sup 3}He/{sup 4}He variations in geothermal systems have generally attributed these fluctuations to either differences in the source of the magmatic {sup 3}He-rich helium or to local differences in the deep flux of magmatic {sup 3}He-rich helium. Kennedy et al, however, show that near-surface processes such as boiling and dilution may also drastically affect {sup 3}He/{sup 4}He ratios of geothermal vapors. Helium isotope ratios were determined for several hot springs at Shoshone Geyser Basin of Yellowstone National Park for this study, along with other noble gas data. Stable isotope data and water and gas chemistry data for each spring were also compiled. The water chemistry indicates that there is one deep, hot thermal water in the area which is mixing with dilute meteoric water that has entered the system at depth. Spring HCO{sub 3}{sup {minus}} concentrations correlate with {sup 3}He/{sup 4}He values, as in nearby Lower Geyser Basin. This correlation is attributed to variable amounts of deep dilution of thermal waters with a relatively cool water that inhibits boiling at depth, thus preventing the loss of CO{sub 2} and magmatic He in the most diluted samples. Oxygen and hydrogen isotope data also support a boiling and dilution model, but to produce the observed fractionations, the boiling event would have to be extensive, with steam loss at the surface, whereas the boiling that affected the helium isotope ratios was probably a small scale event with steam loss at depth. It is possible that deep boiling occurred in the basin and that small amounts of steam escaped along fractures at about 500 m below the surface while all subsequently produced steam was lost near or at the surface.

  5. Constraining groundwater discharge in a large watershed: Integrated isotopic, hydraulic, and thermal data from the Canadian shield

    NASA Astrophysics Data System (ADS)

    Gleeson, Tom; Novakowski, Kent; Cook, Peter G.; Kyser, T. Kurt

    2009-08-01

    The objective of this study is to evaluate the pattern and rate of groundwater discharge in a large, regulated fractured rock watershed using novel and standard methods that are independent of base flow recession. Understanding the rate and pattern of groundwater discharge to surface water bodies is critical for watershed budgets, as a proxy for recharge rates, and for protecting the ecological integrity of lake and river ecosystems. The Tay River is a low-gradient, warm-water river that flows over exposed and fractured bedrock or a thin veneer of coarse-grained sediments. Natural conservative (?2H, ?18O, Cl, and specific conductance), radioactive (222Rn), and thermal tracers are integrated with streamflow measurements and a steady state advective model to delimit the discharge locations and quantify the discharge fluxes to lakes, wetlands, creeks, and the Tay River. The groundwater discharge rates to most surface water body types are low, indicating that the groundwater and surface water system may be largely decoupled in this watershed compared to watersheds underlain by porous media. Groundwater discharge is distributed across the watershed rather than localized around lineaments or high-density zones of exposed brittle fractures. The results improve our understanding of the rate, localization, and conceptualization of discharge in a large, fractured rock watershed. Applying hydraulic, isotopic, or chemical hydrograph separation techniques would be difficult because the groundwater discharge "signal" is small compared to the "background" surface water inflows or volumes of the surface water bodies. Although this study focuses on a large watershed underlain by fractured bedrock, the methodology developed is transferable to any large regulated or unregulated watershed. The low groundwater discharge rates have significant implications for the ecology, sustainability, and management of large, crystalline watersheds.

  6. Dilution Zone Mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1983-01-01

    Studies to characterize dilution zone mixing; experiments on the effects of free-stream turbulence on a jet in crossflow; and the development of an interactive computer code for the analysis of the mixing of jets with a confined crossflow are reviewed.

  7. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R. (Darien, IL); Gray, Kenneth E. (Naperville, IL)

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  8. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  9. Dilution, Concentration, and Flotation

    ERIC Educational Resources Information Center

    Liang, Ling; Schmuckler, Joseph S.

    2004-01-01

    As both classroom teaching practice and literature show, many students have difficulties learning science concepts such as density. Here are some investigations that identify the relationship between density and floating through experimenting with successive dilution of a liquid, or the systematic change of concentration of a saltwater solution.

  10. Improvement in Thermal-Ionization Mass Spectrometry (TIMS) using Total Flash Evaporation (TFE) method for lanthanides isotope ratio measurements in transmutation targets

    SciTech Connect

    Mialle, S.; Gourgiotis, A.; Aubert, M.; Stadelmann, G.; Gautier, C.; Isnard, H.

    2011-07-01

    The experiments involved in the PHENIX french nuclear reactor to obtain precise and accurate data on the total capture cross sections of the heavy isotopes and fission products require isotopic ratios measurements with uncertainty of a few per mil. These accurate isotopic ratio measurements are performed with mass spectrometer equipped with multi-collector system. The major difficulty for the analyses of these actinides and fission products is the low quantity of the initial powder enclosed in steel container (3 to 5 mg) and the very low quantities of products formed (several {mu}g) after irradiation. Specific analytical developments are performed by Thermal Ionization Mass Spectrometry (TIMS) to be able to analyse several nanograms of elements with this technique. A specific method of acquisition named Total Flash Evaporation was adapted in this study in the case of lanthanide measurements for quantity deposited on the filament in the order of 2 ng and applied on irradiated fuel. To validate the analytical approach and discuss about the accuracy of the data, the isotopic ratios obtained by TIMS are compared with other mass spectrometric techniques such as Multiple-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). (authors)

  11. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India).

    PubMed

    Voltaggio, M; Spadoni, M; Sacchi, E; Sanam, R; Pujari, P R; Labhasetwar, P K

    2015-06-15

    The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra - India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. (87)Sr/(86)Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water-rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers. PMID:25783943

  12. Direct isotope ratio analysis of individual uranium-plutonium mixed particles with various U/Pu ratios by thermal ionization mass spectrometry.

    PubMed

    Suzuki, Daisuke; Esaka, Fumitaka; Miyamoto, Yutaka; Magara, Masaaki

    2015-02-01

    Uranium and plutonium isotope ratios in individual uranium-plutonium (U-Pu) mixed particles with various U/Pu atomic ratios were analyzed without prior chemical separation by thermal ionization mass spectrometry (TIMS). Prior to measurement, micron-sized particles with U/Pu ratios of 1, 5, 10, 18, and 70 were produced from uranium and plutonium certified reference materials. In the TIMS analysis, the peaks of americium, plutonium, and uranium ion signals were successfully separated by continuously increasing the evaporation filament current. Consequently, the uranium and plutonium isotope ratios, except the (238)Pu/(239)Pu ratio, were successfully determined for the particles at all U/Pu ratios. This indicates that TIMS direct analysis allows for the measurement of individual U-Pu mixed particles without prior chemical separation. PMID:25479434

  13. Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen concentrations and chlorine isotope compositions

    NASA Astrophysics Data System (ADS)

    Cullen, Jeffrey T.; Barnes, Jaime D.; Hurwitz, Shaul; Leeman, William P.

    2015-09-01

    In order to provide constraints on the sources of chlorine in spring waters associated with arc volcanism, the major/minor element concentrations and stable isotope compositions of chlorine, oxygen, and hydrogen were measured in 28 thermal and mineral springs along the Cascade Range in northwestern USA. Chloride concentrations in the springs range from 64 to 19,000 mg/L and ?37Cl values range from + 0.2 to + 1.9 (average = + 1.0 0.4 ), with no systematic variation along or across the arc, nor correlations with their presumed underlying basement lithologies. Additionally, nine geochemically well-characterized lavas from across the Mt. St. Helens/Mt. Adams region of the Cascade Range (Leeman et al., 2004, 2005) were analyzed for their halogen concentrations and Cl isotope compositions. In the arc lavas, Cl and Br concentrations from the volcanic front are higher than in lavas from the forearc and backarc. F and I concentrations progressively decrease from forearc to backarc, similar to the trend documented for B in most arcs. ?37Cl values of the lavas range from -0.1 to + 0.8 (average = + 0.4 0.3 ). Our results suggest that the predominantly positive ?37Cl values observed in the springs are consistent with water interaction with underlying 37Cl-enriched basalt and/or altered oceanic crust, thereby making thermal spring waters a reasonable proxy for the Cl isotope compositions of associated volcanic rocks in the Cascades. However, waters with ?37Cl values > + 1.0 also suggest additional contributions of chlorine degassed from cooling magmas due to subsurface vapor-liquid HCl fractionation in which Cl is lost to the aqueous fluid phase and 37Cl is concentrated in the ascending magmatic HCl vapor. Future work is necessary to better constrain Cl isotope behavior during volcanic degassing and fluid-rock interaction in order to improve volatile flux estimates through subduction zones.

  14. Determination of Oxygen Self-Diffusion in Akermanite, Anorthite, Diopside, and Spinel: Implications for Oxygen Isotopic Anomalies and the Thermal Histories of Ca-Al-rich Inclusions

    NASA Astrophysics Data System (ADS)

    Ryerson, F. J.; McKeegan, K. D.

    1993-07-01

    Oxygen self-diffusion coefficients have been measured for three natural clinopyroxenes (diopside end member), a natural anorthite, a synthetic magnesium aluminate spinel, and a synthetic akermanite over oxygen fugacities ranging from the NNO to IW buffers. The experiments employed a gas-solid isotopic exchange technique utilizing 99% ^18O-enriched COCO2 gas mixtures to control both the oxygen fugacity and the isotopic composition of the exchange reservoir. Diffusion profiles of the ^18O tracer were obtained by in-depth analysis with an ion microprobe. The experimental results yield Arrhenius relations that appear here in the hard copy. At a given temperature, oxygen diffuses about 100 times more slowly in diopside than indicated by previous bulk-exchange experiments [1]. Our data for anorthite, spinel, and akermanite agree well with prior results obtained by gas-solid isotopic exchange and depth profiling methods [2-4]. Since these other experiments were conducted at different oxygen fugacities, this agreement indicates that diffusion of oxygen in these nominally iron-free minerals is not greatly affected by fO2 in the range between pure oxygen and the iron-wustite buffer. The oxygen diffusion data are used to evaluate the effects of three different types of therrnal histories upon the oxygen isotopic compositions of minerals found in Type B calciumaluminum-rich inclusions (CAIBs): (1) gas-solid exchange during isothermal heating, (2) gassolid exchange due to instantaneous heating followed by cooling at different rates, and (3) isotopic exchange with a gaseous reservoir during partial melting and recrystallization. With the assumptions that the mineral compositions within a CAIB were uniformly enriched in ^16O prior to any thermal processing, that effective diffusion dimensions may be estimated from observed grain sizes, and that diffusion in diopside is similar to that in fassaite, all the above scenarios fail to reproduce either the relative oxygen isotopic anomalies observed in CAIBs and/or yield improbably long or unrealistically intense thermal histories relative to both current theoretical models of nebular evolution and inferences from other isotopic systems. The failure of these simple models, coupled with recent observations of "disturbed" Mg isotopic abundances and petrographic features in anorthite and melilite indicative of alteration and recrystallization [5,6], suggests that the oxygen isotopic compositions of these phases may have also been modified by alteration and recrystallization during multiple melting events. Because the modal abundance of spinel remains relatively constant for plausible melting scenarios and its relatively sluggish diffusion kinetics prevent substantial equilibration, Mg-Al spinel is a reliable indicator of the oxygen isotopic composition of precursor material that formed CAIBs. References: [1] Connolly C. and Muehlenbachs K. (1988) GCA, 52, 1585-1592. [2] Elphick S. C. et al. (1988) Contrib. Mineral. Petrol., 100, 490-495. [3] Reddy K. P. and Cooper A. R. (1981) J. Am. Ceram. Soc., 64, 368-371. [4] Yunmoto H. et al. (1989) GCA, 53, 2387-2394. [5] Podosek F. A. et al. (1991) GCA, 55, 1083-1110. [6] MacPherson G. J. and Davis A. M. (1993) GCA, 57, 231-243.

  15. Phonon coherence in isotopic silicon superlattices

    SciTech Connect

    Frieling, R.; Radek, M.; Eon, S.; Bracht, H.; Wolf, D. E.

    2014-09-29

    Recent experimental and theoretical investigations have confirmed that a reduction in thermal conductivity of silicon is achieved by isotopic silicon superlattices. In the present study, non-equilibrium molecular dynamics simulations are performed to identify the isotope doping and isotope layer ordering with minimum thermal conductivity. Furthermore, the impact of isotopic intermixing at the superlattice interfaces on phonon transport is investigated. Our results reveal that the coherence of phonons in isotopic Si superlattices is prevented if interfacial mixing of isotopes is considered.

  16. The effect of steam-heating processes on the chemical and isotopic composition of the shallow thermal aquifer in Vulcano Island (Aeolian Arc, Sicily).

    NASA Astrophysics Data System (ADS)

    Capasso, G.; Federico, C.; Madonia, P.; Paonita, A.

    2012-04-01

    We report on a comprehensive study of major-ion chemistry, dissolved gases, and stable isotopes measured in water wells at Vulcano Island since 1988. Particularly, we focus on chemical and hydrological modifications of groundwaters observed in the last two decades, interpreted according to a quantitative model describing steam condensation and boiling phenomena in shallow water bodies (Federico et al., 2010). According to this model, we infer that (i) strong isotope enrichment observed in some shallow thermal waters can result from an increasing mass rate of condensing deep vapor, even in water being meteoric in origin; (ii) the high pCO2 measured in the coldest and peripheral waters are explained by the progressive CO2 enrichment in the vapor phase during multistep boiling; and (iii) the high Cl- and SO4-- contents in the hottest waters can be attributed to the direct condensation (single-step) of volcanic vapor. The model also takes into account both the mass fluxes and the compositions of the involved endmembers (steam and shallow groundwater), which provides important inferences on the modifications observed during the periods of increasing mass and heat input from depth occurred at Vulcano Island. The volcanic crisis that occurred in 1988-1993 profoundly affected the composition of some thermal wells that were more-directly affected by ascending vapour. In particular, higher Cl-, SO4--, and HCO3- contents, temperature, and pCO2 values were measured. These variations are all explained by a different composition of the vapor entering the aquifer paralleled by a higher mass rate relative to the shallow meteoric endmember. Minor effects on the shallow thermal aquifer are observed during the following periods of increasing heat and mass flux from depth, mostly recorded in the crater area. This implies that the shallow thermal aquifer is affected by magmatic fluids ascending along central conduits only when there is a significant increase in the heat and mass fluxes from depth, which are able to vaporize the deep hydrothermal aquifer and modify the chemical and isotopic compositions of a larger portion of the volcanic edifice. Otherwise, the shallow thermal aquifer is chiefly affected by the vapor separating from the 400°C- hydrothermal system and, therefore, by its P-T conditions. On these grounds, once apportioned the effect of rainwater, we tentatively evaluate the effect of variations of physico-chemical conditions of the hydrothermal aquifer on both the water level and the composition of sampled thermal waters.

  17. Automatic diluter for bacteriological samples.

    PubMed Central

    Trinel, P A; Bleuze, P; Leroy, G; Moschetto, Y; Leclerc, H

    1983-01-01

    The described apparatus, carrying 190 tubes, allows automatic and aseptic dilution of liquid or suspended-solid samples. Serial 10-fold dilutions are programmable from 10(-1) to 10(-9) and are carried out in glass tubes with screw caps and split silicone septa. Dilution assays performed with strains of Escherichia coli and Bacillus stearothermophilus permitted efficient conditions for sterilization of the needle to be defined and showed that the automatic dilutions were as accurate and as reproducible as the most rigorous conventional dilutions. Images PMID:6338826

  18. RNB production with thermal neutrons

    NASA Astrophysics Data System (ADS)

    Kester, O.; Habs, D.; Gro, M.; Maier, H. J.; Thirolf, P. G.; Sieber, T.; Faestermann, T.; von Egidy, T.; Kster, U.

    2002-04-01

    Thermal neutron induced nuclear fission is the most suitable method to produce neutron-rich isotopes (70? A?160) due to the large fission cross section and the high thermal neutron fluxes in modern reactors. Intensities of mass separated neutron rich nuclei of some 10 11 ions/s are expected, e.g. for 91Kr, 132Sn or 144Cs from 235U diluted in a porous graphite target. Several front runners with low-energy fission-fragment beams exist like OSIRIS in Studsvik. In order to get beams of neutron-rich nuclei at the Coulomb barrier, the PIAFE project worked out a first concept of production and mass separation of high-intensity beams of fission fragments. At the new Munich high-flux reactor FRMII, the Munich Accelerator for Fission Fragments (MAFF) is under development to make use of post accelerated beams of neutron rich isotopes for experiments in many different fields of nuclear physics, solid state physics and medicine. One key experiment will be the production and the study of very heavy elements. An overview of the production method of neutron-rich isotopes by thermal neutron induced fission, and of the expected yields will be given and the development of target-ion-sources and of the fission targets for MAFF will be characterized.

  19. A novel isotope analysis of oxygen in uranium oxides: comparison of secondary ion mass spectrometry, glow discharge mass spectrometry and thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pajo, L.; Tamborini, G.; Rasmussen, G.; Mayer, K.; Koch, L.

    2001-05-01

    The natural variation of the oxygen isotopic composition is used among geologists to determine paleotemperatures and the origin of minerals. In recent studies, oxygen isotopic composition has been recognized as a possible tool for identification of the origin of seized uranium oxides in nuclear forensic science. In the last 10 years, great effort has been made to develop new direct and accurate n( 18O)/ n( 16O) measurements methods. Traditionally, n( 18O)/ n( 16O) analyses are performed by gas mass spectrometry. In this work, a novel oxygen isotope analysis by thermal ionization mass spectrometry (TIMS), using metal oxide ion species (UO +), is compared to the direct methods: glow discharge mass spectrometry (GDMS) and secondary ion mass spectrometry (SIMS). Because of the possible application of the n( 18O)/ n( 16O) ratio in nuclear forensics science, the samples were solid, pure UO 2 or U 3O 8 particles. The precision achieved using TIMS analysis was 0.04%, which is similar or even better than the one obtained using the SIMS technique (0.05%), and clearly better if compared to that of GDMS (0.5%). The samples used by TIMS are micrograms in size. The suitability of TIMS as a n( 18O)/ n( 16O) measurement method is verified by SIMS measurements. In addition, TIMS results have been confirmed by characterizing the n( 18O)/ n( 16O) ratio of UO 2 sample also by the traditional method of static vacuum mass spectrometry at the University of Chicago.

  20. Neutron scattering study of dilute supercritical solutions

    SciTech Connect

    Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.

    1994-10-01

    Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope {sup 36}Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast.

  1. Carbon addition during the Paleocene-Eocene Thermal Maximum: Model inversion of a new, high-resolution carbon isotope record from Svalbard

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Kump, L.; Ridgwell, A.; Junium, C.; Diefendorf, A. F.; Freeman, K. H.; Urban, N.

    2010-12-01

    Newly analyzed core material from Svalbard presents the most expanded sedimentary section spanning the Paleocene Eocene Thermal Maximum (PETM) studied to date. Carbon isotopic analysis of the bulk organic matter extracted from core BH9-05 details the onset of the negative carbon isotope excursion (CIE) of approximately 4.2 over 19,000 years (8 m of section, sampled every 30 cm) and its recovery over 50 m of section, representing 150,000 years. The CIE of terrestrial higher plant n-alkanes (~6) is larger than that of the bulk organic carbon (4.2), suggesting the CIE of the atmospheric CO2 is in the range of 4.2 to 6. We use a novel approach to modeling the excursion, forcing an Earth system model of intermediate complexity to conform to the total organic carbon isotope record, yielding rates of carbon release at the PETM for a specified isotopic composition representing end-member potential sources (methane or fossil organic matter). We find that the peak rate of carbon addition is only a small fraction of the current rate of fossil fuel burning (9 Pg C/yr) whether the source is methane (0.3 Pg C/yr; ?13C = -60) or organic matter (1.7 Pg C/yr; ?13C = -22). Model/data comparison, especially the observed and modeled seafloor carbonate dissolution record, favors the higher peak rate and larger (~13,000 Pg C) cumulative addition associated with an organic-matter source, such as rapid oxidation of peat/coal/marine organic matter, thermal alteration of marine organic matter during emplacement of the N. Atlantic Volcanic Province, or a mix of relatively 13C enriched (volcanic) and relatively 13C depleted (methane) sources. However, model sensitivity analysis shows that while the rate and amount of carbon added (for a specified source type) is relatively insensitive to key model uncertainties, the predicted seafloor carbonate dissolution response is quite sensitive to the presumed initial ocean alkalinity and seafloor carbonate distribution (i.e., the oceans buffer capacity against CO2 addition). Given the limited coverage of the existing deep-sea record, we cannot definitively rule out the alternative scenario involving a smaller cumulative addition (~2500 Pg C) from an isotopically lighter source (methane).

  2. Dilute oriented loop models

    NASA Astrophysics Data System (ADS)

    Vernier, Eric; Lykke Jacobsen, Jesper; Saleur, Hubert

    2016-02-01

    We study a model of dilute oriented loops on the square lattice, where each loop is compatible with a fixed, alternating orientation of the lattice edges. This implies that loop strands are not allowed to go straight at vertices, and results in an enhancement of the usual {{O}}(n) symmetry to {{U}}(n). The corresponding transfer matrix acts on a number of representations (standard modules) that grows exponentially with the system size. We derive their dimension and those of the centralizer by both combinatorial and algebraic techniques. A mapping onto a field theory permits us to identify the conformal field theory governing the critical range, n≤slant 1. We establish the phase diagram and the critical exponents of low-energy excitations. For generic n, there is a critical line in the universality class of the dilute {{O}}(2n) model, terminating in an {{SU}}(n+1) point. The case n = 1 maps onto the critical line of the six-vertex model, along which exponents vary continuously.

  3. Thermal ionization cavity source for mass spectrometry

    SciTech Connect

    Olivares, J.A.; Chamberlin, E.P.; Duan, Yixiang

    1995-12-31

    Thermal ionization mass spectrometry (TIMS) is widely used for isotopic determination, and elemental concentration measurements by isotope dilution. TIMS is applicable to over 70 elements in the periodic table, often, with very high sensitivity, low detection limits, high precision, and high accuracy. Probably due to its success and simplicity, the traditional resistively heated filament type ion source, used in TIMS, has remained relatively unchanged in the past 50 years. Only minor changes in the number of filaments used for vaporization and ionization, and the shape of the filament have been employed. Much of the science of thermal ionization has focused on sample preparation, and chemical ionization enhancers. Beyer et al., in the USSR, and Johnson et al., later in the US, introduced a new high temperature cavity-type thermal ionization source for isotope separation on-line (ISOL) projects. Delmore et al. introduced a similar cavity-type source for the study of thermal emission of primary ions for secondary ionization mass spectrometry (SIMS). A new thermal ionization cavity-type source for mass spectrometry has been developed in this laboratory.

  4. A Prominent Rise in Tropical SST during the Paleocene-Eocene Thermal Maximum as inferred from Mg/Ca, Isotope, and other data

    NASA Astrophysics Data System (ADS)

    Zachos, J.; Wara, M.; Bohaty, S.; Delaney, M.; Brill, A.; Bralower, T.; Petrizzio, M.; Premoli-Silva, I.; Shellito, C.; Sloan, L.

    2003-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) has been attributed to a rapid rise in greenhouse gas levels, possibly via extensive dissociation of marine clathrate. If so, warming should have theoretically occurred at all latitudes, though amplified toward the poles. Oxygen-isotope records reveal that high latitude sea surface temperature (SST) warmed by as much as 10 C, while worldwide bottom water temperatures increased by 5 C. To date, however, the character of the tropical SST response during the PETM remains unconstrained. Here we address this deficiency by measuring both the oxygen isotope and minor element (magnesium/calcium) ratios of planktonic foraminifera from a tropical Pacific deep-sea core to estimate changes in SST and sea-surface salinity (SSS). The core is from ODP Site 1209 located on Shatsky Rise. The P/E boundary layer is represented by a dark horizon imbedded in a carbonate-rich nannofossil ooze. Samples were collected at high-resolution across this layer for a variety of analyses. Stable isotope analyses of single specimen mixed-layer foraminifera, Morozovella velascoensis and Acarinina soldadoensis show the classic -3.0 ? 13C excursion as well as a -0.7 ? 18O excursion. Minor element analyses of the same species reveal a prominent excursion in Mg/Ca ratios from ~3.6 to 5.5 mmol/mol. The excursions in the isotope and Mg/Ca records appear to initiate a few cm below the sharp lithologic contact that marks the base of the clay rich layer, peak about 20 cm above. Sr/Ca ratios on the other hand remain constant. Other proxies of preservation show no correlation to the Mg/Ca. Thus, the combined isotope/minor element proxies imply a 4.5-5.0 C rise in Pacific SST during the PETM. From the residual in the oxygen isotope record, we estimate an SSS increase of 1-2 ppt. These results, when considered with SST data for high-latitudes, are consistent with model simulated tropical SST response to roughly a doubling of atmospheric pCO2.

  5. Effects of steam-heating processes on a stratified volcanic aquifer: Stable isotopes and dissolved gases in thermal waters of Vulcano Island (Aeolian archipelago)

    NASA Astrophysics Data System (ADS)

    Federico, C.; Capasso, G.; Paonita, A.; Favara, R.

    2010-05-01

    We report on a comprehensive study of major-ion chemistry, dissolved gases, and stable isotopes measured in water wells at Vulcano Island since 1988. The work focuses on a quantitative model describing steam condensation and boiling phenomena in shallow water bodies. The model is based on the differences in partition coefficients between liquid water and vapor characterizing oxygen and hydrogen isotopes, as well as volcanic gases (CO 2, S species, and HCl). Based on both physical conditions of aquifers identified during drilling campaigns and the composition of the volcanic vapor, mass and enthalpy balances are applied in a multistep process of steam separation and condensation in shallower aquifers. By comparing the model results with measured data, we infer that (i) strong isotope enrichment observed in some shallow thermal waters can result from an increasing mass rate of condensing deep vapor, even in water meteoric in origin; (ii) the high CO 2 content measured in the fumarolic vapor during 1988-1993 affected the δ18O value of the steam-heated water due to CO 2-H 2O isotope exchange; (iii) the high pCO 2 measured in the coldest and peripheral waters are explained by the progressive enrichment of this gas in the vapor phase during multistep boiling; and (iv) the high Cl - and SO 42-contents in the hottest waters can be attributed to the direct condensation (single-step) of volcanic vapor. The model also takes into account both the mass fluxes and the compositions of the involved endmembers (steam and shallow groundwater), which provides important inferences on the modifications observed or expected during periods of increasing mass and heat input from depth.

  6. Mass-dependent and Mass-independent Sulphur Isotope Fractionation Accompanying Thermal- and Photo-chemical Decomposition of Sulphur Bearing Organic Compounds

    NASA Astrophysics Data System (ADS)

    Oduro, Harry; Izon, Gareth; Ono, Shuhei

    2014-05-01

    The bimodal S-isotope record, specifically the transition from mass independent (MIF) to mass dependent fractionation (MDF), is perhaps the most widely cited line of evidence for an irreversible rise in atmospheric oxygen at ca. 2.4Ga. The production and preservation of S-MIF, manifested in both ?33S and ?36S, within the geological record are linked to atmospheric O2 via a number of arguments. However, to date, the only mechanism capable of generating S-MIF consistent with the Archaean sedimentary records involves gas-phase ultraviolet irradiation of SO21 photolysis. More recently, ?33S S-MIF trends have been reported from en vitro thermochemical sulphate reduction (TSR) experiments, prompting authors to question the importance of S-MIF as a proxy for Earth oxidation2. Importantly, whilst emerging TSR experiments3,4 affirm the reported ?33S trends2, these experiments fail to identify correlated S-MIF between ?33S and ?36S values3,4. Realization that S-MIF is confined to ?33S during TSR, precludes TSR as a mechanism responsible for the origin of the Archaean S-MIF record but strongly suggests the effect originating from a magnetic isotope effect (MIE) associated with 33S nucleus3,4. Clearly, photochemical and thermochemical processes impart different ?36S/?33S trends with significant variation in ?34S; however, a complete experimental elucidation of mechanisms responsible for the S-MIF and S-MIE signatures is lacking. Interestingly, a complete understanding of the S-isotope chemistry during thermal- and photo-chemical decomposition may reveal wavelength and thermal dependence archived in the sedimentary record. Here we extend the experimental database to explore the magnitude and sign of ?36S/?33S and ?34S produced during both photo- and thermochemical processes. Here the organic sulphur compounds (OSC) utilized in these experiments carries diagnostic ?36S/?33S patterns that differ from those reported from photolysis experiment SO2 and from the Archaean sedimentary record. Further thermal decomposition of several sulphur containing compounds with; 1) an aliphatic-S (e.g., diphenyl disulphide), 2) tri-substituted aromatic-S (trithiane), and S-amino acids (e.g., cysteine, methionine, taurine, and glutathionine) were tested for four S-isotope fractionation under vacuum. Among these, aromatic trithiane produced anomalous 33S up to 1.3, indicating thermal decomposition through radical chemistry, producing S-MIE. While taurine with sulphonic acid (R-SO2OH) functional groups yielded S-MDF up to 15 (between the AVS and the residual OSC), which is consistent with estimated zero-point energy shifts for thiol (R-SH), and thiyl (R-S-CH3) groups of cysteine and methionine, respectively. These results suggest that OSC might undergo either thermal or photochemical decomposition and the S-MIF, S-MDF, and S-MIE signatures may be archived in the geologic record. The emerging mechanisms responsible for these isotope signals and their implications will be discussed in more detail. Ultimately this work offers a framework where these signals can be used as a diagnostic marker to distinguish between thermo- and photochemical processes. References: 1. Farquhar et al., Science 2000 2. Watanabe et al., Science 2010; 3. Oduro et al., PNAS 2011; 4. Kopf and Ono, GCA 2012.

  7. Dilution jet mixing program

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Johnson, K.

    1984-01-01

    Parametric tests were conducted to quantify the mixing of opposed rows of jets (two-sided injection) in a confined cross flow. Results show that jet penetrations for two sided injections are less than that for single-sided injections, but the jet spreading rates are faster for a given momentum ratio and orifice plate. Flow area convergence generally enhances mixing. Mixing characteristics with asymmetric and symmetric convergence are similar. For constant momentum ratio, the optimum S/H(0) with in-line injections is one half the optimum value for single sided injections. For staggered injections, the optimum S/H(0) is twice the optimum value for single-sided injection. The correlations developed predicted the temperature distributions within first order accuracy and provide a useful tool for predicting jet trajectory and temperature profiles in the dilution zone with two-sided injections.

  8. Evaluation of two gas-dilution methods for instrument calibration

    NASA Technical Reports Server (NTRS)

    Evans, A., Jr.

    1977-01-01

    Two gas dilution methods were evaluated for use in the calibration of analytical instruments used in air pollution studies. A dual isotope fluorescence carbon monoxide analyzer was used as the transfer standard. The methods are not new but some modifications are described. The rotary injection gas dilution method was found to be more accurate than the closed loop method. Results by the two methods differed by 5 percent. This could not be accounted for by the random errors in the measurements. The methods avoid the problems associated with pressurized cylinders. Both methods have merit and have found a place in instrument calibration work.

  9. A Novel Approach to Investigate Soil Organic Matter Development Using Isotopes and Thermal Analysis: C Sourcing from Various Plant Materials and Mineral Influence on Stability

    NASA Astrophysics Data System (ADS)

    Bower, J.; Horwath, W. R.

    2012-12-01

    Biomolecular input quality and mineral constituents are important factors that regulate turnover and stabilization of natural organic matter. The complexity and variability of natural soil systems might shadow basic mechanisms occurring between organic and mineral components. Utilizing an in vitro model decomposition system allows for control over inputs and turnover time. We created a model soil system with composted plant litter that was enriched with 13-C in order to investigate C use during the formation of stabilized SOM. The litter was subjected to microbially-mediated, aerobic decomposition before pure clays were added and allowed to incubate further. Isotopically labeled organic inputs allowed us to focus on C derived from known plant sources as a qualitative assessment of SOM formation. Thermogravimetry-Differential Scanning Calorimetry (TG-DSC) has been used successfully to quantify thermochemical properties of SOM reactivity/stability in three regions of exothermic activity corresponding generally to carbohydrates and lipids (Exo 1; 150-350 C), aromatic and condensed polymers (Exo 2; 400-460 C) and refractory/mineral associated C (Exo 3; 500-550 C). Thermal separation of the organics allows for in-line evolved gas analysis via Isotope Ratio Mass Spectrometry (IRMS) to measure 13-C isotopic values of those thermally separated organic compound classes. This coupled analysis is ideal in that it is fast, reproducible, and requires no sample pretreatment other than drying/grinding and it provides stability, mass loss, and isotopic data from a single sample. DSC results show the development of a higher temperature, energetically recalcitrant C pool over the course of decomposition in mineral-free litters and its absence in clay-litter mixtures, implicating the influence of mineral surfaces on soil organic matter energetic stability. Preliminary IRMS results indicate that mineral presence influences C sourcing from particular plant materials in some SOM compound classes. For example, in mineral-free treatments containing 13-C enriched woody material, gas evolution from Exo 3 that was enriched in 13-C and was therefore derived from the woody material. However, the presence of montmorillonite clay minerals resulted in gas evolution that was depleted in 13-C and was therefore derived from the non-woody plant inputs present (grass and leaves). This shows a change in mechanism: either the microbial sourcing of C from woody material to produce Exo 3 compounds changed in the presence of the mineral or mineral interaction with the organics altered the thermal reactivity of those wood-derived compounds, causing them to thermally separate differently. We are also exploring the effect of bridging metal interaction with minerals and plant litter as SOM develops. We are able to show that this analytical method is useful for probing mineral influence on SOM stability and differentiation in litter C utilization during decomposition in a single sample. TG-DSC-IRMS analysis can be used for any soil-organic matter investigation, with isotopically enriched or natural abundance materials: applications range from measuring terrestrial C sequestration efforts and organic waste management efficacy to sustainable agricultural practices.

  10. Chemical and isotopic compositions of thermal waters in Anatolia, Turkey: A link to fluid-mineral equilibria

    NASA Astrophysics Data System (ADS)

    Mutlu, Halim; Gülec, Nilgün; Hilton, David R.

    2015-04-01

    The complex magmato-tectonic setting of Turkey has resulted in the occurrence of numerous geothermal fields with distinct chemical and isotopic fluid compositions. We evaluate the data on these fluids in terms of water-rock interaction, mineral equilibrium conditions and reservoir temperatures of each geothermal field. The Ca-HCO3 rich nature of most waters is ascribed to derivation from carbonate-type reservoir rocks. SO4-type waters are found in areas where the reservoir is partly comprised of evaporite units. Na-Cl type waters are characteristic for the coastal areas of west Anatolia. Chemical geothermometer applications estimate average reservoir temperatures of 180 °C for the western Anatolian region, 120 °C for the Balıkesir region, 130 °C for the eastern Anatolian region, 140 °C for the North Anatolian Fault Zone and 70 °C for the Eskişehir region. For most of the waters, chalcedony controls the silica solubility and the majority of waters are equilibrated with calcite and chalcedony minerals. Oxygen and hydrogen isotope compositions (-13.5 to -4 permil (VSMOW) and -95.4 to -23 permil (VSMOW), respectively) are generally conformable with Global Meteoric Water Line (GMWL); however, stable isotope systematics of geothermal waters close to the coast are consistent with the Mediterranean Meteoric Water Line (MMWL). Carbon and sulfur isotope compositions (δ13C (VPDB): -17.7 to +5.6 permil and δ34S (VCDT): -5.5 to +45.7 permil) suggest marine carbonates and terrestrial evaporite units as the main source of dissolved carbon and sulfate in the waters.

  11. Quantification of thiazolidine-4-carboxylic acid in toxicant-exposed cells by isotope-dilution liquid chromatography-mass spectrometry reveals an intrinsic antagonistic response to oxidative stress-induced toxicity.

    PubMed

    Liu, Jingjing; Chan, Wan

    2015-03-16

    Carcinogenic formaldehyde is produced by endogenous protein oxidation and various exogenous sources. With formaldehyde being both ubiquitous in the ambient environment and one of the most common reactive carbonyls produced from endogenous metabolism, quantifying formaldehyde exposure is an essential step in risk assessments. We present in this study an approach to assess the risk of exposure to oxidative stress by quantifying thiazolidine-4-carboxylic acid (TA), a cysteine-conjugated metabolite of formaldehyde in toxicant-exposed Escherichia coli. The method entails TA derivatization with ethyl chloroformate, addition of isotope-labeled TA derivatives as internal standards, solid-phase extraction of the derivatives, and quantification by liquid chromatography-mass spectrometry (LC-MS). After validating for accuracy and precision, the developed method was used to detect TA in oxidizing agent-exposed E. coli samples. Dose-dependent TA formation was observed in E. coli exposed to hydroxyl radical mediators Fe(2+)-EDTA, H2O2, and NaOCl, indicating the potential use of TA as a biomarker of exposure to oxidative stress and disease risk. PMID:25325739

  12. A new series of uranium isotope reference materials for investigating the linearity of secondary electron multipliers in isotope mass spectrometry

    NASA Astrophysics Data System (ADS)

    Richter, S.; Alonso, A.; Aregbe, Y.; Eykens, R.; Kehoe, F.; Khn, He; Kivel, N.; Verbruggen, A.; Wellum, R.; Taylor, P. D. P.

    2009-04-01

    A new series of gravimetrically prepared uranium isotope reference materials, the so-called IRMM-074 series, with the n(235U)/n(238U) isotope ratio held constant at unity and the n(233U)/n(238U) isotope ratios varying from 1.0 to 10-6 has been prepared and certified. This series is suited for calibration of secondary electron multipliers used widely in isotope mass spectrometry, in particular for techniques such as thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS). The new IRMM-074 was prepared as a replacement for the already exhausted IRMM-072 predecessor series. Uranium materials with high isotopic enrichments of 233U, 235U and 238U were purified using identical methods involving separation on anion and cation column followed by a precipitation as peroxide. The oxides were calcined to convert them to U3O8 simultaneously, in an oven installed in a glove-box that provided a controlled low-humidity environment. The oxides of 235U and 238U were weighed and mixed with a mole ratio n(235U)/n(238U) = 1.0 and then dissolved. The 233U oxide was dissolved to form a separate solution with the same concentration and 6rom this primary solution three dilutions were made by weighing. A weighed amount of the n(235U)/n(238U) solution and weighed amounts of the 233U solutions were mixed in various proportions in order to achieve n(233U)/n(238U) isotope ratios varying from 1.0 to 10-6. The methods for the preparation, the mixing and the mixing calculations are described. The expanded uncertainties (coverage factor k = 2) of the certified isotope ratios for the IRMM-074 series are 0.015% for the n(235U)/n(238U) ratio and 0.025% for the n(233U)/n(238U) ratios, which constitutes an improvement compared to those of the predecessor IRMM-072 series. In addition, recent observations regarding the linearity response of secondary electron multipliers (SEMs) and suitable reference materials for investigating detector linearity are reviewed. Two measurement procedures for applying the IRMM-072 and IRMM-073 (diluted from the remaining fraction of IRMM-072) series as well as the new IRMM-074 series for assessing SEM linearity are suggested. The procedures are tailor-made for the specific instrumental characteristics of thermal ionization mass spectrometers (TIMS) and multiple-collector inductively coupled plasma mass spectrometers (MC-ICPMS) but can be adapted also for further types of isotope ratio mass spectrometers.

  13. Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene-Eocene Thermal Maximum record from central China

    NASA Astrophysics Data System (ADS)

    Chen, Zuoling; Wang, Xu; Hu, Jianfang; Yang, Shiling; Zhu, Min; Dong, Xinxin; Tang, Zihua; Peng, Ping'an; Ding, Zhongli

    2014-12-01

    The carbon isotope excursion (CIE) associated with the Paleocene-Eocene Thermal Maximum (PETM) has been recognized for the first time in the micritic carbonate, total organic carbon (TOC) and black carbon (BC) contained within the lacustrine sediments from the Nanyang Basin, central China. The remarkably large excursion (∼ - 6 ‰) in the δ13CTOC and δ13CBC values is possibly attributable to increased humidity and elevated pCO2 concentration. The ∼ - 4 ‰ CIE recorded in the δ13Ccalcite, reflecting the average isotope change of the watershed system, is consistent with that observed in planktonic foraminifera. This correspondence suggests that the true magnitude of the carbon isotope excursion in the ocean-atmosphere system is likely close to - 4 ‰. The ∼10 m excursion onset in our multi-proxy δ13C records demonstrates that the large input of 13C-depleted carbon into the ocean-atmosphere system was not geologically instantaneous. Despite difference and somewhat smoothness in detailed pattern of the CIE due to localized controls on different substrates, inorganic and organic δ13C data generally depict a gradual excursion onset at least over timescales of thousands of years. In addition, continental temperature reconstruction, based on the distribution of membrane lipids of bacteria, suggests a warming of ∼4 °C prior to the PETM and ∼7 °C increase in temperature during the PETM. The temperature data are overall similar in pattern and trend to the δ13C change across the PETM. These observations, combined with pre-CIE warming, are in line with the idea that 13C-depleted carbon release operated as a positive feedback to temperature, suggesting supply from one or more large organic carbon reservoirs on Earth's surface.

  14. Stress in dilute suspensions

    NASA Technical Reports Server (NTRS)

    Passman, Stephen L.

    1989-01-01

    Generally, two types of theory are used to describe the field equations for suspensions. The so-called postulated equations are based on the kinetic theory of mixtures, which logically should give reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a system of equations which is underdetermined, in a sense that can be made precise. On the other hand, the so-called averaging theory starts with a determined system, but the very process of averaging renders the resulting system underdetermined. A third type of theory is proposed in which the kinetic theory of gases is used to motivate continuum equations for the suspended particles. This entails an interpretation of the stress in the particles that is different from the usual one. Classical theory is used to describe the motion of the suspending medium. The result is a determined system for a dilute suspension. Extension of the theory to more concentrated systems is discussed.

  15. Analysis of urinary 8-isoprostane as an oxidative stress biomarker by stable isotope dilution using automated online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry.

    PubMed

    Mizuno, Keisuke; Kataoka, Hiroyuki

    2015-08-10

    We have developed a simple and sensitive method for the determination of the oxidative stress biomarker 8-isoprostane (8-IP) in human urine by automated online in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a Zorbax Eclipse XDB-8 column and 0.1% formic acid/methanol (25/75, v/v) as a mobile phase. Electrospray MS/MS for 8-IP was performed on an API 4000 triple quadruple mass spectrometer in negative ion mode. The optimum in-tube SPME conditions were 20 draw/eject cycles with a sample size of 40 ?L using a Carboxen 1006 PLOT capillary column for the extraction. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Total analysis time of this method including online extraction and analysis was about 30 min for each sample. The in-tube SPME LC-MS/MS method showed good linearity in the concentration range of 20-1000 pg/mL with a correlation coefficient r = 0.9999 for 8-IP using a stable isotope-labeled internal standard, 8-IP-d4. The detection limit of 8-IP was 3.3 pg/mL and the proposed method showed 42-fold higher sensitivity than the direct injection method. The intra-day and inter-day precisions (relative standard deviations) were below 5.0% and 8.5% (n = 5), respectively. This method was applied successfully to the analysis of urine samples without pretreatment or interference peaks. The recovery rates of 8-IP spiked into urine samples were above 92%. This method is useful for assessing the effects of oxidative stress and antioxidant intake. PMID:25956225

  16. Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes

    USGS Publications Warehouse

    McKenzie, W.F.; Truesdell, A.H.

    1977-01-01

    The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above ca. 140??C and that little re-equilibration occurs during ascent to the surface. The geothermometer is, however, affected by changes in ??18O of water due to subsurface boiling and dilution and by addition of sulfate of nearsurface origin. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures of 360, 240, and 142??C, respectively. ?? 1976.

  17. Determination of femtogram quantities of protactinium in geologic samples by thermal ionization mass spectrometry

    SciTech Connect

    Pickett, D.A.; Murrell, M.T.; Williams, R.W. )

    1994-04-01

    We describe a procedure for measurement of [sup 231]Pa in geologic samples by isotope dilution thermal ionization mass spectrometry, using [sup 233]Pa as a spike isotope, which provides marked improvements in precision and sample size relative to established decay counting techniques. This method allows determination of as little as a few tens of femtograms of [sup 231]Pa (approximately 10[sup 3] atoms) with a conservative estimated uncertainty of [+-]1% (95% confidence level). Applications of [sup 231]Pa-[sup 235]U systematics to uranium-series geochemistry and geochronology should be greatly enhanced by this approach. 31 refs., 4 figs., 1 tab.

  18. Geothermal investigations in Idaho. Part 12. Stable isotopic evaluation of thermal water occurrences in the Weiser and Little Salmon River drainage basins and adjacent areas, west-central Idaho with attendant gravity and magnetic data on the Weiser area

    SciTech Connect

    Mitchell, J.C.; Bideganeta, K.; Palmer, M.A.

    1984-12-01

    Fifteen thermal springs, two thermal wells, and eight cold springs in the Weiser and Little Salmon river drainages were sampled for deuterium and oxygen-18 analysis during the fall of 1981. The straight-line fit of delta D and delta /sup 18/O versus latitude and longitude observed in the data is what would be expected if the recharge areas for the thermal and non-thermal waters were in close proximity to their respective discharge points. The discrete values of delta D and delta /sup 18/O for each thermal discharge suggest that none of the sampled thermal systems have common sources. The depleted deuterium and oxygen-18 contents of most thermal relative to non-thermal waters sampled suggests that the thermal waters might be Pleistocene age precipitation. The isotopic data suggest little or no evidence for mixing of thermal and non-thermal water for the sampled discharges. Thermal waters from Weiser, Crane Creek, Cove Creek, and White Licks hot springs show enrichment in oxygen-18 suggesting that these waters have been at elevated temperatures relative to other sampled thermal discharges in the area. Gravity and magnetic data gathered by the Idaho State University Geology Department in the Weiser Hot Springs area suggest that southeastward plunging synclinal-anticlinal couples, which underlie the hot springs, are cut south of the springs by a northeast trending boundary fault.

  19. Pressure dependence of separative characteristics of thermal diffusion column for H/sub 2/ - HT isotope separation

    SciTech Connect

    Yamamoto, I.; Kaba, A.; Kanagawa, A.

    1988-09-01

    Experiments of H/sub 2/-HT isotope separation were carried out with a hot wire column of 3 cm in diameter and 1.5 m in length. Separation factors were measured with cut changed from 0.1 to 0.9, and other operational conditions: pressure, feed rate and temperature difference, fixed. First, the feed rate was altered under the constant pressure, and next, pressure was changed. Experimental results were compared with those from an axisymmetric separative analysis, based on a Newton iterative solution of a convection-diffusion equation. Pressure dependence of separation factors agreed qualitatively with those from theory.

  20. Uranium-lead Isotope Evidence in the Shelyabinsk LL5 Chondrite Meteorite for Ancient and Recent Thermal Events

    NASA Technical Reports Server (NTRS)

    Lapen, T. J.; Kring, D. A.; Zolensky, M. E.; Andreasen, R.; Righter, M.; Swindle, T. D.; Beard, S. P.; Swindle, T. D.

    2014-01-01

    The impact histories on chondrite parent bodies can be deduced from thermochronologic analyses of materials and isotope systems with distinct apparent closure temperatures. It is especially critical to better understand the geological histories and physical properties of potenally hazardous near-Earth asteroids. Chelyabinsk is an LL5 chondrite meteorite that was dispersed over a wide area tens of kilometers south of the town of Chelyabinsk, Russia by an explosion at an altitude of 27 km at 3:22 UT on 15 Feb 2013 [1,2]. The explosion resulted in significant damage to surrounding areas and over 1500 injuries along with meteorite fragments being spread over a wide area [1].

  1. A comparison by stable isotope mass spectrometry of coal-oil coprocessing under thermal and severe-hydrotreatment conditions

    SciTech Connect

    Bartle, K.D.; Louie, P.K.K.; Taylor, N.; Kemp, W.; Steedman, W.

    1993-12-31

    The {sup 13}C/{sup 12}C ratios of saturated, aromatic, polar, and asphaltene fractions produced by co-processing of Point of Ayr coal with heavy petroleum residues under thermolytic and severe hydrotreatment conditions were measured by isotope ratio mass spectrometry. The incorporation of coal carbon into the aromatic, polar and asphaltene products was similar for both sets of conditions and was independent of the oil used. An increase in the saturated fraction during severe hydrotreatment is consistent with hydrothermolysis is of bound long alkyl chains.

  2. Determination of the concentration and isotopic composition of uranium in environmental air filters

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.

    1994-08-26

    For many years, Lawrence Livermore National Laboratory has collected monthly air-particulate filter samples from a variety of environmental monitoring stations on and off site. Historically the concentration and isotopic composition of uranium collected on these filters was determined by isotope dilution using a {sup 233}U spike and thermal ionization mass spectrometry (TIMS). For samples containing as little as 10 nanograms of uranium, ICP-MS is now used to make these measurements to the required level of precision, about 5% in the measured 235/238 and 233/238. Unless particular care is taken to control bias in the mass filter, variable mass bias limits accuracy to a few percent. Measurements of the minor isotopes 236 (if present) and 234 are also possible and provide useful information for identifying the source of the uranium. The advantage of ICP-MS is in rapid analysis, {approximately}12 minutes of instrument time per sample.

  3. THE ANISOTROPIC TRANSPORT EFFECTS ON DILUTE PLASMAS

    SciTech Connect

    Devlen, Ebru

    2011-04-20

    We examine the linear stability analysis of a hot, dilute, and differentially rotating plasma by considering anisotropic transport effects. In dilute plasmas, the ion Larmor radius is small compared with its collisional mean free path. In this case, the transport of heat and momentum along the magnetic field lines becomes important. This paper presents a novel linear instability that may be more powerful and greater than ideal magnetothermal instability and ideal magnetorotational instability in the dilute astrophysical plasmas. This type of plasma is believed to be found in the intracluster medium (ICM) of galaxy clusters and radiatively ineffective accretion flows around black holes. We derive the dispersion relation of this instability and obtain the instability condition. There is at least one unstable mode that is independent of the temperature gradient direction for a helical magnetic field geometry. This novel instability is driven by the gyroviscosity coupled with differential rotation. Therefore, we call it gyroviscous-modified magnetorotational instability (GvMRI). We examine how the instability depends on signs of the temperature gradient and the gyroviscosity and also on the magnitude of the thermal frequency and on the values of the pitch angle. We provide a detailed physical interpretation of the obtained results. The GvMRI is applicable not only to the accretion flows and ICM but also to the transition region between cool dense gas and the hot low-density plasma in stellar coronae, accretion disks, and the multiphase interstellar medium because it is independent of the temperature gradient direction.

  4. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    SciTech Connect

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.; White, Byron M.

    2015-05-01

    135Cs/137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide variety of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2σ) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/137Cs ratio measurements currently reported for soil samples at the femtogram level.

  5. An Apparatus for Fast Dilution

    NASA Astrophysics Data System (ADS)

    Boiko, V. P.

    1997-04-01

    An apparatus for fast dilution permitting unlimited dilution of the solution in the same vessel is described. This was achieved by using a siphon to remove part of the solution from the dilution vessel. Availability of a siphon provides strictly constant solution volume in the vessel after evacuation of excess solution by extra pressure. By virtue of subsequent dilution of a solution it can achieve any low solution concentration. The apparatus is especially convenient at simultaneously measuring the concentration dependent solution properties, e. g., for calibration curve plotting or for determining intrinsic values of physical properties of a solute. Using the apparatus described decreases the time of dilution and property measuring solutions and labor expenditures. The apparatus has a number of other advantages. Accuracy of measurements greatly increases especially at very high dilution. The degree of dilution is easily regulated; simultaneous measurements of two or more properties of the same solution are possible; mixtures of liquids of variable composition are quickly prepared. The versions of the apparatus for measuring limiting equivalent conductivity and polymer intrinsic viscosity are proposed.

  6. Dilution refrigeration for space applications

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Petrac, D.

    1990-01-01

    Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.

  7. Extraction Chromatographic Methods in the Sample Preparation Sequence for Thermal Ionization Mass Spectrometric Analysis of Plutonium Isotopes

    SciTech Connect

    Grate, Jay W.; O'Hara, Matthew J.; Farawila, Anne F.; Douglas, Matthew; Haney, Morgan M.; Peterson, Steve L.; Maiti, Tapas C.; Aardahl, Christopher L.

    2011-10-17

    A sample preparation sequence for actinide isotopic analysis by TIMS is described that includes column-based extraction chromatography as the first separation step, followed by anion exchange column separations. The sequence is designed to include a wet ashing step after the extraction chromatography to prevent any leached extractant or oxalic acid eluent reagents from interfering with subsequent separations, source preparation, or TIMS ionization. TEVA-resin and DGA-resin materials, containing extractants that consist only of C, N, O, and H atoms, were investigated for isolation of plutonium. Radiotracer level studies confirmed expected high yields from column-based separation procedures. Femtogram-level studies were carried out with TIMS detection, using multiple isotopic spikes through the separation sequence. Pu recoveries were 87% and 86% for TEVA- and DGA-resins separations respectively. The Pu recoveries from 400 {mu}L anion-exchange column separations were 89% and 93% for trial sequences incorporating TEVA and DGA-resin. Thus, a prior extraction chromatography step in the sequence did not interfere with the subsequent anion exchange separation when a simple wet ash step was carried out in between these column separations. The average measurement efficiency, for Pu, encompassing the chemical separation recoveries and the TIMS ionization efficiency, was 2.73 {+-} 0.77% (2-sigma) for the DGA-resin trials and 2.67 {+-} 0.54% for the TEVA-resin trials, compared to 3.41% and 2.37% (average 2.89%) for two spikes in the experimental set. These compare with an average measurement efficiency of 2.78 {+-} 1.70%, n = 33 from process benchmark analyses using Pu spikes processed through a sequence of oxalate precipitation, wet ash, iron hydroxide precipitation, and anion exchange column separations. We conclude that extraction chromatography can be a viable separation procedure as part of a multistep sequence for TIMS sample preparation.

  8. Cluster approach to dilute magnetism

    NASA Astrophysics Data System (ADS)

    Holvorcem, Paulo R. C.; Osrio, Roberto

    1988-10-01

    A cluster algebra is developed for the definition of independent correlation functions in the cluster-variation method (CVM) for the spin-1 Ising model. A scheme is then introduced for the study of site-dilute spin- {1}/{2} Ising models by means of the CVM. The procedure regards the site-dilute spin- {1}/{2} model as the spin-1 model with additional constraints due to dilution. The Desjardins-Steinsvoll algortihm is used for the transformation of the CVM equations into a set of differential equations for the independent correlation functions with the inverse temperature as parameter. The evolution of the correlation functions with temperature and the behavior of response functions such as the specific heat and the susceptability are then obtained for any degree of dilution. As an introduction to this scheme, its detailed application is presented here for the simple case of the pair approximation.

  9. Origins of large-volume, compositionally zoned volcanic eruptions: New constraints from U-series isotopes and numerical thermal modeling for the 1912 Katmai-Novarupta eruption

    USGS Publications Warehouse

    Turner, Simon; Sandiford, Mike; Reagan, Mark; Hawkesworth, Chris; Hildreth, Wes

    2010-01-01

    We present the results of a combined U-series isotope and numerical modeling study of the 1912 Katmai-Novarupta eruption in Alaska. A stratigraphically constrained set of samples have compositions that range from basalt through basaltic andesite, andesite, dacite, and rhyolite. The major and trace element range can be modeled by 8090% closed-system crystal fractionation over a temperature interval from 1279C to 719C at 100 MPa, with an implied volume of parental basalt of ?65 km3. Numerical models suggest, for wall rock temperatures appropriate to this depth, that 90% of this volume of magma would cool and crystallize over this temperature interval within a few tens of kiloyears. However, the range in 87Sr/86Sr, (230Th/238U), and (226Ra/230Th) requires open-system processes. Assimilation of the host sediments can replicate the range of Sr isotopes. The variation of (226Ra/230Th) ratios in the basalt to andesite compositional range requires that these were generated less than several thousand years before eruption. Residence times for dacites are close to 8000 years, whereas the rhyolites appear to be 50200 kyr old. Thus, the magmas that erupted within only 60 h had a wide range of crustal residence times. Nevertheless, they were emplaced in the same thermal regime and evolved along similar liquid lines of descent from parental magmas with similar compositions. The system was built progressively with multiple inputs providing both mass and heat, some of which led to thawing of older silicic material that provided much of the rhyolite.

  10. Validation of a nanoliquid chromatography-tandem mass spectrometry method for the identification and the accurate quantification by isotopic dilution of glutathionylated and cysteinylated precursors of 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one in white grape juices.

    PubMed

    Roland, Aurlie; Vialaret, Jrme; Moniatte, Marc; Rigou, Peggy; Razungles, Alain; Schneider, Rmi

    2010-03-01

    A rapid nanoLC-MS/MS method was developed and validated for the simultaneous determination of glutathionylated and cysteinylated precursors of 3-mercapto-hexan-1-ol (3MH) and 4-methyl-4-mercaptopentan-2-one in grape juice using stable isotope dilution assay (SIDA). The analytes were extracted from must using a cation exchange resin and purified on C18 cartridges. They were chromatographically separated on a reverse phase column and finally analyzed by tandem mass spectrometry in selected reaction monitoring mode (SRM) using deuterated analogues as standards except for glutathionylated conjugate of 4MMP which was analyzed by external calibration. The method was validated according to the International Conference on Harmonization recommendations by determining linearity, accuracy, precision, recovery, matrix effect, repeatability, intermediate reproducibility, LODs and LOQs. Calibration for each precursor was determined by performing Lack-of-Fit test and the best fitting for 3MH precursors was a quadratic model whereas a linear model was better adapted for 4MMP precursors. All calibration curves showed quite satisfactory correlation coefficients (R(2)>0.995 for SIDA quantification and R(2)>0.985 for external calibration). Quantification by SIDA and external calibration allowed a high level of accuracy since the averaged value ranged from 80 to 108%. Quantification of aroma precursors was accurate and reproducible over five days since intermediate precision (same analyst, same sample and same apparatus), which was evaluated by the calculation of RSD was inferior to 16%. Limits of quantification for G3MH and G4MMP were closed to 0.50 and 0.07 nmol/L and as 4.75 and 1.90 nmol/L for Cys3MH and Cys4MMP respectively. This method was applied to the quantification of precursors into several types of grape juices: Melon B., Sauvignon, Riesling and Gewurztraminer. PMID:20122692

  11. Effects of self-heating and phase change on the thermal profile of hydrogen isotopes in confined geometries

    SciTech Connect

    Baxamusa, S. Field, J.; Dylla-Spears, R.; Kozioziemski, B.; Suratwala, T.; Sater, J.

    2014-03-28

    Growth of high-quality single-crystal hydrogen in confined geometries relies on the in situ formation of seed crystals. Generation of deuterium-tritium seed crystals in a confined geometry is governed by three effects: self-heating due to tritium decay, external thermal environment, and latent heat of phase change at the boundary between hydrogen liquid and vapor. A detailed computation of the temperature profile for liquid hydrogen inside a hollow shell, as is found in inertial confinement fusion research, shows that seeds are likely to form at the equatorial plane of the shell. Radioactive decay of tritium to helium slowly alters the composition of the hydrogen vapor, resulting in a modified temperature profile that encourages seed formation at the top of the shell. We show that the computed temperature profile is consistent with a variety of experimental observations.

  12. Physics with isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    1994-08-01

    Control of the isotopic composition of semiconductors offers a wide range of new scientific opportunities. In this paper a number of recent results obtained with isotopically pure as well as deliberately mixed diamond and Ge bulk single crystals and Ge isotope superlattices will be reviewed. Isotopic composition affects several properties such as phonon energies, bandstructure and lattice constant in subtle but theoretically well understood ways. Large effects are observed for thermal conductivity, local vibrational modes of impurities and after neutron transmutation doping (NTD). Several experiments which could profit greatly from isotope control are proposed.

  13. Potential energy surface for the CH3+HBr-->CH4+Br hydrogen abstraction reaction: Thermal and state-selected rate constants, and kinetic isotope effects

    NASA Astrophysics Data System (ADS)

    Espinosa-Garca, J.

    2002-08-01

    The gas-phase hydrogen abstraction title reaction was carefully investigated. First, ab initio molecular orbital theory was used to study the stationary points along the reaction path: reactants, hydrogen-bonded complex, saddle point, and products. Optimized geometries and harmonic vibrational frequencies were calculated at the second-order Mller-Plesset perturbation theory level, and then single-point calculations were performed at a higher level of calculation: coupled-cluster with triple-zeta basis set. The effects of the level of calculation, zero-point energy (ZPE), thermal corrections [TC (298.15 K)], spin-orbit coupling, and basis set superposition error (BSSE) on the energy changes were analyzed. It was concluded that at room temperature (i.e., with ZPE and TC), when the BSSE was included, the complex disappears and the activation enthalpy is +0.39 kcal mol-1 above the reactants. Second, an analytical potential energy surface was constructed with suitable functional forms to represent vibrational modes, and was calibrated by using experimental and theoretical stationary point properties and the tendency of the kinetic isotope effects. On this surface, the forward and reverse thermal rate constants were calculated using variational transition state theory with semiclassical transmission coefficients over a wide temperature range. In both cases, we found a direct dependence on temperature and, therefore, positive activation energies. The influence of the tunneling factor was very small due to the flattening of the surface in the entrance valley. This surface was also used to analyze dynamical features, such as reaction-path curvature, the coupling between the reaction coordinate and vibrational modes, and the effect of vibrational excitation on the rate constants. It was found that excitation of the BrH stretching mode enhances the forward reaction, whereas the excitation of the CH3 umbrella mode has the opposite effect.

  14. Quantification of neptunium by isotope dilution mass spectrometry

    SciTech Connect

    Efurd, D.W.; Drake, J.; Roensch, F.R.; Cappis, J.H.; Perrin, R.E.

    1986-05-01

    A surface ionization-diffusion-type ionization source that uses a rhenium filament overplated with platinum has been developed and optimized for 0.1-ng neptunium samples. This source is capable of measuring the neptunium content of nuclear-test-debris samples to 0.15% precision at the 95% confidence level. 14 refs., 3 figs., 3 tabs.

  15. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust...

  16. Thermal dependency of shell growth, microstructure, and stable isotopes in laboratory-reared Scapharca broughtonii (Mollusca: Bivalvia)

    NASA Astrophysics Data System (ADS)

    Nishida, Kozue; Suzuki, Atsushi; Isono, Ryosuke; Hayashi, Masahiro; Watanabe, Yusuke; Yamamoto, Yuzo; Irie, Takahiro; Nojiri, Yukihiro; Mori, Chiharu; Sato, Mizuho; Sato, Kei; Sasaki, Takenori

    2015-07-01

    We experimentally examined the growth, microstructure, and chemistry of shells of the bloody clam, Scapharca broughtonii (Mollusca: Bivalvia), reared at five temperatures (13, 17, 21, 25, and 29°C) with a constant pCO2 condition (˜450 μatm). In this species, the exterior side of the shell is characterized by a composite prismatic structure; on the interior side, it has a crossed lamellar structure on the interior surface. We previously found a negative correlation between temperature and the relative thickness of the composite prismatic structure in field-collected specimens. In the reared specimens, the relationship curve between temperature and the growth increment of the composite prismatic structure was humped shaped, with a maximum at 17°C, which was compatible with the results obtained in the field-collected specimens. In contrast, the thickness of the crossed lamellar structure was constant over the temperature range tested. These results suggest that the composite prismatic structure principally accounts for the thermal dependency of shell growth, and this inference was supported by the finding that shell growth rates were significantly correlated with the thickness of the composite prismatic structure. We also found a negative relationship between the rearing temperature and δ18O of the shell margin, in close quantitative agreement with previous reports. The findings presented here will contribute to the improved age determination of fossil and recent clams based on seasonal microstructural records.

  17. Traces of isotopic reactive species produced from a non-thermal plasma jet in bio-molecules

    NASA Astrophysics Data System (ADS)

    Lee, C. B.; Kwak, H. S.; Choi, E. H.; Hong, T. E.; Yoon, H.; Lee, Y.; Baik, K. Y.; Uhm, H. S.

    2015-11-01

    Heavy water (D2O) is introduced into a non-thermal plasma jet (NTPJ) device to generate deuterium monoxide (OD) radicals instead of hydroxyl (OH) radicals. An NTPJ generated from a vapor mixture of N2/H2O and N2/D2O is applied to a cell membrane component and its effects are analyzed by means of 1H NMR, GC-FID and TOF-SIMS spectroscopies. The results show that OH and OD radical species induce similar levels of oxidative breakage of lipid molecules. In addition, the 2H NMR spectra show that deuteriums are incorporated into the lipid oxidative products. In order to trace these effects in vivo, E. coli bacteria are treated with an NTPJ and analyzed using NanoSIMS. Deuterium is observed in both the cytoplasm and membrane, which are colocalized well with nitrogen and phosphorus atoms. The high colocalization of D atoms inside E. coli provides the first direct and visual evidence of the role of OD radicals, which may be utilized to visualize OH radical interactions inside cells.

  18. Diluted equilibrium sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Patwardhan, Amol V.; Fuller, George M.; Kishimoto, Chad T.; Kusenko, Alexander

    2015-11-01

    We present a model where sterile neutrinos with rest masses in the range keV to MeV can be the dark matter and be consistent with all laboratory, cosmological, and large-scale structure, as well as x-ray constraints. These sterile neutrinos are assumed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation ("dilution") from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the TeV to EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.

  19. Dilution and the elusive baseline.

    PubMed

    Likens, Gene E; Buso, Donald C

    2012-04-17

    Knowledge of baseline conditions is critical for evaluating quantitatively the effect of human activities on environmental conditions, such as the impact of acid deposition. Efforts to restore ecosystems to prior, "pristine" condition require restoration targets, often based on some presumed or unknown baseline condition. Here, we show that rapid and relentless dilution of surface water chemistry is occurring in the White Mountains of New Hampshire, following decades of acid deposition. Extrapolating measured linear trends using a unique data set of up to 47 years, suggest that both precipitation and streamwater chemistry (r(2) >0.84 since 1985) in the Hubbard Brook Experimental Forest (HBEF) will approximate demineralized water within one to three decades. Because such dilute chemistry is unrealistic for surface waters, theoretical baseline compositions have been calculated for precipitation and streamwater: electrical conductivity of 3 and 5 μS/cm, base cation concentrations of 7 and 39 μeq/liter, acid-neutralizing capacity values of <1 and 14 μeq/liter, respectively; and pH 5.5 for both. Significantly large and rapid dilution of surface waters to values even more dilute than proposed for Pre-Industrial Revolution (PIR) conditions has important ecological, biogeochemical and water resource management implications, such as for the success of early reproductive stages of aquatic organisms. PMID:22455659

  20. A modified Ubbelohde viscometer with improved dilution characteristics

    NASA Astrophysics Data System (ADS)

    Mann, Patrick J.; Wen, Shao; Xiaonan, Yin; Stevenson, William T. K.

    A simple modification of the standard Ubbelohde dilution viscometer is proposed. This modification consists of replacing the commercially supplied dilution reservoir with a siphon tube leading to a much larger custom built storage container. Typically, the usual two fold dilution capability of commercial pieces can be increased to as much as ten or twelve fold without loss of accuracy. Examples are presented which illustrate how this simplifies and accelerates data acquisition for the routine measurement of polymer intrinsic viscosity, and in addition, allows for the measurement of such, using very small quantities of polymer. The former is illustrated through routine measurement of the intrinsic viscosity of a thermoplastic polyelectrolyte polymer containing 2-hydroxyethyl methacrylate and methacrylic acid; and the latter through an analysis of changes in intrinsic viscosity accompanying thermally induced chain scission in Phenoxy resin (Union Carbide, poly bisphenol A, 2-hydroxypropylether).