Science.gov

Sample records for isotope mass spectrometry

  1. Isotope dilution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Heumann, Klaus G.

    1992-09-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g. of heavy metals in Antarctic ice and in aerosols in remote areas down to the sub-pg g-1 and sub-pg m-3 levels respectively, in the analysis of uranium and thorium at concentrations of a few pg g-1 in sputter targets for the production of micro- electronic devices or in the determination of sub-picogram amounts of230Th in corals for geochemical age determinations and of226Ra in rock samples. During the last few years negative thermal ionization IDMS has become a frequently used method. The determination of very small amounts of selenium and technetium as well as of other transition metals such as vanadium, chromium, molybdenum and tungsten are important examples in this field. Also the measurement of silicon in connection with a re-determination of Avogadro's number and osmium analyses for geological age determinations by the Re/Os method are of special interest. Inductively-coupled plasma mass spectrometry is increasingly being used for multi-element analyses by the isotope dilution technique. Determinations of heavy metals in samples of marine origin are representative examples for this type of multi-element analysis by IDMS. Gas chromatography-mass spectrometry systems have also been successfully applied after chelation of metals (for example Pt determination in clinical samples) or for the determination of volatile element species in the environment, e.g. dimethyl sulfide. However, IDMS--specially at low concentration levels in the environment--seems likely to be one of the most powerful analytical methods for speciation in the future. This has been shown, up to now, for species of

  2. Analytical techniques in biomedical stable isotope applications: (isotope ratio) mass spectrometry or infrared spectrometry?

    PubMed

    Stellaard, Frans; Elzinga, Henk

    2005-12-01

    An overview is presented of biomedical applications of stable isotopes in general, but mainly focused on the activities of the Center for Liver, Digestive and Metabolic Diseases of the University Medical Center Groningen. The aims of metabolic studies in the areas of glucose, fat, cholesterol and protein metabolism are briefly explained, as well as the principle of breath testing and the techniques to study body composition and energy expenditure. Much attention is paid to the analytical considerations based upon metabolite concentrations, sample size restrictions, the availability of stable isotope labelled substrates and dose requirements in relation to compound-specific isotope analysis. The instrumental advantages and limitations of the generally used techniques gas chromatography/reaction/isotope ratio mass spectrometry and gas chromatography/mass spectrometry are described as well as the novelties of the recently commercialised liquid chromatography/combustion/isotope ratio mass spectrometry. The present use and future perspective of infrared (IR) spectrometry for clinical and biomedical stable isotope applications are reviewed. In this respect, the analytical demands on IR spectrometry are discussed to enable replacement of isotope ratio mass spectrometry by IR spectrometry, in particular, for the purpose of compound-specific isotope ratio analysis in biological matrices. PMID:16543190

  3. Microbeam titanium isotopic analysis by resonance ionization mass spectrometry

    SciTech Connect

    Spiegel, D.R.; Davis, A.M.; Clayton, R.N. . Enrico Fermi Inst.); Pellin, M.J.; Calaway, W.F.; Burnett, J.W.; Coon, S.R.; Young, C.E.; Gruen, D.M. )

    1991-01-01

    The importance of isotopic anomalies in refractory inclusions in meteorites is well established. Measurements of the anomalies using conventional mass spectrometry are often rendered difficult, however, by isobarically interfering isotopes: for example, {sup 48}Ti and {sup 48}Ca. Resonance ionization mass spectrometry (RIMS) can substantially reduce isobaric interferences in a number of systems. We have employed RIMS for the in situ detection of Ti atoms sputtered from pure Ti metal and from several terrestrial oxides containing both Ti and Ca. Tunable lasers were employed to resonantly ionize neutral Ti atoms. We have chosen Ti specifically because of the importance of Ti isotopic anomalies in cosmochemistry.

  4. High Resolution Double-Focusing Isotope Ratio Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Radke, J.; Deerberg, M.; Hilkert, A.; Schlüter, H.-J.; Schwieters, J.

    2012-04-01

    In recent years isotope ratio mass spectrometry has extended to the capability of quantifying very small isotope signatures related with low abundances and simultaneously detecting molecular masses such as isotopomers and isotopologues containing clumped isotopes. Some of those applications are limited by molecular interferences like different gas molecules with the same nominal mass, e.g. Ar/O2, adducts of the same molecule or of different molecules, and very small isotope abundances. The Thermo Scientific MAT 253 ULTRA is the next generation of high precision gas isotope ratio mass spectrometry, which combines a 10 KV gas ionization source (Thermo Scientific MAT 253) with a double focusing multi-collector mass analyzer (Thermo Scientific Neptune) and reduces those limitations by measuring isotope ratios on a larger dynamic range with high precision. Small ion beam requirements and high sensitivity are achieved by signal-to-noise improvements through enhanced ion beam amplification in faraday cups and ion counters. Interfering backgrounds, e.g. interfering isotopologues or isobaric ions of contaminants, are dramatically decreased by a dynamic range increase combined with high evacuation leading to undisturbed ion transmission through the double-focusing analyser. Furthermore, automated gain calibration for mathematical baseline corrections, switchable detector arrays, ion source control, analyser focusing and full data export is controlled under Isodat data control. New reference/sample strategies are under investigation besides incorporation of the continuous-flow technique and its versatile inlet devices. We are presenting first results and applications of the MAT 253 Ultra.

  5. Isotope ratio mass spectrometry - history and terminology in brief.

    PubMed

    Flenker, Ulrich

    2012-12-01

    The history of isotope ratio mass spectrometry (IRMS) is briefly described. It is shown that the fundamental design of isotope ratio mass spectrometers has not changed since the 1940s. The basic findings concerning the natural variation of isotope abundances even date back to the 1930s. Recent improvements in the methodology mainly concern online coupling and analytical peripherals. The nature of isotopic scales necessitates a specific terminology which is unfamiliar to many analysts. However, corresponding guidelines exist that should be adopted by the anti-doping community. Currently, steroids represent the only group of compounds routinely analyzed by IRMS in doping-control. Suggestions are made in respect to a harmonized terminology concerning the nature and origins of steroids. PMID:22972693

  6. Resonance ionization mass spectrometry for isotopic abundance measurements

    NASA Technical Reports Server (NTRS)

    Miller, C. M.

    1986-01-01

    Resonance ionization mass spectrometry (RIMS) is a relatively new laser-based technique for the determination of isotopic abundances. The resonance ionization process depends upon the stepwise absorption of photons from the laser, promoting atoms of the element of interest through progressively higher electronic states until an ion is formed. Sensitivity arises from the efficiency of the resonant absorption process when coupled with the power available from commercial laser sources. Selectivity derives naturally from the distinct electronic structure of different elements. This isobaric discrimination has provided the major impetus for development of the technique. Resonance ionization mass spectrometry was used for analysis of the isotopic abundances of the rare earth lutetium. Isobaric interferences from ytterbium severely effect the ability to measure small amounts of the neutron-deficient Lu isotopes by conventional mass spectrometric techniques. Resonance ionization for lutetium is performed using a continuous-wave laser operating at 452 nm, through a sequential two-photon process, with one photon exciting the intermediate resonance and the second photon causing ionization. Ion yields for microgram-sized quantities of lutetium lie between 10(6) and 10(7) ions per second, at overall ionization efficiencies approaching 10(-4). Discrimination factors against ytterbium greater than 10(6) have been measured. Resonance ionization for technetium is also being explored, again in response to an isobaric interference, molybdenum. Because of the relatively high ionization potential for Tc, three-photon, two-color RIMS processes are being developed.

  7. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  8. Using isotope dilution mass spectrometry to determine aqueous trichloroacetic acid

    SciTech Connect

    Norwood, D.L.; Christman, R.F.; Johnson, J.D.; Hass, J.R.

    1986-01-01

    The development, verification, and application of a method based on isotope-dilution gas chromatography-mass spectrometry to determine aqueous trichloroacetic acid (TCAA) at the micrograms per litre level are described. The simultaneous determination of aqueous chloroform is also demonstrated. Trichloroacetic acid is shown to be a significant by-product of the chlorination of raw waters in the laboratory and to constitute a large fraction of the total organic halide (TOX) formed. Analysis of finished-water samples indicated that TCAA, like trihalomethanes is ubiquitous. Positive correlations exist between the levels of TCAA in laboratory-chlorinated raw waters and in finished waters and measured TOX.

  9. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    SciTech Connect

    Manuel J. Manard, Stephan Weeks, Kevin Kyle

    2010-05-27

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  10. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  11. Comparison of thermal ionization mass spectrometry and Multiple Collector Inductively Coupled Plasma Mass Spectrometry for cesium isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Isnard, H.; Granet, M.; Caussignac, C.; Ducarme, E.; Nonell, A.; Tran, B.; Chartier, F.

    2009-11-01

    In the nuclear domain, precise and accurate isotopic composition determination of elements in spent nuclear fuels is mandatory to validate neutron calculation codes and for nuclear waste disposal. The present study presents the results obtained on Cs isotope ratio by mass spectrometric measurements. Natural cesium is monoisotopic ( 133Cs) whereas cesium in spent fuels has 4 isotopes ( 133Cs, 134Cs, 135Cs, and 137Cs). As no standard reference material is available to evaluate the accuracy of Cs isotopic measurements, a comparison of cesium isotopic composition in spent nuclear fuels has been performed between Thermal Ionization Mass Spectrometry (TIMS) and a new method involving Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) measurements. For TIMS measurements, isotopic fractionation has been evaluated by studying the behavior of cesium isotope ratios ( 133Cs/ 137Cs and 135Cs/ 137Cs) during the analyses. For MC-ICPMS measurements, the mass bias effects have been corrected with an external mass bias correction using elements (Eu and Sb) close to cesium masses. The results obtained by the two techniques show good agreement: relative difference on 133Cs/ 137Cs and 135Cs/ 137Cs ratios for two nuclear samples, analyzed after chemical separation, ranges from 0.2% to 0.5% depending on the choice of reference value for mass bias correction by MC-ICPMS. Finally the quantification of the 135Cs/ 238U ratio by the isotope dilution technique is presented in the case of a MOx (mixed oxide) spent fuel sample. Evaluation of the global uncertainties shows that this ratio could be defined at an uncertainty of 0.5% ( k = 2). The intercomparison between two independent mass spectrometric techniques is fundamental for the evaluation of uncertainty when no isotopic standard is available.

  12. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  13. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry

    PubMed Central

    Steinhauser, Matthew L.; Lechene, Claude P.

    2014-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  14. Computer Analysis of Isotope Clusters in Mass Spectrometry

    ERIC Educational Resources Information Center

    Bell, Harold M.

    1974-01-01

    Describes the application of a computer program designed to produce a formula determination simultaneously accounting for both elemental composition and probable isotopic species for a measured ion mass. (SLH)

  15. The use of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry to demonstrate progesterone treatment in bovines.

    PubMed

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; De Kimpe, Norbert; Matthijs, Bert; Le Bizec, Bruno

    2016-06-01

    Currently, no analytical method is available to demonstrate progesterone administration in biological samples collected in rearing animals, and therefore, tracking the abuse of this popular growth promoter is arduous. In this study, a method is presented to reveal progesterone (PG) treatment on the basis of carbon isotope measurement of 5β-pregnane-3α, 20α-diol (BAA-PD), a major PG metabolite excreted in bovine urine, by gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS). 5-Androstene-3β,17α-diol (AEdiol) is used as endogenous reference compound. Intermediate precisions (n=11) of 0.56‰ and 0.68‰ have been determined for AEdiol and BAA-PD, respectively. The analytical method was used for the very first time to successfully differentiate urine samples collected in treated and untreated animals. PMID:27157423

  16. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  17. Attogram measurement of rare isotopes by CW resonance ionization mass spectrometry

    SciTech Connect

    Bushaw, B.A.

    1992-05-01

    Three-color double-resonance ionization mass spectrometry, using two single-frequency cw dye lasers and a cw carbon dioxide laser, has been applied to the detection of attogram quantities of rare radionuclides. {sup 210}Pb has been measured in human hair and brain tissue samples to assess indoor radon exposure. Measurements on {sup 90}Sr have shown overall isotopic selectivity of greater than 10{sup 9} despite unfavorable isotope shifts relative to the major stable isotope, {sup 88}Sr.

  18. Cooling of radioactive isotopes for Schottky mass spectrometry

    SciTech Connect

    Steck, M.; Beckert, K.; Eickhoff, H.; Franzke, B.; Nolden, F.; Reich, H.; Schlitt, B.; Winkler, T.

    1999-01-15

    Nuclear masses of radioactive isotopes can be determined by measurement of their revolution frequency relative to the revolution frequency of reference ions with well-known masses. The resolution of neighboring frequency lines and the accuracy of the mass measurement is dependent on the achievable minimum longitudinal momentum spread of the ion beam. Electron cooling allows an increase of the phase space density by several orders of magnitude. For high intensity beams Coulomb scattering in the dense ion beam limits the beam quality. For low intensity beams a regime exists in which the diffusion due to intrabeam scattering is not dominating any more. The minimum momentum spread {delta}p/p=5x10{sup -7} which is observed by Schottky noise analysis is considerably higher than the value expected from the longitudinal electron temperature. The measured frequency spread results from fluctuations of the magnetic field in the storage ring magnets. Systematic mass measurements have started and can be presently used for ions with half-lives of some ten seconds. For shorter-lived nuclei a stochastic precooling system is in preparation.

  19. Experimental investigations of trimer ion contributions in the low resolution mass spectrometry of hydrogen isotope mixtures.

    PubMed

    Bidica, Nicolae

    2012-01-01

    This paper reports on some preliminary experimental results of a work in progress regarding a problem involving the quantitative analysis of hydrogen isotopes by mass spectrometry of low resolution: the triatomic (trimer) ions interferences with the isotopic hydrogen species having the same mass/charge. These results indicate that, in complex mixtures of hydrogen isotopes, trimer ions are strongly affected by the presence of other species, and a new approach that takes into account the destruction mechanism of trimer ions is necessary for a proper determination of their contributions. PMID:23149602

  20. Profiling thiol redox proteome using isotope tagging mass spectrometry.

    PubMed

    Parker, Jennifer; Zhu, Ning; Zhu, Mengmeng; Chen, Sixue

    2012-01-01

    Pseudomonas syringae pv. tomato strain DC3000 not only causes bacterial speck disease in Solanum lycopersicum but also on Brassica species, as well as on Arabidopsis thaliana, a genetically tractable host plant(1,2). The accumulation of reactive oxygen species (ROS) in cotyledons inoculated with DC3000 indicates a role of ROS in modulating necrotic cell death during bacterial speck disease of tomato(3). Hydrogen peroxide, a component of ROS, is produced after inoculation of tomato plants with Pseudomonas(3). Hydrogen peroxide can be detected using a histochemical stain 3'-3' diaminobenzidine (DAB)(4). DAB staining reacts with hydrogen peroxide to produce a brown stain on the leaf tissue(4). ROS has a regulatory role of the cellular redox environment, which can change the redox status of certain proteins(5). Cysteine is an important amino acid sensitive to redox changes. Under mild oxidation, reversible oxidation of cysteine sulfhydryl groups serves as redox sensors and signal transducers that regulate a variety of physiological processes(6,7). Tandem mass tag (TMT) reagents enable concurrent identification and multiplexed quantitation of proteins in different samples using tandem mass spectrometry(8,9). The cysteine-reactive TMT (cysTMT) reagents enable selective labeling and relative quantitation of cysteine-containing peptides from up to six biological samples. Each isobaric cysTMT tag has the same nominal parent mass and is composed of a sulfhydryl-reactive group, a MS-neutral spacer arm and an MS/MS reporter(10). After labeling, the samples were subject to protease digestion. The cysteine-labeled peptides were enriched using a resin containing anti-TMT antibody. During MS/MS analysis, a series of reporter ions (i.e., 126-131 Da) emerge in the low mass region, providing information on relative quantitation. The workflow is effective for reducing sample complexity, improving dynamic range and studying cysteine modifications. Here we present redox proteomic

  1. Protein N- and C-Termini Identification Using Mass Spectrometry and Isotopic Labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new method for protein N- and C-terminal analysis using mass spectrometry is introduced. A novel stable isotopic labeling scheme has been developed to identify terminal peptides generated from an enzyme digestion for the determination of both N- and C-termini of the protein. This method works dire...

  2. A new series of uranium isotope reference materials for investigating the linearity of secondary electron multipliers in isotope mass spectrometry

    NASA Astrophysics Data System (ADS)

    Richter, S.; Alonso, A.; Aregbe, Y.; Eykens, R.; Kehoe, F.; Kühn, He; Kivel, N.; Verbruggen, A.; Wellum, R.; Taylor, P. D. P.

    2009-04-01

    A new series of gravimetrically prepared uranium isotope reference materials, the so-called IRMM-074 series, with the n(235U)/n(238U) isotope ratio held constant at unity and the n(233U)/n(238U) isotope ratios varying from 1.0 to 10-6 has been prepared and certified. This series is suited for calibration of secondary electron multipliers used widely in isotope mass spectrometry, in particular for techniques such as thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS). The new IRMM-074 was prepared as a replacement for the already exhausted IRMM-072 predecessor series. Uranium materials with high isotopic enrichments of 233U, 235U and 238U were purified using identical methods involving separation on anion and cation column followed by a precipitation as peroxide. The oxides were calcined to convert them to U3O8 simultaneously, in an oven installed in a glove-box that provided a controlled low-humidity environment. The oxides of 235U and 238U were weighed and mixed with a mole ratio n(235U)/n(238U) = 1.0 and then dissolved. The 233U oxide was dissolved to form a separate solution with the same concentration and 6rom this primary solution three dilutions were made by weighing. A weighed amount of the n(235U)/n(238U) solution and weighed amounts of the 233U solutions were mixed in various proportions in order to achieve n(233U)/n(238U) isotope ratios varying from 1.0 to 10-6. The methods for the preparation, the mixing and the mixing calculations are described. The expanded uncertainties (coverage factor k = 2) of the certified isotope ratios for the IRMM-074 series are 0.015% for the n(235U)/n(238U) ratio and 0.025% for the n(233U)/n(238U) ratios, which constitutes an improvement compared to those of the predecessor IRMM-072 series. In addition, recent observations regarding the linearity response of secondary electron multipliers (SEMs

  3. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed. PMID:20025274

  4. Differences in the Elemental Isotope Definition May Lead to Errors in Modern Mass-Spectrometry-Based Proteomics.

    PubMed

    Claesen, Jürgen; Lermyte, Frederik; Sobott, Frank; Burzykowski, Tomasz; Valkenborg, Dirk

    2015-11-01

    The elemental isotope definition used to calculate the theoretical masses and isotope distribution of (bio)molecules is considered to be a fixed, universal standard in mass-spectrometry-based proteomics. However, this is an incorrect assumption. In view of the ongoing advances in mass spectrometry technology, and in particular the ever-increasing mass precision, the elemental isotope definition and its variations should be taken into account. We illustrate the effect of the elemental isotope uncertainty on the theoretical and experimental masses with theoretical calculations and examples. PMID:26457653

  5. Liquid chromatography combined with mass spectrometry for 13C isotopic analysis in life science research.

    PubMed

    Godin, Jean-Philippe; Fay, Laurent-Bernard; Hopfgartner, Gérard

    2007-01-01

    Among the different disciplines covered by mass spectrometry, measurement of (13)C/(12)C isotopic ratio crosses a large section of disciplines from a tool revealing the origin of compounds to more recent approaches such as metabolomics and proteomics. Isotope ratio mass spectrometry (IRMS) and molecular mass spectrometry (MS) are the two most mature techniques for (13)C isotopic analysis of compounds, respectively, for high and low-isotopic precision. For the sample introduction, the coupling of gas chromatography (GC) to either IRMS or MS is state of the art technique for targeted isotopic analysis of volatile analytes. However, liquid chromatography (LC) also needs to be considered as a tool for the sample introduction into IRMS or MS for (13)C isotopic analyses of non-volatile analytes at natural abundance as well as for (13)C-labeled compounds. This review presents the past and the current processes used to perform (13)C isotopic analysis in combination with LC. It gives particular attention to the combination of LC with IRMS which started in the 1990's with the moving wire transport, then subsequently moved to the chemical reaction interface (CRI) and was made commercially available in 2004 with the wet chemical oxidation interface (LC-IRMS). The LC-IRMS method development is also discussed in this review, including the possible approaches for increasing selectivity and efficiency, for example, using a 100% aqueous mobile phase for the LC separation. In addition, applications for measuring (13)C isotopic enrichments using atmospheric pressure LC-MS instruments with a quadrupole, a time-of-flight, and an ion trap analyzer are also discussed as well as a LC-ICPMS using a prototype instrument with two quadrupoles. PMID:17853432

  6. Illustrating the Concepts of Isotopes and Mass Spectrometry in Introductory Courses: A MALDI-TOF Mass Spectrometry Laboratory Experiment

    ERIC Educational Resources Information Center

    Dopke, Nancy Carter; Lovett, Timothy Neal

    2007-01-01

    Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory…

  7. In-Vivo Zinc Metabolism by Isotope Ratio Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this chapter is to highlight some of the methodological and technical issues surrounding the in vivo use of stable isotopes and to provide examples of how such studies have advanced our knowledge of human zinc metabolism. The advantages and disadvantages of the currently available in...

  8. Quantitative Analysis of Isotope Distributions In Proteomic Mass Spectrometry Using Least-Squares Fourier Transform Convolution

    PubMed Central

    Sperling, Edit; Bunner, Anne E.; Sykes, Michael T.; Williamson, James R.

    2008-01-01

    Quantitative proteomic mass spectrometry involves comparison of the amplitudes of peaks resulting from different isotope labeling patterns, including fractional atomic labeling and fractional residue labeling. We have developed a general and flexible analytical treatment of the complex isotope distributions that arise in these experiments, using Fourier transform convolution to calculate labeled isotope distributions and least-squares for quantitative comparison with experimental peaks. The degree of fractional atomic and fractional residue labeling can be determined from experimental peaks at the same time as the integrated intensity of all of the isotopomers in the isotope distribution. The approach is illustrated using data with fractional 15N-labeling and fractional 13C-isoleucine labeling. The least-squares Fourier transform convolution approach can be applied to many types of quantitive proteomic data, including data from stable isotope labeling by amino acids in cell culture and pulse labeling experiments. PMID:18522437

  9. Carbon isotope ratio analysis of steroids by high-temperature liquid chromatography-isotope ratio mass spectrometry.

    PubMed

    Zhang, Lijun; Thevis, Mario; Piper, Thomas; Jochmann, Maik A; Wolbert, J Benjamin; Kujawinski, Dorothea M; Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2014-03-01

    Generally, compound-specific isotope analysis of steroids is carried out by gas chromatography combined with isotope ratio mass spectrometry. Thus, a derivatization of the steroids prior to the measurement is compulsory, and a correction of the isotopic data is often necessary. To overcome this limitation, we present a new approach of high-temperature liquid chromatography coupled with photodiode array detection and isotope ratio mass spectrometry (HT-LC/PDA/IRMS) for the carbon isotope ratio analysis of unconjugated steroids. A steroid mixture containing 19-norandrosterone, testosterone, epitestosterone, androsterone, and 5β-pregnane-3α,17α,20α-triol was fully separated on a C4 column under high-temperature elution with water as the sole eluent. The accuracy for isotope analysis (±0.5 ‰) was around 20 μg g(-1) for testosterone, epitestosterone (79 ng steroid absolute on column), and 30 μg g(-1) for 19-norandrosterone, androsterone, and 5β-pregnane-3α,17α,20α-triol (119 ng steroid absolute on column). The applicability of the method was tested by measuring a pharmaceutical gel containing testosterone. With this work, the scope of LC/IRMS applications has been extended to nonpolar compounds. PMID:24491121

  10. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2008-10-01

    Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment. PMID:18798196

  11. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  12. Performance and limits of liquid chromatography isotope ratio mass spectrometry system for halogenated compounds

    NASA Astrophysics Data System (ADS)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans

    2014-05-01

    Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time

  13. Quantification of ferritin-bound iron in plant samples by isotope tagging and species-specific isotope dilution mass spectrometry.

    PubMed

    Hoppler, Matthias; Zeder, Christophe; Walczyk, Thomas

    2009-09-01

    Ferritin is nature's predominant iron storage protein. The molecule consists of a hollow protein shell composed of 24 subunits which is capable of storing up to 4500 iron atoms per molecule. Recently, this protein has been identified as a target molecule for increasing iron content in plant staple foods in order to combat dietary iron deficiency, a major public health problem in developing countries. Here, we present a novel technique for quantification of ferritin-bound iron in edible plant seeds using species-specific isotope dilution mass spectrometry (IDMS) by means of a biosynthetically produced (57)Fe-labeled ferritin spike and negative thermal ionization mass spectrometry (NTIMS). Native plant ferritin and added spike ferritin were extracted in 20 mM Tris buffer (pH 7.4) and separated by anion exchange chromatography (DEAE Sepharose), followed by isotopic analysis by thermal ionization mass spectrometry. The chosen IDMS approach was critically evaluated by assessing the (i) efficiency of analyte extraction, (ii) identical behavior of spike and analyte, and (iii) potential iron isotope exchange with natural iron. Repeatabilities that can be achieved are on the order of <5% RSD for quintuplicate analyses at an absolute detection limit of 60 ng of ferritin-bound iron for plant seeds. Studies in six different legumes revealed ferritin-iron contents ranging from 15% of total iron in red kidney beans up to 69% in lentils. PMID:19653660

  14. Improving precision in resonance ionization mass spectrometry : influence of laser bandwidth in uranium isotope ratio measurements.

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Knight, K. B.; Pellin, M. J.; Hutcheon, I. D.; Prussin, S. G.

    2011-03-01

    The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios by resonance ionization mass spectrometry (RIMS) to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a three-color, three-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from 10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation.

  15. Selective isotope determination of lanthanum by diode-laser-initiated resonance-ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Young, J. P.; Shaw, R. W.

    1995-08-01

    A diode-laser step has been incorporated into a resonance-ionization mass spectrometry optical excitation process to enhance the isotopic selectivity of the technique. Lanthanum isotope ratio enhancements as high as 103 were achieved by use of a single-frequency cw diode laser tuned to excite the first step of a three-step excitation-ionization optical process; the subsequent steps were excited by use of a pulsed dye laser. Applying the same optical technique, we measured atomic hyperfine constants for the high-lying even-parity 4D5/2 state of lanthanum at 30354 cm-1 . The general utility of this spectral approach is discussed.

  16. Application of Uranium Isotope Dilution Mass Spectrometry in the preparation of New Certified Reference Materials

    NASA Astrophysics Data System (ADS)

    Hasözbek, A.; Mathew, K. J.; Orlowicz, G.; Srinivasan, B.; Narayanan, U.

    2012-04-01

    Proven measurement techniques play a critical role in the preparation of Certified Reference Materials (CRMs) - those requiring high accuracy and precision in the measurement results. Isotope Dilution Mass Spectrometry (IDMS) is one such measurement method commonly used in the quantitative analysis of uranium in nuclear safeguards and isotope geology applications. In this project, we evaluated the possibility of using some of the uranium isotopic and assay CRMs made earlier by the New Brunswick laboratory as IDMS spikes to define the uranium mass fraction in future preparations of CRMs. Uranium solutions prepared from CRM 112-A (a highly pure uranium metal assay standard) and CRM 115 (a highly pure uranium oxide isotopic and assay standard) were used as spikes in the determination of uranium. Two different thermal ionization mass spectrometer instruments (MAT 261 and TRITON) were used for the isotopic measurements. Standard IDMS equation was used for data reduction to yield results for uranium mass fraction along with uncertainties, the latter calculated according to GUM. The results show that uranium mass fraction measurements can be made with the required accuracy and precision for defining the uranium concentration in new CRMs as well as in routine samples analyses.

  17. RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY

    SciTech Connect

    Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

    2010-06-23

    A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

  18. Determination of perchlorate in infant formula by isotope dilution ion chromatography/tandem mass spectrometry

    PubMed Central

    Wang, Z.; Lau, B.P.-Y.; Tague, B.; Sparling, M.; Forsyth, D.

    2011-01-01

    A sensitive and selective isotope dilution ion chromatography/tandem mass spectrometry (ID IC-MS/MS) method was developed and validated for the determination of perchlorate in infant formula. The perchlorate was extracted from infant formula by using 20 ml of methanol and 5 ml of 1% acetic acid. All samples were spiked with 18O4 isotope-labelled perchlorate internal standard prior to extraction. After purification on a graphitised carbon solid-phase extraction column, the extracts were injected into an ion chromatography system equipped with an Ionpac AS20 column for separation of perchlorate from other anions. The presence of perchlorate in samples was quantified by isotope dilution mass spectrometry. Analysis of both perchlorate and its isotope-labelled internal standard was carried out on a Waters Quattro Ultima triple quadrupole mass spectrometer operating in a multiple reaction monitoring (MRM) negative ionisation mode. The method was validated for linearity and range, accuracy, precision, sensitivity, and matrix effects. The limit of quantification (LOQ) was 0.4 μg 1−1 for liquid infant formula and 0.95 μg kg−1 for powdered infant formula. The recovery ranged from 94% to 110% with an average of 98%. This method was used to analyse 39 infant formula, and perchlorate concentrations ranging from

  19. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma. PMID:14611049

  20. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    PubMed Central

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from −19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  1. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry.

    PubMed

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  2. Applications of Structural Mass Spectrometry to Metabolomics: Clarifying Bond Specific Spectral Signatures with Isotope Edited Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorlova, Olga; Wolke, Conrad T.; Fournier, Joseph; Colvin, Sean; Johnson, Mark; Miller, Scott

    2015-06-01

    Comprehensive FTIR, MS/MS and NMR of pharmaceuticals are generally readily available but characterization of their metabolites has been an obstacle. Atorvastatin is a statin drug responsible for the maintenance of cholesterol in the body. Diovan is an angiostensin receptor antagonist used to treat high blood pressure and congestive heart failure. The field of metabolomics, however, is struggling to obtain the identity of their structures. We implement mass spectrometry with cryogenic ion spectroscopy to study gaseous ions of the desired metabolites which, in combination, not only identify the mass of the metabolite but also elucidate their structures through isotope-specific infrared spectroscopy.

  3. Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study.

    PubMed

    Bernstein, Anat; Shouakar-Stash, Orfan; Ebert, Karin; Laskov, Christine; Hunkeler, Daniel; Jeannottat, Simon; Sakaguchi-Söder, Kaori; Laaks, Jens; Jochmann, Maik A; Cretnik, Stefan; Jager, Johannes; Haderlein, Stefan B; Schmidt, Torsten C; Aravena, Ramon; Elsner, Martin

    2011-10-15

    Chlorine isotope analysis of chlorinated hydrocarbons like trichloroethylene (TCE) is of emerging demand because these species are important environmental pollutants. Continuous flow analysis of noncombusted TCE molecules, either by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) or by GC/quadrupole mass spectrometry (GC/qMS), was recently brought forward as innovative analytical solution. Despite early implementations, a benchmark for routine applications has been missing. This study systematically compared the performance of GC/qMS versus GC/IRMS in six laboratories involving eight different instruments (GC/IRMS, Isoprime and Thermo MAT-253; GC/qMS, Agilent 5973N, two Agilent 5975C, two Thermo DSQII, and one Thermo DSQI). Calibrations of (37)Cl/(35)Cl instrument data against the international SMOC scale (Standard Mean Ocean Chloride) deviated between instruments and over time. Therefore, at least two calibration standards are required to obtain true differences between samples. Amount dependency of δ(37)Cl was pronounced for some instruments, but could be eliminated by corrections, or by adjusting amplitudes of standards and samples. Precision decreased in the order GC/IRMS (1σ ≈ 0.1‰), to GC/qMS (1σ ≈ 0.2-0.5‰ for Agilent GC/qMS and 1σ ≈ 0.2-0.9‰ for Thermo GC/qMS). Nonetheless, δ(37)Cl values between laboratories showed good agreement when the same external standards were used. These results lend confidence to the methods and may serve as a benchmark for future applications. PMID:21851081

  4. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    PubMed

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-01-01

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms. PMID:24853618

  5. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  6. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  7. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry

    PubMed Central

    Lechene, Claude; Hillion, Francois; McMahon, Greg; Benson, Douglas; Kleinfeld, Alan M; Kampf, J Patrick; Distel, Daniel; Luyten, Yvette; Bonventre, Joseph; Hentschel, Dirk; Park, Kwon Moo; Ito, Susumu; Schwartz, Martin; Benichou, Gilles; Slodzian, Georges

    2006-01-01

    Background Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. Results The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as 12C15N- and 13C14N-, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of 14C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using 13C-oleic acid; to examine nitrogen fixation in bacteria using 15N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using 15N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using 15N-uridine and 81Br of bromodeoxyuridine or 14C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes 12C, 16O, 14N and 31P; and to track a few 15N-labeled donor spleen cells in the lymph nodes of the host mouse. Conclusion MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments. PMID:17010211

  8. Protein stable isotope fingerprinting: multidimensional protein chromatography coupled to stable isotope-ratio mass spectrometry.

    PubMed

    Mohr, Wiebke; Tang, Tiantian; Sattin, Sarah R; Bovee, Roderick J; Pearson, Ann

    2014-09-01

    Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between taxonomic identity and metabolic function in microbial ecosystems. To accomplish this, two dimensions of chromatography are used in sequence to resolve a sample containing ca. 5-10 mg of mixed proteins into 960 fractions. Each fraction then is split in two aliquots: The first is digested with trypsin for peptide sequencing, while the second has its ratio of (13)C/(12)C (value of δ(13)C) measured in triplicate using an isotope-ratio mass spectrometer interfaced with a spooling wire microcombustion device. Data from cultured species show that bacteria have a narrow distribution of protein δ(13)C values within individual taxa (±0.7-1.2‰, 1σ). This is moderately larger than the mean precision of the triplicate isotope measurements (±0.5‰, 1σ) and may reflect heterogeneous distribution of (13)C among the amino acids. When cells from different species are mixed together prior to protein extraction and separation, the results can predict accurately (to within ±1σ) the δ(13)C values of the original taxa. The number of data points required for this endmember prediction is ≥20/taxon, yielding a theoretical resolution of ca. 10 taxonomic units/sample. Such resolution should be useful to determine the overall trophic breadth of mixed microbial ecosystems. Although we utilize P-SIF to measure natural isotope ratios, it also could be combined with experiments that incorporate stable isotope labeling. PMID:25121924

  9. Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur

    NASA Astrophysics Data System (ADS)

    Wieser, Michael Eugene

    1998-09-01

    Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron

  10. Quantitation of vitamin B6 in biological samples by isotope dilution mass spectrometry

    SciTech Connect

    Hachey, D.L.; Coburn, S.P.; Brown, L.T.; Erbelding, W.F.; DeMark, B.; Klein, P.D.

    1985-11-15

    Methods have been developed for the simultaneous quantitative analysis of vitamin B6 forms in biological samples by isotope dilution mass spectrometry using deuterated forms of pyridoxine, pyridoxal, pyridoxamine, and pyridoxic acid. The biological fluid or tissue sample was homogenized and then treated with a cocktail containing appropriate amounts of each deuterated vitamer, as well as the deuterated, phosphorylated vitamer forms. The individual vitamers were isolated from the homogenate by a complex high-performance liquid chromatographic procedure that provided separate fractions for each of the six vitamers found in biological samples. Aldehydic B6 vitamers were reduced to the alcohol form prior to acetylation and analysis by gas chromatography/mass spectrometry (GC/MS). The three resulting vitamers were analyzed by electron ionization GC/MS using a silicone capillary column. The methods have been applied to analysis of vitamin B6 in liver, milk, urine, and feces at levels as low as 0.02 nmol/ml.

  11. Stable-hydrogen isotope heterogeneity in keratinous materials: mass spectrometry and migratory wildlife tissue subsampling strategies.

    PubMed

    Wassenaar, Leonard I; Hobson, Keith A

    2006-01-01

    Stable-hydrogen isotope measurements (deltaD) of biological tissues have gained widespread acceptance in wildlife and forensic studies, especially in tracking geographical movements of birds and other species. Continuous-flow isotope-ratio mass spectrometry enables high-throughput deltaD analyses to be conducted on tissue samples as small as 0.15 mg, compared with conventional offline analyses that require 7-10 mg. This reduction in sample size has raised concerns regarding intra-sample hydrogen isotopic variance due to potential biological heterogeneities that could exceed interpretations of geospatial origin. To help resolve this, feathers were obtained from captive birds to examine isotopic variance expected due to sample size, location, and heterogeneity factors, and from selected wild birds to examine isotopic variance due to these and to additional dietary or location changes during feather growth. Captive bird feathers were sub-sampled along the vane on either side of a single feather at masses of 0.25, 0.35, 0.45, 0.6, 1.0 and 2.0 mg, and along the rachis. The results showed consistency of feather deltaD measurements across a wide range of sample masses. Within-feather deltaD isotopic variance for captive and some wild birds was as low as +/-3 per thousand for vane material, which corresponds to a geospatial resolution of about 1 degree of latitude in central North America. Intra-sample variance for the rachis was +/-5 per thousand, with lower deltaD values for both wild and captive birds. However, given the extraordinary intra-feather deltaD variance observed in some wild species, we recommend researchers first carefully assess the degree of intra- and inter-sample hydrogen isotopic variation in the selected tissue growth period for the species of interest before geospatial interpretations of origin are attempted. PMID:16862621

  12. Determination of phenylalanine isotope ratio enrichment by liquid chromatography/time- of-flight mass spectrometry.

    PubMed

    Wu, Zhanpin; Zhang, Xiao-Jun; Cody, Robert B; Wolfe, Robert R

    2004-01-01

    The application of time-of-flight mass spectrometry to isotope ratio measurements has been limited by the relatively low dynamic range of the time-to-digital converter detectors available on commercial LC/ToF-MS systems. Here we report the measurement of phenylalanine isotope ratio enrichment by using a new LC/ToF-MS system with wide dynamic range. Underivatized phenylalanine was injected onto a C18 column directly with 0.1% formic acid/acetonitrile as the mobile phase. The optimal instrument parameters for the time-of-flight mass spectrometer were determined by tuning the instrument with a phenylalanine standard. The accuracy of the isotope enrichment measurement was determined by the injection of standard solutions with known isotope ratios ranging from 0.02% to 9.2%. A plot of the results against the theoretical values gave a linear curve with R2 of 0.9999. The coefficient of variation for the isotope ratio measurement was below 2%. The method is simple, rapid, and accurate and presents an attractive alternative to traditional GC/MS applications. PMID:15531795

  13. The application of isotope ratio mass spectrometry for discrimination and comparison of adhesive tapes.

    PubMed

    Horacek, Micha; Min, Ji-Sook; Heo, Sangcheol; Park, Jongseo; Papesch, Wolfgang

    2008-06-01

    Forensic scientists are frequently requested to differentiate between, or compare, adhesive tapes from a suspect or a crime scene. The most common polymers used to back packaging tape are polypropylene and polyvinyl chloride. Much of the oriented polypropylene (OPP) needed to produce packaging tapes, regardless of the tape brand, is supplied by just a few polymer manufacturers. Consequently, the composition of the backing material varies little. Therefore, the discriminating power of classical methods (physical fit, tape dimensions, colour, morphology, FTIR, PyGC/MS, etc.) is limited. Analysis of stable isotopes using isotope ratio mass spectrometry (IRMS) has been applied in the broad area of forensics and it has been reported that isotope analysis is a valuable tool for the identification of adhesive tapes. We have tested the usefulness of this method by distinguishing different South Korean adhesive tapes produced by just a few manufacturers in the small South Korean market. Korean adhesive tapes were collected and analysed for their isotope signatures. The glue of the tapes was separated from the backing material and these sub-samples were analysed for their H- and C-isotope composition. The result shows the possibility for discriminating most tape samples, even from the same brand. Variations within single rolls have also been investigated, where no variations in H- and C-isotope composition significantly exceeding the standard deviation were found. PMID:18438979

  14. Alleviation of overlap interferences for determination of potassium isotope ratios by inductively coupled plasma mass spectrometry

    SciTech Connect

    Jiang, S.J.; Houk, R.S.; Stevens, M.A.

    1988-06-01

    Positioning the sampling orifice relatively far from the load coil combined with use of low forward power and high aerosol gas flow rate causes the background mass spectrum to become dominated by NO/sup +/. Nearly all the Ar/sup +/ and ArH/sup +/ ions are suppressed under these conditions, which frees m/z 39 and 41 for potassium isotope ratio measurements. The precision is 0.3-0.9% relative standard deviation for potassium concentrations in the range 1-50 mg L/sup -1/. The determined ratios are approx. 9% higher than the accepted value and also vary with the concentration of sodium concomitant, so calibrations and chemical separations are desirable. These observations should permit use of inductively coupled plasma mass spectrometry for rapid isotope ratio determinations of potassium from biological organisms or water sources.

  15. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  16. Isolation and derivatization of plasma taurine for stable isotope analysis by gas chromatography-mass spectrometry

    SciTech Connect

    Irving, C.S.; Klein, P.D.

    1980-09-01

    A method for the isolation and derivatization of plasma taurine is described that allows stable isotope determinations of taurine to be made by gas chromatography-mass spectrometry. The isolation procedure can be applied to 0.1 ml of plasma; the recovery of plasma taurine was 70 to 80%. For gc separation, taurine was converted to its dimethylaminomethylene methyl ester derivative which could not be detected by hydrogen flame ionization, but could be monitored readily by NH/sub 3/ chemical ionization mass spectrometry. The derivatization reaction occurred partially on-column and required optimization of injection conditions. Using stable isotope ratiometry multiple ion detection, (M + 2 + H)/sup +//(M + H)/sup +/ ion ratio of natural abundance taurine was determined with a standard deviation of less than +-0.07% of the ratio. The (1,2-/sup 13/C)taurine/taurine mole ratios of standard mixtures could be accurately determined to 0.001. This stable isotope gc-ms method is suitable for studying the plasma kinetics of (1,2-/sup 13/C)taurine in infants who are at risk with respect to taurine depletion.

  17. Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry

    USGS Publications Warehouse

    Fantle, M.S.; Bullen, T.D.

    2009-01-01

    The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a

  18. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François

    2016-06-01

    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the

  19. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  20. Isotopic analysis of single uranium and plutonium particles by chemical treatment and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shinonaga, T.; Esaka, F.; Magara, M.; Klose, D.; Donohue, D.

    2008-11-01

    The isotopic composition of single uranium and plutonium particles was measured with an inductively coupled plasma mass spectrometer (ICP-MS) and a thermal ionization mass spectrometer (TIMS). Particles deposited on a carbon planchet were first analyzed with an energy dispersive X-ray spectrometer (EDX) attached to a scanning electron microscope (SEM) and then transferred on to a silicon wafer using a manipulator. The particle on the silicon wafer was dissolved with nitric acid and the isotopic ratios of U and Pu were measured with ICP-MS and TIMS. The results obtained by both methods for particles of certified reference materials showed good agreement with the certified values within the expected uncertainty. The measurement uncertainties obtained in this study were similar for both mass spectrometric methods. This study was performed to establish the method of particle analysis with SEM, EDX, the particle manipulation and chemical preparation technique, and the measurement of isotopic ratios of U and Pu in a single particle by mass spectrometry.

  1. A gas chromatograph/mass spectrometry method for determining isotopic distributions in organic compounds used in the chemical approach to stable isotope separation

    SciTech Connect

    Martinez, A.M.; Spall, W.D.; Smith, B.F.

    1990-01-01

    A variety of gas chromatograph/mass spectrometry (GC/MS) methods have been developed to resolve benzene, benzophenone, anthracene, fluorenone, and their respective stable isotope analogs from other components by gas chromatography. The ratio of stable isotope-labeled material to natural isotopic abundance compounds is determined from the mass spectra averaged across the chromatographic peak. Both total ion and selective ion chromatographic approaches were used for relative data and comparison. 9 refs., 11 tabs.

  2. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.

  3. Determination of total cholesterol in serum by liquid chromatography-isotope dilution mass spectrometry.

    PubMed

    Kock, R; Delvoux, B; Greiling, H

    1997-10-01

    We have developed a liquid chromatography-isotope dilution mass spectrometry procedure to quantify total cholesterol in serum. A particle-beam interface was used for coupling the liquid chromatograph and the mass spectrometer. After electron impact ionization the ions m/z = 386 and m/z = 389 were used for selective ion monitoring of cholesterol and the internal standard [25,26,27-(13)C]cholesterol. The sample preparation steps required for serum materials are alkaline hydrolysis and an extraction of the cholesterol into the cyclohexane phase. Imprecision for the determination of cholesterol in control materials is typically <1.0%. The deviation from the certified reference values was <0.75% for all control materials tested. A method comparison of the results obtained by this method with those obtained by gas chromatography-isotope dilution mass spectrometry for n = 28 pooled human sera derived from samples analyzed in our routine laboratory did not show differences >2.5%. PMID:9342010

  4. Alternative Filament Loading Solution for Accurate Analysis of Boron Isotopes by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2008-12-01

    The negative thermal ionization mass spectrometry technique has become the major tool for investigating boron isotopes in the environment. The high sensitivity of BO2- ionization enables measurements of ng levels of boron. However, B isotope measurement by this technique suffers from two fundamental problems (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; and (2) CNO- interference on mass 42 that is often present in some load solutions (such as B-free seawater processed through ion-exchange resin). Here we report a potentially improved methodology using an alternative filament loading solution with a recently-installed Thermo Scientific TRITON thermal ionization mass spectrometer. Our initial results suggest that this solution -- prepared by combining high-purity single- element standard solutions of Ca, Mg, Na, and K in proportions similar to those in seawater in a 5% HCl matrix -- may offer significant improvement over some other commonly used load solutions. Total loading blank is around 15pg as determined by isotope dilution (NIST952). Replicate analyses of NIST SRM951 and modern seawater thus far have yielded 11B/10B ratios of 4.0057 (±0.0008, n=14) and 4.1645 (±0.0017, n=7; δ11B=39.6 permil), respectively. Replicate analyses of samples and SRM951 yield an average standard deviation (1 σ) of approximately 0.001 (0.25 permil). Fractionation during analysis (60-90 minutes) has thus far typically been less than 0.002 (0.5 permil). The load solution delivers ionization efficiency similar to directly-loaded seawater and has negligible signal at mass 26 (CN-), a proxy for the common interfering molecular ion (CNO-) on mass 42. Standards and samples loaded with the solution behave fairly predictably during filament heating and analysis, thus allowing for the possibility of fully automated data collection.

  5. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    SciTech Connect

    Marinelli, R; Hamilton, T; Brown, T; Marchetti, A; Williams, R; Tumey, S

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multi Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.

  6. Rapid determination of uranium isotopes in urine by inductively coupled plasma-mass spectrometry.

    PubMed

    Shi, Y; Dai, X; Collins, R; Kramer-Tremblay, S

    2011-08-01

    Following a radiological or nuclear emergency involving uranium exposure, rapid analytical methods are needed to analyze the concentration of uranium isotopes in human urine samples for early dose assessment. The inductively coupled plasma mass spectrometry (ICP-MS) technique, with its high sample throughput and high sensitivity, has advantages over alpha spectrometry for uranium urinalysis after minimum sample preparation. In this work, a rapid sample preparation method using an anion exchange chromatographic column was developed to separate uranium from the urine matrix. A high-resolution sector field ICP-MS instrument, coupled with a high sensitivity desolvation sample introduction inlet, was used to determine uranium isotopes in the samples. The method can analyze up to 24 urine samples in two hours with the limits of detection of 0.0014, 0.10, and 2.0 pg mL(-1) for (234)U, (235)U, and (238)U, respectively, which meet the requirement for isotopic analysis of uranium in a radiation emergency. PMID:21709502

  7. Isotope ratio monitoring of small molecules and macromolecules by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Godin, Jean-Philippe; Hau, Jörg; Fay, Laurent-Bernard; Hopfgartner, Gérard

    2005-01-01

    In the field of isotope ratio mass spectrometry, the introduction of an interface allowing the connection of liquid chromatography (LC) and isotope ratio mass spectrometry (IRMS) has opened a range of new perspectives. The LC interface is based on a chemical oxidation, producing CO2 from organic molecules. While first results were obtained from the analysis of low molecular weight compounds, the application of compound-specific isotope analysis by irm-LC/MS to other molecules, in particular biomolecules, is presented here. The influence of the LC flow rate on the CO2 signal and on the observed delta13C values is demonstrated. The limits of quantification for angiotensin III and for leucine were 100 and 38 pmol, respectively, with a standard deviation of the delta13C values better than 0.4 per thousand. Also, accuracy and precision of delta13C values for elemental analyser-IRMS and flow injection analysis-IRMS (FIA-LC/MS) were compared. For compounds with molecular weights ranging from 131 to 66,390 Da, precision was better than 0.3 per thousand, and accuracy varied from 0.1 to 0.7 per thousand. In a second part of the work, a two-dimensional (2D)-LC method for the separation of 15 underivatised amino acids is demonstrated; the precision of delta13C values for several amino acids by irm-LC/MS was better than 0.3 per thousand at natural abundance. For labelled mixtures, the coefficient of variation was between 1% at 0.07 atom % excess (APE) for threonine and alanine, and around 10% at 0.03 APE for valine and phenylalanine. The application of irm-LC/MS to the determination of the isotopic enrichment of 13C-threonine in an extract of rat colon mucosa demonstrated a precision of 0.5 per thousand, or 0.001 atom %. PMID:16124031

  8. High Spatial Resolution Isotopic Abundance Measurements by Secondary Ion Mass Spectrometry: Status and Prospects

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.

    2007-12-01

    Secondary Ion Mass Spectrometry, SIMS or ion microprobe analysis, has become an important tool for geochemistry because of its ability study the distributions of elemental and isotopic abundances in situ on polished samples with high (typically a few microns to sub-micron) spatial resolution. In addition, SIMS exhibits high sensitivity for a wide range of elements (H to Pu) so that isotope analyses can sometimes be performed for elements that comprise only trace quantities of some mineral phase (e.g., Pb in zircon) or on major and/or minor elements in very small samples (e.g., presolar dust grains). Offsetting these positive attributes are analytical difficulties due to the complexity of the sputtering source of analyte ions: (1) relatively efficient production of molecular ion species (especially from a complex matrix such as most natural minerals) that cause interferences at the same nominal mass as atomic ions of interest, and (2) quantitation problems caused by variations in the ionization efficiencies of different elements and/or isotopes depending upon the chemical state of the sample surface during sputtering--the so-called "matrix effects". Despite the availability of high mass resolution instruments (e.g., SHRIMP II/RG, CAMECA 1270/1280/NanoSIMS), the molecular ion interferences effectively limit the region of the mass table that can be investigated in most samples to isotope systems at Ni or lighter or at Os or heavier. The matrix effects and the sensitivity of instrumental mass discrimination to the physical state of the sample surface can hamper reproducibility and have contributed to a view that SIMS analyses, especially for so- called stable isotopes, are most appropriate for extraterrestrial samples which are often small, rare, and can exhibit large magnitude isotopic effects. Recent improvements in instrumentation and technique have extended the scope of SIMS isotopic analyses and applications now range from geochronology to paleoclimatology to

  9. Fluoride sample matrices and reaction cells — new capabilities for isotope measurements in accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kieser, W. E.; Zhao, X.-L.; Eliades, J.; Litherland, A. E.

    2012-04-01

    Two new techniques, which extend the range of elements that can be analyzed by Accelerator Mass Spectrometry (AMS), and which increase its isobar selection capabilities, have been recently introduced. The first consists of embedding the sample material in a fluoride matrix (e.g. PbF2), which facilitates the production, in the ion source, of fluoride molecular anions that include the isotope of interest. In addition to forming anions with large electron binding energies and thereby increasing the range of analysable elements, in many cases by selection of a molecular form with a particular number of fluorine atoms, some isobar discrimination can be obtained. The second technique, for the significant reduction of atomic isobar interferences, is used following mass selection of the rare isotope. It consists of the deceleration, cooling and reaction of the rare mass beam with a gas, selected so that unwanted isobars are greatly attenuated in comparison with the isotope of interest. Proof of principle measurements for the analysis of 36C1 and 41Ca have provided encouraging results and work is proceeding on the integration of these techniques in a new AMS system planned for installation in late 2012 at the University of Ottawa.

  10. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  11. Using Theoretical Protein Isotopic Distributions to Parse Small-Mass-Difference Post-Translational Modifications via Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rhoads, Timothy W.; Williams, Jared R.; Lopez, Nathan I.; Morré, Jeffrey T.; Bradford, C. Samuel; Beckman, Joseph S.

    2013-01-01

    Small-mass-difference modifications to proteins are obscured in mass spectrometry by the natural abundance of stable isotopes such as 13C that broaden the isotopic distribution of an intact protein. Using a ZipTip (Millipore, Billerica, MA, USA) to remove salt from proteins in preparation for high-resolution mass spectrometry, the theoretical isotopic distribution intensities calculated from the protein's empirical formula could be fit to experimentally acquired data and used to differentiate between multiple low-mass modifications to proteins. We could readily distinguish copper from zinc bound to a single-metal superoxide dismutase (SOD1) species; copper and zinc only differ by an average mass of 1.8 Da and have overlapping stable isotope patterns. In addition, proteins could be directly modified while bound to the ZipTip. For example, washing 11 mM S-methyl methanethiosulfonate over the ZipTip allowed the number of free cysteines on proteins to be detected as S-methyl adducts. Alternatively, washing with the sulfhydryl oxidant diamide could quickly reestablish disulfide bridges. Using these methods, we could resolve the relative contributions of copper and zinc binding, as well as disulfide reduction to intact SOD1 protein present from <100 μg of the lumbar spinal cord of a transgenic, SOD1 overexpressing mouse. Although techniques like ICP-MS can measure total metal in solution, this is the first method able to assess the metal-binding and sulfhydryl reduction of SOD1 at the individual subunit level and is applicable to many other proteins.

  12. Temperature-programmed high-performance liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Godin, Jean-Philippe; Hopfgartner, Gérard; Fay, Laurent

    2008-09-15

    The utility of liquid chromatography coupled to the isotope ratio mass spectrometry technique (LC-IRMS) has already been established through a variety of successful applications. However, the analytical constraint related to the use of aqueous mobile phases limits the LC separation mechanism. We report here a new strategy for high-precision (13)C isotopic analyses based on temperature-programmed LC-IRMS using aqueous mobile phases. Under these conditions, the isotopic precision and accuracy were studied. On one hand, experiments were carried out with phenolic acids using isothermal LC conditions at high temperature (170 degrees C); on the other hand, several experiments were performed by ramping the temperature, as conventionally used in a gas chromatography-based method with hydrosoluble fatty acids and pulses of CO 2 reference gas. In isothermal conditions at 170 degrees C, despite the increase of the CO 2 background, p-coumaric acid and its glucuronide conjugate gave reliable isotopic ratios compared to flow injection analysis-isotopic ratio mass spectrometry (FIA-IRMS) analyses (isotopic precision and accuracy are lower than 0.3 per thousand). On the opposite, for its sulfate conjugate, the isotopic accuracy is affected by its coelution with p-coumaric acid. Not surprisingly, this study also demonstrates that at high temperature (170 degrees C), a compound eluting with long residence time (i.e., ferulic acid) is degraded, affecting thus the delta (13)C (drift of 3 per thousand) and the peak area (compared to FIA-IRMS analysis at room temperature). Quantitation is also reported in isothermal conditions for p-coumaric acid in the range of 10-400 ng/mL and with benzoic acid as an internal standard. For temperature gradient LC-IRMS, in the area of the LC gradient (set up at 20 degrees C/min), the drift of the background observed produces a nonlinearity of SD (delta (13)C) approximately 0.01 per thousand/mV. To circumvent this drift, which impacts severely the

  13. Inductively coupled plasma mass spectrometry applied to isotopic analysis of iron in human fecal matter

    SciTech Connect

    Ting, B.T.G.; Janghorbani, M.

    1986-06-01

    Inductively coupled plasma mass spectrometry combined with stable isotope dilution is applied to accurate isotopic analysis of human fecal matter for /sup 54/Fe and /sup 58/Fe. Argon plasma generated interferences are of minor concern. The interference from /sup 54/Cr can be corrected instrumentally, whereas /sup 58/Ni must be removed chemically. The ratio of the stable isotopes of interest can be measured routinely with a relative standard deviation of about 1%. The overall accuracy of the method for quantitative isotopic analyses is evaluated in Standard Reference Material (SRM) 1577a (Bovine Liver), fecal homogenate subsamples, and synthetic solutions of iron. For SRM 1577a, the respective comparisons are (..mu..g/g) 192.2 +/- 2.2 (present method) vs. 194 +/- 20 (certified value). For the fecal matrix, the present method yields (..mu..g/mL) 15.14 +/- 0.36 vs. 15.82 +/- 0.48 based on atomic absorption spectrophotometry. For an iron solution (250 ppm), replicate analyses yield the value of 245.4 +/- 1.5 ppm.

  14. Calibration and Data Processing in Gas Chromatography Combustion Isotope Ratio Mass Spectrometry

    PubMed Central

    Zhang, Ying; Tobias, Herbert J.; Sacks, Gavin L.; Brenna, J. Thomas

    2013-01-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis (13C/12C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ13C = δ13CM – δ13CE difference measurements required for establishing adverse analytical findings for metabolites relative to endogenous reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  15. Calibration and data processing in gas chromatography combustion isotope ratio mass spectrometry.

    PubMed

    Zhang, Ying; Tobias, Herbert J; Sacks, Gavin L; Brenna, J Thomas

    2012-12-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis ((13)C/(12)C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ(13)C = δ(13)C(M) - δ(13)C(E) difference measurements required for establishing adverse analytical findings for metabolites (M) relative to endogenous (E) reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  16. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  17. Isotope dilution mass spectrometry for quantitative elemental analysis of powdered samples by radiofrequency pulsed glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Fernandez, Beatriz; Malherbe, Julien; Claverie, Fanny; Molloy, John L; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-10-15

    In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios. As a result, a method has been developed for the direct and simultaneous multielement determination of trace elements in powdered geological samples by RF-PGD-ToFMS in combination with isotope dilution mass spectrometry (IDMS) as an absolute measurement method directly traceable to the International System of Units. Optimized operating conditions were 70 W of applied radiofrequency power, 250 Pa of pressure, 2 ms of pulse width and 4 ms of pulse period, being argon the plasma gas used. To homogeneously distribute the added isotopically-enriched standards, lithium borate fusion of powdered solid samples was used as sample preparation approach. In this way, Cu, Zn, Ba and Pb were successfully determined by RF-PGD-ToF(IDMS) in two NIST Standard Reference Materials (SRM 2586 and SRM 2780) representing two different matrices of geological interest (soil and rock samples). Cu, Zn, Ba and Pb concentrations determined by RF-PGD-ToF(IDMS) were well in agreement with the certified values at 95% confidence interval and precisions below 12% relative standard deviation were observed for three independent analyses. Elemental concentrations investigated were in the range of 81-5770 mg/kg, demonstrating the potential of RF-PGD-ToF(IDMS) for a sensitive, accurate and robust analysis of powdered samples. PMID:24054645

  18. Light Isotopes and Trace Organics Analysis of Mars Samples with Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Niemann, Hasso (Technical Monitor)

    2001-01-01

    Precision measurement of light isotopes in Mars surface minerals and comparison of this isotopic composition with atmospheric gas and other, well-mixed reservoirs such as surface dust are necessary to understand the history of atmospheric evolution from a possibly warmer and wetter Martian surface to the present state. Atmospheric sources and sinks that set these ratios are volcanism, solar wind sputtering, photochemical processes, and weathering. Measurement of a range of trace organic species with a particular focus on species such as amino acids that are the building blocks of terrestrial life are likewise important to address the questions of prebiotic and present or past biological activity on Mars. The workshop topics "isotopic mineralogy" and "biology and pre-biotic chemistry" will be addressed from the point of view of the capabilities and limitations of insitu mass spectrometry (MS) techniques such as thermally evolved gas analysis (TEGA) and gas chromatography (GC) surface experiments using MS, in both cases, as a final chemical and isotopic composition detector. Insitu experiments using straightforward adaptations of existing space proven hardware can provide a substantial improvement in the precision and accuracy of our present knowledge of isotopic composition both in molecular and atomic species in the atmosphere and those chemically bound in rocks and soils. Likewise, detection of trace organic species with greatly improved sensitivity from the Viking GCMS experiment is possible using gas enrichment techniques. The limits to precision and accuracy of presently feasible insitu techniques compared to laboratory analysis of returned samples will be explored. The insitu techniques are sufficiently powerful that they can provide a high fidelity method of screening samples obtained from a diverse set of surface locations such as the subsurface or the interior of rocks for selection of those that are the most interesting for return to Earth.

  19. Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities: Annual Report Year 2

    SciTech Connect

    Biegalski, S; Buchholz, B

    2009-08-26

    The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner. Significant progress has been made with this project within the past year: (1) Isotope production from commercial nuclear fuel cycles and nuclear weapons fuel cycles have been modeled with the ORIGEN and MCNPX codes. (2) MCNPX has been utilized to calculate isotopic inventories produced in a short burst fast bare sphere reactor (to approximate the signature of a nuclear weapon). (3) Isotopic ratios have been identified that are good for distinguishing between commercial and military fuel cycles as well as between nuclear weapons and commercial nuclear fuel cycles. (4) Mass spectrometry systems have been assessed for analysis of the fission products of interest. (5) A short-list of forensic ratios have been identified that are well suited for use in portable mass spectrometry systems.

  20. Can stable isotope mass spectrometry replace ‎radiolabelled approaches in metabolic studies?

    PubMed

    Batista Silva, Willian; Daloso, Danilo M; Fernie, Alisdair R; Nunes-Nesi, Adriano; Araújo, Wagner L

    2016-08-01

    Metabolic pathways and the key regulatory points thereof can be deduced using isotopically labelled substrates. One prerequisite is the accurate measurement of the labeling pattern of targeted metabolites. The subsequent estimation of metabolic fluxes following incubation in radiolabelled substrates has been extensively used. Radiolabelling is a sensitive approach and allows determination of total label uptake since the total radiolabel content is easy to detect. However, the incubation of cells, tissues or the whole plant in a stable isotope enriched environment and the use of either mass spectrometry or nuclear magnetic resonance techniques to determine label incorporation within specific metabolites offers the possibility to readily obtain metabolic information with higher resolution. It additionally also offers an important complement to other post-genomic strategies such as metabolite profiling providing insights into the regulation of the metabolic network and thus allowing a more thorough description of plant cellular function. Thus, although safety concerns mean that stable isotope feeding is generally preferred, the techniques are in truth highly complementary and application of both approaches in tandem currently probably provides the best route towards a comprehensive understanding of plant cellular metabolism. PMID:27297990

  1. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  2. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  3. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills. PMID:22665301

  4. Stable isotope dilution method for the determination of guanidinoacetic acid by gas chromatography/mass spectrometry.

    PubMed

    Fingerhut, Ralph

    2003-01-01

    For more than 30 years, guanidinoacetic acid (GAA), together with other guanidino compounds, has been proposed as an important marker for renal failure, in kidney transplantation, and for renal metabolism, especially for the metabolic activity of the renal proximal tubules. Since the discovery of the first patient with guanidinoacetic acid methyltransferase deficiency in 1994 by Stöckler et al. (Pediatr. Res. 1994; 36: 409), GAA has become of great interest for all laboratories involved in the diagnosis of metabolic diseases. In the literature there are several methods described for the determination of GAA, ranging from ion-exchange chromatography with post-column derivatisation, enzymatic methods, gas chromatography/mass spectrometry (GC/MS), to liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry (LC/APCI-MS). Here a stable isotope dilution method for quantitative and accurate determination of GAA in urine, plasma, and cerebrospinal fluid is described. GAA is converted to the bis(trifluoromethyl)pyrimidine di(tert-butyldimethylsilyl) derivative by stepwise derivatisation with hexafluoroacetylacetone and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). Analysis can be performed using a standard benchtop GC/MS system. For quantitative GAA determination with 1,2-(13)C-GAA as internal standard, selected ion monitoring is performed using m/z 460/462, with m/z 432/433 and 375/376 as qualifiers. PMID:12661026

  5. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  6. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry

    SciTech Connect

    Fassett, J.D.; Murphy, T.J. )

    1990-02-15

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g.

  7. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry

    SciTech Connect

    Esteban, N.V.; Loughlin, T.; Yergey, A.L.; Zawadzki, J.K.; Booth, J.D.; Winterer, J.C.; Loriaux, D.L. )

    1991-01-01

    Growth retardation as well as the development of Cushingoid features in adrenally insufficient patients treated with the currently accepted replacement dose of cortisol (33-41 mumol/day.m2; 12-15 mg/m2.day) prompted us to reevaluate the cortisol production rate (FPR) in normal subjects and patients with Cushing's syndrome, using a recently developed thermospray liquid chromatography-mass spectrometry method. The stable isotope (9,12,12-2H3)cortisol was infused continuously for 31 h at about 5% of the anticipated FPR. Blood samples were obtained at 20-min intervals for 24 h, spun, and pooled in 4-h groups. Tracer dilution in plasma was determined by liquid chromatography/mass spectrometry. The method was validated with controlled infusions in 6 patients with adrenal insufficiency. Results from 12 normal volunteers revealed a FPR of 27.3 +/- 7.5 mumol/day (9.9 +/- 2.7 mg/day) or 15.7 mumol/day.m2; 5.7 mg/m2. day. A previously unreported circadian variation in FPR was observed. Patients with Cushing's syndrome demonstrated unequivocal elevation of FPR and cortisol concentration correlated during each sample period in normal volunteers, indicating that cortisol secretion, rather than metabolism, is mainly responsible for changes in plasma cortisol. Our data suggest that the FPR in normal subjects may be lower than previously believed.

  8. Quantification of four artificial sweeteners in Finnish surface waters with isotope-dilution mass spectrometry.

    PubMed

    Perkola, Noora; Sainio, Pirjo

    2014-01-01

    The artificial sweeteners sucralose (SCL), acesulfame (ACS), saccharin (SAC), and cyclamate (CYC) have been detected in environmental waters in Europe and North America. Higher environmental levels are expected in view of the increasing consumption of these food additives. In this study, an isotope-dilution mass spectrometry (IDMS) LC-MS/MS method was developed and validated for quantifying the four artificial sweeteners in boreal lakes (n = 3) and rivers (n = 12). The highest concentrations of ACS, SAC, CYC and SCL were 9,600, 490, 210 and 1000 ng/L, respectively. ACS and SAC were detected in all studied samples, and CYC and SCL in 98% and 56% of the samples. Seasonal trends of ACS and SAC were observed in some rivers. ACS and SCL concentrations in rivers correlated linearly with population equivalents of the wastewater treatment plants in the catchment areas, whereas SAC and CYC concentrations depend more on the source. PMID:24100049

  9. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    PubMed

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  10. Quantification of ferritin bound iron in human serum using species-specific isotope dilution mass spectrometry.

    PubMed

    Ren, Yao; Walczyk, Thomas

    2014-09-01

    Ferritin is a hollow sphere protein composed of 24 subunits that can store up to 4500 iron atoms in its inner cavity. It is mainly found in the liver and spleen but also in serum at trace levels. Serum ferritin is considered as the best single indicator in assessing body iron stores except liver or bone marrow biopsy. However, it is confounded by other disease conditions. Ferritin bound iron (FBI) and ferritin saturation have been suggested as more robust biomarkers. The current techniques for FBI determination are limited by low antibody specificity, low instrument sensitivity and possible analyte losses during sample preparation. The need for a highly sensitive and reliable method is widely recognized. Here we describe a novel technique to detect serum FBI using species-specific isotope dilution mass spectrometry (SS-IDMS). [(57)Fe]-ferritin was produced by biosynthesis and in vitro labeling with the (57)Fe spike in the form of [(57)Fe]-citrate after cell lysis and heat treatment. [(57)Fe]-ferritin for sample spiking was further purified by fast liquid protein chromatography. Serum ferritin and added [(57)Fe]-ferritin were separated from other iron species by ultrafiltration followed by isotopic analysis of FBI using negative thermal ionization mass spectrometry. Repeatability of our assay is 8% with an absolute detection limit of 18 ng FBI in the sample. As compared to other speciation techniques, SS-IDMS offers maximum control over sample losses and species conversion during analysis. The described technique may therefore serve as a reference technique for clinical applications of FBI as a new biomarker for assessing body iron status. PMID:25008269

  11. Carbon Stable Isotope Analysis of Methylmercury Toxin in Biological Materials by Gas Chromatography Isotope Ratio Mass Spectrometry.

    PubMed

    Masbou, Jeremy; Point, David; Guillou, Gaël; Sonke, Jeroen E; Lebreton, Benoit; Richard, Pierre

    2015-12-01

    A critical component of the biogeochemical cycle of mercury (Hg) is the transformation of inorganic Hg to neurotoxic monomethylmercury (CH3Hg). Humans are exposed to CH3Hg by consuming marine fish, yet the origin of CH3Hg in fish is a topic of debate. The carbon stable isotopic composition (δ(13)C) embedded in the methyl group of CH3Hg remains unexplored. This new isotopic information at the molecular level is thought to represent a new proxy to trace the carbon source at the origin of CH3Hg. Here, we present a compound-specific stable isotope analysis (CSIA) technique for the determination of the δ(13)C value of CH3Hg in biological samples by gas chromatography combustion isotope ratio mass spectrometry analysis (GC-C-IRMS). The method consists first of calibrating a CH3Hg standard solution for δ(13)C CSIA. This was achieved by comparing three independent approaches consisting of the derivatization and halogenation of the CH3Hg standard solution. The determination of δ(13)C(CH3Hg) values on natural biological samples was performed by combining a CH3Hg selective extraction, purification, and halogenation followed by GC-C-IRMS analysis. Reference δ(13)C values were established for a tuna fish certified material (ERM-CE464) originating from the Adriatic Sea (δ(13)C(CH3Hg) = -22.1 ± 1.5‰, ± 2 SD). This value is similar to the δ(13)C value of marine algal-derived particulate organic carbon (δ(13)CPOC = -21‰). PMID:26511394

  12. Stable Isotope Peptide Mass Spectrometry To Decipher Amino Acid Metabolism in Dehalococcoides Strain CBDB1

    PubMed Central

    Marco-Urrea, Ernest; Seifert, Jana; von Bergen, Martin

    2012-01-01

    Dehalococcoides species are key players in the anaerobic transformation of halogenated solvents at contaminated sites. Here, we analyze isotopologue distributions in amino acid pools from peptides of Dehalococcoides strain CBDB1 after incubation with 13C-labeled acetate or bicarbonate as a carbon source. The resulting data were interpreted with regard to genome annotations to identify amino acid biosynthesis pathways. In addition to using gas chromatography-mass spectrometry (GC-MS) for analyzing derivatized amino acids after protein hydrolysis, we introduce a second, much milder method, in which we directly analyze peptide masses after tryptic digest and peptide fragments by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry (nano-LC-ESI-MS/MS). With this method, we identify isotope incorporation patterns for 17 proteinaceous amino acids, including proline, cysteine, lysine, and arginine, which escaped previous analyses in Dehalococcoides. Our results confirmed lysine biosynthesis via the α-aminoadipate pathway, precluding lysine formation from aspartate. Similarly, the isotopologue pattern obtained for arginine provided biochemical evidence of its synthesis from glutamate. Direct peptide MS/MS analysis of the labeling patterns of glutamine and asparagine, which were converted to glutamate and aspartate during protein hydrolysis, gave biochemical evidence of their precursors and confirmed glutamate biosynthesis via a Re-specific citrate synthase. By addition of unlabeled free amino acids to labeled cells, we show that in strain CBDB1 none of the 17 tested amino acids was incorporated into cell mass, indicating that they are all synthesized de novo. Our approach is widely applicable and provides a means to analyze amino acid metabolism by studying specific proteins even in mixed consortia. PMID:22661690

  13. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  14. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    SciTech Connect

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  15. Detection of counterfeit antiviral drug Heptodin and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS).

    PubMed

    Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude

    2009-06-01

    Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed. PMID:19606588

  16. Flow injection analysis-isotope ratio mass spectrometry for bulk carbon stable isotope analysis of alcoholic beverages.

    PubMed

    Jochmann, Maik A; Steinmann, Dirk; Stephan, Manuel; Schmidt, Torsten C

    2009-11-25

    A new method for bulk carbon isotope ratio determination of water-soluble samples is presented that is based on flow injection analysis-isotope ratio mass spectrometry (FIA-IRMS) using an LC IsoLink interface. Advantages of the method are that (i) only very small amounts of sample are required (2-5 microL of the sample for up to 200 possible injections), (ii) it avoids complex sample preparation procedures such as needed for EA-IRMS analysis (only sample dilution and injection,) and (iii) high throughput due to short analysis times is possible (approximately 15 min for five replicates). The method was first tested and evaluated as a fast screening method with industrially produced ethanol samples, and additionally the applicability was tested by the measurement of 81 alcoholic beverages, for example, whiskey, brandy, vodka, tequila, and others. The minimal sample concentration required for precise and reproducible measurements was around 50 microL L(-1) ethanol/water (1.71 mM carbon). The limit of repeatability was determined to be r=0.49%. FIA-IRMS represents a fast screening method for beverage authenticity control. Due to this, samples can be prescreened as a decisive criterion for more detailed investigations by HPLC-IRMS or multielement GC-IRMS measurements for a verification of adulteration. PMID:19856915

  17. Developing New Isotope-Coded Mass Spectrometry-Cleavable Cross-Linkers for Elucidating Protein Structures

    PubMed Central

    2015-01-01

    Structural characterization of protein complexes is essential for the understanding of their function and regulation. However, it remains challenging due to limitations in existing tools. With recent technological improvements, cross-linking mass spectrometry (XL-MS) has become a powerful strategy to define protein–protein interactions and elucidate structural topologies of protein complexes. To further advance XL-MS studies, we present here the development of new isotope-coded MS-cleavable homobifunctional cross-linkers: d0- and d10-labeled dimethyl disuccinimidyl sulfoxide (DMDSSO). Detailed characterization of DMDSSO cross-linked peptides further demonstrates that sulfoxide-containing MS-cleavable cross-linkers offer robust and predictable MS2 fragmentation of cross-linked peptides, permitting subsequent MS3 analysis for simplified, unambiguous identification. Concurrent usage of these reagents provides a characteristic doublet pattern of DMDSSO cross-linked peptides, thus aiding in the confidence of cross-link identification by MSn analysis. More importantly, the unique isotopic profile permits quantitative analysis of cross-linked peptides and therefore expands the capability of XL-MS strategies to analyze both static and dynamic protein interactions. Together, our work has established a new XL-MS workflow for future studies toward the understanding of structural dynamics of protein complexes. PMID:24471733

  18. Developing new isotope-coded mass spectrometry-cleavable cross-linkers for elucidating protein structures.

    PubMed

    Yu, Clinton; Kandur, Wynne; Kao, Athit; Rychnovsky, Scott; Huang, Lan

    2014-02-18

    Structural characterization of protein complexes is essential for the understanding of their function and regulation. However, it remains challenging due to limitations in existing tools. With recent technological improvements, cross-linking mass spectrometry (XL-MS) has become a powerful strategy to define protein-protein interactions and elucidate structural topologies of protein complexes. To further advance XL-MS studies, we present here the development of new isotope-coded MS-cleavable homobifunctional cross-linkers: d0- and d10-labeled dimethyl disuccinimidyl sulfoxide (DMDSSO). Detailed characterization of DMDSSO cross-linked peptides further demonstrates that sulfoxide-containing MS-cleavable cross-linkers offer robust and predictable MS2 fragmentation of cross-linked peptides, permitting subsequent MS3 analysis for simplified, unambiguous identification. Concurrent usage of these reagents provides a characteristic doublet pattern of DMDSSO cross-linked peptides, thus aiding in the confidence of cross-link identification by MS(n) analysis. More importantly, the unique isotopic profile permits quantitative analysis of cross-linked peptides and therefore expands the capability of XL-MS strategies to analyze both static and dynamic protein interactions. Together, our work has established a new XL-MS workflow for future studies toward the understanding of structural dynamics of protein complexes. PMID:24471733

  19. Determination of Phytochelatins in Rice by Stable Isotope Labeling Coupled with Liquid Chromatography-Mass Spectrometry.

    PubMed

    Liu, Ping; Cai, Wen-Jing; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-07-01

    A highly sensitive method was developed for the detection of phytochelatins (PCs) in rice by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (IL-LC-ESI-MS/MS) analysis. A pair of isotope-labeling reagents [ω-bromoacetonylquinolinium bromide (BQB) and BQB-d(7)] were used to label PCs in plant sample and standard PCs, respectively, and then combined prior to LC/MS analysis. The heavy labeled standards were used as the internal standards for quantitation to minimize the matrix and ion suppression effects in MS analysis. In addition, the ionization efficiency of PCs was greatly enhanced through the introduction of a permanent charged moiety of quaternary ammonium of BQB into PCs. The detection sensitivities of PCs upon BQB labeling improved by 14-750-fold, and therefore, PCs can be quantitated using only 5 mg of plant tissue. Furthermore, under cadmium (Cd) stress, we found that the contents of PCs in rice dramatically increased with the increased concentrations and treatment time of Cd. It was worth noting that PC5 was first identified and quantitated in rice tissues under Cd stress in the current study. Taken together, this IL-LC-ESI-MS/MS method demonstrated to be a promising strategy in detection of PCs in plants with high sensitivity and reliability. PMID:26073168

  20. Mass spectrometry

    SciTech Connect

    Burlingame, A.L.; Baillie, T.A.; Derrick, P.J.

    1986-04-01

    It is the intention of the review to bring together in one source the direction of major developments in mass spectrometry and to illustrate these by citing key contributions from both fundamental and applied research. The Review is intended to provide the reader with a sense of the main currents, their breadth and depth, and probable future directions. It is also intended to provide the reader with a glimpse of the diverse discoveries and results that underpin the eventual development of new methods and instruments - the keys to obtaining new insights in all the physical, chemical, and biological sciences which depend on mass spectrometry at various levels of sophistication. Focal points for future interdisciplinary synergism might be selective quantitative derivatization of large peptides, which would convey properties that direct fragmentation providing specific sequence information, or optimization of LCMS for biooligomer sequencing and mixture analysis, or the perfect way to control or enhance the internal energy of ions of any size, or many others. 1669 references.

  1. Stable isotope labeling - Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids.

    PubMed

    Guo, Ning; Liu, Ping; Ding, Jun; Zheng, Shu-Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-28

    Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d5-Girard reagent P (d5-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4-504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones related

  2. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  3. Forensic Mass Spectrometry.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2015-01-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques. PMID:26070716

  4. Using Punnett Squares to Facilitate Students' Understanding of Isotopic Distributions in Mass Spectrometry

    ERIC Educational Resources Information Center

    Sein, Lawrence T., Jr.

    2006-01-01

    The isotopic distribution in mass spectroscopy is described for identifying pure compounds, being able to distinguish molecular fragments by masses. Punnett squares are familiar, easy to compute, and often graphical which makes helpful to students and the relative distribution of isotopic combination is easily generated for even isotopic…

  5. Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry.

    PubMed

    Klapa, Maria I; Aon, Juan-Carlos; Stephanopoulos, Gregory

    2003-09-01

    Metabolic fluxes provide a detailed metric of the cellular metabolic phenotype. Fluxes are estimated indirectly from available measurements and various methods have been developed for this purpose. Of particular interest are methods making use of stable isotopic tracers as they enable the estimation of fluxes at a high resolution. In this paper, we present data validating the use of mass spectrometry (MS) for the quantification of complex metabolic flux networks. In the context of the lysine biosynthesis flux network of Corynebacterium glutamicum (ATCC 21799) under glucose limitation in continuous culture, operating at 0.1 x h(-1) after the introduction of 50% [1-13C]glucose, we deploy a bioreaction network analysis methodology for flux determination from mass isotopomer measurements of biomass hydrolysates, while thoroughly addressing the issues of measurement accuracy, flux observability and data reconciliation. The analysis enabled the resolution of the involved anaplerotic activity of the microorganism using only one labeled substrate, the determination of the range of most of the exchange fluxes and the validation of the flux estimates through satisfaction of redundancies. Specifically, we determined that phosphoenolpyruvate carboxykinase and synthase do not carry flux at these experimental conditions and identified a high futile cycle between oxaloacetate and pyruvate, indicating a highly active in vivo oxaloacetate decarboxylase. Both results validated previous in vitro activity measurements. The flux estimates obtained passed the chi2 statistical test. This is a very important result considering that prior flux analyses of extensive metabolic networks from isotopic measurements have failed criteria of statistical consistency. PMID:12919317

  6. Investigation of bn-44 Peptide Fragments Using High Resolution Mass Spectrometry and Isotope Labeling

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Yu, Jiayi; Wang, Huixin; Wei, Zhonglin; Guo, Xinhua; Xiao, Zhaohui; Zeng, Zhoufang; Kong, Wei

    2014-12-01

    An N-terminal deuterohemin-containing hexapeptide (DhHP-6) was designed as a short peptide cytochrome c (Cyt c) mimetic to study the effect of N-terminal charge on peptide fragmentation pathways. This peptide gave different dissociation patterns than normal tryptic peptides. Upon collision-induced dissociation (CID) with an ion trap mass spectrometer, the singly charged peptide ion containing no added proton generated abundant and characteristic bn-44 ions instead of bn-28 (an) ions. Studies by high resolution mass spectrometry (HRMS) and isotope labeling indicate that elimination of 44 Da fragments from b ions occurs via two different pathways: (1) loss of CH3CHO (44.0262) from a Thr side chain; (2) loss of CO2 (43.9898) from the oxazolone structure in the C-terminus. A series of analogues were designed and analyzed. The experimental results combined with Density Functional Theory (DFT) calculations on the proton affinity of the deuteroporphyrin demonstrate that the production of these novel bn-44 ions is related to the N-terminal charge via a charge-remote rather than radical-directed fragmentation pathway.

  7. Quantitative Metabolome Analysis Based on Chromatographic Peak Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.

    PubMed

    Huan, Tao; Li, Liang

    2015-07-21

    Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use. PMID:26086729

  8. Detection of dehydroepiandrosterone misuse by means of gas chromatography- combustion-isotope ratio mass spectrometry.

    PubMed

    Mareck, Ute; Geyer, Hans; Flenker, Ulrich; Piper, Thomas; Thevis, Mario; Schänzer, Wilhelm

    2007-01-01

    According to World Anti-Doping Agency (WADA) rules (WADA Technical Document-TD2004EAAS) urine samples containing dehydroepiandrosterone (DHEA) concentrations greater than 100 ng ML(-1) shall be submitted to isotope ratio mass spectrometry (IRMS) analysis. The threshold concentration is based on the equivalent to the glucuronide, and the DHEA concentrations have to be adjusted for a specific gravity value of 1.020. In 2006, 11,012 doping control urine samples from national and international federations were analyzed in the Cologne doping control laboratory, 100 (0.9%) of them yielding concentrations of DHEA greater than 100 ng mL(-1). Sixty-eight percent of the specimens showed specific gravity values higher than 1.020, 52% originated from soccer players, 95% were taken in competition, 85% were male urines, 99% of the IRMS results did not indicate an application of testosterone or related prohormones. Only one urine sample was reported as an adverse analytical finding having 319 ng mL(-1) DHEA (screening result), more than 10,000 ng mL(-1) androsterone and depleted carbon isotope ratio values for the testosterone metabolites androsterone and etiocholanolone. Statistical evaluation showed significantly different DHEA concentrations between specimens taken in- and out-of- competition, whereas females showed smaller DHEA values than males for both types of control. Also a strong influence of the DHEA excretion on different sport disciplines was detectable. The highest DHEA values were detected for game sports (soccer, basketball, handball, ice hockey), followed by boxing and wrestling. In 2007, 6622 doping control urine samples were analyzed for 3alpha,5-cyclo-5alpha-androstan-6beta-ol-17-one (3alpha,5-cyclo), a DHEA metabolite which was described as a useful gas chromatography-mass spectrometry (GC-MS) screening marker for DHEA abuse. Nineteen urine specimens showed concentrations higher than the suggested threshold of 140 ng mL(-1), six urine samples yielded

  9. Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Brand, W. A.; Hayes, J. M.

    1994-01-01

    In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).

  10. Screening halogenated environmental contaminants in biota based on isotopic pattern and mass defect provided by high resolution mass spectrometry profiling.

    PubMed

    Cariou, Ronan; Omer, Elsa; Léon, Alexis; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2016-09-14

    In the present work, we addressed the question of global seeking/screening organohalogenated compounds in a large panel of complex biological matrices, with a particular focus on unknown chemicals that may be considered as potential emerging hazards. A fishing strategy was developed based on untargeted profiling among full scan acquisition datasets provided by high resolution mass spectrometry. Since large datasets arise from such profiling, filtering useful information stands as a central question. In this way, we took advantage of the exact mass differences between Cl and Br isotopes. Indeed, our workflow involved an innovative Visual Basic for Applications script aiming at pairing features according to this mass difference, in order to point out potential organohalogenated clusters, preceded by an automated peak picking step based on the centWave function (xcms package of open access R programming environment). Then, H/Cl-scale mass defect plots were used to visualize the datasets before and after filtering. The filtering script was successfully applied to a dataset generated upon liquid chromatography coupled to ESI(-)-HRMS measurement from one eel muscle extract, allowing for realistic manual investigations of filtered clusters. Starting from 9789 initial obtained features, 1994 features were paired in 589 clusters. Hexabromocyclododecane, chlorinated paraffin series and various other compounds have been identified or tentatively identified, allowing thus broad screening of organohalogenated compounds in this extract. Although realistic, manual review of paired clusters remains time consuming and much effort should be devoted to automation. PMID:27566348

  11. Isotope Ratio Mass Spectrometry and Shale Gas - What Is Possible with Current Technology?

    NASA Astrophysics Data System (ADS)

    Barrie, C. D.; Kasson, A.

    2014-12-01

    With ever increasing exploration and exploitation of 'unconventional' hydrocarbon resources, the drive to understand the origins, history and importance of these resources and their effects on the surrounding environment (i.e. ground waters) has never been more important. High-throughput, high-precision isotopic measurements are therefore a key tool in this industry to both understand the gas generated and monitor the development and stability of wells through time. With the advent of cavity ringdown spectroscopy (CRDS) instrumentation, there has been a push in some applications - environmental & atmospheric - to gather more and more data directly at the location of collection or at dedicated field stations. Furthermore, CRDS has resulted in users seeking greater autonomy of instrumentation and so-called black box technology. Traditionally IRMS technology has not met any of these demands, requiring very specific and extensive footprint, power and environmental requirements. This has meant that the 'Oil & Gas' sector, which for natural gases measurements requires GC-IRMS technology - not possible via CRDS - loses time, money and manpower as samples get sent to central facility or contract labs with potentially long lee times. However, recent developments in technology mean that IRMS systems exist which are benchtop, have much lower power requirements, standard power connections and as long as housed in a temperature controlled field stations can be deployed anywhere. Furthermore, with advances in electronics and software IRMS systems are approaching the black box level of newer instrumentation while maintaining the flexibility and abilities of isotope ratio mass spectrometry. This presentation will outline changes in IRMS technology applicable to the Oil & Gas industry, discuss the feasibility of true 'field' deployability and present results from a range of Oil & Gas samples.

  12. Performance of human mass balance studies with stable isotope-labeled drug and continuous flow-isotope ratio mass spectrometry: a progress report.

    PubMed

    Browne, T R; Szabo, G K; Ajami, A; Browne, D G

    1998-04-01

    We propose performing human mass balance studies by administering stable isotope labeled (13C or 15N) drug and quantitating excess (above background) 13C or 15N in urine, serum, and feces by continuous flow-isotope ratio mass spectrometry (CF-IRMS). Theoretical calculations and empirical data (dynamic range, linearity, sensitivity, precision, accuracy) are presented to establish that commercially available CF-IRMS instruments can quantitate stable isotope labeled (one or two 15N or 13C labels) drug concentrations of 1.0 microg/mL or greater in urine, serum (15N), or feces. More than two 13C labels may be necessary to quantitate 1.0 microg/mL of drug in serum. Three volunteers received 650 mg of 15N13C2-acetaminophen, and urine was collected for 72 hours. Percent of administered label recovered in urine from the three subjects was 97.4, 78.9, and 95.4 for 13C and 90.3, 77.0, and 90.6 for 15N. Fecal recovery of label for one subject was 0.9% (13C2) and 1.1% (15N). Serum pharmacokinetic values obtained by counting 13C or 15N in one subject were as expected for acetaminophen. This method appears to be promising, and further validation is ongoing. PMID:9590457

  13. Isotopic exchange during derivatization of platelet activating factor for gas chromatography-mass spectrometry

    SciTech Connect

    Haroldsen, P.E.; Gaskell, S.J.; Weintraub, S.T.; Pinckard, R.N. )

    1991-04-01

    One approach to the quantitative analysis of platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; also referred to as AGEPC, alkyl glyceryl ether phosphocholine) is hydrolytic removal of the phosphocholine group and conversion to an electron-capturing derivative for gas chromatography-negative ion mass spectrometry. (2H3)Acetyl-AGEPC has been commonly employed as an internal standard. When 1-hexadecyl-2-(2H3)acetyl glycerol (obtained by enzymatic hydrolysis of (2H3)-C16:0 AGEPC) is treated with pentafluorobenzoyl chloride at 120 degrees C, the resulting 3-pentafluorobenzoate derivative shows extensive loss of the deuterium label. This exchange is evidently acid-catalyzed since derivatization of 1-hexadecyl-2-acetyl glycerol under the same conditions in the presence of a trace of 2HCl results in the incorporation of up to three deuterium atoms. Isotope exchange can be avoided if the reaction is carried out at low temperature in the presence of base. Direct derivatization of (2H3)-C16:0 AGEPC by treatment with pentafluorobenzoyl chloride or heptafluorobutyric anhydride also results in loss of the deuterium label. The use of (13C2)-C16:0 AGEPC as an internal standard is recommended for rigorous quantitative analysis.

  14. Analysis of acrylamide in coffee and cocoa by isotope dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Aguas, Patricia C; Fitzhenry, Matthew J; Giannikopoulos, Georgina; Varelis, Peter

    2006-08-01

    An accurate and precise method for the quantification of acrylamide using stable isotope dilution liquid chromatography-tandem mass spectrometry was developed and used to measure acrylamide in coffee and cocoa samples. The sample preparation involved extraction of the analyte and its internal standard, 13C3-acrylamide, into water and subsequent defatting of the aqueous extract with dichloromethane. An aliquot of the resulting aqueous extract was then azeotropically dried under reduced pressure and subsequently purified using an aminopropyl-bonded silica cartridge. The purified extracts were then chromatographed on a 5-microm 2.1 x 150 mm Hypercarb column, the effluent of which was monitored for the analyte and its internal standard using positive-ion APCI-selected reaction monitoring. The intra-laboratory reproducibility of the method, expressed as a relative coefficient of variation (%, n=5), was determined at four levels of concentration (12.3, 42.3, 139.3 and 464.8 microg kg(-1)) and was found to vary between 0.6-2.5%. The accuracy of the method was assessed using a reference sample of coffee. The average result obtained using our method differed from the assigned value of the reference material by less than 1%. An analysis of a cocoa sample revealed that the method is capable of precisely estimating acrylamide in challenging matrices down to a level of at least 12.3 microg kg(-1). PMID:16819634

  15. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study

    PubMed Central

    Tam, J.; Pantazopoulos, P.; Scott, P.M.; Moisey, J.; Dabeka, R.W.; Richard, I.D.K.

    2011-01-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products ‘as consumed’, pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[13C20]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply. PMID:21623499

  16. Chemical and isotopic measurements of micrometeoroids by secondary ion mass spectrometry (A0187-2)

    NASA Technical Reports Server (NTRS)

    Foote, J. H.; Swan, P. D.; Walker, R. M.; Zinner, E. K.; Bahr, D.; Fechtig, H.; Jessberger, E.; Igenbergs, E.; Kreitmayr, U.; Kuczera, H.

    1984-01-01

    The objective of this experiment is to measure the chemical and isotopic composition of interplanetary dust particles of mass greater than 10 to the minus 10 power G for most of thermator elements expected to be present.

  17. Cd Isotopic Composition Measured by Plasma Source Mass Spectrometry on Natural and Anthropogenic Materials. A Preliminary Outline of Cd Isotope Systematics

    NASA Astrophysics Data System (ADS)

    Innocent, C.

    2004-05-01

    Cadmium is a trace metal that is used as a geochemical tracer of natural processes, like biological productivity and paleoproductivity, and also of anthropogenic pollution, as Cd is known to be a toxic heavy metal that has become a major environmental and health concern. For these purposes, an outstanding issue is to determine whether Cd, like a number of metallic elements (e.g. Fe, Cu, Zn, Mo, Tl), may display variable isotopic compositions in natural and/or industrial compounds. It is known that Cd may display variable isotopic composition. Indeed, isotopic fractionation processes have been documented in some meteorites and in lunar soils. Consequently, due to its relatively low boiling point (767\\deg C) and also to the large mass range covered by its isotopes (10 mass units), Cd might fractionate isotopically, for example during the outpouring of acidic volcanic magmas and/or the emplacement of granitoids. On another hand, isotopic fractionation could also occur during human activities like refuse incineration or industrial manufacturing, for instance. Finally, biologically-induced isotopic fractionation should not be ruled out, as it is clearly evidenced for other metals, like Fe. A high precision method has been developed for determining the isotopic composition of Cd by plasma source mass spectrometry (Neptune). This method holds on the standard-bracketing technique, owing to the availability of Cd solutions of known isotopic composition provided by the University of M\\H{u}nster. This allows to correct precisely for mass fractionation that occurs in the plasma source mass spectrometer. It is also critical for the analysis to be possible to work with Cd solutions of very high purity. Chemical isolation of Cd involves 3 steps, and may be also suitable for Cd isotopic measurements using solid source mass spectrometry. Preliminary results suggest that Cd is likely to fractionate during smelting activities, as indicated by measurements on mining waste. The

  18. Direct quantitative determination of cyanamide by stable isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Hiradate, Syuntaro; Kamo, Tsunashi; Nakajima, Eri; Kato, Kenji; Fujii, Yoshiharu

    2005-12-01

    Cyanamide is a multifunctional agrochemical used, for example, as a pesticide, herbicide, and fertilizer. Recent research has revealed that cyanamide is a natural product biosynthesized in a leguminous plant, hairy vetch (Vicia villosa). In the present study, gas chromatography-mass spectrometry (GC-MS) equipped with a capillary column for amines was used for direct quantitative determination of cyanamide. Quantitative signals for ((14)N(2))cyanamide, ((15)N(2))cyanamide (internal standard for stable isotope dilution method), and m-(trifluoromethyl)benzonitrile (internal standard for correcting errors in GC-MS analysis) were recorded as peak areas on mass chromatograms at m/z 42 (A(42)), 44 (A(44)), and 171 (A(IS)), respectively. Total cyanamide content, ((14)N(2))cyanamide plus ((15)N(2))cyanamide, was determined as a function of (A(42)+A(44))/A(IS). Contents of ((14)N(2))cyanamide and ((15)N(2))cyanamide were then calculated by multiplying the total cyanamide content by A(42)/(A(42)+A(44)) and A(44)/(A(42)+A(44)), respectively. The limit of detection for the total cyanamide content by the GC-MS analysis was around 1ng. The molar ratio of ((14)N(2))cyanamide to ((15)N(2))cyanamide in the injected sample was equal to the observed A(42)/A(44) value in the range from 0.1 to 5. It was, therefore, possible to use the stable isotope dilution method to quantify the natural cyanamide content in samples; i.e., the natural cyanamide content was derived by subtracting the A(42)/A(44) ratio of the internal standard from the A(42)/A(44) ratio of sample spiked with internal standard, and then multiplying the resulting difference by the amount of added ((15)N(2))cyanamide (SID-GC-MS method). This method successfully gave a reasonable value for the natural cyanamide content in hairy vetch, concurring with the value obtained by a conventional method in which cyanamide was derivatized to a photometrically active compound 4-cyanimido-1,2-naphthoquinone and analyzed with reversed

  19. Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry

    SciTech Connect

    Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.; LaVoie, Stephen P.; Lipton, Mary S.; Summers, Anne O.; Miller, Susan M.

    2011-08-01

    The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate, we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.

  20. Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Xiao, H.; Zhou, J.; Wang, L.; Cheng, G.; Zhou, M.; Yin, L.; McCabe, M. F.

    2011-12-01

    As an alternative to isotope ratio mass spectrometry (IRMS) the isotope ratio infrared spectroscopy (IRIS) approach has the advantage of low cost, continuous measurement and capacity for field based application for the analysis of stable water isotopes. Recent studies have indicated that there are potential issues of organic contamination of the spectral signal in the IRIS method, resulting in errant readings for leaf samples. To gain a more thorough understanding of the effects of sample type (e.g., leaf, root, stem and soil), sample species, sampling time and climatic condition (dry vs. wet) on water isotope estimates using IRIS, we collected soil samples and plant components from a number of major species at a fine temporal resolution (every two hours for 24-48 hours) across three locations with different climatic conditions in the Heihe River Basin, China. The hydrogen and oxygen isotopic composition of the extracted water from these samples was measured using both an IRMS and IRIS instrument. Results show that the mean discrepancy between the IRMS and IRIS approach, for δ18O and δD respectively, was: -5.6% and -75.7% for leaf water; -4.0% and -23.3% for stem water; -3.4% and -28.2% for root water; -6.7% and -0.5% for xylem water; -0.06% and -0.3% for xylem flow; and -0.1% and 0.3% for soil water. The order of the discrepancy followed: leaf > stem ≈ root > xylem > xylem flow ≈ soil. In general, species of the same functional types (e.g., woody vs. herbaceous) within similar habitats showed similar deviations. For different functional types, the differences were large. Sampling during the nighttime did not remove the observed deviations.

  1. Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters.

    PubMed

    Zhao, Liangju; Xiao, Honglang; Zhou, Jian; Wang, Lixin; Cheng, Guodong; Zhou, Maoxian; Yin, Li; McCabe, Matthew F

    2011-10-30

    As an alternative to isotope ratio mass spectrometry (IRMS), the isotope ratio infrared spectroscopy (IRIS) approach has the advantage of low cost, continuous measurement and the capacity for field-based application for the analysis of the stable isotopes of water. Recent studies have indicated that there are potential issues of organic contamination of the spectral signal in the IRIS method, resulting in incorrect results for leaf samples. To gain a more thorough understanding of the effects of sample type (e.g., leaf, root, stem and soil), sample species, sampling time and climatic condition (dry vs. wet) on water isotope estimates using IRIS, we collected soil samples and plant components from a number of major species at a fine temporal resolution (every 2 h for 24-48 h) across three locations with different climatic conditions in the Heihe River Basin, China. The hydrogen and oxygen isotopic compositions of the extracted water from these samples were measured using both an IRMS and an IRIS instrument. The results show that the mean discrepancies between the IRMS and IRIS approaches for δ(18) O and δD, respectively, were: -5.6‰ and -75.7‰ for leaf water; -4.0‰ and -23.3‰ for stem water; -3.4‰ and -28.2‰ for root water; -0.5‰ and -6.7‰ for xylem water; -0.06‰ and -0.3‰ for xylem flow; and -0.1‰ and 0.3‰ for soil water. The order of the discrepancy was: leaf > stem ≈ root > xylem > xylem flow ≈ soil. In general, species of the same functional types (e.g., woody vs. herbaceous) within similar habitats showed similar deviations. For different functional types, the differences were large. Sampling at nighttime did not remove the observed deviations. PMID:21953962

  2. Simultaneous Determination of Selected B Vitamins in the NIST SRM 3280 Multivitamin/Multielement Tablets by Liquid Chromatography Isotope Dilution Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increased interest in accurately assessing the total dietary intake of vitamins from all sources, including foods and dietary supplements. Isotope dilution mass spectrometry (IDMS) can be a definitive analytical method for very accurate concentration determinations. A liquid chromatographic...

  3. Determination of trace iron in zirconium by isotope dilution-thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Elliot, N. L.; Campbell, M. A.; Green, L. W.

    1995-08-01

    An isotope dilution-thermal ionization mass spectrometry method for the determination of parts-per-million levels of iron in zirconium is required for precise, accurate analyses in studies of the effects of iron on the irradiation deformation of nuclear alloys. A two-stage purification procedure was developed to avoid the signal suppression and interference caused by the zirconium matrix. After sample dissolution and spiking with 54Fe, the bulk of the zirconium is removed by ion exchange chromatography, and the eluted Fe(III) is further purified by micro-solvent extraction into tributyl phosphate-impregnated resin beads. The iron is back-extracted, submicrogram amounts are loaded onto previously outgassed zone-refined Re filaments, and 54/56 ratios are measured at 1170°C. A silica gel/boric acid ionization enhancer is used to obtain stable Fe+ currents as strong as 2 × 10-14. A from nanogram loadings of pure iron. The procedural blank of 20 ± 6 ng is sufficiently low to allow determination of ppm levels of iron in 0.1 g zirconium samples. The analyses of solution standards showed agreement within 2% between measured and expected values, and a good fit, r2 = 0.99997, to a linear regression. The analyses of metal standards exhibited a similar good fit to a linear regression of measured against expected values, and showed good agreement with other methods. The method meets the requirements for zirconium metallurgical studies, and may be extended to other applications.

  4. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry.

    PubMed

    Coplen, Tyler B; Qi, Haiping

    2010-09-15

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN(2)) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ(2)H reproducibility (1σ standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1 ‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN(2) is used as a moisture trap for gaseous hydrogen. PMID:20718408

  5. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ??? in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) ??2H reproducibility (1?? standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1 ??? to 0.58 ???. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  6. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  7. Determination of 237Np and Pu isotopes in large soil samples by inductively coupled plasma mass spectrometry.

    PubMed

    Maxwell, Sherrod L; Culligan, Brian K; Jones, Vernon D; Nichols, Sheldon T; Bernard, Maureen A; Noyes, Gary W

    2010-12-01

    A new method for the determination of (237)Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of (237)Np and Pu isotopes by ICP-MS. (238)U can interfere with (239)Pu measurement by ICP-MS as (238)UH(+) mass overlap and (237)Np via (238)U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1×10(6). Alpha spectrometry can also be applied so that the shorter-lived (238)Pu isotope can be measured successfully. (239) Pu, (242)Pu and (237)Np were measured by ICP-MS, while (236)Pu and (238)Pu were measured by alpha spectrometry. PMID:21056724

  8. DETERMINATION OF 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    SciTech Connect

    Maxwell, S.

    2010-07-26

    A new method for the determination of {sup 237}Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of {sup 237}Np and Pu isotopes by ICP-MS. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via {sup 238}U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1 x 10{sup 6}. Alpha spectrometry can also be applied so that the shorter-lived {sup 238}Pu isotope can be measured successfully. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu and {sup 238}Pu were measured by alpha spectrometry.

  9. Determination of Polychlorinated Biphenyls in Solid Samples by Isotope Dilution Mass Spectrometry Using ³⁷Cl-Labeled Analogues.

    PubMed

    Somoano-Blanco, Lourdes; Rodriguez-Gonzalez, Pablo; García Fonseca, Sergio; Alonso, J Ignacio Garcia

    2015-08-01

    This work describes the first application of (37)Cl-labeled compounds to isotope dilution mass spectrometry (IDMS). The synthesis of 12 (37)Cl-labeled polychlorinated biphenyls (PCBs) was carried out by the chlorination of biphenyl with isotopically enriched chlorine gas, generated by the direct oxidation of Na(37)Cl with potassium peroxymonosulfate. After an exhaustive purification due to the presence of other congeners, the concentration and the isotopic enrichment of all (37)Cl-labeled PCBs in the mixture was determined. The proposed procedure allows the simultaneous quantification of every isotope diluted PCB congener in a single gas chromatography-tandem mass spectrometry (GC-MS/MS) injection without resorting to a methodological calibration graph. The results obtained here demonstrate that the use of (37)Cl-labeled analogues provides results in agreement with the certified values of three different Certified Reference Materials (marine sediment SRM 1944, fish tissue 1947, and loamy soil CRM 962-50) and analytical figures of merit comparable to those obtained using regular IDMS procedures based on the use of commercially available (13)C-labeled analogues. PMID:26165349

  10. Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters.

    PubMed

    West, Adam G; Goldsmith, Gregory R; Brooks, Paul D; Dawson, Todd E

    2010-07-30

    The use of isotope ratio infrared spectroscopy (IRIS) for the stable hydrogen and oxygen isotope analysis of water is increasing. While IRIS has many advantages over traditional isotope ratio mass spectrometry (IRMS), it may also be prone to errors that do not impact upon IRMS analyses. Of particular concern is the potential for contaminants in the water sample to interfere with the spectroscopy, thus leading to erroneous stable isotope data. Water extracted from plant and soil samples may often contain organic contaminants. The extent to which contaminants may interfere with IRIS and thus impact upon data quality is presently unknown. We tested the performance of IRIS relative to IRMS for water extracted from 11 plant species and one organic soil horizon. IRIS deviated considerably from IRMS for over half of the samples tested, with deviations as large as 46 per thousand (delta(2)H) and 15.4 per thousand (delta(18)O) being measured. This effect was reduced somewhat by using activated charcoal to remove organics from the water; however, deviations as large as 35 per thousand (delta(2)H) and 11.8 per thousand (delta(18)O) were still measured for these cleaned samples. Interestingly, the use of activated charcoal to clean water samples had less effect than previously thought for IRMS analyses. Our data show that extreme caution is required when using IRIS to analyse water samples that may contain organic contaminants. We suggest that the development of new cleaning techniques for removing organic contaminants together with instrument-based software to flag potentially problematic samples are necessary to ensure accurate plant and soil water analyses using IRIS. PMID:20552579

  11. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE PAGESBeta

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  12. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect

    J.J. Horkley; K.P E.M. Gantz; J.E. Davis; R.R. Lewis; J.P. Crow; C.A. Poole; T.S. Grimes; J.J. Giglio

    2015-03-01

    t Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure ‘‘spike’’ solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for ‘‘age’’ determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution,

  13. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  14. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  15. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  16. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  17. Ion microscopy with resonant ionization mass spectrometry : time-of-flight depth profiling with improved isotopic precision.

    SciTech Connect

    Pellin, M. J.; Veryovkin, I. V.; Levine, J.; Zinovev, A.; Davis, A. M.; Stephan, T.; Tripa, C. E.; King, B. V.; Savina, M. R.

    2010-01-01

    There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.

  18. Simultaneous determination of the quantity and isotopic ratios of uranium in individual micro-particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS).

    PubMed

    Park, Jong-Ho; Choi, Eun-Ju

    2016-11-01

    A method to determine the quantity and isotopic ratios of uranium in individual micro-particles simultaneously by isotope dilution thermal ionization mass spectrometry (ID-TIMS) has been developed. This method consists of sequential sample and spike loading, ID-TIMS for isotopic measurement, and application of a series of mathematical procedures to remove the contribution of uranium in the spike. The homogeneity of evaporation and ionization of uranium content was confirmed by the consistent ratio of n((233)U)/n((238)U) determined by TIMS measurements. Verification of the method was performed using U030 solution droplets and U030 particles. Good agreements of resulting uranium quantity, n((235)U)/n((238)U), and n((236)U)/n((238)U) with the estimated or certified values showed the validity of this newly developed method for particle analysis when simultaneous determination of the quantity and isotopic ratios of uranium is required. PMID:27591656

  19. Oxygen isotopic measurements by secondary ion mass spectrometry in uranium oxide microparticles: a nuclear forensic diagnostic.

    PubMed

    Tamborini, G; Phinney, D; Blidstein, O; Betti, M

    2002-12-01

    To exploit oxygen isotopic measurement by SIMS as a diagnostic tool in nuclear forensics, the magnitude and reproducibility of 0-isotope instrumental mass discrimination for O-isotope standards in the SIMS laboratory at the Institute for Transuranium Elements has been evaluated. Tests for matrix-dependent discrimination effects on three different O-isotope standards with substantially different matrix compositions have been performed. The results were checked by an interlaboratory comparison of O-isotope discrimination with those obtained in the SIMS laboratory at the Lawrence Livermore National Laboratory on two standards. The results from the two laboratories are in very good agreement, indicating statistically indistinguishable instrumental mass discrimination factors for 180/160 ratios on the Cameca 6f and 3f, when the analyses are performed under the experimental conditions described. The 2sigma(mean) uncertainties of these factors are in the range of 0.3-0.9%. In accordance with the tested methodology, 0-isotope compositions were measured in three particulate uranium oxide samples of nuclear forensics interest. PMID:12498207

  20. Improved isotope ratio measurement performance in liquid chromatography/isotope ratio mass spectrometry by removing excess oxygen.

    PubMed

    Hettmann, Elena; Brand, Willi A; Gleixner, Gerd

    2007-01-01

    A low dead volume oxygen scrubbing system was introduced in a commercially available liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) interface to enhance the analytical capability of the system. In the LC/IRMS interface carbon from organic samples is converted into CO(2) inside the mobile phase by wet chemical oxidation using peroxodisulfate (Na(2)S(2)O(8)). After passing the hot reaction zone, surplus oxygen (O(2)) remains dissolved in the liquid phase. Both CO(2) and O(2) diffuse through a transfer membrane into the helium carrier and are transferred to the mass spectrometer. The presence of O(2) in the ion source may have detrimental effects on measurement accuracy and precision as well as on filament lifetime. As a remedy, a new on-line O(2)-removing device has been incorporated into the system. The new O(2) scrubber consists of two parallel hot copper reduction reactors (0.8 mm i.d., active length 120 mm) and a switch-over valve between them. One reactor is regenerated using He/H(2) while the other is actively scavenging O(2) from the gas stream. The capacity of each reduction reactor, expressed as usage time, is between 40 and 50 min. This is sufficient for a single LC run for sugars and organic acids. A further increase of the reduction capacity is accompanied by a peak broadening of about 100%. After switching to a freshly reduced reactor the oxygen background and the delta(13)C values of the reference gas need up to 500 s to stabilize. For repeated injections the delta(13)C values of sucrose remain constant (+/-0.1 per thousand) for about 3000 s. The long-term stability for measurements of sucrose was 0.11 per thousand without the reduction oven and improved slightly to 0.08 per thousand with the reduction oven. The filament lifetime improved by more than 600%, thereby improving the long-term system stability and analytical efficiency. In addition the costs per analysis were reduced considerably. PMID:18041012

  1. SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards

    PubMed Central

    Basu, Sankha S; Blair, Ian A

    2013-01-01

    Stable isotope labeling by essential nutrients in cell culture (SILEC) was recently developed to generate isotopically labeled coenzyme A (CoA) and short-chain acyl-CoA thioesters. This was accomplished by modifying the widely used technique of stable isotope labeling by amino acids in cell culture to include [13C315N]-pantothenate (vitamin B5), a CoA precursor, instead of the isotopically labeled amino acids. The lack of a de novo pantothenate synthesis pathway allowed for efficient and near-complete labeling of the measured CoA species. This protocol provides a step-by-step approach for generating stable isotope-labeled short-chain acyl-CoA internal standards in mammalian and insect cells as well as instructions on how to use them in stable isotope dilution mass spectrometric-based analyses. Troubleshooting guidelines, as well as a list of unlabeled and labeled CoA species, are also included. This protocol represents a prototype for generating stable isotope internal standards from labeled essential nutrients such as pantothenate. The generation and use of SILEC standards takes approximately 2–3 weeks. PMID:22157971

  2. The study of trace metal absoption using stable isotopes and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fennessey, P. V.; Lloyd-Kindstrand, L.; Hambidge, K. M.

    1991-12-01

    The absorption and excretion of zinc stable isotopes have been followed in more than 120 human subjects. The isotope enrichment determinations were made using a standard VG 7070E HF mass spectrometer. A fast atom gun (FAB) was used to form the ions from a dry residue on a pure silver probe tip. Isotope ratio measurements were found to have a precision of better than 2% (relative standard deviation) and required a sample size of 1-5 [mu]g. The average true absorption of zinc was found to be 73 ± 12% (2[sigma]) when the metal was taken in a fasting state. This absorption figure was corrected for tracer that had been absorbed and secreted into the gastrointestinal (GI) tract over the time course of the study. The average time for a majority of the stable isotope tracer to pass through the GI tract was 4.7 ± 1.9 (2[sigma]) days.

  3. Metabolic flux in carbohydrate biosynthesis. New methods using stable isotopes, mass spectrometry, and NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structural analysis of carbohydrates involves three parameters: composition, linkage, and conformation, and tends to rely on the various forms of two techniques; mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. These techniques are enhanced and extended by the use of stable...

  4. 13C-methacetin breath test: isotope-selective nondispersive infrared spectrometry in comparison to isotope ratio mass spectrometry in volunteers and patients with liver cirrhosis.

    PubMed

    Adamek, R J; Goetze, O; Boedeker, C; Pfaffenbach, B; Luypaerts, A; Geypens, B

    1999-12-01

    The 13C-methacetin breath test (MBT) has been proposed for the noninvasive evaluation of the hepatic mixed function oxidase activity. Up to now, stable isotope analysis of carbon dioxide of the MBT has been carried out with isotope ratio mass spectrometry (IRMS). The aim of the present study was to test a recently developed isotope-selective nondispersive infrared spectrometer (NDIRS) in comparison to IRMS in healthy volunteers and patients with liver cirrhosis. Ten healthy volunteers (range 22 to 76 years) and ten patients with histologically proven liver cirrhosis (range 47 to 71 years; Child Pugh score A = 5, B = 3, C = 2) were studied. After an overnight fast each subject received 2 mg/kg BW of 13C-methacetin dissolved in 100 ml of tea. Breath samples were obtained before substrate administration and after 5, 10, 15, 20, 30, 40, 50, 60, 80, 100, 120, 150, 180 min. The 13C/12C-ratio was analyzed in each breath sample both by NDIRS (IRIS, Wagner Analysen Technik, Worpswede, Germany) and CF-IRMS (ABCA, Europa Scientific, Crewe, UK). Results were expressed as delta over baseline (DOB [/1000]) and as cumulative percentage doses of 13C recovered (cPDR [%]) at each time interval. Correlations between IRMS and NDIRS were tested by linear regression correlation. For measuring agreement an Altman-Bland-plot was performed. Applying correlation analysis a linear correlation was found (DOB: y = 1.068 +/- 0.0012.x + 2.088 +/- 0.2126, r = 0.98, p < 0.0001; cPDR: y = 1.148 +/- 0.0109.x + 0.569 +/- 0.172; r = 0.99, p < 0.0001). For DOB the mean difference (d) was 2.9/1000 and the standard deviation (SD) of the difference was 2.7/1000. The limits of agreement (d +/- SD) were -2.5/1000 and 8.3/1000. The comparison of DOB- and cPDR-values by NDIRS and IRMS shows a high linear correlation. However, the distance of the limits of agreement is wide. Consequently, the validity of the MBT could be influenced which could make MBT by NDIRS unprecise for exact evaluation of hepatocellular

  5. High precision and high accuracy isotopic measurement of uranium using lead and thorium calibration solutions by inductively coupled plasma-multiple collector-mass spectrometry

    SciTech Connect

    Bowen, I.; Walder, A.J.; Hodgson, T.; Parrish, R.R. |

    1998-12-31

    A novel method for the high accuracy and high precision measurement of uranium isotopic composition by Inductively Coupled Plasma-Multiple Collector-Mass Spectrometry is discussed. Uranium isotopic samples are spiked with either thorium or lead for use as internal calibration reference materials. This method eliminates the necessity to periodically measure uranium standards to correct for changing mass bias when samples are measured over long time periods. This technique has generated among the highest levels of analytical precision on both the major and minor isotopes of uranium. Sample throughput has also been demonstrated to exceed Thermal Ionization Mass Spectrometry by a factor of four to five.

  6. Innovations in Mass Spectrometry for Precise and Accurate Isotope Ratio Determination from Very Small Analyte Quantities (Invited)

    NASA Astrophysics Data System (ADS)

    Lloyd, N. S.; Bouman, C.; Horstwood, M. S.; Parrish, R. R.; Schwieters, J. B.

    2010-12-01

    This presentation describes progress in mass spectrometry for analysing very small analyte quantities, illustrated by example applications from nuclear forensics. In this challenging application, precise and accurate (‰) uranium isotope ratios are required from 1 - 2 µm diameter uranium oxide particles, which comprise less than 40 pg of uranium. Traditionally these are analysed using thermal ionisation mass spectrometry (TIMS), and more recently using secondary ionisation mass spectrometry (SIMS). Multicollector inductively-coupled plasma mass spectrometry (MC-ICP-MS) can offer higher productivity compared to these techniques, but is traditionally limited by low efficiency of analyte utilisation (sample through to ion detection). Samples can either be introduced as a solution, or sampled directly from solid using laser ablation. Large multi-isotope ratio datasets can help identify provenance and intended use of anthropogenic uranium and other nuclear materials [1]. The Thermo Scientific NEPTUNE Plus (Bremen, Germany) with ‘Jet Interface’ option offers unparalleled MC-ICP-MS sensitivity. An analyte utilisation of c. 4% has previously been reported for uranium [2]. This high-sensitivity configuration utilises a dry high-capacity (100 m3/h) interface pump, special skimmer and sampler cones and a desolvating nebuliser system. Coupled with new acquisition methodologies, this sensitivity enhancement makes possible the analysis of micro-particles and small sample volumes at higher precision levels than previously achieved. New, high-performance, full-size and compact discrete dynode secondary electron multipliers (SEM) exhibit excellent stability and linearity over a large dynamic range and can be configured to simultaneously measure all of the uranium isotopes. Options for high abundance-sensitivity filters on two ion beams are also available, e.g. for 236U and 234U. Additionally, amplifiers with high ohm (1012 - 1013) feedback resistors have been developed to

  7. Isotope ratio mass spectrometry: delta13C and delta15 N analysis for tracing the origin of illicit drugs.

    PubMed

    Galimov, E M; Sevastyanov, V S; Kulbachevskaya, E V; Golyavin, A A

    2005-01-01

    Gas chromatography/combustion/mass spectrometry (GC-C-MS) and elemental analysis/mass spectrometry (EA-MS) techniques are proposed to estimate delta(13)C and delta(15)N values in heroin, morphine, cocaine and hemp leaves, for the purposes of tracing the geographical origins of seized drugs. The values of isotope ratios for pure drugs and drugs with impurities were compared. It was demonstrated that large samples (up to 3 x 10(-6) g C) were combusted completely, so that the results obtained were valid. The data are considered to be an essential supplement to a wide-scale database designed specifically for the delta(13)C and delta(15)N values of drugs. The potential forensic and academic significance of the results is discussed. PMID:15832288

  8. Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry

    SciTech Connect

    Biegalski, S R; Whitney, S M; Buchholz, B

    2005-08-24

    An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

  9. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  10. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1. PMID:16496054

  11. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    SciTech Connect

    Isselhardt, Brett H.

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  12. Stable isotope labeling tandem mass spectrometry (SILT): integration with peptide identification and extension to data-dependent scans.

    PubMed

    Elbert, Donald L; Mawuenyega, Kwasi G; Scott, Evan A; Wildsmith, Kristin R; Bateman, Randall J

    2008-10-01

    Quantitation of relative or absolute amounts of proteins by mass spectrometry can be prone to large errors. The use of MS/MS ion intensities and stable isotope labeling, which we term stable isotope labeling tandem mass spectrometry (SILT), decreases the effects of contamination from unrelated compounds. We present a software package (SILTmass) that automates protein identification and quantification by the SILT method. SILTmass has the ability to analyze the kinetics of protein turnover, in addition to relative and absolute protein quantitation. Instead of extracting chromatograms to find elution peaks, SILTmass uses only scans in which a peptide is identified and that meet an ion intensity threshold. Using only scans with identified peptides, the accuracy and precision of SILT is shown to be superior to precursor ion intensities, particularly at high or low dilutions of the isotope labeled compounds or with low amounts of protein. Using example scans, we demonstrate likely reasons for the improvements in quantitation by SILT. The appropriate use of variable modifications in peptide identification is described for measurement of protein turnover kinetics. The combination of identification with SILT facilitates quantitation without peak detection and helps to ensure the appropriate use of variable modifications for kinetics experiments. PMID:18774841

  13. Osmium isotopic ratio measurements by inductively coupled plasma source mass spectrometry

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.; Date, A.R.

    1987-04-01

    The isotopic composition of nanogram quantities of osmium was measured by using an inductively coupled plasma source mass spectrometer. Sensitivity was enhanced a factor of approx.100 by the use of an osmium tetraoxide vapor generator rather than nebulization of solution. For samples less than or equal to5 ng, the ratios /sup 190/Os//sup 192/Os, /sup 189/Os//sup 192/Os, and /sup 188/Os//sup 192/Os were determined to better than +/- 0.5% (1sigma/sub m/) precision. For the minor isotopes, the ratios /sup 187/Os//sup 192/Os and /sup 186/Os//sup 192/Os were determined to +/-1%, and /sup 184/Os//sup 192/Os (4 x 10/sup -4/) was determined to approx.10%. Isotope ratios for common osmium are reported.

  14. The use of stable isotopes and gas chromatography/mass spectrometry in the identification of steroid metabolites in the equine

    SciTech Connect

    Houghton, E.; Dumasia, M.C.; Teale, P.; Smith, S.J.; Cox, J.; Marshall, D.; Gower, D.B. )

    1990-10-01

    Stable isotope gas chromatography/mass spectrometry has been used successfully in the elucidation of structures of urinary steroid metabolites in the horse and in the identification of metabolites isolated from in vivo perfusion and in vitro incubation studies using equine tissue preparations. Deuterium-labeled steroids, testosterone, dehydroepiandrosterone, and 5-androstene-3 beta,17 beta-diol have been synthesized by base-catalyzed isotope exchange methods and the products characterized by gas chromatography/mass spectrometry. (16,16(-2)H2)Dehydroepiandrosterone (plus radiolabeled dehydroepiandrosterone) was perfused into a testicular artery of a pony stallion and was shown to be metabolized into 2H2-labeled testosterone, 4-androstenedione, isomers of 5-androstene-3,17-diol, 19-hydroxytestosterone, and 19-hydroxy-4-androstenedione. In further studies, equine testicular minces have been incubated with 2H2-labeled and radiolabeled dehydroepiandrosterone and 5-androstene-3 beta, 17 beta-diol. The metabolites, whose identity was confirmed by stable isotope gas chromatography/mass spectrometry, proved the interconversion of the two substrates, as well as formation of testosterone and 4-androstenedione. The aromatization of dehydroepiandrosterone was also confirmed, together with the formation of an isomer of 5(10)-estrene-3,17-diol from both substrates showing 19-demethylation without concomitant aromatization. In studies of the feto-placental unit, the allantochorion was shown to aromatize (2H5)testosterone to (2H4)estradiol, the loss of one 2H from the substrate being consistent with aromatization of the A ring. The formation of 6-hydroxyestradiol was also confirmed in this study. The same technique has been valuable in determining the structure of two metabolites of nandrolone isolated from horse urine.

  15. The use of stable isotopes and gas chromatography/mass spectrometry in the identification of steroid metabolites in the equine.

    PubMed

    Houghton, E; Dumasia, M C; Teale, P; Smith, S J; Cox, J; Marshall, D; Gower, D B

    1990-10-01

    Stable isotope gas chromatography/mass spectrometry has been used successfully in the elucidation of structures of urinary steroid metabolites in the horse and in the identification of metabolites isolated from in vivo perfusion and in vitro incubation studies using equine tissue preparations. Deuterium-labeled steroids, testosterone, dehydroepiandrosterone, and 5-androstene-3 beta,17 beta-diol have been synthesized by base-catalyzed isotope exchange methods and the products characterized by gas chromatography/mass spectrometry. [16,16(-2)H2]Dehydroepiandrosterone (plus radiolabeled dehydroepiandrosterone) was perfused into a testicular artery of a pony stallion and was shown to be metabolized into 2H2-labeled testosterone, 4-androstenedione, isomers of 5-androstene-3,17-diol, 19-hydroxytestosterone, and 19-hydroxy-4-androstenedione. In further studies, equine testicular minces have been incubated with 2H2-labeled and radiolabeled dehydroepiandrosterone and 5-androstene-3 beta, 17 beta-diol. The metabolites, whose identity was confirmed by stable isotope gas chromatography/mass spectrometry, proved the interconversion of the two substrates, as well as formation of testosterone and 4-androstenedione. The aromatization of dehydroepiandrosterone was also confirmed, together with the formation of an isomer of 5(10)-estrene-3,17-diol from both substrates showing 19-demethylation without concomitant aromatization. In studies of the feto-placental unit, the allantochorion was shown to aromatize [2H5]testosterone to [2H4]estradiol, the loss of one 2H from the substrate being consistent with aromatization of the A ring. The formation of 6-hydroxyestradiol was also confirmed in this study. The same technique has been valuable in determining the structure of two metabolites of nandrolone isolated from horse urine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2149219

  16. Stable Isotope Analyses of water and Aqueous Solutions by Conventional Dual-inlet Mass Spectrometry

    SciTech Connect

    Horita, Juske; Kendall, C.

    2004-01-01

    The foundation of various analytical methods for the stable isotope composition of water and other aqueous samples (natural abundance, {sup 1}H : {sup 2}H (D) = 99.985 : 0.015 atom%, and {sup 16}O : {sup 17}O : {sup 18}O = 99.762 : 0.038 : 0.200 atom%) was established during the Manhatten Project in the U.S.A., when large amounts of heavy water were produced for nuclear reactors (see Kirshenbaum, 1951, for a detailed account). From early on, there was great interest in the oxygen and hydrogen isotopic compositions of water, because they are the ideal tracers of water sources and reactions. The increased analytical precisions made possible by the subsequent development of modern gas-source isotope-ratio mass spectrometers with dual-inlets and multi-collectors, have caused the proliferation of new analytical methods and applications for the oxygen and hydrogen isotopic compositions of water. These stable isotopes have found wide applications in basic as well as applied sciences (chemistry, geology, hydrology, biology, medical sciences, and food sciences). This is because water is ubiquitous, is an essential and predominant ingredient of living organisms, and is perhaps the most reactive compound in the Earth.

  17. MASS SPECTROMETRY

    DOEpatents

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  18. Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ricci, M. P.; Merritt, D. A.; Freeman, K. H.; Hayes, J. M.

    1994-01-01

    Methods are described for continuous monitoring of signals required for precise analyses of 13C, 18O, and 15N in gas streams containing varying quantities of CO2 and N2. The quantitative resolution (i.e. maximum performance in the absence of random errors) of these methods is adequate for determination of isotope ratios with an uncertainty of one part in 10(5); the precision actually obtained is often better than one part in 10(4). This report describes data-processing operations including definition of beginning and ending points of chromatographic peaks and quantitation of background levels, allowance for effects of chromatographic separation of isotopically substituted species, integration of signals related to specific masses, correction for effects of mass discrimination, recognition of drifts in mass spectrometer performance, and calculation of isotopic delta values. Characteristics of a system allowing off-line revision of parameters used in data reduction are described and an algorithm for identification of background levels in complex chromatograms is outlined. Effects of imperfect chromatographic resolution are demonstrated and discussed and an approach to deconvolution of signals from coeluting substances described.

  19. Assessment of the amount of body water in the Red Knot (Calidris canutus): an evaluation of the principle of isotope dilution with 2H, (17)O, and (18)O as measured with laser spectrometry and isotope ratio mass spectrometry.

    PubMed

    Kerstel, Erik R T; Piersma, Theunis; Piersma, Theunis A J; Gessaman, James A; Gessaman, G Jim; Dekinga, Anne; Meijer, Harro A J; Visser, G Henk

    2006-03-01

    We have used the isotope dilution technique to study changes in the body composition of a migratory shorebird species (Red Knot, Calidris canutus) through an assessment of the amount of body water in it. Birds were quantitatively injected with a dose of water with elevated concentrations of 2H, (17)O, and (18)O. Thereafter, blood samples were taken and distilled. The resulting water samples were analysed using an isotope ratio mass spectrometry (for 2H and (18)O only) and a stable isotope ratio infrared laser spectrometry (2H, (17)O, and (18)O) to yield estimates of the amount of body water in the birds, which in turn could be correlated to the amount of body fat. Here, we validate laser spectrometry against mass spectrometry and show that all three isotopes may be used for body water determinations. This opens the way to the extension of the doubly labelled water method, used for the determination of energy expenditure, to a triply labelled water method, incorporating an evaporative water loss correction on a subject-by-subject basis or, alternatively, the reduction of the analytical errors by statistically combining the (17)O and (18)O measurements. PMID:16500750

  20. Application of Inductively Coupled Plasma Mass Spectrometry to the determination of uranium isotope ratios in individual particles for nuclear safeguards

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao Zhi; Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2007-10-01

    The capability of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of uranium isotope ratios in individual particles was determined. For this purpose, we developed an experimental procedure including single particle transfer with a manipulator, chemical dissolution and isotope ratio analysis, and applied to the analysis of individual uranium particles in certified reference materials (NBL CRM U050 and U350). As the result, the 235U/ 238U isotope ratio for the particle with the diameter between 0.5 and 3.9 μm was successfully determined with the deviation from the certified ratio within 1.8%. The relative standard deviation (R.S.D.) of the 235U/ 238U isotope ratio was within 4.2%. Although the analysis of 234U/ 238U and 236U/ 238U isotope ratios gave the results with inferior precision, the R.S.D. within 20% was possible for the measurement of the particle with the diameter more than 2.1 μm. The developed procedure was successfully applied to the analysis of a simulated environmental sample prepared from a mixture of indoor dust (NIST SRM 2583) and uranium particles (NBL CRM U050, U350 and U950a). From the results, the proposed procedure was found to be an alternative analytical tool for nuclear safeguards.

  1. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    SciTech Connect

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; Willingham, D. G.; Knight, K. B.; Hutcheon, I. D.

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.

  2. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE PAGESBeta

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; Willingham, D. G.; Knight, K. B.; Hutcheon, I. D.

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  3. Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS)

    SciTech Connect

    Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.; Farmer, Orville T.

    2006-05-09

    99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samples and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.

  4. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    PubMed

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-01

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. PMID:25440666

  5. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry.

    PubMed

    Merritt, D A; Freeman, K H; Ricci, M P; Studley, S A; Hayes, J M

    1995-07-15

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer. PMID:11536720

  6. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Freeman, K. H.; Ricci, M. P.; Studley, S. A.; Hayes, J. M.

    1995-01-01

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  7. Quantitative biomedical mass spectrometry

    NASA Astrophysics Data System (ADS)

    de Leenheer, Andrép; Thienpont, Linda M.

    1992-09-01

    The scope of this contribution is an illustration of the capabilities of isotope dilution mass spectrometry (IDMS) for quantification of target substances in the biomedical field. After a brief discussion of the general principles of quantitative MS in biological samples, special attention will be paid to new technological developments or trends in IDMS from selected examples from the literature. The final section will deal with the use of IDMS for accuracy assessment in clinical chemistry. Methodological aspects considered crucial for avoiding sources of error will be discussed.

  8. Revisiting the metabolism of 19-nortestosterone using isotope ratio and high resolution/high accuracy mass spectrometry.

    PubMed

    Piper, Thomas; Schänzer, Wilhelm; Thevis, Mario

    2016-09-01

    The synthetic anabolic androgenic steroid 19-nortestosterone is prohibited in sports according to the regulations of the World Anti-Doping Agency (WADA) due to its performance-enhancing effects. Today, doping controls focus predominantly on one main urinary metabolite, 19-norandrosterone glucuronide, which offers the required detection windows for an appropriate retrospectivity of sports drug testing programs. As 19-norandrosterone can also be found in urine at low concentrations originating from in situ demethylation of other abundant steroids or from endogenous production, the exogenous source of 19-norandrosterone needs to be verified, which is commonly accomplished by carbon isotope ratio analyses. The aim of this study was to re-investigate the metabolism of 19-nortestosterone in order to probe for additional diagnostic long-term metabolites, which might support the unambiguous attribution of an endo- or exogenous source of detected 19-nortestosterone metabolites. Employing a recently introduced strategy for metabolite identification, threefold deuterated 19-nortestosterone (16,16,17-(2)H3-NT) was administered to one healthy male volunteer and urine samples were collected for 20 days. Samples were prepared with established methods separating unconjugated, glucuronidated and sulfated steroids, and analytes were further purified by means of high-performance liquid chromatography before trimethylsilylation. Deuterated metabolites were identified using gas chromatograph/thermal conversion/isotope ratio mass spectrometer comprising an additional single quadrupole mass spectrometer. Additional structural information was obtained by gas chromatography/time-of-flight mass spectrometry and liquid chromatography/high resolution mass spectrometry. In general, sulfo-conjugated metabolites were excreted for a longer time period than the corresponding glucuronides. Several unexpected losses of the arguably stable isotope labels were observed and characterized, attributed to

  9. Measuring the Composition and Stable-Isotope Labeling of Algal Biomass Carbohydrates via Gas Chromatography/Mass Spectrometry.

    PubMed

    McConnell, Brian O; Antoniewicz, Maciek R

    2016-05-01

    We have developed a method to measure carbohydrate composition and stable-isotope labeling in algal biomass using gas chromatography/mass spectrometry (GC/MS). The method consists of two-stage hydrochloric acid hydrolysis, followed by chemical derivatization of the released monomer sugars and quantification by GC/MS. Fully (13)C-labeled sugars are used as internal standards for composition analysis. This convenient, reliable, and accurate single-platform workflow offers advantages over existing methods and opens new opportunities to study carbohydrate metabolism of algae under autotrophic, mixotrophic, and heterotrophic conditions using metabolic flux analysis and isotopic tracers such as (2)H2O and (13)C-glucose. PMID:27042946

  10. MASS SPECTROMETRY

    DOEpatents

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  11. Adsorption in gas mass spectrometry. I. Effects on the measurement of individual isotopic species

    NASA Astrophysics Data System (ADS)

    Gonfiantini, Roberto; Valkiers, Staf; Taylor, Philip D. P.; de Bièvre, Paul

    1997-05-01

    The adsorption-desorption process of gas molecules on the walls of the mass spectrometer inlet system was studied in order to assess quantitatively its influence on measurement results. The effects on individual isotopic species in SiF4 measurements required for the re-determination of the Avogadro constant are discussed in this paper, while the effects on isotope amount ratio determinations will be discussed in a companion paper. A model based on the Langmuir adsorption isotherm is developed, which fits well the experimental observations and provides the means to investigate adsorption and desorption kinetics in the inlet system. A parameter called the [`]apparent leak-rate coefficient' is introduced; this represents the relative variation with time of any isotopic species in the inlet system. All the adsorption parameters appearing in the balance equations are derived from the apparent leak-rate coefficient. Application of the model to long mass-spectrometric measurements of SiF4 yields a rate constant of 6.5 × 10-5 s-1 for SiF4 effusion through the molecular leak of the inlet system. Adsorption and desorption rate-constants are equal to 20-25% of the leak rate-constant, and the adsorption sites are about two orders of magnitude lower than the number of Ni and Cu atoms present on the inlet system walls.

  12. A guide through the computational analysis of isotope-labeled mass spectrometry-based quantitative proteomics data: an application study

    PubMed Central

    2011-01-01

    Background Mass spectrometry-based proteomics has reached a stage where it is possible to comprehensively analyze the whole proteome of a cell in one experiment. Here, the employment of stable isotopes has become a standard technique to yield relative abundance values of proteins. In recent times, more and more experiments are conducted that depict not only a static image of the up- or down-regulated proteins at a distinct time point but instead compare developmental stages of an organism or varying experimental conditions. Results Although the scientific questions behind these experiments are of course manifold, there are, nevertheless, two questions that commonly arise: 1) which proteins are differentially regulated regarding the selected experimental conditions, and 2) are there groups of proteins that show similar abundance ratios, indicating that they have a similar turnover? We give advice on how these two questions can be answered and comprehensively compare a variety of commonly applied computational methods and their outcomes. Conclusions This work provides guidance through the jungle of computational methods to analyze mass spectrometry-based isotope-labeled datasets and recommends an effective and easy-to-use evaluation strategy. We demonstrate our approach with three recently published datasets on Bacillus subtilis [1,2] and Corynebacterium glutamicum [3]. Special focus is placed on the application and validation of cluster analysis methods. All applied methods were implemented within the rich internet application QuPE [4]. Results can be found at http://qupe.cebitec.uni-bielefeld.de. PMID:21663690

  13. Accuracy and Reproducibility in Quantification of Plasma Protein Concentrations by Mass Spectrometry without the Use of Isotopic Standards

    PubMed Central

    Kramer, Gertjan; Woolerton, Yvonne; van Straalen, Jan P.; Vissers, Johannes P. C.; Dekker, Nick; Langridge, James I.; Beynon, Robert J.; Speijer, Dave; Sturk, Auguste; Aerts, Johannes M. F. G.

    2015-01-01

    Background Quantitative proteomic analysis with mass spectrometry holds great promise for simultaneously quantifying proteins in various biosamples, such as human plasma. Thus far, studies addressing the reproducible measurement of endogenous protein concentrations in human plasma have focussed on targeted analyses employing isotopically labelled standards. Non-targeted proteomics, on the other hand, has been less employed to this end, even though it has been instrumental in discovery proteomics, generating large datasets in multiple fields of research. Results Using a non-targeted mass spectrometric assay (LCMSE), we quantified abundant plasma proteins (43 mg/mL—40 ug/mL range) in human blood plasma specimens from 30 healthy volunteers and one blood serum sample (ProteomeXchange: PXD000347). Quantitative results were obtained by label-free mass spectrometry using a single internal standard to estimate protein concentrations. This approach resulted in quantitative results for 59 proteins (cut off ≥11 samples quantified) of which 41 proteins were quantified in all 31 samples and 23 of these with an inter-assay variability of ≤ 20%. Results for 7 apolipoproteins were compared with those obtained using isotope-labelled standards, while 12 proteins were compared to routine immunoassays. Comparison of quantitative data obtained by LCMSE and immunoassays showed good to excellent correlations in relative protein abundance (r = 0.72–0.96) and comparable median concentrations for 8 out of 12 proteins tested. Plasma concentrations of 56 proteins determined by LCMSE were of similar accuracy as those reported by targeted studies and 7 apolipoproteins quantified by isotope-labelled standards, when compared to reference concentrations from literature. Conclusions This study shows that LCMSE offers good quantification of relative abundance as well as reasonable estimations of concentrations of abundant plasma proteins. PMID:26474480

  14. Analysis of liposoluble carboxylic acids metabolome in human serum by stable isotope labeling coupled with liquid chromatography-mass spectrometry.

    PubMed

    Zhu, Quan-Fei; Zhang, Zheng; Liu, Ping; Zheng, Shu-Jian; Peng, Ke; Deng, Qian-Yun; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-08-19

    Fatty acids (FAs) are groups of liposoluble carboxylic acids (LCAs) and play important roles in various physiological processes. Abnormal contents or changes of FAs are associated with a series of diseases. Here we developed a strategy with stable isotope labeling combined with liquid chromatography-tandem mass spectrometry (IL-LC-MS) analysis for comprehensive profiling and relative quantitation of LCAs in human serum. In this strategy, a pair of isotope labeling reagents (2-dimethylaminoethylamine (DMED)) and d4-2-dimethylaminoethylamine (d4-DMED) were employed to selectively label carboxyl groups of LCAs. The DMED and d4-DMED labeled products can lose four characteristic neutral fragments of 45 and 49Da or 63 and 67Da in collision-induced dissociation. Therefore, quadruple neutral loss scan (QNLS) mode was established and used for non-targeted profiling of LCAs. The peak pairs of DMED and d4-DMED labeling with the same retention time, intensity and characteristic mass differences were extracted from the two NLS spectra respectively, and assigned as potential LCA candidates. Using this strategy, 241 LCA candidates were discovered in the human serum; 156 carboxylic acid compounds could be determined by searching HMDB and METLIN databases (FAs are over 90%) and 21 of these LCAs were successfully identified by standards. Subsequently, a modified pseudo-targeted method with multiple reaction monitoring (MRM) detection mode was developed and used for relative quantification of LCAs in human serum from type 2 diabetes mellitus (T2DM) patients and healthy controls. As a result, 81 LCAs were found to have significant difference between T2DM patients and healthy controls. Taken together, the isotope labeling combined with tandem mass spectrometry analysis demonstrated to be a powerful strategy for identification and quantification of LCA compounds in serum samples. PMID:27432792

  15. Rapid determination of (237)Np and plutonium isotopes in urine by inductively-coupled plasma mass spectrometry and alpha spectrometry.

    PubMed

    Maxwell, Sherrod L; Culligan, Brian K; Jones, Vernon D; Nichols, Sheldon T; Noyes, Gary W; Bernard, Maureen A

    2011-08-01

    A new rapid separation method was developed for the measurement of plutonium and neptunium in urine samples by inductively-coupled plasma mass spectrometry (ICP-MS) and/or alpha spectrometry with enhanced uranium removal. This method allows separation and preconcentration of plutonium and neptunium in urine samples using stacked extraction chromatography cartridges and vacuum box flow rates to facilitate rapid separations. There is an increasing need to develop faster analytical methods for emergency response samples. There is also enormous benefit to having rapid bioassay methods in the event that a nuclear worker has an uptake (puncture wound, etc.) to assess the magnitude of the uptake and guide efforts to mitigate dose (e.g., tissue excision and chelation therapy). This new method focuses only on the rapid separation of plutonium and neptunium with enhanced removal of uranium. For ICP-MS, purified solutions must have low salt content and low concentration of uranium due to spectral interference of (238)U(1)H(+) on m/z 239. Uranium removal using this method is enhanced by loading plutonium and neptunium initially onto TEVA resin, then moving plutonium to DGA resin where additional purification from uranium is performed with a decontamination factor of almost 1×10(5). If UTEVA resin is added to the separation scheme, a decontamination factor of ~3 × 10(6) can be achieved. PMID:21709507

  16. Alternative Methodology for Boron Isotopic Analysis of CaCO3 by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2012-12-01

    Negative thermal ionization mass spectrometry (NTIMS) has been a common tool for investigating boron isotopes in CaCO3 and other environmental samples, the high sensitivity of BO2- ionization enabling measurements of ng levels of boron. However, B isotope measurement by this technique suffers from a number of problems, including: (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; (2) CNO- interference on mass 42 ([10BO2]-) that may be present in some filament load solutions (such as B-free seawater processed through ion-exchange resin), and (3) potential matrix effects due to widely differing chemistry of samples and standards. Here we examine a potentially improved NTIMS methodology that incudes removal of sample-related calcium (and other cations) by ion exchange and uses an alternative filament loading solution prepared from high-purity single-element solutions of Ca, Mg, Na, and K. Initial results suggest that this new method may offer significant improvement over the more traditional NTIMS approach in which digested CaCO3 samples are directly loaded onto filaments in B-free seawater. Replicate analyses of standards and samples yield a typical standard deviation of approximately 0.3‰ δ11B and boron isotopic compositions comparable to reported or consensus values. Fractionation during analysis has thus far typically been less than 0.5‰ δ11B. The method delivers boron ionization efficiency similar to directly-loaded seawater, and negligible signal at mass 26 (CN-), a proxy for the possible interfering molecular CNO- ion. Standards and samples behave similarly and predictably during filament heating and analysis, thus allowing for fully automated data acquisition, which in turn may increase sample throughput and reduce potential analytical inconsistencies associated with operator-controlled heating and analysis.

  17. Performance of the wet oxidation unit of the HPLC isotope ratio mass spectrometry system for halogenated compounds.

    PubMed

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans Hermann

    2014-08-01

    The performance of liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) for polar halogenated compounds was evaluated. Oxidation capacity of the system was tested with halogenated acetic acids and halogenated aromatic compounds. Acetic acid (AA) was selected as a reference compound for complete oxidation and compared on the molar basis to the oxidation of other analytes. The isotope values were proofed with calibrated δ(13)C values obtained with an elemental analyzer (EA). Correct isotope values were obtained for mono- and dichlorinated, fluorinated, and tribrominated acetic acids and also for aniline, phenol, benzene, bromobenzene, chlorobenzene, 1,2-dichlorobenzene, 2,4,6-trichlorophenol, pentafluorophenol, and nitrobenzene. Incomplete oxidation of trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) resulted in lower recovery compared to AA (37% and 24%, respectively) and in isotopic shift compared to values obtained with EA (TCA Δδ(13)C(EA/LC-IRMS) = 8.8‰, TFA Δδ(13)C(EA/LC-IRMS) = 6.0‰). Improvement of oxidation by longer reaction time in the reactor and increase in the concentration of sulfate radicals did not lead to complete combustion of TCA and TFA needed for δ(13)C analysis. To the best of our knowledge, this is the first time such highly chlorinated compounds were studied with the LC-IRMS system. This work provides information for method development of LC-IRMS methods for halogenated contaminants that are known as potential threats to public health and the environment. PMID:24975492

  18. Determination of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    SciTech Connect

    Bolin, R.N.

    1995-12-31

    Inductively coupled plasma-mass spectrometry (ICP-MS), using standard sample introduction by peristaltic pumping, is presented as a method to determine total and isotopic uranium ({sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U) and thorium ({sup 232}Th) in soil samples. Initial sample preparation consists of oven drying to determine moisture content, and grinding and mixing the soil to make it homogeneous. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium into solution. Bismuth ({sup 209}Bi) is added prior to digestion to monitor for losses due to sample preparation and analysis. An addition digestion, using nitric/perchloric acid is performed if the total thorium concentration is required on the sample. The uranium and thorium content of this solution and the {sup 235}U/{sup 238}U ratio are measured on an initial pass through the ICP-MS. The total uranium measurement is based on the {sup 238}U isotope measurement with correction for the presence of the U isotopes. To determine the concentration of the less abundant {sup 234}U and {sup 236}U isotopes, the digestate is further concentrated by using a solid phase extraction column (TRU.Spec by EiChrom Industries, Inc.) before a second pass through the ICP-MS.

  19. Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics.

    PubMed

    Longobardi, F; Casiello, G; Cortese, M; Perini, M; Camin, F; Catucci, L; Agostiano, A

    2015-12-01

    The aim of this study was to predict the geographic origin of lentils by using isotope ratio mass spectrometry (IRMS) in combination with chemometrics. Lentil samples from two origins, i.e. Italy and Canada, were analysed obtaining the stable isotope ratios of δ(13)C, δ(15)N, δ(2)H, δ(18)O, and δ(34)S. A comparison between median values (U-test) highlighted statistically significant differences (p<0.05) for all isotopic parameters between the lentils produced in these two different geographic areas, except for δ(15)N. Applying principal component analysis, grouping of samples was observed on the basis of origin but with overlapping zones; consequently, two supervised discriminant techniques, i.e. partial least squares discriminant analysis and k-nearest neighbours algorithm were used. Both models showed good performances with external prediction abilities of about 93% demonstrating the suitability of the methods developed. Subsequently, isotopic determinations were also performed on the protein and starch fractions and the relevant results are reported. PMID:26041202

  20. Determination of Mineral-Specific Clumped Isotope Acid Digestion Fractionation Factors Using Heating Experiments and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Henry, D.; Tang, J.; Mosenfelder, J. L.; Eagle, R.; Tripati, A.

    2014-12-01

    Clumped isotope thermometry involves the determination of formation temperatures of carbonates from the fraction of isotopologues containing multiple rare isotopes (oxygen-18 and carbon-13). At high temperatures, the abundance of these isotopologues should be stochastic. At lower temperatures, there is a tendency for heavy isotopes to form bonds with each other. However, spectroscopic determination of isotope ratios with high precision is difficult in solids, and so 13C-18O bond abundance is not measured in the solid phase. Instead, analysis of carbonates is performed using gas source mass spectrometry, by reacting the carbonate samples with phosphoric acid and measuring the evolved CO2 gas. As an oxygen atom is lost during the conversion of CO32- groups to CO2, this reaction is hypothesized to result in mineral and acid digestion temperature-dependent fractionation. In order to quantify this fractionation between CO32- and CO2, this experiment seeks to determine acid fractionation factors for carbonate samples of varying composition by randomizing samples through intense heating and comparing analyte CO2 measured composition to the expected composition for a stochastically distributed sample. From this analysis, future carbonate measurements can be calibrated to account for acid digestion fractionation.

  1. Fission track-secondary ion mass spectrometry as a tool for detecting the isotopic signature of individual uranium containing particles.

    PubMed

    Esaka, Fumitaka; Lee, Chi-Gyu; Magara, Masaaki; Kimura, Takaumi

    2012-04-01

    A fission track technique was used as a sample preparation method for subsequent isotope abundance ratio analysis of individual uranium containing particles with secondary ion mass spectrometry (SIMS) to measure the particles with higher enriched uranium efficiently. A polycarbonate film containing particles was irradiated with thermal neutrons and etched with 6M NaOH solution. Each uranium containing particle was then identified by observing fission tracks created and a portion of the film having a uranium containing particle was cut out and put onto a glassy carbon planchet. The polycarbonate film, which gave the increases of background signals on the uranium mass region in SIMS analysis, was removed by plasma ashing with 200 W for 20 min. In the analysis of swipe samples having particles containing natural (NBL CRM 950a) or low enriched uranium (NBL CRM U100) with the fission track-SIMS method, uranium isotope abundance ratios were successfully determined. This method was then applied to the analysis of a real inspection swipe sample taken at a nuclear facility. As a consequence, the range of (235)U/(238)U isotope abundance ratio between 0.0276 and 0.0438 was obtained, which was higher than that measured by SIMS without using a fission track technique (0.0225 and 0.0341). This indicates that the fission track-SIMS method is a powerful tool to identify the particle with higher enriched uranium in environmental samples efficiently. PMID:22405310

  2. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water. PMID:26946020

  3. A comparison of lead-isotope measurements on exploration-type samples using inductively coupled plasma and thermal ionization mass spectrometry

    USGS Publications Warehouse

    Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.

    1989-01-01

    Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.

  4. Simplified sample preparation procedure for measuring isotope-enriched methylmercury by gas chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Avramescu, Mary-Luyza; Zhu, Joy; Yumvihoze, Emmanuel; Hintelmann, Holger; Fortin, Danielle; Lean, David R S

    2010-06-01

    Many procedures have been developed to measure the concentration of monomethylmercury (MeHg) from different sample matrices, and the use of stable isotopes of mercury now provides opportunities to determine its formation and degradation rates. Here, a modified procedure for measuring mercury isotopes in sediment samples that uses acid leaching-ion exchange-thiosulfate extraction (TSE) to isolate and purify the methylated mercury from the matrix is proposed. The latter is followed by aqueous-phase ethylation, purge and trap on Tenax, gas chromatography separation of ethylated mercury compounds, and inductively coupled plasma mass spectrometry detection. The new TSE procedure bridges together two well-known methods, the acid-leaching and distillation-derivatization procedures, offering the advantages of artifact-free formation of the first, and low detection limits and the possibility of quantification of individual isotopes of mercury of the second. The modified procedure retains the derivatization, purge and trap, and gas chromatography and inductively coupled plasma mass spectrometry (GC-ICP-MS) detection steps from the distillation-derivatization procedure, and eliminates the distillation step, which is not only laborious but also expensive, due to the high cost of installation and time-consuming cleaning process. Major advantages of the TSE procedure proposed include the extraction and analysis of a large number of samples in a short time, excellent analyte recoveries, and the lack of artifact formation. Sediment certified reference materials (CRMs), BCR 580 and IAEA 405, were used to test the TSE procedure accuracy. Recoveries between 94 to 106% and 95 to 96% were obtained for CRMs and spiked samples (Milli-Q(R) water), respectively. Comparisons among thiosulfate extraction, distillation, and acid-leaching procedures have shown good agreement of methylmercury values. PMID:20821567

  5. Determination of the sulfur isotope ratio in carbonyl sulfide using gas chromatography/isotope ratio mass spectrometry on fragment ions 32S+, 33S+, and 34S+.

    PubMed

    Hattori, Shohei; Toyoda, Akari; Toyoda, Sakae; Ishino, Sakiko; Ueno, Yuichiro; Yoshida, Naohiro

    2015-01-01

    Little is known about the sulfur isotopic composition of carbonyl sulfide (OCS), the most abundant atmospheric sulfur species. We present a promising new analytical method for measuring the stable sulfur isotopic compositions (δ(33)S, δ(34)S, and Δ(33)S) of OCS using nanomole level samples. The direct isotopic analytical technique consists of two parts: a concentration line and online gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions (32)S(+), (33)S(+), and (34)S(+). The current levels of measurement precision for OCS samples greater than 8 nmol are 0.42‰, 0.62‰, and 0.23‰ for δ(33)S, δ(34)S, and Δ(33)S, respectively. These δ and Δ values show a slight dependence on the amount of injected OCS for volumes smaller than 8 nmol. The isotope values obtained from the GC-IRMS method were calibrated against those measured by a conventional SF6 method. We report the first measurement of the sulfur isotopic composition of OCS in air collected at Kawasaki, Kanagawa, Japan. The δ(34)S value obtained for OCS (4.9 ± 0.3‰) was lower than the previous estimate of 11‰. When the δ(34)S value for OCS from the atmospheric sample is postulated as the global signal, this finding, coupled with isotopic fractionation for OCS sink reactions in the stratosphere, explains the reported δ(34)S for background stratospheric sulfate. This suggests that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols. PMID:25439590

  6. Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS).

    PubMed

    Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D

    2001-08-01

    Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry. PMID:11393755

  7. Authenticity of carbon dioxide bubbles in French ciders through multiflow-isotope ratio mass spectrometry measurements.

    PubMed

    Gaillard, Laetitia; Guyon, Francois; Salagoïty, Marie-Hélène; Médina, Bernard

    2013-12-01

    A procedure to detect whether carbon dioxide was added to French ciders has been developed. For this purpose, an optimised and simplified method is proposed to determine (13)C/(12)C isotope ratio of carbon dioxide (δ(13)C) in ciders. Three critical steps were checked: (1) influence of atmospheric CO2 remaining in the loaded vial, (2) impact of helium flush, (3) sampling speed. This study showed that atmospheric CO2 does not impact the measurement, that helium flush can lead to isotopic fractionation and finally, that a fractionation occurs only 5h after bottle opening. The method, without any other preparation, consists in sampling 0.2 mL of cold (4 °C) cider in a vial that is passed in an ultrasonic bath for 10 min at room temperature to enhance cider de-carbonation. The headspace CO2 is then analysed using the link Multiflow®-isotope ratio mass spectrometer. Each year, a data bank is developed by fermenting authentic apples juices in order to control cider authenticity. Over a four year span (2008-2011), the CO2 produced during the fermentation step was studied. This set of 61 authentic ciders, from various French production areas, was used to determine a δ(13)C value range of -22.59±0.92‰ for authentic ciders CO2 bubbles. 75 commercial ciders were analysed with this method. Most of the samples analysed present a gas δ(13)C value in the expected range. Nevertheless, some ciders have δ(13)C values outside the 3σ limit, revealing carbonation by technical CO2. This practice is not allowed for organic, "Controlled Appellation of Origin" ciders and ciders specifying natural carbonation on the label. PMID:23870934

  8. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pathirana, S. L.; van der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-12-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol-1, or 1-3 % of the typical sample size. The repeatability is 0.1 ‰ for δ13C and 0.2 ‰ for δ18O. The peak area allows for simultaneous determination of the mole fraction with an analytical repeatability of ~ 0.7 nmol mol-1 for 100 mL of ambient air (185.4 nmol mol-1 of CO). An automated single measurement is performed in only 18 min, and the achieved time efficiency (and small volume of sample air) allows for repetitive measurements practically.

  9. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry.

    PubMed

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ. PMID:26902947

  10. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca2+ on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology.

  11. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-02-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca2+ on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology.

  12. New untargeted metabolic profiling combining mass spectrometry and isotopic labeling: application on Aspergillus fumigatus grown on wheat.

    PubMed

    Cano, Patricia M; Jamin, Emilien L; Tadrist, Souria; Bourdaud'hui, Pascal; Péan, Michel; Debrauwer, Laurent; Oswald, Isabelle P; Delaforge, Marcel; Puel, Olivier

    2013-09-01

    Characterization of fungal secondary metabolomes has become a challenge due to the industrial applications of many of these molecules, and also due to the emergence of fungal threats to public health and natural ecosystems. Given that, the aim of the present study was to develop an untargeted method to analyze fungal secondary metabolomes by combining high-accuracy mass spectrometry and double isotopic labeling of fungal metabolomes. The strain NRRL 35693 of Aspergillus fumigatus , an important fungal pathogen, was grown on three wheat grain substrates: (1) naturally enriched grains (99% (12)C), (2) grains enriched 96.8% with (13)C, (3) grains enriched with 53.4% with (13)C and 96.8% with (15)N. Twenty-one secondary metabolites were unambiguously identified by high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) analysis. AntiBase 2012 was used to confirm the identity of these metabolites. Additionally, on the basis of tandem mass spectrometry (MS(n)) experiments, it was possible to identify for the first time the formula and the structure of fumigaclavine D, a new member of the fumigaclavines family. Post biosynthesis degradation of tryptoquivaline F by methanol was also identified during HPLC-HRMS analysis by the detection of a carbon atom of nonfungal origin. The interest of this method lies not only on the unambiguous determination of the exact chemical formulas of fungal secondary metabolites but also on the easy discrimination of nonfungal products. Validation of the method was thus successfully achieved in this study, and it can now be applied to other fungal metabolomes, offering great possibilities for the discovery of new drugs or toxins. PMID:23901908

  13. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-02-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1-11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines.

  14. Quantitative Cross-linking/Mass Spectrometry Using Isotope-labeled Cross-linkers and MaxQuant.

    PubMed

    Chen, Zhuo A; Fischer, Lutz; Cox, Jürgen; Rappsilber, Juri

    2016-08-01

    The conceptually simple step from cross-linking/mass spectrometry (CLMS) to quantitative cross-linking/mass spectrometry (QCLMS) is compounded by technical challenges. Currently, quantitative proteomics software is tightly integrated with the protein identification workflow. This prevents automatically quantifying other m/z features in a targeted manner including those associated with cross-linked peptides. Here we present a new release of MaxQuant that permits starting the quantification process from an m/z feature list. Comparing the automated quantification to a carefully manually curated test set of cross-linked peptides obtained by cross-linking C3 and C3b with BS(3) and isotope-labeled BS(3)-d4 revealed a number of observations: (1) Fully automated process using MaxQuant can quantify cross-links in our reference data set with 68% recall rate and 88% accuracy. (2) Hidden quantification errors can be converted into exposed failures by label-swap replica, which makes label-swap replica an essential part of QCLMS. (3) Cross-links that failed during automated quantification can be recovered by semi-automated re-quantification. The integrated workflow of MaxQuant and semi-automated assessment provides the maximum of quantified cross-links. In contrast, work on larger data sets or by less experienced users will benefit from full automation in MaxQuant. PMID:27302889

  15. [Determination of polychlorinated naphthalenes in environmental samples by isotope dilution gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Liu, Zhitong; Zhang, Bing; Wang, Wenwen; Liu, Guorui; Gao, Lirong; Zheng, Minghui

    2013-09-01

    An isotope dilution gas chromatography combined with triple quadrupole mass spectrometry (GC-MS/MS) method was established for the analysis of twenty polychlorinated naphthalenes (PCNs) congeners in environmental samples. The linear correlation coefficients (R2) of calibration curves were greater than 0.99 in the concentration range of 0.5 - 200 microg/L for all the twenty PCN congeners. The average relative response factors (RRF) were calculated based on a seven-point calibration for the twenty PCN congeners. The relative standard deviations (RSDs) of all the congeners were below 15% (n = 7). The limits of detection (LOD) of the established method ranged from 0.04 to 0.48 microg/L for the twenty PCN congeners. The recoveries of matrix spiked samples ranged from 45.2% to 87.9%, and the RSDs ranged from 0.4% to 21.2%. The sediment samples and stack gas samples collected from secondary aluminum smelting were analyzed by the established method. The obtained results were also compared with the data analyzed by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) method. The comparison indicated that the data of the established method was in good agreement with those of HRGC/HRMS method with the RSDs of 0.5% - 41.4%. Consequently, the established GC-MS/MS method can be applied to the determination of PCNs in environmental samples. PMID:24392626

  16. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    PubMed Central

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1–11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines. PMID:26888486

  17. Quantitative Cross-linking/Mass Spectrometry Using Isotope-labeled Cross-linkers and MaxQuant*

    PubMed Central

    Cox, Jürgen

    2016-01-01

    The conceptually simple step from cross-linking/mass spectrometry (CLMS) to quantitative cross-linking/mass spectrometry (QCLMS) is compounded by technical challenges. Currently, quantitative proteomics software is tightly integrated with the protein identification workflow. This prevents automatically quantifying other m/z features in a targeted manner including those associated with cross-linked peptides. Here we present a new release of MaxQuant that permits starting the quantification process from an m/z feature list. Comparing the automated quantification to a carefully manually curated test set of cross-linked peptides obtained by cross-linking C3 and C3b with BS3 and isotope-labeled BS3-d4 revealed a number of observations: (1) Fully automated process using MaxQuant can quantify cross-links in our reference data set with 68% recall rate and 88% accuracy. (2) Hidden quantification errors can be converted into exposed failures by label-swap replica, which makes label-swap replica an essential part of QCLMS. (3) Cross-links that failed during automated quantification can be recovered by semi-automated re-quantification. The integrated workflow of MaxQuant and semi-automated assessment provides the maximum of quantified cross-links. In contrast, work on larger data sets or by less experienced users will benefit from full automation in MaxQuant. PMID:27302889

  18. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Kita, Adriana; Cheng, Guilong; Kori, Yekaterina; Liu, Hongcheng

    2016-03-15

    Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in (18)O-labeled water. The sample from the digestion in (18)O-water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). The molecular weight differences between the peptides digested in normal water versus (18)O-water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of (18)O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation. PMID:26747642

  19. Simultaneous determination of alachlor, metolachlor, atrazine, and simazine in water and soil by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect

    Huang, L.Q.

    1989-03-01

    A multiresidue method was developed for the simultaneous determination of low parts per billion (ppb) concentrations of the herbicides alachlor, metolachlor, atrazine, and simazine in water and soil using isotope dilution gas chromatography/mass spectrometry (GC/MS). Known amounts of /sup 15/N,/sup 13/C-alachlor and /sup 2/H/sub 5/-atrazine were added to each sample as internal standards. The samples were then prepared by a solid phase extraction with no further cleanup. A high resolution GC/low resolution MS system with data acquisition in selected ion monitoring mode was used to quantitate herbicides in the extract. The limit of detection was 0.05 ppb for water and 0.5 ppb for soil. Accuracy greater than 80% and precision better than 4% was demonstrated with spiked samples.

  20. Accuracy of some routine method used in clinical chemistry as judged by isotope dilution-mass spectrometry

    SciTech Connect

    Bjoerkhem, I.; Bergman, A.; Falk, O.; Kallner, A.; Lantto, O.; Svensson, L.; Akerloef, E.; Blomstrand, R.

    1981-05-01

    Serum from patients was pooled, filtered, dispensed, and frozen. This pooled specimen was used for accuracy control in 64 participating laboratories in Sweden. Mean values (state-of-the-art values) were obtained for creatinine, cholesterol, glucose, urea, uric acid, and cortisol. These values were compared with values obtained with highly accurate reference methods based on isotope dilution-mass spectrometry. Differences were marked in the case of determination of creatinine and cortisol. Concerning the other components, the differences between the state-of-the-art value and the values obtained with the reference methods were negligible. Moreover, the glucose oxidase and the oxime methods for determination of glucose and urea were found to give significantly lower values than the hexokinase and urease methods, respectively. Researchers conclude that methods with a higher degree of accuracy are required for routine determination of creatinine and cortisol.

  1. Determination of 90Sr and Pu isotopes in contaminated groundwater samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, Miroslav V.; Ostapczuk, Peter; Halicz, Ludwik; Hille, Ralf; Becker, J. Sabine

    2005-04-01

    A sensitive analytical method for determining the artificial radionuclides 90Sr, 239Pu and 240Pu at the ultratrace level in groundwater samples from the Semipalatinsk Test Site area in Kazakhstan by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS) was developed. In order to avoid possible isobaric interferences at m/z 90 for 90Sr determination (e.g. 90Zr+, 40Ar50Cr+, 36Ar54Fe+, 58Ni16O2+, 180Hf2+, etc.), the measurements were performed at medium mass resolution under cold plasma conditions. Pu was separated from uranium by means of extraction chromatography using Eichrom TEVA resin with a recovery of 83%. The limits of detection for 90Sr, 239Pu and 240Pu in water samples were determined as 11, 0.12 and 0.1 fg ml-1, respectively. Concentrations of 90Sr and 239Pu in contaminated groundwater samples ranged from 18 to 32 and from 28 to 856 fg ml-1, respectively. The 240Pu/239Pu isotopic ratio in groundwater samples was measured as 0.17. This isotope ratio indicates that the most probable source of contamination of the investigated groundwater samples was the nuclear weapons tests at the Semipalatinsk Test Site conducted by the USSR in the 1960s.

  2. Isotope pattern deconvolution for peptide mass spectrometry by non-negative least squares/least absolute deviation template matching

    PubMed Central

    2012-01-01

    Background The robust identification of isotope patterns originating from peptides being analyzed through mass spectrometry (MS) is often significantly hampered by noise artifacts and the interference of overlapping patterns arising e.g. from post-translational modifications. As the classification of the recorded data points into either ‘noise’ or ‘signal’ lies at the very root of essentially every proteomic application, the quality of the automated processing of mass spectra can significantly influence the way the data might be interpreted within a given biological context. Results We propose non-negative least squares/non-negative least absolute deviation regression to fit a raw spectrum by templates imitating isotope patterns. In a carefully designed validation scheme, we show that the method exhibits excellent performance in pattern picking. It is demonstrated that the method is able to disentangle complicated overlaps of patterns. Conclusions We find that regularization is not necessary to prevent overfitting and that thresholding is an effective and user-friendly way to perform feature selection. The proposed method avoids problems inherent in regularization-based approaches, comes with a set of well-interpretable parameters whose default configuration is shown to generalize well without the need for fine-tuning, and is applicable to spectra of different platforms. The R package IPPD implements the method and is available from the Bioconductor platform (http://bioconductor.fhcrc.org/help/bioc-views/devel/bioc/html/IPPD.html). PMID:23137144

  3. Protein Structure-Function Correlation in Living Human Red Blood Cells Probed by Isotope Exchange-based Mass Spectrometry.

    PubMed

    Narayanan, Sreekala; Mitra, Gopa; Muralidharan, Monita; Mathew, Boby; Mandal, Amit K

    2015-12-01

    To gain insight into the underlying mechanisms of various biological events, it is important to study the structure-function correlation of proteins within cells. Structural probes used in spectroscopic tools to investigate protein conformation are similar across all proteins. Therefore, structural studies are restricted to purified proteins in vitro and these findings are extrapolated in cells to correlate their functions in vivo. However, due to cellular complexity, in vivo and in vitro environments are radically different. Here, we show a novel way to monitor the structural transition of human hemoglobin upon oxygen binding in living red blood cells (RBCs), using hydrogen/deuterium exchange-based mass spectrometry (H/DX-MS). Exploiting permeability of D2O across cell membrane, the isotope exchange of polypeptide backbone amide hydrogens of hemoglobin was carried out inside RBCs and monitored using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). To explore the conformational transition associated with oxygenation of hemoglobin in vivo, the isotope exchange kinetics was simplified using the method of initial rates. RBC might be considered as an in vivo system of pure hemoglobin. Thus, as a proof-of-concept, the observed results were correlated with structural transition of hemoglobin associated with its function established in vitro. This is the first report on structural changes of a protein upon ligand binding in its endogenous environment. The proposed method might be applicable to proteins in their native state, irrespective of location, concentration, and size. The present in-cell approach opens a new avenue to unravel a plethora of biological processes like ligand binding, folding, and post-translational modification of proteins in living cells. PMID:26531244

  4. Simultaneous Detection of Androgen and Estrogen Abuse in Breeding Animals by Gas Chromatography-Mass Spectrometry/Combustion/Isotope Ratio Mass Spectrometry (GC-MS/C/IRMS) Evaluated against Alternative Methods.

    PubMed

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; De Kimpe, Norbert; Matthijs, Bert; Le Bizec, Bruno

    2015-09-01

    The administration of synthetic homologues of naturally occurring steroids can be demonstrated by measuring (13)C/(12)C isotopic ratios of their urinary metabolites. Gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) was used in this study to appraise in a global approach isotopic deviations of two 17β-testosterone metabolites (17α-testosterone and etiocholanolone) and one 17β-estradiol metabolite (17α-estradiol) together with those of 5-androstene-3β,17α-diol as endogenous reference compound (ERC). Intermediate precisions of 0.35‰, 1.05‰, 0.35‰, and 0.21‰, respectively, were observed (n = 8). To assess the performance of the analytical method, a bull and a heifer were treated with 17β-testosterone propionate and 17β-estradiol-3-benzoate. The sensitivity of the method permitted the demonstration of 17β-estradiol treatment up to 24 days. For 17β-testosterone treatment, the detection windows were 3 days and 24 days for the bull and the heifer, respectively. The capability of GC-MS/C/IRMS to demonstrate natural steroid abuse for urinary steroids was eventually compared to those of mass spectrometry (LC-MS/MS) when measuring intact steroid esters in blood and hair. PMID:26271751

  5. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    PubMed

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the

  6. Measurement of Niacin in a Variety of Food Samples by High Performance Liquid Chromatography-Stable Isotope Dilution Mass Spectrometry (AOAC Annual Meeting, Minneapolis, MN, Sept. 2006)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of deuterium-labeled nicotinic acid makes stable isotope dilution mass spectrometry (SIDMS) coupled with liquid chromatography (LC) an attractive option for the determination of the water-soluble B-vitamin, niacin, in food samples. We have developed a method based on AOAC Peer-Verif...

  7. Measurement of Niacin in a Variety of Food Samples by High Performance Liquid Chromatography-Stable Isotope Dilution Mass Spectrometry (Experimental Biology, April, 2007, Washington, D.C.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of deuterium-labeled nicotinic acid makes stable isotope dilution mass spectrometry (SIDMS) coupled with liquid chromatography (LC) an attractive option for the determination of the water-soluble B-vitamin, niacin, in food samples. We have developed a method based on AOAC Peer-Verif...

  8. Measurement of the stable carbon isotope ratio of atmospheric volatile organic compounds using chromatography, combustion, and isotope ratio mass spectrometry coupled with thermal desorption

    NASA Astrophysics Data System (ADS)

    Kawashima, Hiroto; Murakami, Mai

    2014-06-01

    The isotopic analysis of atmospheric volatile organic compounds (VOCs), and in particular of their stable carbon isotope ratio (δ13C), could potentially be used as an effective tool for identifying the sources of VOCs. However, to date, there have been very few such analyses. In this work, we analyze the δ13C values of VOCs using thermal desorption coupled with chromatography, combustion, and isotope ratio mass spectrometry (TD-GC/C/IRMS). The measured peak shapes were of high quality and 36 compounds in a standard gas containing 58 VOCs (C5-C11) were detected. The measured δ13C varied widely, from -49.7‰ to -22.9‰, while the standard deviation of the δ13C values varied from 0.07‰ to 0.85‰ (n = 5). We then measured samples from two passenger cars in hot and cold modes, three gas stations, roadside air, and ambient air. In comparison with existing studies, the analytical precision for the 36 compounds in this study was reasonable. By comparing the δ13C values obtained from the cars and gas stations, we could identify some degree of the sources of VOCs in the roadside and ambient air samples.

  9. A universal SI-traceable isotope dilution mass spectrometry method for protein quantitation in a matrix by tandem mass tag technology.

    PubMed

    Li, Jiale; Wu, Liqing; Jin, Youxun; Su, Ping; Yang, Bin; Yang, Yi

    2016-05-01

    Isotope dilution mass spectrometry (IDMS), an important metrological method, is widely used for absolute quantification of peptides and proteins. IDMS employs an isotope-labeled peptide or protein as an internal standard although the use of a protein provides improved accuracy. Generally, the isotope-labeled protein is obtained by stable isotope labeling by amino acids in cell culture (SILAC) technology. However, SILAC is expensive, laborious, and time-consuming. To overcome these drawbacks, a novel universal SI-traceable IDMS method for absolute quantification of proteins in a matrix is described with human transferrin (hTRF). The hTRF and a human serum sample were labeled with different tandem mass tags (TMTs). After mixing the TMT-labeled hTRF and serum sample together followed by digestion, the peptides were separated by nano-liquid chromatography and analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Using the signature peptides, we calculated the ratios of reporter ions from the TMT-labeled peptides which, in turn, allowed determination of the mass fraction of hTRF. The recovery ranged from 97% to 105% with a CV of 3.9%. The LOD and LOQ were 1.71 × 10(-5) g/g and 5.69 × 10(-5) g/g of hTRF in human serum, respectively, and the relative expanded uncertainty was 4.7% with a mass fraction of 2.08 mg/g. For comparison, an enzyme-linked immunosorbent assay (ELISA) method for hTRF yielded a mass fraction of 2.03 mg/g. This method provides a starting point for establishing IDMS technology to accurately determine the mass fractions of protein biomarkers in a matrix with traceability to SI units. This technology should support the development of a metrological method useful for quantification of a wide variety of proteins. PMID:26942737

  10. Determination of total and isotopic uranium by inductively coupled plasma-mass spectrometry at the Fernald Environmental Management Project

    SciTech Connect

    Miller, F.L.; Bolin, R.N.; Feller, M.T.; Danahy, R.J.

    1995-04-01

    At the Fernald Environmental Management Project (FEMP) in southwestern Ohio, ICP-mass spectrometry (ICP-MS), with sample introduction by peristaltic pumping, is used to determine total and isotopic uranium (U-234, U-235, U-236 and U-238) in soil samples. These analyses are conducted in support of the environmental cleanup of the FEMP site. Various aspects of the sample preparation and instrumental analysis will be discussed. Initial sample preparation consists of oven drying to determine moisture content, and grinding and rolling to homogenize the sample. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium in the sample into solution. Bismuth is added to the sample prior to digestion to monitor for losses. The total uranium (U-238) content of this solution and the U{sup 235}/U{sup 238} ratio are measured on the first pass through the ICP-MS. To determine the concentration of the less abundant U{sup 234} and U{sup 236} isotopes, the digestate is further concentrated by using Eichrom TRU-Spec extraction columns before the second pass through the ICP-MS. Quality controls for both the sample preparation and instrumental protocols will also be discussed. Finally, an explanation of the calculations used to report the data in either weight percent or activity units will be given.

  11. Geographical origin of cereal grains based on element analyser-stable isotope ratio mass spectrometry (EA-SIRMS).

    PubMed

    Wu, Yuluan; Luo, Donghui; Dong, Hao; Wan, Juan; Luo, Haiying; Xian, Yanping; Guo, Xindong; Qin, Fangfang; Han, Wanqing; Wang, Li; Wang, Bin

    2015-05-01

    The stable carbon and nitrogen isotopic compositions (δ(13)C and δ(13)N) of different cereal grains from different regions were determined, using element analyser-stable isotope ratio mass spectrometry (EA-SIRMS) as the key method. Systematically, δ(13)C and δ(13)N of 5 kinds of cereal grains of different origins, 30 wheat samples from different cultivation areas and 160 rice samples of different cultivars from Guangdong province of China were examined. The results indicated that the δ(13)C values of rice, soybean, millet, wheat and corn were significantly (P < 0.05) different within different origins (Heilongjiang, Shandong and Jiangsu province of China), respectively, while δ(13)N values were not. Interestingly, there exists discrimination between these 5 kinds of cereals grains, no matter C-3 or C-4 plants. Further study showed that the δ(13)C values of wheat from Australia, the USA, Canada, and Jiangsu and Shandong province of China were also significantly (P < 0.01) different. Furthermore, the P-value test for 160 rice samples of 5 cultivars was not significant (P > 0.05), which indicated that the cultivar of cereal grains was not significant based on δ(13)C value. Thus, the comparison of δ(13)C would be potentially useful for rapid and routine discrimination of geographical origin of cereal grains. PMID:25529718

  12. Pantothenic acid quantification by a stable isotope dilution assay based on liquid chromatography-tandem mass spectrometry.

    PubMed

    Rychlik, Michael

    2003-07-01

    A stable isotope dilution assay for the quantification of free and total pantothenic acid has been developed by using [13C3,15N]-pantothenic acid as the internal standard. The three-dimensional specificity of liquid chromatography-tandem mass spectrometry enabled unequivocal determination of the vitamin. Due to the very simple extraction and clean-up procedure, free pantothenic acid could be analysed within 2 h, which is much faster than by microbiological or gas chromatographic assays. For quantification of total pantothenic acid, the vitamin was liberated from its conjugates by an overnight incubation with pigeon liver pantetheinase and alkaline phosphatase. In analyses of corn flour, the intra-assay coefficient of variation was 8.5% (n = 5) and 15.3% (n = 4) for free and total pantothenic acid, respectively. When pantothenic acid was added to corn starch at a level of 6 mg kg(-1), a recovery of 97.5% was found. Application of the stable isotope dilution assay to whole egg powder, hazel nuts and corn revealed similar data compared to those listed in nutrition data bases, whereas the content in mushrooms and porcine liver determined by the newly developed assay appeared to be lower and that of cocoa higher than reported in the literature. PMID:12894818

  13. Quantification of Cr(VI) in soil samples from a contaminated area in northern Italy by isotope dilution mass spectrometry.

    PubMed

    Guidotti, Laura; Queipo Abad, Silvia; Rodríguez-González, Pablo; García Alonso, J Ignacio; Beone, Gian Maria

    2015-11-01

    The aims of the work were to detect and quantify hexavalent chromium in 14 soil samples from an area in Lombardia (northern Italy) contaminated by two polluted water plumes. Cr(VI) was extracted from the solid samples by applying focused microwaves in an alkaline medium after Cr(III) complexation with EDTA. Cr(VI) was reduced to Cr(III) when previously reported extraction conditions for the analysis of certified reference materials were used, and Cr(VI) could not be reliably quantified in the soil samples. The influence of organic matter and iron contents in the samples on the reduction of Cr(VI) was subsequently studied using a new set of soil samples with different iron and organic matter concentrations. Isotope dilution mass spectrometry (IDMS) measured two different enriched stable isotopes of Cr (54 and 53) to evaluate the reduction extent of hexavalent chromium during the analytical procedure. The extraction conditions were optimized to obtain the lowest amount of Cr(VI) reduction and quantify Cr(VI) in the polluted soil samples from Lombardia. PMID:26141979

  14. Analysis of organophosphate flame retardants and plasticisers in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry.

    PubMed

    Teo, Tiffany L L; McDonald, James A; Coleman, Heather M; Khan, Stuart J

    2015-10-01

    The widespread use of organophosphate flame retardants (PFRs) in commercial products have led to their increased presence in the environment. In this study, a rapid and reliable analytical method was developed for the analysis of five PFRs in water using gas chromatography tandem mass spectrometry (GC-MS/MS) with electron ionisation (EI) and a run time of 13 min. The PFRs investigated were tributyl phosphate (TBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP) and triphenyl phosphate (TPP). Solid phase extraction (SPE) was undertaken to extract and concentrate target analytes from aqueous matrices. All water samples were extracted from a volume of 500 mL. Isotopically labelled compounds were used to account for analytical variability and for accurate quantification by isotope dilution. Method recoveries for all compounds were above 80% in all tested water samples. Method detection limits for all target analytes ranged from 0.3 to 24 ng/L in ultrapure water, tap water, seawater, surface water, secondary effluent and swimming pool water. Validation of this method confirmed satisfactory method stability with less than 1% coefficients of variation, verifying that this approach produced good reproducibility. PMID:26078137

  15. Quantification of nerve agent adducts with albumin in rat plasma using liquid chromatography-isotope dilution tandem mass spectrometry.

    PubMed

    Bao, Yi; Liu, Qin; Chen, Jia; Lin, Ying; Wu, Bidong; Xie, Jianwei

    2012-03-16

    A sensitive method for the determination of the organophosphorus nerve agents sarin, soman and VX adducts with tyrosine residue of albumin in rat plasma has been developed and validated using liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS). O-(O-Alkyl methylphosphonyl) tyrosine adducts and their deuterated products that were used as the internal standards were synthesised to establish the quantitative isotope-dilution method. Protein purification and solid-phase extraction (SPE) were applied to improve the recovery efficiency, reduce interference and achieve high sensitivity. The method provided a detection limit of 0.01 ng/mL for sarin and soman adducts and 0.05 ng/mL for the VX adduct. The value of the intra-day relative standard deviation over the calibration range was less than 6.16% (n=6), and that of the inter-day was less than 12.7% (n=6). The recovery varied from 86% to 111%. This sensitive method was successfully applied to the analysis of adducts in rat plasma after nerve agent exposure, and the results demonstrated the dose-effect relationships. PMID:22305360

  16. Analysis of Atmospheric Nitrogen Inputs to the Forest Through Isotope Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wright, A. J.; Alexander, B.; Michalski, G. M.; Shepson, P. B.

    2010-12-01

    Understanding the fate of atmospheric nitrogen is essential to understanding the forest nitrogen cycle. Recent studies have indicated that atmospheric nitrogen deposition has an important role in the nitrogen cycle for nitrogen-limited forests. Since most of the forests of the northern hemisphere are nitrogen-limited, wet and dry deposition of atmospheric nitrogen may have a significant impact on carbon sequestration. The current study hypothesizes that a significant fraction of nitrogen that is in the soil is deposited from the atmosphere. In this study, we sampled soil, rainfall, and cloud water in the vicinity of the University of Michigan Biological Station, and determined the value for Δ17O in NO3- from those samples. The average tropospheric Δ17O value for NO3-atm (nitrate aerosol and gaseous HNO3) for the U. S. Midwest region is approximately 23‰ based on recent measurements and modeling considerations. In contrast, nitrate from microbial nitrification of fertilizer or plant matter has Δ17O of zero. This makes Δ17O signals in soil and water nitrate a positive indicator of un-cycled atmospherically-derived nitrate. For this work, the nitrate was extracted, purified, and converted to N2O, which was then separated by GC and detected using a Thermo Delta V continuous flow isotope ratio mass spectrometer. Here we will present and discuss the results of Δ17O measurements for NO3- in these samples, to accurately quantify the proportion of atmospheric nitrate in soils. The dissolved nitrate Δ17O values give both the atmospheric component and the biological component through a two source mixing model. This quantification contributes to the long term effort on improving our understanding of the nature, chemistry, and impact of atmospheric nitrogen on the carbon cycle.

  17. Isotopic Ratio Outlier Analysis of the S. cerevisiae Metabolome Using Accurate Mass Gas Chromatography/Time-of-Flight Mass Spectrometry: A New Method for Discovery.

    PubMed

    Qiu, Yunping; Moir, Robyn; Willis, Ian; Beecher, Chris; Tsai, Yu-Hsuan; Garrett, Timothy J; Yost, Richard A; Kurland, Irwin J

    2016-03-01

    Isotopic ratio outlier analysis (IROA) is a (13)C metabolomics profiling method that eliminates sample to sample variance, discriminates against noise and artifacts, and improves identification of compounds, previously done with accurate mass liquid chromatography/mass spectrometry (LC/MS). This is the first report using IROA technology in combination with accurate mass gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS), here used to examine the S. cerevisiae metabolome. S. cerevisiae was grown in YNB media, containing randomized 95% (13)C, or 5%(13)C glucose as the single carbon source, in order that the isotopomer pattern of all metabolites would mirror the labeled glucose. When these IROA experiments are combined, the abundance of the heavy isotopologues in the 5%(13)C extracts, or light isotopologues in the 95%(13)C extracts, follows the binomial distribution, showing mirrored peak pairs for the molecular ion. The mass difference between the (12)C monoisotopic and the (13)C monoisotopic equals the number of carbons in the molecules. The IROA-GC/MS protocol developed, using both chemical and electron ionization, extends the information acquired from the isotopic peak patterns for formulas generation. The process that can be formulated as an algorithm, in which the number of carbons, as well as the number of methoximations and silylations are used as search constraints. In electron impact (EI/IROA) spectra, the artifactual peaks are identified and easily removed, which has the potential to generate "clean" EI libraries. The combination of chemical ionization (CI) IROA and EI/IROA affords a metabolite identification procedure that enables the identification of coeluting metabolites, and allowed us to characterize 126 metabolites in the current study. PMID:26820234

  18. The use of δ13C isotope ratio mass spectrometry for methamphetamine profiling: comparison of ephedrine and pseudoephedrine-based samples to P2P-based samples.

    PubMed

    Toske, Steven G; Morello, David R; Berger, Jennifer M; Vazquez, Etienne R

    2014-01-01

    Differentiating methamphetamine samples produced from ephedrine and pseudoephedrine from phenyl-2-propanone precursors is critical for assigning synthetic route information for methamphetamine profiling. The use of isotope ratio mass spectrometry data is now a key component for tracking precursor information. Recent carbon (δ(13)C) isotope results from the analysis of numerous methamphetamine samples show clear differentiation for ephedrine and pseudoephedrine-produced samples compared to P2P-produced samples. The carbon isotope differences were confirmed from synthetic route precursor studies. PMID:24378294

  19. Differential isotopic enrichment to facilitate characterization of asymmetric multimeric proteins using hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Pascal, Bruce D.; Bauman, Joseph D.; Patel, Disha; Arnold, Eddy; Griffin, Patrick R.

    2015-01-01

    Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry has emerged as a powerful tool for analyzing the conformational dynamics of protein-ligand and protein-protein interactions. Recent advances in instrumentation and methodology have expanded the utility of HDX for the analysis of large and complex proteins; however, asymmetric dimers with shared amino acid sequence present a unique challenge for HDX because assignment of peptides with identical sequence to their subunit of origin remains ambiguous. Here we report the use of differential isotopic labeling to facilitate HDX analysis of multimers using HIV-1 reverse transcriptase (RT) as a model. RT is an asymmetric heterodimer of 51 kDa (p51) and 66 kDa (p66) subunits. The first 440 residues of p51 and p66 are identical. In this study differentially labeled RT was reconstituted from isotopically enriched (15N-labeled) p51 and unlabeled p66. In order to enable detection of 15N-deuterated RT peptides, the software HDX Workbench was modified to follow a 100% 15N model. Our results demonstrated that 15N enrichment of p51 did not affect its conformational dynamics compared to unlabeled p51, but 15N-labeled p51 did show different conformational dynamics than p66 in the RT heterodimer. Differential HDX-MS of isotopically labeled RT in the presence of the nonnucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) showed subunit-specific perturbation in the rate of HDX consistent with previously published results and the RT-EFV co-crystal structure. PMID:25763479

  20. Isotope ratios of uranium using high resolution inductively coupled plasma-mass spectrometry (ICP-MS)

    SciTech Connect

    Hearn, R.; Wildner, H.

    1998-12-31

    Actinide element isotope ratios have been determined in environmental samples using high resolution ICP-MS with ultrasonic nebulization. Precisions as low as 0.1% RSD have been achieved using various methods of acquisition. The methodology has been used for environmental monitoring of uranium isotope ratios as an indicator of nuclear activity. Also, it has been applied to calcite dating studies as a measure of past geochemical disturbances.

  1. Simultaneous detection of multiple hydroxylated polychlorinated biphenyls from a complex tissue matrix using gas chromatography/isotope dilution mass spectrometry.

    PubMed

    Eguchi, Akifumi; Nomiyama, Kei; Ochiai, Mari; Mizukawa, Hazuki; Nagano, Yasuko; Nakagawa, Katsuhiro; Tanaka, Kouki; Miyagawa, Haruhiko; Tanabe, Shinsuke

    2014-01-01

    In this study, we developed a comprehensive, highly sensitive, and robust method for determining 53 congeners of three to eight chlorinated OH-PCBs in liver and brain samples by using isotope dilution gas chromatography (GC) coupled with electron capture negative ionization mass spectrometry (ECNI-MS). These results were compared with those from GC coupled with electron ionization high-resolution mass spectrometry (EI-HRMS). Clean-up procedures for analysis of OH-PCBs homologs in liver and brain samples involve a pretreatment step consisting of acetonitrile partition and 5% hydrated silica-gel chromatography before derivatization. Recovery rates of tri- and tetra-chlorinated OH-PCBs in the acetonitrile partition method followed by the 5% hydrated silica-gel column (82% and 91%) were higher than conventional sulfuric acid treatment (2.0% and 3.5%). The method detection limits of OH-PCBs for each matrix obtained by GC/ECNI-MS and GC/EI-HRMS were 0.58-2.6 pg g(-1) and 0.36-1.6 pg g(-1) wet wt, respectively. Recovery rates of OH-PCB congeners in spike tests using sample matrices (10 and 50 pg) were 64.7-117% (CV: 4.7-14%) and 70.4-120% (CV: 2.3-12%), respectively. This analytical method may enable the simultaneous detection of various OH-PCBs from complex tissue matrices. Furthermore, this method allows more comprehensive assessment of the biological effects of OH-PCB exposure on critical organs. PMID:24274296

  2. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  3. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  4. Quantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuous-flow isotope-ratio mass spectrometry

    PubMed Central

    Waldron, Susan; Marian Scott, E; Vihermaa, Leena E; Newton, Jason

    2014-01-01

    RATIONALE We describe an analytical procedure that allows sample collection and measurement of carbon isotopic composition (δ13CV-PDB value) and dissolved inorganic carbon concentration, [DIC], in aqueous samples without further manipulation post field collection. By comparing outputs from two different mass spectrometers, we quantify with the statistical rigour uncertainty associated with the estimation of an unknown measurement. This is rarely undertaken, but it is needed to understand the significance of field data and to interpret quality assurance exercises. METHODS Immediate acidification of field samples during collection in evacuated, pre-acidified vials removed the need for toxic chemicals to inhibit continued bacterial activity that might compromise isotopic and concentration measurements. Aqueous standards mimicked the sample matrix and avoided headspace fractionation corrections. Samples were analysed using continuous-flow isotope-ratio mass spectrometry, but for low DIC concentration the mass spectrometer response could be non-linear. This had to be corrected for. RESULTS Mass spectrometer non-linearity exists. Rather than estimating precision as the repeat analysis of an internal standard, we have adopted inverse linear calibrations to quantify the precision and 95% confidence intervals (CI) of the δ13CDIC values. The response for [DIC] estimation was always linear. For 0.05–0.5 mM DIC internal standards, however, changes in mass spectrometer linearity resulted in estimations of the precision in the δ13CVPDB value of an unknown ranging from ± 0.44‰ to ± 1.33‰ (mean values) and a mean 95% CI half-width of ±1.1–3.1‰. CONCLUSIONS Mass spectrometer non-linearity should be considered in estimating uncertainty in measurement. Similarly, statistically robust estimates of precision and accuracy should also be adopted. Such estimations do not inhibit research advances: our consideration of small-scale spatial variability at two points on a

  5. Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.

    2016-01-01

    We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded "heavy" and "light" GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the "heavy" and "light" peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.

  6. Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies.

    PubMed

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E; Gross, Michael L

    2016-01-01

    We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded "heavy" and "light" GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the "heavy" and "light" peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting. PMID:26384685

  7. Pyrolysis-gas chromatography-isotope ratio mass spectrometry of polyethylene.

    PubMed

    González-Pérez, J A; Jiménez-Morillo, N T; de la Rosa, J M; Almendros, G; González-Vila, F J

    2015-04-01

    Polyethylene is probably the most used plastic material in daily life and its accurate analysis is of importance. In this communication the chemical structure of polyethylenes is studied in detail using conventional analytical pyrolysis (Py-GC/MS), bulk stable isotopic analysis (IRMS) and pyrolysis compound specific stable isotopic analysis (Py-CSIA) to measure stable isotope proportions (δ(13)C, δ(15)N and δD) of polyethylene pyrolysis compounds. Polyethylene pyrolysis yields triplet peaks of n-alkanes, α-alkenes and α,ω-alkanedienes. No differences were found for bulk δ(13)C among different polyethylene types. However, conspicuous differences in δD were evident. It was possible to assign structure δ(13)C and δD values to specific polyethylene pyrolysis products in the range 12-18 carbon chain length. Conspicuous differences were found for the pyrolysis products with unsaturated moieties showing significant higher δD values than saturated chains (alkanes) that were deuterium depleted. In addition, a full isotopic fingerprinting (δ(13)C, δ(15)N and δD) for a dye (o-chloroaniline) contained in a polyethylene is reported. To the best of our knowledge this is the first application Py-CSIA to the study of a synthetic polymer. This hyphenated analytical technique is a promising tool to study synthetic materials, providing not only a fingerprinting, but also allowing the traceability of the polymerization process and the origin of the materials. PMID:25725959

  8. Measurement of Uranium Isotopes in Particles of U3O8 by Secondary Ion Mass Spectrometry-Single-Stage Accelerator Mass Spectrometry (SIMS-SSAMS).

    PubMed

    Fahey, Albert J; Groopman, Evan E; Grabowski, Kenneth S; Fazel, Kamron C

    2016-07-19

    A commercial secondary ion mass spectrometer (SIMS) was coupled to a ± 300 kV single-stage accelerator mass spectrometer (SSAMS). Positive secondary ions generated with the SIMS were injected into the SSAMS for analysis. This combined instrument was used to measure the uranium isotopic ratios in particles of three certified reference materials (CRM) of uranium, CRM U030a, CRM U500, and CRM U850. The ability to inject positive ions into the SSAMS is unique for AMS systems and allows for simple analysis of nearly the entire periodic table because most elements will readily produce positive ions. Isotopic ratios were measured on samples of a few picograms to nanograms of total U. Destruction of UH(+) ions in the stripper tube of the SSAMS reduced hydride levels by a factor of ∼3 × 10(4) giving the UH(+)/U(+) ratio at the SSAMS detector of ∼1.4 × 10(-8). These hydride ion levels would allow the measurement of (239)Pu at the 10 ppb level in the presence of U and the equivalent of ∼10(-10 236)U concentration in natural uranium. SIMS-SSAMS analysis of solid nuclear materials, such as these, with signals nearly free of molecular interferences, could have a significant future impact on the way some measurements are made for nuclear nonproliferation. PMID:27321905

  9. Development and validation of a liquid chromatography isotope dilution mass spectrometry method for the reliable quantification of alkylphenols in environmental water samples by isotope pattern deconvolution.

    PubMed

    Fabregat-Cabello, Neus; Sancho, Juan V; Vidal, Andreu; González, Florenci V; Roig-Navarro, Antoni Francesc

    2014-02-01

    We present here a new measurement method for the rapid extraction and accurate quantification of technical nonylphenol (NP) and 4-t-octylphenol (OP) in complex matrix water samples by UHPLC-ESI-MS/MS. The extraction of both compounds is achieved in 30min by means of hollow fiber liquid phase microextraction (HF-LPME) using 1-octanol as acceptor phase, which provides an enrichment (preconcentration) factor of 800. On the other hand we have developed a quantification method based on isotope dilution mass spectrometry (IDMS) and singly (13)C1-labeled compounds. To this end the minimal labeled (13)C1-4-(3,6-dimethyl-3-heptyl)-phenol and (13)C1-t-octylphenol isomers were synthesized, which coelute with the natural compounds and allows the compensation of the matrix effect. The quantification was carried out by using isotope pattern deconvolution (IPD), which permits to obtain the concentration of both compounds without the need to build any calibration graph, reducing the total analysis time. The combination of both extraction and determination techniques have allowed to validate for the first time a HF-LPME methodology at the required levels by legislation achieving limits of quantification of 0.1ngmL(-1) and recoveries within 97-109%. Due to the low cost of HF-LPME and total time consumption, this methodology is ready for implementation in routine analytical laboratories. PMID:24423386

  10. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  11. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  12. Measurements of 13C/12C methane from anaerobic digesters: comparison of optical spectrometry with continuous-flow isotope ratio mass spectrometry.

    PubMed

    Keppler, Frank; Laukenmann, Stephan; Rinne, Jennifer; Heuwinkel, Hauke; Greule, Markus; Whiticar, Michael; Lelieveld, Jos

    2010-07-01

    Methane production by anaerobic digestion of biomass has recently become more attractive because of its potential for renewable energy production. Analytical tools are needed to study and optimize the ongoing processes in biogas reactors. It is considered that optical methods providing continuous measurements at high temporal resolution of carbon isotope ratios of methane (delta(13)C(CH4)) might be of great help for this purpose. In this study we have tested near-infrared laser optical spectrometry and compared it with conventional continuous-flow isotope ratio mass spectrometry (CF-IRMS) using several methane carbon isotope standards and a large number of biogas samples from batch anaerobic reactors. Results from measurements on these samples were used to determine and compare the precision of the two techniques and to quantify for systematic offsets. With pure standards analytical precision of measurements for delta(13)C(CH4) was found to be in the range of 0.33 and 0.48 per thousand, and 0.09 and 0.27 per thousand for the optical method and CF-IRMS, respectively. Biogas samples showed an average mean deviation of delta(13)C(CH4) of 0.38 per thousand and 0.08 per thousand for the optical method and CF-IRMS, respectively. Although the tested laser optical spectrometer showed a dependence of delta(13)C(CH4) on CH(4) mixing ratio in the range of 500 to 8000 ppm this could be easily corrected. After correction, the delta(13)C(CH4) values usually varied within 0.7 per thousand from those measured by conventional CF-IRMS and thus results from both methods agreed within the given analytical uncertainties. Although the precision of the conventional CF-IRMS is higher than the tested optical system, both instruments were well within the acceptable delta(13)C(CH4) precision required for biogas methane measurements. The advantages of the optical system are its simplicity of operation, speed of analysis, good precision, reduced costs in comparison to IRMS, and the potential

  13. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  14. Quantitative metabolomic profiling using dansylation isotope labeling and liquid chromatography mass spectrometry.

    PubMed

    Zhou, Ruokun; Li, Liang

    2014-01-01

    Differential chemical isotopic labeling (CIL) LC-MS has been used for quantifying a targeted metabolite in biological samples with high precision and accuracy. Herein we describe a high-performance CIL LC-MS method for generating quantitative and comprehensive profiles of the metabolome for metabolomics applications. After mixing two comparative samples separately labeled by light or heavy isotopic tags through chemical reactions, the peak intensity ratio of the labeled analyte pair can provide relative or absolute quantitative information on the metabolites. We describe the use of (12)C2- and (13)C2-dansyl chloride (DnsCl) as the isotope reagents to profile the metabolites containing amine and phenolic hydroxyl functional groups by LC-MS. This method can be used to compare the relative concentration changes of hundreds or thousands of amine- and phenol-containing metabolites among many comparative samples and generate absolute concentration information on metabolites for which the standards are available. Combined with statistical analysis and metabolite identification tools, this method can be used to identify key metabolites involved in differentiating comparative samples such as disease cases vs. healthy controls. PMID:25270927

  15. Characterization of candidate reference materials for bone lead via interlaboratory study and double isotope dilution mass spectrometry

    PubMed Central

    Bellis, David J.; Hetter, Katherine M.; Verostek, Mary Frances; Parsons, Patrick J.

    2012-01-01

    Summary Four candidate ground bone reference materials (NYS RMs 05-01 through 04), were produced from lead-dosed bovine and caprine sources, and characterized by interlaboratory study. The consensus value ( X ) and expanded standard uncertainty (UX ) were determined from the robust average and standard deviation of the participants’ data for each NYS RM 05-01 through 04. The values were 1.08 ±0.04, 15.3 ±0.5, 12.4 ±0.5, and 29.9 ±1.1 μg g−1 Pb, respectively. Youden plots of z-scores showed a statistically significant correlation between the results for pairs of NYS RM 05-02 through 04, indicating common sources of between-laboratory variation affecting reproducibility. NYS RM 05-01 exhibited more random variability affecting repeatability at low concentration. Some participants using electrothermal atomic absorption spectrometry (ETAAS) exhibited a negative bias compared to the all-method consensus value. Other methods used included inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution (ID-) ICP-MS, and ICP atomic (optical) emission spectroscopy (-OES). The NYS RMs 05-01 through 04 were subsequently re-analyzed in house using double ID-ICP-MS to assign certified reference values (C ) and expanded uncertainty (UC ) of 1.09 ± 0.03, 16.1 ± 0.3, 13.2 ± 0.3 and 31.5 ± 0.7, respectively, indicating a low bias in the interlaboratory data. SRM 1486 Bone Meal was analyzed for measurement quality assessment obtaining results in agreement with the certified values within the stated uncertainty. Analysis using a primary reference method based on ID-ICP-MS with full quantification of uncertainty calculated according to ISO guidelines provided traceability to SI units. PMID:23087531

  16. Determination of Mercury Content in a Shallow Firn Core from Summit, Greenland by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mann, Jacqueline L.; Long, Stephen E.; Shuman, Christopher A.; Kelly, W. Robert

    2003-01-01

    The total mercury Hg content was determined in 6 cm sections of a near-surface 7 m firn core and in surrounding surface snow from Summit, Greenland (elevation: 3238 m, 72.58 N, 38.53 W) in May 2001 by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS). The focus of this research was to evaluate the capability of the ID-CV-ICPMS technique for measuring trace levels of Hg typical of polar snow and firn. Highly enriched Hg-201 isotopic spike is added to approximately 10 ml melted core and thoroughly mixed. The Hg(+2) in the sample is reduced on line with tin (II) chloride (SnCl2) and the elemental Hg (Hg(0)) vapor pre-concentrated on to gold gauze using a commercial amalgam system. The Hg is then thermally desorbed and introduced into a quadrupole ICP-MS. The blank corrected Hg concentrations determined for all samples ranged from 0.25 ng/L to 1.74 ng/L (ppt) (average 0.59 ng/L plus or minus 0.28 ng/L) and fall within the range of those previously determined by Boutron et al., 1998 (less than or equal to 0.05 ng/L to 2.0 ng/L) for the Summit site. The average blank value was 0.19 ng/L plus or minus 0.045 ng/L (n=6). The Hg values specifically for the firn core range from 0.25 ng/L to 0.87 ng/L (average 0.51 ng/L plus or minus 0.13 ng/L) and show both values declining with time and larger variability in concentration in the top 1.8 m.

  17. Determination of ultratrace levels of tributyltin in waters by isotope dilution and gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Rodríguez-Cea, Andrés; Rodríguez-González, Pablo; Font Cardona, Nuria; Aranda Mares, José Luís; Ballester Nebot, Salomé; García Alonso, J Ignacio

    2015-12-18

    The current EU legislation lays down the Environmental Quality Standards (EQS) of 45 priority substances in surface water bodies. In particular, the concentration of tributyltin (TBT) must not exceed 0.2ngL(-1) and analytical methodologies with a Limit of Quantification (LOQ) equal or below 0.06ngL(-1) are urged to be developed. This work presents a procedure for the determination of ultratrace levels of TBT in water samples by Isotope Dilution and GC-MS/MS operating in Selected Reaction Monitoring (SRM) mode which meets current EU requirements. The method requires the monitorization of five consecutive transitions (287>175 to 291>179) for the sensitive and selective detection of TBT. The measured isotopic distribution of TBT fragment ions was in agreement with the theoretical values computed by a polynomial expansion algorithm. The combined use of Tandem Mass Spectrometry, a sample volume of 250mL, the preconcentration of 1mL of organic phase to 30μL and an injection volume of 25μL by Programmed Temperature Vaporization provided a LOQ of 0.0426ngL(-1) for TBT (calculated as ten times the standard deviation of nine independent blanks). The recovery for TBT calculated in Milli-Q water at the EQS level was 106.3±4%. A similar procedure was also developed for the quantification of dibutyltin (DBT) and monobutyltin (MBT) in water samples showing satisfactory results. The method was finally implemented in a routine testing laboratory to demonstrate its applicability to real samples obtaining quantitative recoveries for TBT at the EQS level in mineral water, river water and seawater. PMID:26614170

  18. Differential Isotope Labeling of 38 Dietary Polyphenols and Their Quantification in Urine by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry.

    PubMed

    Achaintre, David; Buleté, Audrey; Cren-Olivé, Cécile; Li, Liang; Rinaldi, Sabina; Scalbert, Augustin

    2016-03-01

    A large number of polyphenols are consumed with the diet and may contribute to the prevention of chronic diseases such as cardiovascular diseases, diabetes, cancers, and neurodegenerative diseases. More comprehensive methods are needed to measure exposure to this complex family of bioactive plant compounds in epidemiological studies. We report here a novel method enabling the simultaneous measurement in urine of 38 polyphenols representative of the main classes and subclasses found in the diet. This method is based on differential (12)C-/(13)C-isotope labeling of polyphenols through derivatization with isotopic dansyl chloride reagents and on the analysis of the labeled polyphenols by tandem mass spectrometry. This derivatization approach overcomes the need for costly labeled standards. Different conditions for enzyme hydrolysis of polyphenol glucuronides and sulfate esters, extraction, and dansylation of unconjugated aglycones were tested and optimized. Limits of quantification varied from 0.01 to 1.1 μM depending on polyphenols. Intrabatch coefficients of variation varied between 3.9% and 9.6%. Interbatch variations were lower than 15% for 31 compounds and lower than 29% for 6 additional polyphenols out of the 38 tested. Thirty seven polyphenols were validated and then analyzed in 475, 24 h urine samples from the European Prospective Investigation on Cancer and Nutrition (EPIC) study. Thirty four polyphenols could be detected and successfully estimated and showed large interindividual variations of concentrations (2-3 orders of magnitude depending on the compound), with median concentrations spanning from 0.01 to over 1000 μM for all 34 compounds. PMID:26814424

  19. Protein Stable Isotope Fingerprinting (P-SIF): Multidimensional Protein Chromatography Coupled to Stable Isotope-Ratio Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.

    2012-12-01

    As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.

  20. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  1. Accurate determination of ochratoxin A in Korean fermented soybean paste by isotope dilution-liquid chromatography tandem mass spectrometry.

    PubMed

    Ahn, Seonghee; Lee, Suyoung; Lee, Joonhee; Kim, Byungjoo

    2016-01-01

    Ochratoxin A (OTA), a naturally occurring mycotoxin, has been frequently detected in doenjang, a traditional fermented soybean paste, when it is fermented under improper conditions. Reliable screening of OTA in traditional fermented soybean paste (doenjang) is a special food-safety issue in Korea. Our laboratory, the National Metrology Institute of Korea, established an isotope dilution-liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method as a higher-order reference method to be used for SI-traceable value-assignment of OTA in certified reference materials (CRMs). (13)C20-OTA was used as an internal standard. Sample preparation conditions and LC/MS measurement parameters were optimised for this purpose. The analytical method was validated by measuring samples fortified with OTA at various levels. Repeatability and reproducibility studies showed that the ID-LC/MS/MS method is reliable and reproducible within 2% relative standard deviation. The analytical method was applied to determine OTA in various commercial doenjang products and home-made doenjang products. PMID:26212984

  2. Sensitive isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry method for the determination of acrylamide in chocolate.

    PubMed

    Ren, Yiping; Zhang, Yu; Jiao, Jingjing; Cai, Zengxuan; Zhang, Ying

    2006-03-01

    Isotope dilution liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) was applied to the quantification of acrylamide in chocolate matrixes (dark chocolate, milk chocolate, chocolate with nuts, chocolate with almonds, and chocolate with wheat best element). The method included defatting with petroleum ether, extracting with aqueous solution of 2 mol l(-1) sodium chloride and clean-up by solid-phase (SPE) with OASIS HLB 6 cm3 cartridges. Acrylamide was detected with an Atlantis dC18 5 microm 210 x 1.5 mm column using 10% methanol/0.1% formic acid in water as the mobile phase. The analytical method was in-house validated and good results were obtained with respect to repeatability (RSD < 3.5%) and recovery (86-93%), which fulfilled the requirements defined by European Union legislation. The acrylamide levels in chocolate were 23-537 microg kg(-1). Therefore, the method was successfully used for the quantitative analysis of acrlyamide in various chocolate products. PMID:16517524

  3. Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry.

    PubMed

    Kolkman, Annemieke; Martijn, Bram J; Vughs, Dennis; Baken, Kirsten A; van Wezel, Annemarie P

    2015-04-01

    Advanced oxidation processes are important barriers for organic micropollutants (e.g., pharmaceuticals, pesticides) in (drinking) water treatment. Studies indicate that medium pressure (MP) UV/H2O2 treatment leads to a positive response in Ames mutagenicity tests, which is then removed after granulated activated carbon (GAC) filtration. The formed potentially mutagenic substances were hitherto not identified and may result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM). In this study we present an innovative approach to trace the formation of disinfection byproducts (DBPs) of MP UV water treatment, based on stable isotope labeled nitrate combined with high resolution mass spectrometry. It was shown that after MP UV treatment of artificial water containing NOM and nitrate, multiple nitrogen containing substances were formed. In total 84 N-DBPs were detected at individual concentrations between 1 to 135 ng/L bentazon-d6 equivalents, with a summed concentration of 1.2 μg/L bentazon-d6 equivalents. The chemical structures of three byproducts were confirmed. Screening for the 84 N-DBPs in water samples from a full-scale drinking water treatment plant based on MP UV/H2O2 treatment showed that 22 of the N-DBPs found in artificial water were also detected in real water samples. PMID:25760315

  4. Liquid chromatography with isotope-dilution mass spectrometry for determination of water-soluble vitamins in foods.

    PubMed

    Phillips, Melissa M

    2015-04-01

    Vitamins are essential for improving and maintaining human health, and the main source of vitamins is the diet. Measurement of the quantities of water-soluble vitamins in common food materials is important to understand the impact of vitamin intake on human health, and also to provide necessary information for regulators to determine adequate intakes. Liquid chromatography (LC) and mass spectrometry (MS) based methods for water-soluble vitamin analysis are abundant in the literature, but most focus on only fortified foods or dietary supplements or allow determination of only a single vitamin. In this work, a method based on LC/MS and LC/MS/MS has been developed to allow simultaneous quantitation of eight water-soluble vitamins, including multiple forms of vitamins B3 and B6, in a variety of fortified and unfortified food-matrix Standard Reference Materials (SRMs). Optimization of extraction of unbound vitamin forms and confirmation using data from external laboratories ensured accuracy in the assigned values, and addition of stable isotope labeled internal standards for each of the vitamins allowed for increased precision. PMID:25433686

  5. Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry.

    PubMed

    Benkhedda, Karima; Epov, Vladimir N; Evans, R Douglas

    2005-04-01

    A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP-mass spectrometry (SF-ICP-MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L(-1), respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86-5.50 and 0.176-2.35 ng L(-1), respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82-1.04% (RSD) was obtained for 235U/238U at low ng L(-1) levels, using the FI transient signal approach. PMID:15827719

  6. Analysis of nitromethane from samples exposed in vitro to chloropicrin by stable isotope dilution headspace gas chromatography with mass spectrometry.

    PubMed

    Halme, Mia; Pesonen, Maija; Grandell, Toni; Kuula, Matti; Pasanen, Markku; Vähäkangas, Kirsi; Vanninen, Paula

    2015-10-01

    Chloropicrin (trichloronitromethane) is a widely used soil fumigant and an old chemical warfare agent. The metabolism of chloropicrin is not well known in mammals but nitromethane has been shown to be one of its main metabolites. Here, a fast and simple headspace gas chromatography with mass spectrometry method was applied for the measurement of nitromethane from aqueous samples. The analytical method was validated using stable isotope labeled internal standard and a small sample volume of 260 μL. No conventional sample preparation steps were needed. The method was accurate (relative standard deviations ≤1.5%) and linear (R(2) = 0.9996) within the concentration range of 0.1-6.0 μg/mL. This method was used to measure nitromethane in in vitro incubations with human and pig liver cell fractions containing enzymes for xenobiotic metabolism, exposed to chloropicrin. The results indicate that the presence of glutathione is necessary for the formation of nitromethane from chloropicrin. Also, nitromethane was formed mostly in liver cytosol fractions, but not in microsomal fractions after the incubation with chloropicrin. Our results suggest that although nitromethane is not the unequivocal biomarker of chloropicrin exposure, this method could be applied for screening the elevated levels in humans after chloropicrin exposure. PMID:26255649

  7. Determining mycotoxins in baby foods and animal feeds using stable isotope dilution and liquid chromatography tandem mass spectrometry.

    PubMed

    Zhang, Kai; Wong, Jon W; Krynitsky, Alexander J; Trucksess, Mary W

    2014-09-10

    We developed a stable isotope dilution assay with liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine multiple mycotoxins in baby foods and animal feeds. Samples were fortified with [(13)C]-uniformly labeled mycotoxins as internal standards ([(13)C]-IS) and prepared by solvent extraction (50% acetonitrile in water) and filtration, followed by LC-MS/MS analysis. Mycotoxins in each sample were quantitated with the corresponding [(13)C]-IS. In general, recoveries of aflatoxins (2-100 ng/g), deoxynivalenol, fumonisins (50-2000 ng/g), ochratoxin A (20-1000 ng/kg), T-2 toxin, and zearalenone (40-2000 ng/g) in tested matrices (grain/rice/oatmeal-based formula, animal feed, dry cat/dog food) ranged from 70 to 120% with relative standard deviations (RSDs) <20%. The method provides sufficient selectivity, sensitivity, accuracy, and reproducibility to screen for aflatoxins at ng/g concentrations and deoxynivalenol and fumonisins at low μg/g concentrations in baby foods and animal feeds, without using conventional standard addition or matrix-matched calibration standards to correct for matrix effects. PMID:25153173

  8. Measurement of the isotopic composition of uranium micrometer-size particles by femtosecond laser ablation-inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubert, Amélie; Claverie, Fanny; Pécheyran, Christophe; Pointurier, Fabien

    In this paper, we will describe and indicate the performance of a new method based on the use of femtosecond laser ablation (fs-LA) coupled to a quadrupole-based inductively coupled plasma mass spectrometer (ICP-QMS) for analyzing the isotopic composition of micrometer-size uranium particles. The fs-LA device was equipped with a high frequency source (till 10 kHz). We applied this method to 1-2 μm diameter-uranium particles of known isotopic composition and we compared this technique with the two techniques currently used for uranium particle analysis: Secondary Ionization Mass Spectrometry (SIMS) and Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS). By optimizing the experimental conditions, we achieved typical accuracy and reproducibility below 4% on 235U/238U for short transient signals of only 15 s related to 10 to 200 pg of uranium. The detection limit (at the 3 sigma level) was ~ 350 ag for the 235U isotope, meaning that 235U/238U isotope ratios in natural uranium particles of ~ 220 nm diameter can be measured. We also showed that the local contamination resulting from the side deposition of ablation debris at ~ 100 μm from the ablation crater represented only a small percentage of the initial uranium signal of the ablated particle. Despite the use of single collector ICP-MS, we were able to demonstrate that fs-LA-ICP-MS is a promising alternative technique for determining uranium isotopic composition in particle analysis.

  9. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE PAGESBeta

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; Want, Elizabeth J.; Smith, Colin; O'Maille, Paul; NordstrÖm, Anders; Morita, Hirotoshi; Qin, Chuan; Uritboonthai, Wilasinee; et al

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  10. New method for caffeine quantification by planar chromatography coupled with electropray ionization mass spectrometry using stable isotope dilution analysis.

    PubMed

    Aranda, Mario; Morlock, Gertrud

    2007-01-01

    A new high-performance thin-layer chromatography/electrospray ionization mass spectrometry (HPTLC/ESI-MS) method for the quantification of caffeine in pharmaceutical and energy drink samples was developed using stable isotope dilution analysis (SIDA). After sample preparation, samples and caffeine standard were applied on silica gel 60 F254 HPTLC plates and over-spotted with caffeine-d3 used for correction of the plunger positioning. After chromatography, densitometric detection was performed by UV absorption at 274 nm. The bands were then eluted by means of a plunger-based extractor into the ESI interface of a single-quadrupole mass spectrometer. For quantification by MS the [M+H]+ ions of caffeine and caffeine-d3 were recorded in the positive ion single ion monitoring (SIM) mode at m/z 195 and 198, respectively. The calibration showed a linear regression with a determination coefficient (R2) of 0.9998. The repeatability (RSD, n=6) in matrix was

  11. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  12. Evaluation of gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for the quality assessment of citrus liqueurs.

    PubMed

    Schipilliti, Luisa; Bonaccorsi, Ivana; Cotroneo, Antonella; Dugo, Paola; Mondello, Luigi

    2013-02-27

    Citrus liqueurs are alcoholic beverages obtained by maceration. The European Parliament protects these alcoholic beverages, forbidding the addition of nature-identical flavoring substances. However, for economical and technological reasons, producers often add natural and/or synthetic flavors to the alcoholic syrup, obtaining artificial spirit drinks. The aim of this study is to investigate the authenticity of Italian liqueurs, of lemon, bergamot, and mandarin (locally known as "limoncello", "bargamino", and "mandarinetto"), comparing the carbon isotope ratios with values determined in genuine cold-pressed peel oils. Authenticity assessment was performed using headspace-solid phase microextraction coupled to gas chromatography-combustion-isotope ratio mass spectrometry. Additional analyses were performed by direct enantioselective gas chromatography to determine the enantiomeric distribution of selected chiral volatiles and by gas chromatography-mass spectrometry for the qualitative analyses of the samples. The method allowed confirmation of genuineness. Enantioselective gas chromatography analyses confirmed the results, demonstrating the reliability of the method. PMID:23101544

  13. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank

    2016-01-01

    Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the

  14. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  15. Stable isotope gas chromatography-tandem mass spectrometry determination of aminoethylcysteine ketimine decarboxylated dimer in biological samples.

    PubMed

    Tsikas, Dimitrios; Evans, Christopher E; Denton, Travis T; Mitschke, Anja; Gutzki, Frank-Mathias; Pinto, John T; Khomenko, Tetyana; Szabo, Sandor; Cooper, Arthur J L

    2012-11-01

    Aminoethylcysteine ketimine decarboxylated dimer (AECK-DD; systematic name: 1,2-3,4-5,6-7,8-octahydro-1,8a-diaza-4,6-dithiafluoren-9(8aH)-one) is a previously described metabolite of cysteamine that has been reported to be present in mammalian brain, urine, plasma, and cells in culture and vegetables and to possess potent antioxidative properties. Here, we describe a stable isotope gas chromatography-tandem mass spectrometry (GC-MS/MS) method for specific and sensitive determination of AECK-DD in biological samples. (13)C(2)-labeled AECK-DD was synthesized and used as the internal standard. Derivatization was carried out by N-pentafluorobenzylation with pentafluorobenzyl bromide in acetonitrile. Quantification was performed by selected reaction monitoring of the mass transitions m/z 328 to 268 for AECK-DD and m/z 330 to 270 for [(13)C(2)]AECK-DD in the electron capture negative ion chemical ionization mode. The procedure was systematically validated for human plasma and urine samples. AECK-DD was not detectable in human plasma above approximately 4nM but was present in urine samples of healthy humans at a maximal concentration of 46nM. AECK-DD was detectable in rat brain at very low levels of approximately 8pmol/g wet weight. Higher levels of AECK-DD were detected in mouse brain (∼1nmol/g wet weight). Among nine dietary vegetables evaluated, only shallots were found to contain trace amounts of AECK-DD (∼6.8pmol/g fresh tissue). PMID:22858756

  16. Online oxygen kinetic isotope effects using membrane inlet mass spectrometry can differentiate between oxidases for mechanistic studies and calculation of their contributions to oxygen consumption in whole tissues.

    PubMed

    Cheah, Mun Hon; Millar, A Harvey; Myers, Ruth C; Day, David A; Roth, Justine; Hillier, Warwick; Badger, Murray R

    2014-05-20

    The reduction chemistry of molecular oxygen underpins the energy metabolism of multicellular organisms, liberating free energy needed to catalyze a plethora of enzymatic reactions. Measuring the isotope signatures of (16)O and (18)O during O2 reduction can provide insights into both kinetic and equilibrium isotope effects. However, current methods to measure O2 isotope signatures are time-consuming and disruptive. This paper describes the application of membrane inlet mass spectrometry to determine the oxygen isotope discrimination of a range of O2-consuming reactions, providing a rapid and convenient method for determining these values. A survey of oxygenase and oxidase reactions provides new insights into previously uncharacterized amino acid oxidase enzymes. Liquid and gas phase measurements show the ease of assays using this approach for purified enzymes, biological extracts and intact tissues. PMID:24786640

  17. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  18. Fast high-precision on-line determination of hydrogen isotope ratios of water or ice by continuous-flow isotope ratio mass spectrometry.

    PubMed

    Huber, C; Leuenberger, M

    2003-01-01

    A new fast high-precision on-line technique is described for the determination of hydrogen isotope ratios of water by continuous-flow mass spectrometry. For the first time H(2)/H(2)O-equilibration using a platinum catalyst has been used in a fully continuous process. A significant reduction in the H(2)/H(2)O-equilibration time is achieved by a complete vaporization of the water and by increasing the exchange temperature to 100 degrees C. The analysis time is only approximately 5 min/sample which includes equilibration and processing. Measurement precision and accuracy are better than 1 per thousand and sample consumption is only approximately 5 microL. This new technique allows the measurement of a wide range of aqueous samples either in a semi-continuous way (discrete samples are injected one after another) or in a fully continuous way. This allows us, for the first time, to make continuous measurements of ice cores. PMID:12811755

  19. Simultaneous analysis of urinary phthalate metabolites of residents in Korea using isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Kim, Miok; Song, Na Rae; Choi, Jong-Ho; Lee, Jeongae; Pyo, Heesoo

    2014-02-01

    Phthalates are used in industry products, household items, and medical tools as plasticizers. Human exposure to phthalates has raised concern about its toxicity. In the present study, optimization was conducted for the simultaneous analysis of eight kinds of phthalate metabolites using gas chromatography-mass spectrometry (GC-MS): MEP, MiBP, MnBP, MBzP, MiNP, MEHP, MEOHP, and MEHHP. In order to minimize the matrix effect and to do quantitative analysis, isotope dilution and LLE-GC-MS methods were performed. Urine samples were enzymatically hydrolyzed, extracted with a mixture of n-hexane and ethyl ether (8:2; v:v), and subsequently derivatized with trimethylsilylation. All eight kinds of analytes showed clear resolution and high reproducibility in GC-MS results. The method detection limit ranged from 0.05 ng/mL to 0.2 ng/mL. Calibration curves were found to be linear from 0.2 to 100 ng/mL with -(2)>0.992. The relative standard deviation of the intraday precision using water and urine ranged from 2.1% to 16.3%. The analysis was performed with urine samples that were collected from adults residing in the Republic of Korea. The analyzed concentration results were compared according to gender and region. As a result, DEHP metabolites showed the highest detected concentration (75.92 μg/g creatinine, 100%), and MiNP, a metabolite of DiNP, showed the lowest detected concentration (0.42 μg/g creatinine, 22.5%). On average, female urine (200.76 μg/g creatinine) had a higher detected concentration of ∑8 phthalate metabolites than male urine. Samples from rural regions (211.96 μg/g creatinine) had higher levels than samples from urban regions. PMID:23928369

  20. Quantification of Polybrominated and Polychlorinated Biphenyls in Human Matrices by Isotope-Dilution Gas Chromatography-Tandem Mass Spectrometry.

    PubMed

    Marder, M Elizabeth; Panuwet, Parinya; Hunter, Ronald E; Ryan, P Barry; Marcus, Michele; Barr, Dana Boyd

    2016-09-01

    We have developed a highly sensitive and selective analytical method capable of quantifying a total of 15 polybrominated and polychlorinated biphenyls (11 PBBs and 4 PCBs) in human serum. Samples were subjected to liquid-liquid extraction followed by solid-phase extraction prior to measurement using gas chromatography-tandem mass spectrometry in multiple reaction monitoring mode. Quantification was performed using isotope-dilution calibration covering a concentration range of 0.005-12.5 ng/mL. Limits of detection for all target compounds were in the low range (0.7-6.5 pg/mL). The method was validated using in-house pooled human serum fortified at two concentrations (0.5 ng/mL and 1.0 ng/mL), whole semen fortified at one concentration (0.25 ng/mL), and NIST Standard Reference Material (SRM) 1958, which includes five of the target compounds. Method accuracies for all target compounds ranged from 84 to 119% with relative standard deviations (RSDs) of <19%. The measured values for the five target compounds present in the SRM agreed with the certified reference values (89-119% accuracy with RSDs <9%). As this method was developed to support ongoing epidemiologic investigations, we evaluated its suitability by analyzing subsets of serum and whole semen samples from the Michigan PBB Registry cohort. PBB-153, PCB-118, PCB-138, PCB-153 and PCB-180 were detected in all serum samples analyzed, with PBB-77 and PBB-101 detected less frequently in serum. PBB-153, PCB-118, PCB-138, PCB-153 and PCB-180 were detected in at least one whole semen sample. PMID:27445313

  1. Synthesis of deuterium-labeled 17-hydroxyprogesterone suitable as an internal standard for isotope dilution mass spectrometry

    SciTech Connect

    Shimizu, K.; Yamaga, N.; Kohara, H.

    1988-03-01

    A synthesis is reported of 17-hydroxyprogesterone, labeled with four atoms of deuterium at ring C and suitable for use as an internal standard for isotope dilution mass spectrometry. Base-catalyzed equilibration of methyl 3 alpha-acetoxy-12-oxo-cholanate (III) with /sup 2/H/sub 2/O, followed by reduction of the 12-oxo group by the modified Wolff-Kisher method using (/sup 2/H)diethylene glycol and (/sup 2/H)hydrazine hydrate afforded (11,11,12,12,23,23(-2)H)lithocholic acid (V). The Meystre-Miescher degradation of the side chain of V yielded 3 alpha-hydroxy-5 beta-(11,11,12,12(-2)H)pregnan-20-one (X). Oxidation of the 3,20-enol-diacetate of X with perbenzoic acid followed by saponification afforded 3 alpha,17-dihydroxy-5 beta-(11,11,12,12(-2)H)pregnan-20-one (XI). Oxidation of XI with N-bromoacetamide yielded 17-hydroxy-5 beta-(11,11,12,12(-2)H)pregnane-3,20-dione (XII). Bromination of XII followed by dehydrobromination yielded 17-hydroxy-(11,11,12,12(-2)H) progesterone (XIV), consisting of 0.3% /sup 2/H0-, 1.1% /sup 2/H/sub 1/-, 8.6% /sup 2/H/sub 2/-, 37.1% /sup 2/H/sub 3/-, 52.1% /sup 2/H/sub 4/-, and 0.8% /sup 2/H/sub 5/-species.

  2. Simultaneous sample preparation and species-specific isotope dilution mass spectrometry analysis of monomethylmercury and tributyltin in a certified oyster tissue.

    PubMed

    Monperrus, M; Rodriguez Martin-Doimeadios, R C; Scancar, J; Amouroux, D; Donard, O F X

    2003-08-15

    A rapid, accurate, sensitive, and simple method for simultaneous speciation analysis of mercury and tin in biological samples has been developed. Integrated simultaneous sample preparation for tin and mercury species includes open focused microwave extraction and derivatization via ethylation. Capillary gas chromatography-inductively plasma mass spectrometry (CGC-ICPMS) conditions and parameters affecting the analytical performance were carefully optimized both for species-specific isotope dilution analysis of MMHg and TBT and for conventional analysis of MBT and DBT201Hg-enriched monomethylmercury and 117Sn-enriched tributyltin were used for species-specific isotope dilution mass spectrometry (SIDMS) analysis. As important, accurate isotope dilution analysis requires equilibration between the spike and the analyte to achieve successful analytical procedures. Since the spike stabilization and solubilization are the most critical and time-consuming steps in isotope dilution analysis, different spiking procedures were tested. Simultaneous microwave-assisted spike stabilization and solubilization can be achieved within less than 5 min. This study originally introduces a method for the simultaneous speciation and isotope dilution of mercury and tin in biological tissues. The sample throughput of the procedure was drastically reduced by fastening sample preparation and GC separation steps. The accuracy of the method was tested by both external calibration analysis and species-specific isotope dilution analysis using the first biological reference material certified for multielemental speciation (oyster tissue, CRM 710, IRMM). The results obtained demonstrate that isotope dilution analysis is a powerful method allowing the simultaneous speciation of TBT and MMHg with high precision and excellent accuracy. Analytical problems related to low recovery during sample preparation are thus minimized by SIDMS. In addition, a rapid procedure allows us to establish a performant

  3. Consistency of NMR and mass spectrometry determinations of natural-abundance site-specific carbon isotope ratios. The case of glycerol.

    PubMed

    Zhang, B L; Trierweiler, M; Jouitteau, C; Martin, G J

    1999-07-01

    Quantitative determinations of natural-abundance carbon isotope ratios by nuclear magnetic resonance (SNIF-NMR) have been optimized by appropriate selection of the experimental conditions and by signal analysis based on a dedicated algorithm. To check the consistency of the isotopic values obtained by NMR and mass spectrometry (IRMS) the same glycerol samples have been investigated by both techniques. To have access to site-specific isotope ratios by IRMS, the products have been degraded and transformed into two derivatives, one of which contains carbons 1 and 3 and the other carbon 2 of glycerol. The sensitivity of the isotopic parameters determined by IRMS to fractionation effects possibly occurring in the course of the chemical transformations has been investigated, and the repeatability and reproducibility of both analytical chains have been estimated. The good agreement observed between the two series of isotopic results supports the reliability of the two different approaches. SNIF-NMR is therefore a very attractive tool for routine determination, in a single nondestructive experiment, of the carbon isotope distribution in glycerol, and the method can be applied to other compounds. Using this method, the isotopic distributions have been compared for glycerol samples, obtained from plant or animal oils, extracted from fermented media, or prepared by chemical synthesis. Typical behaviors are characterized. PMID:21662780

  4. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements.

    PubMed

    Ohata, Masaki; Nonose, Naoko; Dorta, Ladina; Günther, Detlef

    2015-01-01

    The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder. PMID:26656823

  5. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  6. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    SciTech Connect

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  7. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  8. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  9. High-sensitivity mass spectrometry with a tandem accelerator

    SciTech Connect

    Henning, W.

    1983-01-01

    The characteristic features of accelerator mass spectrometry are discussed. A short overview is given of the current status of mass spectrometry with high-energy (MeV/nucleon) heavy-ion accelerators. Emphasis is placed on studies with tandem accelerators and on future mass spectrometry of heavier isotopes with the new generation of higher-voltage tandems.

  10. A novel quantification strategy of transferrin and albumin in human serum by species-unspecific isotope dilution laser ablation inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Feng, Liuxing; Zhang, Dan; Wang, Jun; Shen, Dairui; Li, Hongmei

    2015-07-16

    Species-specific (SS) isotope dilution analysis with gel electrophoresis (GE)-laser ablation (LA)-ICP-MS is a promising technique for the quantification of particular metal-binding proteins in biological samples. However, unavailable isotopically enriched spike and metal losses in GE separation are main limitations for SS-isotope dilution PAGE-LA-ICP-MS. In this study, we report for the first time the absolute quantification of transferrin (Tf) and albumin (Alb) in human serum by non-denaturing (native) GE combined with species-unspecific isotope dilution mass spectrometry (IDMS). In order to achieve a homogeneous distribution of both protein and isotope-enriched spike (simulated isotope equilibration), immersing the protein strips with (34)S spike solution after gel electrophoresis was demonstrated to be an effective way of spike addition. Furthermore, effects of immersion time and (34)S spike concentration were investigated to obtain optimal conditions of the post-electrophoresis isotope dilution method. The relative mass of spike and ablated sample (m(sp)/m(sam)) in IDMS equation was calculated by standard Tf and Alb proteins, which could be applied to the quantification of Tf and Alb in ERM-DA470k/IFCC for method confirmation. The results were in agreement with the certified value with good precision and small uncertainty (1.5-3%). In this method, species-specific spike protein is not necessary and the integrity of the heteroatom-protein could be maintained in sample preparation process. Moreover, the application of species-unspecific isotope dilution GE-LA-ICP-MS has the potential to offer reliable, direct and simultaneous quantification of proteins after conventional 1D and 2D gel electrophoretic separations. PMID:26073803

  11. Determination of Atto- to Femtogram Levels of Americium and Curium Isotopes in Large-Volume Urine Samples by Compact Accelerator Mass Spectrometry.

    PubMed

    Dai, Xiongxin; Christl, Marcus; Kramer-Tremblay, Sheila; Synal, Hans-Arno

    2016-03-01

    Ultralow level analysis of actinides in urine samples may be required for dose assessment in the event of internal exposures to these radionuclides at nuclear facilities and nuclear power plants. A new bioassay method for analysis of sub-femtogram levels of Am and Cm in large-volume urine samples was developed. Americium and curium were co-precipitated with hydrous titanium oxide from the urine matrix and purified by column chromatography separation. After target preparation using mixed titanium/iron oxides, the final sample was measured by compact accelerator mass spectrometry. Urine samples spiked with known quantities of Am and Cm isotopes in the range of attogram to femtogram levels were measured for method evaluation. The results are in good agreement with the expected values, demonstrating the feasibility of compact accelerator mass spectrometry (AMS) for the determination of minor actinides at the levels of attogram/liter in urine samples to meet stringent sensitivity requirements for internal dosimetry assessment. PMID:26822907

  12. Comparison of water isotope-ratio determinations using two cavity ring-down instruments and classical mass spectrometry in continuous ice-core analysis.

    PubMed

    Maselli, Olivia J; Fritzsche, Diedrich; Layman, Lawrence; McConnell, Joseph R; Meyer, Hanno

    2013-01-01

    We present a detailed comparison between subsequent versions of commercially available wavelength-scanned cavity ring-down water isotope analysers (L2120-i and L2130-i, Picarro Inc.). The analysers are used in parallel in a continuous mode by adaption of a low-volume flash evaporation module. Application of the analysers to ice-core analysis is assessed by comparison between continuous water isotope measurements of a glacial ice-core from Severnaya Zemlya with discrete isotope-ratio mass spectrometry measurements performed on parallel samples from the same ice-core. The great advances between instrument versions, particularly in the measurement of δ(2)H, allow the continuous technique to achieve the same high level of accuracy and precision obtained using traditional isotope spectrometry techniques in a fraction of the experiment time. However, when applied to continuous ice-core measurements, increased integration times result in a compromise of the achievable depth resolution of the ice-core records. PMID:23713832

  13. Xanthine oxidoreductase activity assay in tissues using stable isotope-labeled substrate and liquid chromatography high-resolution mass spectrometry.

    PubMed

    Murase, Takayo; Nampei, Mai; Oka, Mitsuru; Ashizawa, Naoki; Matsumoto, Koji; Miyachi, Atsushi; Nakamura, Takashi

    2016-01-01

    Studies of pathological mechanisms and XOR inhibitor characterization, such as allopurinol, febuxostat, and topiroxostat, require accurate and sensitive measurements of XOR activity. However, the established assays have some disadvantages such as susceptibility to endogenous substances such as uric acid (UA), xanthine, or hypoxanthine. Here, we aimed to develop a novel XOR activity assay utilizing a combination of high-performance liquid chromatography (LC) and high-resolution mass spectrometry (HRMS) for tissues such as the liver, kidney, and plasma. Stable isotope-labeled [(15)N2]-xanthine was utilized as substrate and the production of [(15)N2]-uric acid was determined. [(15)N2]-UA production by XOR was dependent on the amounts of [(15)N2]-xanthine and enzyme and the time of reaction. Because high concentrations of endogenous xanthine and hypoxanthine affect XOR activities, we employed a multi-component analysis using LC/HRMS to improve the accuracy of XOR activity assay. Quantification of [(15)N2]-UA was validated and showed good linearity, accuracy, and precision. We measured the XOR activities of retired ICR mice using [(15)N2]-xanthine and LC/MS. The XOR activities in plasma, kidney, and liver samples were 38.1±0.7, 158±5, 928±25pmol/min/mg of protein, respectively (mean±SD, n=5). Furthermore, we measured the XOR activities in the same samples using the LC/ultraviolet and LC/fluorescence (FL) methods. The level of [(15)N2]-xanthine oxidation by XOR was equal to that of xanthine oxidation and approximately 7.9-8.9 times higher than that of pterin oxidation. We found a good correlation between XOR activities examined using LC/MS assay with [(15)N2]-xanthine and those examined using LC/FL assay with pterin. This result suggested that although both the LC/MS assay with [(15)N2]-xanthine and the LC/FL assay with pterin were useful, the former provided information regarding XOR activities that more directly reflected the physiological condition than the latter

  14. Determination of the 87Sr/86Sr isotope ratio in USGS silicate reference materials by multi-collector ICP-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Balcaen, Lieve; Schrijver, Isabel De; Moens, Luc; Vanhaecke, Frank

    2005-04-01

    Multi-collector ICP-mass spectrometry (MC-ICP-MS) was used for 87Sr/86Sr isotope ratio determination in newly introduced silicate reference materials from the US Geological Survey (USGS): granite G-3, andesite AGV-2, and basalt BCR-2. Next to the SrCO3 isotopic standard NIST SRM 987, also analogous USGS reference materials from the previous generation, and for which reference 87Sr/86Sr data obtained by TIMS are available, were analysed for validation purposes. Sample preparation consisted of acid digestion and subsequent isolation of Sr by means of a dedicated and commercially available crown ether-based resin. The Sr fractions thus obtained were analysed via MC-ICP-MS whereby mass discrimination was corrected for internally, while the isobaric interference at a mass-to-charge ratio of 86 caused by Kr impurities in the Ar gas was mathematically corrected for by using the signal for a Kr isotope free from spectral overlap. Finally, also the effect of the small amount of Rb that may still be present in the Sr fraction was corrected for mathematically on the basis of the signal intensity for 85Rb. The MC-ICP-MS results for G-2, AGV-1 and BCR-1 showed an excellent agreement with the corresponding TIMS values (<0.003% bias in all cases), such that it can be assumed that also the 87Sr/86Sr isotope ratio results obtained for the new reference materials are reliable.

  15. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system

  16. Reference measurements for total mercury and methyl mercury content in marine biota samples using direct or species-specific isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Krata, Agnieszka; Vassileva, Emilia; Bulska, Ewa

    2016-11-01

    The analytical procedures for reference measurements of the total Hg and methyl mercury (MeHg) mass fractions at various concentration levels in marine biota samples, candidates for certified reference materials (oyster and clam Gafrarium tumidum), were evaluated. Two modes of application of isotope dilution inductively coupled plasma mass spectrometry method (ID ICP-MS), namely direct isotope dilution and species-specific isotope dilution analysis with the use of two different quantification mass spectrometry techniques were compared. The entire ID ICP-MS measurement procedure was described by mathematical modelling and the combined uncertainty of measurement results was estimated. All factors influencing the final results as well as isotopic equilibrium were systematically investigated. This included the procedural blank, the moisture content in the biota samples and all factors affecting the blend ratio measurements (instrumental background, spectral interferences, dead time and mass discrimination effects as well as the repeatability of measured isotopic ratios). Modelling of the entire measurement procedures and the use of appropriate certified reference materials enable to assure the traceability of obtained values to the International System of Units (SI): the mole or the kilogram. The total mass fraction of mercury in oyster and clam biota samples, after correction for moisture contents, was found to be: 21.1 (1.1) 10(-9) kg kg(-1) (U =5.1% relative, k=2) and 390.0 (9.4) 10(-9) kg kg(-1) (U=2.4% relative, k=2), respectively. For the determination of mercury being present as methyl mercury, the non-chromatographic separation on anion-exchange resin AG1-X8 of the blended samples was applied. The content of MeHg (as Hg) in oyster sample was found: 4.81 (24) 10(-9)kgkg(-1) (U=5.0%, k=2) and 4.84 (21) 10(-9)kgkg(-1) (U=4.3%, k=2) with the use of quadrupole (ICP QMS) or sector field (ICP SFMS) inductively coupled plasma mass spectrometers, respectively. In the

  17. Bromine isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry with a conventional sample introduction system.

    PubMed

    de Gois, Jefferson S; Vallelonga, Paul; Spolaor, Andrea; Devulder, Veerle; Borges, Daniel L G; Vanhaecke, Frank

    2016-01-01

    A simple and accurate methodology for Br isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with pneumatic nebulization for sample introduction was developed. The Br(+) signals could be measured interference-free at high mass resolution. Memory effects for Br were counteracted using 5 mmol L(-1) of NH4OH in sample, standard, and wash solutions. The major cation load of seawater was removed via cation exchange chromatography using Dowex 50WX8 resin. Subsequent Br preconcentration was accomplished via evaporation of the sample solution at 90 °C, which did not induce Br losses or isotope fractionation. Mass discrimination was corrected for by external correction using a Cl-matched standard measured in a sample-standard bracketing approach, although Sr, Ge, and Se were also tested as potential internal standards for internal correction for mass discrimination. The δ(81)Br (versus standard mean ocean bromide (SMOB)) values thus obtained for the NaBr isotopic reference material NIST SRM 977 and for IRMM BCR-403 seawater certified reference material are in agreement with literature values. For NIST SRM 977, the (81)Br/(79)Br ratio (0.97291) was determined with a precision ≤0.08‰ relative standard deviation (RSD). PMID:26123436

  18. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles.

    PubMed

    Erdmann, N; Kratz, J-V; Trautmann, N; Passler, G

    2009-11-01

    Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., (238)U/(238)Pu, (241)Am/(241)Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process. PMID:19557397

  19. Biological Cluster Mass Spectrometry

    PubMed Central

    Winograd, Nicholas; Garrison, Barbara J.

    2010-01-01

    This article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C60, exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry. When the beams are microfocused to a spot on the sample, bioimaging experiments in two and three dimensions are feasible. We describe emerging theoretical models that allow the energy-deposition process to be understood on an atomic and molecular basis. Moreover, experiments on model systems are described that allow protocols for imaging on biological materials to be implemented. Finally, we present recent applications of imaging to biological tissue and single cells to illustrate the future directions of this methodology. PMID:20055679

  20. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  1. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  2. The Potential of Isotope Ratio Mass Spectrometry (IRMS) and Gas Chromatography-IRMS Analysis of Triacetone Triperoxide in Forensic Explosives Investigations.

    PubMed

    Bezemer, Karlijn D B; Koeberg, Mattijs; van der Heijden, Antoine E D M; van Driel, Chris A; Blaga, Cornelia; Bruinsma, Jildert; van Asten, Arian C

    2016-09-01

    Studying links between triacetone triperoxide (TATP) samples from crime scenes and suspects can assist in criminal investigations. Isotope ratio mass spectrometry (IRMS) and gas chromatography (GC)-IRMS were used to measure the isotopic compositions of TATP and its precursors acetone and hydrogen peroxide. In total, 31 TATP samples were synthesized with different raw material combinations and reaction conditions. For carbon, a good differentiation and a linear relationship were observed for acetone-TATP combinations. The extent of negative (δ(13) C) fractionation depended on the reaction yield. Limited enrichment was observed for the hydrogen isotope (δ(2) H) values of the TATP samples probably due to a constant exchange of hydrogen atoms in aqueous solution. For oxygen (δ(18) O), the small isotopic range and excess of water in hydrogen peroxide resulted in poor differentiation. GC-IRMS and IRMS data were comparable except for one TATP sample prepared with high acid concentration demonstrating the potential of compound-specific isotope analysis. Carbon IRMS has practical use in forensic TATP investigations. PMID:27356279

  3. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles.

    PubMed

    Claverie, Fanny; Hubert, Amélie; Berail, Sylvain; Donard, Ariane; Pointurier, Fabien; Pécheyran, Christophe

    2016-04-19

    The isotope drift encountered on short transient signals measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) is related to differences in detector time responses. Faraday to Faraday and Faraday to ion counter time lags were determined and corrected using VBA data processing based on the synchronization of the isotope signals. The coefficient of determination of the linear fit between the two isotopes was selected as the best criterion to obtain accurate detector time lag. The procedure was applied to the analysis by laser ablation-MC-ICPMS of micrometer sized uranium particles (1-3.5 μm). Linear regression slope (LRS) (one isotope plotted over the other), point-by-point, and integration methods were tested to calculate the (235)U/(238)U and (234)U/(238)U ratios. Relative internal precisions of 0.86 to 1.7% and 1.2 to 2.4% were obtained for (235)U/(238)U and (234)U/(238)U, respectively, using LRS calculation, time lag, and mass bias corrections. A relative external precision of 2.1% was obtained for (235)U/(238)U ratios with good accuracy (relative difference with respect to the reference value below 1%). PMID:27031645

  4. Using Gas Chromatography/Isotope Ratio Mass Spectrometry to Determine the Fractionation Factor for H2 Production by Hydrogenases

    SciTech Connect

    Yang, Hui; Ghandi, H.; Shi, Liang; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2012-01-15

    Hydrogenases catalyze the reversible formation of H2, and they are key enzymes in the biological cycling of H2. H isotopes should be a very useful tool in quantifying proton trafficking in biological H2 production processes, but there are several obstacles that have thus far limited the use of this tool. In this manuscript, we describe a new method that overcomes some of these barriers and is specifically designed to measure isotopic fractionation during enzyme-catalyzed H2 evolution. A key feature of this technique is that purified hydrogenases are employed, allowing precise control over the reaction conditions and therefore a high level of precision. A custom-designed high-throughput gas chromatography-isotope ratio mass spectrometer is employed to measure the isotope ratio of the H2. Using this method, we determined that the fractionation factor of H2 production by the [NiFe]-hydrogenase from Desulfivibrio fructosovran is 0.27. This result indicates that, as expected, protons are highly favored over deuterons during H2 evolution. Potential applications of this new method are discussed.

  5. High-Precision Tungsten Isotopic Analysis by Multicollection Negative Thermal Ionization Mass Spectrometry Based on Simultaneous Measurement of W and (18)O/(16)O Isotope Ratios for Accurate Fractionation Correction.

    PubMed

    Trinquier, Anne; Touboul, Mathieu; Walker, Richard J

    2016-02-01

    Determination of the (182)W/(184)W ratio to a precision of ± 5 ppm (2σ) is desirable for constraining the timing of core formation and other early planetary differentiation processes. However, WO3(-) analysis by negative thermal ionization mass spectrometry normally results in a residual correlation between the instrumental-mass-fractionation-corrected (182)W/(184)W and (183)W/(184)W ratios that is attributed to mass-dependent variability of O isotopes over the course of an analysis and between different analyses. A second-order correction using the (183)W/(184)W ratio relies on the assumption that this ratio is constant in nature. This may prove invalid, as has already been realized for other isotope systems. The present study utilizes simultaneous monitoring of the (18)O/(16)O and W isotope ratios to correct oxide interferences on a per-integration basis and thus avoid the need for a double normalization of W isotopes. After normalization of W isotope ratios to a pair of W isotopes, following the exponential law, no residual W-O isotope correlation is observed. However, there is a nonideal mass bias residual correlation between (182)W/(i)W and (183)W/(i)W with time. Without double normalization of W isotopes and on the basis of three or four duplicate analyses, the external reproducibility per session of (182)W/(184)W and (183)W/(184)W normalized to (186)W/(183)W is 5-6 ppm (2σ, 1-3 μg loads). The combined uncertainty per session is less than 4 ppm for (183)W/(184)W and less than 6 ppm for (182)W/(184)W (2σm) for loads between 3000 and 50 ng. PMID:26751903

  6. Direct isotope ratio analysis of individual uranium-plutonium mixed particles with various U/Pu ratios by thermal ionization mass spectrometry.

    PubMed

    Suzuki, Daisuke; Esaka, Fumitaka; Miyamoto, Yutaka; Magara, Masaaki

    2015-02-01

    Uranium and plutonium isotope ratios in individual uranium-plutonium (U-Pu) mixed particles with various U/Pu atomic ratios were analyzed without prior chemical separation by thermal ionization mass spectrometry (TIMS). Prior to measurement, micron-sized particles with U/Pu ratios of 1, 5, 10, 18, and 70 were produced from uranium and plutonium certified reference materials. In the TIMS analysis, the peaks of americium, plutonium, and uranium ion signals were successfully separated by continuously increasing the evaporation filament current. Consequently, the uranium and plutonium isotope ratios, except the (238)Pu/(239)Pu ratio, were successfully determined for the particles at all U/Pu ratios. This indicates that TIMS direct analysis allows for the measurement of individual U-Pu mixed particles without prior chemical separation. PMID:25479434

  7. Easy Extraction Method To Evaluate δ13C Vanillin by Liquid Chromatography-Isotopic Ratio Mass Spectrometry in Chocolate Bars and Chocolate Snack Foods.

    PubMed

    Bononi, Monica; Quaglia, Giancarlo; Tateo, Fernando

    2015-05-20

    An easy extraction method that permits the use of a liquid chromatography-isotopic ratio mass spectrometry (LC-IRMS) system to evaluate δ(13)C of vanillin in chocolate products and industrial flavorings is presented. The method applies the determination of stable isotopes of carbon to discriminate between natural vanillin from vanilla beans and vanillin from other sources (mixtures from beans, synthesis, or biotechnology). A series of 13 chocolate bars and chocolate snack foods available on the Italian market and 8 vanilla flavorings derived from industrial quality control processes were analyzed. Only 30% of products considered in this work that declared "vanilla" on the label showed data that permitted the declaration "vanilla" according to European Union (EU) Regulation 1334/2008. All samples not citing "vanilla" or "natural flavoring" on the label gave the correct declaration. The extraction method is presented with data useful for statistical evaluation. PMID:25965784

  8. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  9. Isotope-Ratio-Monitoring Liquid Chromatography Mass Spectrometry (IRM-LCMS): First Results from a Moving Wire Interface System.

    PubMed

    Brand, W A; Dobberstein, P

    1996-08-01

    Abstract A Liquid Chromatography-Combustion (LC-C) Interface, based on a moving wire technique, has been built and tested. The LC effluent is deposited onto a transport wire, which carries the sample through solvent evaporation and combustion ovens. CO(2) from the combustion step is analysed in an isotope ratio mass spectrometer. Performance of the interface was tested by loop injections of sucrose and glucose into a liquid flow of methanol/water (80/20). Accuracy and precision of δ(13)C(PDB) < 1‰ was achieved for sample concentrations > 500 ng/ul (5μl loop), sufficient for studies at natural isotope ratios. In case of (13)C tracer applications the detection limit was determined to be about 20 pg carbon tracer (on wire). PMID:22088119

  10. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Assonov, Sergey S.

    2010-01-01

    Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≈ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.

  11. Neuroscience and Accelerator Mass Spectrometry

    SciTech Connect

    Palmblad, M N; Buchholz, B A; Hillegonds, D J; Vogel, J S

    2004-08-02

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.

  12. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  13. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  14. Development of cadmium/silver/palladium separation by ion chromatography with quadrupole inductively coupled plasma mass spectrometry detection for off-line cadmium isotopic measurements.

    PubMed

    Gautier, C; Bourgeois, M; Isnard, H; Nonell, A; Stadelmann, G; Goutelard, F

    2011-08-01

    A separation method was investigated to perform off-line cadmium isotopic measurements on a (109)Ag transmutation target. Ion chromatography (IC) with Q ICPMS detection (quadrupole inductively coupled plasma mass spectrometry detection) was chosen to separate cadmium from the isobarically interfering elements, silver and palladium, present in the sample. The optimization of chromatographic conditions was particularly studied. Several anion and cation columns (Dionex AG11(®), CS10(®) and CS12(®)) were compared with different mobile phases (HNO(3), HCl). The separation procedure was achieved with a carboxylate-functionalized cation exchange CS12 column using 0.5 M HNO(3) as eluent. The developed technique yielded satisfactory results in terms of separation factors (greater than 5) and provides an efficient solution to obtain rapidly purified cadmium fractions (decontamination factors higher 100,000 for silver and palladium) which can directly be analyzed by multi collection inductively coupled plasma mass spectrometry (MC ICPMS). By applying the proposed procedure, accurate and precise cadmium isotope ratios were determined for the irradiated (109)Ag transmutation target. PMID:21703628

  15. Measurement of intact sulfate and glucuronide phytoestrogen conjugates in human urine using isotope dilution liquid chromatography-tandem mass spectrometry with [13C(3)]isoflavone internal standards.

    PubMed

    Clarke, Don B; Lloyd, Antony S; Botting, Nigel P; Oldfield, Mark F; Needs, Paul W; Wiseman, Helen

    2002-10-01

    A method has been developed for the analysis of phytoestrogens and their conjugates in human urine using liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Stable isotopically labeled [13C(3)]daidzein and [13C(3)]genistein were synthesized and used as internal standards for isotope dilution mass spectrometry. Free aglycons and intact glucuronide, sulfate, diglucuronide, disulfate, and mixed sulfoglucuronide conjugates of isoflavones and lignans were observed in naturally incurred urine samples. Sample pretreatment was not necessary, other than addition of internal standards and pH adjustment. Urine was injected directly onto the analytical column. The limits of detection were generally <50ng/ml, precision was generally <10% CV for conjugates. Total hydrolyzed daidzein and genistein were measured against quality assurance urine sample and were accurate to within 12%. The accuracy of conjugate measurement can not be ascertained, as no reference samples are available. The mean sum of daidzein and its conjugates was within 20% of the hydrolyzed value. Concentrations of the free aglycons of up to 22% of genistein and 18% of daidzein were observed. The average pattern was ca. 54% 7-glucuronide, 25% 4(')-glucuronide, 13% monosulfates, 7% free daidzein, 0.9% sulfoglucuronides, 0.4% diglucuronide, and <0.1% disulfate. Selective enzymatic deconjugation with glucuronidase and mixed glucuronidase/sulfatase were used to validate the accuracy of the quantitation of the intact daidzein conjugates. There were no apparent sex differences, or conditioning effects on the conjugation profile of isoflavones after chronic dosing. PMID:12381375

  16. Multiple spiking species-specific isotope dilution analysis by molecular mass spectrometry: simultaneous determination of inorganic mercury and methylmercury in fish tissues.

    PubMed

    Castillo, Angel; Rodríguez-González, Pablo; Centineo, Giuseppe; Roig-Navarro, Antoni Francesc; García Alonso, J Ignacio

    2010-04-01

    This work demonstrates, for the first time, the applicability of multiple spiking isotope dilution analysis to molecular mass spectrometry exemplified by the speciation analysis of mercury using GC(EI)MS instrumentation. A double spike isotope dilution approach using isotopically enriched mercury isotopes has been applied for the determination of inorganic mercury Hg(II) and methylmercury (MeHg) in fish reference materials. The method is based on the application of isotope pattern deconvolution for the simultaneous determination of degradation-corrected concentrations of methylmercury and inorganic mercury. Mass isotopomer distributions are employed instead of isotope ratios to calculate the corrected concentrations of the Hg species as well as the extent of species degradation reactions. The isotope pattern deconvolution equations developed here allow the calculation of the different molar fractions directly from the GC(EI)MS mass isotopomer distribution pattern and take into account possible impurities present in the spike solutions employed. The procedure has been successfully validated with the analysis of two different certified reference materials (BCR-464 and DOLT-4) and with the comparison of the results obtained by GC(ICP)MS. For the tuna fish matrix (BCR-464), no interconversion reactions were observed at the optimized conditions of open focused microwave extraction at 70 degrees C during 8 min. However, significant demethylation was found under the same conditions in the case of the certified dogfish liver DOLT-4. Methylation and demethylation factors were confirmed by GC(ICP)MS. Transformation reactions have been found to depend on the sample matrix and on the derivatization reagent employed. Thus, it is not possible to recommend optimum extraction conditions suitable for all types of matrices demonstrating the need to apply multiple spiking methodologies for the determination of MeHg and Hg(II) in biological samples. Double spike isotope dilution

  17. Nuclear applications of inorganic mass spectrometry.

    PubMed

    De Laeter, John

    2010-01-01

    There are several basic characteristics of mass spectrometry that are not always fully appreciated by the science community. These characteristics include the distinction between relative and absolute isotope abundances, and the influence of isotope fractionation on the accuracy of isotopic measurements. These characteristics can be illustrated in the field of nuclear physics with reference to the measurement of nuclear parameters, which involve the use of enriched isotopes, and to test models of s-, r-, and p-process nucleosynthesis. The power of isotope-dilution mass spectrometry (IDMS) to measure trace elements in primitive meteorites to produce accurate Solar System abundances has been essential to the development of nuclear astrophysics. The variety of mass spectrometric instrumentation used to measure the isotopic composition of elements has sometimes been accompanied by a lack of implementation of basic mass spectrometric protocols which are applicable to all instruments. These metrological protocols are especially important in atomic weight determinations, but must also be carefully observed in cases where the anomalies might be very small, such as in studies of the daughter products of extinct radionuclides to decipher events in the early history of the Solar System. There are occasions in which misleading conclusions have been drawn from isotopic data derived from mass spectrometers where such protocols have been ignored. It is important to choose the mass spectrometer instrument most appropriate to the proposed experiment. The importance of the integrative nature of mass spectrometric measurements has been demonstrated by experiments in which long, double beta decay and geochronological decay half-lives have been measured as an alternative to costly radioactive-counting experiments. This characteristic is also illustrated in the measurement of spontaneous fission yields, which have accumulated over long periods of time. Mass spectrometry is also a

  18. Accelerator mass spectrometry

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.; Finkel, R.; Nelson, D.E.

    1995-06-01

    Accelerator mass spectroscopy (AMS) can be used for efficient detection of long-lived isotopes at part-per-quadrillion sensitivities with good precision. In this article we present an overview of AMS and its recent use in archaeology, geochemistry and biomolecular tracing. All AMS systems use cesium sputter ion sources to produce negative ions from a small button of a solid sample containing the element of interest, such as graphite, metal halide, or metal oxide, often mixed with a metal powder as binder and thermal conductor. Experience shows that both natural and biomedical samples are compatible in a single AMS system, but few other AMS sites make routine {sup 14}C measurements for both dating and tracing. AMS is, in one sense, just `a very sensitive decay counter`, but if AMS sensitivity is creatively coupled to analytical chemistry of certain isotopes, whole new areas of geosciences, archaeology, and life sciences can be explored. 29 refs., 2 figs., 1 tab.

  19. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey.

    PubMed

    Cotte, J F; Casabianca, H; Lhéritier, J; Perrucchietti, C; Sanglar, C; Waton, H; Grenier-Loustalot, M F

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The delta(13)C parameter was not significant for characterizing an origin, while the (D/H)(I) ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C(4) syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per thousand (permil). A filtration step was added to the experimental procedure and provided results that were compliant with the natural origin of our honey samples. In addition, spiking with a C(4) syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying. PMID:17386484

  20. Bioaffinity Mass Spectrometry Screening.

    PubMed

    Yang, Ben; Feng, Yun Jiang; Vu, Hoan; McCormick, Brendan; Rowley, Jessica; Pedro, Liliana; Crowther, Gregory J; Van Voorhis, Wesley C; Forster, Paul I; Quinn, Ronald J

    2016-02-01

    Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS or ESI-FTMS) was used to screen 192 natural product extracts and a 659-member natural product-based fragment library for bindings to a potential malaria drug target, Plasmodium falciparum Rab11a (PfRab11a, PF13_0119). One natural product extract and 11 fragments showed binding activity. A new natural product, arborside E, was identified from the active extract of Psydrax montigena as a weak binder. Its binding activity and inhibitory activity against PfRab11a were confirmed by ESI-FTMS titration experiments and an orthogonal enzyme assay. PMID:26773071

  1. Precise isotopic analysis of Mo in seawater using multiple collector-inductively coupled mass spectrometry coupled with a chelating resin column preconcentration method.

    PubMed

    Nakagawa, Yusuke; Firdaus, M Lutfi; Norisuye, Kazuhiro; Sohrin, Yoshiki; Irisawa, Keita; Hirata, Takafumi

    2008-12-01

    It is widely recognized that the natural isotopic variation of Mo can provide crucial information about the geochemical circulation of Mo, and the ocean is an important reservoir of Mo. To obtain precise isotopic data on Mo in seawater samples using multiple collector-inductively coupled plasma mass spectrometry (MC-ICPMS), we have developed a preconcentration technique using 8-hydroxyquinoline bonded covalently to a vinyl polymer resin (TSK-8HQ). By optimizing the procedure, Mo in seawater could be effectively separated from matrix elements such as alkali, alkaline earth, and transition metals. With this technique, even with a 50-fold enrichment factor, the changes in the 98Mo/95Mo ratio during preconcentration were smaller than twice the standard deviation (SD) in this study. Mass discrimination of Mo isotopes during the measurement was externally corrected for by normalizing 86Sr/88Sr to 0.1194 using an exponential law. We evaluated delta98/95Mo to a precision of +/- 0.08 per thousand (+/-2 SD); this value was found to be less than one-third of previous reported values. Moreover, we were able to determine an accurate ratio for every pair of stable Mo isotopes, which was impossible with previous methods owing to the isobaric interference from the external elements (Zr and Ru). In this study, delta92/98Mo in seawater was first determined so that it had the smallest relative error. We applied the proposed method to four kinds of seawater samples. The Mo compositions were constant among them, with average delta98/95Mo and delta92/98Mo values of 2.45 +/- 0.11 and -4.94 +/- 0.09 per thousand (+/-2 SD), respectively. Our data indicate that seawater is enriched in heavy Mo isotopes than previously reported. PMID:19551942

  2. Isotope dilution analysis of Se in human blood serum by using high-power nitrogen microwave-induced plasma mass spectrometry coupled with a hydride generation technique.

    PubMed

    Ohata, M; Ichinose, T; Furuta, N; Shinohara, A; Chiba, M

    1998-07-01

    To establish a method for sensitive, accurate, and precise determination of Se in real samples, isotope dilution analysis using high-power nitrogen microwave-induced plasma mass spectrometry (N2 MIP-IDMS) was conducted. In this study, freeze-dried human blood serum (Standard Reference Material, NIES No. 4) provided by NIES (National Institute for Environmental Studies) was used as a real sample. The measured isotopes of Se were 78Se and 80Se which are the major isotopes of Se. The appropriate amount of a Se spike solution was theoretically calculated by using an error multiplication factor (F) and was confirmed experimentally for the isotope dilution analysis. The mass discrimination effect was corrected for by using a standard Se solution for the measurement of Se isotope ratios in the spiked sample. However, the sensitivity for the detection of Se was not so good and the precision of the determination was not improved (2-3%) by N2 MIP-IDMS with use of the conventional nebulizer. Therefore, a hydride generation system was connected to N2 MIP-IDMS as a sample introduction system (HG-N2 MIP-IDMS) in order to establish a more sensitive detection and a more precise determination of Se. A detection limit (3 sigma) of 10 pg mL-1 could be achieved, and the RSD was less than 1% at the concentration level of 5.0-10.0 ng mL-1 by HG-N2 MIP-IDMS. The analytical results were found to be in a good agreement with those obtained by the standard addition method using conventional Ar ICPMS. PMID:9666737

  3. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    SciTech Connect

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.; White, Byron M.

    2015-05-01

    135Cs/137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide variety of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2σ) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/137Cs ratio measurements currently reported for soil samples at the femtogram level.

  4. New even-parity high-lying levels of Sm I and measurement of isotope shifts by two-color resonance ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Seema, A. U.; Mandal, P. K.; Rath, Asawari D.; Dev, Vas

    2014-09-01

    In this work, we investigate the even-parity high-lying levels of Sm I in the energy region 33136-33960 cm-1 by performing two-color three-photon resonance ionization spectroscopy in an atomic beam coupled to a time-of-flight mass spectrometer using two tunable pulsed dye lasers. We observe twenty-one new and confirm eight previously reported even-parity energy levels of Sm I in this spectral region. Absolute energies of these levels are determined with an accuracy of ±0.3 cm-1. Using electric dipole selection rule, total angular momentum (J-value) of the most newly observed levels is assigned uniquely. Further, employing two-color three-step resonance ionization mass spectrometry, we measure the isotope shift between 154Sm and 144Sm of sixteen high-lying levels with a moderate accuracy of ±30 mK.

  5. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of

  6. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  7. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  8. Molecular formula analysis of fragment ions by isotope-selective collision-induced dissociation tandem mass spectrometry of pharmacologically active compounds.

    PubMed

    Bianco, Giuliana; Buchicchio, Alessandro; Lelario, Filomena; Cataldi, Tommaso R I

    2014-12-01

    The purpose of this work is to explore the mass fragment characterization of commonly used drugs through a novel approach, which involves isotope-selective tandem mass spectrometry (MS/MS). Collision-induced dissociation (CID) was performed with a low-resolution linear ion trap mass spectrometer in positive electrospray ionization. Three pharmacologically active ingredients, i.e. omeprazole, meloxicam and brinzolamide, selected as model compounds in their own formulation, were investigated as a sodiated adduct [C17 H19 N3 O3 S + Na](+) (omeprazole) and as protonated adducts, [C14 H13 N3 O4 S2  + H](+) and [C12 H21 N3 O5 S3  + H](+) , meloxicam and brinzolamide, respectively. Selecting a narrow window of ±0.5 m/z units, precursor ion fragmentation by CID-MS/MS of isotopologues A + 0, A + 1 and A + 2 was found very useful to confirm the chemical formula of product ions, thus aiding the establishment of characteristic fragmentation pathways of all three examined compounds. The correctness of putative molecular formula of product ions was easily demonstrated by exploiting the isotope peak abundance ratios (i.e. IF+0 /IF+1 and IF+0 /IF+2 ) as simple constraints in low-resolution MS instrumentations. PMID:25476951

  9. Stable isotope-dilution liquid chromatography/tandem mass spectrometry method for determination of thyroxine in saliva.

    PubMed

    Higashi, Tatsuya; Ichikawa, Takuya; Shimizu, Chikara; Nagai, So; Inagaki, Shinsuke; Min, Jun Zhe; Chiba, Hitoshi; Ikegawa, Shigeo; Toyo'oka, Toshimasa

    2011-04-15

    A liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) method for the determination of thyroxine (T(4)) in human saliva has been developed and validated. The saliva was deproteinized with methanol, purified using a Strata-X™ cartridge, and subjected to LC/ESI-MS/MS. Quantification was based on selected reaction monitoring, and [(13)C(6)]-T(4) was used as the internal standard. This method allowed the reproducible (intra- and inter-assay relative standard deviations, <4.8%) and accurate (analytical recovery, 96.5-99.6%) quantification of the salivary T(4) using a 400 μl sample, and the limit of quantification was 25.0 pg/ml. A preliminary study using the developed method found that there is a diagnosable difference in the salivary T(4) concentration between the euthyroid subjects and the patients with Graves disease. PMID:21435959

  10. 13C and 18O fractionation effects on open splits and on the ion source in continuous flow isotope ratio mass spectrometry.

    PubMed

    Elsig, Joachim; Leuenberger, Markus C

    2010-05-30

    Measurements of carbon and oxygen isotopes of CO(2) by continuous flow isotope ratio mass spectrometry are widely used in environmental studies and climate change research. Yet, there are remaining problems associated with the reproducibility of measurements, in particular when high precision is required and/or the amount of sample material is limited. Isotopic fractionations in open splits and nonlinear effects occurring in the mass spectrometer due to different sample amounts alter the results. In this study, we discuss the influence and the origin of these two effects and propose procedures for preventing their impact. Fractionation in the open split can be related to diffusion of CO(2) and can lead to shifted delta-values when measuring a sample gas against a reference gas injected via different open splits. We present a method, where such fractionations can be minimized by adjusting either the position of the capillaries or the flow rates involved or both. The nonlinear peak area dependence of delta(13)C measurements for small sample sizes can be explained by adsorption/desorption processes in the ionization chamber or its vicinity. For constant amplitudes, the magnitude of the nonlinearity only depends on the amount of CO(2) entering the ion source. This nonlinearity can be eliminated by a small additional flux of a conditioning gas fed to the mass spectrometer. The best results were obtained when using carbon monoxide. For the adsorption process in the mass spectrometer we found a fractionation factor of 0.982 +/- 0.005 for delta(13)C and 1.002 +/- 0.004 for delta(18)O. PMID:20411581

  11. Simultaneous Assay of Isotopic Enrichment and Concentration of Guanidinoacetate and Creatine by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Kasumov, Takhar; Gruca, Lourdes L.; Dasarathy, Srinivasan; Kalhan, Satish C.

    2012-01-01

    A gas chromatographic-mass spectrometric (GC-MS) method for the simultaneous measurement of isotopic enrichment and concentration of guanidinoacetic acid and creatine in plasma sample for kinetic studies is reported. The method, based on preparation of the bis(trifluoromethyl)-pyrimidine methyl ester derivatives of guanidinoacetic acid and creatine, is robust and sensitive. The lowest measurable m1 and m3 enrichment for guanidinoacetic acid and creatine, respectively, was 0.3%. The calibration curves for measurements of concentration were linear over a range of 0.5-250 μM guanidinoacetic acid and 2-500 μM for creatine. The method was reliable for inter-assay and intra-assay precision, accuracy and linearity. The technique was applied in a healthy adult to determine in vivo fractional synthesis rate of creatine using primed- constant rate infusion of [1-13C]glycine. It was found that isotopic enrichment of guanidinoacetic acid reached plateau by 30 min of infusion of [1-13C]glycine, indicating either a small pool size or a rapid turnover rate or both, of guanidinoacetic acid. In contrast, tracer appearance in creatin was slow (slope: 0.00097), suggesting a large pool size and a slow rate of synthesis of creatine. This method can be used to estimate rate of synthesis of creatine in-vivo in human and animal studies. PMID:19646413

  12. Determination of atrazine, lindane, pentachlorophenol, and diazinon in water and soil by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect

    Lopez-Avila, V.; Hirata, P.; Kraska, S.; Flanagan, M.; Taylor, J.H. Jr.; Hern, S.C.

    1985-12-01

    This paper describes an isotope dilution GC/MS technique for the analysis of low-parts-per-billion concentrations of atrazine, lindane, pentachlorophenol, and diazinon in water and soil. Known amounts of stable-labeled isotopes such as atrazine-d/sub 5/, lindane-d/sub 6/, pentachlorophenol-/sup 13/C/sub 6/, and diazinon-d/sub 10/ are spiked into each sample prior to extraction. Water samples are extracted with methylene chloride; soil samples are extracted with acetone/hexane. Analysis is performed by high-resolution GC/MS with the mass spectrometer operated in the selected ion monitoring mode. Accuracy greater than 86% and precision better than 8% were demonstrated by use of spiked samples. This technique has been used successfully in the analysis of over 300 water and 300 soil samples. Detection limits of 0.1-1.0 ppb were achieved for the test compounds by selected ion monitoring GC/MS. 8 references, 2 figures, 4 tables.

  13. Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bürger, S.; Riciputi, L. R.; Bostick, D. A.; Turgeon, S.; McBay, E. H.; Lavelle, M.

    2009-09-01

    A ThermoFisher "Triton" multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotope ratio analysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (104 atoms to 105 atoms) for 239-242+244Pu, 233+236U, 241-243Am, 89,90Sr, and 134,135,137Cs, and <=1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 × 106 or better using a SEM are reported here. Precisions of RSD [approximate]0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.

  14. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  15. Laser ablation molecular isotopic spectrometry of carbon isotopes

    SciTech Connect

    Bol'shakov, Alexander A.; Jain, Jinesh; Russo, Richard E.; McIntyre, Dustin; Mao, Xianglei

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  16. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.; Driedger, Arthur R., III

    1993-01-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  17. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate. PMID:25967147

  18. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous

  19. Can we use the CO2 concentrations determined by continuous-flow isotope ratio mass spectrometry from small samples for the Keeling plot approach?

    PubMed

    Joos, Ottmar; Saurer, Matthias; Heim, Alexander; Hagedorn, Frank; Schmidt, Michael W I; Siegwolf, Rolf T W

    2008-12-01

    A common method to estimate the carbon isotopic composition of soil-respired air is to use Keeling plots (delta(13)C versus 1/CO2 concentration). This approach requires the precise determination of both CO2 concentration ([CO2]), usually measured with an infrared gas analyser (IRGA) in the field, and the analysis of delta(13)C by isotope ratio mass spectrometry (IRMS) in the laboratory. We measured [CO2] with an IRGA in the field (n = 637) and simultaneously collected air samples in 12 mL vials for analysis of the 13C values and the [CO2] using a continuous-flow isotope ratio mass spectrometer. In this study we tested if measurements by the IRGA and IRMS yielded the same results for [CO2], and also investigated the effects of different sample vial preparation methods on the [CO2] measurement and the thereby obtained Keeling plot results. Our results show that IRMS measurements of the [CO2] (during the isotope analysis) were lower than when the [CO2] was measured in the field with the IRGA. This is especially evident when the sample vials were not treated in the same way as the standard vials. From the three different vial preparation methods, the one using N2-filled and overpressurised vials resulted in the best agreement between the IRGA and IRMS [CO2] values. There was no effect on the (13)C-values from the different methods. The Keeling plot results confirmed that the overpressurised vials performed best. We conclude that in the cases where the ranges of [CO2] are large (>300 ppm; in our case it ranged between 70 and 1500 ppm) reliable estimation of the [CO2] with small samples using IRMS is possible for Keeling plot application. We also suggest some guidelines for sample handling in order to achieve proper results. PMID:19009520

  20. Rapid analysis of biogenic amines from rice wine with isotope-coded derivatization followed by high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Cai, Yiping; Sun, Zhiwei; Chen, Guang; Liu, Xiaomei; You, Jinmao; Zhang, Caiqing

    2016-02-01

    A pair of isotope-coded derivatization reagents, d0-10-methyl-acridone-2-sulfonyl chloride (d0-MASC, light form) and d3-10-methyl-acridone-2-sulfonyl chloride (d3-MASC, heavy form), were used for labeling biogenic amines (BAs). On basis of the isotope-coded derivatization, a global isotope internal standard quantitative method for determining seven BAs by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The d0-MASC and d3-MASC can easily label BAs under mild conditions within 15 min at 50 °C. The obtained light and heavy labeled BAs were monitored by the transitions of [M+H](+) → 208 and [M+H](+) → 211, respectively. Relative quantification of BAs was achieved by calculation of the peak area ratios of d0-MASC/d3-MASC labeled derivatives. Excellent linear responses for relative quantification were observed in the range of 1/10-10/1. The developed method has been successfully applied to the quantification of BAs in Chinese rice wine with recoveries ranging from 94.9% to 104.5%. PMID:26304364

  1. Determination of lead, cadmium, indium, thallium and silver in ancient ices from Antarctica by isotope dilution-thermal ionization mass spectrometry

    USGS Publications Warehouse

    Matsumoto, A.; Hinkley, T.K.

    1997-01-01

    The concentrations of five chalcophile elements (Pb, Cd, In, Tl and Ag) and the lead isotope rarios in ancient ices from the Taylor Dome near coastal Antarctica, have been determined by the isotope dilutionthermal ionization mass spectrometry (ID-TIMS), with ultra-clean laboratory techniques. The samples were selected from segments of cores, one of which included a visible ash layer. Electric conductivity measurement (ECM) or dielectric properties (DEP) gave distinctive sharp peaks for some of the samples c hosen. Exterior portions of the sample segments were trimmed away by methods described here. Samples w ere evaporated to dryness and later separated into fractions for the five elements using an HBr-HNO3 a nion exchange column method. The concentrations are in the range 2.62-36.7 pg Pb/g of ice, 0.413-2.83 pg Cd/g, 0.081-0.34 pg In/g, 0.096-2.8 pg Tl/g and 0.15-0.84 pg Ag/g. respectively. The dispersions in duplicate analyses are about ??1% for lead and cadmium, ??2% for indium. ??4% for thallium and ??6% for silver, respectively. The concentrations of lead obtained are commonly higher than those in the present-day Antarctic surface snows, but the isotope ratios are distinctively higher than those of the present-day snows and close to those of the other ancient ice collected from a different Antarctic area.

  2. Determination of Ag, Tl, and Pb in few milligrams of platinum nanoclusters by on-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine; Pickhardt, Carola; Pompe, W.

    2004-09-01

    A new analysis procedure for determination of trace impurities in a few milligram noble metal nanoclusters, using on-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed. During the laser ablation of investigated sample simultaneous the dry aerosol of nebulized enriched isotope spike solution was added and mixed in the laser ablation chamber. The capability of solution-based calibration by a modified isotope dilution analysis in LA-ICP-MS for the determination of selected elements was tested, using platinum reference material NIST SRM 681. A good agreement of measured with certified concentration for Ag and Pb was found. The detection limits for trace element determination of the developed analytical technique, using LA-ICP-MS with quadrupole analyzer varied between 6 ng g-1 for Ag and 90 ng g-1 for Pb. The analytical technique was applied for the determination of Ag, Tl, and Pb in a few milligram of platinum nanoclusters.

  3. Combining Capillary Electrophoresis Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry and Stable Isotopic Labeling Techniques for Comparative Crustacean Peptidomics

    PubMed Central

    Wang, Junhua; Zhang, Yuzhuo; Xiang, Feng; Zhang, Zichuan; Li, Lingjun

    2010-01-01

    Herein we describe a sensitive and straightforward off-line capillary electrophoresis (CE) matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) interface in conjunction with stable isotopic labeling (SIL) technique for comparative neuropeptidomic analysis in crustacean model organisms. Two SIL schemes, including a binary H/D formaldehyde labeling technique and novel, laboratory-developed multiplexed dimethylated leucine-based isobaric tagging reagents, have been evaluated in these proof-of-concept experiments. We employ these isotopic labeling techniques in conjunction with CE-MALDI MS for quantitative peptidomic analyses of the pericardial organs isolated from two crustacean species, the European green crab Carcinus maenas and the blue crab Callinectes sapidus. Isotopically labeled peptide pairs are found to co-migrate in CE fractions and quantitative changes in relative abundances of peptide pairs are obtained by comparing peak intensities of respective peptide pairs. Several neuropeptide families exhibit changes in response to salinity stress, suggesting potential physiological functions of these signaling peptides. PMID:20334868

  4. Use of Isotope Ratio Mass Spectrometry (IRMS) Determination ((18)O/(16)O) to Assess the Local Origin of Fish and Asparagus in Western Switzerland.

    PubMed

    Rossier, Joël S; Maury, Valérie; de Voogd, Blaise; Pfammatter, Elmar

    2014-10-01

    Here we present the use of isotope ratio mass spectrometry (IRMS) for the detection of mislabelling of food produced in Switzerland. The system is based on the analysis of the oxygen isotope distribution in water (δ(18)O). Depending on the location on the earth, lake or groundwater has a specific isotopic distribution, which can serve as a fingerprint in order to verify whether a product has grown by means of the corresponding water. This report presents specifically the IRMS technique and the results obtained in the origin detection of fish grown in selected Swiss lakes as well as asparagus grown in Valais ground. Strengths and limitations of the method are presented for both cited products; on one hand, the technique is relatively universal for any product which contains significant water but on the other hand, it necessitates a rather heavy workload to build up a database of water δ(18)O values of products of different origins. This analytical tool is part of the concept of combating fraud currently in use in Switzerland. PMID:25437160

  5. On-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry using a microflow nebulizer inserted in the laser ablation chamber

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Izmer, Andrej V.; Zoriy, Miroslav V.; Schaumlöffel, D.; Sabine Becker, J.

    2006-02-01

    Laser ablation ICP-MS (inductively coupled plasma mass spectrometry) is becoming one of the most important analytical techniques for fast determination of trace impurities in solid samples. Quantification of analytical results requires matrix-matched standards, which are in some cases (e.g., high-purity metals, proteins separated by 2D gel electrophoresis) difficult to obtain or prepare. In order to overcome the quantification problem a special arrangement for on-line solution-based calibration has been proposed in laser ablation ICP-MS by the insertion of a microflow nebulizer in the laser ablation chamber. This arrangement allows an easy, accurate and precise quantification by on-line isotope dilution using a defined standard solution with an isotope enriched tracer nebulized to the laser-ablated sample material. An ideal matrix matching in LA-ICP-MS is therefore obtained during the measurement. The figures of merit of this arrangement with a microflow nebulizer inserted in the laser ablation chamber and applications of on-line isotope dilution in LA-ICP-MS on two different types of sample material (NIST glass SRM 612 and NIST apple leaves SRM 1515) will be described.

  6. An analytical system for studying the stable isotopes of carbon monoxide using continuous flow-isotope ratio mass spectrometry (CF-IRMS)

    NASA Astrophysics Data System (ADS)

    Pathirana, S. L.; van der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-02-01

    In the atmosphere, carbon monoxide (CO) is the major sink for the hydroxyl radical (OH •), has multiple anthropogenic and natural sources and considerable spatial and seasonal variability. Measurements of CO isotopic composition are useful in constraining the strengths of its individual source and sink processes and thus its global cycle. A fully automated system for δ13C and δ18O analysis has been developed to extract CO from an air sample, convert CO into carbon dioxide (CO2) using the Schütze reagent, and then determine the isotopic composition in an isotope ratio mass spectrometer (IRMS). The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is only 1-3% of the typical sample size. The repeatability is 0.1‰ for δ13C and 0.2‰ for δ18O. The peak area allows simultaneous determination of the mole fraction with an analytical repeatability of ~0.7 nmol mol-1 for 100 mL of typical ambient air (185.4 nmol mol-1 of CO). A single, automated, measurement is performed in 18 min, so multiple measurements can be combined conveniently to improve precision.

  7. Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Loftin, Keith A.; Lee, Edward A.; Hinshaw, Gary H.; Dietze, Julie E.; Scribner, Elisabeth A.

    2009-01-01

    The U.S. Geological Survey method (0-2141-09) presented is approved for the determination of glyphosate, its degradation product aminomethylphosphonic acid (AMPA), and glufosinate in water. It was was validated to demonstrate the method detection levels (MDL), compare isotope dilution to standard addition, and evaluate method and compound stability. The original method USGS analytical method 0-2136-01 was developed using liquid chromatography/mass spectrometry and quantitation by standard addition. Lower method detection levels and increased specificity were achieved in the modified method, 0-2141-09, by using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The use of isotope dilution for glyphosate and AMPA and pseudo isotope dilution of glufosinate in place of standard addition was evaluated. Stable-isotope labeled AMPA and glyphosate were used as the isotope dilution standards. In addition, the stability of glyphosate and AMPA was studied in raw filtered and derivatized water samples. The stable-isotope labeled glyphosate and AMPA standards were added to each water sample and the samples then derivatized with 9-fluorenylmethylchloroformate. After derivatization, samples were concentrated using automated online solid-phase extraction (SPE) followed by elution in-line with the LC mobile phase; the compounds separated and then were analyzed by LC/MS/MS using electrospray ionization in negative-ion mode with multiple-reaction monitoring. The deprotonated derivatized parent molecule and two daughter-ion transition pairs were identified and optimized for glyphosate, AMPA, glufosinate, and the glyphosate and AMPA stable-isotope labeled internal standards. Quantitative comparison between standard addition and isotope dilution was conducted using 473 samples analyzed between April 2004 and June 2006. The mean percent difference and relative standard deviation between the two quantitation methods was 7.6 plus or minus 6.30 (n = 179), AMPA 9.6 plus or minus 8

  8. Analytical approach for the determination of steroid profile of humans by gas chromatography isotope ratio mass spectrometry aimed at distinguishing between endogenous and exogenous steroids.

    PubMed

    Bulska, Ewa; Gorczyca, Damian; Zalewska, Izabela; Pokrywka, Andrzej; Kwiatkowska, Dorota

    2015-03-15

    The contamination of commonly used supplements by unknown steroids as well as their metabolites (parent compounds) become a challenge for the analytical laboratories. Although the determination of steroids profile is not trivial because of the complex matrix and low concentration of single compound, one of the most difficult current problem is to distinguish, during analytical procedure, endogenous androgens such as testosterone, dehydrotestosterone or dehydroepiandrosterone from their synthetic equivalents. The aim of this work was to develop and validate an analytical procedure for determination of the steroid profile in human urine by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) toward distinguishing between endogenous and exogenous steroids. Beside the optimization of the experimental parameters for gas chromatography separation and mass spectrometry, attention was focused on urine sample preparation. Using an optimized sample preparation protocol it was possible to achieve better chromatographic resolutions and better sensitivity enabling the determination of 5 steroids, androsterone, etiocholanolone, testosterone, 5-androstandiol, 11-hydroxyandrdostane, pregnandiol, with the expanded uncertainty (k=2) below 1‰. This enable to evaluate the significant shift of the δ(13)C/(12)C [‰] values for each of examined steroids (excluding ERC). The analytical protocol described in this work was successfully used for the confirmation of positive founding urine by evaluation T/E ratio after GC/C/IRMS analysis. PMID:25498150

  9. Direct determination of fatty acid esters of 3-chloro-1, 2-propanediol in edible vegetable oils by isotope dilution - ultra high performance liquid chromatography - triple quadrupole mass spectrometry.

    PubMed

    Li, Heli; Chen, Dawei; Miao, Hong; Zhao, Yunfeng; Shen, Jianzhong; Wu, Yongning

    2015-09-01

    A selective and sensitive ultra-high performance liquid chromatography - triple quadrupole mass spectrometry (UHPLC-MS/MS) method coupled with matrix solid phase dispersion (MSPD) extraction was developed for the direct determination of fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD esters) in edible vegetable oils. The method integrated the isotope dilution technique, MSPD extraction and UHPLC - MS/MS analysis with multi-reaction monitoring mode (MRM). Matrix-matched calibration curves showed good linearity within the range of 0.01-10mgL(-1) with the correlation coefficient not less than 0.999. Limits of detection (LODs) and limit of quantification (LOQs) of the 3-MCPD esters fell into the range of 0.0001-0.02mgkg(-1) and 0.0004-0.05mgkg(-1), respectively. The recoveries for the spiked extra virgin olive oils ranged from 94.4% to 108.3%, with the relative standard deviations (RSD) ranging from 0.6% to 10.5%. The method was applied for the oil sample (T2642) of the official Food Analysis Performance Assessment Scheme (FAPAS) in 2014 and other real samples from supermarket, and the results showed that the present method was comparative to the gas chromatography-mass spectrometry (GC-MS) method based on the improved German Society for Fat Science (DGF) standard method C-III 18 (09) except for palm oil. PMID:26239698

  10. A case study on the application of isotope ratio mass spectrometry (IRMS) in determining the provenance of a rock used in an alleged nickel switching incident.

    PubMed

    Roelofse, F; Horstmann, U E

    2008-01-15

    The application of isotope ratio mass spectrometry (IRMS) in forensic science to establish the provenance of a range of questioned substances including soils, drugs, explosives, currency, ivory and rhino horn has been widely documented. The present study wishes to highlight the applicability of IRMS and specifically stable carbon IRMS in determining the provenance of a carbonate rock that was switched for nickel metal exported from South Africa to Israel. The technique employed effectively argued against a South African origin for the rock whilst simultaneously supporting an Israeli origin, enabling investigators to focus their attention accordingly. The study represents the first documented instance known to the authors where IRMS has been employed in the forensic geo-location of a rock. PMID:17418515

  11. Electronic nose and isotope ratio mass spectrometry in combination with chemometrics for the characterization of the geographical origin of Italian sweet cherries.

    PubMed

    Longobardi, F; Casiello, G; Ventrella, A; Mazzilli, V; Nardelli, A; Sacco, D; Catucci, L; Agostiano, A

    2015-03-01

    Sweet cherries from two Italian regions, Apulia and Emilia Romagna, were analysed using electronic nose (EN) and isotope ratio mass spectrometry (IRMS), with the aim of distinguishing them according to their geographic origin. The data were elaborated by statistical techniques, examining the EN and IRMS datasets both separately and in combination. Preliminary exploratory overviews were performed and then linear discriminant analyses (LDA) were used for classification. Regarding EN, different approaches for variable selection were tested, and the most suitable strategies were highlighted. The LDA classification results were expressed in terms of recognition and prediction abilities and it was found that both EN and IRMS performed well, with IRMS showing better cross-validated prediction ability (91.0%); the EN-IRMS combination gave slightly better results (92.3%). In order to validate the final results, the models were tested using an external set of samples with excellent results. PMID:25306321

  12. Deciphering the complexity of sainfoin (Onobrychis viciifolia) proanthocyanidins by MALDI-TOF mass spectrometry with a judicious choice of isotope patterns and matrixes.

    PubMed

    Stringano, Elisabetta; Cramer, Rainer; Hayes, Wayne; Smith, Celia; Gibson, Trevor; Mueller-Harvey, Irene

    2011-06-01

    Use of superdihydroxybenzoic acid as the matrix enabled the analysis of highly complex mixtures of proanthocyanidins from sainfoin (Onobrychis viciifolia) by MALDI-TOF mass spectrometry. Proanthocyanidins contained predominantly B-type homopolymers and heteropolymers up to 12-mers (3400 Da). Use of another matrix, 2,6-dihydroxyacetophenone, revealed the presence of A-type glycosylated dimers. In addition, we report here how a comparison of the isotopic adduct patterns, which resulted from Li and Na salts as MALDI matrix additives, could be used to confirm the presence of A-type linkages in complex proanthocyanidin mixtures. Preliminary evidence suggested the presence of A-type dimers in glycosylated prodelphinidins and in tetrameric procyanidins and prodelphinidins. PMID:21488615

  13. Application of Microwave-Induced Combustion and Isotope Dilution Strategies for Quantification of Sulfur in Coals via Sector-Field Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Christopher, Steven J; Vetter, Thomas W

    2016-05-01

    In recent years, microwave-induced combustion (MIC) has proved to be a robust sample preparation technique for difficult-to-digest samples containing high carbon content, especially for determination of halogens and sulfur. National Institute of Standards and Technology (NIST) has applied the MIC methodology in combination with isotope dilution analysis for sulfur determinations, representing the first-reported combination of this robust sample preparation methodology and high-accuracy quantification approach. Medium-resolution mode sector-field inductively coupled plasma mass spectrometry was invoked to avoid spectral interferences on the sulfur isotopes. The sample preparation and instrumental analysis scheme was used for the value assignment of total sulfur in Standard Reference Material (SRM) 2682c Subbituminous Coal (nominal mass fraction 0.5% sulfur). A description of the analytical procedures required is provided, along with metrological results, including an estimation of the overall method uncertainty (<1.5% relative expanded uncertainty) calculated using the IDMS measurement function and a Kragten spreadsheet approach. PMID:27032706

  14. Separating Autotrophic and Heterotrophic Contributions to Soil Respiration in Maize-Based Agroecosystems Using Stable Carbon Isotope Ratio Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Amos, B.; Walters, D. T.; Madhavan, S.; Arkebauer, T. J.; Scoby, D. L.

    2005-12-01

    Any effort to establish a carbon budget for a growing crop by means of a thorough accounting of all C sources and sinks will require the ability to discriminate between autotrophic and heterotrophic contributions to soil surface CO2 flux. Autotrophic soil respiration (Ra) is defined as combined root respiration and the respiration of soil microorganisms residing in the rhizosphere and using root-derived carbohydrates as an energy source, while heterotrophic respiration (Rh) is defined as the respiration of soil microorganisms and macroorganisms not directly under the influence of the live root system and using SOM as an energy source. We partition soil surface CO2 flux into its autotrophic and heterotrophic components by combining root exclusion with stable carbon isotope techniques in production scale (~65 ha) maize-based agroecosystems. After flux measurements, small chambers are placed on collars in both root excluded shields and in non-root excluded soil, ambient headspace CO2 is removed using a soda lime trap, and soil-respired C is allowed to collect in the chambers. Soil respiration samples are then collected in 12mL evacuated exetainers and analyzed for δ13C by means of a Finnigan Delta-S isotope ratio mass spectrometer interfaced with a Thermo Finnigan GasBench II and a cryogenic trap to increase CO2 concentration. These δ13C measurements were made throughout the 2005 growing season in maize fields representing three agroecosystems: irrigated continuous maize, irrigated maize-soybean rotation, and rainfed maize soybean rotation. Estimates of autotrophic and heterotrophic soil respiration along with other results of this study will be presented.

  15. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry.

    PubMed

    Zhu, Quan-Fei; Hao, Yan-Hong; Liu, Ming-Zhou; Yue, Jiang; Ni, Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-09-01

    Cytochrome P450 metabolites of arachidonic acid (AA) belong to eicosanoids and are potent lipid mediators of inflammation. It is well-known that eicosanoids play an important role in numerous pathophysiological processes. Therefore, quantitative analysis of cytochrome P450 metabolites of AA, including hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatreinoic acids (EETs), and dihydroxyeicosatrienoic acids (DHETs) can provide crucial information to uncover underlying mechanisms of cytochrome P450 metabolites of AA related diseases. Herein, we developed a highly sensitive method to identify and quantify HETEs, EETs, and DHETs in lipid extracts of biological samples based on stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry. To this end, a pair of stable isotope probes, 2-dimethylaminoethylamine (DMED) and d4-2-dimethylaminoethylamine (d4-DMED), were utilized to facilely label eicosanoids. The heavy labeled eicosanoid standards were prepared and used as internal standards for quantification to minimize the matrix and ion suppression effects in mass spectrometry analysis. In addition, the detection sensitivities of DMED labeled eicosanoids improved by 3-104 folds in standard solution and 5-138 folds in serum matrix compared with unlabeled analytes. Moreover, a good separation of eicosanoids isomers was achieved upon DMED labeling. The established method provided substantial sensitivity (limit of quantification at sub-picogram), high specificity, and broad linear dynamics range (3 orders of magnitude). We further quantified cytochrome P450 metabolites of AA in rat liver, heart, brain tissues and human serum using the developed method. The results showed that 19 eicosanoids could be distinctly detected and the contents of 11-, 15-, 16-, 20-HETE, 5,6-EET, and 14,15-EET in type 2 diabetes mellitus patients and 5-, 11-, 12-, 15-, 16-, 20-HETE, 8,9-EET, and 5,6-DHET in myeloid leukemia patients had significant changes

  16. Oxygen isotopic distribution along the otolith growth axis by secondary ion mass spectrometry: Applications for studying ontogenetic change in the depth inhabited by deep-sea fishes

    NASA Astrophysics Data System (ADS)

    Shiao, Jen-Chieh; Itoh, Shoichi; Yurimoto, Hisayoshi; Iizuka, Yoshiyuki; Liao, Yun-Chih

    2014-02-01

    This study using tuna otoliths as working standards established a high lateral resolution and precision analysis to measure δ18Ootolith by secondary ion mass spectrometry. This analytical approach of the ion probe was applied to deep-sea fishes to reconstruct the likely depths inhabited by the fishes at different life history stages based on the measured δ18Ootolith values as a proxy of water temperature. Dramatic increases up to 5-6‰ in δ18Ootolith, representing a temperature decrease of approximately 20 °C, were detected in a blind cusk eel (Barathronus maculatus) otolith and in the otoliths of Synaphobranchus kaupii during leptocephalus metamorphosis to glass eel, inferred from the drop of otolith Sr/Ca ratios and increase of otolith growth increment width. δ18Ootolith profiles clearly divided the fish's life history into a planktonic stage in the mixed layer of the ocean and a benthic stage on the deep-sea ocean bottom. The habitat shift signal was recorded within a 150 μm width of otolith growth zone, which was too narrow to be clearly detected by mechanical drilling and conventional isotopic ratio mass spectrometry. However, variations down to -7‰ were found in δ18Ootolith profiles as the result of Cs2+ beam sputter in the core and larval portions of the otoliths. Carbon mapping by electron probe microanalyzer and staining by toluidine blue suggested abundant proteins existed in the areas with anomaly negative δ18Ootolith values, which cannot be interpreted as a habitat change but due to the isotopic fractionation by O emission from the proteins. These results implied that careful design and understanding of the chemical composition of the analytical areas or tracks on the heterogeneous otolith was essential for highly accurate and precise analysis.

  17. Altered Retinoic Acid Metabolism in Diabetic Mouse Kidney Identified by 18O Isotopic Labeling and 2D Mass Spectrometry

    PubMed Central

    Starkey, Jonathan M.; Zhao, Yingxin; Sadygov, Rovshan G.; Haidacher, Sigmund J.; LeJeune, Wanda S.; Dey, Nilay; Luxon, Bruce A.; Kane, Maureen A.; Napoli, Joseph L.; Denner, Larry; Tilton, Ronald G.

    2010-01-01

    Background Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes. Methodology/Principal Findings Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice). Following trypsinization, 18O- and 16O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC), followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change ≥1.5 and p≤0.05 after Benjamini-Hochberg adjustment (out of 1,806 proteins identified), including alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (RALDH1/ALDH1A1). Ingenuity Pathway Analysis identified altered retinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARβ/δ mRNA. Conclusions/Significance Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in

  18. Nanopore Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bush, Joseph; Mihovilovic, Mirna; Maulbetsch, William; Frenchette, Layne; Moon, Wooyoung; Pruitt, Cole; Bazemore-Walker, Carthene; Weber, Peter; Stein, Derek

    2013-03-01

    We report on the design, construction, and characterization of a nanopore-based ion source for mass spectrometry. Our goal is to field-extract ions directly from solution into the high vacuum to enable unit collection efficiency and temporal resolution of sequential ion emissions for DNA sequencing. The ion source features a capillary whose tip, measuring tens to hundreds of nanometers in inner diameter, is situated in the vacuum ~ 1.5 cm away from an extractor electrode. The capillary was filled with conductive solution and voltage-biased relative to the extractor. Applied voltages of hundreds of volts extracted tens to hundreds of nA of current from the tip. A mass analysis of the extracted ions showed primarily singly charged clusters comprising the cation or anion solvated by several solvent molecules. Our interpretation of these results, based on the works of Taylor and of de la Mora, is that the applied electric stresses distort the fluid meniscus into a Taylor cone, where electric fields reach ~ 1V/nm and induce significant ion evaporation. Accordingly, the abundances of extracted ionic clusters resemble a Boltzmann distribution. This work was supported by NIH grant NHGRI 1R21HG005100-01.

  19. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  20. Rapid determination of plutonium isotopes in environmental samples using sequential injection extraction chromatography and detection by inductively coupled plasma mass spectrometry.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel

    2009-10-01

    This article presents an automated method for the rapid determination of 239Pu and 240Pu in various environmental samples. The analytical method involves the in-line separation of Pu isotopes using extraction chromatography (TEVA) implemented in a sequential injection (SI) network followed by detection of isolated analytes with inductively coupled plasma mass spectrometry (ICP-MS). The method has been devised for the determination of Pu isotopes at environmentally relevant concentrations, whereby it has been successfully applied to the analyses of large volumes/amounts of samples, for example, 100-200 g of soil and sediment, 20 g of seaweed, and 200 L of seawater following analyte preconcentration. The investigation of the separation capability of the assembled SI system revealed that up to 200 g of soil or sediment can be treated using a column containing about 0.70 g of TEVA resin. The analytical results of Pu isotopes in the reference materials showed good agreement with the certified or reference values at the 0.05 significance level. Chemical yields of Pu ranged from 80 to 105%, and the decontamination factors for uranium, thorium, mercury and lead were all above 10(4). The duration of the in-line extraction chromatographic run was <1.5 h, and the proposed setup was able to handle up to 20 samples (14 mL each) in a fully automated mode using a single chromatographic column. The SI manifold is thus suitable for rapid and automated determination of Pu isotopes in environmental risk assessment and emergency preparedness scenarios. PMID:19722516

  1. Treatment methods for the determination of delta2H and delta18O of hair keratin by continuous-flow isotope-ratio mass spectrometry.

    PubMed

    Bowen, Gabriel J; Chesson, Lesley; Nielson, Kristine; Cerling, Thure E; Ehleringer, James R

    2005-01-01

    The structural proteins that comprise approximately 90% of animal hair have the potential to record environmentally and physiologically determined variation in delta2H and delta18O values of body water. Broad, systematic, geospatial variation in stable hydrogen and oxygen isotopes of environmental water and the capacity for rapid, precise measurement via methods such as high-temperature conversion elemental analyzer/isotope ratio mass spectrometry (TC/EA-IRMS) make these isotope systems particularly well suited for applications requiring the geolocation of hair samples. In order for such applications to be successful, however, methods must exist for the accurate determination of hair delta2H and delta18O values reflecting the primary products of biosynthesis. Here, we present the results of experiments designed to examine two potential inaccuracies affecting delta2H and delta18O measurements of hair: the contribution of non-biologic hydrogen and oxygen to samples in the form of sorbed molecular water, and the exchange of hydroxyl-bound hydrogen between hair keratin and ambient water vapor. We show that rapid sorption of molecular water from the atmosphere can have a substantial effect on measured delta2H and delta18O values of hair (comprising approximately 7.7% of the measured isotopic signal for H and up to approximately 10.6% for O), but that this contribution can be effectively removed through vacuum-drying of samples for 6 days. Hydrogen exchange between hair keratin and ambient vapor is also rapid (reaching equilibrium within 3-4 days), with 9-16% of the total hydrogen available for exchange at room temperature. Based on the results of these experiments, we outline a recommended sample treatment procedure for routine measurement of delta2H and delta18O in mammal hair. PMID:16047316

  2. Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis.

    PubMed

    Savas, Jeffrey N; Park, Sung Kyu; Yates, John R

    2016-01-01

    The analysis of protein half-life and degradation dynamics has proven critically important to our understanding of a broad and diverse set of biological conditions ranging from cancer to neurodegeneration. Historically these protein turnover measures have been performed in cells by monitoring protein levels after "pulse" labeling of newly synthesized proteins and subsequent chase periods. Comparing the level of labeled protein remaining as a function of time to the initial level reveals the protein's half-life. In this method we provide a detailed description of the workflow required for the determination of protein turnover rates on a whole proteome scale in vivo. Our approach starts with the metabolic labeling of whole rodents by restricting all the nitrogen in their diet to exclusively nitrogen-15 in the form of spirulina algae. After near complete organismal labeling with nitrogen-15, the rodents are then switched to a normal nitrogen-14 rich diet for time periods of days to years. Tissues are harvested, the extracts are fractionated, and the proteins are digested to peptides. Peptides are separated by multidimensional liquid chromatography and analyzed by high resolution orbitrap mass spectrometry (MS). The nitrogen-15 containing proteins are then identified and measured by the bioinformatic proteome analysis tools Sequest, DTASelect2, and Census. In this way, our metabolic pulse-chase approach reveals in vivo protein decay rates proteome-wide. PMID:26867752

  3. [International comparison APMP. QM-S6: determination of clenbuterol in porcine meat by isotopic dilution mass spectrometry].

    PubMed

    Xu, Sen; Li, Xiuqin; Luo, Ximing; Zhang, Qinghe

    2014-10-01

    A method was developed for the determination of clenbuterol in porcine meat by iso- topic dilution mass spectrometry (IDMS). National Institute of Metrology of China (NIM) par- ticipated in the international comparison activity organized by Asia Pacific Metrology (APMP) and got an international mutual recognition result using this method. The important factors of the method, such as the spray voltage, mobile phase, chromatographic column, extraction, purification and filtration conditions were investigated to acquire optimum conditions. The opti- mization results showed that the composition and pH value of the mobile phase had effects on the response of the mass spectrum of clenbuterol and the optimal value of the spray voltage. The solvent of sample had influences on the chromatographic retention behavior of clenbuterol. It was found that methanol caused a serious solvent effect, even made chromatographic peak split. Since clenbuterol was easily adsorbed on hydrophilic filter membranes and solid phase extraction columns, there were interference suppressions for the quantification of clenbuterol because of the eluate of the solid phase extraction columns. The homogenate method with extraction solvent of 0.1% (v/v) formic acid in acetonitrile had the highest extraction efficiency. The limit of the detection (LOD, S/N > 3) of the method was 0.2 μg/kg. The determination results of clenbuterol in the porcine meat by this method were 5.18 μg/kg ± 0.50 μg/kg (k = 2). This method is accurate, reliable, reproducible, and suitable for the determination of clenbuterol with trace quantity in porcine meat. PMID:25739271

  4. Dihydroanatoxin-a Is Biosynthesized from Proline in Cylindrospermum stagnale PCC 7417: Isotopic Incorporation Experiments and Mass Spectrometry Analysis.

    PubMed

    Méjean, Annick; Dalle, Klervi; Paci, Guillaume; Bouchonnet, Stéphane; Mann, Stéphane; Pichon, Valérie; Ploux, Olivier

    2016-07-22

    LC-MS and GC-MS analytical conditions have been developed to detect the cis- and trans-epimers (relative configuration of the carbon bearing the acetyl or propionyl group) of dihydroanatoxin-a and dihydrohomoanatoxin-a, in biological samples. These compounds epimerize under acidic conditions, yielding a major species that was tentatively assigned as the cis-epimer. Cylindrospermum stagnale PCC 7417 was definitively shown to produce dihydroanatoxin-a (1.2 mg/g dried cells). Oscillatoria sp. PCC 9107, Oscillatoria sp. PCC 6506, and C. stagnale PCC 7417, which produce anatoxin-a, homoanatoxin-a, and dihydroanatoxin-a, respectively, were cultivated in the presence of isotopically labeled proline, and the toxins were extracted. Interpretation of the GC-MS electron ionization mass spectra of these labeled anatoxins showed that they are all biosynthesized from proline and that the positions of the labels in these molecules are identical. These data and the fact that the ana cluster of genes is conserved in these cyanobacteria suggest that dihydroanatoxin-a is formed by the reduction of either anatoxin-a or its precursor in a specific step involving AnaK, an F420-dependent oxido-reductase whose gene is found in the ana gene cluster in C. stagnale PCC 7417. This is the first report of a cyanobacterium producing dihydroanatoxin-a, suggesting that other producers are present in the environment. PMID:27340731

  5. Determination of epoxidized soybean oil by gas chromatography/single quadrupole and tandem mass spectrometry stable isotope dilution assay.

    PubMed

    Rothenbacher, Thorsten; Schwack, Wolfgang

    2007-01-01

    PVC lids of glass jars often contain epoxidized soybean oil (ESBO), able to migrate and contaminate food. To establish a stable isotope dilution assay (SIDA), the 13C18-labelled internal standard ethyl 9,10,12,13-diepoxyoctadecanoate (13C(18:2E)Et) was synthesized, providing after sample preparation the same retention time as methyl 9,10,12,13-diepoxyoctadecanoate ((18:2E)Me), commonly used as a marker for ESBO in gas chromatographic (GC) analysis. For eleven different food matrices, the GC capillary columns VF-17ms, DB1701 and DB1 were tested with single quadrupole (GC/MS) as well as tandem mass spectrometric detection (GC/MS/MS). Overall, the VF-17ms column coupled with MS/MS detection showed the best results in terms of separation and sensitivity. The method validation for the matrix spiked olive oil resulted in a limit of detection (LOD) of 5 mg kg-1, a limit of quantification (LOQ) of 11 mg kg-1, a mean recovery (n=5, c=106.5 mg kg-1) of 99.7+/-5.5%, with a repeatability (within-run precision) of 6.0%. By means of GC/MS an LOQ of 21 mg kg-1 and a mean recovery (n=5, c=106.5 mg kg-1) of 103.3+/-0.8% with a repeatability of 0.9% were determined. PMID:17510930

  6. Determination of six sulfonamide antibiotics, two metabolites and trimethoprim in wastewater by isotope dilution liquid chromatography/tandem mass spectrometry.

    PubMed

    Le-Minh, Nhat; Stuetz, Richard M; Khan, Stuart J

    2012-01-30

    A highly sensitive method for the analysis of six sulfonamide antibiotics (sulfadiazine, sulfathiazole, sulfapyridine, sulfamerazine, sulfamethazine and sulfamethoxazole), two sulfonamide metabolites (N(4)-acetyl sulfamethazine and N(4)-acetyl sulfamethoxazole) and the commonly co-applied antibiotic trimethoprim was developed for the analysis of complex wastewater samples. The method involves solid phase extraction of filtered wastewater samples followed by liquid chromatography-tandem mass spectral detection. Method detection limits were shown to be matrix-dependent but ranged between 0.2 and 0.4 ng/mL for ultrapure water, 0.4 and 0.7 ng/mL for tap water, 1.4 and 5.9 ng/mL for a laboratory-scale membrane bioreactor (MBR) mixed liquor, 0.7 and 1.7 ng/mL for biologically treated effluent and 0.5 and 1.5 ng/g dry weight for MBR activated sludge. An investigation of analytical matrix effects was undertaken, demonstrating the significant and largely unpredictable nature of signal suppression observed for variably complex matrices compared to an ultrapure water matrix. The results demonstrate the importance of accounting for such matrix effects for accurate quantitation, as done in the presented method by isotope dilution. Comprehensive validation of calibration linearity, reproducibility, extraction recovery, limits of detection and quantification are also presented. Finally, wastewater samples from a variety of treatment stages in a full-scale wastewater treatment plant were analysed to illustrate the effectiveness of the method. PMID:22284510

  7. Ultra-trace level speciated isotope dilution measurement of Cr(VI) using ion chromatography tandem mass spectrometry in environmental waters.

    PubMed

    Mädler, Stefanie; Todd, Aaron; Skip Kingston, H M; Pamuku, Matt; Sun, Fengrong; Tat, Cindy; Tooley, Robert J; Switzer, Teresa A; Furdui, Vasile I

    2016-08-15

    The reliable analysis of highly toxic hexavalent chromium, Cr(VI), at ultra-trace levels remains challenging, given its easy conversion to non-toxic trivalent chromium. This work demonstrates a novel analytical method to quantify Cr(VI) at low ngL(-1) concentration levels in environmental water samples by using speciated isotope dilution (SID) analysis and double-spiking with Cr(III) and Cr(VI) enriched for different isotopes. Ion chromatography tandem mass spectrometry (IC-MS/MS) was used for the analysis of Cr(VI) as HCrO4(-) → CrO3(-). Whereas the classical linear multipoint calibration (MPC) curve approach obtained a method detection limit (MDL) of 7ngL(-1) Cr(VI), the modified SID-MS method adapted from U. S. EPA 6800 allowed for the quantification of Cr(VI) with an MDL of 2ngL(-1) and provided results corrected for Cr(VI) loss occurred after sample collection. The adapted SID-MS approach proved to yield more accurate and precise results than the MPC method, allowed for compensation of Cr(VI) reduction during sample transportation and storage while eliminating the need for frequent external calibration. The developed method is a complementary tool to routinely used inductively-coupled plasma (ICP) MS and circumvents typically experienced interferences. PMID:27260441

  8. Re-evaluation of interferences of doubly charged ions of heavy rare earth elements on Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Yue-Heng; Wu, Fu-Yuan; Xie, Lie-Wen; Chu, Zhu-Yin; Yang, Jin-Hui

    2014-07-01

    We re-evaluate the interference of doubly charged heavy rare earth elements during Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). A series of mixed solutions of standard reference material SRM 987, rare earth elements, and Sr separated from rock reference materials are measured to assess the influence of isobaric interferences on the MC-ICP-MS analysis of Sr isotopes. After sample dissolution, conventional cation-exchange chromatography is employed for Sr purification of rock reference materials prior to MC-ICP-MS measurement. It has been demonstrated that if the natural abundances of Er and Yb are used to correct for doubly charged ion interferences on Sr, an overcorrection results. In contrast, the use of measured doubly charged ion ratios results in an accurate and precise correction of isobaric interference. This finding is confirmed by analytical results for several certified reference materials from mafic (basaltic) to felsic (granitic) silicate rocks. It is noteworthy that, because Er is more prone to doubly charged ion formation, it dominates over Yb doubly charged ions as an interference source.

  9. Measurement of CO{sub 2} and N{sub 2}O at nanomolar amounts using continuous-flow isotope-ratio mass spectrometry (CF-IRMS)

    SciTech Connect

    Patel, A; Downie, S.; Webster, E.; Hopkins, D.W.; Rennie, M.J.

    1994-12-01

    We are currently developing methods using Continuous Flow Isotope Ratio Mass Spectrometry (CF-IRMS) in conjunction with a thermal desorption purification unit to measure nanomolar levels of C0{sub 2} and N{sub 2}0. Samples of the pure gases diluted in He/air and transferred to septum capped Exetainers (Labco) provided a simple means to investigate the technique. We analyzed C0{sub 2} at natural abundance in the concentration range 50 to 5 nmoles and N{sub 2}0 at two concentrations between 25 and 5 nmoles. The technique was then used to measure C0{sub 2} (natural abundance and {sup 13}C-labeled) generated from the ninhydrin reaction. The results are summarized in a table; values are expressed in delta {sup 13}C notation relative to Pee Dee Belemnite. The data show that, provided care is taken to minimize or eliminate sources of contamination (air leaks, etc.), CF-IRMS coupled with a thermal desorption unit permits measurement of {sup 13}C enrichment in much smaller amounts of isolated amino acids than has been possible until now. The new methodology, including thermal desorption, should allow stable-isotope investigations on much smaller samples than are possible with other currently available techniques-while maintaining high precision.

  10. Photodegradation of phosmet in wool wax models and on sheep wool: determination of wool wax bound phosmet by means of isotope ratio mass spectrometry.

    PubMed

    Sinderhauf, Katrin; Schwack, Wolfgang

    2005-06-15

    The photochemical reactions of phosmet, an organophosphorus insecticide used for plant protection and for control of ectoparasites on productive livestock, were studied in the presence of wool wax. Induced by UV light, phosmet features numerous degradation pathways as well as photoaddition reactions with lipid structure moieties. In model irradiation experiments of phosmet in mixtures of solvents (cyclohexane, cyclohexene, 2-propanol) and fatty acid methyl esters (methyl stearate, methyl oleate, 12-hydroxymethyl stearate), both adjusted to the hydroxyl and iodine values of wool wax, half-lives were determined to be approximately 7 and 16 h, respectively. Irradiation of phosmet on crude sheep wool resulted in a degradation rate of 65% after 24 h. In tracer studies with stable isotope labeled phosmet ([15N]phosmet) in commercial lanolin and on raw sheep wool, employing a sunlight simulator and natural sunlight, wool wax bound phosmet was formed. After extraction and measurement by elemental analyzer/isotope ratio mass spectrometry, delta15N values of the phosmet-free wool wax fractions were notably increased as compared to the value of natural lanolin. Calculated from the delta15N values, an average of 13.9/15.6% (sunlight simulator/natural sunlight) was bound to wool wax lipids after irradiation of thin films of commercial lanolin. In experiments with sheep wool, 13.2 and 15.4%, respectively, were detected as wax-bound. PMID:15941329

  11. Determination of the alkylpyrazine composition of coffee using stable isotope dilution-gas chromatography-mass spectrometry (SIDA-GC-MS).

    PubMed

    Pickard, Stephanie; Becker, Irina; Merz, Karl-Heinz; Richling, Elke

    2013-07-01

    A stable isotope dilution analysis based on gas chromatography-mass spectrometry analysis (SIDA-GC-MS) was developed for the quantitative analysis of 12 alkylpyrazines found in commercially available coffee samples. These compounds contribute to coffee flavor. The accuracy of this method was tested by analyzing model mixtures of alkylpyrazines. Comparisons of alkylpyrazine-concentrations suggested that water as extraction solvent was superior to dichloromethane. The distribution patterns of alkylpyrazines in different roasted coffees were quite similar. The most abundant alkylpyrazine in each coffee sample was 2-methylpyrazine, followed by 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-5-methylpyrazine, and 2,3,5-trimethylpyrazine, respectively. Among the alkylpyrazines tested, 2,3-dimethylpyrazine, 2-ethyl-3-methylpyrazine, 2-ethyl-3,6-dimethylpyrazine, and 2-ethyl-3,5-dimethylpyrazine revealed the lowest concentrations in roasted coffee. By the use of isotope dilution analysis, the total concentrations of alkylpyrazines in commercially available ground coffee ranged between 82.1 and 211.6 mg/kg, respectively. Decaffeinated coffee samples were found to contain lower amounts of alkylpyrazines than regular coffee samples by a factor of 0.3-0.7, which might be a result of the decaffeination procedure. PMID:23745606

  12. Structural Analysis of Guanylyl Cyclase-Activating Protein-2 (GCAP-2) Homodimer by Stable Isotope-Labeling, Chemical Cross-Linking, and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pettelkau, Jens; Thondorf, Iris; Theisgen, Stephan; Lilie, Hauke; Schröder, Thomas; Arlt, Christian; Ihling, Christian H.; Sinz, Andrea

    2013-12-01

    The topology of the GCAP-2 homodimer was investigated by chemical cross-linking and high resolution mass spectrometry. Complementary conducted size-exclusion chromatography and analytical ultracentrifugation studies indicated that GCAP-2 forms a homodimer both in the absence and in the presence of Ca2+. In-depth MS and MS/MS analysis of the cross-linked products was aided by 15 N-labeled GCAP-2. The use of isotope-labeled protein delivered reliable structural information on the GCAP-2 homodimer, enabling an unambiguous discrimination between cross-links within one monomer (intramolecular) or between two subunits (intermolecular). The limited number of cross-links obtained in the Ca2+-bound state allowed us to deduce a defined homodimeric GCAP-2 structure by a docking and molecular dynamics approach. In the Ca2+-free state, GCAP-2 is more flexible as indicated by the higher number of cross-links. We consider stable isotope-labeling to be indispensable for deriving reliable structural information from chemical cross-linking data of multi-subunit protein assemblies.

  13. Analysis of LDEF experiment AO187-2: Chemically and isotopic measurements of micrometeoroids by secondary ion mass spectrometry

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells have been successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data have been obtained from the trailing edge cells where 45 of 58 impacts have been classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultra-violet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noticed in simulation experiment but is more pronounced in the Long Duration Exposure Facility (LDEF) capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si but also containing Mg and Al provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  14. Secondary ion mass spectrometry combined with alpha track detection for isotope abundance ratio analysis of individual uranium-bearing particles.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki

    2014-03-01

    Secondary ion mass spectrometry (SIMS) was used in combination with alpha track detection for the efficient analysis of uranium-bearing particles with higher (235)U abundances in environmental samples. A polycarbonate film containing particles was prepared and placed in contact with a CR-39 plastic detector. After exposure for 28 days, the detector was etched in a NaOH solution and each uranium-bearing particle was identified through observation of the alpha tracks recorded in the detector. A portion of the film containing each uranium-bearing particle was cut out and put onto a glassy carbon planchet. The films on the planchet were decomposed through plasma ashing for subsequent uranium abundance ratio analysis with SIMS. The alpha track-SIMS analysis of 10 uranium-bearing particles in a sample taken from a nuclear facility enabled n((235)U)/n((238)U) abundance ratios in the range 0.0072-0.25 to be detected, which were significantly higher than those obtained by SIMS without alpha track detection. The duration of the whole analytical process for analysis of 10 particles was about 32 days. The detection efficiency was calculated to be 27.1±6.5%, based on the analysis of the particles in uranium reference materials. The detection limits, defined as the diameter of the particle which produces alpha tracks more than one for a 28-days exposure, were estimated to be 0.8, 0.9, 1.1, 2.1 and 3.0 μm for the particles having the same uranium abundance ratios with NBL CRM U850, U500, U350, U050 and U010 reference materials, respectively. The use of alpha track detection for subsequent SIMS analysis is an inexpensive and an efficient way to measure uranium-bearing particles with higher (235)U abundances. PMID:24468381

  15. Multiplexed Immunoaffinity Enrichment of Peptides with Anti-peptide Antibodies and Quantification by Stable Isotope Dilution Multiple Reaction Monitoring Mass Spectrometry.

    PubMed

    Kuhn, Eric; Carr, Steven A

    2016-01-01

    Immunoaffinity enrichment of peptides using anti-peptide antibodies and their subsequent analysis by targeted mass spectrometry using stable isotope-labeled peptide standards is a sensitive and relatively high-throughput assay technology for unmodified and modified peptides in cells, tissues, and biofluids. Suppliers of antibodies and peptides are increasingly aware of this technique and have started incorporating customized quality measures and production protocols to increase the success rate, performance, and supply of the necessary reagents. Over the past decade, analytical biochemists, clinical diagnosticians, antibody experts, and mass spectrometry specialists have shared ideas, instrumentation, reagents, and protocols, to demonstrate that immuno-MRM-MS is reproducible across laboratories. Assay performance is now suitable for verification of candidate biomarkers from large scale discovery "omics" studies, measuring diagnostic proteins in plasma in the clinical laboratory, and for developing a companion assay for preclinical drug studies. Here we illustrate the process for developing these assays with a step-by-step guide for a 20-plex immuno-MRM-MS assay. We emphasize the need for analytical validation of the assay to insure that antibodies, peptides, and mass spectrometer are working as intended, in a multiplexed manner, with suitable assay performance (median values for 20 peptides: CV = 12.4 % at 740 amol/μL, LOD = 310 amol/μL) for applications in quantitative biology and candidate biomarker verification. The assays described conform to Tier 2 (of 3) level of analytical assay validation (1), meaning that the assays are capable of repeatedly measuring sets of analytes of interest within and across samples/experiments and employ internal standards for each analyte for confident detection and precise quantification. PMID:26867743

  16. Determination of very low stable isotope enrichments of [(2)H(5)]-phenylalanine in chicken liver using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    PubMed

    Wilkerling, Katrin; Valenta, Hana; Kersten, Susanne; Dänicke, Sven

    2012-12-12

    Stable isotope labeled amino acids are frequently used to examine nutritive effects on protein synthesis. This technique is characterized by tracing the incorporation of the label into newly synthesized proteins. In the present investigation, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of very low enrichment of protein-bound l-[(2)H(5)]-phenylalanine ([(2)H(5)]-phe) in chicken liver. The LC-MS/MS measurements were carried out in positive atmospheric pressure chemical ionization (APCI) mode. Two mass transitions each for [(2)H(5)]-phe (171.1/125.1 and 171.1/106.1) and l-phenylalanine (phe) (166.1/91.1 and 166.1/93.1) were chosen for quantification and qualification. Due to the high excesses of phe, less sensitive transitions were chosen in the case of phe. The separation was carried out on a phenyl-hexyl column using 0.1% formic acid as eluent A and methanol as eluent B. The method was calibrated with calibration standard solutions in the range of 0.01-0.5 mole percent excess (MPE). Linear regression analysis led to coefficients of determination (r(2)) greater than 0.9995. The method was applied on liver samples from experiments investigating nutritive effects on tissue protein synthesis in broiler chickens. These samples were analyzed with a gas chromatography-mass spectrometry (GC-MS) method and reanalyzed with the developed LC-MS/MS method one year later. Compared to GC-MS, the main advantages of the LC-MS/MS method are its higher selectivity as well as the elimination of the need to convert and derivatize the samples prior to measuring. PMID:23217318

  17. Simultaneous determination of albendazole and its metabolites in fish muscle tissue by stable isotope dilution ultra-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Zhang, Xiaojun; Xu, Hanxiang; Zhang, Hong; Guo, Yuanming; Dai, Zhiyuan; Chen, Xuechang

    2011-08-01

    A rapid, specific, and sensitive method utilizing ultra-performance liquid chromatography tandem mass spectrometry was developed and validated to determine albendazole, albendazole sulfoxide, albendazole sulfone, and albendazole 2-aminosulfone in fish muscle tissue. The fish samples were extracted with ethyl acetate, then the organic phase was evaporated to dryness, and the residue was reconstituted in methanol-water solution and cleaned up by n-hexane. Reversed-phase separation of target compounds was achieved using a BEH C18 column and a gradient consisting of 0.2% (v/v) formic acid and methanol. Tandem mass spectrometry analyses were performed on a triple-quadrupole tandem mass spectrometer. In the whole procedure, the isotope-labeled internal standards were used to correct the matrix effect and variations associated with the analysis. The method was validated with respect to linearity, specificity, accuracy, and precision. The method exhibited a linear response from 0.1 to 20 ng mL(-1) (r(2) > 0.9985). The limit of quantitation for albendazole (ABZ), albendazole sulfoxide (ABZSO), albendazole sulfone (ABZSO(2)), and albendazole 2-aminosulfone (ABZ-2-NH(2)SO(2)) was 0.1, 0.1, 0.1, and 0.2 ng g(-1), respectively. The mean recoveries of ABZ, ABZSO, ABZSO(2), and ABZ-2-NH(2)SO(2) spiked at a level of 0.2-5.0 ng g(-1) were 95.3-113.7%, and the relative standard deviations of intra- and inter-day measurements were less than 6.38%. The method was later successfully applied to the determination of albendazole and its three metabolites in 60 fish samples collected from local markets. PMID:21633840

  18. Measurements of water vapor isotope ratios with wavelength-scanned cavity ring-down spectroscopy technology: new insights and important caveats for deuterium excess measurements in tropical areas in comparison with isotope-ratio mass spectrometry.

    PubMed

    Tremoy, Guillaume; Vimeux, Françoise; Cattani, Olivier; Mayaki, Salla; Souley, Ide; Favreau, Guillaume

    2011-12-15

    The new infrared laser spectroscopic techniques enable us to measure the isotopic composition (δ(18)O and δ(2)H) of atmospheric water vapor. With the objective of monitoring the isotopic composition of tropical water vapor (West Africa, South America), and to discuss deuterium excess variability (d=δ(2)H - 8δ(18)O) with an accuracy similar to measurements arising from isotope-ratio mass spectrometry (IRMS), we have conducted a number of tests and calibrations using a wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technique. We focus in this paper on four main aspects regarding (1) the tubing material, (2) the humidity calibration of the instrument, (3) the water vapor concentration effects on δ, and (4) the isotopic calibration of the instrument. First, we show that Synflex tubing strongly affects δ(2)H measurements and thus leads to unusable d values. Second, we show that the mixing ratio as measured by WS-CRDS has to be calibrated versus atmospheric mixing ratio measurements and we also suggest possible non-linear effects over the whole mixing ratio range (~2 to 20 g/kg). Third, we show that significant non-linear effects are induced by water vapor concentration variations on δ measurements, especially for mixing ratios lower than ~5 g/kg. This effect induces a 5 to 10‰ error in deuterium excess and is instrument-dependent. Finally, we show that an isotopic calibration (comparison between measured and true values of isotopic water standards) is needed to avoid errors on deuterium excess that can attain ~10‰. PMID:22095494

  19. A World without Sample Preparation: Developing Rapid Uranium Isotope Measurement Capabilities by Resonance Ionization Mass Spectrometry (RIMS)

    SciTech Connect

    Knight, K B; Hutcheon, I D; Isselhardt, B H; Savina, M R; Prussin, S G

    2009-06-08

    We are developing highly sensitive, highly discriminating laser-based techniques for rapid determination of isotopic compositions. Rapid command of such information is critical to assessment of the origin and history of nuclear materials, particularly in post-detonation scenarios.

  20. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided. PMID:18200615

  1. Simultaneous analysis of polychlorinated biphenyls and polychlorinated naphthalenes by isotope dilution comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry.

    PubMed

    Xia, Dan; Gao, Lirong; Zheng, Minghui; Wang, Shasha; Liu, Guorui

    2016-09-21

    Polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) are listed as persistent organic pollutants (POPs) under the Stockholm Convention. Because they have similar physical and chemical properties, they are coeluted and are usually analyzed separately by different gas chromatography high-resolution mass spectrometry (GC-HRMS) methods. In this study, a novel method was developed for simultaneous analysis of six indicator PCBs, 12 dioxin-like PCBs, and 16 PCNs using isotope dilution comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HRTOF-MS). The method parameters, including the type of GC column, oven temperature program, and modulation period, were systematically optimized. Complete separation of all target analytes and the matrix was achieved with a DB-XLB column in the first dimension and a BPX-70 column in the second dimension. The isotope dilution method was used for quantification of the PCBs and PCNs by GC × GC-HRTOF-MS. The method showed good linearity from 5 to 500 pg μL(-1) for all the target compounds. The instrumental limit of detection ranged from 0.03 to 0.3 pg μL(-1) for the 18 PCB congeners and from 0.09 to 0.6 pg μL(-1) for the 16 PCN congeners. Repeatability for triplicate injections was always lower than 20%. The method was successfully applied to the determination of 18 PCBs present at 0.9-2054 pg g(-1) and 16 PCNs present at 0.2-15.7 pg g(-1) in three species of fish. The GC × GC-HRTOF-MS results agreed with those obtained by GC-HRMS. The GC × GC-HRTOF-MS method proved to be a sensitive and accurate technique for simultaneous analysis of the selected PCBs and PCNs. With the excellent chromatographic separation offered by GC × GC and accurate mass measurements offered by HRTOF-MS, this method allowed identification of non-target contaminants in the fish samples, including organochlorine pesticides and polycyclic aromatic hydrocarbons. PMID

  2. A novel strategy for Cr(III) and Cr(VI) analysis in dietary supplements by speciated isotope dilution mass spectrometry.

    PubMed

    Unceta, Nora; Astorkia, Maider; Abrego, Zuriñe; Gómez-Caballero, Alberto; Goicolea, M Aránzazu; Barrio, Ramón J

    2016-07-01

    In recent years, Cr speciation in dietary supplements has become decisive in the evaluation of their health risks. Despite being an beneficial micronutrient, Cr(III) can be toxic at living organisms at high concentrations, while Cr(VI) is known to be highly toxic and carcinogenic. The main objective of this work was to optimize an analytical methodology for the extraction and accurate quantification of Cr(III) and Cr(VI) in dietary supplements. The extraction of Cr species was carried out with 50mM EDTA solution on a hotplate under optimized conditions. Special attention was paid to bidirectional species transformations. No noticeable oxidation of Cr(III) into Cr(VI) was observed and the reduction to Cr(III) only occurred at very high Cr(VI) concentrations. Cr(III) as Cr(EDTA)(-) complex was chromatographically separated from Cr(VI), retained as CrO4(2-), on an anion exchange column coupled to inductively coupled plasma mass spectrometry (LC-ICP-MS). The limit of quantification (0.08µgg(-1)) was below the limit established for Cr enriched yeasts by the European Union. Eleven dietary supplements were analyzed and Cr(III) and Cr(VI) quantification was carried out by external calibration monitoring (52)Cr isotope and by speciated isotope dilution mass spectrometry (SIDMS) adding (50)Cr(III) and (53)Cr(VI) spikes. Total Cr was also quantified by ICP-MS and mass balance between total Cr and the sum of Cr(III) and Cr(VI) was achieved. In eight of the eleven tested supplements Cr(III) calculated amounts were higher than those indicated by the manufacturer, but only one of them exceeded the 250µgday(-1) recommended by World Health Organization (WHO). In contrast, it is worth noting that Cr(VI) amounts beyond the recommendations of the European Union for Cr enriched yeasts were found in five supplements. These results revealed that more accurate and rigorous quality assurance protocols should be applied to the testing of the final products, including the analysis of both

  3. Investigation of amino acid δ 13C signatures in bone collagen to reconstruct human palaeodiets using liquid chromatography-isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Choy, Kyungcheol; Smith, Colin I.; Fuller, Benjamin T.; Richards, Michael P.

    2010-11-01

    This research presents the individual amino acid δ 13C values in bone collagen of humans ( n = 9) and animals ( n = 27) from two prehistoric shell midden sites in Korea. We obtained complete baseline separation of 16 of the 18 amino acids found in bone collagen by using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). The isotopic results reveal that the humans and animals in the two sites had similar patterns in essential amino acids (EAAs) and non-essential amino acids (NEAAs). The EAA and NEAA δ 13C values in humans are intermediate between those in marine and terrestrial animals. However, the threonine δ 13C values in humans and animals measured in this study are more highly enriched than those of other amino acids. At both sites, all amino acids in marine animals are 13C-enriched relative to those of the terrestrial animals. The isotopic evidence suggests that the Tongsamdong human had EAAs and NEAAs from marine food resources, while the Nukdo humans mainly had EAAs from terrestrial food resources but obtained NEAAs from both terrestrial and marine resources. The δ 13C isotopic differences in amino acids between marine and terrestrial animals were the largest for glycine (NEAA) and histidine (EAA) and the smallest for tyrosine (NEAA) and phenylalanine (EAA). In addition, threonine among the EAAs also had a large difference (˜8‰) in δ 13C values between marine and terrestrial animals, and has the potential to be used as an isotopic marker in palaeodietary studies. Threonine δ 13C values were used in conjunction with the established Δ 13C Glycine-phenylalanine values and produced three distinct dietary groups (terrestrial, omnivorous, and marine). In addition, threonine δ 13C values and Δ 13C Serine-phenylalanine values were discovered to separate between two dietary groups (terrestrial vs. marine), and these δ 13C values may provide a potential new indicator for investigating the distinction between marine and terrestrial protein

  4. Ultratrace Uranium Fingerprinting with Isotope Selective Laser Ionization Spectrometry

    SciTech Connect

    Ziegler, Summer L.; Bushaw, Bruce A.

    2008-08-01

    Uranium isotope ratios can provide source information for tracking uranium contamination in a variety of fields, ranging from occupational bioassay to monitoring aftereffects of nuclear accidents. We describe the development of Isotope Selective Laser Ionization Spectrometry (ISLIS) for ultratrace measurement of the minor isotopes 234U, 235U, and 236U with respect to 238U. Optical isotopic selectivity in three-step excitation with single-mode continuous wave lasers is capable of measuring the minor isotopes at relative abundances below 1 ppm, and is not limited by isobaric interferences such as 235UH+ during measurement of 236U. This relative abundance limit approaches the threshold for measurement of uranium minor isotopes with conventional mass spectrometry, typically 10-7, but without mass spectrometric analysis of the laser-created ions. Uranyl nitrate standards from an international blind comparison were used to test analytical performance for different isotopic compositions and with quantities ranging from 11 ng to 10 µg total uranium. Isotopic ratio determination was demonstrated over a linear dynamic range of 7 orders of magnitude with a few percent relative precision and detection limits below 500 fg for the minor isotopes.

  5. Stable isotope dilution ultra-high performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan-related neuroactive substances in human serum and cerebrospinal fluid.

    PubMed

    Hényková, Eva; Vránová, Hana Přikrylová; Amakorová, Petra; Pospíšil, Tomáš; Žukauskaitė, Asta; Vlčková, Magdaléna; Urbánek, Lubor; Novák, Ondřej; Mareš, Jan; Kaňovský, Petr; Strnad, Miroslav

    2016-03-11

    Many compounds related to L-tryptophan (L-TRP) have interesting biological or pharmacological activity, and their abnormal neurotransmission seems to be linked to a wide range of neurodegenerative and psychiatric diseases. A high-throughput method based on ultra-high performance liquid chromatography connected to electrospray tandem mass spectrometry (UHPLC-ESI-MS/MS) was developed for the quantitative analysis of L-TRP and 16 of its metabolites in human serum and cerebrospinal fluid (CSF), representing both major and minor routes of L-TRP catabolism. The combination of a fast LC gradient with selective tandem mass spectrometry enabled accurate analysis of almost 100 samples in 24h. The standard isotope dilution method was used for quantitative determination. The method's lower limits of quantification for serum and cerebrospinal fluid ranged from 0.05 to 15nmol/L and 0.3 to 45nmol/L, respectively. Analytical recoveries ranged from 10.4 to 218.1% for serum and 22.1 to 370.0% for CSF. The method's accuracy ranged from 82.4 to 128.5% for serum matrix and 90.7 to 127.7% for CSF matrix. All intra- and inter-day coefficients of variation were below 15%. These results demonstrate that the new method is capable of quantifying endogenous serum and CSF levels of a heterogeneous group of compounds spanning a wide range of concentrations. The method was used to determine the physiological levels of target analytes in serum and CSF samples from 18 individuals, demonstrating its reliability and potential usefulness in large-scale epidemiological studies. PMID:26879452

  6. Continuous Simultaneous Detection in Mass Spectrometry

    SciTech Connect

    Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.; Sperline, Roger P.; Denton, M. Bonner; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2007-10-15

    In mass spectrometry, several advantages can be derived when multiple mass-to-charge values are detected simultaneously. One such advantage is an improved duty cycle, which leads to superior limits of detection, better precision, shorter analysis times, and reduced sample sizes. A second advantage is the ability to reduce correlated noise by taking the ratio of two or more simultaneously collected signals, enabling greatly enhanced isotope ratio data. A final advantage is the elimination of spectral skew, leading to more accurate transient signal analysis. Here, these advantages are demonstrated by means of a novel Faraday-strip array detector coupled to a Mattauch-Herzog mass spectrograph. The same system is used to monitor elemental fractionation phenomena in laser ablation inductively coupled plasma mass spectrometry.

  7. Multiplexed Analysis of Cage and Cage Free Chicken Egg Fatty Acids Using Stable Isotope Labeling and Mass Spectrometry

    PubMed Central

    Torde, Richard G.; Therrien, Andrew J.; Shortreed, Michael R.; Smith, Lloyd M.; Lamos, Shane M.

    2014-01-01

    Binary stable isotope labeling couple with LC-ESI-MS has been used as a powerful non-targeted approach for the relative quantification of lipids, amino acids, and many other important metabolite classes. A multiplexed approach using three or more isotopic labeling reagents greatly reduces analytical run-time while maintaining excellent sensitivity and reproducibility. Three isotopic cholamine labeling reagents have been developed to take advantage of the pre-ionized character of cholamine, for ESI, and the ease by which stable isotopes can be incorporated into the cholamine structure. These three cholamine labeling reagents have been used to relatively quantify three fatty acid samples simultaneously. The quantification resulted in the observation of 12 fatty acids that had an average absolute error of 0.9% and an average coefficient of variation of 6.1%. Caged versus cage-free isotope labeling experiments showed that cage-free eggs have an increased level of omega-3 fatty acids as compared to caged eggs. This multiplexed fatty acid analysis provides an inexpensive and expedited tool for broad-based lipid profiling that will further aid discoveries in the mechanisms of fatty acid action in cells. PMID:24317525

  8. Multiplexed analysis of cage and cage free chicken egg fatty acids using stable isotope labeling and mass spectrometry.

    PubMed

    Torde, Richard G; Therrien, Andrew J; Shortreed, Michael R; Smith, Lloyd M; Lamos, Shane M

    2013-01-01

    Binary stable isotope labeling couple with LC-ESI-MS has been used as a powerful non-targeted approach for the relative quantification of lipids, amino acids, and many other important metabolite classes. A multiplexed approach using three or more isotopic labeling reagents greatly reduces analytical run-time while maintaining excellent sensitivity and reproducibility. Three isotopic cholamine labeling reagents have been developed to take advantage of the pre-ionized character of cholamine, for ESI, and the ease by which stable isotopes can be incorporated into the cholamine structure. These three cholamine labeling reagents have been used to relatively quantify three fatty acid samples simultaneously. The quantification resulted in the observation of 12 fatty acids that had an average absolute error of 0.9% and an average coefficient of variation of 6.1%. Caged versus cage-free isotope labeling experiments showed that cage-free eggs have an increased level of omega-3 fatty acids as compared to caged eggs. This multiplexed fatty acid analysis provides an inexpensive and expedited tool for broad-based lipid profiling that will further aid discoveries in the mechanisms of fatty acid action in cells. PMID:24317525

  9. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  10. Characterization and quantification of histidine degradation in therapeutic protein formulations by size exclusion-hydrophilic interaction two dimensional-liquid chromatography with stable-isotope labeling mass spectrometry.

    PubMed

    Wang, Chunlei; Chen, Sike; Brailsford, John A; Yamniuk, Aaron P; Tymiak, Adrienne A; Zhang, Yingru

    2015-12-24

    Two dimensional liquid chromatography (2D-LC) coupling size exclusion (SEC) and hydrophilic interaction chromatography (HILIC) is demonstrated as a useful tool to study polar excipients, such as histidine and its degradant, in protein formulation samples. The SEC-HILIC setup successfully removed interferences from complex sample matrices and enabled accurate mass measurement of the histidine degradation product, which was then determined to be trans-urocanic acid. Because the SEC effluent is a strong solvent for the second dimension HILIC, experimental parameters needed to be carefully chosen, i.e., small transferring loop, fast gradient at high flow rates for the second dimension gradient, in order to mitigate the solvent mismatch and to ensure good peak shapes for HILIC separations. In addition, the generation of trans-urocanic acid was quantified by single heart-cutting SEC-HILIC 2D-LC combined with stable-isotope labeling mass spectrometry. Compared with existing 2D quantification methods, the proposed approach is fast, insensitive to solvent mismatch between dimensions, and tolerant of small retention time shifts in the first dimension. Finally, the first dimension diode array detector was found to be a potential degradation source for photolabile analytes such as trans-urocanic acid. PMID:26674608

  11. High-Performance Chemical Isotope Labeling Liquid Chromatography-Mass Spectrometry for Profiling the Metabolomic Reprogramming Elicited by Ammonium Limitation in Yeast.

    PubMed

    Luo, Xian; Zhao, Shuang; Huan, Tao; Sun, Difei; Friis, R Magnus N; Schultz, Michael C; Li, Liang

    2016-05-01

    Information about how yeast metabolism is rewired in response to internal and external cues can inform the development of metabolic engineering strategies for food, fuel, and chemical production in this organism. We report a new metabolomics workflow for the characterization of such metabolic rewiring. The workflow combines efficient cell lysis without using chemicals that may interfere with downstream sample analysis and differential chemical isotope labeling liquid chromatography mass spectrometry (CIL LC-MS) for in-depth yeast metabolome profiling. Using (12)C- and (13)C-dansylation (Dns) labeling to analyze the amine/phenol submetabolome, we detected and quantified a total of 5719 peak pairs or metabolites. Among them, 120 metabolites were positively identified using a library of 275 Dns-metabolite standards, and 2980 metabolites were putatively identified based on accurate mass matches to metabolome databases. We also applied (12)C- and (13)C-dimethylaminophenacyl (DmPA) labeling to profile the carboxylic acid submetabolome and detected over 2286 peak pairs, from which 33 metabolites were positively identified using a library of 188 DmPA-metabolite standards, and 1595 metabolites were putatively identified. Using this workflow for metabolomic profiling of cells challenged by ammonium limitation revealed unexpected links between ammonium assimilation and pantothenate accumulation that might be amenable to engineering for better acetyl-CoA production in yeast. We anticipate that efforts to improve other schemes of metabolic engineering will benefit from application of this workflow to multiple cell types. PMID:26947805

  12. Determination of trace sulfur in biodiesel and diesel standard reference materials by isotope dilution sector field inductively coupled plasma mass spectrometry.

    PubMed

    Amais, Renata S; Long, Stephen E; Nóbrega, Joaquim A; Christopher, Steven J

    2014-01-01

    A method is described for quantification of sulfur at low concentrations on the order of mgkg(-1) in biodiesel and diesel fuels using isotope dilution and sector field inductively coupled plasma mass spectrometry (ID-SF-ICP-MS). Closed vessel microwave-assisted digestion was employed using a diluted nitric acid and hydrogen peroxide decomposition medium to reduce sample dilution volumes. Medium resolution mode was employed to eliminate isobaric interferences at (32)S and (34)S related to polyatomic phosphorus and oxygen species, and sulfur hydride species. The method outlined yielded respective limits of detection (LOD) and limits of quantification (LOQ) of 0.7 mg kg(-1) S and 2.5 mg kg(-1) S (in the sample). The LOD was constrained by instrument background counts at (32)S but was sufficient to facilitate value assignment of total S mass fraction in NIST SRM 2723b Sulfur in Diesel Fuel Oil at 9.06±0.13 mg kg(-1). No statistically significant difference at a 95% confidence level was observed between the measured and certified values for certified reference materials NIST SRM 2773 B100 Biodiesel (Animal-Based), CENAM DRM 272b and NIST SRM 2723a Sulfur in Diesel Fuel Oil, validating method accuracy. PMID:24331043

  13. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  14. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  15. Accelerator mass spectrometry as a bioanalytical tool for nutritional research

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.

    1997-09-01

    Accelerator Mass Spectrometry is a mass spectrometric method of detecting long-lived radioisotopes without regard to their decay products or half-life. The technique is normally applied to geochronology, but recently has been developed for bioanalytical tracing. AMS detects isotope concentrations to parts per quadrillion, quantifying labeled biochemicals to attomole levels in milligram- sized samples. Its advantages over non-isotopeic and stable isotope labeling methods are reviewed and examples of analytical integrity, sensitivity, specificity, and applicability are provided.

  16. Measurement of δ18O, δ17O, and 17O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.

    PubMed

    Berman, Elena S F; Levin, Naomi E; Landais, Amaelle; Li, Shuning; Owano, Thomas

    2013-11-01

    Stable isotopes of water have long been used to improve understanding of the hydrological cycle, catchment hydrology, and polar climate. Recently, there has been increasing interest in measurement and use of the less-abundant (17)O isotope in addition to (2)H and (18)O. Off-axis integrated cavity output spectroscopy (OA-ICOS) is demonstrated for accurate and precise measurements δ(18)O, δ(17)O, and (17)O-excess in liquid water. OA-ICOS involves no sample conversion and has a small footprint, allowing measurements to be made by researchers collecting the samples. Repeated (514) high-throughput measurements of the international isotopic reference water standard Greenland Ice Sheet Precipitation (GISP) demonstrate the precision and accuracy of OA-ICOS: δ(18)OVSMOW-SLAP = -24.74 ± 0.07‰ (1σ) and δ(17)OVSMOW-SLAP = -13.12 ± 0.05‰ (1σ). For comparison, the International Atomic Energy Agency (IAEA) value for δ(18)OVSMOW-SLAP is -24.76 ± 0.09‰ (1σ) and an average of previously reported values for δ(17)OVSMOW-SLAP is -13.12 ± 0.06‰ (1σ). Multiple (26) high-precision measurements of GISP provide a (17)O-excessVSMOW-SLAP of 23 ± 10 per meg (1σ); an average of previously reported values for (17)O-excessVSMOW-SLAP is 22 ± 11 per meg (1σ). For all these OA-ICOS measurements, precision can be further enhanced by additional averaging. OA-ICOS measurements were compared with two independent isotope ratio mass spectrometry (IRMS) laboratories and shown to have comparable accuracy and precision as the current fluorination-IRMS techniques in δ(18)O, δ(17)O, and (17)O-excess. The ability to measure accurately δ(18)O, δ(17)O, and (17)O-excess in liquid water inexpensively and without sample conversion is expected to increase vastly the application of δ(17)O and (17)O-excess measurements for scientific understanding of the water cycle, atmospheric convection, and climate modeling among others. PMID:24032448

  17. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  18. Control of oenological products: discrimination between different botanical sources of L-tartaric acid by isotope ratio mass spectrometry.

    PubMed

    Moreno Rojas, Jose Manuel; Cosofret, Sorin; Reniero, Fabiano; Guillou, Claude; Serra, Francesca

    2007-01-01

    Following previous studies on counterfeit of wines with synthetic ingredients, the possibility of frauds by natural external L-tartaric acid has also been investigated. The aim of this research was to map the stable isotope ratios of L-tartaric acid coming from botanical species containing large amounts of this compound: grape and tamarind. Samples of L-tartaric acid were extracted from the pulp of tamarind fruits originating from several countries and from grape must. delta(13)C and delta(18)O were measured for all samples. Additional delta(2)H measurements were performed as a complementary analysis to help discrimination of the botanical origin. Different isotopic patterns were observed for the different botanical origins. The multivariate statistical analysis of the data shows clear discrimination among the different botanical and synthetic sources. This approach could be a complementary tool for the control of L-tartaric acid used in oenology. PMID:17610238

  19. Validation of an isotope dilution gas chromatography-mass spectrometry method for combined analysis of oxysterols and oxyphytosterols in serum samples.

    PubMed

    Schött, Hans-Frieder; Lütjohann, Dieter

    2015-07-01

    We describe the validation of a method for the analysis of oxysterols, i.e. oxycholesterols and oxyphytosterols, in human serum using gas chromatography-mass spectrometry selected ion monitoring (GC-MS-SIM). Concentrations of 7α- and 7β-hydroxy-, and 7oxo-cholesterol, -campesterol, and -sitosterol as well as 4β-hydroxycholesterol and side-chain oxygenated 24S-, 25-, and 27-hydroxycholesterol were determined by isotope dilution methodology. After saponification at room temperature the oxysterols were extracted, separated from their substrates, cholesterol, campesterol, and sitosterol, by solid phase extraction, and subsequently derivatised to their corresponding trimethylsilyl-ethers prior to GC-MS-SIM. In order to prevent artificial autoxidation butylated hydroxytoluene and ethylenediaminetetraacetic acid were added. The validation of the method was performed according to the International Conference on Harmonisation guidance, including limits of detection and quantification, ranges, recovery and precision. Due to improved instrumental settings and work-up procedure, limits of detection and quantification ranged between 8.0-202.0pg/mL and 28.0-674pg/mL, respectively. Recovery data in five calibration points varied between 91.9% and 116.8% and in serum samples between 93.1% and 118.1%. The mean coefficient of variation (CV) for the recovery of all compounds was <10%. Well satisfying CVs for within-day precision (2.1-10.8%) and for between-day precision (2.3-12.1%) were obtained. More than 20 samples could be processed in a single routine day and test series of about 300 samples can be realised without impairment of the validation parameters during a sequence. Comparison of oxysterol and oxyphytosterol content in serum and plasma revealed no difference. A fully validated isotope dilution methodology for the quantification of oxycholesterols and oxyphytosterols from human serum or plasma is presented. PMID:25701095

  20. Determination of the 13C/12C ratio of ethanol derived from fruit juices and maple syrup by isotope ratio mass spectrometry: collaborative study.

    PubMed

    Jamin, Eric; Martin, Frédérique; Martin, Gilles G

    2004-01-01

    A collaborative study of the carbon-13 isotope ratio mass spectrometry (13C-IRMS) method based on fermentation ethanol for detecting some sugar additions in fruit juices and maple syrup is reported. This method is complementary to the site-specific natural isotope fractionation by nuclear magnetic resonance (SNIF-NMR) method for detecting added beet sugar in the same products (AOAC Official Methods 995.17 and 2000.19), and uses the same initial steps to recover pure ethanol. The fruit juices or maple syrups are completely fermented with yeast, and the alcohol is distilled with a quantitative yield (>96%). The carbon-13 deviation (delta13C) of ethanol is then determined by IRMS. This parameter becomes less negative when exogenous sugar derived from plants exhibiting a C4 metabolism (e.g., corn or cane) is added to a juice obtained from plants exhibiting a C3 metabolism (most common fruits except pineapple) or to maple syrup. Conversely, the delta13C of ethanol becomes more negative when exogenous sugar derived from C3 plants (e.g., beet, wheat, rice) is added to pineapple products. Twelve laboratories analyzed 2 materials (orange juice and pure cane sugar) in blind duplicate and 4 sugar-adulterated materials (orange juice, maple syrup, pineapple juice, and apple juice) as Youden pairs. The precision of that method for measuring delta13C was similar to that of other methods applied to wine ethanol or extracted sugars in juices. The within-laboratory (Sr) values ranged from 0.06 to 0.16%o (r = 0.17 to 0.46 percent per thousand), and the among-laboratories (SR) values ranged from 0.17 to 0.26 percent per thousand (R = 0.49 to 0.73 percent per thousand). The Study Directors recommend that the method be adopted as First Action by AOAC INTERNATIONAL. PMID:15287660

  1. Quantification of carcinogenic 4- to 6-ring polycyclic aromatic hydrocarbons in human urine by solid-phase microextraction gas chromatography-isotope dilution mass spectrometry.

    PubMed

    Campo, Laura; Fustinoni, Silvia; Bertazzi, Pieralberto

    2011-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are pollutants found in living and working environments. The aim of this study was to develop a solid-phase microextraction (SPME) gas chromatography (GC)-isotope dilution mass spectrometry method for the quantification of 10 four- to six-ring PAHs in urine samples. Seven of the selected PAHs have been classified as carcinogenic. Under the final conditions, analytes were sampled with a 100-μm polydimethylsiloxane SPME fibre for 60 min at 80 °C and desorbed in the injection port of the GC at 270 °C. Fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene were separated using a highly arylene-modified phase capillary column and quantified by MS using eight deuterated PAHs as surrogate internal standards. Limits of quantification (LOQ) were in the 0.5- to 2.2-ng/L range. Validation showed linear dynamic ranges up to 340 ng/L, inter- and intra-run precisions <20%, and accuracies within 20% of spiked concentrations. Matrix effect evaluation and the use of control charts to monitor process performances showed that the isotope dilution approach allowed for the control of bias sources. Urinary PAHs were above or equal to LOQ, depending on different compounds, in 58-100% (min-max), 40-100% and 5-39% of samples from coke oven workers (n = 12), asphalt workers (n = 10) and individuals not occupationally exposed to PAHs (n = 18), respectively. Chrysene was the most abundant PAH determined with median levels of 62.6, 6.9 and <0.6 ng/L, respectively. These results show that the method is suitable for quantifying carcinogenic PAHs in specimens from individuals with different levels of PAH exposure. PMID:21626187

  2. Influence of relative abundance of isotopes on depth resolution for depth profiling of metal coatings by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Fariñas, Juan C; Coedo, Aurora G; Dorado, Teresa

    2010-04-15

    A systematic study on the influence of relative abundance of isotopes of elements in the coating (A(c)) and in the substrate (A(s)) on both shape of time-resolved signals and depth resolution (Delta z) was performed for depth profile analysis of metal coatings on metal substrates by ultraviolet (266 nm) nanosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. Five coated samples with coating thicknesses of the same order of magnitude (20-30 microm) were tested: nickel coating on aluminium, chromium and copper, and steel coated with copper and zinc. A laser repetition rate of 1 Hz and a laser fluence of 21 J cm(-2) were used. Five different depth profile types were established, which showed a clear dependence on A(c)/A(s) ratio. In general, depth profiles obtained for ratios above 1-10 could not be used to determine Delta z. We found that Delta z increased non-linearly with A(c)/A(s) ratio. The best depth profile types, leading to highest depth resolution and reproducibility, were attained in all cases by using the isotopes with low/medium A(c) values and with the highest A(s) values. In these conditions, an improvement of up to 4 times in Delta z values was achieved. The average ablation rates were in the range from 0.55 microm pulse(-1) for copper coating on steel to 0.83 microm pulse(-1) for zinc coating on steel, and the Delta z values were between 2.74 microm for nickel coating on chromium and 5.91 microm for nickel coating on copper, with RSD values about 5-8%. PMID:20188923

  3. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  4. Qualitative Metabolome Analysis of Human Cerebrospinal Fluid by 13C-/12C-Isotope Dansylation Labeling Combined with Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by 13C-dansyl and 12C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner.

  5. Lewisite Metabolites in Urine by Solid Phase Extraction-Dual Column Reversed-Phase Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry.

    PubMed

    Palcic, Jason D; Donovan, Stephen F; Jones, Janet S; Flagg, E Lindsay; Salonga, Redentor A; Mock, Walter E; Asirvatham, Victor S

    2016-07-01

    Lewisite (2-chlorovinyldichloroarsine) is a chemical warfare agent developed during World War I. A quantitative method using solid phase extraction (SPE) followed by dual column liquid chromatography (LC)-isotope dilution tandem mass spectrometry (MS-MS) was developed for the determination of (2-chlorovinyl)arsonic acid (CVAOA), a metabolite of Lewisite, in human urine. The sample was treated with hydrogen peroxide to oxidize any (2-chlorovinyl)arsonous acid (CVAA) that remained in the trivalent arsenic oxidation state. There was 1.19% (arsenic purity) of bis-(2-chlorovinyl)arsinic acid (BCVAOA), a minor Lewisite metabolite, in the stock CVAA material. The high-throughput method qualitatively assessed BCVAOA simultaneously utilizing normal-phase silica SPE followed by reversed-phase C18 LC for an orthogonal separation. The chromatographic method results in a 5.8-min cycle time with adequate retention (k' = 2.4) of CVAOA. The mass spectrometer was operated in positive electrospray ionization mode with quantitative m/z 186.9→61.0 and confirmation 186.9→91.0 mass transitions. This selective method demonstrated linearity, accuracy and reproducibility for the clinically relevant calibration range (25-3,200 µg/L as CVAA). The method detection limit was 3.3 µg/L as CVAA from a 10 µL injection. This LC-MS-MS emergency response method has a throughput of >240 samples (2.5 extracted 96-well plates) per day. PMID:27339483

  6. Measurement of (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines in DNA in vivo by liquid chromatography/isotope-dilution tandem mass spectrometry

    SciTech Connect

    Jaruga, Pawel; Xiao, Yan; Nelson, Bryant C.; Dizdaroglu, Miral

    2009-09-04

    Oxidatively induced DNA lesions (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines (R-cdA and S-cdA) are detectable and accumulate in vivo due to disease states and defects in DNA repair. They block transcription and inhibit gene expression, and may play a role in disease processes. Accurate measurement of these lesions in DNA in vivo is necessary to understand their biological effects. We report on a methodology using liquid chromatography/isotope-dilution tandem mass spectrometry to measure R-cdA and S-cdA in DNA. This methodology permitted the detection of these compounds at a level of 0.1 fmol on-column. Levels of R-cdA and S-cdA in mouse liver DNA amounted to 0.133 {+-} 0.024 and 0.498 {+-} 0.065 molecules/10{sup 7} DNA 2'-deoxynucleosides, respectively. The successful measurement of R-cdA and S-cdA in DNA in vivo suggests that this methodology will be used for understanding of their repair and biological consequences, and that these compounds may be used as putative biomarkers for disease states.

  7. Absolute quantification of Pru av 2 in sweet cherry fruit by liquid chromatography/tandem mass spectrometry with the use of a stable isotope-labelled peptide.

    PubMed

    Ippoushi, Katsunari; Sasanuma, Motoe; Oike, Hideaki; Kobori, Masuko; Maeda-Yamamoto, Mari

    2016-08-01

    Pru av 2, a pathogenesis-related (PR) protein present in the sweet cherry (Prunus avium L.) fruit, is the principal allergen of cherry and one of the chief causes of pollen food syndrome (oral allergy syndrome). In this study, a quantitative assay for this protein was developed with the use of the protein absolute quantification (AQUA) method, which consists of liquid chromatography/tandem mass spectrometry (LC/MS/MS) employing TGC[CAM]STDASGK[(13)C6,(15)N2], a stable isotope-labelled internal standard (SIIS) peptide. This assay gave a linear relationship (r(2)>0.99) in a concentration range (2.3-600fmol/μL), and the overall coefficient of variation (CV) for multiple tests was 14.6%. Thus, the contents of this allergenic protein in sweet cherry products could be determined using this assay. This assay should be valuable for allergological investigations of Pru av 2 in sweet cherry and detection of protein contamination in foods. PMID:26988485

  8. A Simplified Method for Quantifying Sulfur Mustard Adducts to Blood Proteins by Ultra-High Pressure Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry

    PubMed Central

    Pantazides, Brooke G.; Crow, Brian S.; Garton, Joshua W.; Quiñones-González, Jennifer A.; Blake, Thomas A.; Thomas, Jerry D.; Johnson, Rudolph C.

    2016-01-01

    Sulfur mustard binds to reactive cysteine residues, forming a stable sulfur-hydroxyethylthioethyl [S-HETE] adduct that can be used as a long-term biomarker of sulfur mustard exposure in humans. The digestion of sulfur mustard-exposed blood samples with proteinase K following total protein precipitation with acetone produces the tripeptide biomarker [S-HETE]-Cys-Pro-Phe. The adducted tripeptide is purified by solid phase extraction, separated by ultra-high pressure liquid chromatography, and detected by isotope dilution tandem mass spectrometry. This approach was thoroughly validated and characterized in our laboratory. The average interday relative standard deviation was ≤ 9.49%, and the range of accuracy was between 96.1-109% over a concentration range of 3.00 to 250. ng/mL with a calculated limit of detection of 1.74 ng/mL. A full 96-well plate can be processed and analyzed in 8 h which is five times faster than our previous 96-well plate method and only requires 50 µL of serum, plasma, or whole blood. Extensive ruggedness and stability studies and matrix comparisons were conducted to create a robust, easily transferrable method. As a result, a simple and high-throughput method has been developed and validated for the quantitation of sulfur mustard blood protein adducts in low volume blood specimens which should be readily adaptable for quantifying human exposures to other alkylating agents. PMID:25622494

  9. Gas chromatography flow rates for determining deuterium/hydrogen ratios of natural gas by gas chromatography/high-temperature conversion/isotope ratio mass spectrometry.

    PubMed

    Jia, Wanglu; Peng, Ping'an; Liu, Jinzhong

    2008-08-01

    The effects of the gas chromatography flow rate on the determination of the deuterium/hydrogen (D/H) ratios of natural gas utilising gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/TC/IRMS) have been evaluated. In general, the measured deltaD values of methane, ethane and propane decrease with increase in column flow rate. When the column flow rate is 1 mL/min or higher, which is commonly used for the determination of D/H ratios of natural gas, the organic H in gas compounds may not be completely converted into hydrogen gas. Based on the results of experiments conducted on a GC column with an i.d. of 0.32 mm, a GC flow rate of 0.6 mL/min is proposed for determining the D/H ratios of natural gas by GC/TC/IRMS. Although this value may be dependent on the instrument conditions used in this work, we believe that correct deltaD values of organic compounds with a few carbon atoms are obtained only when relatively low GC flow rates are used for D/H analysis by GC/TC/IRMS. Moreover, as the presence of trace water could significantly affect the determination of D/H ratios, a newly designed inlet liner was used to remove trace water contained in some gas samples. PMID:18636428

  10. Detection of FGF15 in Plasma by Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA) and Targeted Mass Spectrometry

    PubMed Central

    Katafuchi, Takeshi; Esterházy, Daria; Lemoff, Andrew; Ding, Xunshan; Sondhi, Varun; Kliewer, Steven A.; Mirzaei, Hamid; Mangelsdorf, David J.

    2015-01-01

    SUMMARY Fibroblast growth factor 15 (FGF15) has been proposed as a postprandial hormone that signals from intestine to liver to regulate bile acid and carbohydrate homeostasis. However, detecting FGF15 in blood using conventional techniques has proven difficult. Here, we describe a stable isotope standards and capture by anti-peptide antibodies (SISCAPA) assay that combines immuno-enrichment with selected reaction monitoring (SRM) mass spectrometry to overcome this issue. Using this assay, we show that FGF15 circulates in plasma in an FXR and circadian rhythm-dependent manner at concentrations that activate its receptor. Consistent with the proposed endocrine role for FGF15 in liver, mice lacking hepatocyte expression of the obligate FGF15 co-receptor, β-Klotho, have increased bile acid synthesis and reduced glycogen storage despite having supraphysiological plasma FGF15 concentrations. Collectively, these data demonstrate that FGF15 functions as a hormone and highlight the utility of SISCAPA-SRM as a sensitive assay for detecting low abundance proteins in plasma. PMID:26039452

  11. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Fan, Ruo-Jing; Guan, Qing; Zhang, Fang; Leng, Jia-Peng; Sun, Tuan-Qi; Guo, Yin-Long

    2016-02-18

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, l-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (l-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. PMID:26826695

  12. Comparison of digestion procedures and methods for quantification of trace lead in breast milk by isotope dilution inductively coupled plasma mass spectrometry

    PubMed Central

    Amarasiriwardena, Chitra J.; Jayawardene, Innocent; Lupoli, Nicola; Barnes, Ramon M.; Hernandez-Avila, Mauricio; Hu, Howard

    2014-01-01

    Measurement of lead in breast milk is an important public health consideration and can be technically quite challenging. The reliable and accurate determination of trace lead in human breast milk is difficult for several reasons including: potential for contamination during sample collection, storage, and analysis; complexities related to the high fat content of human milk; and poor analytic sensitivity at low concentrations. Breast milk lead levels from previous published studies should therefore be reviewed with caution. Due to the difficulty in identifying a method that would successfully digest samples with 100% efficiency, we evaluated three different digestion procedures including: (1) dry ashing in a muffle furnace, (2) microwave oven digestion, and (3) digestion in high pressure asher. High temperature, high pressure asher digestion was selected as the procedure of choice for the breast milk samples. Trace lead analysis was performed using isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS). Measured lead concentrations in breast milk samples (n = 200) from Mexico ranged from 0.2 to 6.7 ng ml−1. The precision for these measurements ranged from 0.27–7.8% RSD. Use of strict contamination control techniques and of a very powerful digestion procedure, along with an ID-ICP-MS method for lead determination, enables us to measure trace lead levels as low as 0.2 ng ml−1 in milk (instrument detection limit = 0.01 ng ml−1). PMID:24808927

  13. Analysis of permethrin isomers in composite diet samples by molecularly imprinted solid-phase extraction and isotope dilution gas chromatography-ion trap mass spectrometry.

    PubMed

    Vonderheide, Anne P; Boyd, Brian; Ryberg, Anna; Yilmaz, Ecevit; Hieber, Thomas E; Kauffman, Peter E; Garris, Sherry T; Morgan, Jeffrey N

    2009-05-29

    Determination of an individual's aggregate dietary ingestion of pesticides entails analysis of a difficult sample matrix. Permethrin-specific molecularly imprinted polymer (MIP) solid-phase extraction cartridges were developed for use as a sample preparation technique for a composite food matrix. Vortexing with acetonitrile and centrifugation were found to provide optimal extraction of the permethrin isomers from the composite foods. The acetonitrile (with 1% acetic acid) was mostly evaporated and the analytes reconstituted in 90:10 water/acetonitrile in preparation for molecularly imprinted solid-phase extraction. Permethrin elution was accomplished with acetonitrile and sample extracts were analyzed by isotope dilution gas chromatography-ion trap mass spectrometry. Quantitation of product ions provided definitive identification of the pesticide isomers. The final method parameters were tested with fortified composite food samples of varying fat content (1%, 5%, and 10%) and recoveries ranged from 99.3% to 126%. Vegetable samples with incurred pesticide levels were also analyzed with the given method and recoveries were acceptable (81.0-95.7%). Method detection limits were demonstrated in the low ppb range. Finally, the applicability of the MIP stationary phase to extract other pyrethroids, specifically cyfluthrin and cypermethrin, was also investigated. PMID:19393156

  14. Isotope dilution gas chromatography with mass spectrometry for the analysis of 4-octyl phenol, 4-nonylphenol, and bisphenol A in vegetable oils.

    PubMed

    Wu, Pinggu; Zhang, Liqun; Yang, Dajin; Zhang, Jing; Hu, Zhengyan; Wang, Liyuan; Ma, Bingjie

    2016-03-01

    By the combination of solid-phase extraction as well as isotope dilution gas chromatography with mass spectrometry, a sensitive and reliable method for the determination of endocrine-disrupting chemicals including bisphenol A, 4-octylphenol, and 4-nonylphenol in vegetable oils was established. The application of a silica/N-(n-propyl)ethylenediamine mixed solid-phase extraction cartridge achieved relatively low matrix effects for bisphenol A, 4-octylphenol, and 4-nonylphenol in vegetable oils. Experiments were designed to evaluate the effects of derivatization, and the extraction parameters were optimized. The estimated limits of detection and quantification for bisphenol A, 4-octylphenol, and 4-nonylphenol were 0.83 and 2.5 μg/kg, respectively. In a spiked experiment in vegetable oils, the recovery of the added bisphenol A was 97.5-110.3%, recovery of the added 4-octylphenol was 64.4-87.4%, and that of 4-nonylphenol was 68.2-89.3%. This sensitive method was then applied to real vegetable oil samples from Zhejiang Province of China, and none of the target compounds were detected. PMID:26698324

  15. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  16. Regional water-quality analysis of 2,4-D and dicamba in river water using gas chromatography-isotope dilution mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Zimmerman, L.R.; Aga, D.S.; Gilliom, R.J.

    2001-01-01

    Gas chromatography with isotope dilution mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA) were used in regional National Water Quality Assessment studies of the herbicides, 2,4-D and dicamba, in river water across the United States. The GC-MS method involved solid-phase extraction, derivatized with deutemted 2,4-D, and analysis by selected ion monitoring. The ELISA method was applied after preconcentration with solid-phase extraction. The ELISA method was unreliable because of interference from humic substances that were also isolated by solid-phase extraction. Therefore, GC-MS was used to analyzed 80 samples from river water from 14 basins. The frequency of detection of dicamba (28%) was higher than that for 2,4-D (16%). Concentrations were higher for dicamba than for 2,4-D, ranging from less than the detection limit (<0.05 ??g/L) to 3.77 ??g/L, in spite of 5 times more annual use of 2,4-D as compared to dicamba. These results suggest that 2,4-D degrades more rapidly in the environment than dicamba.

  17. [Preparation and certification of mussel reference material for organochlorine pesticides and polychlorinated biphenyls using isotope dilution-high resolution mass spectrometry].

    PubMed

    Lu, Xianbo; Chen, Jiping; Wang, Shuqiu; Zou, Lili; Tian, Yuzeng; Ni, Yuwen; Su, Fan

    2012-09-01

    A method for the preparation and certification of the reference material of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in mussel tissue is described. The mussel tissue from Dalian Bay was frozen-dried, comminuted, sieved, homogenized, packaged, and sterilized by 60Co radiation sterilization in turn. The certified values for 18 OCPs and 16 PCBs were determined by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using isotope dilution and internal standard quantitation techniques. The certified values were validated and given based on seven accredited laboratories, and these values are traceable to the SI (international system of units) through gravimetrically prepared standards of established purity and measurement intercomparisons. The certified values of PCBs and OCPs in mussel span 4 orders of magnitude with a relative uncertainty of about 10%. This material is a natural biological material with confirmed good homogeneity and stability, and it was approved as the grade "primary reference material" (GBW10069) in June 2012 in China. This reference material provided necessary quality control products for our country to implement the Stockholm Treaty on the monitoring of persistent organic pollutants (POPs). The material is intended to be used for the method validation and quality control in the determination of OCPs and PCBs in biota samples. PMID:23285973

  18. Quantification of 2-acetyl-1-pyrroline in rice by stable isotope dilution assay through headspace solid-phase microextraction coupled to gas chromatography-tandem mass spectrometry.

    PubMed

    Maraval, Isabelle; Sen, Kemal; Agrebi, Abdelhamid; Menut, Chantal; Morere, Alain; Boulanger, Renaud; Gay, Frédéric; Mestres, Christian; Gunata, Ziya

    2010-08-24

    A new and convenient synthesis of 2-acetyl-1-pyrroline (2AP), a potent flavor compound in rice, and its ring-deuterated analog, 2-acetyl-1-d(2)-pyrroline (2AP-d(2)), was reported. A stable isotope dilution assay (SIDA), involving headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-positive chemical ionization-ion trap-tandem mass spectrometry (GC-PCI-IT-MS-MS), was developed for 2AP quantification. A divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was used for HS-SPME procedure and parameters affecting analytes recovery, such as extraction time and temperature, pH and salt, were studied. The repeatability of the method (n=10) expressed as relative standard deviation (RSD) was 11.6%. A good linearity was observed from 5.9 to 779 ng of 2AP (r(2)=0.9989). Limits of detection (LOD) and quantification (LOQ) for 2AP were 0.1 and 0.4 ng g(-1) of rice, respectively. The recovery of spiked 2AP from rice matrix was almost complete. The developed method was applied to the quantification of 2AP in aerial parts and grains of scented and non-scented rice cultivars. PMID:20800726

  19. Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry

    PubMed Central

    Taghizadeh, Koli; McFaline, Jose L.; Pang, Bo; Sullivan, Matthew; Dong, Min; Plummer, Elaine; Dedon, Peter C.

    2009-01-01

    The analysis of damage products as biomarkers of inflammation has been hampered by a poor understanding of the chemical biology of inflammation, the lack of sensitive analytical methods, and a focus on single chemicals as surrogates for inflammation. To overcome these problems, we developed a general and sensitive liquid chromatographic tandem mass spectrometry (LC/MS-MS) method to quantify, in a single DNA sample, the nucleoside forms of seven DNA lesions reflecting the range of chemistries associated with inflammation: 2′-deoxyuridine, 2′-deoxyxanthosine, and 2′-deoxyinosine from nitrosative deamination; 8-oxo-2′-deoxyguanosine from oxidation; and 1,N2-etheno-2′-deoxyguanosine, 1,N6-etheno-2′-deoxyadenosine, and 3,N4-etheno-2′-deoxycytidine arising from reaction of DNA with lipid peroxidation products. Using DNA purified from cells or tissues under conditions that minimize artifacts, individual nucleosides are purified by HPLC and quantified by isotope-dilution, electrospray ionization LC/MS-MS. The method can be applied to other DNA damage products and requires 4-6 days to complete depending upon the number of samples. PMID:18714297

  20. Comparison of digestion procedures and methods for quantification of trace lead in breast milk by isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Amarasiriwardena, Chitra J; Jayawardene, Innocent; Lupoli, Nicola; Barnes, Ramon M; Hernandez-Avila, Mauricio; Hu, Howard; Ettinger, Adrienne S

    2013-01-01

    Measurement of lead in breast milk is an important public health consideration and can be technically quite challenging. The reliable and accurate determination of trace lead in human breast milk is difficult for several reasons including: potential for contamination during sample collection, storage, and analysis; complexities related to the high fat content of human milk; and poor analytic sensitivity at low concentrations. Breast milk lead levels from previous published studies should therefore be reviewed with caution. Due to the difficulty in identifying a method that would successfully digest samples with 100% efficiency, we evaluated three different digestion procedures including: (1) dry ashing in a muffle furnace, (2) microwave oven digestion, and (3) digestion in high pressure asher. High temperature, high pressure asher digestion was selected as the procedure of choice for the breast milk samples. Trace lead analysis was performed using isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS). Measured lead concentrations in breast milk samples (n = 200) from Mexico ranged from 0.2 to 6.7 ng ml(-1). The precision for these measurements ranged from 0.27-7.8% RSD. Use of strict contamination control techniques and of a very powerful digestion procedure, along with an ID-ICP-MS method for lead determination, enables us to measure trace lead levels as low as 0.2 ng ml(-1) in milk (instrument detection limit = 0.01 ng ml(-1)). PMID:24808927

  1. Isotope dilution high-resolution gas chromatography/high-resolution mass spectrometry method for analysis of selected acidic herbicides in surface water.

    PubMed

    Woudneh, Million B; Sekela, Mark; Tuominen, Taina; Gledhill, Melissa

    2006-11-10

    In this work, an isotope dilution method for determination of selected acidic herbicides by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) was developed for surface water samples. Average percent recoveries of native analytes were observed to be between 70.8 and 93.5% and average recoveries of labeled quantification standards [(13)C(6)]2,4-D and [(13)C(6)]2,4,5-T were 85.5 and 101%, respectively. Using this method, detection limits of 0.05 ng/L for dicamba, MCPA, MCPP, and triclopyr, and 0.5 ng/L for 2,4-D were routinely achieved. The method was applied to measuring the concentration of these analytes in surface water samples collected from five sampling locations in the Lower Fraser Valley region of British Columbia, Canada. All of the herbicides monitored were detected at varying levels in the surface water samples collected. The highest concentrations detected for each analyte were 345 ng/L for 2,4-D, 317 ng/L for MCPA, 271 ng/L for MCPP, 15.7 ng/L for dicamba, and 2.18 ng/L for triclopyr. Average detection frequencies of the herbicides were 95% for MCPA, 80% for MCPP, 70% for dicamba, 65% for 2,4-D, and 46% for triclopyr. Seasonal variations of herbicide levels are also discussed. PMID:16956613

  2. Determination of nerve agent metabolites in human urine by isotope-dilution gas chromatography-tandem mass spectrometry after solid phase supported derivatization.

    PubMed

    Lin, Ying; Chen, Jia; Yan, Long; Guo, Lei; Wu, Bidong; Li, Chunzheng; Feng, Jianlin; Liu, Qin; Xie, Jianwei

    2014-08-01

    A simple and sensitive method has been developed and validated for determining ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), isobutyl methylphosphonic acid (iBuMPA), and pinacolyl methylphosphonic acid (PMPA) in human urine using gas chromatography-tandem mass spectrometry (GC-MS/MS) coupled with solid phase derivatization (SPD). These four alkyl methylphosphonic acids (AMPAs) are specific hydrolysis products and biomarkers of exposure to classic organophosphorus (OP) nerve agents VX, sarin, RVX, and soman. The AMPAs in urine samples were directly derivatized with pentafluorobenzyl bromide on a solid support and then extracted by liquid-liquid extraction. The analytes were quantified with isotope-dilution by negative chemical ionization (NCI) GC-MS/MS in a selected reaction monitoring (SRM) mode. This method is highly sensitive, with the limits of detection of 0.02 ng/mL for each compound in a 0.2 mL sample of human urine, and an excellent linearity from 0.1 to 50 ng/mL. It is proven to be very suitable for the qualitative and quantitative analyses of degradation markers of OP nerve agents in biomedical samples. PMID:24633564

  3. [Determination of atmospheric polybrominated diphenyl ethers and polybrominated biphenyl 153 using isotope dilution-high resolution gas chromatography/high resolution mass spectrometry].

    PubMed

    Zheng, Xiaoyan; Yu, Jianzhao; Xu, Xiuyan; Yu, Haibin; Chen, Ye; Tan, Li; Lü, Yibing

    2015-10-01

    Considering the features and demands of the environmental monitoring, an isotope dilution-high resolution gas chromatography/high resolution mass spectrometry method was developed for the determination of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyls 153 (BB153) in the ambient air. PBDEs and BB153 were extracted using an accelerated solvent extraction apparatus with a mixture of hexane-dichloromethane (v/v, 1:1) and hexane, respectively. The concentrated extracts were loaded on the composite silica gel column for cleanup. The mean recoveries of native compounds at 10% and 90% of the highest levels of calibration curves were 100% and 104% with 5% and 6% of the mean relative standard deviations (n = 7), respectively. The recoveries of 13C labeled surrogates for di- to deca-brominated diphenyl ethers and BB153 were in the range of 36.5%-133%. However, the recoveries of 13C-monobrominated diphenyl ethers were relatively low, maybe due to the different physicochemical properties compared with the other homologues. No breakthrough of pollutants was estimated under real sampling volume of 300 m3. The limits of detection were lower than 2 x 10(-4) ng/Nm3. The recoveries of 13C labeled surrogates were between 56% and 126%, except monoBDEs. The results demonstrated that the method is suitable for the analysis of di- to decabrominated diphenyl ethers and BB153 in the ambient air with precise quantification. PMID:26930965

  4. Isotope-coded, iodoacetamide-based reagent to determine individual cysteine pKa values by MALDI-TOF mass spectrometry

    PubMed Central

    Nelson, Kimberly J.; Day, Amanda E.; Zeng, Bubing B.; King, S. Bruce; Poole, Leslie B.

    2008-01-01

    Cysteine reactivity in enzymes is imparted to a large extent by the stabilization of the deprotonated form of the reduced cysteine (i.e. the thiolate) within the active site. While this is likely to be an important chemical attribute of many thiol-based enzymes including cysteine-dependent peroxidases (peroxiredoxins) and proteases, only relatively few pKa values have been determined experimentally. Presented here is a new technique for determining the pKa value of cysteine residues through quantitative mass spectrometry following chemical modification with an iodoacetamide-based reagent over a range of pH buffers. This isotope-coded reagent, N-phenyl iodoacetamide (iodoacetanilide), is readily prepared in deuterated (d5) and protiated (d0) versions and is more reactive toward free cysteine than is iodoacetamide. Using this approach, the pKa values for the two cysteine residues in Escherichia coli thioredoxin were determined to be 6.5 and > 10, in good agreement with previous reports using chemical modification approaches. This technique allows the pKa of specific cysteine residues to be determined in a clear, fast, and simple manner and, because cysteine residues on separate tryptic peptides are measured separately, is not complicated by the presence of multiple cysteines within the protein of interest. PMID:18162165

  5. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Provencher, Gilles; Bérubé, René; Dumas, Pierre; Bienvenu, Jean-François; Gaudreau, Eric; Bélanger, Patrick; Ayotte, Pierre

    2014-06-27

    Bisphenol A (BPA) and triclosan (TCS) are ubiquitous environmental phenols exhibiting endocrine disrupting activities that may be involved in various health disorders in humans. There is a need to measure separately free forms and conjugated metabolites because only the former are biologically active. We have developed sensitive methods using isotope-dilution liquid chromatography-tandem mass spectrometry for individual measurements of free BPA and TCS as well as their metabolites, BPA glucuronide (BPAG), BPA monosulfate (BPAS), BPA disulfate (BPADS), TCS glucuronide (TCSG) and TCS sulfate (TCSS) in urine. Comparative analyses of urine samples from 46 volunteers living in the Quebec City area using the new methods and a GC-MS/MS method previously used in our laboratory revealed very strong correlations for total BPA (Spearman's rs=0.862, p<0.0001) and total TCS concentrations (rs=0.942, p<0.0001). Glucuronide metabolites were the most abundant BPA and TCS species in urine samples (>94% of total urinary concentrations). Unconjugated TCS concentrations represented a small proportion of total TCS species (median=1.6%) but its concentration was likely underestimated due to losses by adsorption to the surface of polypropylene tubes used for sample storage. To our knowledge, we are the first to report levels of free, sulfated and glucuronidated TCS levels in human urine. PMID:24835763

  6. LC-quadrupole/Orbitrap high-resolution mass spectrometry enables stable isotope-resolved simultaneous quantification and ¹³C-isotopic labeling of acyl-coenzyme A thioesters.

    PubMed

    Frey, Alexander J; Feldman, Daniel R; Trefely, Sophie; Worth, Andrew J; Basu, Sankha S; Snyder, Nathaniel W

    2016-05-01

    Acyl-coenzyme A (acyl-CoA) thioesters are evolutionarily conserved, compartmentalized, and energetically activated substrates for biochemical reactions. The ubiquitous involvement of acyl-CoA thioesters in metabolism, including the tricarboxylic acid cycle, fatty acid metabolism, amino acid degradation, and cholesterol metabolism highlights the broad applicability of applied measurements of acyl-CoA thioesters. However, quantitation of acyl-CoA levels provides only one dimension of metabolic information and a more complete description of metabolism requires the relative contribution of different precursors to individual substrates and pathways. Using two distinct stable isotope labeling approaches, acyl-CoA thioesters can be labeled with either a fixed [(13)C3(15)N1] label derived from pantothenate into the CoA moiety or via variable [(13)C] labeling into the acyl chain from metabolic precursors. Liquid chromatography-hybrid quadrupole/Orbitrap high-resolution mass spectrometry using parallel reaction monitoring, but not single ion monitoring, allowed the simultaneous quantitation of acyl-CoA thioesters by stable isotope dilution using the [(13)C3(15)N1] label and measurement of the incorporation of labeled carbon atoms derived from [(13)C6]-glucose, [(13)C5(15)N2]-glutamine, and [(13)C3]-propionate. As a proof of principle, we applied this method to human B cell lymphoma (WSU-DLCL2) cells in culture to precisely describe the relative pool size and enrichment of isotopic tracers into acetyl-, succinyl-, and propionyl-CoA. This method will allow highly precise, multiplexed, and stable isotope-resolved determination of metabolism to refine metabolic models, characterize novel metabolism, and test modulators of metabolic pathways involving acyl-CoA thioesters. PMID:26968563

  7. Digital Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bamberger, Casimir; Renz, Uwe; Bamberger, Andreas

    2011-06-01

    Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by matrix-assisted laser desorption/ionization (MALDI) directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84 ± 35) μm with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm2. Extended laser spots of ~5 mm2 on structured specimens allows parallel imaging of selected masses. The digital imaging mass spectrometer proves high hit-multiplicity, straightforward image reconstruction, and potential for high-speed readout at 4 kHz or more. This device demonstrates a simple way of true image acquisition like a digital photographic camera. The technology may enable a fast analysis of biomolecular samples in near future.

  8. Counting individual sulfur atoms in a protein by ultrahighresolution Fourier transform ion cyclotron resonance mass spectrometry: Experimental resolution of isotopic fine structure in proteins

    PubMed Central

    Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.

    1998-01-01

    A typical molecular ion mass spectrum consists of a sum of signals from species of various possible isotopic compositions. Only the monoisotopic peak (e.g., all carbons are 12C; all nitrogens are 14N, etc.) has a unique elemental composition. Every other isotope peak at approximately integer multiples of ∼1 Da higher in nominal mass represents a sum of contributions from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass). At sufficiently high mass resolving power, each of these nominal-mass peaks resolves into its isotopic fine structure. Here, we report resolution of the isotopic fine structure of proteins up to 15.8 kDa (isotopic 13C,15N doubly depleted tumor suppressor protein, p16), made possible by electrospray ionization followed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass analysis at 9.4 tesla. Further, a resolving power of m/Δm50% ≈8,000,000 has been achieved on bovine ubiquitin (8.6 kDa). These results represent a 10-fold increase in the highest mass at which isotopic fine structure previously had been observed. Finally, because isotopic fine structure reveals elemental composition directly, it can be used to confirm or determine molecular formula. For p16, for example, we were able to determine (5.1 ± 0.3) the correct number (five) of sulfur atoms solely from the abundance ratio of the resolved 34S peak to the monoisotopic peak. PMID:9751700

  9. Ion Trap Mass Spectrometry

    SciTech Connect

    Eiden, Greg C.

    2005-09-01

    This chapter describes research conducted in a few research groups in the 1990s in which RF quadrupole ion trap mass spectrometers were coupled to a powerful atomic ion source, the inductively coupled plasma used in conventional ICP-MS instruments. Major section titles for this chapter are: RF Quadrupole Ion Traps Features of RF Quadrupole Ion Trap Mass Spectrometers Selective Ion Trapping methods Inductively Coupled Plasma Source Ion Trap Mass Spectrometers

  10. Determination of 4(5)-methylimidazole in carbonated beverages by isotope-dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Ratnayake, Geemitha; Halldorson, Thor; Bestvater, Lianna; Tomy, Gregg T

    2015-01-01

    The purpose of this study was to develop a method to quantify 4(5)-methylimidazole (4-MEI), a suspected carcinogen, in carbonated beverages by simple sample dilution and isotope-dilution reverse-phase LC-MS/MS. Isotope dilution using hexa-deuterated methylimidazole (d6-4-MEI) was used to quantify native 4-MEI and to assess matrix effects quantitatively. The accuracy of the method was assessed by intentionally fortifying a negative control sample at three doses: low, medium and high (replicates of n = 5 each) with a known amount of 4-MEI. The respective absolute error in each case was 18.7 ± 0.7%, 14.6 ± 2.8% and 21.1 ± 9.7%. Within-day (intra-) and day-to-day (inter-) repeatability, determined as the relative standard deviation by fortifying a negative control sample (n = 5), were 9.5% and 15.4%, respectively. Average ion suppression of d6-4-MEI in beer was 63.9 ± 3.2%, while no suppression or enhancement was seen in non-alcoholic samples. The instrument and method limit of detection were calculated as 0.6 and 5.8 ng ml(-1), respectively. 4(5)-Methylimidazole was quantified in a variety of store-bought consumer beverages and it was found that in many of the samples tested consuming a single can of beer would result in intake levels of 4-MEI that exceed the no significant risk guideline of 29 µg day(-1). Conversely, 4-MEI in the samples was orders of magnitude smaller than the European Food Safety Authority acceptable daily intake threshold value of 100 mg kg(-1) bw day(-1). PMID:25994392

  11. Mass-independent isotope effects.

    PubMed

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions. PMID:23301791

  12. Fit for purpose validated method for the determination of the strontium isotopic signature in mineral water samples by multi-collector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Brach-Papa, Christophe; Van Bocxstaele, Marleen; Ponzevera, Emmanuel; Quétel, Christophe R.

    2009-03-01

    A robust method allowing the routine determination of n( 87Sr)/ n( 86Sr) with at least five significant decimal digits for large sets of mineral water samples is described. It is based on 2 consecutive chromatographic separations of Sr associated to multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) measurements. Separations are performed using commercial pre-packed columns filled with "Sr resin" to overcome isobaric interferences affecting the determination of strontium isotope ratios. The careful method validation scheme applied is described. It included investigations on all parameters influencing both chromatographic separations and MC-ICPMS measurements, and also the test on a synthetic sample made of an aliquot of the NIST SRM 987 certified reference material dispersed in a saline matrix to mimic complex samples. Correction for mass discrimination was done internally using the n( 88Sr)/ n( 86Sr) ratio. For comparing mineral waters originating from different geological backgrounds or identifying counterfeits, calculations involved the well known consensus value (1/0.1194) ± 0 as reference. The typical uncertainty budget estimated for these results was 40 'ppm' relative ( k = 2). It increased to 150 'ppm' ( k = 2) for the establishment of stand alone results, taking into account a relative difference of about 126 'ppm' systematically observed between measured and certified values of the NIST SRM 987. In case there was suspicion of a deviation of the n( 88Sr)/ n( 86Sr) ratio (worst case scenario) our proposal was to use the NIST SRM 987 value 8.37861 ± 0.00325 ( k = 2) as reference, and assign a typical relative uncertainty budget of 300 'ppm' ( k = 2). This method is thus fit for purpose and was applied to eleven French samples.

  13. Symposium on accelerator mass spectrometry

    SciTech Connect

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  14. Mass spectrometry for biomarker development

    SciTech Connect

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  15. Characterization of Diesel Fuel by Chemical Separation Combined with Capillary Gas Chromatography (GC) Isotope Ratio Mass Spectrometry (IRMS)

    SciTech Connect

    Harvey, Scott D.; Jarman, Kristin H.; Moran, James J.; Sorensen, Christina M.; Wright, Bob W.

    2011-09-15

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish between the diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for detecting fuel tax evasion schemes. Two fractionation techniques were used to isolate the n-alkanes from the fuel. Both δ13C and δD values for the n-alkanes were then determined by CSIA in each sample. Plots of δD versus δ13C with sample n-alkane points connected in order of increasing carbon number gave well separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with δ13C, δD, or combined δ13C and δD data on the yielded scores plots that could clearly differentiate the samples, thereby demonstrating the potential of this approach for fingerprinting fuel samples using the δ13C and δD values.

  16. Establishing a chromium-reactor design for measuring delta2H values of solid polyhalogenated compounds using direct elemental analysis and stable isotope ratio mass spectrometry.

    PubMed

    Armbruster, Wolfgang; Lehnert, Katja; Vetter, Walter

    2006-01-01

    2H/1H isotope ratios of polyhalogenated compounds were determined by elemental analysis and isotope ratio mass spectrometry (EA-IRMS). Initial measurements with standard EA-IRMS equipment, which used high-temperature pyrolysis to convert the organic compounds into hydrogen, did not achieve significant signals for polychlorinated pesticides and related compounds, presumably due to the formation of HCl instead of hydrogen. To reverse this problematic reaction, a chromium reactor was incorporated into the element analyzer system, which scavenged Cl, forming chromium chloride and releasing hydrogen again in the form of H2. The optimized system therefore allowed the delta2H values of polyhalogenated compounds to be determined. A quality assurance program was developed based on several parameters. (i) Each compound was analyzed using a sequence of five injections, where the first measurement was discarded. (ii) Recovery of H (when calculated relative to acetanilide) had to be >90% for all replicates in a sequence. (iii) All delta-values within a sequence had to vary by less than 10/1000. (iv) Results had to be reproducible on another day with a different sample scheme. Once this reproducibility had been established, variabilities in the delta2H values of organohalogen standards were investigated using the technique. The highest delta2H value of +75/1000 was found for o,p'-DDD, whereas the strongest depletion in deuterium was found for Melipax (-181/1000). The most important results for comparable compounds were as follows. DDT-related compounds gave delta2H values of between +59 and +75/1000 (technical DDT, o,p'- and p,p'-DDD) or in the range of approximately -1/1000, indicative of the different sources/methods of producing this compound. Four HCH isomers from the same supplier showed relatively similar hydrogen isotope distributions, whereas two lindane (gamma-HCH) standards from other sources had 39/1000 less deuterium. This difference is likely due to different

  17. High-precision measurements of uranium and thorium isotopic ratios by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS)

    NASA Astrophysics Data System (ADS)

    Wang, Lisheng; Ma, Zhibang; Duan, Wuhui

    2015-04-01

    Isotopic compositions of U-Th and 230Th dating have been widely used in earth sciences, such as chronology, geochemistry, oceanography and hydrology. In this study, five ages of different carbonate samples were measured using 230Th dating technique with U-Th high-precision isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, in Uranium-series Chronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences.In this study, the precision and accuracy of uranium isotopic composition were estimated by measuring the uranium ratios of NBS-CRM 112A, NBS-CRM U500 and HU-1. The mean measured ratios, 234U/238U = 52.86 (±0.04) × 10-6 and δ234U = -38.36 (±0.77) × 10-3 for NBS-CRM 112A, 234U/238U = 10.4184 (±0.0001) × 10-3, 236U/238U = 15.43 (±0.01) × 10-4 and 238U/235U = 1.00021 (±0.00002) for NBS-CRM U500, 234U/238U = 54.911 (±0.007) and δ234U = -1.04 (±0.13) × 10-3 for HU-1 (95% confidence levels). The U isotope data for standard reference materials are in excellent agreement with previous studies, further highlighting the reliability and analytical capabilities of our technique. We measured the thorium isotopic ratios of three different thorium standards by MC-ICPMS. The three standards (Th-1, Th-2 and Th-3) were mixed by HU-1 and NBS 232Th standard, with the 230Th/232Th ratios from 10-4 to 10-6. The mean measured atomic ratios, 230Th/232Th = 2.1227 (±0.0024) × 10-6, 2.7246 (±0.0026) × 10-5, and 2.8358 (±0.0007) × 10-4 for Th-1, Th-2 and Th-3 (95% confidence levels), respectively. Using this technique, the following standard samples were dated by MC-ICPMS. Sample RKM-4, collected from Babardos Kendal Hill terrace, was used during the first stage of the Uranium-Series Intercomparison Project (USIP-I). Samples 76001, RKM-5 and RKM-6 were studied during the second stage of the USIP program (USIP-II). Sample 76001 is a laminated flowstone, collected from Sumidero Terejapa, Chiapas, Mexico, and samples

  18. Application of mass spectrometry for metabolite identification.

    PubMed

    Ma, Shuguang; Chowdhury, Swapan K; Alton, Kevin B

    2006-06-01

    Metabolism studies play a pivotal role in drug discovery and development. Characterization of metabolic "hot-spots" as well as reactive and pharmacologically active metabolites is critical to designing new drug candidates with improved metabolic stability, toxicological profile and efficacy. Metabolite identification in the preclinical species used for safety evaluation is required in order to determine whether human metabolites have been adequately tested during non-clinical safety assessment. From an instrumental standpoint, high performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) dominates all analytical tools used for metabolite identification. The general strategies employed for metabolite identification in both drug discovery and drug development settings together with sample preparation techniques are reviewed herein. These include a discussion of the various ionization methods, mass analyzers, and tandem mass spectrometry (MS/MS) techniques that are used for structural characterization in a modern drug metabolism laboratory. Mass spectrometry-based techniques, such as stable isotope labeling, on-line H/D exchange, accurate mass measurement to enhance metabolite identification and recent improvements in data acquisition and processing for accelerating metabolite identification are also described. Rounding out this review, we offer additional thoughts about the potential of alternative and less frequently used techniques such as LC-NMR/MS, CRIMS and ICPMS. PMID:16787159

  19. Quantification of 11 thyroid hormones and associated metabolites in blood using isotope-dilution liquid chromatography tandem mass spectrometry.

    PubMed

    Hansen, Martin; Luong, Xuan; Sedlak, David L; Helbing, Caren C; Hayes, Tyrone

    2016-08-01

    This paper describes a novel analytical methodology for the simultaneous determination of absolute and total concentrations of 11 native thyroid hormones and associated metabolites, viz. thyroxine (T4), 3,3', 5-triiodothyronine (T3), 3,3', 5'-triiodothyronine (rT3), 3,5-diiodothyronine (3,5-T2), 3,3'- diiodothyronine (3,3'-T2), 3-iodothyronine (T1), thyronine (T0), 3-iodothyronamine (T1AM), tetraiodothyroacetic acid (Tetrac), triiodothyroacetic acid (Triac), and diiodothyroacetic acid (Diac), in 50-μL of plasma or serum. The method was optimized using four isotopic labeled surrogate and internal standards in combination with solid-phase extraction and LC-MS/MS. The methodology was further evaluated using amphibian plasma and serum with matrix-matched calibration applied for quantification. Method detection limits are 3.5 pg T4, 1.5 pg T3, 2.9 pg rT3, 1.7 pg 3,3'-T2, 2.3 pg 3,5-T2, and between 0.3 and 7.5 pg for the remaining six metabolites in 50 μL aliquots of blood sera or plasma. Accuracies and repeatabilities for all analytes were between 88 and 103 % and 1.31 and 17.2 %, respectively. Finally, we applied the method on adult frog (Xenopus laevis) plasma and tadpole (Rana (Lithobates) catesbeiana) serum. We observed up to seven different thyroid hormones and associated metabolites in tadpole serum. This method will enable researchers to improve the assessment of thyroid homeostasis and endocrine disruption in animals and humans. Graphical Abstract Quantification of 11 thyroid hormones and metabolites from 50 μL plasma or serum using protein denaturation in combination with solid-phase extraction followed by LC-MS/MS. PMID:27215639

  20. Quantitative determination of free and total bisphenol A in human urine using labeled BPA glucuronide and isotope dilution mass spectrometry.

    PubMed

    Kubwabo, Cariton; Kosarac, Ivana; Lalonde, Kaela; Foster, Warren G

    2014-07-01

    Bisphenol A (BPA) is a widely used industrial chemical in the manufacturing of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt normal hormonal function and hence, potentially, have negative effects on the human health. While total BPA is frequently reported, it is recognized that free BPA is the biologically active form and is rarely reported in the literature. The objective of this study was to develop a sensitive and improved method for the measurement of free and total BPA in human urine. Use of a labeled conjugated BPA (bisphenol A-d6 β-D-glucuronide) allowed for the optimization of the enzymatic reaction and permitted an accurate determination of the conjugated BPA concentration in urine samples. In addition, a (13)C12-BPA internal standard was used to account for the analytical recoveries and performance of the isotope dilution method. Solid-phase extraction (SPE) combined with derivatization and analysis using a triple quadrupole GC-EI/MS/MS system achieved very low method detection limit of 0.027 ng/mL. BPA concentrations were measured in urine samples collected during the second and third trimesters of pregnancy in 36 Canadian women. Total maternal BPA concentrations in urine samples ranged from not detected to 9.40 ng/mL (median, 1.21 ng/mL), and free BPA concentrations ranged from not detected to 0.950 ng/mL (median, 0.185 ng/mL). Eighty-six percent of the women had detectable levels of conjugated BPA, whereas only 22 % had detectable levels of free BPA in their urine. BPA levels measured in this study agreed well with data reported internationally. PMID:24817354

  1. [2H/H] Isotope ratio analyses of [2H5]cholesterol using high-temperature conversion elemental analyser isotope-ratio mass spectrometry: determination of cholesterol absorption in normocholesterolemic volunteers.

    PubMed

    Godin, Jean-Philippe; Richelle, Myriam; Metairon, Sylviane; Fay, Laurent-Bernard

    2004-01-01

    This paper validates the use of high-temperature conversion elemental analyser isotope-ratio mass spectrometry (TC-EA/IRMS) for measuring the [(2)H/H] enrichment of plasma [(2)H(5)]cholesterol. From a molecular point of view, the free cholesterol is initially separated from plasma by thin-layer chromatography (TLC) and then injected onto the TC-EA reactor which converts cholesterol molecules into CO and H(2) gases. The slope of the curve of the experimental mole percent excess (MPE((exp.))) versus MPE((theor.)) was very close to 1, demonstrating that no significant isotopic fractionation was observed during all processing of the samples (i.e., isolation of plasma free cholesterol by TLC and pyrolysis in the TC-EA reactor). Excellent linearity (r(2) = 0.9994, n = 4) of delta ( per thousand ) of [(2)H/H] isotopic measurements versus mole percent (MP) was assessed over the range 0 to 0.1 MP. The precision of the [(2)H/H] measurement, evaluated with two calibration points processed with TLC, was delta(2)H(V-SMOW) = -192.5 +/- 3.4 per thousand and delta(2)H(V-SMOW) = -136.9 +/- 2.9 per thousand. The standard deviations of the within-assay and between-assay repeatabilities of the analytical process, evaluated using the quality control (QC) of plasma samples, were 4.6 and 6.1 per thousand, respectively. Plant sterols are known to reduce cholesterol absorption and therefore were used as a positive control in a clinical study performed with normocholesterolemic volunteers. This present method produces biological results consistent with those already reported in the literature. PMID:14755619

  2. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  3. Mass spectrometry of large complexes.

    PubMed

    Bich, Claudia; Zenobi, Renato

    2009-10-01

    Mass spectrometry is becoming a more and more powerful tool for investigating protein complexes. Recent developments, based on different ionization techniques, electrospray, desorption/ionization and others are contributing to the usefulness of MS to describe the organization and structure of large non-covalent assemblies. PMID:19782560

  4. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  5. Simplified method for microlitre deuterium measurements in water and urine by gas chromatography-high-temperature conversion-isotope ratio mass spectrometry.

    PubMed

    Gucciardi, Antonina; Cogo, Paola E; Traldi, Umberto; Eaton, Simon; Darch, Tegan; Simonato, Manuela; Ori, Carlo; Carnielli, Virgilio P

    2008-07-01

    Deuterium (2H) in water and urine can be measured by off-line and, more recently, on-line techniques using isotope ratio mass spectrometry (IRMS). We describe a new simple on-line pyrolysis method for the analysis of 2H/1H in water and urine samples by continuous flow IRMS, normally used for 2H/1H measurements in organic compounds. A deactivated column connected the split injector to a high-temperature conversion reactor (TC HD), and 0.5 microL of sample was injected. Accuracy and precision were determined with Vienna Standard Mean Ocean Water (VSMOW), Standard Light Antarctic Precipitation (SLAP), and Greenland Ice Sheet Precipitation (GISP). The range of linearity was measured with a calibration curve of enriched water from 0 up to 0.1 atom percent excess (APE) (i.e. -72 up to 6323 delta per mil (deltaD per thousand)) with a precision of <5 per thousand and accuracy ranging between 1 and 55 per thousand. Blinded reanalysis of urine samples by an equilibration device (Gas Bench) and by a dedicated pyrolysis system (TC/EA) was performed and results compared by the Bland-Altman test. Enrichments ranged between 600 and 2400 per thousand deltaD(VSMOW) with a precision of +/-5 per thousand. Urine enrichments described by our method were strongly correlated with values obtained by Gas Bench and TC/EA (p < 0.0001). There was a significant memory effect that was reduced by injecting the sample 15 times and discarding the first 10 injections, together with accurate furnace conditioning and appropriate cleaning of the syringe. Data indicate that the method is accurate, and that it can be used for water and urine deuterium determination when a Gas Bench or TC/EA instrument is not available and the amount of sample is limited. PMID:18512843

  6. Addiction to MTH1 protein results in intense expression in human breast cancer tissue as measured by liquid chromatography-isotope-dilution tandem mass spectrometry.

    PubMed

    Coskun, Erdem; Jaruga, Pawel; Jemth, Ann-Sofie; Loseva, Olga; Scanlan, Leona D; Tona, Alessandro; Lowenthal, Mark S; Helleday, Thomas; Dizdaroglu, Miral

    2015-09-01

    MTH1 protein sanitizes the nucleotide pool so that oxidized 2'-deoxynucleoside triphosphates (dNTPs) cannot be used in DNA replication. Cancer cells require MTH1 to avoid incorporation of oxidized dNTPs into DNA that results in mutations and cell death. Inhibition of MTH1 eradicates cancer, validating MTH1 as an anticancer target. By overexpressing MTH1, cancer cells may mediate cancer growth and resist therapy. To date, there is unreliable evidence suggesting that MTH1 is increased in cancer cells, and available methods to measure MTH1 levels are indirect and semi-quantitative. Accurate measurement of MTH1 in disease-free tissues and malignant tumors of patients may be essential for determining if the protein is truly upregulated in cancers, and for the development and use of MTH1 inhibitors in cancer therapy. Here, we present a novel approach involving liquid chromatography-isotope-dilution tandem mass spectrometry to positively identify and accurately quantify MTH1 in human tissues. We produced full length (15)N-labeled MTH1 and used it as an internal standard for the measurements. Following trypsin digestion, seven tryptic peptides of both MTH1 and (15)N-MTH1 were identified by their full scan and product ion spectra. These peptides provided a statistically significant protein score that would unequivocally identify MTH1. Next, we identified and quantified MTH1 in human disease-free breast tissues and malignant breast tumors, and in four human cultured cell lines, three of which were cancer cells. Extreme expression of MTH1 in malignant breast tumors was observed, suggesting that cancer cells are addicted to MTH1 for their survival. The approach described is expected to be applicable to the measurement of MTH1 levels in malignant tumors vs. surrounding disease-free tissues in cancer patients. This attribute may help develop novel treatment strategies and MTH1 inhibitors as potential drugs, and guide therapies. PMID:26202347

  7. Determination of agmatine using isotope dilution UPLC-tandem mass spectrometry: application to the characterization of the arginine decarboxylase pathway in Pseudomonas aeruginosa.

    PubMed

    Dalluge, Joseph J; McCurtain, Jennifer L; Gilbertsen, Adam J; Kalstabakken, Kyle A; Williams, Bryan J

    2015-07-01

    A method has been developed for the direct determination of agmatine in bacterial culture supernatants using isotope dilution ultra performance liquid chromatography (UPLC)-tandem mass spectrometry (UPLC-MS/MS). Agmatine determination in bacterial supernatants is comprised of spiking culture or isolate supernatants with a fixed concentration of uniformly labeled (13)C5,(15)N4-agmatine (synthesized by decarboxylation of uniformly labeled (13)C6,(15)N4-arginine using arginine decarboxylase from Pseudomonas aeruginosa) as an internal standard, followed by derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBDF) to improve the reversed-phase chromatographic retention characteristics of agmatine, as well as the selectivity and sensitivity of UPLC-MS/MS detection of this amine in complex biologically derived mixtures. Intrasample precisions for measurement of agmatine in culture supernatants average 4.1% (relative standard deviation). Calibration curves are linear over the range 5 nM to 10 μM, and the detection limit is estimated at 1.5 nM. To demonstrate the utility of the method, agmatine levels in supernatants of overnight cultures of wild-type (UCBPP-PA14), as well as arginine decarboxylase and agmatine deiminase mutant strains of P. aeruginosa strain UCBPP-PA14 were measured. This method verified that the mutant strains are lacking the specific metabolic capabilities to produce and metabolize agmatine. In addition, measurement of agmatine in supernatants of a panel of clinical isolates from patients with cystic fibrosis revealed that three of the P. aeruginosa isolates hyper-secreted agmatine into the supernatant, hypothesized to be a result of a mutation in the aguA gene. Because agmatine has potential inflammatory activities in the lung, this phenotype may be a virulence factor for P. aeruginosa in the lung environment of cystic fibrosis patients. PMID:25957842

  8. An optimized method for the accurate determination of patulin in apple products by isotope dilution-liquid chromatography/mass spectrometry.

    PubMed

    Seo, Miyeong; Kim, Byungjoo; Baek, Song-Yee

    2015-07-01

    Patulin, a mycotoxin produced by several molds in fruits, has been frequently detected in apple products. Therefore, regulatory bodies have established recommended maximum permitted patulin concentrations for each type of apple product. Although several analytical methods have been adopted to determine patulin in food, quality control of patulin analysis is not easy, as reliable certified reference materials (CRMs) are not available. In this study, as a part of a project for developing CRMs for patulin analysis, we developed isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC/MS/MS) as a higher-order reference method for the accurate value-assignment of CRMs. (13)C7-patulin was used as internal standard. Samples were extracted with ethyl acetate to improve recovery. For further sample cleanup with solid-phase extraction (SPE), the HLB SPE cartridge was chosen after comparing with several other types of SPE cartridges. High-performance liquid chromatography was performed on a multimode column for proper retention and separation of highly polar and water-soluble patulin from sample interferences. Sample extracts were analyzed by LC/MS/MS with electrospray ionization in negative ion mode with selected reaction monitoring of patulin and (13)C7-patulin at m/z 153→m/z 109 and m/z 160→m/z 115, respectively. The validity of the method was tested by measuring gravimetrically fortified samples of various apple products. In addition, the repeatability and the reproducibility of the method were tested to evaluate the performance of the method. The method was shown to provide accurate measurements in the 3-40 μg/kg range with a relative expanded uncertainty of around 1%. PMID:25925860

  9. Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry

    SciTech Connect

    Sapkota, Amir; Heidler, Jochen; Halden, Rolf U. . E-mail: rhalden@jhsph.edu

    2007-01-15

    The antimicrobial compound triclocarban (TCC; 3,4,4'-trichlorocarbanilide; CAS-bar 101-20-2) is a high-production-volume chemical, recently suggested to cause widespread contamination of US water resources. To test this hypothesis, we developed an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method for ultratrace analysis of TCC (0.9ng/L detection limit) and analyzed low-volume water samples (200mL) along with primary sludge samples from across the United States. All river water samples (100%) collected downstream of wastewater treatment plants had detectable levels of TCC, as compared to 56% of those taken upstream. Concentrations of TCC (mean+/-standard deviation) downstream of sewage treatment plants (84+/-110ng/L) were significantly higher (P<0.05; Wilcoxon rank sum test) than those of samples taken upstream (12+/-15ng/L). Compared to surface water, mean TCC concentrations found in dried, primary sludge obtained from municipal sewage treatment plants in five states were six orders of magnitude greater (19,300+/-7100{mu}g/kg). Several river samples contained a co-contaminant, identified based on its chromatographic retention time, molecular base ion, and MS/MS fragmentation behavior as 4,4'-dichlorocarbanilide (DCC; CAS-bar 1219-99-4). In addition to TCC and DCC, municipal sludge contained a second co-contaminant, 3,3',4,4'-tetrachlorocarbanilide (TetraCC; CAS-bar 4300-43-0). Both newly detected compounds were present as impurities (0.2%{sub w/w} each) in technical grade TCC (99%). Application of the new method for chlorocarbanilide analysis yielded TCC occurrence data for 13 US states, confirmed the role of sewage treatment plants as environmental inputs of TCC, and identified DCC and TetraCC as previously unrecognized pollutants released into the environment alongside TCC.

  10. Development and validation of a stable-isotope dilution liquid chromatography-tandem mass spectrometry method for the determination of bisphenols in ready-made meals.

    PubMed

    Regueiro, Jorge; Wenzl, Thomas

    2015-10-01

    Due to their growing consumption, ready-made meals are a major dietary component for many people in today's society, representing an important potential route of human exposure to several food contaminants. The recent restrictions in the use of bisphenol A have led the plastic industry to look for alternative chemicals, most of them belonging to the same family of p,p'-bisphenols. The aim of the current work was to develop and validate a method based on stable-isotope dilution liquid chromatography-tandem mass spectrometry for the analysis of bisphenol A and its main analogs - bisphenol S, 4,4'-sulfonylbis(2-methylphenol), bisphenol F, bisphenol E, bisphenol B, bisphenol Z, bisphenol AF, bisphenol AP, tetrabromobisphenol A and bisphenol P - in solid foodstuffs, and particularly in ready-made meals. Extraction was carried out by ultrasound-assisted extraction after sample disruption with sand. A selective solid-phase extraction procedure was then applied to reduce potential matrix interferences. Derivatization of bisphenols with pyridine-3-sulfonyl chloride increased their ionization efficiency by electrospray ionization. Validation of the proposed method was performed in terms of selectivity, matrix effects, linearity, precision, measurement uncertainty, trueness and limits of detection. Satisfactory repeatability and intermediate precision were obtained; the related relative standard deviations were ≤7.8% and ≤10%, respectively. The relative expanded uncertainty (k=2) was below 17% for all bisphenol analogs and the trueness of the method was demonstrated by spike recovery experiments. Low limits of detection, in the range from 0.025μgkg(-1) to 0.140μgkg(-1), were obtained for all compounds. To demonstrate the applicability of the proposed method, it was eventually applied to several ready-made meals purchased from different supermarkets in Belgium. PMID:26456223

  11. Quantification of key red blood cell folates from subjects with defined MTHFR 677C>T genotypes using stable isotope dilution liquid chromatography/mass spectrometry

    PubMed Central

    Huang, Yuehua; Khartulyari, Stefanie; Morales, Megan E.; Stanislawska-Sachadyn, Anna; Von Feldt, Joan M.; Whitehead, Alexander S.; Blair, Ian A.

    2014-01-01

    Red blood cell (RBC) folate levels are established at the time of erythropoiesis and therefore provide a surrogate biomarker for the average folate status of an individual over the preceding four months. Folates are present as folylpolyglutamates, highly polar molecules that cannot be secreted from the RBCs, and must be converted into their monoglutamate forms prior to analysis. This was accomplished using an individual’s plasma pteroylpolyglutamate hydrolase by lysing the RBCs in whole blood at pH 5 in the presence of ascorbic acid. Quantitative conversion of formylated tetrahydrofolate derivatives into the stable 5,10-methenyltetrahydrofolate (5,10-MTHF) form was conducted at pH 1.5 in the presence of [13C5]-5-formyltetrahydrofolate. The resulting [13C5]-5,10-MTHF was then used as an internal standard for the formylated forms of tetrahydrofolate that had been converted into 5,10-MTHF as well any 5,10-MTHF that had been present in the original sample. A stable isotope dilution liquid chromatography-multiple reaction monitoring/mass spectrometry method was validated and then used for the accurate and precise quantification of RBC folic acid, 5-methyltetrahydrofolate (5-MTHF), tetrahydrofolate (THF), and 5,10-MTHF. The method was sensitive and robust and was used to assess the relationship between different methylenetetrahydrofolate reductase (MTHFR) 677C>T genotypes and RBC folate phenotypes. Four distinct RBC folate phenotypes could be identified. These were classified according to the relative amounts of individual RBC folates as type I (5-MTHF >95%; THF <5%; 5,10-MTHF <5%), type II (5-MTHF <95%; THF 5% to 20%; 5,10-MTHF <5%), type III (5-MTHF >55%; THF >20%; 5,10-MTHF >5%), and type IV (5-MTHF <55%; THF >20%; 5,10-MTHF >5%). PMID:18634122

  12. Determination of the maleic acid in rat urine and serum samples by isotope dilution-liquid chromatography-tandem mass spectrometry with on-line solid phase extraction.

    PubMed

    Chen, Hsin-Chang; Wu, Charlene; Wu, Kuen-Yuh

    2015-05-01

    A rapid and simple on-line solid-phase extraction coupled with isotope dilution-liquid chromatography-tandem mass spectrometry (SPE-ID-LC-MS/MS) method was developed to quantitate maleic acid in serum and urine of SpragueDawley (SD) rats. The aforementioned biological samples were spiked with (13)C2-maleic acid, vigorously vortexed, added with acetonitrile to precipitate proteins, and then injected into the on-line SPE-LC-MS/MS system for quantification. Upon validation, this method demonstrated excellent feasibility and sensitivity: calibration curves for maleic acid in serum and urine display excellent linearity with the coefficient of determination (R(2)) greater than 0.999; the limits of detection and quantitation (LOD and LOQ) for maleic acid were determined at 0.2 and 0.5μg L(-1), respectively. Additionally, intra-day accuracy for maleic acid in serum and urine samples ranged from 94.0% to 100.2% and 101.3% to 104.4%, respectively. Furthermore, inter-day accuracy ranged from 93.6% to 101.0% and from 102.3% to 111.4% in serum and urine samples, respectively. Intra-day precision %RSD of maleic acid in serum and urine samples was 13.8% or less, whereas the inter-day precision was 6.1% or less. The matrix effects were not found to be statistically significant (p=0.9145 and p=0.5378, correspondingly) based on the calculations of recovery functions. The collected serum and urine samples were analyzed using SPE-ID-LC-MS/MS. Our results reveal trace levels of maleic acid in the control rats, demonstrating that this method is capable of analyzing background levels of contaminants in biofluids with excellent sensitivity and specificity at part-per-billion levels concentrations in complex matrices. PMID:25702978

  13. Application of the Reference Method Isotope Dilution Gas Chromatography Mass Spectrometry (ID/GC/MS) to Establish Metrological Traceability for Calibration and Control of Blood Glucose Test Systems

    PubMed Central

    Andreis, Elisabeth; Küllmer, Kai

    2014-01-01

    Self-monitoring of blood glucose (BG) by means of handheld BG systems is a cornerstone in diabetes therapy. The aim of this article is to describe a procedure with proven traceability for calibration and evaluation of BG systems to guarantee reliable BG measurements. Isotope dilution gas chromatography mass spectrometry (ID/GC/MS) is a method that fulfills all requirements to be used in a higher-order reference measurement procedure. However, this method is not applicable for routine measurements because of the time-consuming sample preparation. A hexokinase method with perchloric acid (PCA) sample pretreatment is used in a measurement procedure for such purposes. This method is directly linked to the ID/GC/MS method by calibration with a glucose solution that has an ID/GC/MS-determined target value. BG systems are calibrated with whole blood samples. The glucose levels in such samples are analyzed by this ID/GC/MS-linked hexokinase method to establish traceability to higher-order reference material. For method comparison, the glucose concentrations in 577 whole blood samples were measured using the PCA-hexokinase method and the ID/GC/MS method; this resulted in a mean deviation of 0.1%. The mean deviation between BG levels measured in >500 valid whole blood samples with BG systems and the ID/GC/MS was 1.1%. BG systems allow a reliable glucose measurement if a true reference measurement procedure, with a noninterrupted traceability chain using ID/GC/MS linked hexokinase method for calibration of BG systems, is implemented. Systems should be calibrated by means of a traceable and defined measurement procedure to avoid bias. PMID:24876614

  14. Determination of 43 polycyclic aromatic hydrocarbons in air particulate matter by use of direct elution and isotope dilution gas chromatography/mass spectrometry.

    PubMed

    Li, Zheng; Pittman, Erin N; Trinidad, Debra A; Romanoff, Lovisa C; Mulholland, James; Sjödin, Andreas

    2010-02-01

    We are reporting a method for measuring 43 polycyclic aromatic hydrocarbons (PAH) and their methylated derivatives (Me-PAHs) in air particulate matter (PM) samples using isotope dilution gas chromatography/high-resolution mass spectrometry (GC/HRMS). In this method, PM samples were spiked with internal standards, loaded into solid phase extraction cartridges, and eluted by dichloromethane. The extracts were concentrated, spiked with a recovery standard, and analyzed by GC/HRMS at 10,000 resolution. Sixteen (13)C-labeled PAHs and two deuterated Me-PAHs were used as internal standards to account for instrument variability and losses during sample preparation. Recovery of labeled internal standards was in the range of 86-115%. The proposed method is less time-consuming than commonly used extraction methods, such as sonication and accelerated solvent extraction (ASE), and it eliminates the need for a filtration step required after the sonication extraction method. Limits of detection ranged from 41 to 332 pg/sample for the 43 analytes. This method was used to analyze reference materials from the National Institute of Standards and Technology. The results were consistent with those from ASE and sonication extraction, and these results were also in good agreement with the certified or reference concentrations. The proposed method was then used to measure PAHs on PM(2.5) samples collected at three sites (urban, suburban, and rural) in Atlanta, GA. The results showed distinct seasonal and spatial variation and were consistent with an earlier study measuring PM(2.5) samples using an ASE method, further demonstrating the compatibility of this method and the commonly used ASE method. PMID:19936717

  15. Studies on the analysis of 25-hydroxyvitamin D{sub 3} by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation

    SciTech Connect

    Abdel-Khalik, Jonas; Crick, Peter J.; Carter, Graham D.; Makin, Hugh L.; Wang, Yuqin; Griffiths, William J.

    2014-04-11

    Highlights: • New method for the analysis of 25-hydroxyvitamin D{sub 3} exploiting Girard P derivatisation. • Method also applicable to vitamin D{sub 3}, 1α,25- and 24,25-dihydroxyvitamin D{sub 3}. • By modification of the method 3-epi-25-hydroxyvitamin D{sub 3} can also be analysed. - Abstract: The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D{sub 3} and 25-hydroxyvitamin D{sub 2}) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantification of 25-hydroxyvitamins D are needed. Here we present a novel enzyme-assisted derivatisation method for the analysis of vitamins D metabolites in adult serum utilising 25-[26,26,26,27,27,27-{sup 2}H{sub 6}]hydroxyvitamin D{sub 3} as the internal standard. Extraction of 25-hydroxyvitamins D from serum is performed with acetonitrile, which is shown to be more efficient than ethanol. Cholesterol oxidase is used to oxidize the 3β-hydroxy group in the vitamins D metabolites followed by derivatisation of the newly formed 3-oxo group with Girard P reagent. 17β-Hydroxysteroid dehydrogenase type 10 is shown to oxidize selectively the 3α-hydroxy group in the 3α-hydroxy epimer of 25-hydroxyvitamin D{sub 3}. Quantification is achieved by isotope-dilution liquid chromatography–tandem mass spectrometry. Recovery experiments for 25-hydroxyvitamin D{sub 3} performed on adult human serum give recovery of 102–106%. Furthermore in addition to 25-hydroxyvitamin D{sub 3}, 24,25-dihydroxyvitamin D{sub 3} and other uncharacterised dihydroxy metabolites, were detected in adult human serum.

  16. Two high performance liquid chromatographic methods for the determination of alpha-tocopherol in serum compared to isotope dilution-gas chromatography-mass spectrometry.

    PubMed

    Kock, R; Seitz, S; Delvoux, B; Greiling, H

    1997-05-01

    Two high performance liquid chromatographic methods (HPLC) with isocratic reversed-phase separation are presented for the determination of alpha-tocopherol (vitamin E) in serum. In the first method alpha-tocopherol acetate is used as internal standard, detection of absorbance is performed at 284 nm. In the second method tocol is used as internal standard, detection of fluorescence is performed with an excitation wavelength of 292 nm and emission wavelength of 325 nm. Both methods require a liquid-liquid extraction as sample preparation. The results of both HPLC methods have been tested by method comparison for n = 25 serum samples versus an isotope dilution-gas chromatography-mass spectrometry (ID-GC-MS) method using alpha-tocopherol-d6 as internal standard. The imprecision within-run was lower than 2.5% for the UV method and lower than 1% for the fluorescence method for both standards and serum pools. The between-run imprecision, obtained for serum pools, was below 5% for the UV method and not higher than 1.5% for the fluorescence method and not higher 1.8% for the ID-GC-MS. Recovery experiments performed by spiking pool sera with alpha-tocopherol showed recoveries between 98.5% and 100.6% for all methods studied. The result of the method comparison was a coefficient of correlation of r = 0.998 for the HPLC method with fluorescence detection to the ID-GC-MS reference method and a coefficient of correlation of r = 0.981 for the HPLC method with UV detection to the ID-GC-MS reference method. Both methods presented are useful for the analysis of alpha-tocopherol in patient samples. If detection of fluorescence is used, imprecision and inaccuracy of the HPLC method are comparable to the ID-GC-MS chosen as reference method. PMID:9189742

  17. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer's disease.

    PubMed

    Peng, Jun; Guo, Kevin; Xia, Jianguo; Zhou, Jianjun; Yang, Jing; Westaway, David; Wishart, David S; Li, Liang

    2014-10-01

    Because of a limited volume of urine that can be collected from a mouse, it is very difficult to apply the common strategy of using multiple analytical techniques to analyze the metabolites to increase the metabolome coverage for mouse urine metabolomics. We report an enabling method based on differential isotope labeling liquid chromatography mass spectrometry (LC-MS) for relative quantification of over 950 putative metabolites using 20 μL of urine as the starting material. The workflow involves aliquoting 10 μL of an individual urine sample for ¹²C-dansylation labeling that target amines and phenols. Another 10 μL of aliquot was taken from each sample to generate a pooled sample that was subjected to ¹³C-dansylation labeling. The ¹²C-labeled individual sample was mixed with an equal volume of the ¹³C-labeled pooled sample. The mixture was then analyzed by LC-MS to generate information on metabolite concentration differences among different individual samples. The interday repeatability for the LC-MS runs was assessed, and the median relative standard deviation over 4 days was 5.0%. This workflow was then applied to a metabolomic biomarker discovery study using urine samples obtained from the TgCRND8 mouse model of early onset familial Alzheimer's disease (FAD) throughout the course of their pathological deposition of beta amyloid (Aβ). It was showed that there was a distinct metabolomic separation between the AD prone mice and the wild type (control) group. As early as 15-17 weeks of age (presymptomatic), metabolomic differences were observed between the two groups, and after the age of 25 weeks the metabolomic alterations became more pronounced. The metabolomic changes at different ages corroborated well with the phenotype changes in this transgenic mice model. Several useful candidate biomarkers including methionine, desaminotyrosine, taurine, N1-acetylspermidine, and 5-hydroxyindoleacetic acid were identified. Some of them were found in previous

  18. Thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry and isotope dilution to analyze organophosphorus insecticides in fatty foods.

    PubMed

    Kiguchi, Osamu; Oka, Kazuko; Tamada, Masafumi; Kobayashi, Takashi; Onodera, Jun

    2014-11-28

    To assess food safety emergencies caused by highly hazardous chemical-tainted foods, simultaneous analysis of organophosphorus insecticides in fatty foods such as precooked foods was conducted using thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry (TLC/DART-TOFMS) and isotope dilution technique. Polar (methamidophos and acephate) and nonpolar organophosphorus insecticides (fenitrothion, diazinon, and EPN) were studied. Experiments to ascertain chromatographic patterns using TLC/DART-TOFMS reveal that it was more useful than GC/MS or GC/MS/MS for the simultaneous analyses of polar and nonpolar pesticides, while obviating the addition of a protective agent for tailing effects of polar pesticides. Lower helium gas temperature (260°C) for DART-TOFMS was suitable for the simultaneous analysis of target pesticides. Linearities were achieved respectively at a lower standard concentration range (0.05-5 μg) for diazinon and EPN and at a higher standard concentration range (2.5-25 μg) for methamidophos, acephate, and fenitrothion. Their respective coefficients of determination were ≥ 0.9989 and ≥ 0.9959. A few higher repeatabilities (RSDs) for diazinon and EPN were found (>20%), although isotope dilution technique was used. Application to the HPTLC plate without an automatic TLC sampler might be inferred as a cause of their higher RSDs. Detection limits were estimated in the higher picogram range for diazinon and EPN, and in the lower nanogram range for methamidophos, acephate, and fenitrothion. Aside from methamidophos, recovery results (n=3) obtained using a highly insecticide-tainted fatty food (dumpling) and raw food (grapefruit) samples (10mg/kg) using TLC/DART-TOFMS with both complex and simpler cleanups were not as susceptible to matrix effects (95-121%; RSD, 1.3-14%) as those using GC/MS/MS (102-117%; RSD, 0.4-8.5%), although dumpling samples using GC/MS were remarkably susceptible to matrix effects. The coupled method of

  19. Sulfur Isotope Variation in Basaltic Melt Inclusions from Krakatau Revealed by a Newly Developed Secondary Ion Mass Spectrometry Technique for Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Mandeville, C. W.; Shimizu, N.; Kelley, K. A.; Cheek, L.

    2008-12-01

    Sulfur is a ubiquitous element with variable valance states (S2-, S0, S4+, S6+) allowing for its participation in a wide variety of chemical and biogeochemical processes. However, its potential as an isotopic tracer in magmatic processes has not been fully developed and is crucial to understanding of sulfur recycling in subduction zones and between Earth's major reservoirs, mantle, lithosphere and coupled hydrosphere-atmosphere. Previous studies of silicate glasses and melt inclusions have been hampered by lack of an in situ isotopic measurement technique with spatial resolution of 10 to 100 microns. We have developed a new secondary ion mass spectrometry (SIMS) analytical technique for measurement of 34S/32S ratios in silicate glasses utilizing the IMS 1280 at Woods Hole Oceanographic Institution. A beam of 133Cs+ ions with 13 keV energy and current of 1-2 nA is focused onto a 10 micron spot and rastered over 30 × 30 microns. A Normal Incidence Electron Gun was used to compensate excess charge. The rastered beam is then centered to the optical axis of the machine, and a mechanical aperture is placed on the image plane to limit the area of analysis to the central 15 × 15 microns. The energy slit width was adjusted to 50 eV. A mass resolving power of 5500 was sufficient for eliminating mass interferences. A suite of synthetic and natural glasses with δ34SVCDT values spanning from - 5.6‰ to 18.5‰ with SiO2 from 44-72 weight % were measured. Magnitude of the instrumental mass fractionation (α) for 34S/32S ratios is 0.991 and is constant for all the glasses measured despite their compositions. Precision of individual measurements of 34S/32S ratios is 0.4 ‰, or better. Preliminary δ34S measurements of olivine-hosted basaltic melt inclusions in pre- 1883 basaltic scoria from Krakatau volcano Indonesia vary from -5.6 to 7.9‰ with sulfur concentrations from 490 to 2170 ppm, respectively. Host olivines are Fo77-80 and inclusions generally need minor to no post

  20. Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

    2010-07-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

  1. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  2. Mass spectrometry and renal calculi

    PubMed Central

    Purcarea, VL; Sisu, I; Sisu, E

    2010-01-01

    The present review represents a concise and complete survey of the literature covering 2004–2009, concerning the mass spectrometric techniques involved in the structural investigation of renal calculi. After a short presentation of the fundamental mass spectrometric techniques (MALDI–TOF, QTOF, MS–MS) as well as hyphenated methods (GC–MS, LC–MS, CE–MS), an extensive study of the urinary proteome analysis as well as the detection and quantification by mass spectrometry of toxins, drugs and metabolites from renal calculi is presented. PMID:20968197

  3. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  4. δ13C and δD Measurement using Cavity Ring-down and Isotope Ratio Mass Spectrometry by Gas Chromatography/Combustion/Pyrolysis and Off-line Processing of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Culp, R.; Pan, H.; Saad, N.

    2015-12-01

    A comparison was made between various stable isotope measurement techniques for the purpose of quantifying each methods capability for use in hydrocarbon analyses applicable to fields such as geochemistry, agriculture, forensics and authenticity testing. Measurement techniques include: (1) Cavity Ring-down spectrometry (CRDS) using a Picarro 2120-A interfaced with a combustion module (CM) to facilitate conversion of hydrocarbons to carbon dioxide and water (2) Isotope Ratio Mass Spectrometry (IRMS) using a Thermo 253 IRMS with gas chromatographic separation prior to combustion to carbon dioxide or high temperature pyrolysis to hydrogen for isotope ratio measurement. Also, off line combustion to carbon dioxide and water with further reduction to hydrogen and dual-inlet measurement by IRMS. IRMS techniques have proven track records for measurement accuracy and precision but require independent analyses of carbon and hydrogen since one needs to oxidize carbon but reduce water to hydrogen prior to measurement or pyrolyze hydrocarbons directly into hydrogen after gas chromatographic separation. Cavity ring-down spectrometry can measure carbon dioxide and water simultaneously eliminating the need for two separate measurements of carbon and hydrogen isotopes. Although the CRDS suffers from memory effects following combustion and transfer of gases early on, new technology has reduced this to acceptable levels for accurate determinations of carbon and hydrogen isotope ratios. In this study, various hydrocarbon materials were used over an extended period of time to determine the best combination of sample size, replicate analyses and combustion column composition and life. The data presented here indicates isotopic measurements by CM-CRDS, for both solid and volatile liquid samples, compare well with GC/IRMS and off-line dual inlet methods of analysis.

  5. Quantification of activated NF-kappaB/RelA complexes using ssDNA aptamer affinity-stable isotope dilution-selected reaction monitoring-mass spectrometry.

    PubMed

    Zhao, Yingxin; Widen, Steven G; Jamaluddin, Mohammad; Tian, Bing; Wood, Thomas G; Edeh, Chukwudi B; Brasier, Allan R

    2011-06-01

    Nuclear Factor-κB (NF-κB) is a family of inducible transcription factors regulated by stimulus-induced protein interactions. In the cytoplasm, the NF-κB member RelA transactivator is inactivated by binding inhibitory IκBs, whereas in its activated state, the serine-phosphorylated protein binds the p300 histone acetyltransferase. Here we describe the isolation of a ssDNA aptamer (termed P028F4) that binds to the activated (IκBα-dissociated) form of RelA with a K(D) of 6.4 × 10(-10), and its application in an enrichment-mass spectrometric quantification assay. ssDNA P028F4 competes with cognate duplex high affinity NF-κB binding sites for RelA binding in vitro, binds activated RelA in eukaryotic nuclei and reduces TNFα-stimulated endogenous NF-κB dependent gene expression. Incorporation of P028F4 as an affinity isolation step enriches for serine 536 phosphorylated and p300 coactivator complexed RelA, simultaneously depleting IκBα·RelA complexes. A stable isotope dilution (SID)-selected reaction monitoring (SRM)- mass spectrometry (MS) assay for RelA was developed that produced a linear response over 1,000 fold dilution range of input protein and had a 200 amol lower limit of quantification. This multiplex SID-SRM-MS RelA assay was used to quantify activated endogenous RelA in cytokine-stimulated eukaryotic cells isolated by single-step P028F4 enrichment. The aptamer-SID-SRM-MS assay quantified the fraction of activated RelA in subcellular extracts, detecting the presence of a cytoplasmic RelA reservoir unresponsive to TNFα stimulation. We conclude that aptamer-SID-SRM-MS is a versatile tool for quantification of activated NF-κB/RelA and its associated complexes in response to pathway activation. PMID:21502374

  6. Quantification of Activated NF-κB/RelA Complexes Using ssDNA Aptamer Affinity – Stable Isotope Dilution—Selected Reaction Monitoring—Mass Spectrometry*

    PubMed Central

    Zhao, Yingxin; Widen, Steven G.; Jamaluddin, Mohammad; Tian, Bing; Wood, Thomas G.; Edeh, Chukwudi B.; Brasier, Allan R.

    2011-01-01

    Nuclear Factor-κB (NF-κB) is a family of inducible transcription factors regulated by stimulus-induced protein interactions. In the cytoplasm, the NF-κB member RelA transactivator is inactivated by binding inhibitory IκBs, whereas in its activated state, the serine-phosphorylated protein binds the p300 histone acetyltransferase. Here we describe the isolation of a ssDNA aptamer (termed P028F4) that binds to the activated (IκBα-dissociated) form of RelA with a KD of 6.4 × 10−10, and its application in an enrichment-mass spectrometric quantification assay. ssDNA P028F4 competes with cognate duplex high affinity NF-κB binding sites for RelA binding in vitro, binds activated RelA in eukaryotic nuclei and reduces TNFα-stimulated endogenous NF-κB dependent gene expression. Incorporation of P028F4 as an affinity isolation step enriches for serine 536 phosphorylated and p300 coactivator complexed RelA, simultaneously depleting IκBα·RelA complexes. A stable isotope dilution (SID)-selected reaction monitoring (SRM)- mass spectrometry (MS) assay for RelA was developed that produced a linear response over 1,000 fold dilution range of input protein and had a 200 amol lower limit of quantification. This multiplex SID-SRM-MS RelA assay was used to quantify activated endogenous RelA in cytokine-stimulated eukaryotic cells isolated by single-step P028F4 enrichment. The aptamer-SID-SRM-MS assay quantified the fraction of activated RelA in subcellular extracts, detecting the presence of a cytoplasmic RelA reservoir unresponsive to TNFα stimulation. We conclude that aptamer-SID-SRM-MS is a versatile tool for quantification of activated NF-κB/RelA and its associated complexes in response to pathway activation. PMID:21502374

  7. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  8. Alpha spectrometry applications with mass separated samples.

    PubMed

    Dion, M P; Eiden, Gregory C; Farmer, Orville T; Liezers, Martin; Robinson, John W

    2016-01-01

    (241)Am has been deposited using a novel technique that employs a commercial inductively coupled plasma mass spectrometer. This work presents results of high-resolution alpha spectrometry on the (241)Am samples using a small area passivated implanted planar silicon detector. We have also investigated the mass-based separation capability by developing a (238)Pu sample, present as a minor constituent in a (244)Pu standard, and performed subsequent radiometric counting. With this new sample development method, the (241)Am samples achieved the intrinsic energy resolution of the detector used for these measurements. There was no detectable trace of any other isotopes contained in the (238)Pu implant demonstrating the mass-based separation (or enhancement) attainable with this technique. PMID:26583262

  9. Determination of 135Cs by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Charles, C. R. J.; Zhao, X.-L.; Kieser, W. E.; Cornett, R. J.; Litherland, A. E.

    2015-10-01

    The ratio of anthropogenic 135Cs and 137Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying 135Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn2, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10-3 and 1.7 × 10-7 respectively. This quantification of 135Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  10. The use of stable isotope labeling and liquid chromatography/tandem mass spectrometry techniques to study the pharmacokinetics and bioavailability of the antimigraine drug, MK-0462 (rizatriptan) in dogs.

    PubMed

    Barrish, A; Olah, T V; Gatto, G J; Michel, K B; Dobrinska, M R; Gilbert, J D

    1996-01-01

    MK-0462 (rizatriptan) is a 5HT1D agonist being developed for the treatment of migraine. The assay for this substance in plasma and urine is based on HPLC with tandem mass spectrometry (MS/MS) detection. The procedure has been modified to include the simultaneous determination of the [triazole-13C2, 15N3-] stable-isotope-labelled analogue for which the lower quantifiable limit was 0.1 ng mL-1. The assay has been applied to study the pharmacokinetics of MK-0462 after simultaneous oral and intravenous administration of the drug and its stable-isotope-labelled analogue to dogs. The experiment afforded an estimate of plasma clearance concomitant with a precise measurement of the drug's oral bioavailability. The increasing use of LC-MS/MS in quantitative experiments may renew interest in stable isotopes as tools for pharmaceutical research. PMID:8755236

  11. Two-dimensional heart-cut LC-LC improves accuracy of exact-matching double isotope dilution mass spectrometry measurements of aflatoxin B1 in cereal-based baby food, maize, and maize-based feed.

    PubMed

    Breidbach, Andreas; Ulberth, Franz

    2015-04-01

    Aflatoxins, mycotoxins of fungi of the Aspergillus sp., pose a risk to consumer health and are, therefore, regulated by more than 100 countries. To facilitate method development and validation as well as assessment of measurement capabilities, availability of certified reference materials and proficiency testing schemes is important. For these purposes, highly accurate determinations of the aflatoxin content in the materials used are necessary. We describe here the use of two-dimensional heart-cut LC-LC in combination with exact-matching double isotope dilution mass spectrometry to determine the content of aflatoxin B1 in three materials used in a proficiency testing scheme. The serious reduction in ionization suppression afforded by the two-dimensional heart-cut LC-LC had a positive effect on the precision of the measured isotope ratios of the exact-matching double isotope dilution mass spectrometry. This is evidenced by the expanded measurement uncertainty (k=2) of 0.017 μg/kg or 8.9 % relative to a mass fraction of aflatoxin B1 in a cereal-based baby food of 0.197 μg/kg. This value is in perfect agreement with the consensus value of this material from a proficiency test (PT) scheme for National Reference Laboratories executed by the European Reference Laboratory for Mycotoxins. The effort necessary to perform the described methodology precludes its frequent use but for specific applications we see it as a valuable tool. PMID:25015044

  12. Imaging Mass Spectrometry in Neuroscience

    PubMed Central

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  13. Ultratrace uranium fingerprinting with isotope selective laser ionization spectrometry.

    PubMed

    Ziegler, Summer L; Bushaw, Bruce A

    2008-08-01

    Uranium isotope ratios can provide source information for tracking uranium contamination in a variety of fields, ranging from occupational bioassay to monitoring aftereffects of nuclear accidents. We describe the development of isotope selective laser ionization spectrometry for ultratrace measurement of the minor isotopes (234)U, (235)U, and (236)U with respect to (238)U. The inherent isotopic selectivity of three-step excitation with single-mode continuous wave lasers results in measurement of the minor isotopes at relative abundances below 1 ppm and is not limited by isobaric interferences such as (235)UH(+) during measurement of (236)U. This relative abundance limit is attained without mass spectrometric analysis of the laser-created ions. Uranyl nitrate standards from an international blind comparison were used to test analytical performance for different isotopic compositions and with quantities ranging from 11 ng to 10 microg total uranium. Isotopic ratio determination was demonstrated over a linear dynamic range of 7 orders of magnitude with a few percent relative precision and detection limits below 500 fg for the minor isotopes. PMID:18613650

  14. Isotopic Analysis of OS and RE with Negative Thermal Ion Mass Spectrometry and Application to the Age and Evolution of Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1992-07-01

    The ^187Re-^187Os isotope system has long been recognized as a method by which the age of iron meteorites can be directly determined (Herr et al., 1961). Pioneering work by Luck and Allegre (1983) established a whole-rock isochron for iron meteorites and the results, were used to determine indirectly the half-life of ^187Re. We have developed: a) high ionization efficiency mass spectrometry techniques for platinum group elements, including both Re and Os separated from iron meteorites (Creaser et al., 1991, 1992); b) low filament loading blanks for both Re and Os (<0.1 picogram, each); c) high yield and low blanks for the chemical separation techniques (yields 70-80%; blanks 1 pg for Os, <10 pg for Re). We have developed a new method for the rapid, clean and efficient separation of Os and Re from 10^-2 g samples of iron meteorites. This will permit taking advantage of variations of Re/Os on a small scale. The chemical separation scheme involves acid dissolution, preconcentration of Os and Re from Fe-Ni, oxidative solvent extraction of Os and ion exchange chromatography to recover Re. We have established that Os and Re thus chemically separated from iron meteorites show the same ionization efficiency as Os and Re from standard solutions, namely ~20% for each element. Of primary importance is the degree of isotope exchange and equilibration between sample and spike for Os. By analyzing the isotopic composition of Os at different stages of the chemical separation we are able to demonstrate that isotopic equilibration can be achieved to the level of +-1o/oo. However, this is not yet a routinely resolved issue. We believe, based on experience during the development of this technique, that isotope equilibration for Os prior to chemical separation is a critical issue that needs further attention. The results we have obtained so far from iron meteorites are given in Table 1. We have started analyses of the large magmatic group of IIA irons, which are little shocked and

  15. Glycosaminoglycan Glycomics Using Mass Spectrometry*

    PubMed Central

    Zaia, Joseph

    2013-01-01

    The fact that sulfated glycosaminoglycans (GAGs) are necessary for the functioning of all animal physiological systems drives the need to understand their biology. This understanding is limited, however, by the heterogeneous nature of GAG chains and their dynamic spatial and temporal expression patterns. GAGs have a regulated structure overlaid by heterogeneity but lack the detail necessary to build structure/function relationships. In order to provide this information, we need glycomics platforms that are sensitive, robust, high throughput, and information rich. This review summarizes progress on mass-spectrometry-based GAG glycomics methods. The areas covered include disaccharide analysis, oligosaccharide profiling, and tandem mass spectrometric sequencing. PMID:23325770

  16. Mass spectrometry. [review of techniques

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  17. Determination of mycotoxins in milk-based products and infant formula using stable isotope dilution assay and liquid chromatography tandem mass spectrometry.

    PubMed

    Zhang, Kai; Wong, Jon W; Hayward, Douglas G; Vaclavikova, Marta; Liao, Chia-Ding; Trucksess, Mary W

    2013-07-01

    A stable isotope dilution assay and liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of 12 mycotoxins, aflatoxins B₁, B₂, G₁, G₂, and M₁, deoxynivalenol, fumonisins B₁, B₂, and B₃, ochratoxin A, T-2 toxin, and zearalenone, in milk-based infant formula and foods. Samples were fortified with 12 ¹³C uniformly labeled mycotoxins ([¹³C]-mycotoxins) that correspond to the 12 target mycotoxins and prepared by dilution and filtration, followed by LC-MS/MS analysis. Quantitation was achieved using the relative response factors of [¹³C]-mycotoxins and target mycotoxins. The average recoveries in fortified milk, milk-based infant formula, milk powder, and baby yogurt of aflatoxins B₁, B₂, G₁, and G₂ (2, 10, and 50 μg/kg), aflatoxin M₁ (0.5, 2.5, and 12.5 μg/kg), deoxynivalenol, fumonisins B₁, B₂, and B₃ (40, 200, and 1000 μg/kg), ochratoxin A, T-2 toxin, and zearalenone (20, 100, and 500 μg/kg), range from 89 to 126% with RSDs of <20%. The individual recoveries in the four fortified matrices range from 72% (fumonisin B₃, 20 μg/kg, milk-based infant formula) to 136% (T-2 toxin, 20 μg/kg, milk powder), with RSDs ranging from 2 to 25%. The limits of quantitation (LOQs) were from 0.01 μg/kg (aflatoxin M₁) to 2 (fumonisin B₁) μg/kg. Aflatoxin M₁ was detected in two European Reference materials at 0.127 ± 0.013 μg/kg (certified value = 0.111 ± 0.018 μg/kg) and 0.46 ± 0.04 μg/kg (certified value = 0.44 ± 0.06 μg/kg), respectively. In 60 local market samples, aflatoxins B₁ (1.14 ± 0.10 μg/kg) and B₂ (0.20 ± 0.03 μg/kg) were detected in one milk powder sample. Aflatoxin M₁ was detected in three imported samples (condensed milk, milk-based infant formula, and table cream), ranging from 0.10 to 0.40 μg/kg. The validated method provides sufficient selectivity, sensitivity, accuracy, and reproducibility to screen for aflatoxin M₁ at nanograms per

  18. On-line monitoring of benzene air concentrations while driving in traffic by means of isotopic dilution gas chromatography/mass spectrometry.

    PubMed

    Davoli, E; Cappellini, L; Moggi, M; Ferrari, S; Fanelli, R

    1996-01-01

    There is no shortage of information about the average benzene concentrations in urban air, but there is very little about microenvironmental exposure, such as in-vehicle conc