Sample records for isotope mass spectrometry

  1. Guideline on Isotope Dilution Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, Amy

    Isotope dilution mass spectrometry is used to determine the concentration of an element of interest in a bulk sample. It is a destructive analysis technique that is applicable to a wide range of analytes and bulk sample types. With this method, a known amount of a rare isotope, or ‘spike’, of the element of interest is added to a known amount of sample. The element of interest is chemically purified from the bulk sample, the isotope ratio of the spiked sample is measured by mass spectrometry, and the concentration of the element of interest is calculated from this result. Thismore » method is widely used, although a mass spectrometer required for this analysis may be fairly expensive.« less

  2. Isotope ratio mass spectrometry in nutrition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, A.H.

    Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less

  3. Isotope ratio analysis by Orbitrap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Chimiak, L. M.; Dallas, B.; Griep-Raming, J.; Juchelka, D.; Makarov, A.; Schwieters, J. B.

    2016-12-01

    Several technologies are being developed to examine the intramolecular isotopic structures of molecules (i.e., site-specific and multiple substitution), but various limitations in sample size and type or (for IRMS) resolution have so far prevented the creation of a truly general technique. We will discuss the initial findings of a technique based on Fourier transform mass spectrometry, using the Thermo Scientific Q Exactive GC — an instrument that contains an Orbitrap mass analyzer. Fourier transform mass spectrometry is marked by exceptionally high mass resolutions (the Orbitrap reaches M/ΔM in the range 250,000-1M in the mass range of greatest interest, 50-200 amu). This allows for resolution of a large range of nearly isobaric interferences for isotopologues of volatile and semi-volatile compounds (i.e., involving isotopes of H, C, N, O and S). It also provides potential to solve very challenging mass resolution problems for isotopic analysis of other, heavier elements. Both internal and external experimental reproducibilities of isotope ratio analyses using the Orbitrap typically conform to shot-noise limits down to levels of 0.2 ‰ (1SE), and routinely in the range 0.5-1.0 ‰, with similar accuracy when standardized to concurrently run reference materials. Such measurements can be made without modifications to the ion optics of the Q Exactive GC, but do require specially designed sample introduction devices to permit sample/standard comparison and long integration times. The sensitivity of the Q Exactive GC permits analysis of sub-nanomolar samples and quantification of multiply-substituted species. The site-specific capability of this instrument arises from the fact that mass spectra of molecular analytes commonly contain diverse fragment ion species, each of which samples a specific sub-set of molecular sites. We will present applications of this technique to the biological and abiological chemistry of amino acids, forensic identification of hydrocarbon

  4. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  5. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  6. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  7. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    PubMed

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  8. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, R; Hamilton, T; Brown, T

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less

  9. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed.

  10. The Role of Naturally Occurring Stable Isotopes in Mass Spectrometry, Part II: The Instrumentation

    PubMed Central

    Bluck, Les; Volmer, Dietrich A.

    2013-01-01

    In the second instalment of this tutorial, the authors explain the instrumentation for measuring naturally occurring stable isotopes, specifically the magnetic sector mass spectrometer. This type of instrument remains unrivalled in its performance for isotope ratio mass spectrometry (IRMS) and the reader is reminded of its operation and its technical advantages for isotope measurements. PMID:23772101

  11. A review on the determination of isotope ratios of boron with mass spectrometry.

    PubMed

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  12. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  13. Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data

    PubMed Central

    Treutler, Hendrik; Neumann, Steffen

    2016-01-01

    Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics. We find remarkable improvements regarding the number of detected isotope clusters and are able to predict the correct molecular formula in the top three ranks in 92% of the cases. We make our methodology freely available as part of the Bioconductor packages xcms version 1.50.0 and CAMERA version 1.30.0. PMID:27775610

  14. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics.

    PubMed

    Chahrour, Osama; Cobice, Diego; Malone, John

    2015-09-10

    Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Mass spectrometry of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2003-10-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  16. Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Tyler; Kuznetsov, Ilya; Willingham, David

    The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument hasmore » a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.« less

  17. Performance and limits of liquid chromatography isotope ratio mass spectrometry system for halogenated compounds

    NASA Astrophysics Data System (ADS)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans

    2014-05-01

    Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time

  18. Mixed-mode chromatography/isotope ratio mass spectrometry.

    PubMed

    McCullagh, James S O

    2010-03-15

    Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high-precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment delta(13)C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline-resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed-mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed-mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed-mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a

  19. Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities. Annual Report 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegalski, Steven R.; Buchholz, Bruce A.

    2011-08-24

    The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner.

  20. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  1. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  2. Detection of counterfeit antiviral drug Heptodin and classification of counterfeits using isotope amount ratio measurements by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) and isotope ratio mass spectrometry (IRMS).

    PubMed

    Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude

    2009-06-01

    Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.

  3. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2008-10-01

    Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.

  4. Contribution of bulk mass spectrometry isotopic analysis to characterization of materials in the framework of CMX-4

    DOE PAGES

    Kuchkin, A.; Stebelkov, V.; Zhizhin, K.; ...

    2018-01-30

    Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted.

  5. Contribution of bulk mass spectrometry isotopic analysis to characterization of materials in the framework of CMX-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchkin, A.; Stebelkov, V.; Zhizhin, K.

    Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted.

  6. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  7. Calcium Isotope Analysis by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  8. Accounting for isotopic clustering in Fourier transform mass spectrometry data analysis for clinical diagnostic studies.

    PubMed

    Kakourou, Alexia; Vach, Werner; Nicolardi, Simone; van der Burgt, Yuri; Mertens, Bart

    2016-10-01

    Mass spectrometry based clinical proteomics has emerged as a powerful tool for high-throughput protein profiling and biomarker discovery. Recent improvements in mass spectrometry technology have boosted the potential of proteomic studies in biomedical research. However, the complexity of the proteomic expression introduces new statistical challenges in summarizing and analyzing the acquired data. Statistical methods for optimally processing proteomic data are currently a growing field of research. In this paper we present simple, yet appropriate methods to preprocess, summarize and analyze high-throughput MALDI-FTICR mass spectrometry data, collected in a case-control fashion, while dealing with the statistical challenges that accompany such data. The known statistical properties of the isotopic distribution of the peptide molecules are used to preprocess the spectra and translate the proteomic expression into a condensed data set. Information on either the intensity level or the shape of the identified isotopic clusters is used to derive summary measures on which diagnostic rules for disease status allocation will be based. Results indicate that both the shape of the identified isotopic clusters and the overall intensity level carry information on the class outcome and can be used to predict the presence or absence of the disease.

  9. Calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry assays and its application in supporting microdose absolute bioavailability studies.

    PubMed

    Gu, Huidong; Wang, Jian; Aubry, Anne-Françoise; Jiang, Hao; Zeng, Jianing; Easter, John; Wang, Jun-sheng; Dockens, Randy; Bifano, Marc; Burrell, Richard; Arnold, Mark E

    2012-06-05

    A methodology for the accurate calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) assays and its application in supporting microdose absolute bioavailability studies are reported for the first time. For simplicity, this calculation methodology and the strategy to minimize the isotopic interference are demonstrated using a simple molecule entity, then applied to actual development drugs. The exact isotopic interferences calculated with this methodology were often much less than the traditionally used, overestimated isotopic interferences simply based on the molecular isotope abundance. One application of the methodology is the selection of a stable isotopically labeled internal standard (SIL-IS) for an LC-MS/MS bioanalytical assay. The second application is the selection of an SIL analogue for use in intravenous (i.v.) microdosing for the determination of absolute bioavailability. In the case of microdosing, the traditional approach of calculating isotopic interferences can result in selecting a labeling scheme that overlabels the i.v.-dosed drug or leads to incorrect conclusions on the feasibility of using an SIL drug and analysis by LC-MS/MS. The methodology presented here can guide the synthesis by accurately calculating the isotopic interferences when labeling at different positions, using different selective reaction monitoring (SRM) transitions or adding more labeling positions. This methodology has been successfully applied to the selection of the labeled i.v.-dosed drugs for use in two microdose absolute bioavailability studies, before initiating the chemical synthesis. With this methodology, significant time and cost saving can be achieved in supporting microdose absolute bioavailability studies with stable labeled drugs.

  10. Protein N- and C-Termini Identification Using Mass Spectrometry and Isotopic Labeling

    USDA-ARS?s Scientific Manuscript database

    A new method for protein N- and C-terminal analysis using mass spectrometry is introduced. A novel stable isotopic labeling scheme has been developed to identify terminal peptides generated from an enzyme digestion for the determination of both N- and C-termini of the protein. This method works dire...

  11. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry.

    PubMed

    Lechene, Claude; Hillion, Francois; McMahon, Greg; Benson, Douglas; Kleinfeld, Alan M; Kampf, J Patrick; Distel, Daniel; Luyten, Yvette; Bonventre, Joseph; Hentschel, Dirk; Park, Kwon Moo; Ito, Susumu; Schwartz, Martin; Benichou, Gilles; Slodzian, Georges

    2006-01-01

    Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as 12C15N- and 13C14N-, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of 14C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using 13C-oleic acid; to examine nitrogen fixation in bacteria using 15N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using 15N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using 15N-uridine and 81Br of bromodeoxyuridine or 14C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes 12C, 16O, 14N and 31P; and to track a few 15N-labeled donor spleen cells in the lymph nodes of the host mouse. MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments.

  13. A comparison of lead-isotope measurements on exploration-type samples using inductively coupled plasma and thermal ionization mass spectrometry

    USGS Publications Warehouse

    Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.

    1989-01-01

    Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.

  14. Simultaneous determination of creatinine and creatine in human serum by double-spike isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; Añón Álvarez, M Elena; Rodríguez, Felix; Menéndez, Francisco V Álvarez; García Alonso, J Ignacio

    2015-04-07

    This work describes the first multiple spiking isotope dilution procedure for organic compounds using (13)C labeling. A double-spiking isotope dilution method capable of correcting and quantifying the creatine-creatinine interconversion occurring during the analytical determination of both compounds in human serum is presented. The determination of serum creatinine may be affected by the interconversion between creatine and creatinine during sample preparation or by inefficient chemical separation of those compounds by solid phase extraction (SPE). The methodology is based on the use differently labeled (13)C analogues ((13)C1-creatinine and (13)C2-creatine), the measurement of the isotopic distribution of creatine and creatinine by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the application of multiple linear regression. Five different lyophilized serum-based controls and two certified human serum reference materials (ERM-DA252a and ERM-DA253a) were analyzed to evaluate the accuracy and precision of the proposed double-spike LC-MS/MS method. The methodology was applied to study the creatine-creatinine interconversion during LC-MS/MS and gas chromatography-mass spectrometry (GC-MS) analyses and the separation efficiency of the SPE step required in the traditional gas chromatography-isotope dilution mass spectrometry (GC-IDMS) reference methods employed for the determination of serum creatinine. The analysis of real serum samples by GC-MS showed that creatine-creatinine separation by SPE can be a nonquantitative step that may induce creatinine overestimations up to 28% in samples containing high amounts of creatine. Also, a detectable conversion of creatine into creatinine was observed during sample preparation for LC-MS/MS. The developed double-spike LC-MS/MS improves the current state of the art for the determination of creatinine in human serum by isotope dilution mass spectrometry (IDMS), because corrections are made for all the possible errors

  15. Quantitative Mass Spectrometry by Isotope Dilution and Multiple Reaction Monitoring (MRM).

    PubMed

    Russo, Paul; Hood, Brian L; Bateman, Nicholas W; Conrads, Thomas P

    2017-01-01

    Selected reaction monitoring (SRM) is used in molecular profiling to detect and quantify specific known proteins in complex mixtures. Using isotope dilution (Barnidge et al., Anal Chem 75(3):445-451, 2003) methodologies, peptides can be quantified without the need for an antibody-based method. Selected reaction monitoring assays employ electrospray ionization mass spectrometry (ESI-MS) followed by two stages of mass selection: a first stage where the mass of the peptide ion is selected and, after fragmentation by collision-induced dissociation (CID), a second stage (tandem MS) where either a single (e.g., SRM) or multiple (multiple reaction monitoring, MRM) specific peptide fragment ions are transmitted for detection. The MRM experiment is accomplished by specifying the parent masses of the selected endogenous and isotope-labeled peptides for MS/MS fragmentation and then monitoring fragment ions of interest, using their intensities/abundances and relative ratios to quantify the parent protein of interest. In this example protocol, we will utilize isotope dilution MRM-MS to quantify in absolute terms the total levels of the protein of interest, ataxia telangiectasia mutated (ATM) serine/threonine protein kinase. Ataxia telangiectasia mutated (ATM) phosphorylates several key proteins that initiate activation of the DNA damage checkpoint leading to cell cycle arrest.

  16. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    PubMed

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  17. Simultaneous Detection of Androgen and Estrogen Abuse in Breeding Animals by Gas Chromatography-Mass Spectrometry/Combustion/Isotope Ratio Mass Spectrometry (GC-MS/C/IRMS) Evaluated against Alternative Methods.

    PubMed

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; De Kimpe, Norbert; Matthijs, Bert; Le Bizec, Bruno

    2015-09-02

    The administration of synthetic homologues of naturally occurring steroids can be demonstrated by measuring (13)C/(12)C isotopic ratios of their urinary metabolites. Gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) was used in this study to appraise in a global approach isotopic deviations of two 17β-testosterone metabolites (17α-testosterone and etiocholanolone) and one 17β-estradiol metabolite (17α-estradiol) together with those of 5-androstene-3β,17α-diol as endogenous reference compound (ERC). Intermediate precisions of 0.35‰, 1.05‰, 0.35‰, and 0.21‰, respectively, were observed (n = 8). To assess the performance of the analytical method, a bull and a heifer were treated with 17β-testosterone propionate and 17β-estradiol-3-benzoate. The sensitivity of the method permitted the demonstration of 17β-estradiol treatment up to 24 days. For 17β-testosterone treatment, the detection windows were 3 days and 24 days for the bull and the heifer, respectively. The capability of GC-MS/C/IRMS to demonstrate natural steroid abuse for urinary steroids was eventually compared to those of mass spectrometry (LC-MS/MS) when measuring intact steroid esters in blood and hair.

  18. In-Gel Stable-Isotope Labeling (ISIL): a strategy for mass spectrometry-based relative quantification.

    PubMed

    Asara, John M; Zhang, Xiang; Zheng, Bin; Christofk, Heather H; Wu, Ning; Cantley, Lewis C

    2006-01-01

    Most proteomics approaches for relative quantification of protein expression use a combination of stable-isotope labeling and mass spectrometry. Traditionally, researchers have used difference gel electrophoresis (DIGE) from stained 1D and 2D gels for relative quantification. While differences in protein staining intensity can often be visualized, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. A method is presented for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using In-gel Stable-Isotope Labeling (ISIL). Proteins extracted from any source (tissue, cell line, immunoprecipitate, etc.), treated under two experimental conditions, are resolved in separate lanes by gel electrophoresis. The regions of interest (visualized by staining) are reacted separately with light versus heavy isotope-labeled reagents, and the gel slices are then mixed and digested with proteases. The resulting peptides are then analyzed by LC-MS to determine relative abundance of light/heavy isotope pairs and analyzed by LC-MS/MS for identification of sequence and modifications. The strategy compares well with other relative quantification strategies, and in silico calculations reveal its effectiveness as a global relative quantification strategy. An advantage of ISIL is that visualization of gel differences can be used as a first quantification step followed by accurate and sensitive protein level stable-isotope labeling and mass spectrometry-based relative quantification.

  19. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luong, Elise

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 ± 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-tracemore » concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 ± 0.4 ng/g, while the certified value is 11.5 ± 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 ± 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and β-cyclodextrin are chosen for the study, initial observation of spectral interference of 13C + with 12C 1H + comes from the incomplete dissociation of myoglobin and/or β-cyclodextrin.« less

  20. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS).

    PubMed

    Godin, Jean-Philippe; McCullagh, James S O

    2011-10-30

    High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François

    2016-06-01

    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the

  2. Efficient Analysis of Mass Spectrometry Data Using the Isotope Wavelet

    NASA Astrophysics Data System (ADS)

    Hussong, Rene; Tholey, Andreas; Hildebrandt, Andreas

    2007-09-01

    Mass spectrometry (MS) has become today's de-facto standard for high-throughput analysis in proteomics research. Its applications range from toxicity analysis to MS-based diagnostics. Often, the time spent on the MS experiment itself is significantly less than the time necessary to interpret the measured signals, since the amount of data can easily exceed several gigabytes. In addition, automated analysis is hampered by baseline artifacts, chemical as well as electrical noise, and an irregular spacing of data points. Thus, filtering techniques originating from signal and image analysis are commonly employed to address these problems. Unfortunately, smoothing, base-line reduction, and in particular a resampling of data points can affect important characteristics of the experimental signal. To overcome these problems, we propose a new family of wavelet functions based on the isotope wavelet, which is hand-tailored for the analysis of mass spectrometry data. The resulting technique is theoretically well-founded and compares very well with standard peak picking tools, since it is highly robust against noise spoiling the data, but at the same time sufficiently sensitive to detect even low-abundant peptides.

  3. Application of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to detect the abuse of 17β-estradiol in cattle.

    PubMed

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; Prévost, Stéphanie; De Poorter, Geert; De Kimpe, Norbert; Le Bizec, Bruno

    2013-07-31

    Although the ability to differentiate between endogenous steroids and synthetic homologues on the basis of their (13)C/(12)C isotopic ratio has been known for over a decade, this technique has been scarcely implemented for food safety purposes. In this study, a method was developed using gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to demonstrate the abuse of 17β-estradiol in cattle, by comparison of the (13)C/(12)C ratios of the main metabolite 17α-estradiol and an endogenous reference compound (ERC), 5-androstene-3β,17α-diol, in bovine urine. The intermediate precisions were determined as 0.46 and 0.26‰ for 5-androstene-3β,17α-diol and 17α-estradiol, respectively. This is, to the authors' knowledge, the first reported use of GC-MS/C/IRMS for the analysis of steroid compounds for food safety issues.

  4. Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS).

    PubMed

    Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D

    2001-08-01

    Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.

  5. Hepatoblastoma Biology Using Isotope Ratio Mass Spectrometry: Utility of a Unique Technique for the Analysis of Oncological Specimens.

    PubMed

    Taran, Katarzyna; Frączek, Tomasz; Sitkiewicz, Anna; Sikora-Szubert, Anita; Kobos, Józef; Paneth, Piotr

    2016-07-07

    Hepatoblastoma is the most common primary liver tumor in children. However, it occurs rarely, with an incidence of 0.5-1.5 cases per million children. There is no clear explanation of the relationship between clinicopathologic features, therapy, and outcome in hepatoblastoma cases, so far. One of the most widely accepted prognostic factors in hepatoblastoma is histology of the tumor. The aim of the study was to determine the potential differences in biology of hepatoblastoma histological subtypes at the atomic level using the unique method of isotope ratio mass spectrometry, which is especially valuable in examination of small groups of biological samples. Twenty-four measurements of nitrogen stable isotope ratio, carbon stable isotope ratio and total carbon to nitrogen mass ratio in fetal and embryonal hepatoblastoma tissue were performed using a Sercon 20-22 Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) coupled with a Sercon SL elemental analyzer for simultaneous carbon-nitrogen-sulfur (NCS) analysis. A difference of about 1.781‰ in stable nitrogen isotope 15N/14N ratio was found between examined hepatoblastoma histological subtypes. The prognosis in liver tumors cases in children may be challenging particularly because of the lack of versatile methods of its evaluation. Isotope ratio mass spectrometry allows one to determine the difference between hepatoblastoma histological subtypes and clearly indicates the cases with the best outcome.

  6. Application of isotope dilution inductively coupled plasma mass spectrometry to the analysis of marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, J.W.; Beauchemin, D.; Berman, S.S.

    1987-02-15

    Isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the determination of 11 trace elements (Cr, Ni, Zn, Sr, Mo, Cd, Sn, Sb, Tl, Pb, and U) in the marine sediment reference materials MESS-1 and BCSS-1. Accuracy and, especially, precision are better than those that can be easily achieved by other ICP-MS calibration strategies, as long as isotopic equilibration is achieved and the isotopes used for the ratio measurement are free of isobaric interferences by molecular species. The measurement of the isotope ratios on unspiked samples provides a sensitive diagnostic of such interferences.

  7. Assessment of Non-Traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities

    DTIC Science & Technology

    2016-03-01

    Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities Distribution Statement A. Approved for pubic...cubic meter (m 3 ) cubic foot (ft 3 ) 2.831 685 × 10 –2 cubic meter (m 3 ) Mass /Density pound (lb) 4.535 924 × 10 –1 kilogram (kg) unified...atomic mass unit (amu) 1.660 539 × 10 –27 kilogram (kg) pound- mass per cubic foot (lb ft –3 ) 1.601 846 × 10 1 kilogram per cubic meter (kg m –3

  8. Determination of phenylalanine isotope ratio enrichment by liquid chromatography/time- of-flight mass spectrometry.

    PubMed

    Wu, Zhanpin; Zhang, Xiao-Jun; Cody, Robert B; Wolfe, Robert R

    2004-01-01

    The application of time-of-flight mass spectrometry to isotope ratio measurements has been limited by the relatively low dynamic range of the time-to-digital converter detectors available on commercial LC/ToF-MS systems. Here we report the measurement of phenylalanine isotope ratio enrichment by using a new LC/ToF-MS system with wide dynamic range. Underivatized phenylalanine was injected onto a C18 column directly with 0.1% formic acid/acetonitrile as the mobile phase. The optimal instrument parameters for the time-of-flight mass spectrometer were determined by tuning the instrument with a phenylalanine standard. The accuracy of the isotope enrichment measurement was determined by the injection of standard solutions with known isotope ratios ranging from 0.02% to 9.2%. A plot of the results against the theoretical values gave a linear curve with R2 of 0.9999. The coefficient of variation for the isotope ratio measurement was below 2%. The method is simple, rapid, and accurate and presents an attractive alternative to traditional GC/MS applications.

  9. Steroid isotopic standards for gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS).

    PubMed

    Zhang, Ying; Tobias, Herbert J; Brenna, J Thomas

    2009-03-01

    Carbon isotope ratio (CIR) analysis of urinary steroids using gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) is a recognized test to detect illicit doping with synthetic testosterone. There are currently no universally used steroid isotopic standards (SIS). We adapted a protocol to prepare isotopically uniform steroids for use as a calibrant in GCC-IRMS that can be analyzed under the same conditions as used for steroids extracted from urine. Two separate SIS containing a mixture of steroids were created and coded CU/USADA 33-1 and CU/USADA 34-1, containing acetates and native steroids, respectively. CU/USADA 33-1 contains 5alpha-androstan-3beta-ol acetate (5alpha-A-AC), 5alpha-androstan-3alpha-ol-17-one acetate (androsterone acetate, A-AC), 5beta-androstan-3alpha-ol-11, 17-dione acetate (11-ketoetiocholanolone acetate, 11k-AC) and 5alpha-cholestane (Cne). CU/USADA 34-1 contains 5beta-androstan-3alpha-ol-17-one (etiocholanolone, E), 5alpha-androstan-3alpha-ol-17-one (androsterone, A), and 5beta-pregnane-3alpha, 20alpha-diol (5betaP). Each mixture was prepared and dispensed into a set of about 100 ampoules using a protocol carefully designed to minimize isotopic fractionation and contamination. A natural gas reference material, NIST RM 8559, traceable to the international standard Vienna PeeDee Belemnite (VPDB) was used to calibrate the SIS. Absolute delta(13)C(VPDB) and Deltadelta(13)C(VPDB) values from randomly selected ampoules from both SIS indicate uniformity of steroid isotopic composition within measurement reproducibility, SD(delta(13)C)<0.2 per thousand. This procedure for creation of isotopic steroid mixtures results in consistent standards with isotope ratios traceable to the relevant international reference material.

  10. Calibration and Data Processing in Gas Chromatography Combustion Isotope Ratio Mass Spectrometry

    PubMed Central

    Zhang, Ying; Tobias, Herbert J.; Sacks, Gavin L.; Brenna, J. Thomas

    2013-01-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis (13C/12C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ13C = δ13CM – δ13CE difference measurements required for establishing adverse analytical findings for metabolites relative to endogenous reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  11. Nuclear applications of inorganic mass spectrometry.

    PubMed

    De Laeter, John

    2010-01-01

    There are several basic characteristics of mass spectrometry that are not always fully appreciated by the science community. These characteristics include the distinction between relative and absolute isotope abundances, and the influence of isotope fractionation on the accuracy of isotopic measurements. These characteristics can be illustrated in the field of nuclear physics with reference to the measurement of nuclear parameters, which involve the use of enriched isotopes, and to test models of s-, r-, and p-process nucleosynthesis. The power of isotope-dilution mass spectrometry (IDMS) to measure trace elements in primitive meteorites to produce accurate Solar System abundances has been essential to the development of nuclear astrophysics. The variety of mass spectrometric instrumentation used to measure the isotopic composition of elements has sometimes been accompanied by a lack of implementation of basic mass spectrometric protocols which are applicable to all instruments. These metrological protocols are especially important in atomic weight determinations, but must also be carefully observed in cases where the anomalies might be very small, such as in studies of the daughter products of extinct radionuclides to decipher events in the early history of the Solar System. There are occasions in which misleading conclusions have been drawn from isotopic data derived from mass spectrometers where such protocols have been ignored. It is important to choose the mass spectrometer instrument most appropriate to the proposed experiment. The importance of the integrative nature of mass spectrometric measurements has been demonstrated by experiments in which long, double beta decay and geochronological decay half-lives have been measured as an alternative to costly radioactive-counting experiments. This characteristic is also illustrated in the measurement of spontaneous fission yields, which have accumulated over long periods of time. Mass spectrometry is also a

  12. Laser ablation inductively coupled plasma mass spectrometry for direct isotope ratio measurements on solid samples

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine

    2005-04-01

    Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.

  13. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Taylor, Howard E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  14. Isotope ratio mass spectrometry as a tool for source inference in forensic science: A critical review.

    PubMed

    Gentile, Natacha; Siegwolf, Rolf T W; Esseiva, Pierre; Doyle, Sean; Zollinger, Kurt; Delémont, Olivier

    2015-06-01

    Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  16. Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur

    NASA Astrophysics Data System (ADS)

    Wieser, Michael Eugene

    1998-09-01

    Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron

  17. Isotopic fractionation studies of uranium and plutonium using porous ion emitters as thermal ionization mass spectrometry sources

    DOE PAGES

    Baruzzini, Matthew L.; Hall, Howard L.; Spencer, Khalil J.; ...

    2018-04-22

    Investigations of the isotope fractionation behaviors of plutonium and uranium reference standards were conducted employing platinum and rhenium (Pt/Re) porous ion emitter (PIE) sources, a relatively new thermal ionization mass spectrometry (TIMS) ion source strategy. The suitability of commonly employed, empirically developed mass bias correction laws (i.e., the Linear, Power, and Russell's laws) for correcting such isotope ratio data was also determined. Corrected plutonium isotope ratio data, regardless of mass bias correction strategy, were statistically identical to that of the certificate, however, the process of isotope fractionation behavior of plutonium using the adopted experimental conditions was determined to be bestmore » described by the Power law. Finally, the fractionation behavior of uranium, using the analytical conditions described herein, is also most suitably modeled using the Power law, though Russell's and the Linear law for mass bias correction rendered results that were identical, within uncertainty, to the certificate value.« less

  18. Isotopic fractionation studies of uranium and plutonium using porous ion emitters as thermal ionization mass spectrometry sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baruzzini, Matthew L.; Hall, Howard L.; Spencer, Khalil J.

    Investigations of the isotope fractionation behaviors of plutonium and uranium reference standards were conducted employing platinum and rhenium (Pt/Re) porous ion emitter (PIE) sources, a relatively new thermal ionization mass spectrometry (TIMS) ion source strategy. The suitability of commonly employed, empirically developed mass bias correction laws (i.e., the Linear, Power, and Russell's laws) for correcting such isotope ratio data was also determined. Corrected plutonium isotope ratio data, regardless of mass bias correction strategy, were statistically identical to that of the certificate, however, the process of isotope fractionation behavior of plutonium using the adopted experimental conditions was determined to be bestmore » described by the Power law. Finally, the fractionation behavior of uranium, using the analytical conditions described herein, is also most suitably modeled using the Power law, though Russell's and the Linear law for mass bias correction rendered results that were identical, within uncertainty, to the certificate value.« less

  19. The calibration of the intramolecular nitrogen isotope distribution in nitrous oxide measured by isotope ratio mass spectrometry.

    PubMed

    Westley, Marian B; Popp, Brian N; Rust, Terri M

    2007-01-01

    Two alternative approaches for the calibration of the intramolecular nitrogen isotope distribution in nitrous oxide using isotope ratio mass spectrometry have yielded a difference in the 15N site preference (defined as the difference between the delta15N of the central and end position nitrogen in NNO) of tropospheric N2O of almost 30 per thousand. One approach is based on adding small amounts of labeled 15N2O to the N2O reference gas and tracking the subsequent changes in m/z 30, 31, 44, 45 and 46, and this yields a 15N site preference of 46.3 +/- 1.4 per thousand for tropospheric N2O. The other involves the synthesis of N2O by thermal decomposition of isotopically characterized ammonium nitrate and yields a 15N site preference of 18.7 +/- 2.2 per thousand for tropospheric N2O. Both approaches neglect to fully account for isotope effects associated with the formation of NO+ fragment ions from the different isotopic species of N2O in the ion source of a mass spectrometer. These effects vary with conditions in the ion source and make it impossible to reproduce a calibration based on the addition of isotopically enriched N2O on mass spectrometers with different ion source configurations. These effects have a much smaller impact on the comparison of a laboratory reference gas with N2O synthesized from isotopically characterized ammonium nitrate. This second approach was successfully replicated and leads us to advocate the acceptance of the site preference value 18.7 +/- 2.2 per thousand for tropospheric N2O as the provisional community standard until further independent calibrations are developed and validated. We present a technique for evaluating the isotope effects associated with fragment ion formation and revised equations for converting ion signal ratios into isotopomer ratios. Copyright 2007 John Wiley & Sons, Ltd.

  20. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Hintelmann, Holger; Lu, ShengYong

    2003-06-01

    Variations in Hg isotope ratios in cinnabar ores obtained from different countries were detected by high precision isotope ratio measurements using multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Values of delta198/202Hg varied from 0.0-1.3 percent per thousand relative to a NIST SRM 1641d Hg solution. The typical external uncertainty of the delta values was 0.06 to 0.26 percent per thousand. Hg was introduced into the plasma as elemental Hg after reduction by sodium borohydride. A significant fractionation of lead isotopes was observed during the simultaneous generation of lead hydride, preventing normalization of the Hg isotope ratios using the measured 208/206Pb ratio. Hg ratios were instead corrected employing the simultaneously measured 205/203T1 ratio. Using a 10 ng ml(-1) Hg solution and 10 min of sampling, introducing 60 ng of Hg, the internal precision of the isotope ratio measurements was as low as 14 ppm. Absolute Hg ratios deviated from the representative IUPAC values by approximately 0.2% per u. This observation is explained by the inadequacy of the exponential law to correct for mass bias in MC-ICP-MS measurements. In the absence of a precisely characterized Hg isotope ratio standard, we were not able to determine unambiguously the absolute Hg ratios of the ore samples, highlighting the urgent need for certified standard materials.

  1. Improvements on high-precision measurement of bromine isotope ratios by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Zhu, Zhi-Yong; Yang, Tao; Yang, Jing-Hong; Yan, Xiong; Wu, He-Pin; Yang, Tang-Li

    2015-10-01

    A new, feasible procedure for high-precision bromine isotope analysis using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is described. With a combination of HR mass resolution mode and accurate optimization of the Zoom Optics parameters (Focus Quad: -1.30; Zoom Quad: 0.00), the challenging problem of the isobaric interferences ((40)Ar(38)ArH(+) and (40)Ar(40)ArH(+)) in the measurement of bromine isotopes ((79)Br(+), (81)Br(+)) has been effectively solved. The external reproducibility of the measured (81)Br/(79)Br ratios in the selected standard reference materials ranged from ±0.03‰ to ±0.14‰, which is superior to or equivalent to the best results from previous contributions. The effect of counter cations on the Br(+) signal intensity and the instrumental-induced mass bias was evaluated as the loss of HBr aerosol in nebulizer and potential diffusive isotope fractionations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Hydrogen/deuterium exchange in mass spectrometry.

    PubMed

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  3. Stable isotope labeling tandem mass spectrometry (SILT) to quantify protein production and clearance rates

    PubMed Central

    Bateman, Randall J.; Munsell, Ling Y.; Chen, Xianghong; Holtzman, David M.; Yarasheski, Kevin E.

    2007-01-01

    In all biological systems, protein amount is a function of the rate of production and clearance. The speed of a response to a disturbance in protein homeostasis is determined by turnover rate. Quantifying alterations in protein synthesis and clearance rates is vital to understanding disease pathogenesis (e.g., aging, inflammation). No methods exist for quantifying production and clearance rates of low abundance (femtomole) proteins in vivo. We describe a novel, mass spectrometry-based method for quantitating low abundance protein synthesis and clearance rates in vitro and in vivo in animals and humans. The utility of this method is demonstrated with amyloid-beta (Aß), an important low abundance protein involved in Alzheimer's disease pathogenesis. We used in vivo stable isotope labeling, immunoprecipitation of Aß from cerebrospinal fluid, and quantitative liquid chromatography electrospray-ionization tandem mass spectrometry (LC-ESI-tandem MS) to quantify human Aß protein production and clearance rates. The method is sensitive and specific for stable isotope labeled amino acid incorporation into CNS (± 1% accuracy). This in vivo method can be used to identify pathophysiologic changes in protein metabolism; and may serve as a biomarker for monitoring disease risk, progression, or response to novel therapeutic agents. The technique is adaptable to other macromolecules, such as carbohydrates or lipids. PMID:17383190

  4. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  5. Absolute measurements and certified reference material for iron isotopes using multiple-collector inductively coupled mass spectrometry.

    PubMed

    Zhou, Tao; Zhao, Motian; Wang, Jun; Lu, Hai

    2008-01-01

    Two enriched isotopes, 99.94 at.% 56Fe and 99.90 at.% 54Fe, were blended under gravimetric control to prepare ten synthetic isotope samples whose 56Fe isotope abundances ranged from 95% to 20%. For multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements typical polyatomic interferences were removed by using Ar and H2 as collision gas and operating the MC-ICP-MS system in soft mode. Thus high-precision measurements of the Fe isotope abundance ratios were accomplished. Based on the measurement of the synthetic isotope abundance ratios by MC-ICP-MS, the correction factor for mass discrimination was calculated and the results were in agreement with results from IRMM014. The precision of all ten correction factors was 0.044%, indicating a good linearity of the MC-ICP-MS method for different isotope abundance ratio values. An isotopic reference material was certified under the same conditions as the instrument was calibrated. The uncertainties of ten correction factors K were calculated and the final extended uncertainties of the isotopic certified Fe reference material were 5.8363(37) at.% 54Fe, 91.7621(51) at.% 56Fe, 2.1219(23) at.% 57Fe, and 0.2797(32) at.% 58Fe.

  6. Top-down MALDI-in-source decay-FTICR mass spectrometry of isotopically resolved proteins.

    PubMed

    Nicolardi, Simone; Switzar, Linda; Deelder, André M; Palmblad, Magnus; van der Burgt, Yuri E M

    2015-03-17

    An accurate mass measurement of a known protein provides information on potential amino acid deletions and post-translational modifications. Although this field is dominated by strategies based on electrospray ionization, mass spectrometry (MS) methods using matrix-assisted laser desorption/ionization (MALDI) have the advantage of yielding predominantly singly charged precursor ions, thus avoiding peak overlap from different charge states of multiple species. Such MALDI-MS methods require mass measurement at ultrahigh resolution, which is provided by Fourier transform ion cyclotron resonance (FTICR) mass analyzers. Recently, using a MALDI-FTICR-MS platform equipped with a 15 T magnet, we reported on the mass analysis of intact human serum peptides and small proteins with isotopic resolution up to ∼15 kDa and identified new proteoforms from an accurate measurement of mass distances. In the current study, we have used this FTICR system after an upgrade with a novel dynamically harmonized ICR cell, i.e., ParaCell, for mapping isotopically resolved intact proteins up to about 17 kDa and performed top-down MALDI in-source decay (ISD) analysis. Standard proteins myoglobin (m/z-value 16,950) and ribonuclease B (m/z-value 14,900) were measured with resolving powers of 62,000 and 61,000, respectively. Furthermore, it will be shown that (singly charged) MALDI-ISD fragment ions can be measured at isotopic resolution up to m/z-value 12,000 (e.g., resolving power 39,000 at m/z-value 12,000) providing more reliable identifications. Moreover, examples are presented of pseudo-MS(3) experiments on ISD fragment ions from RNase B by collisional-induced dissociation (CID).

  7. Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.

    2011-08-01

    The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate,more » we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.« less

  8. Developments in Plasma-Source Mass Spectrometry

    DTIC Science & Technology

    1988-07-11

    Spectrometry 12 PERSONAL AUTHOR(S) Gary M. Hieftje and George H. Vickers 13a. TYPE OF REPORT b.TMCOEE . TEO POTYerMohay 5.AGCUN Technical FROM TO 11 July...4134006 TECHNICAL REPORT NO. 41 DEVELOPMENTS IN PLASMA-SOURCE MASS SPECTROMETRY by Gary M. Hieftje and George H. Vickers Acessoo i or * NTIS GRMX Prepared...G. M. Hieftje , and A. T. Zander, Spectrochim. Acta 1987, 42B, 29 60 Determination of Lead Isotope Ratios by Inductively Coupled Plasma-Mass

  9. Compound-Specific Chlorine Isotope Analysis of Tetrachloromethane and Trichloromethane by Gas Chromatography-Isotope Ratio Mass Spectrometry vs Gas Chromatography-Quadrupole Mass Spectrometry: Method Development and Evaluation of Precision and Trueness.

    PubMed

    Heckel, Benjamin; Rodríguez-Fernández, Diana; Torrentó, Clara; Meyer, Armin; Palau, Jordi; Domènech, Cristina; Rosell, Mònica; Soler, Albert; Hunkeler, Daniel; Elsner, Martin

    2017-03-21

    Compound-specific chlorine isotope analysis of tetrachloromethane (CCl 4 ) and trichloromethane (CHCl 3 ) was explored by both, gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and GC-quadrupole MS (GC-qMS), where GC-qMS was validated in an interlaboratory comparison between Munich and Neuchâtel with the same type of commercial GC-qMS instrument. GC-IRMS measurements analyzed CCl isotopologue ions, whereas GC-qMS analyzed the isotopologue ions CCl 3 , CCl 2 , CCl (of CCl 4 ) and CHCl 3 , CHCl 2 , CHCl (of CHCl 3 ), respectively. Lowest amount dependence (good linearity) was obtained (i) in H-containing fragment ions where interference of 35 Cl- to 37 Cl-containing ions was avoided; (ii) with tuning parameters favoring one predominant rather than multiple fragment ions in the mass spectra. Optimized GC-qMS parameters (dwell time 70 ms, 2 most abundant ions) resulted in standard deviations of 0.2‰ (CHCl 3 ) and 0.4‰ (CCl 4 ), which are only about twice as large as 0.1‰ and 0.2‰ for GC-IRMS. To compare also the trueness of both methods and laboratories, samples from CCl 4 and CHCl 3 degradation experiments were analyzed and calibrated against isotopically different reference standards for both CCl 4 and CHCl 3 (two of each). Excellent agreement confirms that true results can be obtained by both methods provided that a consistent set of isotopically characterized reference materials is used.

  10. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  11. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.

  12. Authenticity of Benin metalworks evaluated by inductively coupled plasma mass spectrometry and lead isotope analyses

    NASA Astrophysics Data System (ADS)

    Fabbri, E.; Soffritti, C.; Merlin, M.; Vaccaro, C.; Garagnani, G. L.

    2017-05-01

    Two metal plaques and a cock statuette belonging to a private collection and stylistically consistent with the Royal Art of Benin (Nigeria) were investigated in order to verify their authenticity. The characterization of alloys and patinas were carried out by inductively coupled plasma mass spectrometry, optical microscopy, scanning electron microscopy and energy dispersion spectroscopy, and X-Ray diffraction spectrometry. Furthermore, thermal ionization mass spectrometry was used to assess the abundances of lead isotopes and to attempt a dating by the measurement of 210Pb/204Pb ratio. The results showed that all three artefacts were mainly composed of low lead-brass alloys, with relatively high concentrations of zinc, antimony, cadmium and aluminum in the solid copper solution. Microstructures were mostly dendritic, typical of as-cast brasses, and characterized by recrystallized non-homogeneous twinned grains in areas corresponding to surface decorations, probably due to multiple hammering steps followed by partial annealing treatments. The matrix was composed of a cored α-Cu solid solution together with non-metallic inclusions, lead globules and Sn-rich precipitates in interdendritic spaces. On the surface of all metalworks, both copper and zinc oxides, a non-continuous layer of sulphur-containing contaminants and chloride-containing compounds, were identified. The lead isotope results were consistent with brasses produced shortly before or after 1900 CE. Overall, the data obtained by different techniques supported the hypothesis that the three artefacts were not authentic.

  13. Pre-processing liquid chromatography/high-resolution mass spectrometry data: extracting pure mass spectra by deconvolution from the invariance of isotopic distribution.

    PubMed

    Krishnan, Shaji; Verheij, Elwin E R; Bas, Richard C; Hendriks, Margriet W B; Hankemeier, Thomas; Thissen, Uwe; Coulier, Leon

    2013-05-15

    Mass spectra obtained by deconvolution of liquid chromatography/high-resolution mass spectrometry (LC/HRMS) data can be impaired by non-informative mass-over-charge (m/z) channels. This impairment of mass spectra can have significant negative influence on further post-processing, like quantification and identification. A metric derived from the knowledge of errors in isotopic distribution patterns, and quality of the signal within a pre-defined mass chromatogram block, has been developed to pre-select all informative m/z channels. This procedure results in the clean-up of deconvoluted mass spectra by maintaining the intensity counts from m/z channels that originate from a specific compound/molecular ion, for example, molecular ion, adducts, (13) C-isotopes, multiply charged ions and removing all m/z channels that are not related to the specific peak. The methodology has been successfully demonstrated for two sets of high-resolution LC/MS data. The approach described is therefore thought to be a useful tool in the automatic processing of LC/HRMS data. It clearly shows the advantages compared to other approaches like peak picking and de-isotoping in the sense that all information is retained while non-informative data is removed automatically. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  15. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  16. High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry

    DOE PAGES

    Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew; ...

    2017-05-09

    Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less

  17. High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew

    Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less

  18. Stable carbon isotope analyses of nanogram quantities of particulate organic carbon (pollen) with laser ablation nano combustion gas chromatography/isotope ratio mass spectrometry

    PubMed Central

    Sluijs, Appy; Laks, Jelmer J.; Reichart, Gert‐Jan

    2016-01-01

    Rationale Analyses of stable carbon isotope ratios (δ 13C values) of organic and inorganic matter remains have been instrumental for much of our understanding of present and past environmental and biological processes. Until recently, the analytical window of such analyses has been limited to samples containing at least several μg of carbon. Methods Here we present a setup combining laser ablation, nano combustion gas chromatography and isotope ratio mass spectrometry (LA/nC/GC/IRMS). A deep UV (193 nm) laser is used for optimal fragmentation of organic matter with minimum fractionation effects and an exceptionally small ablation chamber and combustion oven are used to reduce the minimum sample mass requirement compared with previous studies. Results Analyses of the international IAEA CH‐7 polyethylene standard show optimal accuracy, and precision better than 0.5‰, when measuring at least 42 ng C. Application to untreated modern Eucalyptus globulus (C3 plant) and Zea mays (C4 plant) pollen grains shows a ~ 16‰ offset between these species. Within each single Z. mays pollen grain, replicate analyses show almost identical δ 13C values. Conclusions Isotopic offsets between individual pollen grains exceed analytical uncertainties, therefore probably reflecting interspecimen variability of ~0.5–0.9‰. These promising results set the stage for investigating both δ 13C values and natural carbon isotopic variability between single specimens of a single population of all kinds of organic particles yielding tens of nanograms of carbon. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:27766694

  19. Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry

    USGS Publications Warehouse

    Fantle, M.S.; Bullen, T.D.

    2009-01-01

    The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a

  20. Advantages of isotopic depletion of proteins for hydrogen/deuterium exchange experiments monitored by mass spectrometry.

    PubMed

    Bou-Assaf, George M; Chamoun, Jean E; Emmett, Mark R; Fajer, Piotr G; Marshall, Alan G

    2010-04-15

    Solution-phase hydrogen/deuterium exchange (HDX) monitored by mass spectrometry is an excellent tool to study protein-protein interactions and conformational changes in biological systems, especially when traditional methods such as X-ray crystallography or nuclear magnetic resonance are not feasible. Peak overlap among the dozens of proteolytic fragments (including those from autolysis of the protease) can be severe, due to high protein molecular weight(s) and the broad isotopic distributions due to multiple deuterations of many peptides. In addition, different subunits of a protein complex can yield isomeric proteolytic fragments. Here, we show that depletion of (13)C and/or (15)N for one or more protein subunits of a complex can greatly simplify the mass spectra, increase the signal-to-noise ratio of the depleted fragment ions, and remove ambiguity in assignment of the m/z values to the correct isomeric peptides. Specifically, it becomes possible to monitor the exchange progress for two isobaric fragments originating from two or more different subunits within the complex, without having to resort to tandem mass spectrometry techniques that can lead to deuterium scrambling in the gas phase. Finally, because the isotopic distribution for a small to medium-size peptide is essentially just the monoisotopic species ((12)C(c)(1)H(h)(14)N(n)(16)O(o)(32)S(s)), it is not necessary to deconvolve the natural abundance distribution for each partially deuterated peptide during HDX data reduction.

  1. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of anymore » separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30

  2. Isotopic studies of metabolic systems by mass spectrometry: using Pascal's triangle to produce biological standards with fully controlled labeling patterns.

    PubMed

    Millard, Pierre; Massou, Stéphane; Portais, Jean-Charles; Létisse, Fabien

    2014-10-21

    Mass spectrometry (MS) is widely used for isotopic studies of metabolism in which detailed information about biochemical processes is obtained from the analysis of isotope incorporation into metabolites. The biological value of such experiments is dependent on the accuracy of the isotopic measurements. Using MS, isotopologue distributions are measured from the quantitative analysis of isotopic clusters. These measurements are prone to various biases, which can occur during the experimental workflow and/or MS analysis. The lack of relevant standards limits investigations of the quality of the measured isotopologue distributions. To meet that need, we developed a complete theoretical and experimental framework for the biological production of metabolites with fully controlled and predictable labeling patterns. This strategy is valid for different isotopes and different types of metabolisms and organisms, and was applied to two model microorganisms, Pichia augusta and Escherichia coli, cultivated on (13)C-labeled methanol and acetate as sole carbon source, respectively. The isotopic composition of the substrates was designed to obtain samples in which the isotopologue distribution of all the metabolites should give the binomial coefficients found in Pascal's triangle. The strategy was validated on a liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform by quantifying the complete isotopologue distributions of different intracellular metabolites, which were in close agreement with predictions. This strategy can be used to evaluate entire experimental workflows (from sampling to data processing) or different analytical platforms in the context of isotope labeling experiments.

  3. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  4. Mono-isotope Prediction for Mass Spectra Using Bayes Network.

    PubMed

    Li, Hui; Liu, Chunmei; Rwebangira, Mugizi Robert; Burge, Legand

    2014-12-01

    Mass spectrometry is one of the widely utilized important methods to study protein functions and components. The challenge of mono-isotope pattern recognition from large scale protein mass spectral data needs computational algorithms and tools to speed up the analysis and improve the analytic results. We utilized naïve Bayes network as the classifier with the assumption that the selected features are independent to predict mono-isotope pattern from mass spectrometry. Mono-isotopes detected from validated theoretical spectra were used as prior information in the Bayes method. Three main features extracted from the dataset were employed as independent variables in our model. The application of the proposed algorithm to publicMo dataset demonstrates that our naïve Bayes classifier is advantageous over existing methods in both accuracy and sensitivity.

  5. Illustrating the Concepts of Isotopes and Mass Spectrometry in Introductory Courses: A MALDI-TOF Mass Spectrometry Laboratory Experiment

    ERIC Educational Resources Information Center

    Dopke, Nancy Carter; Lovett, Timothy Neal

    2007-01-01

    Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory…

  6. Determination of nitrogen-15 isotope fractionation in tropine: evaluation of extraction protocols for isotope ratio measurement by isotope ratio mass spectrometry.

    PubMed

    Molinié, Roland; Kwiecień, Renata A; Silvestre, Virginie; Robins, Richard J

    2009-12-01

    N-Demethylation of tropine is an important step in the degradation of this compound and related metabolites. With the purpose of understanding the reaction mechanism(s) involved, it is desirable to measure the 15N kinetic isotope effects (KIEs), which can be accessed through the 15N isotope shift (Deltadelta15N) during the reaction. To measure the isotope fractionation in 15N during tropine degradation necessitates the extraction of the residual substrate from dilute aqueous solution without introducing artefactual isotope fractionation. Three protocols have been compared for the extraction and measurement of the 15N/14N ratio of tropine from aqueous medium, involving liquid-liquid phase partitioning or silica-C18 solid-phase extraction. Quantification was by gas chromatography (GC) on the recovered organic phase and delta15N values were obtained by isotope ratio measurement mass spectrometry (irm-MS). Although all the protocols used can provide satisfactory data and both irm-EA-MS and irm-GC-MS can be used to obtain the delta15N values, the most convenient method is liquid-liquid extraction from a reduced aqueous volume combined with irm-GC-MS. The protocols are applied to the measurement of 15N isotope shifts during growth of a Pseudomonas strain that uses tropane alkaloids as sole source of carbon and nitrogen. The accuracy of the determination of the 15N/14N ratio is sufficient to be used for the determination of 15N-KIEs. Copyright 2009 John Wiley & Sons, Ltd.

  7. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  8. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  9. Evaluation of gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for the quality assessment of citrus liqueurs.

    PubMed

    Schipilliti, Luisa; Bonaccorsi, Ivana; Cotroneo, Antonella; Dugo, Paola; Mondello, Luigi

    2013-02-27

    Citrus liqueurs are alcoholic beverages obtained by maceration. The European Parliament protects these alcoholic beverages, forbidding the addition of nature-identical flavoring substances. However, for economical and technological reasons, producers often add natural and/or synthetic flavors to the alcoholic syrup, obtaining artificial spirit drinks. The aim of this study is to investigate the authenticity of Italian liqueurs, of lemon, bergamot, and mandarin (locally known as "limoncello", "bargamino", and "mandarinetto"), comparing the carbon isotope ratios with values determined in genuine cold-pressed peel oils. Authenticity assessment was performed using headspace-solid phase microextraction coupled to gas chromatography-combustion-isotope ratio mass spectrometry. Additional analyses were performed by direct enantioselective gas chromatography to determine the enantiomeric distribution of selected chiral volatiles and by gas chromatography-mass spectrometry for the qualitative analyses of the samples. The method allowed confirmation of genuineness. Enantioselective gas chromatography analyses confirmed the results, demonstrating the reliability of the method.

  10. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--discrimination of ammonium nitrate sources.

    PubMed

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.

  11. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  12. The use of stable isotopes and gas chromatography/mass spectrometry in the identification of steroid metabolites in the equine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houghton, E.; Dumasia, M.C.; Teale, P.

    1990-10-01

    Stable isotope gas chromatography/mass spectrometry has been used successfully in the elucidation of structures of urinary steroid metabolites in the horse and in the identification of metabolites isolated from in vivo perfusion and in vitro incubation studies using equine tissue preparations. Deuterium-labeled steroids, testosterone, dehydroepiandrosterone, and 5-androstene-3 beta,17 beta-diol have been synthesized by base-catalyzed isotope exchange methods and the products characterized by gas chromatography/mass spectrometry. (16,16(-2)H2)Dehydroepiandrosterone (plus radiolabeled dehydroepiandrosterone) was perfused into a testicular artery of a pony stallion and was shown to be metabolized into 2H2-labeled testosterone, 4-androstenedione, isomers of 5-androstene-3,17-diol, 19-hydroxytestosterone, and 19-hydroxy-4-androstenedione. In further studies, equine testicularmore » minces have been incubated with 2H2-labeled and radiolabeled dehydroepiandrosterone and 5-androstene-3 beta, 17 beta-diol. The metabolites, whose identity was confirmed by stable isotope gas chromatography/mass spectrometry, proved the interconversion of the two substrates, as well as formation of testosterone and 4-androstenedione. The aromatization of dehydroepiandrosterone was also confirmed, together with the formation of an isomer of 5(10)-estrene-3,17-diol from both substrates showing 19-demethylation without concomitant aromatization. In studies of the feto-placental unit, the allantochorion was shown to aromatize (2H5)testosterone to (2H4)estradiol, the loss of one 2H from the substrate being consistent with aromatization of the A ring. The formation of 6-hydroxyestradiol was also confirmed in this study. The same technique has been valuable in determining the structure of two metabolites of nandrolone isolated from horse urine.« less

  13. The role of off-line mass spectrometry in nuclear fission.

    PubMed

    De Laeter, J R

    1996-01-01

    The role of mass spectrometry in nuclear fission has been invaluable since 1940, when A. O. C. Nier separated microgram quantities of (235) U from (238) U, using a gas source mass spectrometer. This experiment enabled the fissionable nature of (235) U to be established. During the Manhattan Project, the mass spectrometer was used to measure the isotope abundances of uranium after processing in various separation systems, in monitoring the composition of the gaseous products in the Oak Ridge Diffusion Plant, and as a helium leak detector. Following the construction of the first reactor at the University of Chicago, it was necessary to unravel the nuclear systematics of the various fission products produced in the fission process. Off-line mass spectrometry was able to identify stable and long-lived isotopes produced in fission, but more importantly, was used in numerous studies of the distribution of mass of the cumulative fission yields. Improvements in sensitivity enabled off-line mass spectrometric studies to identify fine structure in the mass-yield curve and, hence, demonstrate the importance of shell structure in nuclear fission. Solid-source mass spectrometry was also able to measure the cumulative fission yields in the valley of symmetry in the mass-yield curve, and enabled spontaneous fission yields to be quantified. Apart from the accurate measurement of abundances, the stable isotope mass spectrometric technique has been invaluable in establishing absolute cumulative fission yields for many isotopes making up the mass-yield distribution curve for a variety of fissile nuclides. Extensive mass spectrometric studies of noble gases in primitive meteorites revealed the presence of fission products from the now extinct nuclide (244) Pu, and have eliminated the possibility of fission products from a super-heavy nuclide contributing to isotopic anomalies in meteoritic material. Numerous mass spectrometric studies of the isotopic and elemental abundances of

  14. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE PAGES

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; ...

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  15. Ion microscopy with resonant ionization mass spectrometry : time-of-flight depth profiling with improved isotopic precision.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellin, M. J.; Veryovkin, I. V.; Levine, J.

    2010-01-01

    There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.

  16. Applications of Structural Mass Spectrometry to Metabolomics: Clarifying Bond Specific Spectral Signatures with Isotope Edited Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorlova, Olga; Wolke, Conrad T.; Fournier, Joseph; Colvin, Sean; Johnson, Mark; Miller, Scott

    2015-06-01

    Comprehensive FTIR, MS/MS and NMR of pharmaceuticals are generally readily available but characterization of their metabolites has been an obstacle. Atorvastatin is a statin drug responsible for the maintenance of cholesterol in the body. Diovan is an angiostensin receptor antagonist used to treat high blood pressure and congestive heart failure. The field of metabolomics, however, is struggling to obtain the identity of their structures. We implement mass spectrometry with cryogenic ion spectroscopy to study gaseous ions of the desired metabolites which, in combination, not only identify the mass of the metabolite but also elucidate their structures through isotope-specific infrared spectroscopy.

  17. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    PubMed

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  18. PALOMA : an isotope analyzer using static mass spectrometry, coupled with cryogenic and chemical trapping, for the MSL mission to Mars

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Goulpeau, G.; Leblanc, F.; Montmessin, F.; Sarda, P.; Agrinier, P.; Fouchet, T.; Waite, H.

    The technique of GCMS analysis has to be completed by static mass spectrometry for precise in-situ measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation and gettering, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. Such an instrument (PALOMA) is presently developed in our laboratories, and it will be coupled with a Pyr-GCMS analyzer (MACE), built by a US consortium of science laboratories and industrials (University of Michigan, Southwest Research Institute, JPL, Ball Aerospace). The MACE/PALOMA experiment will be proposed on the NASA Mars Science Laboratory mission, planned to be launched in 2009. The scientific objectives of PALOMA, coupled with MACE, may be listed as follows : (i) search for isotopic signatures of past life in atmosphere, rock, dust and ice samples, with emphasis on carbon, nitrogen and hydrogen; (ii) accurately measure isotopic composition of atmospheric noble gases, and stable isotopes, in order to better constrain past escape, surface interaction, outgassing history and climate evolution; (iii) precisely measure diurnal/ seasonal variations of isotopic ratios of H2O, CO2, and N2, for improving our understanding of present and past climate, and of the role of water cycle. Main measurement objectives are : (i) C, H, O, N isotopic composition in both organic evolved samples (provided by MACE pyrolysis system) and atmosphere with high accuracy (a few per mil at 1-s level); (ii) noble gas (He, Ne, Ar, Kr, Xe) and stable (C, H, O, N) isotope composition in atmosphere with high accuracy (a few per mil at 1-s level); (iii) molecular and isotopic composition of inorganic evolved samples (salts, hydrates, nitrates, {ldots}), including ices; (iv) diurnal and seasonal monitoring of D/H in water vapor, and water ice.

  19. Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    PubMed

    Nageotte, S M; Day, J P

    1998-01-01

    A major source of environmental lead, particularly in urban areas, has been from the combustion of leaded petrol. Street dust has previously been used to assess urban lead contamination, and the dust itself can also be a potential source of lead ingestion, particularly to children. The progressive reduction of lead in petrol, in recent years, would be expected to have been reflected in a reduction of lead in urban dust. We have tested this hypothesis by repeating an earlier survey of Manchester street dust and carrying out a comparable survey in Paris. Samples were collected from streets and parks, lead was extracted by digestion with concentrated nitric acid and determined by electrothermal atomic absorption spectrometry. Lead isotope ratios were measured by inductively coupled plasma mass spectrometry. Results for Manchester show that lead concentrations have fallen by about 40% (street dust averages, 941 micrograms g-1 (ppm) in 1975 down to 569 ppm in 1997). In Paris, the lead levels in street dust are much higher and significant differences were observed between types of street (not seen in Manchester). Additionally, lead levels in parks were much lower than in Manchester. Samples collected under the Eiffel Tower had very high concentrations and lead isotope ratios showed that this was unlikely to be fallout from motor vehicles but could be due to the paint used on the tower. Isotope ratios measurements also revealed that lead additives used in France and the UK come from different sources.

  20. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  1. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of

  2. GasBench/isotope ratio mass spectrometry: a carbon isotope approach to detect exogenous CO(2) in sparkling drinks.

    PubMed

    Cabañero, Ana I; San-Hipólito, Tamar; Rupérez, Mercedes

    2007-01-01

    A new procedure for the determination of carbon dioxide (CO(2)) (13)C/(12)C isotope ratios, using direct injection into a GasBench/isotope ratio mass spectrometry (GasBench/IRMS) system, has been developed to improve isotopic methods devoted to the study of the authenticity of sparkling drinks. Thirty-nine commercial sparkling drink samples from various origins were analyzed. Values of delta(13)C(cava) ranged from -20.30 per thousand to -23.63 per thousand, when C3 sugar addition was performed for a second alcoholic fermentation. Values of delta(13)C(water) ranged from -5.59 per thousand to -6.87 per thousand in the case of naturally carbonated water or water fortified with gas from the spring, and delta(13)C(water) ranged from -29.36 per thousand to -42.09 per thousand when industrial CO(2) was added. It has been demonstrated that the addition of C4 sugar to semi-sparkling wine (aguja) and industrial CO(2) addition to sparkling wine (cava) or water can be detected. The new procedure has advantages over existing methods in terms of analysis time and sample treatment. In addition, it is the first isotopic method developed that allows (13)C/(12)C determination directly from a liquid sample without previous CO(2) extraction. No significant isotopic fractionation was observed nor any influence by secondary compounds present in the liquid phase. Copyright (c) 2007 John Wiley & Sons, Ltd.

  3. Recent developments in the use of isotope ratio mass spectrometry in sports drug testing.

    PubMed

    Piper, Thomas; Emery, Caroline; Saugy, Martial

    2011-08-01

    According to the annual report of the World Anti-Doping Agency, steroids are the most frequently detected class of doping agents. Detecting the misuse of endogenously occurring steroids, i.e. steroids such as testosterone that are produced naturally by humans, is one of the most challenging issues in doping control analysis. The established thresholds for urinary concentrations or concentration ratios such as the testosterone/epitestosterone quotient are sometimes inconclusive owing to the large biological variation in these parameters.For more than 15 years, doping control laboratories focused on the carbon isotope ratios of endogenous steroids to distinguish between naturally elevated steroid profile parameters and illicit administration of steroids. A variety of different methods has been developed throughout the last decade and the number of different steroids under investigation by isotope ratio mass spectrometry has recently grown considerably. Besides norandrosterone, boldenone was found to occur endogenously in rare cases and the misuse of corticosteroids or epitestosterone can now be detected with the aid of carbon isotope ratios as well. In addition, steroids excreted as sulfoconjugates were investigated, and the first results regarding hydrogen isotope ratios recently became available.All of these will be presented in detail within this review together with some considerations on validation issues and on identification of parameters influencing steroidal isotope ratios in urine.

  4. Simultaneous determination of iron, cadmium, zinc, copper, nickel, lead, and uranium in seawater by stable isotope dilution spark source mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mykytiuk, A.P.; Russell, D.S.; Sturgeon, R.E.

    Trace concentrations (ng/mL) of Fe, Cd, Zn, Cu, Ni, Pb, U, and Co have been determined in seawater by stable isotope dilution spark source mass spectrometry. The seawater samples were preconcentrated on the ion exchanger Chelex-100 and the concentrate was evaporated on a graphite or silver electrode. The results are compared with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. The technique avoids the use of calibration standards and is capable of producing results in cases where the analyte is only partially recovered. 2 tables.

  5. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  6. Simultaneous determination of the quantity and isotopic ratios of uranium in individual micro-particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS).

    PubMed

    Park, Jong-Ho; Choi, Eun-Ju

    2016-11-01

    A method to determine the quantity and isotopic ratios of uranium in individual micro-particles simultaneously by isotope dilution thermal ionization mass spectrometry (ID-TIMS) has been developed. This method consists of sequential sample and spike loading, ID-TIMS for isotopic measurement, and application of a series of mathematical procedures to remove the contribution of uranium in the spike. The homogeneity of evaporation and ionization of uranium content was confirmed by the consistent ratio of n((233)U)/n((238)U) determined by TIMS measurements. Verification of the method was performed using U030 solution droplets and U030 particles. Good agreements of resulting uranium quantity, n((235)U)/n((238)U), and n((236)U)/n((238)U) with the estimated or certified values showed the validity of this newly developed method for particle analysis when simultaneous determination of the quantity and isotopic ratios of uranium is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Liquid chromatography coupled to isotope ratio mass spectrometry: a new perspective on honey adulteration detection.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2006-12-27

    A new procedure to determine individual sugar (sucrose, glucose, and fructose) 13C isotope ratios, using liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS), has been developed to improve isotopic methods devoted to the study of honey authenticity. For this purpose 79 commercial honey samples from various origins were analyzed. Values of delta13Choney ranged from -14.2 to -27.2", and delta13Cprotein ranged from -23.6 to -26.9". A very strong correlation is observed between the individual sugar 13C ratios, which are altered in the event of sugar addition, even at low levels. The use of Deltadelta13C [fruct-glu], Deltadelta13C [fruct-suc], and Deltadelta13C [gluc-suc] systematic differences as an authenticity criterion permits the sugar addition [C3, beet sugar; or C4, cane sugar, cane syrup, isoglucose syrup, and high-fructose corn syrup (HFCS)] to be reliably detected (DL = 1-10%). The new procedure has advantages over existing methods in terms of analysis time and sensitivity. In addition, it is the first isotopic method developed that allows beet sugar addition detection.

  8. Light Isotopes and Trace Organics Analysis of Mars Samples with Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Niemann, Hasso (Technical Monitor)

    2001-01-01

    Precision measurement of light isotopes in Mars surface minerals and comparison of this isotopic composition with atmospheric gas and other, well-mixed reservoirs such as surface dust are necessary to understand the history of atmospheric evolution from a possibly warmer and wetter Martian surface to the present state. Atmospheric sources and sinks that set these ratios are volcanism, solar wind sputtering, photochemical processes, and weathering. Measurement of a range of trace organic species with a particular focus on species such as amino acids that are the building blocks of terrestrial life are likewise important to address the questions of prebiotic and present or past biological activity on Mars. The workshop topics "isotopic mineralogy" and "biology and pre-biotic chemistry" will be addressed from the point of view of the capabilities and limitations of insitu mass spectrometry (MS) techniques such as thermally evolved gas analysis (TEGA) and gas chromatography (GC) surface experiments using MS, in both cases, as a final chemical and isotopic composition detector. Insitu experiments using straightforward adaptations of existing space proven hardware can provide a substantial improvement in the precision and accuracy of our present knowledge of isotopic composition both in molecular and atomic species in the atmosphere and those chemically bound in rocks and soils. Likewise, detection of trace organic species with greatly improved sensitivity from the Viking GCMS experiment is possible using gas enrichment techniques. The limits to precision and accuracy of presently feasible insitu techniques compared to laboratory analysis of returned samples will be explored. The insitu techniques are sufficiently powerful that they can provide a high fidelity method of screening samples obtained from a diverse set of surface locations such as the subsurface or the interior of rocks for selection of those that are the most interesting for return to Earth.

  9. Diagnosing Prion Diseases: Mass Spectrometry-Based Approaches

    USDA-ARS?s Scientific Manuscript database

    Mass spectrometry is an established means of quantitating the prions present in infected hamsters. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to stable isotope labeled internal standards were prepared. The limit of detection (LOD) and limi...

  10. Traceability of different apple varieties by multivariate analysis of isotope ratio mass spectrometry data.

    PubMed

    Mimmo, Tanja; Camin, Federica; Bontempo, Luana; Capici, Calogero; Tagliavini, Massimo; Cesco, Stefano; Scampicchio, Matteo

    2015-11-15

    The awareness of customers of the origin of foods has become an important issue. The growing demand for foods that are healthy, safe and of high quality has increased the need for traceability and clear labelling. Thus, this study investigates the capability of C and N stable isotope ratios to determine the geographical origin of several apple varieties grown in northern Italy. Four apple varieties (Cripps Pink, Gala, Golden Delicious, Granny Smith) have been sampled in orchards located in the Districts of Bolzano, Ferrara, Verona and Udine (northern Italy). Carbon (δ(13) C) and nitrogen (δ(15) N) isotope values of the whole apple fruits and three sub-fractions (peel, pulp and seed) have been determined simultaneously by isotope ratio mass spectrometry. The δ(13) C and δ(15) N values of apples and apple sub-fractions, such as peel, seed and pulp, were significantly affected by the geographical origin and the fruit variety. The four varieties could be distinguished to a certain extent only within each district. A 99% correct identification of the samples according to their origin was, however, achieved by cross validation with the 'leave-one-out' method. This study proves the potential of stable isotopes to discriminate the geographical origin of apples grown in orchards located only a few hundreds of kilometres apart. Stable isotopes were also able to discriminate different apple varieties, although only within small geographical areas. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Isotope-labeled cross-linkers and Fourier transform ion cyclotron resonance mass spectrometry for structural analysis of a protein/peptide complex.

    PubMed

    Ihling, Christian; Schmidt, Andreas; Kalkhof, Stefan; Schulz, Daniela M; Stingl, Christoph; Mechtler, Karl; Haack, Michael; Beck-Sickinger, Annette G; Cooper, Dermot M F; Sinz, Andrea

    2006-08-01

    For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural

  12. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  13. Comparison of secondary ion mass spectrometry and micromilling/continuous flow isotope ratio mass spectrometry techniques used to acquire intra-otolith delta18O values of wild Atlantic salmon (Salmo salar).

    PubMed

    Hanson, N N; Wurster, C M; Todd, C D

    2010-09-15

    The chemical signals in the sequential layers of fish otoliths have the potential to provide fisheries biologists with temporal and spatial details of migration which are difficult to obtain without expensive tracking methods. Signal resolution depends, however, on the extraction technique used. We compared the use of mechanical micromilling and continuous flow isotope ratio mass spectrometry (CF-IRMS) methods with secondary ion mass spectrometry (SIMS) to obtain delta(18)O profiles from otoliths of wild Atlantic salmon (Salmo salar) and used these to corroborate the time of freshwater emigration of the juvenile with macroscopic patterns within the otolith. Both techniques showed the transition occurring at the same visible feature on the otolith, allowing future analyses to easily identify the juvenile (freshwater) versus adult (marine) life-stages. However, SIMS showed a rapid and abrupt transition whereas micromilling provided a less distinct signal. The number of samples that could be obtained per unit area sampled using SIMS was 2 to 3 times greater than that when using micromilling/CF-IRMS although the delta(18)O values and analytical precisions (approximately 0.2 per thousand) of the two methods were comparable. In addition, SIMS delta(18)O results were used to compare otolith aragonite values with predicted values calculated using various isotope fractionation equations. Copyright 2010 John Wiley & Sons, Ltd.

  14. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  15. Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)(#).

    PubMed

    Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo

    2006-06-01

    Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications.

  16. Metal isotope coded profiling of organic ligands by mass spectrometry in aquatic environments

    NASA Astrophysics Data System (ADS)

    Wichard, Thomas; Deicke, Michael; Frieder Mohr, Jan; Klein, Martin

    2017-04-01

    Metal isotope coded profiling (MICP) introduces a universal discovery platform for metal chelating natural products that act as metallophores, ion buffers or sequestering agents. The detection of cation and oxoanion complexing ligands is facilitated by the identification of unique isotopic signatures created by the application of isotopically pure metals. We present a targeted analysis of low-molecular-weight organic ligands based on fast UHPLC-ESI-MS measurements. Replacement of, for example, natural iron or molybdenum with isotopically pure 54Fe/58Fe (ratio 1:1) or 95Mo/98Mo (ratio 1:1) causes easily detectable unique isotopic signatures in the mass spectra of potential metal-complexing ligands. This can be achieved under laboratory conditions not only in growth media, but also by spiking directly aqueous samples or solid-phase extracts. Importantly, as the relative affinity of the metallophores for e.g., Mo or Fe is dependent on the pH, all experiments needs to be conducted under pH-controlled conditions. The improved ionization efficiency of some metal complexes helps to enhance the signal-to-noise ratio compared to the free ligand at the same chromatographic conditions. The methodology does not necessarily depend on HR-ESI-MS measurements (e.g., Q-Exactive Orbitrap) and can be applied to any mass spectrometer. With MICP, two birds can be killed with one stone: (i) the identification of metallophores (e.g., siderophores, molybdophores) for metal uptake by any organism and (ii) organic ligands which solely work as metal buffer in dissolved organic matter (DOM). We currently address following two main research lines: First, DOM has often been used as a proxy for bio-productivity in terms of a carbon source; however, the specific impact of DOM as a "metal buffer" for biological processes is still under-investigated. Upon the administration of individual isotopes or isotopic pairs, for example, 54Fe/58Fe, 63Cu/65Cu, 66Zn/68Zn, or 95Mo/98Mo and subsequent

  17. Isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) for the certification of lead and cadmium in environmental standard reference materials.

    PubMed

    Murphy, K E; Beary, E S; Rearick, M S; Vocke, R D

    2000-10-01

    Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.

  18. Technical developments for an upgrade of the LEBIT Penning trap mass spectrometry facility for rare isotopes

    NASA Astrophysics Data System (ADS)

    Redshaw, M.; Barquest, B. R.; Bollen, G.; Bustabad, S. E.; Campbell, C. M.; Ferrer, R.; Gehring, A.; Kwiatkowski, A. A.; Lincoln, D. L.; Morrissey, D. J.; Pang, G. K.; Ringle, R.; Schwarz, S.

    2011-07-01

    The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stopping to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stopping station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.

  19. Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics.

    PubMed

    Longobardi, F; Casiello, G; Cortese, M; Perini, M; Camin, F; Catucci, L; Agostiano, A

    2015-12-01

    The aim of this study was to predict the geographic origin of lentils by using isotope ratio mass spectrometry (IRMS) in combination with chemometrics. Lentil samples from two origins, i.e. Italy and Canada, were analysed obtaining the stable isotope ratios of δ(13)C, δ(15)N, δ(2)H, δ(18)O, and δ(34)S. A comparison between median values (U-test) highlighted statistically significant differences (p<0.05) for all isotopic parameters between the lentils produced in these two different geographic areas, except for δ(15)N. Applying principal component analysis, grouping of samples was observed on the basis of origin but with overlapping zones; consequently, two supervised discriminant techniques, i.e. partial least squares discriminant analysis and k-nearest neighbours algorithm were used. Both models showed good performances with external prediction abilities of about 93% demonstrating the suitability of the methods developed. Subsequently, isotopic determinations were also performed on the protein and starch fractions and the relevant results are reported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  1. Quantification of ferritin bound iron in human serum using species-specific isotope dilution mass spectrometry.

    PubMed

    Ren, Yao; Walczyk, Thomas

    2014-09-01

    Ferritin is a hollow sphere protein composed of 24 subunits that can store up to 4500 iron atoms in its inner cavity. It is mainly found in the liver and spleen but also in serum at trace levels. Serum ferritin is considered as the best single indicator in assessing body iron stores except liver or bone marrow biopsy. However, it is confounded by other disease conditions. Ferritin bound iron (FBI) and ferritin saturation have been suggested as more robust biomarkers. The current techniques for FBI determination are limited by low antibody specificity, low instrument sensitivity and possible analyte losses during sample preparation. The need for a highly sensitive and reliable method is widely recognized. Here we describe a novel technique to detect serum FBI using species-specific isotope dilution mass spectrometry (SS-IDMS). [(57)Fe]-ferritin was produced by biosynthesis and in vitro labeling with the (57)Fe spike in the form of [(57)Fe]-citrate after cell lysis and heat treatment. [(57)Fe]-ferritin for sample spiking was further purified by fast liquid protein chromatography. Serum ferritin and added [(57)Fe]-ferritin were separated from other iron species by ultrafiltration followed by isotopic analysis of FBI using negative thermal ionization mass spectrometry. Repeatability of our assay is 8% with an absolute detection limit of 18 ng FBI in the sample. As compared to other speciation techniques, SS-IDMS offers maximum control over sample losses and species conversion during analysis. The described technique may therefore serve as a reference technique for clinical applications of FBI as a new biomarker for assessing body iron status.

  2. Mass fractionation processes of transition metal isotopes

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  3. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. Copyright 2008 Wiley Periodicals, Inc.

  4. Simultaneous quantification of GM1 and GM2 gangliosides by isotope dilution tandem mass spectrometry.

    PubMed

    Gu, Jianghong; Tifft, Cynthia J; Soldin, Steven J

    2008-04-01

    Gangliosides (GGs) are considered as diagnostic biomarkers and therapeutic targets and agents. The goal of this study was to develop a tandem mass spectrometry (MS/MS) method for the simultaneous measurement of both GM1 and GM2 gangliosides in human cerebrospinal fluid (CSF) samples in order to be able to determine their concentrations in patients with Tay-Sachs and Sandhoff disease and assess whether drugs or transplantation affect their concentrations. An API-4000 tandem mass spectrometer equipped with TurboIonSpray source and Shimadzu HPLC system was employed to perform the analysis using isotope dilution with deuterium labeled internal standards. To a 1.5 mL conical plastic Eppendorf centrifuge tube, 40 microL of human CSF sample was added and mixed with 400 microL of internal standard solution for deproteinization. After centrifugation, 100 microL of supernatant was injected onto a C-18 column. After a 2.5 min wash, the switching valve was activated and the analytes were eluted from the column with a water/methanol gradient into the MS/MS system. Quantification by multiple reaction-monitoring (MRM) analysis was performed in the negative mode. The within-day coefficients of variation were <3% for GM1 and <2% for GM2 and the between-day coefficients of variation were <5% for both GM1 and GM2 at all concentrations tested. Accuracy ranged between 98% and 102% for both analytes. Good linearity was also obtained within the concentration range of 10-200 ng/mL (6.5-129.3 nmol/L) for GM1 and 5-100 ng/mL (3.6-72.3 nmol/L) for GM2 (r> or =0.995). A new simple, accurate, and fast isotope dilution tandem mass spectrometry method was developed for the simultaneous quantification of GM1 and GM2 gangliosides in a small amount of human CSF. Concentrations were measured in "normal" CSF and in CSF from patients with Tay-Sachs disease.

  5. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.

  6. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  7. Bromine isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry with a conventional sample introduction system.

    PubMed

    de Gois, Jefferson S; Vallelonga, Paul; Spolaor, Andrea; Devulder, Veerle; Borges, Daniel L G; Vanhaecke, Frank

    2016-01-01

    A simple and accurate methodology for Br isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with pneumatic nebulization for sample introduction was developed. The Br(+) signals could be measured interference-free at high mass resolution. Memory effects for Br were counteracted using 5 mmol L(-1) of NH4OH in sample, standard, and wash solutions. The major cation load of seawater was removed via cation exchange chromatography using Dowex 50WX8 resin. Subsequent Br preconcentration was accomplished via evaporation of the sample solution at 90 °C, which did not induce Br losses or isotope fractionation. Mass discrimination was corrected for by external correction using a Cl-matched standard measured in a sample-standard bracketing approach, although Sr, Ge, and Se were also tested as potential internal standards for internal correction for mass discrimination. The δ(81)Br (versus standard mean ocean bromide (SMOB)) values thus obtained for the NaBr isotopic reference material NIST SRM 977 and for IRMM BCR-403 seawater certified reference material are in agreement with literature values. For NIST SRM 977, the (81)Br/(79)Br ratio (0.97291) was determined with a precision ≤0.08‰ relative standard deviation (RSD).

  8. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.

    2016-01-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the U-235/U-238 ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the U-235/U-238 ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. Development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  9. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE PAGES

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; ...

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/ 238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  10. Liquid chromatography/electrospray ionization/isotopic dilution mass spectrometry analysis of n-(phosphonomethyl) glycine and mass spectrometry analysis of aminomethyl phosphonic acid in environmental water and vegetation matrixes.

    PubMed

    Grey, L; Nguyen, B; Yang, P

    2001-01-01

    A liquid chromatography/electrospray/mass spectrometry (LC/ES/MS) method was developed for the analysis of glyphosate (n-phosphonomethyl glycine) and its metabolite, aminomethyl phosphonic acid (AMPA) using isotope-labelled glyphosate as a method surrogate. Optimized parameters were achieved to derivatize glyphosate and AMPA using 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer prior to a reversed-phase LC analysis. Method spike recovery data obtained using laboratory and real world sample matrixes indicated an excellent correlation between the recovery of the native and isotope-labelled glyphosate. Hence, the first performance-based, isotope dilution MS method with superior precision, accuracy, and data quality was developed for the analysis of glyphosate. There was, however, no observable correlation between the isotope-labelled glyphosate and AMPA. Thus, the use of this procedure for the accurate analysis of AMPA was not supported. Method detection limits established using standard U.S. Environmental Protection Agency protocol were 0.06 and 0.30 microg/L, respectively, for glyphosate and AMPA in water matrixes and 0.11 and 0.53 microg/g, respectively, in vegetation matrixes. Problems, solutions, and the method performance data related to the analysis of chlorine-treated drinking water samples are discussed. Applying this method to other environmental matrixes, e.g., soil, with minimum modifications is possible, assuring accurate, multimedia studies of glyphosate concentration in the environment and the delivery of useful multimedia information for regulatory applications.

  11. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction.

    PubMed

    Dunn, Philip J H; Honch, Noah V; Evershed, Richard P

    2011-10-30

    Results are presented of a comparison of the amino acid (AA) δ(13)C values obtained by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) and liquid chromatography-isotope ratio mass spectrometry (LC/IRMS). Although the primary focus was the compound-specific stable carbon isotope analysis of bone collagen AAs, because of its growing application for palaeodietary and palaeoecological reconstruction, the results are relevant to any field where AA δ(13)C values are required. We compare LC/IRMS with the most up-to-date GC/C/IRMS method using N-acetyl methyl ester (NACME) AA derivatives. This comparison involves the analysis of standard AAs and hydrolysates of archaeological human bone collagen, which have been previously investigated as N-trifluoroacetyl isopropyl esters (TFA/IP). It was observed that, although GC/C/IRMS analyses required less sample, LC/IRMS permitted the analysis of a wider range of AAs, particularly those not amenable to GC analysis (e.g. arginine). Accordingly, reconstructed bulk δ(13)C values based on LC/IRMS-derived δ(13)C values were closer to the EA/IRMS-derived δ(13)C values than those based on GC/C/IRMS values. The analytical errors for LC/IRMS AA δ(13)C values were lower than GC/C/IRMS determinations. Inconsistencies in the δ(13)C values of the TFA/IP derivatives compared with the NACME- and LC/IRMS-derived δ(13)C values suggest inherent problems with the use of TFA/IP derivatives, resulting from: (i) inefficient sample combustion, and/or (ii) differences in the intra-molecular distribution of δ(13)C values between AAs, which are manifested by incomplete combustion. Close similarities between the NACME AA δ(13)C values and the LC/IRMS-derived δ(13)C values suggest that the TFA/IP derivatives should be abandoned for the natural abundance determinations of AA δ(13)C values. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isselhardt, Brett H.

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/ 238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser inmore » a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.« less

  13. Development and evaluation of a high-performance liquid chromatography/isotope ratio mass spectrometry methodology for delta13C analyses of amino sugars in soil.

    PubMed

    Bodé, Samuel; Denef, Karolien; Boeckx, Pascal

    2009-08-30

    Amino sugars have been used as biomarkers to assess the relative contribution of dead microbial biomass of different functional groups of microorganisms to soil carbon pools. However, little is known about the dynamics of these compounds in soil. The isotopic composition of individual amino sugars can be used as a tool to determine the turnover of these compounds. Methods to determine the delta(13)C of amino sugars using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) have been proposed in literature. However, due to derivatization, the uncertainty on the obtained delta(13)C is too high to be used for natural abundance studies. Therefore, a new high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) methodology, with increased accuracy and precision, has been developed. The repeatability on the obtained delta(13)C values when pure amino sugars were analyzed were not significantly concentration-dependent as long as the injected amount was higher than 1.5 nmol. The delta(13)C value of the same amino sugar spiked to a soil deviated by only 0.3 per thousand from the theoretical value. 2009 John Wiley & Sons, Ltd.

  14. Heart-cutting two-dimensional gas chromatography in combination with isotope ratio mass spectrometry for the characterization of the wax fraction in plant material.

    PubMed

    Dumont, Emmie; Tienpont, Bart; Higashi, Nobukazu; Mitsui, Kazuhisa; Ochiai, Nobuo; Kanda, Hirooki; David, Frank; Sandra, Pat

    2013-11-22

    Gas chromatography coupled to isotope ratio mass spectrometry after on-line combustion (GC-C-IRMS) and high temperature conversion (GC-HTC-IRMS) is used for compound specific isotope ratio determination. This determination can only be performed successfully if the target solutes are fully resolved from other compounds. A new instrumental set-up consisting of heart-cutting two-dimensional GC based on capillary flow technology and a low thermal mass GC oven in combination with an isotope ratio mass spectrometer is presented. Capillary flow technology was also used in all column and interface connections for robust and leak-free operation. The new configuration was applied to the characterization of wax compounds in tobacco leaf and corresponding smoke samples. It is demonstrated that high accuracy is obtained, both in the determination of δ(13)C and δ(2)H values, allowing the study of biosynthesis and delivery mechanisms of naturally occurring compounds in tobacco. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. AssayR: A Simple Mass Spectrometry Software Tool for Targeted Metabolic and Stable Isotope Tracer Analyses.

    PubMed

    Wills, Jimi; Edwards-Hicks, Joy; Finch, Andrew J

    2017-09-19

    Metabolic analyses generally fall into two classes: unbiased metabolomic analyses and analyses that are targeted toward specific metabolites. Both techniques have been revolutionized by the advent of mass spectrometers with detectors that afford high mass accuracy and resolution, such as time-of-flights (TOFs) and Orbitraps. One particular area where this technology is key is in the field of metabolic flux analysis because the resolution of these spectrometers allows for discrimination between 13 C-containing isotopologues and those containing 15 N or other isotopes. While XCMS-based software is freely available for untargeted analysis of mass spectrometric data sets, it does not always identify metabolites of interest in a targeted assay. Furthermore, there is a paucity of vendor-independent software that deals with targeted analyses of metabolites and of isotopologues in particular. Here, we present AssayR, an R package that takes high resolution wide-scan liquid chromatography-mass spectrometry (LC-MS) data sets and tailors peak detection for each metabolite through a simple, iterative user interface. It automatically integrates peak areas for all isotopologues and outputs extracted ion chromatograms (EICs), absolute and relative stacked bar charts for all isotopologues, and a .csv data file. We demonstrate several examples where AssayR provides more accurate and robust quantitation than XCMS, and we propose that tailored peak detection should be the preferred approach for targeted assays. In summary, AssayR provides easy and robust targeted metabolite and stable isotope analyses on wide-scan data sets from high resolution mass spectrometers.

  16. AssayR: A Simple Mass Spectrometry Software Tool for Targeted Metabolic and Stable Isotope Tracer Analyses

    PubMed Central

    2017-01-01

    Metabolic analyses generally fall into two classes: unbiased metabolomic analyses and analyses that are targeted toward specific metabolites. Both techniques have been revolutionized by the advent of mass spectrometers with detectors that afford high mass accuracy and resolution, such as time-of-flights (TOFs) and Orbitraps. One particular area where this technology is key is in the field of metabolic flux analysis because the resolution of these spectrometers allows for discrimination between 13C-containing isotopologues and those containing 15N or other isotopes. While XCMS-based software is freely available for untargeted analysis of mass spectrometric data sets, it does not always identify metabolites of interest in a targeted assay. Furthermore, there is a paucity of vendor-independent software that deals with targeted analyses of metabolites and of isotopologues in particular. Here, we present AssayR, an R package that takes high resolution wide-scan liquid chromatography–mass spectrometry (LC-MS) data sets and tailors peak detection for each metabolite through a simple, iterative user interface. It automatically integrates peak areas for all isotopologues and outputs extracted ion chromatograms (EICs), absolute and relative stacked bar charts for all isotopologues, and a .csv data file. We demonstrate several examples where AssayR provides more accurate and robust quantitation than XCMS, and we propose that tailored peak detection should be the preferred approach for targeted assays. In summary, AssayR provides easy and robust targeted metabolite and stable isotope analyses on wide-scan data sets from high resolution mass spectrometers. PMID:28850215

  17. Evidencing 98 secondary metabolites of Penicillium verrucosum using substrate isotopic labeling and high-resolution mass spectrometry.

    PubMed

    Hautbergue, Thaïs; Puel, Olivier; Tadrist, Souria; Meneghetti, Lauriane; Péan, Michel; Delaforge, Marcel; Debrauwer, Laurent; Oswald, Isabelle P; Jamin, Emilien L

    2017-12-15

    Industrial applications of fungal compounds, coupled with the emergence of fungal threats to natural ecosystems and public health, have increased interest in filamentous fungi. Among all pathogenic fungi, Penicillium verrucosum is one of the most common mold-infecting stored cereals in temperate regions. However, it is estimated that 80% of fungal secondary metabolites remain unknown. To detect new P. verrucosum compounds, an untargeted metabolomic approach was applied to fungus grown on wheat grains labeled with stable isotopes: (i) natural grains (99% 12 C); (ii) grains enriched with 97% of 13 C; and (iii) grains enriched with 53% of 13 C and 97% of 15 N. Analyses performed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) enabled the specific detection of fungal metabolites, and the unambiguous characterization of their chemical formulas. In this way, 98 secondary metabolites were detected and their chemical formulas were determined. Of these, only 18 identifications could be made based on databases, the literature and mass spectrometry fragmentation experiments, with the result that 80 were totally unknown. Molecular networks were generated to analyze these results, leading to the characterization by MS n experiments of a new fungisporin produced by P. verrucosum. More generally, this article provides precise mass spectrometric data about all these compounds for further studies of the Penicillium metabolome. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Stable isotope labeling-solid phase extraction-mass spectrometry analysis for profiling of thiols and aldehydes in beer.

    PubMed

    Zheng, Shu-Jian; Wang, Ya-Lan; Liu, Ping; Zhang, Zheng; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2017-12-15

    In this study, we developed a strategy for profiling of thiols and aldehydes in beer samples by stable isotope labeling-solid phase extraction-liquid chromatography-double precursor ion scan/double neutral loss scan-mass spectrometry analysis (SIL-SPE-LC-DPIS/DNLS-MS). A pair of isotope reagents (ω-bromoacetonylquinolinium bromide, BQB; ω-bromoacetonylquinolinium-d 7 bromide, BQB-d 7 ) were used to label thiols; while for the aldehydes, a pair of isotope reagents (4-(2-(trimethylammonio) ethoxy) benzenaminium halide, 4-APC; 4-(2-(trimethylammonio) ethoxy) benzenaminium halide-d 4 , 4-APC-d 4 ) were used. The labeled thiols and aldehydes were extracted and purified with solid-phase extraction, respectively, followed by LC-MS analysis. Using the proposed SIL-SPE-LC-DPIS/DNLS-MS methods, 76 thiol and 25 aldehyde candidates were found in beer. Furthermore, we established SIL-SPE-LC-MRM-MS methods for the relative quantitation of thiols and aldehydes in different beer samples. The results showed that the contents of thiols and aldehydes are closely related to the brands and origins of beers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Counting Molecules by Desorption Ionization and Mass Spectrometry/Mass Spectrometry.

    ERIC Educational Resources Information Center

    Cooks, R. G.; Busch, K. L.

    1982-01-01

    Discusses two newer methods in mass spectrometry and shows how they can increase signal and signal-to-noise ratios, respectively. The first method, desorption ionization (DI), increases sensitivity while the second method, mass spectrometry/mass spectrometry (MS/MS), increases specificity. Together, the two methods offer improved analytical…

  20. Determination of depleted uranium in urine via isotope ratio measurements using large-bore direct injection high efficiency nebulizer-inductively coupled plasma mass spectrometry.

    PubMed

    Westphal, Craig S; McLean, John A; Hakspiel, Shelly J; Jackson, William E; McClain, David E; Montaser, Akbar

    2004-09-01

    Inductively coupled plasma mass spectrometry (ICP-MS), coupled with a large-bore direct injection high efficiency nebulizer (LB-DIHEN), was utilized to determine the concentration and isotopic ratio of uranium in 11 samples of synthetic urine spiked with varying concentrations and ratios of uranium isotopes. Total U concentrations and (235)U/(238)U isotopic ratios ranged from 0.1 to 10 microg/L and 0.0011 and 0.00725, respectively. The results are compared with data from other laboratories that used either alpha-spectrometry or quadrupole-based ICP-MS with a conventional nebulizer-spray chamber arrangement. Severe matrix effects due to the high total dissolved solid content of the samples resulted in a 60 to 80% loss of signal intensity, but were compensated for by using (233)U as an internal standard. Accurate results were obtained with LB-DIHEN-ICP-MS, allowing for the positive identification of depleted uranium based on the (235)U/(238)U ratio. Precision for the (235)U/(238)U ratio is typically better than 5% and 15% for ICP-MS and alpha-spectrometry, respectively, determined over the concentrations and ratios investigated in this study, with the LB-DIHEN-ICP-MS system providing the most accurate results. Short-term precision (6 min) for the individual (235)U and (238)U isotopes in synthetic urine is better than 2% (N = 7), compared to approximately 5% for conventional nebulizer-spray chamber arrangements and >10% for alpha-spectrometry. The significance of these measurements is discussed for uranium exposure assessment of Persian Gulf War veterans affected by depleted uranium ammunitions.

  1. Immunocapture isotope dilution mass spectrometry in response to a pandemic influenza threat.

    PubMed

    Pierce, Carrie L; Williams, Tracie L; Santana, Wanda I; Levine, Marnie; Chen, Li-Mei; Cooper, Hans C; Solano, Maria I; Woolfitt, Adrian R; Marasco, Wayne A; Fang, He; Donis, Ruben O; Barr, John R

    2017-09-05

    As a result of recent advances in mass spectrometry-based protein quantitation methods, these techniques are now poised to play a critical role in rapid formulation of pandemic influenza vaccines. Analytical techniques that have been developed and validated on seasonal influenza strains can be used to increase the quality and decrease the time required to deliver protective pandemic vaccines to the global population. The emergence of a potentially pandemic avian influenza A (H7N9) virus in March of 2013, prompted the US public health authorities and the vaccine industry to initiate production of a pre-pandemic vaccine for preparedness purposes. To this end, we evaluated the feasibility of using immunocapture isotope dilution mass spectrometry (IC-IDMS) to evaluate the suitability of the underlying monoclonal and polyclonal antibodies (mAbs and pAbs) for their capacity to isolate the H7 hemagglutinin (HA) in this new vaccine for quantification by IDMS. A broad range of H7 capture efficiencies was observed among mAbs tested by IC-IDMS with FR-545, 46/6, and G3 A533 exhibiting the highest cross-reactivity capabilities to H7 of A/Shanghai/2/2013. MAb FR-545 was selected for continued assessment, evaluated by IC-IDMS for mAb reactivity against H7 in the H7N9 candidate vaccine virus and compared with/to reactivity to the reference polyclonal antiserum in allantoic fluid, purified whole virus, lyophilized whole virus and final detergent-split monovalent vaccine preparations for vaccine development. IC-IDMS assessment of FR-545 alongside IC-IDMS using the reference polyclonal antiserum to A/Shanghai/2/2013 and with the regulatory SRID method showed strong correlation and mAb IC-IDMS could have played an important role in the event a potential surrogate potency test was required to be rapidly implemented. Published by Elsevier Ltd.

  2. Ionization enhancement in atmospheric pressure chemical ionization and suppression in electrospray ionization between target drugs and stable-isotope-labeled internal standards in quantitative liquid chromatography/tandem mass spectrometry.

    PubMed

    Liang, H R; Foltz, R L; Meng, M; Bennett, P

    2003-01-01

    The phenomena of ionization suppression in electrospray ionization (ESI) and enhancement in atmospheric pressure chemical ionization (APCI) were investigated in selected-ion monitoring and selected-reaction monitoring modes for nine drugs and their corresponding stable-isotope-labeled internal standards (IS). The results showed that all investigated target drugs and their co-eluting isotope-labeled IS suppress each other's ionization responses in ESI. The factors affecting the extent of suppression in ESI were investigated, including structures and concentrations of drugs, matrix effects, and flow rate. In contrast to the ESI results, APCI caused seven of the nine investigated target drugs and their co-eluting isotope-labeled IS to enhance each other's ionization responses. The mutual ionization suppression or enhancement between drugs and their isotope-labeled IS could possibly influence assay sensitivity, reproducibility, accuracy and linearity in quantitative liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, calibration curves were linear if an appropriate IS concentration was selected for a desired calibration range to keep the response factors constant. Copyright 2003 John Wiley & Sons, Ltd.

  3. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    PubMed

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  4. Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes

    NASA Astrophysics Data System (ADS)

    Elmore, David; Phillips, Fred M.

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes 10Be, 14C, 26Al, 36Cl, and 129I can now be measured in small natural samples having isotopic abundances in the range 10-12 to 10-15 and as few as 105 atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of half-lives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  5. Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ricci, M. P.; Merritt, D. A.; Freeman, K. H.; Hayes, J. M.

    1994-01-01

    Methods are described for continuous monitoring of signals required for precise analyses of 13C, 18O, and 15N in gas streams containing varying quantities of CO2 and N2. The quantitative resolution (i.e. maximum performance in the absence of random errors) of these methods is adequate for determination of isotope ratios with an uncertainty of one part in 10(5); the precision actually obtained is often better than one part in 10(4). This report describes data-processing operations including definition of beginning and ending points of chromatographic peaks and quantitation of background levels, allowance for effects of chromatographic separation of isotopically substituted species, integration of signals related to specific masses, correction for effects of mass discrimination, recognition of drifts in mass spectrometer performance, and calculation of isotopic delta values. Characteristics of a system allowing off-line revision of parameters used in data reduction are described and an algorithm for identification of background levels in complex chromatograms is outlined. Effects of imperfect chromatographic resolution are demonstrated and discussed and an approach to deconvolution of signals from coeluting substances described.

  6. Using Punnett Squares to Facilitate Students' Understanding of Isotopic Distributions in Mass Spectrometry

    ERIC Educational Resources Information Center

    Sein, Lawrence T., Jr.

    2006-01-01

    The isotopic distribution in mass spectroscopy is described for identifying pure compounds, being able to distinguish molecular fragments by masses. Punnett squares are familiar, easy to compute, and often graphical which makes helpful to students and the relative distribution of isotopic combination is easily generated for even isotopic…

  7. Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.

    2006-05-09

    99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samplesmore » and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.« less

  8. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  9. Quantitative interaction proteomics using mass spectrometry.

    PubMed

    Wepf, Alexander; Glatter, Timo; Schmidt, Alexander; Aebersold, Ruedi; Gstaiger, Matthias

    2009-03-01

    We present a mass spectrometry-based strategy for the absolute quantification of protein complex components isolated through affinity purification. We quantified bait proteins via isotope-labeled reference peptides corresponding to an affinity tag sequence and prey proteins by label-free correlational quantification using the precursor ion signal intensities of proteotypic peptides generated in reciprocal purifications. We used this method to quantitatively analyze interaction stoichiometries in the human protein phosphatase 2A network.

  10. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    PubMed

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the

  11. Quantitation of peptides from non-invasive skin tapings using isotope dilution and tandem mass spectrometry.

    PubMed

    Reisdorph, Nichole; Armstrong, Michael; Powell, Roger; Quinn, Kevin; Legg, Kevin; Leung, Donald; Reisdorph, Rick

    2018-05-01

    Previous work from our laboratories utilized a novel skin taping method and mass spectrometry-based proteomics to discover clinical biomarkers of skin conditions; these included atopic dermatitis, Staphylococcus aureus colonization, and eczema herpeticum. While suitable for discovery purposes, semi-quantitative proteomics is generally time-consuming and expensive. Furthermore, depending on the method used, discovery-based proteomics can result in high variation and inadequate sensitivity to detect low abundant peptides. Therefore, we strove to develop a rapid, sensitive, and reproducible method to quantitate disease-related proteins from skin tapings. We utilized isotopically-labeled peptides and tandem mass spectrometry to obtain absolute quantitation values on 14 peptides from 7 proteins; these proteins had shown previous importance in skin disease. The method demonstrated good reproducibility, dynamic range, and linearity (R 2  > 0.993) when n = 3 standards were analyzed across 0.05-2.5 pmol. The method was used to determine if differences exist between skin proteins in a small group of atopic versus non-atopic individuals (n = 12). While only minimal differences were found, peptides were detected in all samples and exhibited good correlation between peptides for 5 of the 7 proteins (R 2  = 0.71-0.98). This method can be applied to larger cohorts to further establish the relationships of these proteins to skin disease. Copyright © 2017. Published by Elsevier B.V.

  12. Concomitant Ion Effects on Isotope Ratio Measurements with Liquid Sampling – Atmospheric Pressure Glow Discharge Ion Source Orbitrap Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegg, Edward D.; Marcus, R. Kenneth; Hager, Georg

    2018-02-28

    In an effort to understand and improve the accuracy and precision of the liquid sampling- atmospheric pressure glow discharge (LS-APGD)/Orbitrap system, effects of concomitant ions on the acquired mass spectra are examined and presented. The LS-APGD/ Orbitrap instrument system is capable of high quality isotope ratio measurements, which are of high analytical interest for nuclear non-proliferation detection applications. The presence of background and concomitant ions (water clusters, matrix, and other analytes) has presented limitations in earlier studies. In order to mitigate these effects, an alternative quadrupole-Orbitrap hybrid mass spectrometer was employed in this study. This instrument configuration has a quadrupolemore » mass filter preceding the Orbitrap to filter-out undesired non-analyte ions. Results are presented for the analysis of U in the presence of Rb, Ag, Ba, and Pb as concomitants, each present at 5 µg/mL concentration. Progressive filtering of each concomitant ion shows steadily improved U isotope ratio performance. Ultimately, a 235U/238U ratio of 0.007133, with a relative accuracy of -2.1% and a relative standard deviation of 0.087% was achieved using this system, along with improved calibration linearity and lowered limits of detection. The resultant performance compares very favorably with other commonly accepted isotope ratio measurement platforms - surprisingly so for an ion trap type mass spectrometry instrument.« less

  13. Compact hydrogen/helium isotope mass spectrometer

    DOEpatents

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  14. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--preliminary study on TATP and PETN.

    PubMed

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    The application of isotopic techniques to investigations requiring the provision of evidence to a Court is limited. The objective of this research was to investigate the application of light stable isotopes and isotope ratio mass spectrometry (IRMS) to solve complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. Due to the current threat of organic peroxide explosives, such as triacetone triperoxide (TATP), research was undertaken to determine the potential of IRMS to differentiate samples of TATP that had been manufactured utilising different starting materials and/or manufacturing processes. In addition, due to the prevalence of pentaerythritoltetranitrate (PETN) in detonators, detonating cord, and boosters, the potential of the IRMS technique to differentiate PETN samples from different sources was also investigated. Carbon isotope values were measured in fourteen TATP samples, with three definite groups appearing in the initial sample set based on the carbon data alone. Four additional TATP samples (in a second set of samples) were distinguishable utilising the carbon and hydrogen isotopic compositions individually, and also in combination with the oxygen isotope values. The 3D plot of the carbon, oxygen and hydrogen data demonstrated the clear discrimination of the four samples of TATP. The carbon and nitrogen isotope values measured from fifteen PETN samples, allowed samples from different sources to be readily discriminated. This paper demonstrates the successful application of IRMS to the analysis of explosives of forensic interest to assist in discriminating samples from different sources. This research represents a preliminary evaluation of the IRMS technique for the measurement of stable isotope values in TATP and PETN samples, and supports the dedication of resources for a full evaluation of this application in order to achieve Court reportable IRMS results.

  15. Stable isotope ratio mass spectrometry and physical comparison for the forensic examination of grip-seal plastic bags.

    PubMed

    Taylor, Erica; Carter, James F; Hill, Jenny C; Morton, Carolyn; Daeid, Niamh Nic; Sleeman, Richard

    2008-05-20

    Plastic bags are frequently used to package drugs, explosives and other contraband. There exists, therefore, a requirement in forensic casework to compare bags found at different locations. This is currently achieved almost exclusively by the use of physical comparisons such as birefringence patterns. This paper discusses some of the advantages and shortcomings of this approach, and presents stable isotope ratio mass spectrometry (IRMS) as a supplementary tool for effecting comparisons of this nature. Carbon and hydrogen isotopic data are presented for sixteen grip-seal plastic bags from a wide range of sources, in order to demonstrate the range of values which is likely to be encountered. Both isotopic and physical comparison (specifically birefringence) techniques are then applied to the analysis of rolls of bags from different manufacturing lots from a leading manufacturer. Both approaches are able to associate bags from a common production batch. IRMS can be applied to small fragments which are not amenable to physical comparisons, and is able to discriminate bags which could be confused using birefringence patterns alone. Similarly, in certain cases birefringence patterns discriminate bags with similar isotopic compositions. The two approaches are therefore complementary. When more than one isotopically distinct region exists within a bag (e.g. the grip-seal is distinct from the body) the ability to discriminate and associate bags is greatly increased.

  16. The Potential of Isotope Ratio Mass Spectrometry (IRMS) and Gas Chromatography-IRMS Analysis of Triacetone Triperoxide in Forensic Explosives Investigations.

    PubMed

    Bezemer, Karlijn D B; Koeberg, Mattijs; van der Heijden, Antoine E D M; van Driel, Chris A; Blaga, Cornelia; Bruinsma, Jildert; van Asten, Arian C

    2016-09-01

    Studying links between triacetone triperoxide (TATP) samples from crime scenes and suspects can assist in criminal investigations. Isotope ratio mass spectrometry (IRMS) and gas chromatography (GC)-IRMS were used to measure the isotopic compositions of TATP and its precursors acetone and hydrogen peroxide. In total, 31 TATP samples were synthesized with different raw material combinations and reaction conditions. For carbon, a good differentiation and a linear relationship were observed for acetone-TATP combinations. The extent of negative (δ(13) C) fractionation depended on the reaction yield. Limited enrichment was observed for the hydrogen isotope (δ(2) H) values of the TATP samples probably due to a constant exchange of hydrogen atoms in aqueous solution. For oxygen (δ(18) O), the small isotopic range and excess of water in hydrogen peroxide resulted in poor differentiation. GC-IRMS and IRMS data were comparable except for one TATP sample prepared with high acid concentration demonstrating the potential of compound-specific isotope analysis. Carbon IRMS has practical use in forensic TATP investigations. © 2016 American Academy of Forensic Sciences.

  17. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    PubMed

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-03

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Detection of bio-signature by microscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Wiesendanger, R.; Neuland, M., B.; Meyer, S.; Wurz, P.; Neubeck, A.; Ivarsson, M.; Riedo, V.; Moreno-Garcia, P.; Riedo, A.; Knopp, G.

    2017-09-01

    We demonstrate detection of micro-sized fossilized bacteria by means of microscopy and mass spectrometry. The characteristic structures of lifelike forms are visualized with a micrometre spatial resolution and mass spectrometric analyses deliver elemental and isotope composition of host and fossilized materials. Our studies show that high selectivity in isolation of fossilized material from host phase can be achieved while applying a microscope visualization (location), a laser ablation ion source with sufficiently small laser spot size and applying depth profiling method. Our investigations shows that fossilized features can be well isolated from host phase. The mass spectrometric measurements can be conducted with sufficiently high accuracy and precision yielding quantitative elemental and isotope composition of micro-sized objects. The current performance of the instrument allows the measurement of the isotope fractionation in per mill level and yield exclusively definition of the origin of the investigated species by combining optical visualization of investigated samples (morphology and texture), chemical characterization of host and embedded in the host micro-sized structure. Our isotope analyses involved bio-relevant B, C, S, and Ni isotopes which could be measured with sufficiently accuracy to conclude about the nature of the micro-sized objects.

  19. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.

  20. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Linking high resolution mass spectrometry data with exposure ...

    EPA Pesticide Factsheets

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe results of a study that links HRMS data with exposure predictions from the U.S. EPA's ExpoCast™ program and in vitro bioassay data from the U.S. interagency Tox21 consortium. Vacuum dust samples were collected from 56 households across the U.S. as part of the American Healthy Homes Survey (AHHS). Sample extracts were analyzed using liquid chromatography time-of-flight mass spectrometry (LC–TOF/MS) with electrospray ionization. On average, approximately 2000 molecular features were identified per sample (based on accurate mass) in negative ion mode, and 3000 in positive ion mode. Exact mass, isotope distribution, and isotope spacing were used to match molecular features with a unique listing of chemical formulas extracted from EPA's Distributed Structure-Searchable Toxicity (DSSTox) database. A total of 978 DSSTox formulas were consistent with the dust LC–TOF/molecular feature data (match score ≥ 90); these formulas mapped to 3228 possible chemicals in the database. Correct assignment of a unique chemical to a given formula required additional validation steps. Each suspect chemical was prioritized for follow-up confirmation using abundance and detection frequency results, along wi

  2. Profiling of new psychoactive substances (NPS) by using stable isotope ratio mass spectrometry (IRMS): study on the synthetic cannabinoid 5F-PB-22.

    PubMed

    Münster-Müller, S; Scheid, N; Holdermann, T; Schneiders, S; Pütz, M

    2018-05-21

    In this paper results of a pilot study on the profiling of the synthetic cannabinoid receptor agonist 5F-PB-22 (5F-QUPIC, pentylfluoro-1H-indole-3-carboxylic acid-8-quinolinyl ester) via isotope ratio mass spectrometry are presented. It is focused on δ 13 C, δ 15 N and δ 2 H isotope ratios, which are determined using elemental analyser (EA) and high temperature elemental analyser (TC/EA) coupled to an isotope ratio mass spectrometer (IRMS). By means of a sample of pure material of 5F-PB-22 it is shown that the extraction of 5F-PB-22 from herbal material, a rapid clean-up procedure, or preparative column chromatography had no influences on the isotope ratios. Furthermore, 5F-PB-22 was extracted from fourteen different herbal blend samples ("Spice products" from police seizures) and analysed via IRMS, yielding three clusters containing seven, five and two samples, distinguishable through their isotopic composition, respectively. It is assumed that herbal blends in each cluster have been manufactured from individual batches of 5F-PB-22. This article is protected by copyright. All rights reserved.

  3. Utility of mass spectrometry in the diagnosis of prion diseases

    USDA-ARS?s Scientific Manuscript database

    We developed a sensitive mass spectrometry-based method of quantitating the prions present in a variety of mammalian species. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to their homologous stable isotope labeled internal standards were pre...

  4. Isotopologue Distributions of Peptide Product Ions by Tandem Mass Spectrometry: Quantitation of Low Levels of Deuterium Incorporation1

    PubMed Central

    Wang, Benlian; Sun, Gang; Anderson, David R.; Jia, Minghong; Previs, Stephen; Anderson, Vernon E.

    2007-01-01

    Protonated molecular peptide ions and their product ions generated by tandem mass spectrometry appear as isotopologue clusters due to the natural isotopic variations of carbon, hydrogen, nitrogen, oxygen and sulfur. Quantitation of the isotopic composition of peptides can be employed in experiments involving isotope effects, isotope exchange, isotopic labeling by chemical reactions, and studies of metabolism by stable isotope incorporation. Both ion trap and quadrupole-time of flight mass spectrometry are shown to be capable of determining the isotopic composition of peptide product ions obtained by tandem mass spectrometry with both precision and accuracy. Tandem mass spectra obtained in profile-mode of clusters of isotopologue ions are fit by non-linear least squares to a series of Gaussian peaks (described in the accompanying manuscript) which quantify the Mn/M0 values which define the isotopologue distribution (ID). To determine the isotopic composition of product ions from their ID, a new algorithm that predicts the Mn/M0 ratios is developed which obviates the need to determine the intensity of all of the ions of an ID. Consequently a precise and accurate determination of the isotopic composition a product ion may be obtained from only the initial values of the ID, however the entire isotopologue cluster must be isolated prior to fragmentation. Following optimization of the molecular ion isolation width, fragmentation energy and detector sensitivity, the presence of isotopic excess (2H, 13C, 15N, 18O) is readily determined within 1%. The ability to determine the isotopic composition of sequential product ions permits the isotopic composition of individual amino acid residues in the precursor ion to be determined. PMID:17559791

  5. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havrilla, George Joseph; McIntosh, Kathryn Gallagher; Judge, Elizabeth

    2016-10-20

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers themore » potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.« less

  6. Resonance Ionization Mass Spectrometry System for Measurement of Environmental Samples

    NASA Astrophysics Data System (ADS)

    Pibida, L.; McMahon, C. A.; Nörtershäuser, W.; Bushaw, B. A.

    2002-10-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4×10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed.

  7. Calibration strategies for the determination of stable carbon absolute isotope ratios in a glycine candidate reference material by elemental analyser-isotope ratio mass spectrometry.

    PubMed

    Dunn, Philip J H; Malinovsky, Dmitry; Goenaga-Infante, Heidi

    2015-04-01

    We report a methodology for the determination of the stable carbon absolute isotope ratio of a glycine candidate reference material with natural carbon isotopic composition using EA-IRMS. For the first time, stable carbon absolute isotope ratios have been reported using continuous flow rather than dual inlet isotope ratio mass spectrometry. Also for the first time, a calibration strategy based on the use of synthetic mixtures gravimetrically prepared from well characterised, highly (13)C-enriched and (13)C-depleted glycines was developed for EA-IRMS calibration and generation of absolute carbon isotope ratio values traceable to the SI through calibration standards of known purity. A second calibration strategy based on converting the more typically determined delta values on the Vienna PeeDee Belemnite (VPDB) scale using literature values for the absolute carbon isotope ratio of VPDB itself was used for comparison. Both calibration approaches provided results consistent with those previously reported for the same natural glycine using MC-ICP-MS; absolute carbon ratios of 10,649 × 10(-6) with an expanded uncertainty (k = 2) of 24 × 10(-6) and 10,646 × 10(-6) with an expanded uncertainty (k = 2) of 88 × 10(-6) were obtained, respectively. The absolute carbon isotope ratio of the VPDB standard was found to be 11,115 × 10(-6) with an expanded uncertainty (k = 2) of 27 × 10(-6), which is in excellent agreement with previously published values.

  8. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  9. Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient Surface Imaging

    DOE PAGES

    Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim; ...

    2018-02-20

    Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less

  10. Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient Surface Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim

    Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less

  11. Preparation of a sewage sludge laboratory quality control material for butyltin compounds and their determination by isotope-dilution mass spectrometry.

    PubMed

    Zuliani, Tea; Milačič, Radmila; Ščančar, Janez

    2012-05-01

    The characterisation of a laboratory quality control material (QCM) for dibutyltin (DBT) and tributyltin (TBT) in sewage sludge is described. The reference values were determined by the use of two different types of isotope-dilution mass spectrometry: gas chromatography-mass spectrometry and gas chromatography-inductively coupled plasma mass spectrometry. To avoid possible analytical errors such as non-quantitative extraction and species degradation during sample preparation, different extraction methods were tested (microwave- and ultrasound-assisted extraction and mechanical stirring). The reference values were based on the unweighted means of results from the homogenisation and characterisation studies. The reference values obtained were 1,553 ± 87 and 534 ± 38 ng Sn g(-1) for DBT and TBT, respectively. In the uncertainty budget estimation, the sample inhomogeneity and between-method imprecision were taken into account. The concentrations of DBT and TBT in QCM are similar to those in the harbour sediment certified reference material PACS-2. Likewise, the levels of DBT and TBT are in the range of these compounds normally present in sewage sludge worldwide. In the future, the QCM will be used for an intercomparison study on DBT and TBT in sewage sludge, and as a day-to-day QCM during studies concerning the application of sewage sludge as an additive to artificial soil or as a raw material in civil engineering construction.

  12. The Lamont--Doherty Geological Observatory Isolab 54 isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    England, J. G.; Zindler, A.; Reisberg, L. C.; Rubenstone, J. L.; Salters, V.; Marcantonio, F.; Bourdon, B.; Brueckner, H.; Turner, P. J.; Weaver, S.; Read, P.

    1992-12-01

    The Lamont--Doherty Geological Observatory (LDGO) Isolab 54 is a double focussing isotope ratio mass spectrometer that allows the measurement of thermal ions produced on a hot filament, (thermal-ionization mass spectrometry (TIMS)), secondary ions produced by sputtering a sample using a primary ion beam, (secondary ion mass spectrometry (SIMS)), and sputtered neutrals resonantly ionized using laser radiation, (sputter-induced resonance ionization mass spectrometry (SIRIMS)). Sputtering is carried out using an Ar primary beam generated in a duoplasmatron and focussed onto the sample using a two-lens column. Resonance ionization is accomplished using a frequency-doubled dye laser pumped by an excimer laser. The Isolab's forward geometry analyzer, consisting of an electrostatic followed by a magnetic sector, allows the simultaneous collection of different isotopes of the same element. This instrument is the first to have a multicollector that contains an ion-counting system based on a microchannel plate as well as traditional Faraday cups. A second electrostatic sector after the multicollector is equipped with an ion-counting Daly detector to allow high abundance sensitivity for measurements of large dynamics range. Selectable source, collector, [alpha] and energy slits on the instrument allow analyses to be made over a range of mass resolving powers and analyzer acceptances. Recent applications of the instrument have included the analyses of U by TIMS, Hf, Th and Re by SIMS and Re and Os by SIRIMS.

  13. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.

    PubMed

    Xu, Peng-Xiang; Hu, An-Fu; Hu, Dan; Gao, Xiang; Zhao, Yu-Fen

    2008-10-01

    Several O-2',3'-isopropylideneuridine-O-5'-phosphoramidate monoesters were synthesized and analyzed by negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)). Two kinds of novel rearrangement reactions were observed due to the difference in the amino acid in the nucleoside phosphoramidate monoesters, and possible mechanisms were proposed. One involves a five-membered cyclic transition state. The other is formation of a stable five-membered ring intermediate by Michael addition. Results were confirmed by tandem mass spectrometry and isotopically labeled hydrogen atoms. Furthermore, the internal hydrogen exchange between active hydrogen and methyl acrylate in the heated capillary of the mass spectrometer was found. The characteristic fragmentation behavior in ESI-MS may be used to monitor this kind of compounds in the biological metabolism.

  14. Determination of 90Sr and Pu isotopes in contaminated groundwater samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, Miroslav V.; Ostapczuk, Peter; Halicz, Ludwik; Hille, Ralf; Becker, J. Sabine

    2005-04-01

    A sensitive analytical method for determining the artificial radionuclides 90Sr, 239Pu and 240Pu at the ultratrace level in groundwater samples from the Semipalatinsk Test Site area in Kazakhstan by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS) was developed. In order to avoid possible isobaric interferences at m/z 90 for 90Sr determination (e.g. 90Zr+, 40Ar50Cr+, 36Ar54Fe+, 58Ni16O2+, 180Hf2+, etc.), the measurements were performed at medium mass resolution under cold plasma conditions. Pu was separated from uranium by means of extraction chromatography using Eichrom TEVA resin with a recovery of 83%. The limits of detection for 90Sr, 239Pu and 240Pu in water samples were determined as 11, 0.12 and 0.1 fg ml-1, respectively. Concentrations of 90Sr and 239Pu in contaminated groundwater samples ranged from 18 to 32 and from 28 to 856 fg ml-1, respectively. The 240Pu/239Pu isotopic ratio in groundwater samples was measured as 0.17. This isotope ratio indicates that the most probable source of contamination of the investigated groundwater samples was the nuclear weapons tests at the Semipalatinsk Test Site conducted by the USSR in the 1960s.

  15. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank

    2016-01-01

    Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the

  16. Detecting animal by-product intake using stable isotope ratio mass spectrometry (IRMS).

    PubMed

    da Silva, D A F; Biscola, N P; Dos Santos, L D; Sartori, M M P; Denadai, J C; da Silva, E T; Ducatti, C; Bicudo, S D; Barraviera, B; Ferreira, R S

    2016-11-01

    Sheep are used in many countries as food and for manufacturing bioproducts. However, when these animals consume animal by-products (ABP), which is widely prohibited, there is a risk of transmitting scrapie - a fatal prion disease in human beings. Therefore, it is essential to develop sensitive methods to detect previous ABP intake to select safe animals for producing biopharmaceuticals. We used stable isotope ratio mass spectrometry (IRMS) for 13 C and 15 N to trace animal proteins in the serum of three groups of sheep: 1 - received only vegetable protein (VP) for 89 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets with 30% bovine meat and bone meal (MBM) added to a vegetable diet (from days 16-89 in the AVP group and until day 49 in the AVPR group, when MBM was removed). The AVPR group showed 15 N equilibrium 5 days after MBM removal (54th day). Conversely, 15 N equilibrium in the AVP group occurred 22 days later (76th day). The half-life differed between these groups by 3.55 days. In the AVPR group, 15 N elimination required 53 days, which was similar to this isotope's incorporation time. Turnover was determined based on natural 15 N signatures. IRMS followed by turnover calculations was used to evaluate the time period for the incorporation and elimination of animal protein in sheep serum. The δ 13 C and δ 15 N values were used to track animal protein in the diet. This method is biologically and economically relevant for the veterinary field because it can track protein over time or make a point assessment of animal feed with high sensitivity and resolution, providing a low-cost analysis coupled with fast detection. Isotopic profiles could be measured throughout the experimental period, demonstrating the potential to use the method for traceability and certification assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    PubMed

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kilgour, David P. A.; Hughes, Sam; Kilgour, Samantha L.; Mackay, C. Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K.; Clarke, David J.; Goodlett, David R.

    2017-02-01

    We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks.

  19. Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry.

    PubMed

    Kilgour, David P A; Hughes, Sam; Kilgour, Samantha L; Mackay, C Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K; Clarke, David J; Goodlett, David R

    2017-02-01

    We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks. Graphical Abstract ᅟ.

  20. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    PubMed

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Quantification of four artificial sweeteners in Finnish surface waters with isotope-dilution mass spectrometry.

    PubMed

    Perkola, Noora; Sainio, Pirjo

    2014-01-01

    The artificial sweeteners sucralose (SCL), acesulfame (ACS), saccharin (SAC), and cyclamate (CYC) have been detected in environmental waters in Europe and North America. Higher environmental levels are expected in view of the increasing consumption of these food additives. In this study, an isotope-dilution mass spectrometry (IDMS) LC-MS/MS method was developed and validated for quantifying the four artificial sweeteners in boreal lakes (n = 3) and rivers (n = 12). The highest concentrations of ACS, SAC, CYC and SCL were 9,600, 490, 210 and 1000 ng/L, respectively. ACS and SAC were detected in all studied samples, and CYC and SCL in 98% and 56% of the samples. Seasonal trends of ACS and SAC were observed in some rivers. ACS and SCL concentrations in rivers correlated linearly with population equivalents of the wastewater treatment plants in the catchment areas, whereas SAC and CYC concentrations depend more on the source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Delta(13)C, delta(15)N and delta(2)H isotope ratio mass spectrometry of ephedrine and pseudoephedrine: application to methylamphetamine profiling.

    PubMed

    Collins, Michael; Cawley, Adam T; Heagney, Aaron C; Kissane, Luke; Robertson, James; Salouros, Helen

    2009-07-01

    Conventional chemical profiling of methylamphetamine has been used for many years to determine the synthetic route employed and where possible to identify the precursor chemicals used. In this study stable isotope ratio analysis was investigated as a means of determining the origin of the methylamphetamine precursors, ephedrine and pseudoephedrine. Ephedrine and pseudoephedrine may be prepared industrially by several routes. Results are presented for the stable isotope ratios of carbon (delta(13)C), nitrogen (delta(15)N) and hydrogen (delta(2)H) measured in methylamphetamine samples synthesized from ephedrine and pseudoephedrine of known provenance. It is clear from the results that measurement of the delta(13)C, delta(15)N and delta(2)H stable isotope ratios by elemental analyzer/thermal conversion isotope ratio mass spectrometry (EA/TC-IRMS) in high-purity methylamphetamine samples will allow determination of the synthetic source of the ephedrine or pseudoephedrine precursor as being either of a natural, semi-synthetic, or fully synthetic origin. Copyright (c) 2009 Commonwealth of Australia.

  3. Collaborative trial validation study of two methods, one based on high performance liquid chromatography-tandem mass spectrometry and on gas chromatography-mass spectrometry for the determination of acrylamide in bakery and potato products.

    PubMed

    Wenzl, Thomas; Karasek, Lubomir; Rosen, Johan; Hellenaes, Karl-Erik; Crews, Colin; Castle, Laurence; Anklam, Elke

    2006-11-03

    A European inter-laboratory study was conducted to validate two analytical procedures for the determination of acrylamide in bakery ware (crispbreads, biscuits) and potato products (chips), within a concentration range from about 20 microg/kg to about 9000 microgg/kg. The methods are based on gas chromatography-mass spectrometry (GC-MS) of the derivatised analyte and on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) of native acrylamide. Isotope dilution with isotopically labelled acrylamide was an integral part of both methods. The study was evaluated according to internationally accepted guidelines. The performance of the HPLC-MS/MS method was found to be superior to that of the GC-MS method and to be fit-for-the-purpose.

  4. Correction for isotopic interferences between analyte and internal standard in quantitative mass spectrometry by a nonlinear calibration function.

    PubMed

    Rule, Geoffrey S; Clark, Zlatuse D; Yue, Bingfang; Rockwood, Alan L

    2013-04-16

    Stable isotope-labeled internal standards are of great utility in providing accurate quantitation in mass spectrometry (MS). An implicit assumption has been that there is no "cross talk" between signals of the internal standard and the target analyte. In some cases, however, naturally occurring isotopes of the analyte do contribute to the signal of the internal standard. This phenomenon becomes more pronounced for isotopically rich compounds, such as those containing sulfur, chlorine, or bromine, higher molecular weight compounds, and those at high analyte/internal standard concentration ratio. This can create nonlinear calibration behavior that may bias quantitative results. Here, we propose the use of a nonlinear but more accurate fitting of data for these situations that incorporates one or two constants determined experimentally for each analyte/internal standard combination and an adjustable calibration parameter. This fitting provides more accurate quantitation in MS-based assays where contributions from analyte to stable labeled internal standard signal exist. It can also correct for the reverse situation where an analyte is present in the internal standard as an impurity. The practical utility of this approach is described, and by using experimental data, the approach is compared to alternative fits.

  5. Improved δ(13)C analysis of amino sugars in soil by ion chromatography-oxidation-isotope ratio mass spectrometry.

    PubMed

    Dippold, Michaela A; Boesel, Stefanie; Gunina, Anna; Kuzyakov, Yakov; Glaser, Bruno

    2014-03-30

    Amino sugars build up microbial cell walls and are important components of soil organic matter. To evaluate their sources and turnover, δ(13)C analysis of soil-derived amino sugars by liquid chromatography was recently suggested. However, amino sugar δ(13)C determination remains challenging due to (1) a strong matrix effect, (2) CO2 -binding by alkaline eluents, and (3) strongly different chromatographic behavior and concentrations of basic and acidic amino sugars. To overcome these difficulties we established an ion chromatography-oxidation-isotope ratio mass spectrometry method to improve and facilitate soil amino sugar analysis. After acid hydrolysis of soil samples, the extract was purified from salts and other components impeding chromatographic resolution. The amino sugar concentrations and δ(13)C values were determined by coupling an ion chromatograph to an isotope ratio mass spectrometer. The accuracy and precision of quantification and δ(13)C determination were assessed. Internal standards enabled correction for losses during analysis, with a relative standard deviation <6%. The higher magnitude peaks of basic than of acidic amino sugars required an amount-dependent correction of δ(13)C values. This correction improved the accuracy of the determination of δ(13)C values to <1.5‰ and the precision to <0.5‰ for basic and acidic amino sugars in a single run. This method enables parallel quantification and δ(13)C determination of basic and acidic amino sugars in a single chromatogram due to the advantages of coupling an ion chromatograph to the isotope ratio mass spectrometer. Small adjustments of sample amount and injection volume are necessary to optimize precision and accuracy for individual soils. Copyright © 2014 John Wiley & Sons, Ltd.

  6. [Determination of endogenous agmatine in rat plasma by isotope dilution-gas chromatography-mass spectrometry].

    PubMed

    Qiu, Zhongli; Lin, Ying; Xiong, Zhili; Xie, Jianwei

    2014-07-01

    A method for the determination of endogenous agmatine in rat plasma was developed by isotope dilution-gas chromatography-negative chemical ionization mass spectrometry (GC-NCI/MS). The plasma samples were analyzed after protein precipitation, evaporation, derivatization by hexafluoroacetone (HFAA), and clean-up on a Florisil SPE column. The GC-MS analysis utilized stable isotope d8-agmatine as internal standard. The samples after treatme were tested by negative chemical ionization with selected ion monitoring (SIM) which was set at m/z 492 (molecular ion of agmatine) and m/z 500 (molecular ion of internal standard). The limit of detection (LOD) of agmatine standard solution was 0.005 7 ng/mL. The calibration curve of the agmatine spiked in rat plasma showed a good linear relationship at the range of 1.14-57.0 ng/mL (r = 0.997). The recoveries of agmatine spiked in rat plasma ranged from 92.3% to 109.8%. Inter-day and intra-day precisions were less than 15%. The average concentration level of agmatine in rat plasma was (22 +/- 9) ng/mL, and there was no significant difference between male and female SD rats (p > 0.05). The method is high sensitive and specific, and can be used for the determination of endogenous agmatine in plasma. It provides a strong support for the subsequent research of agmatine.

  7. Mass spectrometry in grape and wine chemistry. Part II: The consumer protection.

    PubMed

    Flamini, Riccardo; Panighel, Annarita

    2006-01-01

    Controls in food industry are fundamental to protect the consumer health. For products of high quality, warranty of origin and identity is required and analytical control is very important to prevent frauds. In this article, the "state of art" of mass spectrometry in enological chemistry as a consumer safety contribute is reported. Gas chromatography-mass spectrometry (GC/MS) and liquid-chromatography-mass spectrometry (LC/MS) methods have been developed to determine pesticides, ethyl carbamate, and compounds from the yeast and bacterial metabolism in wine. The presence of pesticides in wine is mainly linked to the use of dicarboxyimide fungicides on vineyard shortly before the harvest to prevent the Botrytis cinerea attack of grape. Pesticide residues are regulated at maximum residue limits in grape of low ppm levels, but significantly lower levels in wine have to be detected, and mass spectrometry offers effective and sensitive methods. Moreover, mass spectrometry represent an advantageous alternative to the radioactive-source-containing electron capture detector commonly used in GC analysis of pesticides. Analysis of ochratoxin A (OTA) in wine by LC/MS and multiple mass spectrometry (MS/MS) permits to confirm the toxin presence without the use of expensive immunoaffinity columns, or time and solvent consuming sample derivatization procedures. Inductively coupled plasma-mass spectrometry (ICP/MS) is used to control heavy metals contamination in wine, and to verify the wine origin and authenticity. Isotopic ratio-mass spectrometry (IRMS) is applied to reveal wine watering and sugar additions, and to determine the product origin and traceability.

  8. Use of MALDI Mass Spectrometry for Identification of Microbes

    NASA Astrophysics Data System (ADS)

    Wilkins, C. L.; Stump, M.; Jones, J.; Lay, J. O.; Fleming, R.

    2003-12-01

    Recently, it has been demonstrated that bacteria can be characterized using whole cells and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, identification of specific bacterial proteins usually requires analysis of cellular fractions or purified extracts. This presentation will discuss the first application of Fourier transform mass spectrometry (FTMS) to analysis of bacterial proteins directly from whole cells. In this research it is seen that accurate mass MALDI-FTMS can be used to characterize specific ribosomal proteins directly from Escherichia coli cells. Using the high-accuracy mass measurements and high resolution isotope profile data thus available it is possible to confirm posttranslational modifications proposed previously on the basis of low resolution mass measurements. In our initial work, ribosomal proteins from E. coli whole cells were observed with errors of less than 27 ppm. This was accomplished directly from whole cells without fractionation, concentration, or overt overexpression of characteristic cellular proteins. More recently, by use of carbon and nitrogen isotopically-depleted growth media additional E. coli proteins have been identified with even smaller mass measurement errors. MALDI FTMS also provided information regarding E. coli lipids in the low-mass region. Although ions with m/z values below 1000 were previously observed by FTMS of whole cells, the work to be presented was the first report of detection of ions in the 5000 to 10 000 m/z range by MALDI-FTMS using whole cells. The implications of these results for genus, species, and strain assignments of such organisms will be discussed.

  9. Determination of gamma-aminobutyric acid in food matrices by isotope dilution hydrophilic interaction chromatography coupled to mass spectrometry.

    PubMed

    Zazzeroni, Raniero; Homan, Andrew; Thain, Emma

    2009-08-01

    The estimation of the dietary intake of gamma-aminobutyric acid (GABA) is dependent upon the knowledge of its concentration values in food matrices. To this end, an isotope dilution liquid chromatography-mass spectrometry method has been developed employing the hydrophilic interaction chromatography technique for analyte separation. This approach enabled accurate quantification of GABA in apple, potato, soybeans, and orange juice without the need of a pre- or post-column derivatization reaction. A selective and precise analytical measurement has been obtained with a triple quadrupole mass spectrometer operating in multiple reaction monitoring using the method of standard additions and GABA-d(6) as an internal standard. The concentrations of GABA found in the matrices tested are 7 microg/g of apple, 342 microg/g of potatoes, 211 microg/g of soybeans, and 344 microg/mL of orange juice.

  10. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    NASA Astrophysics Data System (ADS)

    Bischoff, James L.; Wooden, Joe; Murphy, Fred; Williams, Ross W.

    2005-04-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ˜60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few μm deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems.

  11. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  12. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  13. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elementalmore » composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.« less

  14. Quantification of Sulforaphane Mercapturic Acid Pathway Conjugates in Human Urine by High-Performance Liquid Chromatography and Isotope-Dilution Tandem Mass Spectrometry

    PubMed Central

    Egner, Patricia A.; Kensler, Thomas W.; Chen, Jian-Guo; Gange, Stephen J.; Groopman, John D.; Friesen, Marlin D.

    2011-01-01

    We report validation of the first high-pressure liquid chromatography isotope-dilution mass spectrometry method to measure sulforaphane (SFN) and its glutathione-derived conjugates in human urine. As epidemiological evidence continues to mount that the consumption of a diet rich in cruciferous vegetables may reduce the risk of certain cancers, the development of analytical methodologies to accurately measure isothiocyanates (ITCs) and their subsequent metabolic products becomes paramount. SFN, the principal ITC produced by broccoli, is an effective chemopreventive agent with multiple modes of action. SFN and SFN conjugates have often been measured collectively utilizing a cyclocondensation assay with 1,2-benzenedithiol. More recently, some of the major SFN conjugates have been determined using mass spectrometry. Here, triple-quadrupole mass spectrometry has been coupled with the use of stable isotope-labeled internal standards of D8-SFN and all four D8-SFN mercapturic acid pathway conjugates to provide an accurate, precise, sensitive, and specific method for analysis of these compounds. Using urine samples collected during an earlier intervention with broccoli sprouts, the concentrations of SFN, SFN-cysteine, and the mercapturic acid SFN-N-acetylcysteine were sufficiently high such that as little as 50 nL of urine was required for analysis. Although each study participant received an equivalent dose of broccoli sprout preparation, the interindividual conversion of the precursor glucosinolate to SFN varied over 100-fold. These 98 urines provided an ideal sample set for examining the robustness of the assay. The mean urinary concentrations ± standard deviations in overnight voids following ingestion of the first dose were 4.7 ± 5.1, 0.03 ± 0.05, 0.06 ± 0.06, 18 ± 15, and 42 ± 23 nmol/mg creatinine for SFN, SFN-glutathione, SFN-cysteine-glycine, SFN-cysteine, and SFN-N-acetylcysteine, respectively. This method determines SFN and all four SFN glutathione

  15. delta 13C analyses of vegetable oil fatty acid components, determined by gas chromatography--combustion--isotope ratio mass spectrometry, after saponification or regiospecific hydrolysis.

    PubMed

    Woodbury, S E; Evershed, R P; Rossell, J B

    1998-05-01

    The delta 13C values of the major fatty acids of several different commercially important vegetable oils were measured by gas chromatography--combustion--isotope ratio mass spectrometry. The delta 13C values obtained were found to fall into two distinct groups, representing the C3 and C4 plants classes from which the oils were derived. The delta 13C values of the oils were measured by continuous flow elemental isotope ratio mass spectrometry and were found to be similar to their fatty acids, with slight differences between individual fatty acids. Investigations were then made into the influence on the delta 13C values of fatty acids of the position occupied on the glycerol backbone. Pancreatic lipase was employed to selectively hydrolyse fatty acids from the 1- and 3-positions with the progress of the reaction being followed by high-temperature gas chromatography in order to determine the optimum incubation time. The 2-monoacylglycerols were then isolated by thin-layer chromatography and fatty acid methyl esters prepared. The delta 13C values obtained indicate that fatty acids from any position on the glycerol backbone are isotopically identical. Thus, whilst quantification of fatty acid composition at the 2-position and measurement of delta 13C values of oils and their major fatty acids are useful criteria in edible oil purity assessment, measurement of delta 13C values of fatty acids from the 2-position does not assist with oil purity assignments.

  16. Mass-independent isotope fractionation of Mo, Ru, Cd, and Te

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Moynier, F.; Albarède, F.

    2006-12-01

    The variation of the mean charge distribution in the nucleus with the neutron number of different isotopes induces a tenuous shift of the nuclear field. The mass fractionation induced during phase changes is irregular, notably with 'staggering' between odd and even masses, and becomes increasingly non-linear for neutron-rich isotopes. A strong correlation is observed between the deviation of the isotopic effects from the linear dependence with mass and the corresponding nuclear charge radii. We first demonstrated on a number of elements the existence of such mass-independent isotope fractionation in laboratory experiments of solvent extraction with a macrocyclic compound. The isotope ratios were analyzed by multiple-collector inductively coupled plasma mass spectrometry with a typical precision of <100 ppm. The isotopes of odd and even atomic masses are enriched in the solvent to an extent that closely follows the variation of their nuclear charge radii. The present results fit Bigeleisen's (1996) model, which is the standard mass-dependent theory modified to include a correction term named the nuclear field shift effect. For heavy elements like uranium, the mass-independent effect is important enough to dominate the mass-dependent effect. We subsequently set out to compare the predictions of Bigeleisen's theory with the isotopic anomalies found in meteorites. Some of these anomalies are clearly inconsistent with nucleosynthetic effects (either s- or r-processes). Isotopic variations of Mo and Ru in meteorites, especially in Allende (CV3), show a clear indication of nucleosynthetic components. However, the mass-independent anomaly of Ru observed in Murchison (CM2) is a remarkable exception which cannot be explained by the nucleosynthetic model, but fits the nuclear field shift theory extremely well. The abundances of the even atomic mass Te isotopes in the leachates of carbonaceous chondrites, Allende, Murchison, and Orgueil, fit a mass-dependent law well, but the

  17. Determination of the sulfur isotope ratio in carbonyl sulfide using gas chromatography/isotope ratio mass spectrometry on fragment ions 32S+, 33S+, and 34S+.

    PubMed

    Hattori, Shohei; Toyoda, Akari; Toyoda, Sakae; Ishino, Sakiko; Ueno, Yuichiro; Yoshida, Naohiro

    2015-01-06

    Little is known about the sulfur isotopic composition of carbonyl sulfide (OCS), the most abundant atmospheric sulfur species. We present a promising new analytical method for measuring the stable sulfur isotopic compositions (δ(33)S, δ(34)S, and Δ(33)S) of OCS using nanomole level samples. The direct isotopic analytical technique consists of two parts: a concentration line and online gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions (32)S(+), (33)S(+), and (34)S(+). The current levels of measurement precision for OCS samples greater than 8 nmol are 0.42‰, 0.62‰, and 0.23‰ for δ(33)S, δ(34)S, and Δ(33)S, respectively. These δ and Δ values show a slight dependence on the amount of injected OCS for volumes smaller than 8 nmol. The isotope values obtained from the GC-IRMS method were calibrated against those measured by a conventional SF6 method. We report the first measurement of the sulfur isotopic composition of OCS in air collected at Kawasaki, Kanagawa, Japan. The δ(34)S value obtained for OCS (4.9 ± 0.3‰) was lower than the previous estimate of 11‰. When the δ(34)S value for OCS from the atmospheric sample is postulated as the global signal, this finding, coupled with isotopic fractionation for OCS sink reactions in the stratosphere, explains the reported δ(34)S for background stratospheric sulfate. This suggests that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols.

  18. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    NASA Astrophysics Data System (ADS)

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-06-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy.

  19. High‐precision determination of lithium and magnesium isotopes utilising single column separation and multi‐collector inductively coupled plasma mass spectrometry

    PubMed Central

    Misra, Sambuddha; Lloyd, Nicholas; Elderfield, Henry; Bickle, Mike J.

    2017-01-01

    Rationale Li and Mg isotopes are increasingly used as a combined tool within the geosciences. However, established methods require separate sample purification protocols utilising several column separation procedures. This study presents a single‐step cation‐exchange method for quantitative separation of trace levels of Li and Mg from multiple sample matrices. Methods The column method utilises the macro‐porous AGMP‐50 resin and a high‐aspect ratio column, allowing quantitative separation of Li and Mg from natural waters, sediments, rocks and carbonate matrices following the same elution protocol. High‐precision isotope determination was conducted by multi‐collector inductively coupled plasma mass spectrometry (MC‐ICPMS) on the Thermo Scientific™ NEPTUNE Plus™ fitted with 1013 Ω amplifiers which allow accurate and precise measurements at ion beams ≤0.51 V. Results Sub‐nanogram Li samples (0.3–0.5 ng) were regularly separated (yielding Mg masses of 1–70 μg) using the presented column method. The total sample consumption during isotopic analysis is <0.5 ng Li and <115 ng Mg with long‐term external 2σ precisions of ±0.39‰ for δ7Li and ±0.07‰ for δ26Mg. The results for geological reference standards and seawater analysed by our method are in excellent agreement with published values despite the order of magnitude lower sample consumption. Conclusions The possibility of eluting small sample masses and the low analytical sample consumption make this method ideal for samples of limited mass or low Li concentration, such as foraminifera, mineral separates or dilute river waters. PMID:29078008

  20. Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry.

    PubMed

    Boulyga, S F; Becker, J S

    2001-07-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10(-4) and 10(-3) counts per atom were achieved for 238U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH+/U+ was 1.2 x 10(-4) and 1.4 x 10(-4), respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 microg L(-1) NBS U-020 standard solution was 0.11% (238U/235U) and 1.4% (236U/238U) using a MicroMist nebulizer and 0.25% (235U/238U) and 1.9% (236U/P38U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236U/238U ratio ranged from 10(-5) to 10(-3). Results obtained with ICP-MS, alpha- and gamma-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples.

  1. Standardization approaches in absolute quantitative proteomics with mass spectrometry.

    PubMed

    Calderón-Celis, Francisco; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2017-07-31

    Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and

  2. Simultaneous determination of the quantity and isotopic signature of dissolved organic matter from soil water using high-performance liquid chromatography/isotope ratio mass spectrometry.

    PubMed

    Scheibe, Andrea; Krantz, Lars; Gleixner, Gerd

    2012-01-30

    We assessed the accuracy and utility of a modified high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) system for measuring the amount and stable carbon isotope signature of dissolved organic matter (DOM) <1 µm. Using a range of standard compounds as well as soil solutions sampled in the field, we compared the results of the HPLC/IRMS analysis with those from other methods for determining carbon and (13)C content. The conversion efficiency of the in-line wet oxidation of the HPLC/IRMS averaged 99.3% for a range of standard compounds. The agreement between HPLC/IRMS and other methods in the amount and isotopic signature of both standard compounds and soil water samples was excellent. For DOM concentrations below 10 mg C L(-1) (250 ng C total) pre-concentration or large volume injections are recommended in order to prevent background interferences. We were able to detect large differences in the (13)C signatures of soil solution DOM sampled in 10 cm depth of plots with either C3 or C4 vegetation and in two different parent materials. These measurements also demonstrated changes in the (13)C signature that demonstrate rapid loss of plant-derived C with depth. Overall the modified HLPC/IRMS system has the advantages of rapid sample preparation, small required sample volume and high sample throughput, while showing comparable performance with other methods for measuring the amount and isotopic signature of DOM. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Cometary and interstellar dust grains - Analysis by ion microprobe mass spectrometry and other techniques

    NASA Technical Reports Server (NTRS)

    Zinner, Ernst

    1991-01-01

    A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.

  4. Reference measurements for total mercury and methyl mercury content in marine biota samples using direct or species-specific isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Krata, Agnieszka; Vassileva, Emilia; Bulska, Ewa

    2016-11-01

    The analytical procedures for reference measurements of the total Hg and methyl mercury (MeHg) mass fractions at various concentration levels in marine biota samples, candidates for certified reference materials (oyster and clam Gafrarium tumidum), were evaluated. Two modes of application of isotope dilution inductively coupled plasma mass spectrometry method (ID ICP-MS), namely direct isotope dilution and species-specific isotope dilution analysis with the use of two different quantification mass spectrometry techniques were compared. The entire ID ICP-MS measurement procedure was described by mathematical modelling and the combined uncertainty of measurement results was estimated. All factors influencing the final results as well as isotopic equilibrium were systematically investigated. This included the procedural blank, the moisture content in the biota samples and all factors affecting the blend ratio measurements (instrumental background, spectral interferences, dead time and mass discrimination effects as well as the repeatability of measured isotopic ratios). Modelling of the entire measurement procedures and the use of appropriate certified reference materials enable to assure the traceability of obtained values to the International System of Units (SI): the mole or the kilogram. The total mass fraction of mercury in oyster and clam biota samples, after correction for moisture contents, was found to be: 21.1 (1.1) 10(-9) kg kg(-1) (U =5.1% relative, k=2) and 390.0 (9.4) 10(-9) kg kg(-1) (U=2.4% relative, k=2), respectively. For the determination of mercury being present as methyl mercury, the non-chromatographic separation on anion-exchange resin AG1-X8 of the blended samples was applied. The content of MeHg (as Hg) in oyster sample was found: 4.81 (24) 10(-9)kgkg(-1) (U=5.0%, k=2) and 4.84 (21) 10(-9)kgkg(-1) (U=4.3%, k=2) with the use of quadrupole (ICP QMS) or sector field (ICP SFMS) inductively coupled plasma mass spectrometers, respectively. In the

  5. Cu isotope fractionation response to oxidative stress in a hepatic cell line studied using multi-collector ICP-mass spectrometry.

    PubMed

    Flórez, María R; Costas-Rodríguez, Marta; Grootaert, Charlotte; Van Camp, John; Vanhaecke, Frank

    2018-03-01

    Reactive oxygen species (ROS) are generated in biological processes involving electron transfer reactions and can act in a beneficial or deleterious way. When intracellular ROS levels exceed the cell's anti-oxidant capacity, oxidative stress occurs. In this work, Cu isotope fractionation was evaluated in HepG2 cells under oxidative stress conditions attained in various ways. HepG2 is a well-characterised human hepatoblastoma cell line adapted to grow under high oxidative stress conditions. During a pre-incubation stage, cells were exposed to a non-toxic concentration of Cu for 24 h. Subsequently, the medium was replaced and cells were exposed to one of three different external stressors: H 2 O 2 , tumour necrosis factor α (TNFα) or UV radiation. The isotopic composition of the intracellular Cu was determined by multi-collector ICP-mass spectrometry to evaluate the isotope fractionation accompanying Cu fluxes between cells and culture medium. For half of these setups, the pre-incubation solution also contained N-acetyl-cysteine (NAC) as an anti-oxidant to evaluate its protective effect against oxidative stress via its influence on the extent of Cu isotope fractionation. Oxidative stress caused the intracellular Cu isotopic composition to be heavier compared to that in untreated control cells. The H 2 O 2 and TNFα exposures rendered similar results, comparable to those obtained after mild UV exposure. The heaviest Cu isotopic composition was observed under the strongest oxidative conditions tested, i.e., when the cell surfaces were directly exposed to UV radiation without apical medium and in absence of NAC. NAC mitigated the extent of isotope fractionation in all cases.

  6. 236U measurement with accelerator mass spectrometry at CIAE

    NASA Astrophysics Data System (ADS)

    Wang, Xianggao; Jiang, Shan; He, Ming; Dong, Kejun; Wang, Wei; Li, Chaoli; He, Guozhu; Li, Shizhuo; Gong, Jie; Lu, Liyuan; Wu, Shaoyong

    2010-07-01

    236U is a long-lived radioactive isotope which is produced principally by thermal neutron capture on 235U. 236U may be potentially applied in geological research and nuclear safeguards. Accelerator mass spectrometry is presently the most sensitive technique for the measurement of 236U and a measurement method for long-lived heavy ion 236U has been developed. The set-up uses a dedicated injector and the newly proposed 208Pb 16O2- molecular ions for the simulation of 236U ion transport. A sensitivity of lower than 10 -10 has been achieved for the isotopic ratio 236U/ 238U in present work.

  7. Neuroscience and Accelerator Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmblad, M N; Buchholz, B A; Hillegonds, D J

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets ofmore » neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.« less

  8. Isotope pattern deconvolution for peptide mass spectrometry by non-negative least squares/least absolute deviation template matching

    PubMed Central

    2012-01-01

    Background The robust identification of isotope patterns originating from peptides being analyzed through mass spectrometry (MS) is often significantly hampered by noise artifacts and the interference of overlapping patterns arising e.g. from post-translational modifications. As the classification of the recorded data points into either ‘noise’ or ‘signal’ lies at the very root of essentially every proteomic application, the quality of the automated processing of mass spectra can significantly influence the way the data might be interpreted within a given biological context. Results We propose non-negative least squares/non-negative least absolute deviation regression to fit a raw spectrum by templates imitating isotope patterns. In a carefully designed validation scheme, we show that the method exhibits excellent performance in pattern picking. It is demonstrated that the method is able to disentangle complicated overlaps of patterns. Conclusions We find that regularization is not necessary to prevent overfitting and that thresholding is an effective and user-friendly way to perform feature selection. The proposed method avoids problems inherent in regularization-based approaches, comes with a set of well-interpretable parameters whose default configuration is shown to generalize well without the need for fine-tuning, and is applicable to spectra of different platforms. The R package IPPD implements the method and is available from the Bioconductor platform (http://bioconductor.fhcrc.org/help/bioc-views/devel/bioc/html/IPPD.html). PMID:23137144

  9. Isotope Ratio Mass Spectrometry and Shale Gas - What Is Possible with Current Technology?

    NASA Astrophysics Data System (ADS)

    Barrie, C. D.; Kasson, A.

    2014-12-01

    With ever increasing exploration and exploitation of 'unconventional' hydrocarbon resources, the drive to understand the origins, history and importance of these resources and their effects on the surrounding environment (i.e. ground waters) has never been more important. High-throughput, high-precision isotopic measurements are therefore a key tool in this industry to both understand the gas generated and monitor the development and stability of wells through time. With the advent of cavity ringdown spectroscopy (CRDS) instrumentation, there has been a push in some applications - environmental & atmospheric - to gather more and more data directly at the location of collection or at dedicated field stations. Furthermore, CRDS has resulted in users seeking greater autonomy of instrumentation and so-called black box technology. Traditionally IRMS technology has not met any of these demands, requiring very specific and extensive footprint, power and environmental requirements. This has meant that the 'Oil & Gas' sector, which for natural gases measurements requires GC-IRMS technology - not possible via CRDS - loses time, money and manpower as samples get sent to central facility or contract labs with potentially long lee times. However, recent developments in technology mean that IRMS systems exist which are benchtop, have much lower power requirements, standard power connections and as long as housed in a temperature controlled field stations can be deployed anywhere. Furthermore, with advances in electronics and software IRMS systems are approaching the black box level of newer instrumentation while maintaining the flexibility and abilities of isotope ratio mass spectrometry. This presentation will outline changes in IRMS technology applicable to the Oil & Gas industry, discuss the feasibility of true 'field' deployability and present results from a range of Oil & Gas samples.

  10. Imaging mass spectrometry statistical analysis.

    PubMed

    Jones, Emrys A; Deininger, Sören-Oliver; Hogendoorn, Pancras C W; Deelder, André M; McDonnell, Liam A

    2012-08-30

    Imaging mass spectrometry is increasingly used to identify new candidate biomarkers. This clinical application of imaging mass spectrometry is highly multidisciplinary: expertise in mass spectrometry is necessary to acquire high quality data, histology is required to accurately label the origin of each pixel's mass spectrum, disease biology is necessary to understand the potential meaning of the imaging mass spectrometry results, and statistics to assess the confidence of any findings. Imaging mass spectrometry data analysis is further complicated because of the unique nature of the data (within the mass spectrometry field); several of the assumptions implicit in the analysis of LC-MS/profiling datasets are not applicable to imaging. The very large size of imaging datasets and the reporting of many data analysis routines, combined with inadequate training and accessible reviews, have exacerbated this problem. In this paper we provide an accessible review of the nature of imaging data and the different strategies by which the data may be analyzed. Particular attention is paid to the assumptions of the data analysis routines to ensure that the reader is apprised of their correct usage in imaging mass spectrometry research. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-02-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1-11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines.

  12. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  13. Systematic forensic toxicological analysis by liquid-chromatography-quadrupole-time-of-flight mass spectrometry in serum and comparison to gas chromatography-mass spectrometry.

    PubMed

    Grapp, Marcel; Kaufmann, Christoph; Streit, Frank; Binder, Lutz

    2018-06-01

    Comprehensive screening procedures for psychoactive agents in body fluids are an essential task in clinical and forensic toxicology. With the continuous emergence and adaption of new psychoactive substances (NPS) keeping a screening method up to date is challenging. To meet these demands, hyphenated high-resolution mass spectrometry has gained interest as extensive and expandable screening approach. Here we present a comprehensive method for systematic toxicological analysis of serum by liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS) with data independent acquisition. The potential of this method was demonstrated by analysis of 247 authentic serum- and 12 post-mortem femoral blood samples. Thus 950 compounds, comprising 185 different drugs and metabolites could be identified. For the detected substances, including pharmaceutical substances, illicit drugs as well as NPS, serum concentrations were confirmed ranging from traces to toxic values indicating the capability for forensic toxicological requirements. Positive identification of drugs was achieved by accurate mass measurement (±5ppm for [M+H] + ; ±10ppm for [M-H] - ), retention time (±0.35min), isotopic pattern match (less than 10 m/z RMS [ppm]), isotope match intensity (less than 20% RMS) and the presence of at least two fragment ions. The LC-QTOF-MS procedure was shown to be superior to serum screening by GC-MS, since 240% (335 versus 141) more drugs were identified in serum samples compared to GC-MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    McDaniel, F. D.; Datar, S. A.; Nigam, M.; Ravi Prasad, G. V.

    2002-05-01

    Accelerator mass spectrometry (AMS) is commonly used to determine the abundance ratios of long-lived isotopes such as 10B, 14C, 36Cl, 129I, etc. to their stable counterparts at levels as low as 10 -16. Secondary ion mass spectrometry (SIMS) is routinely used to determine impurity levels in materials by depth profiling techniques. Trace-element accelerator mass spectrometry (TEAMS) is a combination of AMS and SIMS, presently being used at the University of North Texas, for high-sensitivity (ppb) impurity analyses of stable isotopes in semiconductor materials. The molecular break-up characteristics of AMS are used with TEAMS to remove the molecular interferences present in SIMS. Measurements made with different substrate/impurity combinations demonstrate that TEAMS has higher sensitivity for many elements than other techniques such as SIMS and can assist with materials characterization issues. For example, measurements of implanted As in the presence of Ge in Ge xSi 1- x/Si is difficult with SIMS because of molecular interferences from 74GeH, 29Si 30Si 16O, etc. With TEAMS, the molecular interferences are removed and higher sensitivities are obtained. Measured substrates include Si, SiGe, CoSi 2, GaAs and GaN. Measured impurities include B, N, F, Mg, P, Cl, Cr, Fe, Ni, Co, Cu, Zn, Ge, As, Se, Mo, Sn and Sb. A number of measurements will be presented to illustrate the range and power of TEAMS.

  15. Isotope-dilution gas chromatography-mass spectrometry method for the analysis of hydroxyurea.

    PubMed

    Garg, Uttam; Scott, David; Frazee, Clint; Kearns, Gregory; Neville, Kathleen

    2015-06-01

    Hydroxyurea is used in the treatment of various malignancies and sickle cell disease. There are limited studies on the pharmacokinetics of hydroxyurea, particularly in pediatric patients. An accurate, precise, and sensitive method is needed to support such studies and to monitor therapeutic adherence. We describe a novel gas chromatography-mass spectrometry (GC-MS) method for the determination of hydroxyurea concentration in plasma using stable labeled hydroxyurea C N2 as an internal standard. The method involved an organic extraction followed by the preparation of trimethylsilyl (TMS) derivatives of hydroxyurea for GC-MS selected ion-monitoring analysis. The following mass-to-charge (m/z) ratio ions for silated hydroxyurea and hydroxyurea C N2 were monitored: hydroxyurea-quantitative ion 277, qualifier ions 292 and 249; hydroxyurea C N2-quantitative ion 280, qualifier ion 295. This method was evaluated for reportable range, accuracy, within-run and between-run imprecisions, and limits of quantification. The reportable range for the method was 0.1-100 mcg/mL. All results were accurate within an allowable error of 15%. Within-run and between-run imprecisions were <15%. Samples were stable for at least 4 hours at room temperature, 2 months at -20°C, and 6 months at -70°C, and after 3 freeze/thaw cycles. Extraction efficiency for 1-, 5-, 10-, and 50-mcg/mL samples averaged 2.2%, 1.8%, 1.6%, and 1.4%, respectively. The isotope-dilution GC-MS method for analysis of hydroxyurea described here is accurate, sensitive, precise, and robust. Its characteristics make the method suitable for supporting pharmacokinetic studies and/or clinical therapeutic monitoring.

  16. Epiandrosterone sulfate prolongs the detectability of testosterone, 4-androstenedione, and dihydrotestosterone misuse by means of carbon isotope ratio mass spectrometry.

    PubMed

    Piper, Thomas; Putz, Marlen; Schänzer, Wilhelm; Pop, Valentin; McLeod, Malcolm D; Uduwela, Dimanthi R; Stevenson, Bradley J; Thevis, Mario

    2017-11-01

    In the course of investigations into the metabolism of testosterone (T) by means of deuterated T and hydrogen isotope ratio mass spectrometry, a pronounced influence of the oral administration of T on sulfoconjugated steroid metabolites was observed. Especially in case of epiandrosterone sulfate (EPIA_S), the contribution of exogenous T to the urinary metabolite was traceable up to 8 days after a single oral dose of 40 mg of T. These findings initiated follow-up studies on the capability of EPIA_S to extend the detection of T and T analogue misuse by carbon isotope ratio (CIR) mass spectrometry in sports drug testing. Excretion study urine samples obtained after transdermal application of T and after oral administration of 4-androstenedione, dihydrotestosterone, and EPIA were investigated regarding urinary concentrations and CIR. With each administered steroid, EPIA_S was significantly depleted and prolonged the detectability when compared to routinely used steroidal target compounds by a factor of 2 to 5. In order to simplify the sample preparation procedure for sulfoconjugated compounds, enzymatic cleavage by Pseudomonas aeruginosa arylsulfatase was tested and implemented into CIR measurements for the first time. Further simplification was achieved by employing multidimensional gas chromatography to ensure the required peak purity for CIR determinations, instead of sample purification strategies using liquid chromatographic fractionation. Taking into account these results that demonstrate the unique and broad applicability of EPIA_S for the detection of illicit administrations of T or T-related steroids, careful consideration of how this steroid can be implemented into routine doping control analysis appears warranted. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    PubMed Central

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    2014-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuous-flow technique using capillary GC/combustion IRMS. Quadriceps muscles were removed from four Sprague–Dawley rats after each was infused at a different rate with (1-13C)leucine for 6–8 h. Muscle leucine enrichment (at.% excess) measured by both methods differed by less than 4%, except at low (13C)leucine enrichments (<0.03 at.% excess). In addition, capillary GC/combustion IRMS was used to assess muscle (13C)leucine enrichment and fractional muscle protein synthesis rate in ten normal young men and women infused with (1,2-13C2)leucine for 12–14 h. This approach reduced the variability of the isotope abundance measure and gave estimates of muscle protein synthesis rate (0.050 ± 0.011% h−1 (mean ± SEM); range = 0.023–0.147% h−1) that agree with published values determined using the standard analytical approach. The measurement of (13C)leucine enrichment from skeletal muscle protein by capillary GC/combustion IRMS provides a simple, acceptable and practical alternative to preparative GC/ninhydrin IRMS. PMID:1420371

  18. Nuclear Forensics: Measurements of Uranium Oxides Using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

    DTIC Science & Technology

    2010-03-01

    Isotope Ratio Analysis of Actinides , Fission Products, and Geolocators by High- efficiency Multi-collector Thermal Ionization Mass Spectrometry...Information, 1999. Hou, Xiaolin, and Per Roos. “ Critical Comparison of radiometric and Mass Spectrometric Methods for the Determination of...NUCLEAR FORENSICS: MEASUREMENTS OF URANIUM OXIDES USING TIME-OF-FLIGHT SECONDARY ION MASS

  19. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    PubMed

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  20. Determination of extremely low (236)U/(238)U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction.

    PubMed

    Boulyga, Sergei F; Heumann, Klaus G

    2006-01-01

    A method by inductively coupled plasma mass spectrometry (ICP-MS) was developed which allows the measurement of (236)U at concentration ranges down to 3 x 10(-14)g g(-1) and extremely low (236)U/(238)U isotope ratios in soil samples of 10(-7). By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5,000 counts fg(-1) uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH(+)/U(+) down to a level of 10(-6). An abundance sensitivity of 3 x 10(-7) was observed for (236)U/(238)U isotope ratio measurements at mass resolution 4000. The detection limit for (236)U and the lowest detectable (236)U/(238)U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the (236)U/(238)U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the (235)U/(238)U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of (236)U in the upper 0-10 cm soil layers varied from 2 x 10(-9)g g(-1) within radioactive spots close to the Chernobyl NPP to 3 x 10(-13)g g(-1) on a sampling site located by >200 km from Chernobyl.

  1. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system

  2. Quantitative Metabolome Analysis Based on Chromatographic Peak Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.

    PubMed

    Huan, Tao; Li, Liang

    2015-07-21

    Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use.

  3. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  4. The study of trace metal absoption using stable isotopes and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fennessey, P. V.; Lloyd-Kindstrand, L.; Hambidge, K. M.

    1991-12-01

    The absorption and excretion of zinc stable isotopes have been followed in more than 120 human subjects. The isotope enrichment determinations were made using a standard VG 7070E HF mass spectrometer. A fast atom gun (FAB) was used to form the ions from a dry residue on a pure silver probe tip. Isotope ratio measurements were found to have a precision of better than 2% (relative standard deviation) and required a sample size of 1-5 [mu]g. The average true absorption of zinc was found to be 73 ± 12% (2[sigma]) when the metal was taken in a fasting state. This absorption figure was corrected for tracer that had been absorbed and secreted into the gastrointestinal (GI) tract over the time course of the study. The average time for a majority of the stable isotope tracer to pass through the GI tract was 4.7 ± 1.9 (2[sigma]) days.

  5. Stable isotope, site-specific mass tagging for protein identification

    DOEpatents

    Chen, Xian

    2006-10-24

    Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.

  6. Elucidating rhizosphere processes by mass spectrometry - A review.

    PubMed

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fast methodology for the reliable determination of nonylphenol in water samples by minimal labeling isotope dilution mass spectrometry.

    PubMed

    Fabregat-Cabello, Neus; Castillo, Ángel; Sancho, Juan V; González, Florenci V; Roig-Navarro, Antoni Francesc

    2013-08-02

    In this work we have developed and validated an accurate and fast methodology for the determination of 4-nonylphenol (technical mixture) in complex matrix water samples by UHPLC-ESI-MS/MS. The procedure is based on isotope dilution mass spectrometry (IDMS) in combination with isotope pattern deconvolution (IPD), which provides the concentration of the analyte directly from the spiked sample without requiring any methodological calibration graph. To avoid any possible isotopic effect during the analytical procedure the in-house synthesized (13)C1-4-(3,6-dimethyl-3-heptyl)phenol was used as labeled compound. This proposed surrogate was able to compensate the matrix effect even from wastewater samples. A SPE pre-concentration step together with exhaustive efforts to avoid contamination were included to reach the signal-to-noise ratio necessary to detect the endogenous concentrations present in environmental samples. Calculations were performed acquiring only three transitions, achieving limits of detection lower than 100ng/g for all water matrix assayed. Recoveries within 83-108% and coefficients of variation ranging from 1.5% to 9% were obtained. On the contrary a considerable overestimation was obtained with the most usual classical calibration procedure using 4-n-nonylphenol as internal standard, demonstrating the suitability of the minimal labeling approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry.

    PubMed

    Krämer, Lisa; Jäger, Christian; Trezzi, Jean-Pierre; Jacobs, Doris M; Hiller, Karsten

    2018-02-14

    Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13 C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13 C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13 C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13 C-labeled bread and quantified 13 C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated.

  9. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry

    PubMed Central

    Krämer, Lisa; Jäger, Christian; Jacobs, Doris M.; Hiller, Karsten

    2018-01-01

    Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13C-labeled bread and quantified 13C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated. PMID:29443915

  10. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  11. INTERLABORATORY COMPARISON OF MASS SPECTROMETRIC METHODS FOR LEAD ISOTOPES AND TRACE ELEMENTS IN NIST SRM 1400 BONE ASH

    EPA Science Inventory

    The results of an interlaboratory comparison are reported for he lead isotope composition and for trace element concentrations in NIST SRM 1400 Bone Ash obtained using quadrupole and magnetic-sector inductively coupled plasma mass spectrometry (ICP-MS) and (for the Pb isotopes on...

  12. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS).

    PubMed

    Berto, Daniela; Rampazzo, Federico; Gion, Claudia; Noventa, Seta; Ronchi, Francesca; Traldi, Umberto; Giorgi, Giordano; Cicero, Anna Maria; Giovanardi, Otello

    2017-06-01

    Plastic waste is a growing global environmental problem, particularly in the marine ecosystems, in consideration of its persistence. The monitoring of the plastic waste has become a global issue, as reported by several surveillance guidelines proposed by Regional Sea Conventions (OSPAR, UNEP) and appointed by the EU Marine Strategy Framework Directive. Policy responses to plastic waste vary at many levels, ranging from beach clean-up to bans on the commercialization of plastic bags and to Regional Plans for waste management and recycling. Moreover, in recent years, the production of plant-derived biodegradable plastic polymers has assumed increasing importance. This study reports the first preliminary characterization of carbon stable isotopes (δ 13 C) of different plastic polymers (petroleum- and plant-derived) in order to increase the dataset of isotopic values as a tool for further investigation in different fields of polymers research as well as in the marine environment surveillance. The δ 13 C values determined in different packaging for food uses reflect the plant origin of "BIO" materials, whereas the recycled plastic materials displayed a δ 13 C signatures between plant- and petroleum-derived polymers source. In a preliminary estimation, the different colours of plastic did not affect the variability of δ 13 C values, whereas the abiotic and biotic degradation processes that occurred in the plastic materials collected on beaches and in seawater, showed less negative δ 13 C values. A preliminary experimental field test confirmed these results. The advantages offered by isotope ratio mass spectrometry with respect to other analytical methods used to characterize the composition of plastic polymers are: high sensitivity, small amount of material required, rapidity of analysis, low cost and no limitation in black/dark samples compared with spectroscopic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Attomole quantitation of protein separations with accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, J S; Grant, P G; Buccholz, B A

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundancesmore » in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.« less

  14. Isotopic exchange during derivatization of platelet activating factor for gas chromatography-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haroldsen, P.E.; Gaskell, S.J.; Weintraub, S.T.

    1991-04-01

    One approach to the quantitative analysis of platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; also referred to as AGEPC, alkyl glyceryl ether phosphocholine) is hydrolytic removal of the phosphocholine group and conversion to an electron-capturing derivative for gas chromatography-negative ion mass spectrometry. (2H3)Acetyl-AGEPC has been commonly employed as an internal standard. When 1-hexadecyl-2-(2H3)acetyl glycerol (obtained by enzymatic hydrolysis of (2H3)-C16:0 AGEPC) is treated with pentafluorobenzoyl chloride at 120 degrees C, the resulting 3-pentafluorobenzoate derivative shows extensive loss of the deuterium label. This exchange is evidently acid-catalyzed since derivatization of 1-hexadecyl-2-acetyl glycerol under the same conditions in the presence of a trace ofmore » 2HCl results in the incorporation of up to three deuterium atoms. Isotope exchange can be avoided if the reaction is carried out at low temperature in the presence of base. Direct derivatization of (2H3)-C16:0 AGEPC by treatment with pentafluorobenzoyl chloride or heptafluorobutyric anhydride also results in loss of the deuterium label. The use of (13C2)-C16:0 AGEPC as an internal standard is recommended for rigorous quantitative analysis.« less

  15. Trends in biochemical and biomedical applications of mass spectrometry

    NASA Astrophysics Data System (ADS)

    Gelpi, Emilio

    1992-09-01

    This review attempts an in-depth evaluation of progress and achievements made since the last 11th International Mass Spectrometry Conference in the application of mass spectrometric techniques to biochemistry and biomedicine. For this purpose, scientific contributions in this field at major international meetings have been monitored, together with an extensive appraisal of literature data covering the period from 1988 to 1991. A bibliometric evaluation of the MEDLINE database for this period provides a total of almost 4000 entries for mass spectrometry. This allows a detailed study of literature and geographical sources of the most frequent applications, of disciplines where mass spectrometry is most active and of types of sample and instrumentation most commonly used. In this regard major efforts according to number of publications (over 100 literature reports) are concentrated in countries like Canada, France, Germany, Italy, Japan, Sweden, UK and the USA. Also, most of the work using mass spectrometry in biochemistry and biomedicine is centred on studies on biotransformation, metabolism, pharmacology, pharmacokinetics and toxicology, which have been carried out on samples of blood, urine, plasma and tissue, by order of frequency of use. Human and animal studies appear to be evenly distributed in terms of the number of reports published in the literature in which the authors make use of experimental animals or describe work on human samples. Along these lines, special attention is given to the real usefulness of mass spectrometry (MS) technology in routine medical practice. Thus the review concentrates on evaluating the progress made in disease diagnosis and overall patient care. As regards prevailing techniques, GCMS continues to be the mainstay of the state of the art methods for multicomponent analysis, stable isotope tracer studies and metabolic profiling, while HPLC--MS and tandem MS are becoming increasingly important in biomedical research. However

  16. Identification of fentanyl metabolites in rat urine by gas chromatography-mass spectrometry with stable-isotope tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goromaru, T.; Matsuura, H.; Furuta, T.

    The metabolites of fentanyl (l), which has been widely used as a neuroleptic analgesic agent, were identified in urine of rats by gas chromatography-mass spectrometry combined with a stable-isotope tracer technique. After the oral administration of an equimolar mixture of l and deuterium-labeled l (l/l-d5), the urinary metabolites were extracted with chloroform at pH 9.0. Extracts were derivatized and analyzed by GC/MS. Metabolites were identified by the presence of doublet ion peaks separated by 5 amu, and chemical structures were established from analyses of fragmentation pathways. The metabolites were identified as 4-N-(N-propionylanilino)-piperidine, 4-N-(N-hydroxypropionylanilino)piperidine, 4-N-(N-propionylanilino) hydroxypiperidine, 1-(2-phenethyl)-4-N-(N-hydroxypropionylanilino)piperidine and 1-(2-phenethyl)-4-N-(N-propionylanilino)hydroxypiperidine. These metabolites,more » together with unchanged l, were also detected in urine of rats receiving l/l-d5 intravenously, by selected-ion monitoring of the specific cluster ions.« less

  17. Quantification of abscisic acid in grapevine leaf (Vitis vinifera) by isotope-dilution liquid chromatography-mass spectrometry.

    PubMed

    Vilaró, Francisca; Canela-Xandri, Anna; Canela, Ramon

    2006-09-01

    A specific, sensitive, precise, and accurate method for the determination of abscisic acid (ABA) in grapevine leaf tissues is described. The method employs high-performance liquid chromatography and electrospray ionization-mass spectrometry (LC-ESI-MS) in selected ion monitoring mode (SIM) to analyze ABA using a stable isotope-labeled ABA as an internal standard. Absolute recoveries ranged from 72% to 79% using methanol/water pH 5.5 (50:50 v/v) as an extraction solvent. The best efficiency was obtained when the chromatographic separation was carried out by using a porous graphitic carbon (PGC) column. The statistical evaluation of the method was satisfactory in the work range. A relative standard deviation (RDS) of < 5.5% and < 6.0% was obtained for intra-batch and inter-batch comparisons, respectively. As for accuracy, the relative error (%Er) was between -2.7 and 4.3%, and the relative recovery ranged from 95% to 107%.

  18. Isotope dilution liquid chromatography - mass spectrometry methods for fat- and water-soluble vitamins in nutritional formulations.

    PubMed

    Phinney, Karen W; Rimmer, Catherine A; Thomas, Jeanice Brown; Sander, Lane C; Sharpless, Katherine E; Wise, Stephen A

    2011-01-01

    Vitamins are essential to human health, and dietary supplements containing vitamins are widely used by individuals hoping to ensure they have adequate intake of these important nutrients. Measurement of vitamins in nutritional formulations is necessary to monitor regulatory compliance and in studies examining the nutrient intake of specific populations. Liquid chromatographic methods, primarily with UV absorbance detection, are well established for both fat- and water-soluble measurements, but they do have limitations for certain analytes and may suffer from a lack of specificity in complex matrices. Liquid chromatography-mass spectrometry (LC-MS) provides both sensitivity and specificity for the determination of vitamins in these matrices, and simultaneous analysis of multiple vitamins in a single analysis is often possible. In this work, LC-MS methods were developed for both fat- and water-soluble vitamins and applied to the measurement of these analytes in two NIST Standard Reference Materials. When possible, stable isotope labeled internal standards were employed for quantification.

  19. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  20. Geographical origin of cereal grains based on element analyser-stable isotope ratio mass spectrometry (EA-SIRMS).

    PubMed

    Wu, Yuluan; Luo, Donghui; Dong, Hao; Wan, Juan; Luo, Haiying; Xian, Yanping; Guo, Xindong; Qin, Fangfang; Han, Wanqing; Wang, Li; Wang, Bin

    2015-05-01

    The stable carbon and nitrogen isotopic compositions (δ(13)C and δ(13)N) of different cereal grains from different regions were determined, using element analyser-stable isotope ratio mass spectrometry (EA-SIRMS) as the key method. Systematically, δ(13)C and δ(13)N of 5 kinds of cereal grains of different origins, 30 wheat samples from different cultivation areas and 160 rice samples of different cultivars from Guangdong province of China were examined. The results indicated that the δ(13)C values of rice, soybean, millet, wheat and corn were significantly (P < 0.05) different within different origins (Heilongjiang, Shandong and Jiangsu province of China), respectively, while δ(13)N values were not. Interestingly, there exists discrimination between these 5 kinds of cereals grains, no matter C-3 or C-4 plants. Further study showed that the δ(13)C values of wheat from Australia, the USA, Canada, and Jiangsu and Shandong province of China were also significantly (P < 0.01) different. Furthermore, the P-value test for 160 rice samples of 5 cultivars was not significant (P > 0.05), which indicated that the cultivar of cereal grains was not significant based on δ(13)C value. Thus, the comparison of δ(13)C would be potentially useful for rapid and routine discrimination of geographical origin of cereal grains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Determination of the alkylpyrazine composition of coffee using stable isotope dilution-gas chromatography-mass spectrometry (SIDA-GC-MS).

    PubMed

    Pickard, Stephanie; Becker, Irina; Merz, Karl-Heinz; Richling, Elke

    2013-07-03

    A stable isotope dilution analysis based on gas chromatography-mass spectrometry analysis (SIDA-GC-MS) was developed for the quantitative analysis of 12 alkylpyrazines found in commercially available coffee samples. These compounds contribute to coffee flavor. The accuracy of this method was tested by analyzing model mixtures of alkylpyrazines. Comparisons of alkylpyrazine-concentrations suggested that water as extraction solvent was superior to dichloromethane. The distribution patterns of alkylpyrazines in different roasted coffees were quite similar. The most abundant alkylpyrazine in each coffee sample was 2-methylpyrazine, followed by 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-5-methylpyrazine, and 2,3,5-trimethylpyrazine, respectively. Among the alkylpyrazines tested, 2,3-dimethylpyrazine, 2-ethyl-3-methylpyrazine, 2-ethyl-3,6-dimethylpyrazine, and 2-ethyl-3,5-dimethylpyrazine revealed the lowest concentrations in roasted coffee. By the use of isotope dilution analysis, the total concentrations of alkylpyrazines in commercially available ground coffee ranged between 82.1 and 211.6 mg/kg, respectively. Decaffeinated coffee samples were found to contain lower amounts of alkylpyrazines than regular coffee samples by a factor of 0.3-0.7, which might be a result of the decaffeination procedure.

  2. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.

    PubMed

    Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin

    2015-02-01

    We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Quantitation of Thioprolines in Grape Wine by Isotope Dilution-Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Liu, Jingjing; Meng, Xiangpeng; Chan, Wan

    2016-02-17

    Cysteine reacts with reactive carbonyls to form thioprolines, which have been demonstrated to possess various pharmaceutical properties. Therefore, thioproline formation is considered as a major detoxification pathway for carcinogenic reactive carbonyls. In this study, we report the initial identification of thiazolidine-4-carboxylic acid (1) and 2-methylthiazolidine-4-carboxylic acid (2), two very common thioprolines, formed by reacting formaldehyde and acetaldehyde with cysteine in grape wine samples. We have developed an isotope dilution-liquid chromatography-tandem mass spectrometry method featuring high sensitivity (limit of detection of ≤1.5 ng/mL) and selectivity to quantitate compounds 1 and 2. The method after validated to be highly accurate (recovery of ≥92%) and precise [intraday relative standard deviation (RSD) of ≤4.1% and interday RSD of ≤9.7%] was applied to determine the varying compound 1 and 2 contents in grape wine samples. Results revealed the grape type and storage duration-dependent formation of thioprolines in grape wines. Overall, the results are expected to facilitate compound-dependent investigations of the health benefits of grape wine, and our findings could be adopted to predict the age of grape wine.

  4. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  5. Liquid chromatography with isotope-dilution mass spectrometry for determination of water-soluble vitamins in foods.

    PubMed

    Phillips, Melissa M

    2015-04-01

    Vitamins are essential for improving and maintaining human health, and the main source of vitamins is the diet. Measurement of the quantities of water-soluble vitamins in common food materials is important to understand the impact of vitamin intake on human health, and also to provide necessary information for regulators to determine adequate intakes. Liquid chromatography (LC) and mass spectrometry (MS) based methods for water-soluble vitamin analysis are abundant in the literature, but most focus on only fortified foods or dietary supplements or allow determination of only a single vitamin. In this work, a method based on LC/MS and LC/MS/MS has been developed to allow simultaneous quantitation of eight water-soluble vitamins, including multiple forms of vitamins B3 and B6, in a variety of fortified and unfortified food-matrix Standard Reference Materials (SRMs). Optimization of extraction of unbound vitamin forms and confirmation using data from external laboratories ensured accuracy in the assigned values, and addition of stable isotope labeled internal standards for each of the vitamins allowed for increased precision.

  6. NITPICK: peak identification for mass spectrometry data.

    PubMed

    Renard, Bernhard Y; Kirchner, Marc; Steen, Hanno; Steen, Judith A J; Hamprecht, Fred A

    2008-08-28

    The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averaging, a novel extension to Senko's well-known averaging model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from (http://hci.iwr.uni-heidelberg.de/mip/proteomics/).

  7. NITPICK: peak identification for mass spectrometry data

    PubMed Central

    Renard, Bernhard Y; Kirchner, Marc; Steen , Hanno; Steen, Judith AJ; Hamprecht , Fred A

    2008-01-01

    Background The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. Results This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averagine, a novel extension to Senko's well-known averagine model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Conclusion Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from . PMID:18755032

  8. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    PubMed Central

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1–11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines. PMID:26888486

  9. Mass spectrometry in Earth sciences: the precise and accurate measurement of time.

    PubMed

    Schaltegger, Urs; Wotzlaw, Jörn-Frederik; Ovtcharova, Maria; Chiaradia, Massimo; Spikings, Richard

    2014-01-01

    Precise determinations of the isotopic compositions of a variety of elements is a widely applied tool in Earth sciences. Isotope ratios are used to quantify rates of geological processes that occurred during the previous 4.5 billion years, and also at the present time. An outstanding application is geochronology, which utilizes the production of radiogenic daughter isotopes by the radioactive decay of parent isotopes. Geochronological tools, involving isotopic analysis of selected elements from smallest volumes of minerals by thermal ionization mass spectrometry, provide precise and accurate measurements of time throughout the geological history of our planet over nine orders of magnitude, from the accretion of the proto-planetary disk, to the timing of the last glaciation. This article summarizes the recent efforts of the Isotope Geochemistry, Geochronology and Thermochronology research group at the University of Geneva to advance the U-Pb geochronological tool to achieve unprecedented precision and accuracy, and presents two examples of its application to two significant open questions in Earth sciences: what are the triggers and timescales of volcanic supereruptions, and what were the causes of mass extinctions in the geological past, driven by global climatic and environmental deterioration?

  10. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  11. Isotope Label-Aided Mass Spectrometry Reveals the Influence of Environmental Factors on Metabolism in Single Eggs of Fruit Fly

    PubMed Central

    Tseng, Te-Wei; Wu, June-Tai; Chen, Yu-Chie; Urban, Pawel L.

    2012-01-01

    In order to investigate the influence of light/dark cycle on the biosynthesis of metabolites during oogenesis, here we demonstrate a simple experimental protocol which combines in-vivo isotopic labeling of primary metabolites with mass spectrometric analysis of single eggs of fruit fly (Drosophila melanogaster). First, fruit flies were adapted to light/dark cycle using artificial white light. Second, female flies were incubated with an isotopically labeled sugar (13C6-glucose) for 12 h – either during the circadian day or the circadian night, at light or at dark. Third, eggs were obtained from the incubated female flies, and analyzed individually by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS): this yielded information about the extent of labeling with carbon-13. Since the incorporation of carbon-13 to uridine diphosphate glucose (UDP-glucose) in fruit fly eggs is very fast, the labeling of this metabolite was used as an indicator of the biosynthesis of metabolites flies/eggs during 12-h periods, which correspond to circadian day or circadian night. The results reveal that once the flies adapted to the 12-h-light/12-h-dark cycle, the incorporation of carbon-13 to UDP-glucose present in fruit fly eggs was not markedly altered by an acute perturbation to this cycle. This effect may be due to a relationship between biosynthesis of primary metabolites in developing eggs and an alteration to the intake of the labeled substrate – possibly related to the change of the feeding habit. Overall, the study shows the possibility of using MALDI-MS in conjunction with isotopic labeling of small metazoans to unravel the influence of environmental cues on primary metabolism. PMID:23185587

  12. Proposed in situ secondary ion mass spectrometry on Mars.

    PubMed

    Inglebert, R L; Klossa, B; Lorin, J C; Thomas, R

    1995-01-01

    Secondary ion mass spectrometry is a powerful analytical tool, which has the potentiality, through molecular ion emission, of detecting minor phases, as well as the unique capability of directly measuring isotope abundances in mineral or organic phases without any prior physical, chemical or thermal processing. Applied to the in situ analysis of the Martian regolith, it can provide evidence of the presence of carbonates and, by inference (if carbonates constitute significant deposits), of past liquid water--a necessary condition for the development of life. In addition, oxygen isotopic composition of carbonates preserves a record of the temperature at which this phase precipitated and may therefore help decipher the past climatology of Mars. Detection of a carbon isotopic composition shift between carbonates and organic matter (on Earth, the result of a kinetic fractionation effect during photosynthesis) would provide a definite clue regarding the existence of a past biochemical activity on Mars.

  13. Laser-based measurements of δ13 C and δ2 H methane isotope signatures: precisions competitive with mass spectrometry methods

    NASA Astrophysics Data System (ADS)

    Yacovitch, Tara; Shorter, Joanne; Nelson, David; Herndon, Scott; Agnese, Mike; McManus, Barry; Zahniser, Mark

    2017-04-01

    In order to understand how and why methane (CH4 ) concentrations change over time, it is necessary to understand their sources and sinks. Stable isotope measurements of 13 CH4 :12 CH4 and CH3 D:12 CH4 ratios constrain the inventory of these sinks and sources. Current measurements often depend on Isotope Ratio Mass Spectrometry (IRMS), which requires extensive sample preparation including cryogenic separation of methane from air and subsequent conversion to either CO2 or H2 . Here, we detail improvements to a direct-absorption laser spectrometer that enable fast and precise measurements of methane isotope ratios (δ13 C and δ2 H ) of ambient air samples, without such sample preparation. The measurement system consists of a laser-based direct absorption spectrometer configured with a sample manifold for measurement of discrete samples (as opposed to flow-through measurements). Samples are trapped in the instrument using a rapid sample switching technique that compares each flask sample against a monitor tank sample. This approach reduces instrument drift and results in excellent precision. Precisions of 0.054 o/oo for δ13 C and 1.4 o/oo for δ2 H have been achieved (Allan-Werle deviations). These results are obtained in 20 minutes using 4 replicate comparisons to a monitor tank.

  14. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  15. Mass spectrometry of atmospheric aerosols--recent developments and applications. Part II: On-line mass spectrometry techniques.

    PubMed

    Pratt, Kerri A; Prather, Kimberly A

    2012-01-01

    Many of the significant advances in our understanding of atmospheric particles can be attributed to the application of mass spectrometry. Mass spectrometry provides high sensitivity with fast response time to probe chemically complex particles. This review focuses on recent developments and applications in the field of mass spectrometry of atmospheric aerosols. In Part II of this two-part review, we concentrate on real-time mass spectrometry techniques, which provide high time resolution for insight into brief events and diurnal changes while eliminating the potential artifacts acquired during long-term filter sampling. In particular, real-time mass spectrometry has been shown recently to provide the ability to probe the chemical composition of ambient individual particles <30 nm in diameter to further our understanding of how particles are formed through nucleation in the atmosphere. Further, transportable real-time mass spectrometry techniques are now used frequently on ground-, ship-, and aircraft-based studies around the globe to further our understanding of the spatial distribution of atmospheric aerosols. In addition, coupling aerosol mass spectrometry techniques with other measurements in series has allowed the in situ determination of chemically resolved particle effective density, refractive index, volatility, and cloud activation properties. Copyright © 2011 Wiley Periodicals, Inc.

  16. Identification of Unknown Contaminants in Water Samples from ISS Employing Liquid Chromatography/Mass Spectrometry/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Schultz, John R.

    2008-01-01

    Mass Spectrometry/Mass Spectrometry (MS/MS) is a powerful technique for identifying unknown organic compounds. For non-volatile or thermally unstable unknowns dissolved in liquids, liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) is often the variety of MS/MS used for the identification. One type of LC/MS/MS that is rapidly becoming popular is time-of-flight (TOF) mass spectrometry. This technique is now in use at the Johnson Space Center for identification of unknown nonvolatile organics in water samples from the space program. An example of the successful identification of one unknown is reviewed in detail in this paper. The advantages of time-of-flight instrumentation are demonstrated through this example as well as the strategy employed in using time-of-flight data to identify unknowns.

  17. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  18. Measurements of 59Ni in meteorites by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Paul, M.; Fifield, L. K.; Fink, D.; Albrecht, A.; Allan, G. L.; Herzog, G.; Tuniz, C.

    1993-10-01

    Isotopic abundances of the radionuclide 59Ni (T1/2 = 76000 yr) were measured by accelerator mass spectrometry with the 14UD Pelletron tandem accelerator at the Australian National University and a detection system solely based on a multianode ionization chamber. The sensitivity limit in the measurement of 59Ni isotopic abundances is 5 × 10-13, as determined by residual interferences from isobaric 59Co and isotopic 58Ni ions. Cosmogenic 59Ni abundances 59Ni/Ni = (8-20) × 10-12 were measured in four samples prepared from the metal phase of two meteorites (mesosiderites). The ratio of the 59Ni abundances to those measured for 41Ca in the silicate phase of the same samples, is in fair agreement with the ratio of the production rates via thermal-neutron capture on 58Ni and 40Ca.

  19. Mass spectrometry for the determination of fission products 135Cs, 137Cs and 90Sr: A review of methodology and applications

    NASA Astrophysics Data System (ADS)

    Bu, Wenting; Zheng, Jian; Liu, Xuemei; Long, Kaiming; Hu, Sheng; Uchida, Shigeo

    2016-05-01

    The radioactive fission products 135Cs, 137Cs and 90Sr have been released into the environment by human activities such as nuclear weapon tests, nuclear fuel reprocessing and nuclear power plant accidents. Monitoring of these radionuclides is important for dose assessment. Moreover, the 135Cs/137Cs isotopic ratio can be used as an important long-term fingerprint for radioactive source identification as it varies with weapon, reactor and fuel types. In recent years, mass spectrometry has become a powerful method for the determination of 135Cs, 137Cs and 90Sr in environmental samples. Mass spectrometry is characterized by the high sensitivity and low detection limit and the relatively shorter sample preparation and analysis times compared with radiometric methods. However, the mass spectrometric determination of radiocesium and 90Sr is affected by the peak tailings of the stable nuclides 133Cs and 88Sr, respectively, and the related isobaric and polyatomic interferences. Chemical separation and optimization of the mass spectrometry instrumental setup are strongly needed prior to the mass spectrometry detection. In this paper, we have reviewed the published works about the determination of 135Cs, 137Cs and 90Sr by mass spectrometry. The mass spectrometric techniques we cover are resonance ionization mass spectrometry (RIMS), thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICP-MS). For each technique, the principles or strategies used for the analysis of these radionuclides are discussed; these included the abundance sensitivity, ways to suppress the interference signals, and the instrumental setup. In particular, the chemical procedures for eliminating the interferences are also summarized. To date, triple quadrupole ICP-MS (ICP-QQQ) showed great ability for the analysis of these radionuclides and the detection limits were as low as 0.01 pg/mL levels. Finally, some investigations on the

  20. A comparative study of 129I content in environmental standard materials IAEA-375, NIST SRM 4354 and NIST SRM 4357 by Thermal Ionization Mass Spectrometry and Accelerator Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, John; Adamic, Mary; Snyder, Darin

    Iodine environmental measurements have consistently been backed up in the literature by standard materials like IAEA-375, Chernobyl Soil. There are not many other sources of a certified reference material for 129I content for mass spectrometry measurements. Some that have been found in the literature include NIST-4354 and NIST-4357. They are still available at the time of this writing. They don’t have certified content or isotopic values. There has been some work in the literature to show that iodine is present, but there hasn’t been enough to establish a consensus value. These materials have been analyzed at INL through two separatemore » mass spectrometry techniques. They involve a combustion method of the starting material in oxygen, followed by TIMS analysis and a leaching preparation analyzed by accelerator mass spectrometry. Combustion/TIMS preparation of NIST SRM-4354 resulted in a 129I/127I ratio of 1.92 x 10-6 which agrees with AMS measurements which measured the 129I/127I ratio to be 1.93 x 10-6.« less

  1. Development and co-validation of porcine insulin certified reference material by high-performance liquid chromatography-isotope dilution mass spectrometry.

    PubMed

    Wu, Liqing; Takatsu, Akiko; Park, Sang-Ryoul; Yang, Bin; Yang, Huaxin; Kinumi, Tomoya; Wang, Jing; Bi, Jiaming; Wang, Yang

    2015-04-01

    This article concerns the development and co-validation of a porcine insulin (pINS) certified reference material (CRM) produced by the National Institute of Metrology, People's Republic of China. Each CRM unit contained about 15 mg of purified solid pINS. The moisture content, amount of ignition residue, molecular mass, and purity of the pINS were measured. Both high-performance liquid chromatography-isotope dilution mass spectrometry and a purity deduction method were used to determine the mass fraction of the pINS. Fifteen units were selected to study the between-bottle homogeneity, and no inhomogeneity was observed. A stability study concluded that the CRM was stable for at least 12 months at -20 °C. The certified value of the CRM was (0.892 ± 0.036) g/g. A co-validation of the CRM was performed among Chinese, Japanese, and Korean laboratories under the framework of the Asian Collaboration on Reference Materials. The co-validation results agreed well with the certified value of the CRM. Consequently, the pINS CRM may be used as a calibration material or as a validation standard for pharmaceutical purposes to improve the quality of pharmaceutical products.

  2. Single-step transesterification with simultaneous concentration and stable isotope analysis of fatty acid methyl esters by gas chromatography-combustion-isotope ratio mass spectrometry.

    PubMed

    Panetta, Robert J; Jahren, A Hope

    2011-05-30

    Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is increasingly applied to food and metabolic studies for stable isotope analysis (δ(13) C), with the quantification of analyte concentration often obtained via a second alternative method. We describe a rapid direct transesterification of triacylglycerides (TAGs) for fatty acid methyl ester (FAME) analysis by GC-C-IRMS demonstrating robust simultaneous quantification of amount of analyte (mean r(2) =0.99, accuracy ±2% for 37 FAMEs) and δ(13) C (±0.13‰) in a single analytical run. The maximum FAME yield and optimal δ(13) C values are obtained by derivatizing with 10% (v/v) acetyl chloride in methanol for 1 h, while lower levels of acetyl chloride and shorter reaction times skewed the δ(13) C values by as much as 0.80‰. A Bland-Altman evaluation of the GC-C-IRMS measurements resulted in excellent agreement for pure oils (±0.08‰) and oils extracted from French fries (±0.49‰), demonstrating reliable simultaneous quantification of FAME concentration and δ(13) C values. Thus, we conclude that for studies requiring both the quantification of analyte and δ(13) C data, such as authentication or metabolic flux studies, GC-C-IRMS can be used as the sole analytical method. Copyright © 2011 John Wiley & Sons, Ltd.

  3. ICT: isotope correction toolbox.

    PubMed

    Jungreuthmayer, Christian; Neubauer, Stefan; Mairinger, Teresa; Zanghellini, Jürgen; Hann, Stephan

    2016-01-01

    Isotope tracer experiments are an invaluable technique to analyze and study the metabolism of biological systems. However, isotope labeling experiments are often affected by naturally abundant isotopes especially in cases where mass spectrometric methods make use of derivatization. The correction of these additive interferences--in particular for complex isotopic systems--is numerically challenging and still an emerging field of research. When positional information is generated via collision-induced dissociation, even more complex calculations for isotopic interference correction are necessary. So far, no freely available tools can handle tandem mass spectrometry data. We present isotope correction toolbox, a program that corrects tandem mass isotopomer data from tandem mass spectrometry experiments. Isotope correction toolbox is written in the multi-platform programming language Perl and, therefore, can be used on all commonly available computer platforms. Source code and documentation can be freely obtained under the Artistic License or the GNU General Public License from: https://github.com/jungreuc/isotope_correction_toolbox/ {christian.jungreuthmayer@boku.ac.at,juergen.zanghellini@boku.ac.at} Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hsu, Chuan-Chih; Xue, Liang; Arrington, Justine V.; Wang, Pengcheng; Paez Paez, Juan Sebastian; Zhou, Yuan; Zhu, Jian-Kang; Tao, W. Andy

    2017-06-01

    Mass spectrometry has played a significant role in the identification of unknown phosphoproteins and sites of phosphorylation in biological samples. Analyses of protein phosphorylation, particularly large scale phosphoproteomic experiments, have recently been enhanced by efficient enrichment, fast and accurate instrumentation, and better software, but challenges remain because of the low stoichiometry of phosphorylation and poor phosphopeptide ionization efficiency and fragmentation due to neutral loss. Phosphoproteomics has become an important dimension in systems biology studies, and it is essential to have efficient analytical tools to cover a broad range of signaling events. To evaluate current mass spectrometric performance, we present here a novel method to estimate the efficiency of phosphopeptide identification by tandem mass spectrometry. Phosphopeptides were directly isolated from whole plant cell extracts, dephosphorylated, and then incubated with one of three purified kinases—casein kinase II, mitogen-activated protein kinase 6, and SNF-related protein kinase 2.6—along with 16O4- and 18O4-ATP separately for in vitro kinase reactions. Phosphopeptides were enriched and analyzed by LC-MS. The phosphopeptide identification rate was estimated by comparing phosphopeptides identified by tandem mass spectrometry with phosphopeptide pairs generated by stable isotope labeled kinase reactions. Overall, we found that current high speed and high accuracy mass spectrometers can only identify 20%-40% of total phosphopeptides primarily due to relatively poor fragmentation, additional modifications, and low abundance, highlighting the urgent need for continuous efforts to improve phosphopeptide identification efficiency. [Figure not available: see fulltext.

  5. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--part 1: instrument validation of the DELTAplusXP IRMS for bulk nitrogen isotope ratio measurements.

    PubMed

    Benson, Sarah J; Lennard, Christopher J; Hill, David M; Maynard, Philip; Roux, Claude

    2010-01-01

    A significant amount of research has been conducted into the use of stable isotopes to assist in determining the origin of various materials. The research conducted in the forensic field shows the potential of isotope ratio mass spectrometry (IRMS) to provide a level of discrimination not achievable utilizing traditional forensic techniques. Despite the research there have been few, if any, publications addressing the validation and measurement uncertainty of the technique for forensic applications. This study, the first in a planned series, presents validation data for the measurement of bulk nitrogen isotope ratios in ammonium nitrate (AN) using the DELTA(plus)XP (Thermo Finnigan) IRMS instrument equipped with a ConFlo III interface and FlashEA 1112 elemental analyzer (EA). Appropriate laboratory standards, analytical methods and correction calculations were developed and evaluated. A validation protocol was developed in line with the guidelines provided by the National Association of Testing Authorities, Australia (NATA). Performance characteristics including: accuracy, precision/repeatability, reproducibility/ruggedness, robustness, linear range, and measurement uncertainty were evaluated for the measurement of nitrogen isotope ratios in AN. AN (99.5%) and ammonium thiocyanate (99.99+%) were determined to be the most suitable laboratory standards and were calibrated against international standards (certified reference materials). All performance characteristics were within an acceptable range when potential uncertainties, including the manufacturer's uncertainty of the technique and standards, were taken into account. The experiments described in this article could be used as a model for validation of other instruments for similar purposes. Later studies in this series will address the more general issue of demonstrating that the IRMS technique is scientifically sound and fit-for-purpose in the forensic explosives analysis field.

  6. Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    PubMed

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    The performance of systems in which picomole quantities of sample are mixed with a carrier gas and passed through an isotope-ratio mass spectrometer system was examined experimentally and theoretically. Two different mass spectrometers were used, both having electron-impact ion sources and Faraday cup collector systems. One had an accelerating potential of 10kV and accepted 0.2 mL of He/min, producing, under those conditions, a maximum efficiency of 1 CO2 molecular ion collected per 700 molecules introduced. Comparable figures for the second instrument were 3 kV, 0.5 mL of He/min, and 14000 molecules/ion. Signal pathways were adjusted so that response times were <200 ms. Sample-related ion currents appeared as peaks with widths of 3-30 s. Isotope ratios were determined by comparison to signals produced by standard gases. In spite of rapid variations in signals, observed levels of performance were within a factor of 2 of shot-noise limits. For the 10-kV instrument, sample requirements for standard deviations of 0.1 and 0.5% were 45 and 1.7 pmol, respectively. Comparable requirements for the 3-kV instrument were 900 and 36 pmol. Drifts in instrumental characteristics were adequately neutralized when standards were observed at 20-min intervals. For the 10-kV instrument, computed isotopic compositions were independent of sample size and signal strength over the ranges examined. Nonlinearities of <0.04%/V were observed for the 3-kV system. Procedures for observation and subtraction of background ion currents were examined experimentally and theoretically. For sample/ background ratios varying from >10 to 0.3, precision is expected and observed to decrease approximately 2-fold and to depend only weakly on the precision with which background ion currents have been measured.

  8. Investigation of the origin of ephedrine and methamphetamine by stable isotope ratio mass spectrometry: a Japanese experience.

    PubMed

    Makino, Y; Urano, Y; Nagano, T

    2005-01-01

    Illicit drug abuse is a serious global problem that can only be solved through international cooperation. In Asian countries, the abuse of methamphetamine is one of the most pressing problems. To assist in the control of methamphetamine, the authors investigated in detail the character of ephedrine, which is a key precursor for the illicit manufacture of methamphetamine. Commercial ephedrine is produced by one of three methods: (a) extraction from Ephedra plants, (b) full chemical synthesis or (c) via a semi-synthetic process involving the fermentation of sugar, followed by amination. Although chemically there is no difference between ephedrine samples from different origins (natural, synthetic or semi-synthetic), scientific and analytical tools such as drug-characterization and impurity-profiling programmes may provide valuable information for law enforcement and regulatory activities as part of precursor control strategies. During the research under discussion in the present article, in addition to classical impurity profiling of manufacturing by-products, the use of stable isotope ratio mass spectrometry was investigated for determining the origin of the ephedrine that had been used as a precursor in seized methamphetamine samples. The results of carbon and nitrogen stable isotope ratio (delta13C and delta15N) analysis of samples of crystalline methamphetamine seized in Japan suggested that the drug had been synthesized from either natural or semi-synthetic ephedrine and not from synthetic ephedrine. Stable isotope ratio analysis is expected to be a useful tool for tracing the origins of seized methamphetamine. It has attracted much interest from precursor control authorities in Japan and the East Asian region and may prove useful in the international control of precursors.

  9. A comparative evaluation of software for the analysis of liquid chromatography-tandem mass spectrometry data from isotope coded affinity tag experiments.

    PubMed

    Moulder, Robert; Filén, Jan-Jonas; Salmi, Jussi; Katajamaa, Mikko; Nevalainen, Olli S; Oresic, Matej; Aittokallio, Tero; Lahesmaa, Riitta; Nyman, Tuula A

    2005-07-01

    The options available for processing quantitative data from isotope coded affinity tag (ICAT) experiments have mostly been confined to software specific to the instrument of acquisition. However, recent developments with data format conversion have subsequently increased such processing opportunities. In the present study, data sets from ICAT experiments, analysed with liquid chromatography/tandem mass spectrometry (MS/MS), using an Applied Biosystems QSTAR Pulsar quadrupole-TOF mass spectrometer, were processed in triplicate using separate mass spectrometry software packages. The programs Pro ICAT, Spectrum Mill and SEQUEST with XPRESS were employed. Attention was paid towards the extent of common identification and agreement of quantitative results, with additional interest in the flexibility and productivity of these programs. The comparisons were made with data from the analysis of a specifically prepared test mixture, nine proteins at a range of relative concentration ratios from 0.1 to 10 (light to heavy labelled forms), as a known control, and data selected from an ICAT study involving the measurement of cytokine induced protein expression in human lymphoblasts, as an applied example. Dissimilarities were detected in peptide identification that reflected how the associated scoring parameters favoured information from the MS/MS data sets. Accordingly, there were differences in the numbers of peptides and protein identifications, although from these it was apparent that both confirmatory and complementary information was present. In the quantitative results from the three programs, no statistically significant differences were observed.

  10. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  11. Easy Extraction Method To Evaluate δ13C Vanillin by Liquid Chromatography-Isotopic Ratio Mass Spectrometry in Chocolate Bars and Chocolate Snack Foods.

    PubMed

    Bononi, Monica; Quaglia, Giancarlo; Tateo, Fernando

    2015-05-20

    An easy extraction method that permits the use of a liquid chromatography-isotopic ratio mass spectrometry (LC-IRMS) system to evaluate δ(13)C of vanillin in chocolate products and industrial flavorings is presented. The method applies the determination of stable isotopes of carbon to discriminate between natural vanillin from vanilla beans and vanillin from other sources (mixtures from beans, synthesis, or biotechnology). A series of 13 chocolate bars and chocolate snack foods available on the Italian market and 8 vanilla flavorings derived from industrial quality control processes were analyzed. Only 30% of products considered in this work that declared "vanilla" on the label showed data that permitted the declaration "vanilla" according to European Union (EU) Regulation 1334/2008. All samples not citing "vanilla" or "natural flavoring" on the label gave the correct declaration. The extraction method is presented with data useful for statistical evaluation.

  12. Gas chromatography and isotope ratio mass spectrometry of Pinot Noir wine volatile compounds (δ13C) and solid residues (δ13C, δ15N) for the reassessment of vineyard water-status.

    PubMed

    Spangenberg, Jorge E; Vogiatzaki, Maria; Zufferey, Vivian

    2017-09-29

    This paper describes a novel approach to reassess the water status in vineyards based on compound-specific isotope analysis (CSIA) of wine volatile organic compounds (δ 13 C VOC/VPDB ) and bulk carbon and nitrogen isotopes, and the C/N molar ratios of the wine solid residues (δ 13 C SR/VPDB , δ 15 N SR/Air-N2 ). These analyses link gas chromatography/combustion and elemental analysis to isotope ratio mass spectrometry (GC/C/IRMS, EA/IRMS). Field-grown cultivars of Pinot Noir grapevines were exposed during six growing seasons (2009-2014) to controlled soil water availability, while maintaining identical the other environmental variables and agricultural techniques. Wines were produced from the grapes by the same oenological protocol. This permitted for the assessment of the effects in the biochemistry of wines solely induced by the changes in the plant-soil water status. This mimicked the more recurrent and prolonged periods of soil water deficiency due to climate changes. Water stress in grapevine was assessed by the measurement of the predawn leaf water potential (Ψ pd ) and the stable carbon isotope composition of the berry sugars during harvest (must sugars). For quantitation purposes and the normalization of the measured stable carbon isotope ratios of the VOCs, the wine samples were spiked with three standard compounds with known concentration and δ 13 C VPDB values. VOCs were extracted by liquid-liquid extraction and analyzed by gas chromatography/flame ionization detection (GC/FID), gas chromatography/mass spectrometry (GC/MS), and GC/C/IRMS. δ 13 C values were obtained for eighteen VOCs. The solid residues were obtained by freeze-drying wine aliquots and were analyzed for their C and N content and isotope composition by EA/IRMS. All the isotopic ratios (δ 13 C SR , δ 15 N SR , δ 13 C VOC ) are highly correlated with the Ψ pd values, indicating that the proposed gas chromatography and isotope ratio mass spectrometry approach is a useful tool to

  13. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures.

    PubMed

    Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi

    2015-01-01

    Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio

  14. Improved sample utilization in thermal ionization mass spectrometry isotope ratio measurements: refined development of porous ion emitters for nuclear forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baruzzini, Matthew Louis

    The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical e orts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization e ciency, often less than tenths of a percent; themore » majority of a sample is not measured. This represents a growing challenge in addressing nextgeneration nuclear detection needs by limiting the ability to analyze ultratrace quantities of high priority elements that could potentially provide critical nuclear forensic signatures. Porous ion emitter (PIE) thermal ion sources were developed in response to the growing need for new TIMS ion source strategies for improved ionization e ciency, PIEs have proven to be simple to implement, straightforward approach to boosting ion yield. This work serves to expand the use of PIE techniques for the analysis of trace quantities of plutonium and americium. PIEs exhibited superior plutonium and americium ion yields when compared to direct lament loading and the resin bead technique, one of the most e cient methods for actinide analysis, at similar mass loading levels. Initial attempts at altering PIE composition for the analysis of plutonium proved to enhance sample utilization even further. Preliminary investigations of the instrumental fractionation behavior of plutonium and uranium analyzed via PIE methods were conducted. Data collected during these initial trial indicate that PIEs fractionate in a consistent, reproducible manner; a necessity for high precision isotope ratio measurements. Ultimately, PIEs methods were

  15. Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography-mass spectrometry method.

    PubMed

    De Angelis, Meri; Giesert, Florian; Finan, Brian; Clemmensen, Christoffer; Müller, Timo D; Vogt-Weisenhorn, Daniela; Tschöp, Matthias H; Schramm, Karl-Werner

    2016-10-15

    Thyroid hormones (THs) play a critical role in the regulation of many biological processes such as growth, metabolism and development both in humans and wildlife. In general, TH levels are measured by immunoassay (IA) methods but the specificity of the antibodies used in these assays limits selectivity. In the last decade, several analytical methods using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) have been developed to measure THs. These new techniques proved to be more accurate than the IA analysis and they were widely used for the determination of TH level in different human and animal tissues. A large part of LC-MS/MS methods described in literature employed between 200 and 500mg of sample, however this quantity can be considered too high especially when preclinical studies are conducted using mice as test subjects. Thus an analytical method that reduces the amount of tissue is essential. In this study, we developed a procedure for the analysis of six THs; L-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3), 3,3',5'-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (rT2), 3,3'-diiodo-l-thyronine (T2), 3-iodo-l-thyronine (T1) using isotope ((13)C6-T4, (13)C6-T3, (13)C6-rT3, (13)C6-T2) dilution liquid chromatography-mass spectrometry. The major difference with previously described methods lies in the utilization of a nano-UPLC (Ultra Performance Liquid Chromatography) system in micro configuration. This approach leads to a reduction compared to the published methods, of column internal diameter, flow rate, and injected volume. The result of all these improvements is a decrease in the amount of sample necessary for the analysis. The method was tested on six different mouse tissues: liver, heart, kidney, muscle, lung and brown adipose tissue (BAT). The nano-UPLC system was interfaced with a quadrupole time-of-flight mass spectrometer (Q-TOF2-MS) using the positive ion mode electrospray ionization. In our analytical method

  16. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  17. The Means: Cytometry and Mass Spectrometry Converge in a Single Cell Deep Profiling Platform

    PubMed Central

    Weis-Garcia, Frances; Bandura, Dmitry; Baranov, Vladimir; Ornatsky, Olga; Tanner, Scott

    2013-01-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a distinct flavor of mass spectrometry that has had little association with cell biology: it remains the state of the art for the determination of the atomic composition of materials. Unrelatedly, flow cytometry is the superior method for distinguishing the heterogeneity of cells through the determination of antigen signatures using tagged antibodies. Simply replacing fluorophore tags with stable isotopes of the heavy metals, and measuring these cell-by-cell with ICP-MS, dramatically increases the number of probes that can be simultaneously measured in cytometry and enables a transformative increase in the resolution of rare cell populations in complex biological samples. While this can be thought of as a novel incarnation of single-cell targeted proteomics, the metal-labeling reagents, ICP-MS of single cells, and accompanying informatics comprise a new field of technology termed Mass Cytometry. While the conception of mass cytometry is simple the embodiment to address the issues of multi-parameter flow cytometry has been far more challenging. There are many elements, and many more stable isotopes of those elements, that might be used as distinct reporter tags. Still, there are many approaches to conjugating metals to antibodies (or other affinity reagents) and work in this area along with developing new applications is ongoing. The mass resolution and linear (quantitative) dynamic range of ICP-MS allows those many stable isotopes to be measured simultaneously and without the spectral overlap issues that limit fluorescence assay. However, the adaptation of ICP-MS to allow high-speed simultaneous measurement with single cell distinction at high throughput required innovation of the cell introduction system, ion optics (sampling, transmission and beam-shaping), mass analysis, and signal handling and processing. An overview of “the nuts and bolts” of Mass Cytometry is presented.

  18. Determination of lead, cadmium, indium, thallium and silver in ancient ices from Antarctica by isotope dilution-thermal ionization mass spectrometry

    USGS Publications Warehouse

    Matsumoto, A.; Hinkley, T.K.

    1997-01-01

    The concentrations of five chalcophile elements (Pb, Cd, In, Tl and Ag) and the lead isotope rarios in ancient ices from the Taylor Dome near coastal Antarctica, have been determined by the isotope dilutionthermal ionization mass spectrometry (ID-TIMS), with ultra-clean laboratory techniques. The samples were selected from segments of cores, one of which included a visible ash layer. Electric conductivity measurement (ECM) or dielectric properties (DEP) gave distinctive sharp peaks for some of the samples c hosen. Exterior portions of the sample segments were trimmed away by methods described here. Samples w ere evaporated to dryness and later separated into fractions for the five elements using an HBr-HNO3 a nion exchange column method. The concentrations are in the range 2.62-36.7 pg Pb/g of ice, 0.413-2.83 pg Cd/g, 0.081-0.34 pg In/g, 0.096-2.8 pg Tl/g and 0.15-0.84 pg Ag/g. respectively. The dispersions in duplicate analyses are about ??1% for lead and cadmium, ??2% for indium. ??4% for thallium and ??6% for silver, respectively. The concentrations of lead obtained are commonly higher than those in the present-day Antarctic surface snows, but the isotope ratios are distinctively higher than those of the present-day snows and close to those of the other ancient ice collected from a different Antarctic area.

  19. Determination of serum calcium levels by 42Ca isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Han, Bingqing; Ge, Menglei; Zhao, Haijian; Yan, Ying; Zeng, Jie; Zhang, Tianjiao; Zhou, Weiyan; Zhang, Jiangtao; Wang, Jing; Zhang, Chuanbao

    2017-11-27

    Serum calcium level is an important clinical index that reflects pathophysiological states. However, detection accuracy in laboratory tests is not ideal; as such, a high accuracy method is needed. We developed a reference method for measuring serum calcium levels by isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS), using 42Ca as the enriched isotope. Serum was digested with 69% ultrapure nitric acid and diluted to a suitable concentration. The 44Ca/42Ca ratio was detected in H2 mode; spike concentration was calibrated by reverse IDMS using standard reference material (SRM) 3109a, and sample concentration was measured by a bracketing procedure. We compared the performance of ID ICP-MS with those of three other reference methods in China using the same serum and aqueous samples. The relative expanded uncertainty of the sample concentration was 0.414% (k=2). The range of repeatability (within-run imprecision), intermediate imprecision (between-run imprecision), and intra-laboratory imprecision were 0.12%-0.19%, 0.07%-0.09%, and 0.16%-0.17%, respectively, for two of the serum samples. SRM909bI, SRM909bII, SRM909c, and GBW09152 were found to be within the certified value interval, with mean relative bias values of 0.29%, -0.02%, 0.10%, and -0.19%, respectively. The range of recovery was 99.87%-100.37%. Results obtained by ID ICP-MS showed a better accuracy than and were highly correlated with those of other reference methods. ID ICP-MS is a simple and accurate candidate reference method for serum calcium measurement and can be used to establish and improve serum calcium reference system in China.

  20. Secondary Ion Mass Spectrometry for Mg Tracer Diffusion: Issues and Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuggle, Jay; Giordani, Andrew; Kulkarni, Nagraj S

    2014-01-01

    A Secondary Ion Mass Spectrometry (SIMS) method has been developed to measure stable Mg isotope tracer diffusion. This SIMS method was then used to calculate Mg self- diffusivities and the data was verified against historical data measured using radio tracers. The SIMS method has been validated as a reliable alternative to the radio-tracer technique for the measurement of Mg self-diffusion coefficients and can be used as a routine method for determining diffusion coefficients.

  1. Comparative performance study of different sample introduction techniques for rapid and precise selenium isotope ratio determination using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS).

    PubMed

    Elwaer, Nagmeddin; Hintelmann, Holger

    2007-11-01

    The analytical performance of five sample introduction systems, a cross flow nebulizer spray chamber, two different solvent desolvation systems, a multi-mode sample introduction system (MSIS), and a hydride generation (LI2) system were compared for the determination of Se isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS). The optimal operating parameters for obtaining the highest Se signal-to-noise (S/N) ratios and isotope ratio precision for each sample introduction were determined. The hydride generation (LI2) system was identified as the most suitable sample introduction method yielding maximum sensitivity and precision for Se isotope ratio measurement. It provided five times higher S/N ratios for all Se isotopes compared to the MSIS, 20 times the S/N ratios of both desolvation units, and 100 times the S/N ratios produced by the conventional spray chamber sample introduction method. The internal precision achieved for the (78)Se/(82)Se ratio at 100 ng mL(-1) Se with the spray chamber, two desolvation, MSIS, and the LI2 systems coupled to MC-ICP/MS was 150, 125, 114, 13, and 7 ppm, respectively. Instrument mass bias factors (K) were calculated using an exponential law correction function. Among the five studied sample introduction systems the LI2 showed the lowest mass bias of -0.0265 and the desolvation system showed the largest bias with -0.0321.

  2. Effect of 13C enrichment and sugar type on analysis of sugars by gas chromatography/combustion/isotope ratio mass spectrometry.

    PubMed

    Baumann, Karen; Dignac, Marie-France; Bardoux, Gérard; Rumpel, Cornelia

    2012-09-15

    The objective of this investigation was to test gas-chromatographic compound-specific analysis for studies on the isotopic composition of (13)C-enriched sugar molecules. The effects of (13)C enrichment and type of sugar (C5, C6) will provide valuable information on isotopic correction for future studies employing (13)C-enriched sugars. Five sugar solutions of xylose, mannose and glucose with (13)C enrichments ranging between 1.1 and 1.5 atom-% were prepared. The (13)C enrichments of the initial sugars were measured by elemental analyser/isotope ratio mass spectrometry (EA/IRMS); (13)C enrichments for derivatised sugars were obtained by gas chromatography/combustion/IRMS (GC/C/IRMS). The linear relationships between the (13)C enrichments of the initial sugars and the values for the derivatised sugars were sugar-type dependent. Corrections for GC/C/IRMS values took into account the kinetic isotope effect (KIE) of the derivatising agent associated with the coefficient (K(d)) and a newly introduced second coefficient (K(c)) associated with the KIE of the sugar. While K(d) was constant, K(c) varied with sugar type. During derivatisation acetate groups with (12)C and sugars with more (13)C reacted faster. Coefficients for the specific ranges of (13)C enrichments under study have to be assessed and the reactions of different sugar types have to be taken into account to avoid underestimation of (13)C enrichment of up to 9% (C5) or overestimation of up to 4% (C6). Copyright © 2012 John Wiley & Sons, Ltd.

  3. Use of Isotope Ratio Mass Spectrometry (IRMS) Determination ((18)O/(16)O) to Assess the Local Origin of Fish and Asparagus in Western Switzerland.

    PubMed

    Rossier, Joël S; Maury, Valérie; de Voogd, Blaise; Pfammatter, Elmar

    2014-10-01

    Here we present the use of isotope ratio mass spectrometry (IRMS) for the detection of mislabelling of food produced in Switzerland. The system is based on the analysis of the oxygen isotope distribution in water (δ(18)O). Depending on the location on the earth, lake or groundwater has a specific isotopic distribution, which can serve as a fingerprint in order to verify whether a product has grown by means of the corresponding water. This report presents specifically the IRMS technique and the results obtained in the origin detection of fish grown in selected Swiss lakes as well as asparagus grown in Valais ground. Strengths and limitations of the method are presented for both cited products; on one hand, the technique is relatively universal for any product which contains significant water but on the other hand, it necessitates a rather heavy workload to build up a database of water δ(18)O values of products of different origins. This analytical tool is part of the concept of combating fraud currently in use in Switzerland.

  4. Potential of ion chromatography coupled to isotope ratio mass spectrometry via a liquid interface for beverages authentication.

    PubMed

    Guyon, Francois; Gaillard, Laetitia; Brault, Audrey; Gaultier, Nicolas; Salagoïty, Marie-Hélène; Médina, Bernard

    2013-12-27

    New tools for the determination of characteristic parameters for food authentication are requested to prevent food adulteration from which health concerns, unfair competition could follow. A new coupling in the area of compound-specific carbon 13 isotope ratio (δ(13)C) analysis was developed to simultaneously quantify δ(13)C values of sugars and organic acids. The coupling of ion chromatography (IC) together with isotope ratio mass spectrometry (IRMS) can be achieved using a liquid interface allowing a chemical oxidation (co) of organic matter. Synthetic solutions containing 1 polyol (glycerol), 3 carbohydrates (sucrose, glucose and fructose) and 12 organic acids (gluconic, lactic, malic, tartaric, oxalic, fumaric, citric and isocitric) were used to optimize chromatographic conditions (concentration gradient and 3 types of column) and the studied isotopic range (-32.28 to -10.65‰) corresponds to the values found in food products. Optimum chromatographic conditions are found using an IonPac AS15, an elution flow rate of 0.3mLmin(-1) and a linear concentration gradient from 2 to 76mM (rate 21mMmin(-1)). Comparison between δ(13)C value individually obtained for each compound with the coupling IRMS and elemental analyzer, EA-IRMS, and the ones measured on the mixture of compounds by IC-co-IRMS does not reveal any isotope fractionation. Thus, under these experimental conditions, IC-co-IRMS results are accurate and reproducible. This new coupling was tested on two food matrices, an orange juice and a sweet wine. Some optimization is necessary as the concentration range between sugars and organic acids is too large: an increase in the filament intensity of the IRMS is necessary to simultaneously detect the two compound families. These first attempts confirm the good results obtained on synthetic solutions and the strong potential of the coupling IC-co-IRMS in food authentication area. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Precision mass measurements of neutron-rich Co isotopes beyond N =40

    NASA Astrophysics Data System (ADS)

    Izzo, C.; Bollen, G.; Brodeur, M.; Eibach, M.; Gulyuz, K.; Holt, J. D.; Kelly, J. M.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Stroberg, S. R.; Sumithrarachchi, C. S.; Valverde, A. A.; Villari, A. C. C.

    2018-01-01

    The region near Z =28 and N =40 is a subject of great interest for nuclear structure studies due to spectroscopic signatures in 68Ni suggesting a subshell closure at N =40 . Trends in nuclear masses and their derivatives provide a complementary approach to shell structure investigations via separation energies. Penning trap mass spectrometry has provided precise measurements for a number of nuclei in this region; however, a complete picture of the mass surfaces has so far been limited by the large uncertainty remaining for nuclei with N >40 along the iron (Z =26 ) and cobalt (Z =27 ) chains because these species are not available from traditional isotope separator online rare isotope facilities. The Low-Energy Beam and Ion Trap Facility at the National Superconducting Cyclotron Laboratory is the first and only Penning trap mass spectrometer coupled to a fragmentation facility and therefore presents the unique opportunity to perform precise mass measurements of these elusive isotopes. Here we present the first Penning trap measurements of Co,6968, carried out at this facility. Some ambiguity remains as to whether the measured values are ground-state or isomeric-state masses. A detailed discussion is presented to evaluate this question and to motivate future work. In addition, we perform ab initio calculations of ground-state and two-neutron separation energies of cobalt isotopes with the valence-space in-medium similarity renormalization group approach based on a particular set of two- and three-nucleon forces that predict saturation in infinite matter. We discuss the importance of these measurements and calculations for understanding the evolution of nuclear structure near 68Ni.

  6. Nondispersive infrared spectrometry for 13CO2/12CO2-measurements: a clinically feasible analyzer for stable isotope breath tests in gastroenterology.

    PubMed

    Braden, B; Caspary, W F; Lembcke, B

    1999-06-01

    13C-urea breath tests have become clinical routine for the diagnosis of Helicobacter pylori infection and other isotope breath tests have been invented e.g. for gastric emptying or quantitative liver function testing. Recently, isotope-selective nondispersive infrared spectrometers (NDIRS) have been developed for the analysis of the 13CO2/12CO2-enrichment in breath. In this study, we prospectively tested the validity of a newly developed NDIRS in comparison to isotope ratio mass spectrometry (IRMS). 142 patients with dyspeptic symptoms were tested for Helicobacter pylori infection using the 13C-urea breath test. The isotope ratio analysis of the breath samples was performed in duplicate both using IRMS and NDIRS. The results of the baseline-corrected 13CO2-exhalation values between IRMS and NDIRS were in excellent agreement. The mean difference between both methods was 0.28 +/- 1.93 delta/1000. Evaluating the qualitative urea breath test results in reference to IRMS as the reference the NDIRS had a sensitivity of 97.8% and a specificity of 98.9%. The isotope-selective nondispersive infrared spectroscopy is going to become a reliable, but low-cost and easy-to-operate alternative to expensive isotope ratio mass spectrometry in the analysis of 13C-breath tests.

  7. Simultaneous measurement of total estradiol and testosterone in human serum by isotope dilution liquid chromatography tandem mass spectrometry.

    PubMed

    Zhou, Hui; Wang, Yuesong; Gatcombe, Matthew; Farris, Jacob; Botelho, Julianne C; Caudill, Samuel P; Vesper, Hubert W

    2017-10-01

    Reliable measurement of total testosterone and estradiol is critical for their use as biomarkers of hormone-related disorders in patient care and translational research. We developed and validated a mass spectrometry method to simultaneously quantify these analytes in human serum without chemical derivatization. Serum is equilibrated with isotopic internal standards and treated with acidic buffer to release hormones from their binding proteins. Lipids are isolated and polar impurities are removed by two serial liquid-liquid extraction steps. Total testosterone and estradiol are measured using liquid chromatography tandem mass spectrometry (LC-MS/MS) in combination of positive and negative electrospray ionization modes. The method shows broad analytical measurement range for both testosterone 0.03-48.5 nM (0.75-1400 ng/dL) and estradiol 11.0-5138 pM (2.99-1400 pg/mL) and excellent agreement with certified reference materials (mean bias less than 2.1% to SRM 971, BCR 576, 577, and 578) and a high order reference method (mean bias 1.25% for testosterone and -0.84% for estradiol). The high accuracy of the method was monitored and certified by CDC Hormone Standardization (HoSt) Program for 2 years with mean bias -0.7% (95% CI -1.6% to 0.2%) for testosterone and 0.1% (95% CI -2.2% to 2.3%) for estradiol. The method precision over a 2-year period for quality control pools at low, medium, and high concentrations was 2.7-2.9% for testosterone and 3.3-5.3% for estradiol. With the consistently excellent accuracy and precision, this method is readily applicable for high-throughput clinical and epidemiological studies.

  8. Rapid and precise measurement of serum branched-chain and aromatic amino acids by isotope dilution liquid chromatography tandem mass spectrometry.

    PubMed

    Yang, Ruiyue; Dong, Jun; Guo, Hanbang; Li, Hongxia; Wang, Shu; Zhao, Haijian; Zhou, Weiyan; Yu, Songlin; Wang, Mo; Chen, Wenxiang

    2013-01-01

    Serum branched-chain and aromatic amino acids (BCAAs and AAAs) have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standards and the amino acids were extracted with acetonitrile, followed by analysis using LC/MS/MS. The LC separation was performed on a reversed-phase C18 column, and the MS/MS detection was performed via the positive electronic spray ionization in multiple reaction monitoring mode. Specific analysis of the amino acids was achieved within 2 min. Intra-run and total CVs for the amino acids were less than 2% and 4%, respectively, and the analytical recoveries ranged from 99.6 to 103.6%. A rapid and precise method for the measurement of serum BCAAs and AAAs was developed and may serve as a quick tool for screening serum BCAAs and AAAs in studies assessing diabetes risk.

  9. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ??? in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) ??2H reproducibility (1?? standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1 ??? to 0.58 ???. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  10. Chemical and isotopic measurements of micrometeoroids by secondary ion mass spectrometry (A0187-2)

    NASA Technical Reports Server (NTRS)

    Foote, J. H.; Swan, P. D.; Walker, R. M.; Zinner, E. K.; Bahr, D.; Fechtig, H.; Jessberger, E.; Igenbergs, E.; Kreitmayr, U.; Kuczera, H.

    1984-01-01

    The objective of this experiment is to measure the chemical and isotopic composition of interplanetary dust particles of mass greater than 10 to the minus 10 power G for most of thermator elements expected to be present.

  11. Pyrolysis-gas chromatography-isotope ratio mass spectrometry for monitoring natural additives in polylactic acid active food packages.

    PubMed

    Llana-Ruíz-Cabello, M; Pichardo, S; Jiménez-Morillo, N T; González-Vila, F J; Guillamón, E; Bermúdez, J M; Aucejo, S; Camean, A M; González-Pérez, J A

    2017-11-24

    Compound-specific isotope analysis (CSIA) usually requires preparative steps (pretreatments, extraction, derivatization) to get amenable chromatographic analytes from bulk geological, biological or synthetic materials. Analytical pyrolysis (Py-GC/MS) can help to overcome such sample manipulation. This communication describe the results obtained by hyphenating analytical pyrolysis (Py-GC) with carbon isotope-ratio mass spectrometry (IRMS) for the analysis of a polylactic acid (PLA) a based bio-plastic extruded with variable quantities of a natural plant extract or oregano essential oil. The chemical structural information of pyrolysates was first determined by conventional analytical pyrolysis and the measure of δ 13 C in specific compounds was done by coupling a pyrolysis unit to a gas chromatograph connected to a continuous flow IRMS unit (Py-GC-C-IRMS). Using this Py-CSIA device it was possible to trace natural additives with depleted δ 13 C values produced by C3 photosystem vegetation (cymene: -26.7‰±2.52; terpinene: -27.1‰±0.13 and carvacrol: -27.5‰±1.80 from oregano and two unknown structures: -23.3‰±3.32 and -24.4‰±1.70 and butyl valerate: -24.1‰±3.55 from Allium spp.), within the naturally isotopically enriched bio-plastic backbone derived from corn (C4 vegetation) starch (cyclopentanones: -14.2‰±2.11; lactide enantiomers: -9.2‰±1.56 and larger polymeric units: -17.2‰±1.71). This is the first application of Py-CSIA to characterize a bio-plastic and is shown as a promising tool to study such materials, providing not only a fingerprinting, but also valuable information about the origin of the materials, allowing the traceability of additives and minimizing sample preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of SI-traceable C-peptide certified reference material NMIJ CRM 6901-a using isotope-dilution mass spectrometry-based amino acid analyses.

    PubMed

    Kinumi, Tomoya; Goto, Mari; Eyama, Sakae; Kato, Megumi; Kasama, Takeshi; Takatsu, Akiko

    2012-07-01

    A certified reference material (CRM) is a higher-order calibration material used to enable a traceable analysis. This paper describes the development of a C-peptide CRM (NMIJ CRM 6901-a) by the National Metrology Institute of Japan using two independent methods for amino acid analysis based on isotope-dilution mass spectrometry. C-peptide is a 31-mer peptide that is utilized for the evaluation of β-cell function in the pancreas in clinical testing. This CRM is a lyophilized synthetic peptide having the human C-peptide sequence, and contains deamidated and pyroglutamylated forms of C-peptide. By adding water (1.00 ± 0.01) g into the vial containing the CRM, the C-peptide solution in 10 mM phosphate buffer saline (pH 6.6) is reconstituted. We assigned two certified values that represent the concentrations of total C-peptide (mixture of C-peptide, deamidated C-peptide, and pyroglutamylated C-peptide) and C-peptide. The certified concentration of total C-peptide was determined by two amino acid analyses using pre-column derivatization liquid chromatography-mass spectrometry and hydrophilic chromatography-mass spectrometry following acid hydrolysis. The certified concentration of C-peptide was determined by multiplying the concentration of total C-peptide by the ratio of the relative area of C-peptide to that of the total C-peptide measured by liquid chromatography. The certified value of C-peptide (80.7 ± 5.0) mg/L represents the concentration of the specific entity of C-peptide; on the other hand, the certified value of total C-peptide, (81.7 ± 5.1) mg/L can be used for analyses that does not differentiate deamidated and pyroglutamylated C-peptide from C-peptide itself, such as amino acid analyses and immunochemical assays.

  13. Use of isotope ratio mass spectrometry to differentiate between endogenous steroids and synthetic homologues in cattle: a review.

    PubMed

    Janssens, Geert; Courtheyn, Dirk; Mangelinckx, Sven; Prévost, Stéphanie; Bichon, Emmanuelle; Monteau, Fabrice; De Poorter, Geert; De Kimpe, Norbert; Le Bizec, Bruno

    2013-04-15

    Although substantial technical advances have been achieved during the past decades to extend and facilitate the analysis of growth promoters in cattle, the detection of abuse of synthetic analogs of naturally occurring hormones has remained a challenging issue. When it became clear that the exogenous origin of steroid hormones could be traced based on the (13)C/(12)C isotope ratio of the substances, GC/C/IRMS has been successfully implemented to this aim since the end of the past century. However, due to the costly character of the instrumental setup, the susceptibility of the equipment to errors and the complex and time consuming sample preparation, this method is up until now only applied by a limited number of laboratories. In this review, the general principles as well as the practical application of GC/C/IRMS to differentiate between endogenous steroids and exogenously synthesized homologous compounds in cattle will be discussed in detail, and will be placed next to other existing and to be developed methods based on isotope ratio mass spectrometry. Finally, the link will be made with the field of sports doping, where GC/C/IRMS has been established within the World Anti-Doping Agency (WADA) approved methods as the official technique to differentiate between exogenous and endogenous steroids over the past few years. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Quantitative mass spectrometry methods for pharmaceutical analysis

    PubMed Central

    Loos, Glenn; Van Schepdael, Ann

    2016-01-01

    Quantitative pharmaceutical analysis is nowadays frequently executed using mass spectrometry. Electrospray ionization coupled to a (hybrid) triple quadrupole mass spectrometer is generally used in combination with solid-phase extraction and liquid chromatography. Furthermore, isotopically labelled standards are often used to correct for ion suppression. The challenges in producing sensitive but reliable quantitative data depend on the instrumentation, sample preparation and hyphenated techniques. In this contribution, different approaches to enhance the ionization efficiencies using modified source geometries and improved ion guidance are provided. Furthermore, possibilities to minimize, assess and correct for matrix interferences caused by co-eluting substances are described. With the focus on pharmaceuticals in the environment and bioanalysis, different separation techniques, trends in liquid chromatography and sample preparation methods to minimize matrix effects and increase sensitivity are discussed. Although highly sensitive methods are generally aimed for to provide automated multi-residue analysis, (less sensitive) miniaturized set-ups have a great potential due to their ability for in-field usage. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644982

  15. A Century of Progress in Molecular Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McLafferty, Fred W.

    2011-07-01

    The first mass spectrum of a molecule was measured by J.J. Thomson in 1910. Mass spectrometry (MS) soon became crucial to the study of isotopes and atomic weights and to the development of atomic weapons for World War II. Its notable applications to molecules began with the quantitative analysis of light hydrocarbons during World War II. When I joined the Dow Chemical Company in 1950, MS was not favored by organic chemists. This situation improved only with an increased understanding of gaseous ion chemistry, which was obtained through the use of extensive reference data. Gas chromatography-MS was developed in 1956, and tandem MS was first used a decade later. In neutralization-reionization MS, an unusual, unstable species is prepared by ion-beam neutralization and characterized by reionization. Electrospray ionization of a protein mixture produces its corresponding ionized molecules. In top-down proteomics, ions from an individual component can be mass separated and subjected to collision-activated and electron-capture dissociation to provide extensive sequence information.

  16. A new combined method of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction for the determination of neurotransmitters in rat brain microdialysates by ultra high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Zheng, Longfang; Zhao, Xian-En; Zhu, Shuyun; Tao, Yanduo; Ji, Wenhua; Geng, Yanling; Wang, Xiao; Chen, Guang; You, Jinmao

    2017-06-01

    In this work, for the first time, a new hyphenated technique of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction has been developed for the simultaneous determination of monoamine neurotransmitters (MANTs) and their biosynthesis precursors and metabolites. The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry detection using multiple-reaction monitoring mode. A pair of mass spectrometry sensitizing reagents, d 0 -10-methyl-acridone-2-sulfonyl chloride and d 3 -10-methyl-acridone-2-sulfonyl chloride, as stable isotope probes was utilized to facilely label neurotransmitters, respectively. The heavy labeled MANTs standards were prepared and used as internal standards for quantification to minimize the matrix effects in mass spectrometry analysis. Low toxic bromobenzene (extractant) and acetonitrile (dispersant) were utilized in microextraction procedure. Under the optimized conditions, good linearity was observed with the limits of detection (S/N>3) and limits of quantification (S/N>10) in the range of 0.002-0.010 and 0.015-0.040nmol/L, respectively. Meanwhile, it also brought acceptable precision (4.2-8.8%, peak area RSDs %) and accuracy (recovery, 96.9-104.1%) results. This method was successfully applied to the simultaneous determination of monoamine neurotransmitters and their biosynthesis precursors and metabolites in rat brain microdialysates of Parkinson's disease and normal rats. This provided a new method for the neurotransmitters related studies in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Molecules and elements for quantitative bioanalysis: The allure of using electrospray, MALDI, and ICP mass spectrometry side-by-side.

    PubMed

    Linscheid, Michael W

    2018-03-30

    To understand biological processes, not only reliable identification, but quantification of constituents in biological processes play a pivotal role. This is especially true for the proteome: protein quantification must follow protein identification, since sometimes minute changes in abundance tell the real tale. To obtain quantitative data, many sophisticated strategies using electrospray and MALDI mass spectrometry (MS) have been developed in recent years. All of them have advantages and limitations. Several years ago, we started to work on strategies, which are principally capable to overcome some of these limits. The fundamental idea is to use elemental signals as a measure for quantities. We began by replacing the radioactive 32 P with the "cold" natural 31 P to quantify modified nucleotides and phosphorylated peptides and proteins and later used tagging strategies for quantification of proteins more generally. To do this, we introduced Inductively Coupled Plasma Mass Spectrometry (ICP-MS) into the bioanalytical workflows, allowing not only reliable and sensitive detection but also quantification based on isotope dilution absolute measurements using poly-isotopic elements. The detection capability of ICP-MS becomes particularly attractive with heavy metals. The covalently bound proteins tags developed in our group are based on the well-known DOTA chelate complex (1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid) carrying ions of lanthanoides as metal core. In this review, I will outline the development of this mutual assistance between molecular and elemental mass spectrometry and discuss the scope and limitations particularly of peptide and protein quantification. The lanthanoide tags provide low detection limits, but offer multiplexing capabilities due to the number of very similar lanthanoides and their isotopes. With isotope dilution comes previously unknown accuracy. Separation techniques such as electrophoresis and HPLC were used and just

  18. Mass spectrometric measurements of the isotopic anatomies of molecules (Invited)

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Krumwiede, D.; Schlueter, H.

    2013-12-01

    Site-specific and multiple isotopic substitutions in molecular structures potentially provide an extraordinarily rich set of constraints on their sources, conditions of formation, reaction and transport histories, and perhaps other issues. Examples include carbonate ';clumped isotope' thermometry, clumped isotope measurements of CO2, O2, and, recently, methane, ethane and N2O; site-specific 15N measurements in N2O and 13C and D analyses of fatty acids, sugars, cellulose, food products, and, recently, n-alkanes. Extension of the principles behind these tools to the very large number of isotopologues of complex molecules could potentially lead to new uses of isotope chemistry, similar to proteomics, metabolomics and genomics in their complexity and depth of detail (';isotomics'?). Several technologies are potentially useful for this field, including ';SNIF-NMR', gas source mass spectrometry and IR absorption spectroscopy. However, all well established methods have restrictive limits in the sizes of samples, types of analyzes, and the sorts of isotopologues that can be measured with useful precision. We will present an overview of several emerging instruments and techniques of high-resolution gas source mass spectrometry that may enable study of a large proportion of the isotopologues of a wide range of volatile and semi-volatile compounds, including many organics, with precisions and sample sizes suitable for a range of applications. A variety of isotopologues can be measured by combining information from the Thermo 253 Ultra (a new high resolution, multi-collector gas source mass spectrometer) and the Thermo DFS (a very high resolution single collector, but used here on a novel mode to achieve ~per mil precision ratio measurements), sometimes supplemented by conventional bulk isotopic measurements. It is possible to design methods in which no one of these sources of data meaningfully constrain abundances of specific isotopologues, but their combination fully and

  19. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  20. Improved sample preparation of glyphosate and methylphosphonic acid by EPA method 6800A and time-of-flight mass spectrometry using novel solid-phase extraction.

    PubMed

    Wagner, Rebecca; Wetzel, Stephanie J; Kern, John; Kingston, H M Skip

    2012-02-01

    The employment of chemical weapons by rogue states and/or terrorist organizations is an ongoing concern in the United States. The quantitative analysis of nerve agents must be rapid and reliable for use in the private and public sectors. Current methods describe a tedious and time-consuming derivatization for gas chromatography-mass spectrometry and liquid chromatography in tandem with mass spectrometry. Two solid-phase extraction (SPE) techniques for the analysis of glyphosate and methylphosphonic acid are described with the utilization of isotopically enriched analytes for quantitation via atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry (APCI-Q-TOF-MS) that does not require derivatization. Solid-phase extraction-isotope dilution mass spectrometry (SPE-IDMS) involves pre-equilibration of a naturally occurring sample with an isotopically enriched standard. The second extraction method, i-Spike, involves loading an isotopically enriched standard onto the SPE column before the naturally occurring sample. The sample and the spike are then co-eluted from the column enabling precise and accurate quantitation via IDMS. The SPE methods in conjunction with IDMS eliminate concerns of incomplete elution, matrix and sorbent effects, and MS drift. For accurate quantitation with IDMS, the isotopic contribution of all atoms in the target molecule must be statistically taken into account. This paper describes two newly developed sample preparation techniques for the analysis of nerve agent surrogates in drinking water as well as statistical probability analysis for proper molecular IDMS. The methods described in this paper demonstrate accurate molecular IDMS using APCI-Q-TOF-MS with limits of quantitation as low as 0.400 mg/kg for glyphosate and 0.031 mg/kg for methylphosphonic acid. Copyright © 2012 John Wiley & Sons, Ltd.

  1. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are splitmore » between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred

  2. Improved detection of sugar addition to maple syrup using malic acid as internal standard and in 13C isotope ratio mass spectrometry (IRMS).

    PubMed

    Tremblay, Patrice; Paquin, Réal

    2007-01-24

    Stable carbon isotope ratio mass spectrometry (delta13C IRMS) was used to detect maple syrup adulteration by exogenous sugar addition (beet and cane sugar). Malic acid present in maple syrup is proposed as an isotopic internal standard to improve actual adulteration detection levels. A lead precipitation method has been modified to isolate quantitatively malic acid from maple syrup using preparative reversed-phase liquid chromatography. The stable carbon isotopic ratio of malic acid isolated from this procedure shows an excellent accuracy and repeatability of 0.01 and 0.1 per thousand respectively, confirming that the modified lead precipitation method is an isotopic fractionation-free process. A new approach is proposed to detect adulteration based on the correlation existing between the delta13Cmalic acid and the delta13Csugars-delta13Cmalic acid (r = 0.704). This technique has been tested on a set of 56 authentic maple syrup samples. Additionally, authentic samples were spiked with exogeneous sugars. The mean theoretical detection level was statistically lowered using this technique in comparison with the usual two-standard deviation approach, especially when maple syrup is adulterated with beet sugar : 24 +/- 12% of adulteration detection versus 48 +/- 20% (t-test, p = 7.3 x 10-15). The method was also applied to published data for pineapple juices and honey with the same improvement.

  3. The life sciences mass spectrometry research unit.

    PubMed

    Hopfgartner, Gérard; Varesio, Emmanuel

    2012-01-01

    The Life Sciences Mass Spectrometry (LSMS) research unit focuses on the development of novel analytical workflows based on innovative mass spectrometric and software tools for the analysis of low molecular weight compounds, peptides and proteins in complex biological matrices. The present article summarizes some of the recent work of the unit: i) the application of matrix-assisted laser desorption/ionization (MALDI) for mass spectrometry imaging (MSI) of drug of abuse in hair, ii) the use of high resolution mass spectrometry for simultaneous qualitative/quantitative analysis in drug metabolism and metabolomics, and iii) the absolute quantitation of proteins by mass spectrometry using the selected reaction monitoring mode.

  4. Quantitative determination of four nitrofuran metabolites in meat by isotope dilution liquid chromatography-electrospray ionisation-tandem mass spectrometry.

    PubMed

    Mottier, Pascal; Khong, Seu-Ping; Gremaud, Eric; Richoz, Janique; Delatour, Thierry; Goldmann, Till; Guy, Philippe A

    2005-03-04

    A confirmatory method based on isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the low-level determination of residues of four nitrofuran veterinary drugs in meat, e.g., furazolidone, furaltadone, nitrofurantoin, and nitrofurazone. The procedure entails an acid-catalysed release of protein-bound metabolites, followed by their in situ conversion into the 2-nitrobenzaldehyde (NBA) imine-type derivatives. Liquid-liquid extraction and clean-up on a polymeric solid phase extraction cartridge are then performed before LC-MS/MS analysis by positive electrospray ionisation (ESI) applying multiple reaction monitoring of three transition reactions for each compound. Reliable quantitation is obtained by using one deuterated analogue per analyte (d4-NBA derivative) as internal standard (IS). Validation of the method in chicken meat was conducted following the European Union (EU) criteria for the analysis of veterinary drug residues in foods. The decision limits (CCalpha) were 0.11-0.21 microg/kg, and the detection capabilities (CCbeta) 0.19-0.36 microg/kg, thus below the minimum required performance limit (MRPL) set at 1 microg/kg by the EU. The method is robust and suitable for routine quality control operations, and more than 200 sample injections were performed without excessive pollution of the mass spectrometer or loss of LC column performance.

  5. Simultaneous measurement of total Estradiol and Testosterone in human serum by isotope dilution liquid chromatography tandem mass spectrometry

    PubMed Central

    Zhou, Hui; Wang, Yuesong; Gatcombe, Matthew; Farris, Jacob; Botelho, Julianne C.; Caudill, Samuel P.; Vesper, Hubert W.

    2017-01-01

    Reliable measurement of total testosterone and estradiol is critical for their use as biomarkers of hormone related disorders in patient care and translation research. We developed and validated a mass spectrometry method to simultaneously quantify these analytes in human serum without chemical derivatization. Serum is equilibrated with isotopic internal standards and treated with acidic buffer to release hormones from their binding proteins. Lipids are isolated and polar impurities are removed by two serial liquid-liquid extraction steps. Total testosterone and estradiol are measured using liquid chromatography tandem mass spectrometry (LC-MS/MS) in combination of positive and negative electrospray ionization modes. The method shows broad analytical measurement range for both testosterone 0.03–48.5 nM (0.75–1400 ng/dL) and estradiol 11.0–5138 pM (2.99–1400 pg/mL) and excellent agreement with certified reference materials (mean bias less than 2.1% to SRM 971, BCR 576, 577, and 578) and a high order reference method (mean bias 1.25% for testosterone and −0.84% for estradiol). The high accuracy of the method was monitored and certified by CDC Hormone Standardization (HoSt) Program for two years with mean bias −0.7% (95%CI: −1.6% to 0.2%) for testosterone and 0.1% (95%CI: −2.2% to 2.3%) for estradiol. The method precision over a 2-year period for Quality Control pools at low, medium and high concentrations was 2.7–2.9% for testosterone and 3.3–5.3% for estradiol. With the consistently excellent accuracy and precision, this method is readily applicable for high-throughput clinical and epidemiological studies. PMID:28801832

  6. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  7. Role of Mass Spectrometry in Clinical Endocrinology.

    PubMed

    Ketha, Siva S; Singh, Ravinder J; Ketha, Hemamalini

    2017-09-01

    The advent of mass spectrometry into the clinical laboratory has led to an improvement in clinical management of several endocrine diseases. Liquid chromatography tandem mass spectrometry found some of its first clinical applications in the diagnosis of inborn errors of metabolism, in quantitative steroid analysis, and in drug analysis laboratories. Mass spectrometry assays offer analytical sensitivity and specificity that is superior to immunoassays for many analytes. This article highlights several areas of clinical endocrinology that have witnessed the use of liquid chromatography tandem mass spectrometry to improve clinical outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies

    DOE PAGES

    Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.; ...

    2017-11-06

    We present that the mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can yield erroneous results if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flightmore » MS. Here, in this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases for highly saturated species and dynamic range increased by 1–2 orders of magnitude for peptides in a blood serum sample.« less

  9. An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.

    The mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can easily cause problems if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flight MS. In thismore » method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases with highly saturated species and dynamic range increased by 1-2 orders of magnitude for peptides in a blood serum sample.« less

  10. An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.

    We present that the mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can yield erroneous results if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flightmore » MS. Here, in this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases for highly saturated species and dynamic range increased by 1–2 orders of magnitude for peptides in a blood serum sample.« less

  11. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control.

    PubMed

    Ojanperä, Ilkka; Kolmonen, Marjo; Pelander, Anna

    2012-05-01

    Clinical and forensic toxicology and doping control deal with hundreds or thousands of drugs that may cause poisoning or are abused, are illicit, or are prohibited in sports. Rapid and reliable screening for all these compounds of different chemical and pharmaceutical nature, preferably in a single analytical method, is a substantial effort for analytical toxicologists. Combined chromatography-mass spectrometry techniques with standardised reference libraries have been most commonly used for the purpose. In the last ten years, the focus has shifted from gas chromatography-mass spectrometry to liquid chromatography-mass spectrometry, because of progress in instrument technology and partly because of the polarity and low volatility of many new relevant substances. High-resolution mass spectrometry (HRMS), which enables accurate mass measurement at high resolving power, has recently evolved to the stage that is rapidly causing a shift from unit-resolution, quadrupole-dominated instrumentation. The main HRMS techniques today are time-of-flight mass spectrometry and Orbitrap Fourier-transform mass spectrometry. Both techniques enable a range of different drug-screening strategies that essentially rely on measuring a compound's or a fragment's mass with sufficiently high accuracy that its elemental composition can be determined directly. Accurate mass and isotopic pattern acts as a filter for confirming the identity of a compound or even identification of an unknown. High mass resolution is essential for improving confidence in accurate mass results in the analysis of complex biological samples. This review discusses recent applications of HRMS in analytical toxicology.

  12. Comparison of mass spectrometry-based electronic nose and solid phase microextraction gas chromatography-mass spectrometry technique to assess infant formula oxidation.

    PubMed

    Fenaille, François; Visani, Piero; Fumeaux, René; Milo, Christian; Guy, Philippe A

    2003-04-23

    Two headspace techniques based on mass spectrometry detection (MS), electronic nose, and solid phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GC/MS) were evaluated for their ability to differentiate various infant formula powders based on changes of their volatiles upon storage. The electronic nose gave unresolved MS fingerprints of the samples gas phases that were further submitted to principal component analysis (PCA). Such direct MS recording combined to multivariate treatment enabled a rapid differentiation of the infant formulas over a 4 week storage test. Although MS-based electronic nose advantages are its easy-to-use aspect and its meaningful data interpretation obtained with a high throughput (100 samples per 24 h), its greatest disadvantage is that the present compounds could not be identified and quantified. For these reasons, a SPME-GC/MS measurement was also investigated. This technique allowed the identification of saturated aldehydes as the main volatiles present in the headspace of infant milk powders. An isotope dilution assay was further developed to quantitate hexanal as a potential indicator of infant milk powder oxidation. Thus, hexanal content was found to vary from roughly 500 and 3500 microg/kg for relatively non-oxidized and oxidized infant formulas, respectively.

  13. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    PubMed

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of 29 Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O 2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO + and SiO 2 + ion species was performed, and we found that SiO + ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO 3 ). For SiO 2 + , no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. 28 Si 16 O 18 O + , 30 Si 16 O 16 O + ). The developed method was validated by measuring a series of reference solutions with different 29 Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be <0

  14. Introducing AAA-MS, a rapid and sensitive method for amino acid analysis using isotope dilution and high-resolution mass spectrometry.

    PubMed

    Louwagie, Mathilde; Kieffer-Jaquinod, Sylvie; Dupierris, Véronique; Couté, Yohann; Bruley, Christophe; Garin, Jérôme; Dupuis, Alain; Jaquinod, Michel; Brun, Virginie

    2012-07-06

    Accurate quantification of pure peptides and proteins is essential for biotechnology, clinical chemistry, proteomics, and systems biology. The reference method to quantify peptides and proteins is amino acid analysis (AAA). This consists of an acidic hydrolysis followed by chromatographic separation and spectrophotometric detection of amino acids. Although widely used, this method displays some limitations, in particular the need for large amounts of starting material. Driven by the need to quantify isotope-dilution standards used for absolute quantitative proteomics, particularly stable isotope-labeled (SIL) peptides and PSAQ proteins, we developed a new AAA assay (AAA-MS). This method requires neither derivatization nor chromatographic separation of amino acids. It is based on rapid microwave-assisted acidic hydrolysis followed by high-resolution mass spectrometry analysis of amino acids. Quantification is performed by comparing MS signals from labeled amino acids (SIL peptide- and PSAQ-derived) with those of unlabeled amino acids originating from co-hydrolyzed NIST standard reference materials. For both SIL peptides and PSAQ standards, AAA-MS quantification results were consistent with classical AAA measurements. Compared to AAA assay, AAA-MS was much faster and was 100-fold more sensitive for peptide and protein quantification. Finally, thanks to the development of a labeled protein standard, we also extended AAA-MS analysis to the quantification of unlabeled proteins.

  15. Imaging mass spectrometry in microbiology

    PubMed Central

    Watrous, Jeramie D.; Dorrestein, Pieter C.

    2013-01-01

    Mass spectrometry tools which allow for the 2-D visualization of the distribution of trace metals, metabolites, surface lipids, peptides and proteins directly from biological samples without the need for chemical tagging or antibodies are becoming increasingly useful for microbiology applications. These tools, comprised of different imaging mass spectrometry techniques, are ushering in an exciting new era of discovery by allowing for the generation of chemical hypotheses based on of the spatial mapping of atoms and molecules that can correlate to or transcend observed phenotypes. In this review, we explore the wide range of imaging mass spectrometry techniques available to microbiologists and describe their unique applications to microbiology with respect to the types of microbiology samples to be investigated. PMID:21822293

  16. Symposium on accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on themore » status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.« less

  17. Comparison of IRMS and NMR spectrometry for the determination of intramolecular 13C isotope composition: application to ethanol.

    PubMed

    Gilbert, Alexis; Hattori, Ryota; Silvestre, Virginie; Wasano, Nariaki; Akoka, Serge; Hirano, Satoshi; Yamada, Keita; Yoshida, Naohiro; Remaud, Gérald S

    2012-09-15

    Isotopic (13)C NMR is a relatively recent technique which allows the determination of intramolecular (13)C isotope composition at natural abundance. It has been used in various scientific fields such as authentication, counterfeiting or plant metabolism. Although its precision has already been evaluated, the determination of its trueness remains still challenging. To deal with that issue, a comparison with another normalized technique must be achieved. In this work, we compare the intramolecular (13)C isotope distribution of ethanol from different origins obtained using both Isotope Ratio Mass Spectrometry (IRMS) and Nuclear Magnetic Resonance (NMR) spectrometry techniques. The IRMS approach consists of the oxidation of ethanol to acetic acid followed by the degradation of the latter for the analysis of each fragments formed. We show here that the oxidation of ethanol to acetic acid does not bring any significant error on the determination of the site-specific δ(13)C (δ(13)C(i)) of ethanol using the IRMS approach. The difference between the data obtained for 16 samples from different origins using IRMS and NMR approaches is not statistically significant and remains below 0.3‰. These results are encouraging for the future studies using isotopic NMR, especially in combination with the IRMS approach. Copyright © 2012. Published by Elsevier B.V.

  18. Rapid determination of 237Np in soil samples by multi-collector inductively-coupled plasma mass spectrometry and gamma spectrometry.

    PubMed

    Yi, Xiaowei; Shi, Yanmei; Xu, Jiang; He, Xiaobing; Zhang, Haitao; Lin, Jianfeng

    A radiochemical procedure is developed for the determination of 237 Np in soil with multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) and gamma-spectrometry. 239 Np (milked from 243 Am) was used as an isotopic tracer for chemical yield determination. The neptunium in the soil is separated by thenoyl-trifluoracetone extraction from 1 M HNO 3 solution after reducing Np to Np(IV) with ferrous sulfamate, and then purified with Dowex 1 × 2 anion exchange resin. 239 Np in the resulting solution is measured with gamma-spectrometry for chemical yield determination while the 237 Np is measured with MC-ICP-MS. Measurement results for soil samples are presented together with those for two reference samples. By comparing the determined value with the reference value of the 237 Np activity concentration, the feasibility of the procedure was validated.

  19. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification. Copyright 2010 John Wiley & Sons, Ltd.

  20. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Freeman, K. H.; Ricci, M. P.; Studley, S. A.; Hayes, J. M.

    1995-01-01

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  1. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry.

    PubMed

    Merritt, D A; Freeman, K H; Ricci, M P; Studley, S A; Hayes, J M

    1995-07-15

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  2. First application of calorimetric low-temperature detectors in accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kraft, S.; Andrianov, V.; Bleile, A.; Egelhof, P.; Golser, R.; Kiseleva, A.; Kiselev, O.; Kutschera, W.; Meier, J. P.; Priller, A.; Shrivastava, A.; Steier, P.; Vockenhuber, C.

    2004-03-01

    For the first time, calorimetric low-temperature detectors were applied in accelerator mass spectrometry, a well-known method for determination of very small isotope ratios with high sensitivity. The aim of the experiment was to determine with high accuracy the isotope ratio of 236U/238U for several samples of natural uranium, 236U being known as a sensitive monitor for neutron flux. Measurements were performed at the VERA tandem accelerator at Vienna, Austria. The detectors consist of sapphire absorbers and superconducting transition edge thermometers operated at T≈ 1.5 K. The relative energy resolution obtained for 17.39 MeV 238U is ΔE/E=4-9×10-3, depending on the experimental conditions. This performance enabled to substantially reduce background from neighbouring isotopes and to increase the detection efficiency. Due to the high sensitivity achieved, a value of 236U/238U=6.5×10-12 could be obtained, representing the smallest 236U/238U ratio measured until now.

  3. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  4. Effects of conventional heating on the stability of major olive oil phenolic compounds by tandem mass spectrometry and isotope dilution assay.

    PubMed

    Attya, Mohamed; Benabdelkamel, Hicham; Perri, Enzo; Russo, Anna; Sindona, Giovanni

    2010-12-01

    The quality of olive oils is sensorially tested by accurate and well established methods. It enables the classification of the pressed oils into the classes of extra virgin oil, virgin oil and lampant oil. Nonetheless, it would be convenient to have analytical methods for screening oils or supporting sensorial analysis using a reliable independent approach based on exploitation of mass spectrometric methodologies. A number of methods have been proposed to evaluate deficiencies of extra virgin olive oils resulting from inappropriate technological treatments, such as high or low temperature deodoration, and home cooking processes. The quality and nutraceutical value of extra virgin olive oil (EVOO) can be related to the antioxidant property of its phenolic compounds. Olive oil is a source of at least 30 phenolic compounds, such as oleuropein, oleocanthal, hydroxytyrosol, and tyrosol, all acting as strong antioxidants, radical scavengers and NSAI-like drugs. We now report the efficacy of MRM tandem mass spectrometry, assisted by the isotope dilution assay, in the evaluation of the thermal stability of selected active principles of extra virgin olive oil.

  5. Development of Simultaneous in situ Analysis of Carbon and Nitrogen Isotope Ratios in the Organic Matter by Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ishida, A.; Kitajima, K.; Williford, K. H.; Kakegawa, T.; Valley, J. W.

    2017-12-01

    An in-situ analytical method for simultaneous analysis of carbon and nitrogen isotope ratios in organic matter was developed for 12 μm spots by secondary ion mass spectrometry (IMS 1280 at WiscSIMS). Secondary ions of 12C12C-, 12C13C-, 12C14N-, and 12C15N- are simultaneously measured by three Faraday cups and one electron multiplier. Ions of 12C12CH- are measured to monitor hydride interferences. The spot-by-spot reproducibility of δ13C and δ15N values of UWLA-1 anthracite standard (95.7 wt%C and 1.2 wt%N), which was selected as a running reference material, are 0.16‰ and 0.56‰ (2SD), respectively. A negative correlation is observed between the instrumental mass fractionation (mass bias) of carbon and 12C12CH-/12C12C- ratios of examined reference materials. In contrast, there is no correlation of mass bias and hydride cps for nitrogen isotope measurements, suggesting the mass bias of nitrogen can be determined independently of the hydrogen. Values of 22 individual globules of organic matter in a carbonate rock from the 1.9 Ga Gunflint Formation, determined by the new procedure, average δ13C = -33.5 ± 0.25‰ (VPDB) and δ15N = +5.2 ± 0.81‰ (Air). Values of δ13C of both SIMS and bulk kerogen analyses are consistent within analytical error. In contrast, a difference of 1.7‰, which is larger than the 2SD error of each analysis, is observed in δ15N values for in situ vs. bulk kerogen analyses (δ15Nbulk = +6.9 ± 0.6‰). This difference in δ15N might be caused by the preferential removal of low-δ15N components in the organic matter by HCl/HF acid treatment during the bulk kerogen isolation. Simultaneous analyses of carbon and nitrogen in the same micro-volume of organic matter in Precambrian sedimentary rocks will allow correlations with textures and mineralogical occurrences, which will provide more detailed constraints on environments and life of the early Earth. Furthermore, this method is applicable to a wide variety of other research fields

  6. Validation of the doubly labeled water method using off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.

    PubMed

    Melanson, Edward L; Swibas, Tracy; Kohrt, Wendy M; Catenacci, Vicki A; Creasy, Seth A; Plasqui, Guy; Wouters, Loek; Speakman, John R; Berman, Elena S F

    2018-02-01

    When the doubly labeled water (DLW) method is used to measure total daily energy expenditure (TDEE), isotope measurements are typically performed using isotope ratio mass spectrometry (IRMS). New technologies, such as off-axis integrated cavity output spectroscopy (OA-ICOS) provide comparable isotopic measurements of standard waters and human urine samples, but the accuracy of carbon dioxide production (V̇co 2 ) determined with OA-ICOS has not been demonstrated. We compared simultaneous measurement V̇co 2 obtained using whole-room indirect calorimetry (IC) with DLW-based measurements from IRMS and OA-ICOS. Seventeen subjects (10 female; 22 to 63 yr) were studied for 7 consecutive days in the IC. Subjects consumed a dose of 0.25 g H 2 18 O (98% APE) and 0.14 g 2 H 2 O (99.8% APE) per kilogram of total body water, and urine samples were obtained on days 1 and 8 to measure average daily V̇co 2 using OA-ICOS and IRMS. V̇co 2 was calculated using both the plateau and intercept methods. There were no differences in V̇co 2 measured by OA-ICOS or IRMS compared with IC when the plateau method was used. When the intercept method was used, V̇co 2 using OA-ICOS did not differ from IC, but V̇co 2 measured using IRMS was significantly lower than IC. Accuracy (~1-5%), precision (~8%), intraclass correlation coefficients ( R = 0.87-90), and root mean squared error (30-40 liters/day) of V̇co 2 measured by OA-ICOS and IRMS were similar. Both OA-ICOS and IRMS produced measurements of V̇co 2 with comparable accuracy and precision compared with IC.

  7. Development of a candidate reference measurement procedure for the analysis of cortisol in human serum samples by isotope dilution-gas chromatography-mass spectrometry.

    PubMed

    Kawaguchi, Migaku; Takatsu, Akiko

    2009-08-01

    A candidate reference measurement procedure involving isotope dilution coupled with gas chromatography-mass spectrometry (GC-MS) has been developed and critically evaluated. An isotopically labeled internal standard, cortisol-d(2), was added to a serum sample. After equilibration, solid-phase extractions (SPE) for sample preparation and derivatization with heptafluorobutyric anhydride (HFBA) were performed for GC-MS analysis. The limit of detection (LOD) and the limit of quantification (LOQ) were 5 and 20 ng g(-1), respectively. The recovery of the added cortisol ranged from 99.8 to 101.0%. Excellent precision was obtained with a within-day variation (RSD) of 0.7% for GC-MS analysis. The accuracy of the measurement was evaluated by comparing of results of this reference measurement procedure on lyophilized human serum reference materials for cortisol (European Reference Materials (ERM)-DA 192) as Certified Reference Materials (CRMs). The results of this method for total cortisol agreed with the certified values within some uncertainty. This method, which demonstrates simply, easy, good accuracy, high precision, and is free from interferences from structural analogues, qualifies as a reference measurement procedure.

  8. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A onmore » Mass Spectrometry. The Q&A Transcript is attached« less

  9. Recent advances in biomedical applications of accelerator mass spectrometry.

    PubMed

    Hah, Sang Soo; Henderson, Paul T; Turteltaub, Kenneth W

    2009-06-17

    The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided.

  10. Recent advances in biomedical applications of accelerator mass spectrometry

    PubMed Central

    Hah, Sang Soo

    2009-01-01

    The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided. PMID:19534792

  11. High-precision measurement of phenylalanine δ15N values for environmental samples: a new approach coupling high-pressure liquid chromatography purification and elemental analyzer isotope ratio mass spectrometry.

    PubMed

    Broek, Taylor A B; Walker, Brett D; Andreasen, Dyke H; McCarthy, Matthew D

    2013-11-15

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is a powerful new tool for tracing nitrogen (N) source and transformation in biogeochemical cycles. Specifically, the δ(15)N value of phenylalanine (δ(15)N(Phe)) represents an increasingly used proxy for source δ(15)N signatures, with particular promise for paleoceanographic applications. However, current derivatization/gas chromatography methods require expensive and relatively uncommon instrumentation, and have relatively low precision, making many potential applications impractical. A new offline approach has been developed for high-precision δ(15)N measurements of amino acids (δ(15)N(AA)), optimized for δ(15)N(Phe) values. Amino acids (AAs) are first purified via high-pressure liquid chromatography (HPLC), using a mixed-phase column and automated fraction collection. The δ(15)N values are determined via offline elemental analyzer-isotope ratio mass spectrometry (EA-IRMS). The combined HPLC/EA-IRMS method separated most protein AAs with sufficient resolution to obtain accurate δ(15)N values, despite significant intra-peak isotopic fractionation. For δ(15)N(Phe) values, the precision was ±0.16‰ for standards, 4× better than gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS; ±0.64‰). We also compared a δ(15)N(Phe) paleo-record from a deep-sea bamboo coral from Monterey Bay, CA, USA, using our method versus GC/C/IRMS. The two methods produced equivalent δ(15)N(Phe) values within error; however, the δ(15)N(Phe) values from HPLC/EA-IRMS had approximately twice the precision of GC/C/IRMS (average stdev of 0.27‰ ± 0.14‰ vs 0.60‰ ± 0.20‰, respectively). These results demonstrate that offline HPLC represents a viable alternative to traditional GC/C/IMRS for δ(15)N(AA) measurement. HPLC/EA-IRMS is more precise and widely available, and therefore useful in applications requiring increased precision for data interpretation (e.g. δ(15)N paleoproxies

  12. Analysis of acrylamide in coffee and cocoa by isotope dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Aguas, Patricia C; Fitzhenry, Matthew J; Giannikopoulos, Georgina; Varelis, Peter

    2006-08-01

    An accurate and precise method for the quantification of acrylamide using stable isotope dilution liquid chromatography-tandem mass spectrometry was developed and used to measure acrylamide in coffee and cocoa samples. The sample preparation involved extraction of the analyte and its internal standard, 13C3-acrylamide, into water and subsequent defatting of the aqueous extract with dichloromethane. An aliquot of the resulting aqueous extract was then azeotropically dried under reduced pressure and subsequently purified using an aminopropyl-bonded silica cartridge. The purified extracts were then chromatographed on a 5-microm 2.1 x 150 mm Hypercarb column, the effluent of which was monitored for the analyte and its internal standard using positive-ion APCI-selected reaction monitoring. The intra-laboratory reproducibility of the method, expressed as a relative coefficient of variation (%, n=5), was determined at four levels of concentration (12.3, 42.3, 139.3 and 464.8 microg kg(-1)) and was found to vary between 0.6-2.5%. The accuracy of the method was assessed using a reference sample of coffee. The average result obtained using our method differed from the assigned value of the reference material by less than 1%. An analysis of a cocoa sample revealed that the method is capable of precisely estimating acrylamide in challenging matrices down to a level of at least 12.3 microg kg(-1).

  13. High accuracy method for the application of isotope dilution to gas chromatography/mass spectrometric analysis of gases.

    PubMed

    Milton, Martin J T; Wang, Jian

    2003-01-01

    A new isotope dilution mass spectrometry (IDMS) method for high-accuracy quantitative analysis of gases has been developed and validated by the analysis of standard mixtures of carbon dioxide in nitrogen. The method does not require certified isotopic reference materials and does not require direct measurements of the highly enriched spike. The relative uncertainty of the method is shown to be 0.2%. Reproduced with the permission of Her Majesty's Stationery Office. Copyright Crown copyright 2003.

  14. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous

  15. Stable isotope gas chromatography-tandem mass spectrometry determination of aminoethylcysteine ketimine decarboxylated dimer in biological samples.

    PubMed

    Tsikas, Dimitrios; Evans, Christopher E; Denton, Travis T; Mitschke, Anja; Gutzki, Frank-Mathias; Pinto, John T; Khomenko, Tetyana; Szabo, Sandor; Cooper, Arthur J L

    2012-11-01

    Aminoethylcysteine ketimine decarboxylated dimer (AECK-DD; systematic name: 1,2-3,4-5,6-7,8-octahydro-1,8a-diaza-4,6-dithiafluoren-9(8aH)-one) is a previously described metabolite of cysteamine that has been reported to be present in mammalian brain, urine, plasma, and cells in culture and vegetables and to possess potent antioxidative properties. Here, we describe a stable isotope gas chromatography-tandem mass spectrometry (GC-MS/MS) method for specific and sensitive determination of AECK-DD in biological samples. (13)C(2)-labeled AECK-DD was synthesized and used as the internal standard. Derivatization was carried out by N-pentafluorobenzylation with pentafluorobenzyl bromide in acetonitrile. Quantification was performed by selected reaction monitoring of the mass transitions m/z 328 to 268 for AECK-DD and m/z 330 to 270 for [(13)C(2)]AECK-DD in the electron capture negative ion chemical ionization mode. The procedure was systematically validated for human plasma and urine samples. AECK-DD was not detectable in human plasma above approximately 4nM but was present in urine samples of healthy humans at a maximal concentration of 46nM. AECK-DD was detectable in rat brain at very low levels of approximately 8pmol/g wet weight. Higher levels of AECK-DD were detected in mouse brain (∼1nmol/g wet weight). Among nine dietary vegetables evaluated, only shallots were found to contain trace amounts of AECK-DD (∼6.8pmol/g fresh tissue). Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification.

  17. Stable carbon and hydrogen isotope analysis of methyl tert-butyl ether and tert-amyl methyl ether by purge and trap-gas chromatography-isotope ratio mass spectrometry: method evaluation and application.

    PubMed

    Kujawinski, Dorothea M; Stephan, Manuel; Jochmann, Maik A; Krajenke, Karen; Haas, Joe; Schmidt, Torsten C

    2010-01-01

    In order to monitor the behaviour of contaminants in the aqueous environment effective enrichment techniques often have to be employed due to their low concentrations. In this work a robust and sensitive purge and trap-gas chromatography-isotope ratio mass spectrometry method for carbon and hydrogen isotope analysis of fuel oxygenates in water is presented. The method evaluation included the determination of method detection limits, accuracy and reproducibility of deltaD and delta(13)C values. Lowest concentrations at which reliable delta(13)C values could be determined were 5 microg L(-1) and 28 microg L(-1) for TAME and MTBE, respectively. Stable deltaD values for MTBE and TAME could be achieved for concentrations as low as 25 and 50 microg L(-1). Good long-term reproducibility of delta(13)C and deltaD values was obtained for all target compounds. But deltaD values varying more than 5 per thousand were observed using different thermal conversion tubes. Thus, a correction of deltaD values in the analysis of groundwater samples was necessary to guarantee comparability of the results. The applicability of this method was shown by the analysis of groundwater samples from a gasoline contaminated site. By two dimensional isotope analysis two locations within this site were identified at which anaerobic and aerobic degradation of methyl tert-butyl ether occurred.

  18. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    PubMed

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  19. Determination of carbon isotope ratios for honey samples by means of a liquid chromatography/isotope ratio mass spectrometry system coupled with a post-column pump.

    PubMed

    Kawashima, Hiroto; Suto, Momoka; Suto, Nana

    2018-05-20

    Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been used to authenticate and trace products such as honey, wine, and lemon juice, and compounds such as caffeine and pesticides. However, LC/IRMS has several disadvantages, including the high cost of the CO 2 membrane and blocking by solidified sodium persulfate. Here, we developed an improved system for determining carbon isotope ratios by LC/IRMS. The main improvement was the use of a post-column pump. Using the improved system, we determined δ 13 C values for glucose with high accuracy and precision (0.1‰ and 0.1‰, respectively; n = 3). The glucose, fructose, disaccharide, trisaccharide, and organic acid constituents of the honey samples were analyzed by LC/IRMS. The δ 13 C values for glucose, fructose, disaccharides, trisaccharides, and organic acids ranged from -27.0 to -24.2‰, -26.8 to -24.0‰, -28.8 to -24.0‰, -27.8 to -22.8‰, and -30.6 to -27.4‰, respectively. The analysis time was 1/3-1/2 the times required for analysis by previously reported methods. The column flow rate could be arbitrarily adjusted with the post-column pump. We applied the improved method to 26 commercial honey samples. Our results can be expected to be useful for other researchers who use LC/IRMS. This article is protected by copyright. All rights reserved.

  20. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study

    PubMed Central

    Tam, J.; Pantazopoulos, P.; Scott, P.M.; Moisey, J.; Dabeka, R.W.; Richard, I.D.K.

    2011-01-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products ‘as consumed’, pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[13C20]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply. PMID:21623499

  1. Strontium isotope measurement of basaltic glasses by laser ablation multiple collector inductively coupled plasma mass spectrometry based on a linear relationship between analytical bias and Rb/Sr ratios.

    PubMed

    Zhang, Le; Ren, Zhong-Yuan; Wu, Ya-Dong; Li, Nan

    2018-01-30

    In situ strontium (Sr) isotope analysis of geological samples by laser ablation multiple collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) provides useful information about magma mixing, crustal contamination and crystal residence time. Without chemical separation, during Sr isotope analysis with laser ablation, many kinds of interference ions (such as Rb + and Kr + ) are on the Sr isotope spectrum. Most previous in situ Sr isotope studies only focused on Sr-enriched minerals (e.g. plagioclase, calcite). Here we established a simple method for in situ Sr isotope analysis of basaltic glass with Rb/Sr ratio less than 0.14 by LA-MC-ICP-MS. Seven Faraday cups, on a Neptune Plus MC-ICP-MS instrument, were used to receive the signals on m/z 82, 83, 84, 85, 86, 87 and 88 simultaneously for the Sr isotope analysis of basaltic glass. The isobaric interference of 87 Rb was corrected by the peak stripping method. The instrumental mass fractionation of 87 Sr/ 86 Sr was corrected to 86 Sr/ 88 Sr = 0.1194 with an exponential law. Finally, the residual analytical biases of 87 Sr/ 86 Sr were corrected with a relationship between the deviation of 87 Sr/ 86 Sr from the reference values and the measured 87 Rb/ 86 Sr. The validity of the protocol present here was demonstrated by measuring the Sr isotopes of four basaltic glasses, a plagioclase crystal and a piece of modern coral. The measured 87 Sr/ 86 Sr ratios of all these samples agree within 100 ppm with the reference values. In addition, the Sr isotopes of olivine-hosted melt inclusions from the Emeishan large igneous province (LIP) were measured to show the application of our method to real geological samples. A simple but accurate approach for in situ Sr isotope measurement by LA-MC-ICP-MS has been established, which should greatly facilitate the wider application of in situ Sr isotope geochemistry, especially to volcanic rock studies. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food.

    PubMed

    García-Reyes, Juan F; Jackson, Ayanna U; Molina-Díaz, Antonio; Cooks, R Graham

    2009-01-15

    Desorption electrospray ionization (DESI) is applied to the rapid, in situ, direct qualitative and quantitative (ultra)trace analysis of agrochemicals in foodstuffs. To evaluate the potential of DESI mass spectrometry (MS) in toxic residue testing in food, 16 representative multiclass agricultural chemicals (pesticides, insecticides, herbicides, and fungicides) were selected (namely, ametryn, amitraz, azoxystrobin, bitertanol, buprofezin, imazalil, imazalil metabolite, isofenphos-methyl, malathion, nitenpyram, prochloraz, spinosad, terbuthylazine, thiabendazole, and thiacloprid). The DESI-MS experiments were performed using 3 microL of solution spotted onto conventional smooth poly(tetrafluoroethylene) (PTFE) surfaces, with examination by MS and tandem mass spectrometry (MS/MS) using an ion trap mass spectrometer. Optimization of the spray solvent led to the use of acetonitrile/water (80:20) (v/v), with 1% formic acid. Most of the compounds tested showed remarkable sensitivity in the positive ion mode, approaching that attainable with conventional direct infusion electrospray mass spectrometry. To evaluate the potential of the proposed approach in real samples, different experiments were performed including the direct DESI-MS/MS analysis of fruit peels and also of fruit/vegetable extracts. The results proved that DESI allows the detection and confirmation of traces of agrochemicals in actual market-purchased samples. In addition, MS/MS confirmation of selected pesticides in spiked vegetable extracts was obtained at absolute levels as low as 1 pg for ametryn. Quantitation of imazalil residues was also undertaken using an isotopically labeled standard. The data obtained were in agreement with those from the liquid chromatography mass spectrometry (LC-MS) reference method, with relative standard deviation (RSD) values consistently below 15%. The results obtained demonstrate the sensitivity of DESI as they meet the stringent European Union pesticide regulation

  3. Inter-laboratory comparison of elemental analysis and gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS). Part I: delta13C measurements of selected compounds for the development of an isotopic Grob-test.

    PubMed

    Serra, F; Janeiro, A; Calderone, G; Rojas, J M Moreno; Rhodes, C; Gonthier, L A; Martin, F; Lees, M; Mosandl, A; Sewenig, S; Hener, U; Henriques, B; Ramalho, L; Reniero, F; Teixeira, A J; Guillou, C

    2007-03-01

    This study was directed towards investigating suitable compounds to be used as stable isotope reference materials for gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) calibration. Several compounds were selected from those used in the 'Grob-test' mixture. Oxygen- and nitrogen-containing substances were added to these compounds to allow the mixture to be used as a possible multi-isotopic calibration tool for 2H/1H, 13C/12C, 15N/14N and 18O/16O ratio determinations. In this paper we present the results of delta13C measurements performed by the consortium of the five laboratories taking part in this inter-calibration exercise. All the compounds were individually assessed for homogeneity, short-term stability and long-term stability by means of EA-IRMS, as required by the bureau communitaire de reference (BCR) Guide for Production of Certified Reference Materials. The results were compared then with the GC-C-IRMS measurements using both polar and non-polar columns, and the final mixture of selected compounds underwent a further certification exercise assessing limits of accuracy and reproducibility under specified GC-C-IRMS conditions. Copyright 2007 John Wiley & Sons, Ltd.

  4. Clinical Application of Ambient Ionization Mass Spectrometry

    PubMed Central

    Li, Li-Hua; Hsieh, Hua-Yi; Hsu, Cheng-Chih

    2017-01-01

    Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study. PMID:28337399

  5. Single-protein nanomechanical mass spectrometry in real time

    PubMed Central

    Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L.

    2012-01-01

    Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time. PMID:22922541

  6. The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: I. Statistically annotated datasets for peptide sequences and proteins identified via the application of ICAT and tandem mass spectrometry to proteins copurifying with T cell lipid rafts.

    PubMed

    von Haller, Priska D; Yi, Eugene; Donohoe, Samuel; Vaughn, Kelly; Keller, Andrew; Nesvizhskii, Alexey I; Eng, Jimmy; Li, Xiao-jun; Goodlett, David R; Aebersold, Ruedi; Watts, Julian D

    2003-07-01

    Lipid rafts were prepared according to standard protocols from Jurkat T cells stimulated via T cell receptor/CD28 cross-linking and from control (unstimulated) cells. Co-isolating proteins from the control and stimulated cell preparations were labeled with isotopically normal (d0) and heavy (d8) versions of the same isotope-coded affinity tag (ICAT) reagent, respectively. Samples were combined, proteolyzed, and resultant peptides fractionated via cation exchange chromatography. Cysteine-containing (ICAT-labeled) peptides were recovered via the biotin tag component of the ICAT reagents by avidin-affinity chromatography. On-line micro-capillary liquid chromatography tandem mass spectrometry was performed on both avidin-affinity (ICAT-labeled) and flow-through (unlabeled) fractions. Initial peptide sequence identification was by searching recorded tandem mass spectrometry spectra against a human sequence data base using SEQUEST software. New statistical data modeling algorithms were then applied to the SEQUEST search results. These allowed for discrimination between likely "correct" and "incorrect" peptide assignments, and from these the inferred proteins that they collectively represented, by calculating estimated probabilities that each peptide assignment and subsequent protein identification was a member of the "correct" population. For convenience, the resultant lists of peptide sequences assigned and the proteins to which they corresponded were filtered at an arbitrarily set cut-off of 0.5 (i.e. 50% likely to be "correct") and above and compiled into two separate datasets. In total, these data sets contained 7667 individual peptide identifications, which represented 2669 unique peptide sequences, corresponding to 685 proteins and related protein groups.

  7. Comparison of different mass spectrometry techniques in the measurement of L-[ring-13C6]phenylalanine incorporation into mixed muscle proteins

    PubMed Central

    Zabielski, Piotr; Ford, G. Charles; Persson, X. Mai; Jaleel, Abdul; Dewey, Jerry D.; Nair, K Sreekumaran

    2013-01-01

    Precise measurement of low enrichment of stable isotope labeled amino-acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 hour intravenous infusion of L-[ring-13C6]phenylalanine and a bolus dose of L-[ring-13C6]phenylalanine in a mouse were utilized. Liquid Chromatography tandem mass spectrometry (LC/MS/MS), Gas Chromatography tandem mass spectrometry (GC/MS/MS) and Gas Chromatography/Mass spectrometry (GC/MS) were compared to the Gas Chromatography-Combustion-Isotope Ratio mass spectrometry (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 Molar Percent excess (MPE). As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra-assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter-assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS respectively. The muscle sample sizes required to obtain these results were 8μg, 0.8μg, 3μg and 3μg for GC/C/IRMS, LC/MS/MS, GC/MS/MS, and GC/MS respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L-[ring-13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. PMID:23378099

  8. Imaging mass spectrometry in drug development and toxicology.

    PubMed

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  9. Detection of reactive metabolites using isotope-labeled glutathione trapping and simultaneous neutral loss and precursor ion scanning with ultra-high-pressure liquid chromatography triple quadruple mass spectrometry.

    PubMed

    Huang, Ke; Huang, Lingyi; van Breemen, Richard B

    2015-04-07

    Metabolic activation of drugs to electrophilic species is responsible for over 60% of black box warnings and drug withdrawals from the market place in the United States. Reactive metabolite trapping using glutathione (GSH) and analysis using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) or HPLC with high resolution mass spectrometry (mass defect filtering) have enabled screening for metabolic activation to become routine during drug development. However, current MS-based approaches cannot detect all GSH conjugates present in complex mixtures, especially those present in extracts of botanical dietary supplements. To overcome these limitations, a fast triple quadrupole mass spectrometer-based approach was developed that can detect positively and negatively charged GSH conjugates in a single analysis without the need for advanced knowledge of the elemental compositions of potential conjugates and while avoiding false positives. This approach utilized UHPLC instead of HPLC to shorten separation time and enhance sensitivity, incorporated stable-isotope labeled GSH to avoid false positives, and used fast polarity switching electrospray MS/MS to detect GSH conjugates that form positive and/or negative ions. The general new method was then used to test the licorice dietary supplement Glycyrrhiza glabra, which was found to form multiple GSH conjugates upon metabolic activation. Among the GSH conjugates found in the licorice assay were conjugates with isoliquiritigenin and glabridin, which is an irreversible inhibitor of cytochrome P450 enzymes.

  10. A simple distillation method to extract bromine from natural water and salt samples for isotope analysis by multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Eggenkamp, H G M; Louvat, P

    2018-04-30

    In natural samples bromine is present in trace amounts, and measurement of stable Br isotopes necessitates its separation from the matrix. Most methods described previously need large samples or samples with high Br/Cl ratios. The use of metals as reagents, proposed in previous Br distillation methods, must be avoided for multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) analyses, because of risk of cross-contamination, since the instrument is also used to measure stable isotopes of metals. Dedicated to water and evaporite samples with low Br/Cl ratios, the proposed method is a simple distillation that separates bromide from chloride for isotopic analyses by MC-ICP-MS. It is based on the difference in oxidation potential between chloride and bromide in the presence of nitric acid. The sample is mixed with dilute (1:5) nitric acid in a distillation flask and heated over a candle flame for 10 min. The distillate (bromine) is trapped in an ammonia solution and reduced to bromide. Chloride is only distilled to a very small extent. The obtained solution can be measured directly by MC-ICP-MS for stable Br isotopes. The method was tested for a variety of volumes, ammonia concentrations, pH values and distillation times and compared with the classic ion-exchange chromatography method. The method more efficiently separates Br from Cl, so that samples with lower Br/Cl ratios can be analysed, with Br isotope data in agreement with those obtained by previous methods. Unlike other Br extraction methods based on oxidation, the distillation method presented here does not use any metallic ion for redox reactions that could contaminate the mass spectrometer. It is efficient in separating Br from samples with low Br/Cl ratios. The method ensures reproducible recovery yields and a long-term reproducibility of ±0.11‰ (1 standard deviation). The distillation method was successfully applied to samples with low Br/Cl ratios and low Br amounts (down to 20

  11. DETECTING LOW-LEVEL SYNTHESIS IMPURITIES IN MODIFIED PHOSPHOROTHIOATE OLIGONUCLEOTIDES USING LIQUID CHROMATOGRAPHY – HIGH RESOLUTION MASS SPECTROMETRY

    PubMed Central

    Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.

    2010-01-01

    Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts

  12. A critical review of inductively coupled plasma-mass spectrometry for geoanalysis, geochemistry and hydrology, Part 1. Analytical performance

    USGS Publications Warehouse

    Brenner, I.B.; Taylor, Howard E.

    1992-01-01

    Present-day inductively coupled plasma-mass spectrometry (ICP-MS) instrumentation is described briefly. Emphasis is placed on performance characteristics for geoanalysis, geochemistry, and hydrology. Applications where ICP-MS would be indispensable are indicated. Determination of geochemically diagnostic trace elements (such as the rare earth elements [REE], U and Th), of isotope ratios for fingerprinting, tracer and other geo-isotope applications, and benchmark isotope dilution determinations are considered to be typical priority applications for ICP-MS. It is concluded that ICP-MS furnishes unique geoanalytical and environmental data that are not readily provided by conventional spectroscopic (emission and absorption) techniques.

  13. Correlated optical and isotopic nanoscopy

    NASA Astrophysics Data System (ADS)

    Saka, Sinem K.; Vogts, Angela; Kröhnert, Katharina; Hillion, François; Rizzoli, Silvio O.; Wessels, Johannes T.

    2014-04-01

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures.

  14. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  15. Determination of low-level (sub-microgram) sulfur concentrations by isotope dilution multi-collector inductively couple plasma mass spectrometry using a 33S spike and internal normalization for mass bias correction.

    PubMed

    Mann, Jacqueline L; Vocke, Robert D; Kelly, W Robert

    2012-05-30

    The certification of sulfur (S) in Standard Reference Materials™ by the National Institute of Standards and Technology (NIST) has been exclusively performed using isotope dilution thermal ionization mass spectrometry (ID-TIMS). The ID-TIMS measurement method is limited in its capability for low concentration measurements (<1 µg/g) due to the blank associated with the chemical reduction procedure (≈0.2 S µg). Newly developed materials and applications, such as biofuels made from soy and nanomedicine, pose a challenge to the ID-TIMS technique because of their very low concentrations (<1 µg/g) of S. As described here, a measurement technique with low S blanks is essential for low-level S measurements. An isotope dilution (ID) multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) method combined with an internal normalization approach for mass bias correction has been used to determine low-level S concentrations in synthetically prepared mixtures using a (33)S-enriched spike material. Dilute sulfur solutions (1 µg S/g) were prepared from NIST SRM 3154 (Sulfate Spectrometric Solution) to test the capability of this technique for measuring very low-level S concentrations. The concentration results for each solution were 0.983 ± 0.004 µg/g (95% CI, n = 2, k = 2), 1.006 ± 0.005 µg/g (95% CI, n = 2, k = 2), and 0.999 ± 0.003 µg/g (95% CI, n = 2, k = 2), in excellent agreement with the gravimetric determination, deviating less than 0.35% and suggesting the technique can yield unbiased and accurate results. The blanks averaged 13 ± 0.0017 ng S (1s). The data results provide a clear indication that the ID-MC-ICP-MS method for the determination of low-level S concentrations is feasible. The more than one order of magnitude reduction of the blanks suggests that it is a better alternative to the ID-TIMS method for very low S materials such as are encountered in biofuels and some biochemical species. Published 2012. This article is a US

  16. "EMERGING" POLLUTANTS, MASS SPECTROMETRY, AND ...

    EPA Pesticide Factsheets

    A foundation for Environmental Science - Mass Spectrometry: Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry - the mainstay of analytical chemistry - the workhorse that supplies much of the definitive data that environmental scientists rely upon for identifying the molecular compositions (and ultimately the structures) of chemicals. This is not to ignore the complementary, critical roles played by the adjunct practices of sample enrichment (via any of various means of selective extraction) and analyte separation (via the myriad forms of chromatography and electrophoresis).While the power of mass spectrometry has long been highly visible to the practicing environmental chemist, it borders on continued obscurity to the lay public and most non-chemists. Even though mass spectrometry has played a long, historic (and largely invisible) role in establishing or undergirdidng our existing knowledge about environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is ususally the relevance of ssignificance of the knowledge acquired from the application of the tool that has ultimate meaning to the public and science at large - not how the knowledge was acquired. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in

  17. Application of isotopic labeling, and gas chromatography mass spectrometry, to understanding degradation products and pathways in the thermal-oxidative aging of Nylon 6.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Gregory Von; Clough, Roger L.; Hochrein, James M.

    2013-12-01

    Nylon 6.6 containing 13C isotopic labels at specific positions along the macromolecular backbone has been subjected to extensive thermal-oxidative aging at 138 °C for time periods up to 243 days. In complementary experiments, unlabeled Nylon 6.6 was subjected to the same aging conditions under an atmosphere of 18O 2. Volatile organic degradation products were analyzed by cryofocusing gas chromatography mass spectrometry (cryo-GC/MS) to identify the isotopic labeling. The labeling results, combined with basic considerations of free radical reaction chemistry, provided insights to the origin of degradation species, with respect to the macromolecular structure. A number of inferences on chemical mechanismsmore » were drawn, based on 1) the presence (or absence) of the isotopic labels in the various products, 2) the location of the isotope within the product molecule, and 3) the relative abundance of products as indicated by large differences in peak intensities in the gas chromatogram. The overall degradation results can be understood in terms of free radical pathways originating from initial attacks on three different positions along the nylon chain which include hydrogen abstraction from: the (CH 2) group adjacent to the nitrogen atom, at the (CH 2) adjacent the carbonyl group, and direct radical attack on the carbonyl. Understanding the pathways which lead to Nylon 6.6 degradation ultimately provides new insight into changes that can be leveraged to detect and reduce early aging and minimize problems associated with material degradation.« less

  18. Development and validation of a liquid chromatography isotope dilution mass spectrometry method for the reliable quantification of alkylphenols in environmental water samples by isotope pattern deconvolution.

    PubMed

    Fabregat-Cabello, Neus; Sancho, Juan V; Vidal, Andreu; González, Florenci V; Roig-Navarro, Antoni Francesc

    2014-02-07

    We present here a new measurement method for the rapid extraction and accurate quantification of technical nonylphenol (NP) and 4-t-octylphenol (OP) in complex matrix water samples by UHPLC-ESI-MS/MS. The extraction of both compounds is achieved in 30min by means of hollow fiber liquid phase microextraction (HF-LPME) using 1-octanol as acceptor phase, which provides an enrichment (preconcentration) factor of 800. On the other hand we have developed a quantification method based on isotope dilution mass spectrometry (IDMS) and singly (13)C1-labeled compounds. To this end the minimal labeled (13)C1-4-(3,6-dimethyl-3-heptyl)-phenol and (13)C1-t-octylphenol isomers were synthesized, which coelute with the natural compounds and allows the compensation of the matrix effect. The quantification was carried out by using isotope pattern deconvolution (IPD), which permits to obtain the concentration of both compounds without the need to build any calibration graph, reducing the total analysis time. The combination of both extraction and determination techniques have allowed to validate for the first time a HF-LPME methodology at the required levels by legislation achieving limits of quantification of 0.1ngmL(-1) and recoveries within 97-109%. Due to the low cost of HF-LPME and total time consumption, this methodology is ready for implementation in routine analytical laboratories. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope.

    PubMed

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.

  20. Equilibrium and kinetic folding of rabbit muscle triosephosphate isomerase by hydrogen exchange mass spectrometry.

    PubMed

    Pan, Hai; Raza, Ashraf S; Smith, David L

    2004-03-05

    Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.

  1. Pb and Sr isotope measurements by inductively coupled plasma mass spectrometer: efficient time management for precision improvement

    NASA Astrophysics Data System (ADS)

    Monna, F.; Loizeau, J.-L.; Thomas, B. A.; Guéguen, C.; Favarger, P.-Y.

    1998-08-01

    One of the factors limiting the precision of inductively coupled plasma mass spectrometry is the counting statistics, which depend upon acquisition time and ion fluxes. In the present study, the precision of the isotopic measurements of Pb and Sr is examined. The time of measurement is optimally shared for each isotope, using a mathematical simulation, to provide the lowest theoretical analytical error. Different algorithms of mass bias correction are also taken into account and evaluated in term of improvement of overall precision. Several experiments allow a comparison of real conditions with theory. The present method significantly improves the precision, regardless of the instrument used. However, this benefit is more important for equipment which originally yields a precision close to that predicted by counting statistics. Additionally, the procedure is flexible enough to be easily adapted to other problems, such as isotopic dilution.

  2. Capture of the volatile carbonyl metabolite of flecainide on 2,4-dinitrophenylhydrazine cartridge for quantitation by stable-isotope dilution mass spectrometry coupled with chromatography

    PubMed Central

    Prokai, Laszlo; Szarka, Szabolcs; Wang, Xiaoli; Prokai-Tatrai, Katalin

    2012-01-01

    Carbonyl compounds are common byproducts of many metabolic processes. These volatile chemical entities are usually derivatized before mass spectrometric analysis to enhance the sensitivity of their detections. The classically used reagent for this purpose is 2,4-dinitrophenylhydrazine (DNPH) that forms the corresponding hydrazones. When DNPH is immobilized on specific cartridges it permits solvent-free collection and simultaneous derivatization of aldehydes and ketones from gaseous samples. The utility of this approach was tested by assembling a simple apparatus for the in vitro generation of trifluoroacetaldehyde (TFAA) and its subsequent capture on the attached DNPH cartridge. TFAA was generated via cytochrome P450-catalyzed dealkylation of flecainide, an antiarrhythmic agent, in pooled human liver microsomes. Stable-isotope dilution mass spectrometry coupled with GC and LC using negative chemical ionization (NCI) and electrospray ionization (ESI) was evaluated for quantitative analyses. To eliminate isotope effects observed with the use of deuterium-labeled DNPH, we selected its 15N4-labeled analog to synthesize the appropriate TFAA adduct, as internal standard. Quantitation by GC–NCI-MS using selected-ion monitoring outperformed LC–ESI-MS methods considering limits of detection and linearity of the assays. The microsomal metabolism of 1.5 μmol of flecainide for 1.5 h resulted in 2.6 ± 0.5 μg TFAA-DNPH, corresponding to 9.3 ± 1.7 nmol TFAA, captured by the cartridge. PMID:22342210

  3. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  4. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods.

    PubMed

    Copeland, Sandi R; Sponheimer, Matt; le Roux, Petrus J; Grimes, Vaughan; Lee-Thorp, Julia A; de Ruiter, Darryl J; Richards, Michael P

    2008-10-01

    Strontium isotope ratios (87Sr/86Sr) in tooth enamel provide a means to investigate migration and landscape use in humans and other animals. Established methods for measuring (87)Sr/(86)Sr in teeth use bulk sampling (5-20 mg) and labor-intensive elemental purification procedures before analysis by either thermal ionization mass spectrometry (TIMS) or multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Another method for measuring 87Sr/86Sr is laser ablation MC-ICP-MS, but concerns have been expressed about its accuracy for measuring tooth enamel. In this study we test the precision and accuracy of the technique by analyzing 30 modern rodent teeth from the Sterkfontein Valley, South Africa by laser ablation MC-ICP-MS and solution MC-ICP-MS. The results show a mean difference in 87Sr/86Sr measured by laser ablation and by solution of 0.0003 +/- 0.0002. This degree of precision is well within the margin necessary for investigating the potential geographic origins of humans or animals in many areas of the world. Because laser ablation is faster, less expensive, and less destructive than bulk sampling solution methods, it opens the possibility for conducting 87Sr/86Sr analyses of intra-tooth samples and small and/or rare specimens such as micromammal and fossil teeth.

  5. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    NASA Astrophysics Data System (ADS)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.

  6. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data*

    PubMed Central

    Mitchell, Christopher J.; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-01-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, 15N, 13C, or 18O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25–45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. PMID:27231314

  7. PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data.

    PubMed

    Mitchell, Christopher J; Kim, Min-Sik; Na, Chan Hyun; Pandey, Akhilesh

    2016-08-01

    Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, (15)N, (13)C, or (18)O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25-45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis. © 2016 by The American Society for Biochemistry and Molecular Biology

  8. Isotopic analysis of Cu in blood serum by multi-collector ICP-mass spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis?

    PubMed

    Costas-Rodríguez, Marta; Anoshkina, Yulia; Lauwens, Sara; Van Vlierberghe, Hans; Delanghe, Joris; Vanhaecke, Frank

    2015-03-01

    The isotopic composition of blood serum Cu has been investigated as a potential parameter for the diagnosis and prognosis of liver cirrhosis. Serum samples from supposedly healthy women (reference population) and from a group of female patients suffering from liver cirrhosis of different etiologies were analysed. The procedure for isolation of serum Cu and the measurement protocol for its isotopic analysis by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) were evaluated. Significant differences in the isotopic composition of Cu were observed between the reference population and the patients. A wide spread in δ(65)Cu was observed within the cirrhosis population and δ(65)Cu seems to be linked to the severity of the disease. Patients with end-stage liver disease showed a significantly lighter serum Cu isotopic composition. Many clinical parameters used for the diagnosis and monitoring of liver diseases, i.e. the levels of aspartate aminotransferase, De Ritis ratio, prothrombin and international normalized ratio, albumin, bilirubin, Na and C-reactive protein, correlate well with the δ(65)Cu values, as did the ceruloplasmin level and the ceruloplasmin/Cu concentration ratio. The isotopic composition of serum Cu appears to reveal the synthetic and hepatocellular function of the liver synergistically with inflammation and fluid retention in the cohort studied. A relevant relationship was also observed between δ(65)Cu and scores of mortality risk, such as the Model for End-stage Liver Disease (MELD) and MELD-Na. Thus, the isotopic composition of serum Cu shows potential as a new approach for the prognosis of liver disease, and although further investigation is required, for evaluation of the mortality risk in end-stage liver disease and prioritization of liver transplants.

  9. S1 certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate certified reference material (organochlorine pesticides in tea) by isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Sin, Della Wai-Mei; Wong, Yee-Lok; Cheng, Eddie Chung-Chin; Lo, Man-Fung; Ho, Clare; Mok, Chuen-Shing; Wong, Siu-Kay

    2015-04-01

    This paper presents the certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate tea certified reference material (code: GLHK-11-03) according to the requirements of the ISO Guide 30 series. Certification of GLHK-11-03 was based on an analytical method purposely developed for the accurate measurement of the mass fraction of the target analytes in the material. An isotope dilution mass spectrometry (IDMS) method involving determination by (i) gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS) and (ii) gas chromatography-electron ionization-high-resolution mass spectrometry (GC-EI-HRMS) techniques was employed. The performance of the described method was demonstrated through participation in the key comparison CCQM-K95 "Mid-Polarity Analytes in Food Matrix: Mid-Polarity Pesticides in Tea" organized by the Consultative Committee for Amount of Substance-Metrology in Chemistry in 2012, where the study material was the same as the certified reference material (CRM). The values reported by using the developed method were in good agreement with the key comparison reference value (KCRV) assigned for beta-endosulfan (727 ± 14 μg kg(-1)) and endosulfan sulfate (505 ± 11 μg kg(-1)), where the degree of equivalence (DoE) values were 0.41 and 0.40, respectively. The certified values of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in dry mass fraction in GLHK-11-03 were 350, 730, and 502 μg kg(-1), respectively, and the respective expanded uncertainties, due to sample inhomogeneity, long-term and short-term stability, and variability in the characterization procedure, were 27 μg kg(-1) (7.8 %), 48 μg kg(-1) (6.6 %), and 33 μg kg(-1) (6.6 %).

  10. Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    PubMed Central

    You, Le; Zhang, Baichen; Tang, Yinjie J.

    2014-01-01

    The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020

  11. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    PubMed

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2018-05-01

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Present and future prospects of accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kutschera, Walter

    1988-05-01

    Accelerator mass spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10 -10 to 10 -15 relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10 2 to 10 8 years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and manmade (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotopes are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, mineral exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS will be discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Depending on the specific problem to be investigated, different aspects of an AMS system are of importance. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.

  13. Isotope-coded, iodoacetamide-based reagent to determine individual cysteine pKa values by MALDI-TOF mass spectrometry

    PubMed Central

    Nelson, Kimberly J.; Day, Amanda E.; Zeng, Bubing B.; King, S. Bruce; Poole, Leslie B.

    2008-01-01

    Cysteine reactivity in enzymes is imparted to a large extent by the stabilization of the deprotonated form of the reduced cysteine (i.e. the thiolate) within the active site. While this is likely to be an important chemical attribute of many thiol-based enzymes including cysteine-dependent peroxidases (peroxiredoxins) and proteases, only relatively few pKa values have been determined experimentally. Presented here is a new technique for determining the pKa value of cysteine residues through quantitative mass spectrometry following chemical modification with an iodoacetamide-based reagent over a range of pH buffers. This isotope-coded reagent, N-phenyl iodoacetamide (iodoacetanilide), is readily prepared in deuterated (d5) and protiated (d0) versions and is more reactive toward free cysteine than is iodoacetamide. Using this approach, the pKa values for the two cysteine residues in Escherichia coli thioredoxin were determined to be 6.5 and > 10, in good agreement with previous reports using chemical modification approaches. This technique allows the pKa of specific cysteine residues to be determined in a clear, fast, and simple manner and, because cysteine residues on separate tryptic peptides are measured separately, is not complicated by the presence of multiple cysteines within the protein of interest. PMID:18162165

  14. Measurements of natural uranium concentration and isotopic composition with permil-level precision by inductively coupled plasma-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shen, Chuan-Chou; Lin, Huei-Ting; Chu, Mei-Fei; Yu, Ein-Fen; Wang, Xianfeng; Dorale, Jeffrey A.

    2006-09-01

    A new analytical technique using inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) has been developed that produces permil-level precision in the measurement of uranium concentration ([U]) and isotopic composition (δ234U) in natural materials. A 233U-236U double spike method was used to correct for mass fractionation during analysis. To correct for ratio drifting, samples were bracketed by uranium standard measurements. A sensitivity of 6-7 × 108 cps/ppm was generated with a sample solution uptake rate of 30 μL/min. With a measurement time of 15-20 min, standards of 30-ng uranium produced a within-run precision better than 3‰ (±2 R.S.D.) for δ234U and better than 2‰ for [U]. Replicate measurements made on standards show that a between-run reproducibility of 3.5‰ for δ234U and 2‰ for [U] can be achieved. ICP-QMS data of δ234U and [U] in seawater, coral, and speleothem materials are consistent with the data measured by other ICP-MS and TIMS techniques. Advantages of the ICP-QMS method include low cost, easy maintenance, simple instrumental operation, and few sample preparation steps. Sample size requirements are small, such as 10-14 mg of coral material. The results demonstrate that this technique can be applied to natural samples with various matrices.

  15. Zero voltage mass spectrometry probes and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooks, Robert Graham; Wleklinski, Michael Stanley; Bag, Soumabha

    The invention generally relates to zero volt mass spectrometry probes and systems. In certain embodiments, the invention provides a system including a mass spectrometry probe including a porous material, and a mass spectrometer (bench-top or miniature mass spectrometer). The system operates without an application of voltage to the probe. In certain embodiments, the probe is oriented such that a distal end faces an inlet of the mass spectrometer. In other embodiments, the distal end of the probe is 5 mm or less from an inlet of the mass spectrometer.

  16. Chromatography - mass spectrometry in aerospace industry

    NASA Astrophysics Data System (ADS)

    Buryak, A. K.; Serdyuk, T. M.

    2013-01-01

    The applications of chromatography - mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography - mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography - mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  17. Verification of the sputter-generated 32SFn- (n = 1-6) anions by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mane, R. G.; Surendran, P.; Kumar, Sanjay; Nair, J. P.; Yadav, M. L.; Hemalatha, M.; Thomas, R. G.; Mahata, K.; Kailas, S.; Gupta, A. K.

    2016-01-01

    Recently, we have performed systematic Secondary Ion Mass Spectrometry (SIMS) measurements at our ion source test set up and have demonstrated that gas phase 32SFn- (n = 1-6) anions for all size 'n' can be readily generated from a variety of surfaces undergoing Cs+ ion sputtering in the presence of high purity SF6 gas by employing the gas spray-cesium sputter technique. In our SIMS measurements, the isotopic yield ratio 34SFn-/32SFn- (n = 1-6) was found to be close to its natural abundance but not for all size 'n'. In order to gain further insight into the constituents of these molecular anions, ultra sensitive Accelerator Mass Spectrometry (AMS) measurements were conducted with the most abundant 32SFn- (n = 1-6) anions, at BARC-TIFR 14 UD Pelletron accelerator. The results from these measurements are discussed in this paper.

  18. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    PubMed Central

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  19. Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring

    EPA Pesticide Factsheets

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe results of a study that links HRMS data with exposure predictions from the U.S. EPA's ExpoCast? program and in vitro bioassay data from the U.S. interagency Tox21 consortium. Vacuum dust samples were collected from 56 households across the U.S. as part of the American Healthy Homes Survey (AHHS). Sample extracts were analyzed using liquid chromatography time-of-flight mass spectrometry (LC??TOF/MS) with electrospray ionization. On average, approximately 2000 molecular features were identified per sample (based on accurate mass) in negative ion mode, and 3000 in positive ion mode. Exact mass, isotope distribution, and isotope spacing were used to match molecular features with a unique listing of chemical formulas extracted from EPA's Distributed Structure-Searchable Toxicity (DSSTox) database. A total of 978 DSSTox formulas were consistent with the dust LC??TOF/molecular feature data (match score ? 90); these formulas mapped to 3228 possible chemicals in the database. Correct assignment of a unique chemical to a given formula required additional validation steps. Each suspect chemical was prioritized for follow-up confirmation using abundance and detection frequency results, along with exp

  20. Mass spectrometry for biomarker development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  1. Validation of highly sensitive simultaneous targeted and untargeted analysis of keto-steroids by Girard P derivatization and stable isotope dilution-liquid chromatography-high resolution mass spectrometry.

    PubMed

    Frey, Alexander J; Wang, Qingqing; Busch, Christine; Feldman, Daniel; Bottalico, Lisa; Mesaros, Clementina A; Blair, Ian A; Vachani, Anil; Snyder, Nathaniel W

    2016-12-01

    A multiplexed quantitative method for the analysis of three major unconjugated steroids in human serum by stable isotope dilution liquid chromatography-high resolution mass spectrometry (LC-HRMS) was developed and validated on a Q Exactive Plus hybrid quadrupole/Orbitrap mass spectrometer. This quantification utilized isotope dilution and Girard P derivatization on the keto-groups of testosterone (T), androstenedione (AD) and dehydroepiandrosterone (DHEA) to improve ionization efficiency using electrospray ionization. Major isomeric compounds to T and DHEA; the inactive epimer of testosterone (epiT), and the metabolite of AD, 5α-androstanedione (5α-AD) were completely resolved on a biphenyl column within an 18min method. Inter- and intra-day method validation using LC-HRMS with qualifying product ions was performed and acceptable analytical performance was achieved. The method was further validated by comparing steroid levels from 100μL of serum from young vs older subjects. Since this approach provides high-dimensional HRMS data, untargeted analysis by age group was performed. DHEA and T were detected among the top analytes most significantly different across the two groups after untargeted LC-HRMS analysis, as well as a number of other still unknown metabolites, indicating the potential for combined targeted/untargeted analysis in steroid analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Counting individual sulfur atoms in a protein by ultrahighresolution Fourier transform ion cyclotron resonance mass spectrometry: Experimental resolution of isotopic fine structure in proteins

    PubMed Central

    Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.

    1998-01-01

    A typical molecular ion mass spectrum consists of a sum of signals from species of various possible isotopic compositions. Only the monoisotopic peak (e.g., all carbons are 12C; all nitrogens are 14N, etc.) has a unique elemental composition. Every other isotope peak at approximately integer multiples of ∼1 Da higher in nominal mass represents a sum of contributions from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass). At sufficiently high mass resolving power, each of these nominal-mass peaks resolves into its isotopic fine structure. Here, we report resolution of the isotopic fine structure of proteins up to 15.8 kDa (isotopic 13C,15N doubly depleted tumor suppressor protein, p16), made possible by electrospray ionization followed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass analysis at 9.4 tesla. Further, a resolving power of m/Δm50% ≈8,000,000 has been achieved on bovine ubiquitin (8.6 kDa). These results represent a 10-fold increase in the highest mass at which isotopic fine structure previously had been observed. Finally, because isotopic fine structure reveals elemental composition directly, it can be used to confirm or determine molecular formula. For p16, for example, we were able to determine (5.1 ± 0.3) the correct number (five) of sulfur atoms solely from the abundance ratio of the resolved 34S peak to the monoisotopic peak. PMID:9751700

  3. Development and validation of a liquid chromatography-isotope dilution tandem mass spectrometry for determination of olanzapine in human plasma and its application to bioavailability study.

    PubMed

    Zhang, Meng-Qi; Jia, Jing-Ying; Lu, Chuan; Liu, Gang-Yi; Yu, Cheng-Yin; Gui, Yu-Zhou; Liu, Yun; Liu, Yan-Mei; Wang, Wei; Li, Shui-Jun; Yu, Chen

    2010-06-01

    A simple, reliable and sensitive liquid chromatography-isotope dilution mass spectrometry (LC-ID/MS) was developed and validated for quantification of olanzapine in human plasma. Plasma samples (50 microL) were extracted with tert-butyl methyl ether and isotope-labeled internal standard (olanzapine-D3) was used. The chromatographic separation was performed on XBridge Shield RP 18 (100 mm x 2.1 mm, 3.5 microm, Waters). An isocratic program was used at a flow rate of 0.4 m x min(-1) with mobile phase consisting of acetonitrile and ammonium buffer (pH 8). The protonated ions of analytes were detected in positive ionization by multiple reactions monitoring (MRM) mode. The plasma method, with a lower limit of quantification (LLOQ) of 0.1 ng x mL(-1), demonstrated good linearity over a range of 0.1 - 30 ng x mL(-1) of olanzapine. Specificity, linearity, accuracy, precision, recovery, matrix effect and stability were evaluated during method validation. The validated method was successfully applied to analyzing human plasma samples in bioavailability study.

  4. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    PubMed Central

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431

  5. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry

    PubMed Central

    Kind, Tobias; Fiehn, Oliver

    2007-01-01

    Background Structure elucidation of unknown small molecules by mass spectrometry is a challenge despite advances in instrumentation. The first crucial step is to obtain correct elemental compositions. In order to automatically constrain the thousands of possible candidate structures, rules need to be developed to select the most likely and chemically correct molecular formulas. Results An algorithm for filtering molecular formulas is derived from seven heuristic rules: (1) restrictions for the number of elements, (2) LEWIS and SENIOR chemical rules, (3) isotopic patterns, (4) hydrogen/carbon ratios, (5) element ratio of nitrogen, oxygen, phosphor, and sulphur versus carbon, (6) element ratio probabilities and (7) presence of trimethylsilylated compounds. Formulas are ranked according to their isotopic patterns and subsequently constrained by presence in public chemical databases. The seven rules were developed on 68,237 existing molecular formulas and were validated in four experiments. First, 432,968 formulas covering five million PubChem database entries were checked for consistency. Only 0.6% of these compounds did not pass all rules. Next, the rules were shown to effectively reducing the complement all eight billion theoretically possible C, H, N, S, O, P-formulas up to 2000 Da to only 623 million most probable elemental compositions. Thirdly 6,000 pharmaceutical, toxic and natural compounds were selected from DrugBank, TSCA and DNP databases. The correct formulas were retrieved as top hit at 80–99% probability when assuming data acquisition with complete resolution of unique compounds and 5% absolute isotope ratio deviation and 3 ppm mass accuracy. Last, some exemplary compounds were analyzed by Fourier transform ion cyclotron resonance mass spectrometry and by gas chromatography-time of flight mass spectrometry. In each case, the correct formula was ranked as top hit when combining the seven rules with database queries. Conclusion The seven rules enable an

  6. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    PubMed

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. A rapid and reliable method for Pb isotopic analysis of peat and lichens by laser ablation-quadrupole-inductively coupled plasma-mass spectrometry for biomonitoring and sample screening.

    PubMed

    Kylander, M E; Weiss, D J; Jeffries, T E; Kober, B; Dolgopolova, A; Garcia-Sanchez, R; Coles, B J

    2007-01-16

    An analytical protocol for rapid and reliable laser ablation-quadrupole (LA-Q)- and multi-collector (MC-) inductively coupled plasma-mass spectrometry (ICP-MS) analysis of Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) in peats and lichens is developed. This technique is applicable to source tracing atmospheric Pb deposition in biomonitoring studies and sample screening. Reference materials and environmental samples were dry ashed and pressed into pellets for introduction by laser ablation. No binder was used to reduce contamination. LA-MC-ICP-MS internal and external precisions were <1.1% and <0.3%, respectively, on both (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios. LA-Q-ICP-MS internal precisions on (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios were lower with values for the different sample sets <14.3% while external precisions were <2.9%. The level of external precision acquired in this study is high enough to distinguish between most modern Pb sources. LA-MC-ICP-MS measurements differed from thermal ionisation mass spectrometry (TIMS) values by 1% or less while the accuracy obtained using LA-Q-ICP-MS compared to solution MC-ICP-MS was 3.1% or better using a run bracketing (RB) mass bias correction method. Sample heterogeneity and detector switching when measuring (208)Pb by Q-ICP-MS are identified as sources of reduced analytical performance.

  8. Modifications to the NIST reference measurement procedure (RMP) for the determination of serum glucose by isotope dilution gas chromatography/mass spectrometry.

    PubMed

    Prendergast, Jocelyn L; Sniegoski, Lorna T; Welch, Michael J; Phinney, Karen W

    2010-07-01

    The definitive method (DM), now known as the reference measurement procedure (RMP), for the analysis of glucose in serum was originally published in 1982 by the National Institute of Standards and Technology (NIST). Over the years the method has been subject to a number of modifications to adapt to newer technologies and simplify sample preparation. We discuss here an adaptation of the method associated with serum glucose measurements using a modified isotope dilution gas chromatography/mass spectrometry (ID-GC/MS) method. NIST has used this modified method to certify the concentrations of glucose in SRM 965b, Glucose in Frozen Human Serum, and SRM 1950, Metabolites in Human Plasma. Comparison of results from the revised method with certified values for existing Standard Reference Materials (SRMs) demonstrated that these modifications have not affected the quality of the measurements, giving both good precision and accuracy, while reducing the sample preparation time by a day and a half.

  9. Identification of sinensetin metabolites in rat urine by an isotope-labeling method and ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Wei, Guor-Jien; Sheen, Jenn-Feng; Lu, Wen-Chien; Hwang, Lucy Sun; Ho, Chi-Tang; Lin, Ching-I

    2013-05-29

    Sinensetin (SIN), one of the major polymethoxyflavones (PMFs) contained mainly in the citrus peels, has been reported to possess various bioactivities, including antifungal, antimutagenic, anticancer, and anti-inflammatory activities. Although the biotransformation of SIN in fungi and insects has been reported, the information about the metabolism of SIN in mammals is still unclear. In this study, formation of SIN metabolites in rats was investigated. Four isotope-labeled SINs ([4'-D3]SIN, [3'-D3]SIN, [5-D3]SIN, and [6-D3]SIN) were synthesized and administered to rat. The urine samples were collected and main metabolites were monitored by ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. The administered compound and four SIN metabolites were detected in rat urine. These metabolites were identified as 4'-hydroxy-5,6,7,3'-tetramethoxyflavone, 5-hydroxy-6,7,3',4'-tetramethoxyflavone, 6-hydroxy-5,7,3',4'-tetramethoxyflavone, and 7-hydroxy-5,6,3',4'-tetramethoxyflavone sulfate.

  10. Oxygen isotopic distribution along the otolith growth axis by secondary ion mass spectrometry: Applications for studying ontogenetic change in the depth inhabited by deep-sea fishes

    NASA Astrophysics Data System (ADS)

    Shiao, Jen-Chieh; Itoh, Shoichi; Yurimoto, Hisayoshi; Iizuka, Yoshiyuki; Liao, Yun-Chih

    2014-02-01

    This study using tuna otoliths as working standards established a high lateral resolution and precision analysis to measure δ18Ootolith by secondary ion mass spectrometry. This analytical approach of the ion probe was applied to deep-sea fishes to reconstruct the likely depths inhabited by the fishes at different life history stages based on the measured δ18Ootolith values as a proxy of water temperature. Dramatic increases up to 5-6‰ in δ18Ootolith, representing a temperature decrease of approximately 20 °C, were detected in a blind cusk eel (Barathronus maculatus) otolith and in the otoliths of Synaphobranchus kaupii during leptocephalus metamorphosis to glass eel, inferred from the drop of otolith Sr/Ca ratios and increase of otolith growth increment width. δ18Ootolith profiles clearly divided the fish's life history into a planktonic stage in the mixed layer of the ocean and a benthic stage on the deep-sea ocean bottom. The habitat shift signal was recorded within a 150 μm width of otolith growth zone, which was too narrow to be clearly detected by mechanical drilling and conventional isotopic ratio mass spectrometry. However, variations down to -7‰ were found in δ18Ootolith profiles as the result of Cs2+ beam sputter in the core and larval portions of the otoliths. Carbon mapping by electron probe microanalyzer and staining by toluidine blue suggested abundant proteins existed in the areas with anomaly negative δ18Ootolith values, which cannot be interpreted as a habitat change but due to the isotopic fractionation by O emission from the proteins. These results implied that careful design and understanding of the chemical composition of the analytical areas or tracks on the heterogeneous otolith was essential for highly accurate and precise analysis.

  11. Unbiased and targeted mass spectrometry for the HDL proteome.

    PubMed

    Singh, Sasha A; Aikawa, Masanori

    2017-02-01

    Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.

  12. Peptide Analysis Using Tandem Mass Spectrometry

    DTIC Science & Technology

    1989-06-01

    to give pyroglutamic acid during storage, eliminating ammonia. It is almost absent in the spectrum of a freshly-prepared sample and is not seen in...USING TANDEM MASS SPECTROMETRY INTRODUCTION S The objective of the project was to determine the complete amino acid sequence of the large polypeptide...Ubiquitin by use of fast atom bombardment (FAB) ionization and tandem mass spectrometry. The peptide containing 76 amino acid residues was available

  13. Desorption in Mass Spectrometry.

    PubMed

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e. , ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed.

  14. Desorption in Mass Spectrometry

    PubMed Central

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed. PMID:28337398

  15. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    DOE PAGES

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    2017-03-29

    A successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Furthermore, problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development ofmore » pregnancy related problems at the molecular level. Here, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.« less

  16. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    Successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development of pregnancy relatedmore » problems at the molecular level. In this perspective, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.« less

  17. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    A successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Furthermore, problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development ofmore » pregnancy related problems at the molecular level. Here, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.« less

  18. Detrital, metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece): intra-grain boron isotope patterns determined by secondary-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marschall, Horst R.; Altherr, Rainer; Kalt, Angelika; Ludwig, Thomas

    2008-06-01

    The boron isotopic composition of zoned tourmaline in two metasediments from the island of Syros, determined by secondary-ion mass spectrometry (SIMS), reflects the sedimentary and metamorphic record of the rocks. Tourmaline from a silicate-bearing marble contains small (≤20 μm) detrital cores with highly variable δ 11B values (-10.7 to +3.6‰), pointing to a heterogeneous protolith derived from multiple sources. The sedimentary B isotopic record survived the entire metamorphic cycle with peak temperatures of ˜500°C. Prograde to peak metamorphic rims are homogeneous and similar among all analysed grains ( δ 11B ≈ +0.9‰). The varying δ 11B values of detrital cores in the siliceous marble demonstrate that in situ B isotope analysis of tourmaline by SIMS is a potentially powerful tool for provenance studies not only in sediments but also in metasediments. A meta-tuffitic blueschist bears abundant tourmaline with dravitic cores of detrital or authigenic origin ( δ 11B ≈ -3.3‰), and prograde to peak metamorphic overgrowth zones (-1.6‰). Fe-rich rims, formed during influx of B-bearing fluids under retrograde conditions, show strongly increasing δ 11B values (up to +7.7‰) towards the margins of the grains. The δ 11B values of metamorphic tourmaline from Syros, formed in mixed terrigenous-marine sediments, reflect the B signal blended from these two different sources, and was probably not altered by dehydration during subduction.

  19. A case study on the application of isotope ratio mass spectrometry (IRMS) in determining the provenance of a rock used in an alleged nickel switching incident.

    PubMed

    Roelofse, F; Horstmann, U E

    2008-01-15

    The application of isotope ratio mass spectrometry (IRMS) in forensic science to establish the provenance of a range of questioned substances including soils, drugs, explosives, currency, ivory and rhino horn has been widely documented. The present study wishes to highlight the applicability of IRMS and specifically stable carbon IRMS in determining the provenance of a carbonate rock that was switched for nickel metal exported from South Africa to Israel. The technique employed effectively argued against a South African origin for the rock whilst simultaneously supporting an Israeli origin, enabling investigators to focus their attention accordingly. The study represents the first documented instance known to the authors where IRMS has been employed in the forensic geo-location of a rock.

  20. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  1. Investigation of amino acid δ 13C signatures in bone collagen to reconstruct human palaeodiets using liquid chromatography-isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Choy, Kyungcheol; Smith, Colin I.; Fuller, Benjamin T.; Richards, Michael P.

    2010-11-01

    This research presents the individual amino acid δ 13C values in bone collagen of humans ( n = 9) and animals ( n = 27) from two prehistoric shell midden sites in Korea. We obtained complete baseline separation of 16 of the 18 amino acids found in bone collagen by using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). The isotopic results reveal that the humans and animals in the two sites had similar patterns in essential amino acids (EAAs) and non-essential amino acids (NEAAs). The EAA and NEAA δ 13C values in humans are intermediate between those in marine and terrestrial animals. However, the threonine δ 13C values in humans and animals measured in this study are more highly enriched than those of other amino acids. At both sites, all amino acids in marine animals are 13C-enriched relative to those of the terrestrial animals. The isotopic evidence suggests that the Tongsamdong human had EAAs and NEAAs from marine food resources, while the Nukdo humans mainly had EAAs from terrestrial food resources but obtained NEAAs from both terrestrial and marine resources. The δ 13C isotopic differences in amino acids between marine and terrestrial animals were the largest for glycine (NEAA) and histidine (EAA) and the smallest for tyrosine (NEAA) and phenylalanine (EAA). In addition, threonine among the EAAs also had a large difference (˜8‰) in δ 13C values between marine and terrestrial animals, and has the potential to be used as an isotopic marker in palaeodietary studies. Threonine δ 13C values were used in conjunction with the established Δ 13C Glycine-phenylalanine values and produced three distinct dietary groups (terrestrial, omnivorous, and marine). In addition, threonine δ 13C values and Δ 13C Serine-phenylalanine values were discovered to separate between two dietary groups (terrestrial vs. marine), and these δ 13C values may provide a potential new indicator for investigating the distinction between marine and terrestrial protein

  2. Isotopes as Tracers of the Hawaiian Coffee-Producing Regions

    PubMed Central

    2011-01-01

    Green coffee bean isotopes have been used to trace the effects of different climatic and geological characteristics associated with the Hawaii islands. Isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry ((MC)-ICP-SFMS and ICP-QMS) were applied to determine the isotopic composition of carbon (δ13C), nitrogen (δ15N), sulfur (δ34S), and oxygen (δ18O), the isotope abundance of strontium (87Sr/86Sr), and the concentrations of 30 different elements in 47 green coffees. The coffees were produced in five Hawaii regions: Hawaii, Kauai, Maui, Molokai, and Oahu. Results indicate that coffee plant seed isotopes reflect interactions between the coffee plant and the local environment. Accordingly, the obtained analytical fingerprinting could be used to discriminate between the different Hawaii regions studied. PMID:21838232

  3. Mass spectrometry in life science research.

    PubMed

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  4. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  5. Quantitative isomer-specific N-glycan fingerprinting using isotope coded labeling and high performance liquid chromatography-electrospray ionization-mass spectrometry with graphitic carbon stationary phase.

    PubMed

    Michael, Claudia; Rizzi, Andreas M

    2015-02-27

    Glycan reductive isotope labeling (GRIL) using (12)C6-/(13)C6-aniline as labeling reagent is reported with the aim of quantitative N-glycan fingerprinting. Porous graphitized carbon (PGC) as stationary phase in capillary scale HPLC coupled to electrospray mass spectrometry with time of flight analyzer was applied for the determination of labeled N-glycans released from glycoproteins. The main benefit of using stable isotope-coding in the context of comparative glycomics lies in the improved accuracy and precision of the quantitative analysis in combined samples and in the potential of correcting for structure-dependent incomplete enzymatic release of oligosaccharides when comparing identical target proteins. The method was validated with respect to mobile phase parameters, reproducibility, accuracy, linearity and limit of detection/quantification (LOD/LOQ) using test glycoproteins. It is shown that the developed method is capable of determining relative amounts of N-glycans (including isomers) comparing two samples in one single HPLC-MS run. The analytical potential and usefulness of GRIL in combination with PGC-ESI-TOF-MS is demonstrated comparing glycosylation in human monoclonal antibodies produced in Chinese hamster ovary cells (CHO) and hybridoma cell lines. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Isotope-ratio measurements of lead in NIST standard reference materials by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Platzner, I; Ehrlich, S; Halicz, L

    2001-07-01

    The capability of a second-generation Nu Instruments multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been evaluated for precise and accurate isotope-ratio determinations of lead. Essentially the mass spectrometer is a double-focusing instrument of Nier-Johnson analyzer geometry equipped with a newly designed variable-dispersion ion optical device, enabling the measured ion beams to be focused into a fixed array of Faraday collectors and an ion-counting assembly. NIST SRM Pb 981, 982, and 983 isotopic standards were used. Addition of thallium to the lead standards and subsequent simultaneous measurement of the thallium and lead isotopes enabled correction for mass discrimination, by use of the exponential correction law and 205Tl/203Tl = 2.3875. Six measurements of SRM Pb-982 furnished the results 206Pb/204Pb = 36.7326(68), 207Pb/204Pb = 17.1543(30), 208Pb/204Pb = 36.7249(69), 207Pb/206Pb = 0.46700(1), and 208Pb/206Pb = 0.99979(2); the NIST-certified values were 36.738(37), 17.159(25), 36.744(50), 0.46707(20), and 1.00016(36), respectively. Direct isotope lead analysis in silicates can be performed without any chemical separation. NIST SRM 610 glass was dissolved and introduced into the MC-ICP-MS by means of a micro concentric nebulizer. The ratios observed were in excellent agreement with previously reported data obtained by TIMS and laser ablation MC-ICP-MS, despite the high Ca/Pb concentration ratio (200/1) and the presence of many other elements at levels comparable with that of lead. Approximately 0.2 microg lead are sufficient for isotope analysis with ratio uncertainties between 240 and 530 ppm.

  7. Regional water-quality analysis of 2,4-D and dicamba in river water using gas chromatography-isotope dilution mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Zimmerman, L.R.; Aga, D.S.; Gilliom, R.J.

    2001-01-01

    Gas chromatography with isotope dilution mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA) were used in regional National Water Quality Assessment studies of the herbicides, 2,4-D and dicamba, in river water across the United States. The GC-MS method involved solid-phase extraction, derivatized with deutemted 2,4-D, and analysis by selected ion monitoring. The ELISA method was applied after preconcentration with solid-phase extraction. The ELISA method was unreliable because of interference from humic substances that were also isolated by solid-phase extraction. Therefore, GC-MS was used to analyzed 80 samples from river water from 14 basins. The frequency of detection of dicamba (28%) was higher than that for 2,4-D (16%). Concentrations were higher for dicamba than for 2,4-D, ranging from less than the detection limit (<0.05 ??g/L) to 3.77 ??g/L, in spite of 5 times more annual use of 2,4-D as compared to dicamba. These results suggest that 2,4-D degrades more rapidly in the environment than dicamba.

  8. Stable Chlorine Isotope Study: Application to Early Solar System Materials

    NASA Technical Reports Server (NTRS)

    Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2010-01-01

    A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each

  9. Mass Spectrometry: A Technique of Many Faces

    PubMed Central

    Olshina, Maya A.; Sharon, Michal

    2016-01-01

    Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems. PMID:28100928

  10. Mass spectrometry-based proteomics for translational research: a technical overview.

    PubMed

    Paulo, Joao A; Kadiyala, Vivek; Banks, Peter A; Steen, Hanno; Conwell, Darwin L

    2012-03-01

    Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease.

  11. Mass Spectrometry-Based Proteomics for Translational Research: A Technical Overview

    PubMed Central

    Paulo, Joao A.; Kadiyala, Vivek; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.

    2012-01-01

    Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease. PMID:22461744

  12. Capture of the volatile carbonyl metabolite of flecainide on 2,4-dinitrophenylhydrazine cartridge for quantitation by stable-isotope dilution mass spectrometry coupled with chromatography.

    PubMed

    Prokai, Laszlo; Szarka, Szabolcs; Wang, Xiaoli; Prokai-Tatrai, Katalin

    2012-04-06

    Carbonyl compounds are common byproducts of many metabolic processes. These volatile chemicals are usually derivatized before mass spectrometric analysis to enhance the sensitivity of their detections. The classically used reagent for this purpose is 2,4-dinitrophenylhydrazine (DNPH) that forms the corresponding hydrazones. When DNPH is immobilized on specific cartridges it permits solvent-free collection and simultaneous derivatization of aldehydes and ketones from gaseous samples. The utility of this approach was tested by assembling a simple apparatus for the in vitro generation of trifluoroacetaldehyde (TFAA) and its subsequent capture on the attached DNPH cartridge. TFAA was generated via cytochrome P450-catalyzed dealkylation of flecainide, an antiarrhythmic agent, in pooled human liver microsomes. Stable-isotope dilution mass spectrometry coupled with GC and LC using negative chemical ionization (NCI) and electrospray ionization (ESI) was evaluated for quantitative analyses. To eliminate isotope effects observed with the use of deuterium-labeled DNPH, we selected its (15)N(4)-labeled analog to synthesize the appropriate TFAA adduct, as internal standard. Quantitation by GC-NCI-MS using selected-ion monitoring outperformed LC-ESI-MS methods considering limits of detection and linearity of the assays. The microsomal metabolism of 1.5 μmol of flecainide for 1.5h resulted in 2.6 ± 0.5 μg TFAA-DNPH, corresponding to 9.3 ± 1.7 nmol TFAA, captured by the cartridge. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Crux: Rapid Open Source Protein Tandem Mass Spectrometry Analysis

    PubMed Central

    2015-01-01

    Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit (http://cruxtoolkit.sourceforge.net) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data. PMID:25182276

  14. Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Loftin, Keith A.; Lee, Edward A.; Hinshaw, Gary H.; Dietze, Julie E.; Scribner, Elisabeth A.

    2009-01-01

    The U.S. Geological Survey method (0-2141-09) presented is approved for the determination of glyphosate, its degradation product aminomethylphosphonic acid (AMPA), and glufosinate in water. It was was validated to demonstrate the method detection levels (MDL), compare isotope dilution to standard addition, and evaluate method and compound stability. The original method USGS analytical method 0-2136-01 was developed using liquid chromatography/mass spectrometry and quantitation by standard addition. Lower method detection levels and increased specificity were achieved in the modified method, 0-2141-09, by using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The use of isotope dilution for glyphosate and AMPA and pseudo isotope dilution of glufosinate in place of standard addition was evaluated. Stable-isotope labeled AMPA and glyphosate were used as the isotope dilution standards. In addition, the stability of glyphosate and AMPA was studied in raw filtered and derivatized water samples. The stable-isotope labeled glyphosate and AMPA standards were added to each water sample and the samples then derivatized with 9-fluorenylmethylchloroformate. After derivatization, samples were concentrated using automated online solid-phase extraction (SPE) followed by elution in-line with the LC mobile phase; the compounds separated and then were analyzed by LC/MS/MS using electrospray ionization in negative-ion mode with multiple-reaction monitoring. The deprotonated derivatized parent molecule and two daughter-ion transition pairs were identified and optimized for glyphosate, AMPA, glufosinate, and the glyphosate and AMPA stable-isotope labeled internal standards. Quantitative comparison between standard addition and isotope dilution was conducted using 473 samples analyzed between April 2004 and June 2006. The mean percent difference and relative standard deviation between the two quantitation methods was 7.6 plus or minus 6.30 (n = 179), AMPA 9.6 plus or minus 8

  15. Characterization of polyesters by matrix-assisted laser desorption/ionization and Fourier transform mass spectrometry.

    PubMed

    Mize, Todd H; Simonsick, William J; Amster, I Jonathan

    2003-01-01

    Two homopolyesters, poly(neopentyl glycol-alt-isophthalic acid) and poly(hexanediol-alt-azelaic acid), and two copolyesters, poly(dipropoxylated bisphenol-A-alt-(isophthalic acid-co-adipic acid)) and poly(neopentyl glycol-alt-(adipic acid-co-isophthalic acid)) were analyzed by internal source matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS). The high resolution and high mass accuracy provided by FTMS greatly facilitate the characterization of the polyester and copolyester samples. Isobaric resolution allows the ion abundances of overlapping isotopic envelopes to be assessed. Repeat units were confirmed and end functionality assigned. Single shot mass spectra of the entire polymeric distribution demonstrate that the dynamic range of this internal MALDI source instrument and the analyzer cell exceeds performance of those previously reported for higher field instruments. Corrections of space charge mass shift effects are demonstrated for the analytes using an external calibrant and (subsequent to confirmation of structure) via internal calibration which removes ambiguity due to space charge differences in calibrant and analyte spectra. Capillary gel permeation chromatography was used to prepare low polydispersity samples from a high polydispersity polyester, improving the measurement of molecular weight distribution two-fold while retaining the benefits of high resolution mass spectrometry for elucidation of oligomer identity.

  16. Detection of over 100 selenium metabolites in selenized yeast by liquid chromatography electrospray time-of-flight mass spectrometry.

    PubMed

    Gilbert-López, Bienvenida; Dernovics, Mihaly; Moreno-González, David; Molina-Díaz, Antonio; García-Reyes, Juan F

    2017-08-15

    The characterization of the selenometabolome of Selenized(Se)-yeast, that is the fraction of water soluble low-molecular weight Se-metabolites produced in Se-yeast is of paramount interest to expand the knowledge on the composition of this food supplement. In this work, we have applied liquid chromatography electrospray time-of-flight mass spectrometry (LC-TOFMS) to search for Se-species from the low molecular weight range fraction of the selenized yeast used for food supplements. Prior to LC-TOFMS, sample treatment consisted of ultrasound assisted water extraction followed by size exclusion fractionation assisted with off-line inductively coupled plasma mass spectrometry detection of isotope 82 Se. The fraction corresponding to low-molecular weight species was subjected to LC-TOFMS using electrospray ionization in the positive ion mode. The detection of the suspected selenized species has been based on the information obtained from accurate mass measurements of both the protonated molecules and fragments from in-source CID fragmentation; along with the characteristic isotope pattern exhibited by the presence of Se. The approach enables the detection of 103 selenized species, most of them not previously reported, in the range from ca. 300-650Da. Besides the detection of selenium species, related sulphur derivate metabolites were detected based on the accurate mass shift due to the substitution of sulphur and selenium. Copyright © 2017. Published by Elsevier B.V.

  17. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  18. [Imaging Mass Spectrometry in Histopathologic Analysis].

    PubMed

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  19. High resolution laser mass spectrometry bioimaging.

    PubMed

    Murray, Kermit K; Seneviratne, Chinthaka A; Ghorai, Suman

    2016-07-15

    Mass spectrometry imaging (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Quantification of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate using stable isotope dilution liquid chromatography with atmospheric-pressure photoionization tandem mass spectrometry.

    PubMed

    Zhang, Xiaotao; Hou, Hongwei; Chen, Huan; Liu, Yong; Wang, An; Hu, Qingyuan

    2015-09-17

    A stable isotope dilution liquid chromatography with tandem mass spectrometry method for the analysis of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate was developed and validated. Compared with previously reported methods, this method has lower limits of detection (0.04-1.35 ng/cig). Additionally, the proposed method saves time, reduces the number of separation steps, and reduces the quantity of solvent needed. The new method was applied to evaluate polycyclic aromatic hydrocarbon content in 213 commercially available cigarettes in China, under the International Standardization Organization smoking regime and the Health Canadian intense smoking regime. The results showed that the total polycyclic aromatic hydrocarbon content was more than two times higher in samples from the Health Canadian intense smoking regime than in samples from the International Standardization Organization smoking regime (1189.23 vs. 2859.50 ng/cig, p<0.05). Meanwhile, the concentration of individual polycyclic aromatic hydrocarbons (and total polycyclic aromatic hydrocarbons) increased with labeled tar content in both of the tested smoking regimes. There was a positive correlation between total polycyclic aromatic hydrocarbons under the International Standardization Organization smoking regime with that under the Health Canadian intense smoking regime. The proposed liquid chromatography with tandem mass spectrometry method is satisfactory for the rapid, sensitive, and accurately quantitative evaluation of polycyclic aromatic hydrocarbon content in cigarette smoke condensate, and it can be applied to assess potential health risks from smoking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Quantitative twoplex glycan analysis using 12C6 and 13C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    PubMed

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available 12/13 C 6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for 12 C 6 'light' and 13 C 6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  2. Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymph metabolomics.

    PubMed

    Shen, Weifeng; Han, Wei; Li, Yunong; Meng, Zhiqi; Cai, Leiming; Li, Liang

    2016-10-26

    Silkworm (Bombyx mori) is a very useful target insect for evaluation of endocrine disruptor chemicals (EDCs) due to mature breeding techniques, complete endocrine system and broad basic knowledge on developmental biology. Comparative metabolomics of silkworms with and without EDC exposure offers another dimension of studying EDCs. In this work, we report a workflow on metabolomic profiling of silkworm hemolymph based on high-performance chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) and demonstrate its application in studying the metabolic changes associated with the pesticide dichlorodiphenyltrichloroethane (DDT) exposure in silkworm. Hemolymph samples were taken from mature silkworms after growing on diet that contained DDT at four different concentrations (1, 0.1, 0.01, 0.001 ppm) as well as on diet without DDT as controls. They were subjected to differential 12 C-/ 13 C-dansyl labeling of the amine/phenol submetabolome, LC-UV quantification of the total amount of labeled metabolites for sample normalization, and LC-MS detection and relative quantification of individual metabolites in comparative samples. The total concentration of labeled metabolites did not show any significant change between four DDT-treatment groups and one control group. Multivariate statistical analysis of the metabolome data set showed that there was a distinct metabolomic separation between the five groups. Out of the 2044 detected peak pairs, 338 and 1471 metabolites have been putatively identified against the HMDB database and the EML library, respectively. 65 metabolites were identified by the dansyl library searching based on the accurate mass and retention time. Among the 65 identified metabolites, 33 positive metabolites had changes of greater than 1.20-fold or less than 0.83-fold in one or more groups with p-value of smaller than 0.05. Several useful biomarkers including serine, methionine, tryptophan, asymmetric dimethylarginine, N

  3. ENVIRONMENTAL MASS SPECTROMETRY: EMERGING CONTAMINANTS AND CURRENT ISSUES

    EPA Science Inventory

    This review covers developments in environmental mass spectrometry over the period of 2000-2001. A few significant references that appeared between January and February 2002 are also included. The previous Environmental Mass Spectrometry review was very comprehensive, including...

  4. Tracing Cationic Nutrients from Xylem into Stem Tissue of French Bean by Stable Isotope Tracers and Cryo-Secondary Ion Mass Spectrometry[W][OA

    PubMed Central

    Metzner, Ralf; Schneider, Heike Ursula; Breuer, Uwe; Thorpe, Michael Robert; Schurr, Ulrich; Schroeder, Walter Heinz

    2010-01-01

    Fluxes of mineral nutrients in the xylem are strongly influenced by interactions with the surrounding stem tissues and are probably regulated by them. Toward a mechanistic understanding of these interactions, we applied stable isotope tracers of magnesium, potassium, and calcium continuously to the transpiration stream of cut bean (Phaseolus vulgaris) shoots to study their radial exchange at the cell and tissue level with stem tissues between pith and phloem. For isotope localization, we combined sample preparation with secondary ion mass spectrometry in a completely cryogenic workflow. After 20 min of application, tracers were readily detectable to various degrees in all tissues. The xylem parenchyma near the vessels exchanged freely with the vessels, its nutrient elements reaching a steady state of strong exchange with elements in the vessels within 20 min, mainly via apoplastic pathways. A slow exchange between vessels and cambium and phloem suggested that they are separated from the xylem, parenchyma, and pith, possibly by an apoplastic barrier to diffusion for nutrients (as for carbohydrates). There was little difference in these distributions when tracers were applied directly to intact xylem via a microcapillary, suggesting that xylem tension had little effect on radial exchange of these nutrients and that their movement was mainly diffusive. PMID:19965970

  5. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging.

    PubMed

    Burnum-Johnson, Kristin E; Baker, Erin S; Metz, Thomas O

    2017-12-01

    Successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development of pregnancy related problems at the molecular level. In this perspective, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes. Copyright © 2017 IFPA, Elsevier Ltd. Published by Elsevier Ltd.. All rights reserved.

  6. [Latest development in mass spectrometry for clinical application].

    PubMed

    Takino, Masahiko

    2013-09-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.

  7. Radionuclide measurements by accelerator mass spectrometry at Arizona

    NASA Technical Reports Server (NTRS)

    Jull, A. J. T.; Donahue, D. J.; Zabel, T. H.

    1986-01-01

    Over the past years, Tandem Accelerator Mass Spectrometry (TAMS) has become established as an important method for radionuclide analysis. In the Arizona system the accelerator is operated at a thermal voltage of 1.8MV for C-14 analysis, and 1.6 to 2MV for Be-10. Samples are inserted into a cesium sputter ion source in solid form. Negative ions sputtered from the target are accelerated to about 25kV, and the injection magnet selects ions of a particular mass. Ions of the 3+ charge state, having an energy of about 9MeV are selected by an electrostatic deflector, surviving ions pass through two magnets, where only ions of the desired mass-energy product are selected. The final detector is a combination ionization chamber to measure energy loss (and hence, Z), and a silicon surface-barrier detector which measures residual energy. After counting the trace iosotope for a fixed time, the injected ions are switched to the major isotope used for normalization. These ions are deflected into a Faraday cup after the first high-energy magnet. Repeated measurements of the isotope ratio of both sample and standards results in a measurement of the concentration of the radionuclide. Recent improvements in sample preparation for C-14 make preparation of high-beam current graphite targets directly from CO2 feasible. Except for some measurements of standards and backgrounds for Be-10 measurements to date have been on C-14. Although most results have been in archaeology and quaternary geology, studies have been expanded to include cosmogenic C-14 in meteorites. The data obtained so far tend to confirm the antiquity of Antarctic meteorites from the Allan Hills site. Data on three samples of Yamato meteorites gave terrestrial ages of between about 3 and 22 thousand years.

  8. Analytical aspects of hydrogen exchange mass spectrometry

    PubMed Central

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  9. Mass spectrometry: a revolution in clinical microbiology?

    PubMed

    Lavigne, Jean-Philippe; Espinal, Paula; Dunyach-Remy, Catherine; Messad, Nourredine; Pantel, Alix; Sotto, Albert

    2013-02-01

    Recently, different bacteriological laboratory interventions that decrease reporting time have been developed. These promising new broad-based techniques have merit, based on their ability to identify rapidly many bacteria, organisms difficult to grow or newly emerging strains, as well as their capacity to track disease transmission. The benefit of rapid reporting of identification and/or resistance of bacteria can greatly impact patient outcomes, with an improvement in the use of antibiotics, in the reduction of the emergence of multidrug resistant bacteria and in mortality rates. Different techniques revolve around mass spectrometry (MS) technology: matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR combined with electrospray ionization-mass spectrometry (PCR/ESIMS), iPLEX MassArray system and other new evolutions combining different techniques. This report emphasizes the (r)evolution of these technologies in clinical microbiology.

  10. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  11. Absolute quantification of protein NP24 in tomato fruit by liquid chromatography/tandem mass spectrometry using stable isotope-labelled tryptic peptide standard.

    PubMed

    Ippoushi, Katsunari; Sasanuma, Motoe; Oike, Hideaki; Kobori, Masuko; Maeda-Yamamoto, Mari

    2015-04-15

    Protein NP24 is a thaumatin-like protein contained in tomato (Lycopersicon esculentum Mill.). This protein is reported to be a putative tomato allergen and is listed as a food allergen in Structural Database of Allergenic Proteins (SDAP). In this research, we developed the quantitative analysis of NP24 by employing the protein absolute quantification (AQUA) technology composed of stable isotope-labelled internal standard (SIIS) peptide (GQTWVINAPR[(13)C6,(15)N4]) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). A linear relationship (r(2)>0.99) was found throughout the concentration range (2.0-500 fmol/μL). The coefficients of variation (CVs) measured on each of the five days when NP24 contained in the tomato skin was analysed did not exceed 13%. Our developed assay of NP24 will contribute to the allergological examination of tomato and its derived products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The allure of mass spectrometry: From an earlyday chemist's perspective.

    PubMed

    Tőkés, László

    2017-07-01

    This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state-of-the-art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide-ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol-A leaching from sterilized polycarbonate containers, high

  13. Qualitative metabolome analysis of human cerebrospinal fluid by 13C-/12C-isotope dansylation labeling combined with liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by (13)C-dansyl and (12)C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner. © American Society for Mass Spectrometry, 2011

  14. Sampling and analyte enrichment strategies for ambient mass spectrometry.

    PubMed

    Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei

    2018-01-01

    Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.

  15. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    PubMed

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Determination of ultratrace levels of tributyltin in waters by isotope dilution and gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Rodríguez-Cea, Andrés; Rodríguez-González, Pablo; Font Cardona, Nuria; Aranda Mares, José Luís; Ballester Nebot, Salomé; García Alonso, J Ignacio

    2015-12-18

    The current EU legislation lays down the Environmental Quality Standards (EQS) of 45 priority substances in surface water bodies. In particular, the concentration of tributyltin (TBT) must not exceed 0.2ngL(-1) and analytical methodologies with a Limit of Quantification (LOQ) equal or below 0.06ngL(-1) are urged to be developed. This work presents a procedure for the determination of ultratrace levels of TBT in water samples by Isotope Dilution and GC-MS/MS operating in Selected Reaction Monitoring (SRM) mode which meets current EU requirements. The method requires the monitorization of five consecutive transitions (287>175 to 291>179) for the sensitive and selective detection of TBT. The measured isotopic distribution of TBT fragment ions was in agreement with the theoretical values computed by a polynomial expansion algorithm. The combined use of Tandem Mass Spectrometry, a sample volume of 250mL, the preconcentration of 1mL of organic phase to 30μL and an injection volume of 25μL by Programmed Temperature Vaporization provided a LOQ of 0.0426ngL(-1) for TBT (calculated as ten times the standard deviation of nine independent blanks). The recovery for TBT calculated in Milli-Q water at the EQS level was 106.3±4%. A similar procedure was also developed for the quantification of dibutyltin (DBT) and monobutyltin (MBT) in water samples showing satisfactory results. The method was finally implemented in a routine testing laboratory to demonstrate its applicability to real samples obtaining quantitative recoveries for TBT at the EQS level in mineral water, river water and seawater. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Secondary ionization mass spectrometry analysis in petrochronology: Chapter 7

    USGS Publications Warehouse

    Schmitt, Axel K.; Vazquez, Jorge A.

    2017-01-01

    The goal of petrochronology is to extract information about the rates and conditions at which rocks and magmas are transported through the Earth’s crust. Garnering this information from the rock record greatly benefits from integrating textural and compositional data with radiometric dating of accessory minerals. Length scales of crystal growth and diffusive transport in accessory minerals under realistic geologic conditions are typically in the range of 1–10’s of μm, and in some cases even substantially smaller, with zircon having among the lowest diffusion coefficients at a given temperature (e.g., Cherniak and Watson 2003). Intrinsic to the compartmentalization of geochemical and geochronologic information from intra-crystal domains is the requirement to determine accessory mineral compositions using techniques that sample at commensurate spatial scales so as to not convolute the geologic signals that are recorded within crystals, as may be the case with single grain or large grain fragment analysis by isotope dilution thermal ionization mass spectrometry (ID-TIMS; e.g., Schaltegger and Davies 2017, this volume; Schoene and Baxter 2017, this volume). Small crystals can also be difficult to extract by mineral separation techniques traditionally used in geochronology, which also lead to a loss of petrographic context. Secondary Ionization Mass Spectrometry, that is SIMS performed with an ion microprobe, is an analytical technique ideally suited to meet the high spatial resolution analysis requirements that are critical for petrochronology (Table 1).

  18. Metrology for stable isotope reference materials: 13C/12C and 18O/16O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry.

    PubMed

    Srivastava, Abneesh; Michael Verkouteren, R

    2018-07-01

    Isotope ratio measurements have been conducted on a series of isotopically distinct pure CO 2 gas samples using the technique of dual-inlet isotope ratio mass spectrometry (DI-IRMS). The influence of instrumental parameters, data normalization schemes on the metrological traceability and uncertainty of the sample isotope composition have been characterized. Traceability to the Vienna PeeDee Belemnite(VPDB)-CO 2 scale was realized using the pure CO 2 isotope reference materials(IRMs) 8562, 8563, and 8564. The uncertainty analyses include contributions associated with the values of iRMs and the repeatability and reproducibility of our measurements. Our DI-IRMS measurement system is demonstrated to have high long-term stability, approaching a precision of 0.001 parts-per-thousand for the 45/44 and 46/44 ion signal ratios. The single- and two-point normalization bias for the iRMs were found to be within their published standard uncertainty values. The values of 13 C/ 12 C and 18 O/ 16 O isotope ratios are expressed relative to VPDB-CO 2 using the [Formula: see text] and [Formula: see text] notation, respectively, in parts-per-thousand (‰ or per mil). For the samples, value assignments between (-25 to +2) ‰ and (-33 to -1) ‰ with nominal combined standard uncertainties of (0.05, 0.3) ‰ for [Formula: see text] and [Formula: see text], respectively were obtained. These samples are used as laboratory reference to provide anchor points for value assignment of isotope ratios (with VPDB traceability) to pure CO 2 samples. Additionally, they serve as potential parent isotopic source material required for the development of gravimetric based iRMs of CO 2 in CO 2 -free dry air in high pressure gas cylinder packages at desired abundance levels and isotopic composition values. Graphical abstract CO 2 gas isotope ratio metrology.

  19. Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  20. Evaluation of online carbon isotope dilution mass spectrometry for the purity assessment of synthetic peptide standards.

    PubMed

    Cueto Díaz, Sergio; Ruiz Encinar, Jorge; García Alonso, J Ignacio

    2014-09-24

    We present a novel method for the purity assessment of peptide standards which is applicable to any water soluble peptide. The method is based on the online (13)C isotope dilution approach in which the peptide is separated from its related impurities by liquid chromatography (LC) and the eluent is mixed post-column with a continuous flow of (13)C-enriched sodium bicarbonate. An online oxidation step using sodium persulfate in acidic media at 99°C provides quantitative oxidation to (12)CO2 and (13)CO2 respectively which is extracted to a gaseous phase with the help of a gas permeable membrane. The measurement of the isotope ratio 44/45 in the mass spectrometer allows the construction of the mass flow chromatogram. As the only species that is finally measured in the mass spectrometer is CO2, the peptide content in the standard can be quantified, on the base of its carbon content, using a generic primary standard such as potassium hydrogen phthalate. The approach was validated by the analysis of a reference material (NIST 8327), and applied to the quantification of two commercial synthetic peptide standards. In that case, the results obtained were compared with those obtained using alternative methods, such as amino acid analysis and ICP-MS. The results obtained proved the value of the method for the fast, accurate and precise mass purity assignment of synthetic peptide standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Time-resolved Analysis of Proteome Dynamics by Tandem Mass Tags and Stable Isotope Labeling in Cell Culture (TMT-SILAC) Hyperplexing*

    PubMed Central

    Welle, Kevin A.; Zhang, Tian; Hryhorenko, Jennifer R.; Shen, Shichen; Qu, Jun; Ghaemmaghami, Sina

    2016-01-01

    Recent advances in mass spectrometry have enabled system-wide analyses of protein turnover. By globally quantifying the kinetics of protein clearance and synthesis, these methodologies can provide important insights into the regulation of the proteome under varying cellular and environmental conditions. To facilitate such analyses, we have employed a methodology that combines metabolic isotopic labeling (Stable Isotope Labeling in Cell Culture - SILAC) with isobaric tagging (Tandem Mass Tags - TMT) for analysis of multiplexed samples. The fractional labeling of multiple time-points can be measured in a single mass spectrometry run, providing temporally resolved measurements of protein turnover kinetics. To demonstrate the feasibility of the approach, we simultaneously measured the kinetics of protein clearance and accumulation for more than 3000 proteins in dividing and quiescent human fibroblasts and verified the accuracy of the measurements by comparison to established non-multiplexed approaches. The results indicate that upon reaching quiescence, fibroblasts compensate for lack of cellular growth by globally downregulating protein synthesis and upregulating protein degradation. The described methodology significantly reduces the cost and complexity of temporally-resolved dynamic proteomic experiments and improves the precision of proteome-wide turnover data. PMID:27765818

  2. Detection of Synthetic Testosterone Use by Novel Comprehensive Two-Dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC×GCC-IRMS)

    PubMed Central

    Tobias, Herbert J.; Zhang, Ying; Auchus, Richard J.; Brenna, J. Thomas

    2011-01-01

    We report the first demonstration of Comprehensive Two-dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC×GCC-IRMS) for the analysis of urinary steroids to detect illicit synthetic testosterone use, of interest in sport doping. GC coupled to IRMS (GCC-IRMS) is currently used to measure the carbon isotope ratios (CIR, δ13C) of urinary steroids in anti-doping efforts; however, extensive cleanup of urine extracts is required prior to analysis to enable baseline separation of target steroids. With its greater separation capabilities, GC×GC has the potential to reduce sample preparation requirements and enable CIR analysis of minimally processed urine extracts. Challenges addressed include on-line reactors with minimized dimensions to retain narrow peaks shapes, baseline separation of peaks in some cases, and reconstruction of isotopic information from sliced steroid chromatographic peaks. Difficulties remaining include long-term robustness of on-line reactors and urine matrix effects that preclude baseline separation and isotopic analysis of low concentration and trace components. In this work, steroids were extracted, acetylated, and analyzed using a refined, home-built GC×GCC-IRMS system. 11-hydroxy-androsterone (11OHA) and 11-ketoetiocolanolone (11KE) were chosen as endogenous reference compounds (ERC) because of their satisfactory signal intensity, and their CIR was compared to target compounds (TC) androsterone (A) and etiocholanolone (E). Separately, a GC×GC-qMS system was used to measure testosterone (T)/EpiT concentration ratios. Urinary extracts of urine pooled from professional athletes, and urine from one individual that received testosterone gel (T-gel) and one individual that received testosterone injections (T-shot) were analyzed. The average precisions of δ13C and Δδ13C measurements were SD(δ13C) approximately ± 1‰ (n=11). The T-shot sample resulted in a positive for T use with a T/EpiT ratio of > 9 and CIR

  3. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    PubMed Central

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  4. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology.

    PubMed

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience.

  5. Defining Putative Glycan Cancer Biomarkers by Mass Spectrometry

    PubMed Central

    Mechref, Yehia; Hu, Yunli; Garcia, Aldo; Hussein, Ahmed

    2013-01-01

    Summary For decades, the association between aberrant glycosylation and many types of cancers has been shown. However, defining the changes of glycan structures has not been demonstrated until recently. This has been facilitated by the major advances in mass spectrometry and separation science which allowed the detailed characterization of glycan changes associated with cancer. Mass spectrometry glycomics methods have been successfully employed to compare the glycomic profiles of different human specimen collected from disease-free individuals and patients with cancer. Additionally, comparing the glycomic profiles of glycoproteins purified from specimen collected from disease-free individuals and patients with cancer has also been performed. These types of glycan analyses employing mass spectrometry or liquid-chromatography mass spectrometry allowed the characterization of native, labeled, and permethylated glycans. This review discusses the different glycomic and glycoproteomic methods employed for defining glycans as cancer biomarkers of different organs, including breast, colon, esophagus, liver, lung, ovarian, pancreas and prostate. PMID:23157355

  6. Current controlled vocabularies are insufficient to uniquely map molecular entities to mass spectrometry signal.

    PubMed

    Smith, Rob; Taylor, Ryan M; Prince, John T

    2015-01-01

    The comparison of analyte mass spectrometry precursor (MS1) signal is central to many proteomic (and other -omic) workflows. Standard vocabularies for mass spectrometry exist and provide good coverage for most experimental applications yet are insufficient for concise and unambiguous description of data concepts spanning the range of signal provenance from a molecular perspective (e.g. from charged peptides down to fine isotopes). Without a standard unambiguous nomenclature, literature searches, algorithm reproducibility and algorithm evaluation for MS-omics data processing are nearly impossible. We show how terms from current official ontologies are too vague or ambiguous to explicitly map molecular entities to MS signals and we illustrate the inconsistency and ambiguity of current colloquially used terms. We also propose a set of terms for MS1 signal that uniquely, succinctly and intuitively describe data concepts spanning the range of signal provenance from full molecule downs to fine isotopes. We suggest that additional community discussion of these terms should precede any further standardization efforts. We propose a novel nomenclature that spans the range of the required granularity to describe MS data processing from the perspective of the molecular provenance of the MS signal. The proposed nomenclature provides a chain of succinct and unique terms spanning the signal created by a charged molecule down through each of its constituent subsignals. We suggest that additional community discussion of these terms should precede any further standardization efforts.

  7. Current controlled vocabularies are insufficient to uniquely map molecular entities to mass spectrometry signal

    PubMed Central

    2015-01-01

    Background The comparison of analyte mass spectrometry precursor (MS1) signal is central to many proteomic (and other -omic) workflows. Standard vocabularies for mass spectrometry exist and provide good coverage for most experimental applications yet are insufficient for concise and unambiguous description of data concepts spanning the range of signal provenance from a molecular perspective (e.g. from charged peptides down to fine isotopes). Without a standard unambiguous nomenclature, literature searches, algorithm reproducibility and algorithm evaluation for MS-omics data processing are nearly impossible. Results We show how terms from current official ontologies are too vague or ambiguous to explicitly map molecular entities to MS signals and we illustrate the inconsistency and ambiguity of current colloquially used terms. We also propose a set of terms for MS1 signal that uniquely, succinctly and intuitively describe data concepts spanning the range of signal provenance from full molecule downs to fine isotopes. We suggest that additional community discussion of these terms should precede any further standardization efforts. We propose a novel nomenclature that spans the range of the required granularity to describe MS data processing from the perspective of the molecular provenance of the MS signal. Conclusions The proposed nomenclature provides a chain of succinct and unique terms spanning the signal created by a charged molecule down through each of its constituent subsignals. We suggest that additional community discussion of these terms should precede any further standardization efforts. PMID:25952148

  8. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  9. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGES

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  10. Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).

  11. Mass Spectrometry Identification of N-Chlorinated Dipeptides in Drinking Water.

    PubMed

    Huang, Guang; Jiang, Ping; Li, Xing-Fang

    2017-04-04

    We report the identification of N-chlorinated dipeptides as chlorination products in drinking water using complementary high-resolution quadrupole time-of-flight (QTOF) and quadrupole ion-trap mass spectrometry techniques. First, three model dipeptides, tyrosylglycine (Tyr-Gly), tyrosylalanine (Tyr-Ala), and phenylalanylglycine (Phe-Gly), reacted with sodium hypochlorite, and these reaction solutions were analyzed by QTOF. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N,N-di-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala were identified as the major products based on accurate masses, 35 Cl/ 37 Cl isotopic patterns, and MS/MS spectra. These identified N-chlorinated dipeptides were synthesized and found to be stable in water over 10 days except N,N-di-Cl-Phe-Gly. To enable sensitive detection of N-chlorinated dipeptides in authentic water, we developed a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method with multiple reaction monitoring (MRM) mode. N-Cl-Tyr-Gly, N,N-di-Cl-Tyr-Gly, N-Cl-Phe-Gly, N-Cl-Tyr-Ala, and N,N-di-Cl-Tyr-Ala along with their corresponding dipeptides were detected in authentic tap water samples. The dipeptides were clearly detected in the raw water, but the N-chlorinated dipeptides were at background levels. These results suggest that the N-chlorinated dipeptides are produced by chlorination. This study has identified N-chlorinated dipeptides as new disinfection byproducts in drinking water. The strategy developed in this study can be used to identify chlorination products of other peptides in drinking water.

  12. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral.

    PubMed

    Thil, François; Blamart, Dominique; Assailly, Caroline; Lazareth, Claire E; Leblanc, Thierry; Butsher, John; Douville, Eric

    2016-02-15

    Laser Ablation coupled to Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICPMS) is a powerful tool for the high-precision measurement of the isotopic ratios of many elements in geological samples, with the isotope ratio ((11) B/(10) B) of boron being used as an indicator of the pH of oceanic waters. Most geological samples or standards are polished and ablation occurs on flat surfaces. However, the shape and the irregularities of marine biocarbonates (e.g., corals, foraminifera) can make precise isotopic measurements of boron difficult. Even after polishing, the porosity properties and the presence of holes or micro-fractures affect the signal and the isotopic ratio when ablating the material, especially in raster mode. The effect of porosity and of the crater itself on the (11) B signal and the isotopic ratio acquired by LA-MC-ICPMS in both raster and spot mode was studied. Characterization of the craters was then performed with an optical profilometer to determine their shapes and depths. Surface state effects were examined by analyzing the isotopic fractionation of boron in silicate (NIST-SRM 612 and 610 standards) and in carbonate (corals). Surface irregularities led to a considerable loss of signal when the crater depth exceeded 20 µm. The stability and precision were degraded when ablation occurred in a deep cavity. The effect of laser focusing and of blank correction was also highlighted and our observations indicate that the accuracy of the boron isotopic ratio does not depend on the shape of the surface. After validation of the analytical protocol for boron isotopes, a raster application on a Porites coral, which grew for 18 months in an aquarium after field sampling, was carried out. This original LA-MC-ICPMS study revealed a well-marked boron isotope ratio temporal variability, probably related to growth rate and density changes, irrespective of the pH of the surrounding seawater. Copyright © 2015 John Wiley & Sons, Ltd. Copyright

  13. Design of self-coded combinatorial libraries to facilitate direct analysis of ligands by mass spectrometry.

    PubMed

    Hughes, I

    1998-09-24

    The direct analysis of selected components from combinatorial libraries by sensitive methods such as mass spectrometry is potentially more efficient than deconvolution and tagging strategies since additional steps of resynthesis or introduction of molecular tags are avoided. A substituent selection procedure is described that eliminates the mass degeneracy commonly observed in libraries prepared by "split-and-mix" methods, without recourse to high-resolution mass measurements. A set of simple rules guides the choice of substituents such that all components of the library have unique nominal masses. Additional rules extend the scope by ensuring that characteristic isotopic mass patterns distinguish isobaric components. The method is applicable to libraries having from two to four varying substituent groups and can encode from a few hundred to several thousand components. No restrictions are imposed on the manner in which the "self-coded" library is synthesized or screened.

  14. A history of mass spectrometry in Australia.

    PubMed

    Downard, Kevin M; de Laeter, John R

    2005-09-01

    An interest in mass spectrometry in Australia can be traced back to the 1920s with an early correspondence with Francis Aston who first visited these shores a decade earlier. The region has a rich tradition in both the development of the field and its application, from early measurements of ionization and appearance potentials by Jim Morrison at the Council for Scientific and Industrial Research (CSIR) around 1950 to the design and construction of instrumentation including the first use of a triple quadrupole mass spectrometer for tandem mass spectrometry, the first suite of programs to simulate ion optics (SIMION), the development of early TOF/TOF instruments and orthogonal acceleration and the local design and construction of several generations of a sensitive high-resolution ion microprobe (SHRIMP) instrument. Mass spectrometry has been exploited in the study and characterization of the constituents of this nation's unique flora and fauna from Australian apples, honey, tea plant and eucalyptus oil, snake, spider, fish and frog venoms, coal, oil, sediments and shale, environmental studies of groundwater to geochronological dating of limestone and granite, other terrestrial and meteoritic rocks and coral from the Great Barrier Reef. Peter Jeffery's establishment of geochronological dating techniques in Western Australia in the early 1950s led to the establishment of geochronology research both at the Australian National University and at what is now the Curtin Institute of Technology in the 1960s. This article traces the history of mass spectrometry in its many guises and applications in the island continent of Australia. An article such as this can never be complete. It instead focuses on contributions of scientists who played a major role in the early establishment of mass spectrometry in Australia. In general, those who are presently active in the field, and whose histories are incomplete, have been mentioned at best only briefly despite their important

  15. Stable isotope dilution ultra-high performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan-related neuroactive substances in human serum and cerebrospinal fluid.

    PubMed

    Hényková, Eva; Vránová, Hana Přikrylová; Amakorová, Petra; Pospíšil, Tomáš; Žukauskaitė, Asta; Vlčková, Magdaléna; Urbánek, Lubor; Novák, Ondřej; Mareš, Jan; Kaňovský, Petr; Strnad, Miroslav

    2016-03-11

    Many compounds related to L-tryptophan (L-TRP) have interesting biological or pharmacological activity, and their abnormal neurotransmission seems to be linked to a wide range of neurodegenerative and psychiatric diseases. A high-throughput method based on ultra-high performance liquid chromatography connected to electrospray tandem mass spectrometry (UHPLC-ESI-MS/MS) was developed for the quantitative analysis of L-TRP and 16 of its metabolites in human serum and cerebrospinal fluid (CSF), representing both major and minor routes of L-TRP catabolism. The combination of a fast LC gradient with selective tandem mass spectrometry enabled accurate analysis of almost 100 samples in 24h. The standard isotope dilution method was used for quantitative determination. The method's lower limits of quantification for serum and cerebrospinal fluid ranged from 0.05 to 15nmol/L and 0.3 to 45nmol/L, respectively. Analytical recoveries ranged from 10.4 to 218.1% for serum and 22.1 to 370.0% for CSF. The method's accuracy ranged from 82.4 to 128.5% for serum matrix and 90.7 to 127.7% for CSF matrix. All intra- and inter-day coefficients of variation were below 15%. These results demonstrate that the new method is capable of quantifying endogenous serum and CSF levels of a heterogeneous group of compounds spanning a wide range of concentrations. The method was used to determine the physiological levels of target analytes in serum and CSF samples from 18 individuals, demonstrating its reliability and potential usefulness in large-scale epidemiological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes

    NASA Astrophysics Data System (ADS)

    Xing, Y. M.; Li, K. A.; Zhang, Y. H.; Zhou, X. H.; Wang, M.; Litvinov, Yu. A.; Blaum, K.; Wanajo, S.; Kubono, S.; Martínez-Pinedo, G.; Sieverding, A.; Chen, R. J.; Shuai, P.; Fu, C. Y.; Yan, X. L.; Huang, W. J.; Xu, X.; Tang, X. D.; Xu, H. S.; Bao, T.; Chen, X. C.; Gao, B. S.; He, J. J.; Lam, Y. H.; Li, H. F.; Liu, J. H.; Ma, X. W.; Mao, R. S.; Si, M.; Sun, M. Z.; Tu, X. L.; Wang, Q.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhang, P.; Zhou, X.; Zhan, W. L.; Litvinov, S.; Audi, G.; Uesaka, T.; Yamaguchi, Y.; Yamaguchi, T.; Ozawa, A.; Fröhlich, C.; Rauscher, T.; Thielemann, F.-K.; Sun, B. H.; Sun, Y.; Dai, A. C.; Xu, F. R.

    2018-06-01

    Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr-Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.

  17. The allure of mass spectrometry: From an earlyday chemist's perspective

    PubMed Central

    2016-01-01

    1 This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state‐of‐the‐art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide‐ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol‐A leaching from sterilized polycarbonate

  18. Proteomic Mass Spectrometry Imaging for Skin Cancer Diagnosis.

    PubMed

    Lazova, Rossitza; Seeley, Erin H

    2017-10-01

    Mass spectrometry imaging can be successfully used for skin cancer diagnosis, particularly for the diagnosis of challenging melanocytic lesions. This method analyzes proteins within benign and malignant melanocytic tumor cells and, based on their differences, which constitute a unique molecular signature of 5 to 20 proteins, can render a diagnosis of benign nevus versus malignant melanoma. Mass spectrometry imaging may assist in the differentiation between metastases and nevi as well as between proliferative nodules in nevi and melanoma arising in a nevus. In the difficult area of atypical Spitzoid neoplasms, mass spectrometry diagnosis can predict clinical outcome better than histopathology. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Mass Spectrometry in the Home and Garden

    NASA Astrophysics Data System (ADS)

    Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  20. Precise and traceable carbon isotope ratio measurements by multicollector ICP-MS: what next?

    PubMed

    Santamaria-Fernandez, Rebeca

    2010-06-01

    This article reviews recent developments in the use of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) to provide high-precision carbon isotope ratio measurements. MC-ICP-MS could become an alternative method to isotope ratio mass spectrometry (IRMS) for rapid carbon isotope ratio determinations in organic compounds and characterisation and certification of isotopic reference materials. In this overview, the advantages, drawbacks and potential of the method for future applications are critically discussed. Furthermore, suggestions for future improvements in terms of precision and sensitivity are made. No doubt, this is an exciting analytical challenge and, as such, hurdles will need to be cleared.

  1. Quantitative thin-layer chromatography/mass spectrometry analysis of caffeine using a surface sampling probe electrospray ionization tandem mass spectrometry system.

    PubMed

    Ford, Michael J; Deibel, Michael A; Tomkins, Bruce A; Van Berkel, Gary J

    2005-07-15

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 mum/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 muL) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by approximately 8% or more) than the literature values.

  2. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methodsmore » determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.« less

  3. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    DOE PAGES

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-03-08

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is important for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament- uranium interaction points. The resulting uranium oxide emission exhibitsmore » a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. Lastly, the results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.« less

  4. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is important for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament- uranium interaction points. The resulting uranium oxide emission exhibitsmore » a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. Lastly, the results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.« less

  5. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-03-01

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.

  6. Simultaneous determination of water-soluble vitamins in SRM 1849 Infant/Adult Nutritional Formula powder by liquid chromatography-isotope dilution mass spectrometry.

    PubMed

    Goldschmidt, Robert J; Wolf, Wayne R

    2010-05-01

    Assessing dietary intake of vitamins from all sources, including foods, dietary supplements, and fortified foods, would be aided considerably by having analytical methodologies that are capable of simultaneous determination of several vitamins. Vitamins naturally present in foods may occur in different chemical forms, with levels ranging over several orders of magnitude. Vitamins in dietary supplements and fortified foods, however, are typically added in a single chemical form, and matrix issues are usually not as complex. These sources should thus be relatively amenable to approaches that aim for simultaneous determination of multiple vitamins. Our recent work has focused on development of liquid chromatography (LC)-UV/fluorescence and LC-tandem mass spectrometry methods for the simultaneous determination of water-soluble vitamins (thiamine, niacin, pyridoxine, pantothenic acid, folic acid, biotin, and riboflavin) in dietary supplement tablets and fortified foods, such as formula powders and breakfast cereals. As part of the validation of our methods and collaboration in characterization of a new NIST SRM 1849 Infant/Adult Nutritional Formula powder, we report data on SRM 1849 using isotope dilution mass spectrometric methods. Use of available NIST Standard Reference Materials(R) as test matrices in our method development and validation gives a benchmark for future application of these methods. We compare three chromatographic approaches and provide data on stability of vitamin standard solutions for LC-based multiple vitamin determinations.

  7. High-accuracy mass spectrometry for fundamental studies.

    PubMed

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  8. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics.

    PubMed

    Prien, Justin M; Prater, Bradley D; Qin, Qiang; Cockrill, Steven L

    2010-02-15

    Fast, sensitive, robust methods for "high-level" glycan screening are necessary during various stages of a biotherapeutic product's lifecycle, including clone selection, process changes, and quality control for lot release testing. Traditional glycan screening involves chromatographic or electrophoretic separation-based methods, and, although reproducible, these methods can be time-consuming. Even ultrahigh-performance chromatographic and microfluidic integrated LC/MS systems, which work on the tens of minute time scale, become lengthy when hundreds of samples are to be analyzed. Comparatively, a direct infusion mass spectrometry (MS)-based glycan screening method acquires data on a millisecond time scale, exhibits exquisite sensitivity and reproducibility, and is amenable to automated peak annotation. In addition, characterization of glycan species via sequential mass spectrometry can be performed simultaneously. Here, we demonstrate a quantitative high-throughput MS-based mapping approach using stable isotope 2-aminobenzoic acid (2-AA) for rapid "high-level" glycan screening.

  9. Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.

    2009-01-01

    In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.

  10. DNA adducts: Mass spectrometry methods and future prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, P.B.; Brown, K.; Tompkins, E.

    2005-09-01

    Detection of DNA adducts is widely used for the monitoring of exposure to genotoxic carcinogens. Knowledge of the nature and amounts of DNA adducts formed in vivo also gives valuable information regarding the mutational effects that may result from particular exposures. The power of mass spectrometry (MS) to achieve qualitative and quantitative analyses of human DNA adducts has increased greatly in recent years with the development of improved chromatographic interfaces and ionisation sources. Adducts have been detected on nucleic acid bases, 2'-deoxynucleosides or 2'-deoxynucleotides, with LC-MS/MS being the favoured technique for many of these analyses. Our current applications of thismore » technique include the determination of N7-(2-carbamoyl-2-hydroxyethyl)-guanine, which was postulated to be found as a DNA repair product in urine following exposure to acrylamide, and of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-2'-deoxyadenosine, as markers of oxidative damage in human lymphocyte DNA. Higher sensitivity (with a detection limit of 1-10 adducts/10{sup 12} nucleotides) may be achieved by the use of accelerator mass spectrometry (AMS), although this requires the presence of certain isotopes, such as [{sup 14}C], in the material being analysed. In order to make this technique more amenable for studies of human exposure to environmental carcinogens, new postlabelling techniques, incorporating [{sup 14}C] into specific DNA adducts after formation, are being developed. It is expected that combining the use of advanced MS techniques with existing {sup 32}P-postlabelling and immunochemical methodologies will contribute greatly to the understanding of the burden of human exposure to environmental carcinogens.« less

  11. Deciphering the iron isotope message of the human body

    NASA Astrophysics Data System (ADS)

    Walczyk, Thomas; von Blanckenburg, Friedhelm

    2005-04-01

    Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.

  12. Environmental applications for the analysis of chlorinated dibenzo-p-dioxins and dibenzofurans using mass spectrometry/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiner, E.J.; Schellenberg, D.H.; Taguchi, V.Y.

    1991-01-01

    A mass spectrometry/mass spectrometry-multiple reaction monitoring (MS/MS-MRM) technique for the analysis of all tetra- through octachlorinated dibenzo-p-dioxins (Cl{sub x}DD, x = 4-8) and dibenzofurans (Cl{sub x}DF, x = 4-8) has been developed at the Ministry of the Environment (MOE) utilizing a triple quadrupole mass spectrometer. Optimization of instrumental parameters using the analyte of interest in a direct insertion probe (DIP) resulted in sensitivities approaching those obtainable by high-resolution mass spectrometric (HRMS) methods. All congeners of dioxins and furans were detected in the femtogram range. Results on selected samples indicated that for some matrices, fewer chemical interferences were observed by MS/MSmore » than by HRMS. The technique used to optimize the instrument for chlorinated dibenzo-p-dioxins (CDDs) and chlorinated dibenzofurans (CDFs) analysis is adaptable to other analytes.« less

  13. Recent applications of gas chromatography with high-resolution mass spectrometry.

    PubMed

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of new method of δ13C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry.

    PubMed

    Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing

    2014-11-01

    Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C 1 -C 4 ) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C 5 -C 14 ) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ 13 C signatures determined by SPME-GC/IRMS were in good agreement with the known δ 13 C values of C 5 -C 14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ 13 C values for C 5 -C 14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas. Published by Elsevier B.V.

  15. Flux Analysis of Free Amino Sugars and Amino Acids in Soils by Isotope Tracing with a Novel Liquid Chromatography/High Resolution Mass Spectrometry Platform

    PubMed Central

    2017-01-01

    Soil fluxomics analysis can provide pivotal information for understanding soil biochemical pathways and their regulation, but direct measurement methods are rare. Here, we describe an approach to measure soil extracellular metabolite (amino sugar and amino acid) concentrations and fluxes based on a 15N isotope pool dilution technique via liquid chromatography and high-resolution mass spectrometry. We produced commercially unavailable 15N and 13C labeled amino sugars and amino acids by hydrolyzing peptidoglycan isolated from isotopically labeled bacterial biomass and used them as tracers (15N) and internal standards (13C). High-resolution (Orbitrap Exactive) MS with a resolution of 50 000 allowed us to separate different stable isotope labeled analogues across a large range of metabolites. The utilization of 13C internal standards greatly improved the accuracy and reliability of absolute quantification. We successfully applied this method to two types of soils and quantified the extracellular gross fluxes of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers. Compared to the influx and efflux rates of most amino acids, similar ones were found for glucosamine, indicating that this amino sugar is released through peptidoglycan and chitin decomposition and serves as an important nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited similar turnover rates as their l-enantiomers. This novel approach offers new strategies to advance our understanding of the production and transformation pathways of soil organic N metabolites, including the unknown contributions of peptidoglycan and chitin decomposition to soil organic N cycling. PMID:28776982

  16. Flux Analysis of Free Amino Sugars and Amino Acids in Soils by Isotope Tracing with a Novel Liquid Chromatography/High Resolution Mass Spectrometry Platform.

    PubMed

    Hu, Yuntao; Zheng, Qing; Wanek, Wolfgang

    2017-09-05

    Soil fluxomics analysis can provide pivotal information for understanding soil biochemical pathways and their regulation, but direct measurement methods are rare. Here, we describe an approach to measure soil extracellular metabolite (amino sugar and amino acid) concentrations and fluxes based on a 15 N isotope pool dilution technique via liquid chromatography and high-resolution mass spectrometry. We produced commercially unavailable 15 N and 13 C labeled amino sugars and amino acids by hydrolyzing peptidoglycan isolated from isotopically labeled bacterial biomass and used them as tracers ( 15 N) and internal standards ( 13 C). High-resolution (Orbitrap Exactive) MS with a resolution of 50 000 allowed us to separate different stable isotope labeled analogues across a large range of metabolites. The utilization of 13 C internal standards greatly improved the accuracy and reliability of absolute quantification. We successfully applied this method to two types of soils and quantified the extracellular gross fluxes of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers. Compared to the influx and efflux rates of most amino acids, similar ones were found for glucosamine, indicating that this amino sugar is released through peptidoglycan and chitin decomposition and serves as an important nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited similar turnover rates as their l-enantiomers. This novel approach offers new strategies to advance our understanding of the production and transformation pathways of soil organic N metabolites, including the unknown contributions of peptidoglycan and chitin decomposition to soil organic N cycling.

  17. Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry.

    PubMed

    Scampicchio, Matteo; Mimmo, Tanja; Capici, Calogero; Huck, Christian; Innocente, Nadia; Drusch, Stephan; Cesco, Stefano

    2012-11-14

    Stable isotope values were used to develop a new analytical approach enabling the simultaneous identification of milk samples either processed with different heating regimens or from different geographical origins. The samples consisted of raw, pasteurized (HTST), and ultrapasteurized (UHT) milk from different Italian origins. The approach consisted of the analysis of the isotope ratio of δ¹³C and δ¹⁵N for the milk samples and their fractions (fat, casein, and whey). The main finding of this work is that as the heat processing affects the composition of the milk fractions, changes in δ¹³C and δ¹⁵N were also observed. These changes were used as markers to develop pattern recognition maps based on principal component analysis and supervised classification models, such as linear discriminant analysis (LDA), multivariate regression (MLR), principal component regression (PCR), and partial least-squares (PLS). The results give proof of the concept that isotope ratio mass spectroscopy can discriminate simultaneously between milk samples according to their geographical origin and type of processing.

  18. Mass spectrometry imaging under ambient conditions.

    PubMed

    Wu, Chunping; Dill, Allison L; Eberlin, Livia S; Cooks, R Graham; Ifa, Demian R

    2013-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI for example the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information on the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  19. Mass Spectrometry Imaging under Ambient Conditions

    PubMed Central

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  20. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    PubMed

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  1. Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna metabolic profiles exposed to salinity.

    PubMed

    Parastar, Hadi; Garreta-Lara, Elba; Campos, Bruno; Barata, Carlos; Lacorte, Silvia; Tauler, Roma

    2018-06-01

    The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution-alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity-exposed samples. Examination of the results confirmed the outperformance of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in D. magna samples. The peak areas of multivariate curve resolution-alternating least squares resolved elution profiles in every sample analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt-exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de-regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simultaneous determination of nine neonicotinoids in human urine using isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Quan; Wang, Ximing; Li, Zhe; Jin, Hangbiao; Lu, Zhengbiao; Yu, Chang; Huang, Yu-Fang; Zhao, Meirong

    2018-05-14

    Neonicotinoids (neonics), a class of systemic insecticides, have been frequently detected in pollen, vegetables, and fruits. Recently, an increasing concern has been aroused for human exposure to neonics. However, biological monitoring for quantifying body burden of neonics has rarely been reported. In this study, we developed an isotope-dilution ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method to simultaneously quantify nine neonics, including acetamiprid (ACE), thiamethoxam (THIAM), imidacloprid (IMIP), clothianidin (CLO), flonicamid (FLO), thiacloprid (THIAC), dinotefuran (DIN), nitenpyram (NIT), and imidaclothiz (IMIT) in urine. The limits of quantification were 0.1 μg/L for ACE, FLO, DIN, NIT and IMIT, and 0.2 μg/L for THIAM, IMIP, CLO, and THIAC. The overall recoveries were 80.8-103%, 81.5-91.7% and 83.0-92.3% for QA/QC samples fortifying at 1, 25, and 100 μg/L levels, respectively. UPLC/MS/MS method was used to analyze urine samples obtained from 10 children in Hangzhou, China. The detection frequencies were 80% for ACE and IMIP, 70% for THIAM and CLO, 20% for DIN and IMIT and 10% for THIAC. FLO and NIT were not detected in those urine samples. The data provided here will be helpful for conducting biological monitoring of neonics exposure in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Accelerator mass spectrometry of small biological samples.

    PubMed

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  4. 1912: a Titanic year for mass spectrometry.

    PubMed

    Downard, Kevin M

    2012-08-01

    The 1912 sinking of the Titanic continues to capture the imagination and fascination of the general public. The year coincides with the birth of mass spectrometry that began with the cathode ray experiments performed by Joseph John (J. J.) Thomson in Cambridge. Modifications made to Thomson's cathode ray apparatus by Francis William Aston, resulted in an increase in the brightness of the positive rays that aided their detection. This led to the discovery of heavy isotopes for many of the chemical elements in the ensuing decades. As the discovery of (22) Ne was reported in 1913, another of Thomson's students was taking part in an expedition to help save future ocean liners from the fate of the Titanic. Geoffrey Ingram Taylor took part in the first ice patrol of the North Atlantic in 1913 aboard the SS Scotia to investigate the formation and position of icebergs. This article, 100 years on, describes Taylor's work and its impact on safe ocean passage across the Atlantic. Copyright © 2012 John Wiley & Sons, Ltd.

  5. [Advances in mass spectrometry-based approaches for neuropeptide analysis].

    PubMed

    Ji, Qianyue; Ma, Min; Peng, Xin; Jia, Chenxi; Ji, Qianyue

    2017-07-25

    Neuropeptides are an important class of endogenous bioactive substances involved in the function of the nervous system, and connect the brain and other neural and peripheral organs. Mass spectrometry-based neuropeptidomics are designed to study neuropeptides in a large-scale manner and obtain important molecular information to further understand the mechanism of nervous system regulation and the pathogenesis of neurological diseases. This review summarizes the basic strategies for the study of neuropeptides using mass spectrometry, including sample preparation and processing, qualitative and quantitative methods, and mass spectrometry imagining.

  6. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  7. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.

    2015-05-01

    135Cs/ 137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/ 137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide varietymore » of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2σ) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/ 137Cs ratio measurements currently reported for soil samples at the femtogram level.« less

  8. Determination of Mercury Content in a Shallow Firn Core from Summit, Greenland by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mann, Jacqueline L.; Long, Stephen E.; Shuman, Christopher A.; Kelly, W. Robert

    2003-01-01

    The total mercury Hg content was determined in 6 cm sections of a near-surface 7 m firn core and in surrounding surface snow from Summit, Greenland (elevation: 3238 m, 72.58 N, 38.53 W) in May 2001 by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS). The focus of this research was to evaluate the capability of the ID-CV-ICPMS technique for measuring trace levels of Hg typical of polar snow and firn. Highly enriched Hg-201 isotopic spike is added to approximately 10 ml melted core and thoroughly mixed. The Hg(+2) in the sample is reduced on line with tin (II) chloride (SnCl2) and the elemental Hg (Hg(0)) vapor pre-concentrated on to gold gauze using a commercial amalgam system. The Hg is then thermally desorbed and introduced into a quadrupole ICP-MS. The blank corrected Hg concentrations determined for all samples ranged from 0.25 ng/L to 1.74 ng/L (ppt) (average 0.59 ng/L plus or minus 0.28 ng/L) and fall within the range of those previously determined by Boutron et al., 1998 (less than or equal to 0.05 ng/L to 2.0 ng/L) for the Summit site. The average blank value was 0.19 ng/L plus or minus 0.045 ng/L (n=6). The Hg values specifically for the firn core range from 0.25 ng/L to 0.87 ng/L (average 0.51 ng/L plus or minus 0.13 ng/L) and show both values declining with time and larger variability in concentration in the top 1.8 m.

  9. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong

    2012-11-15

    Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Mass Independent Fractionation of Cadmium Isotopes During Thermal Ionization

    NASA Astrophysics Data System (ADS)

    Abouchami, W.; Galer, S. J.; Feldmann, H.; Schmitt, A. D.

    2008-12-01

    We have previously reported that Cd isotopes exhibit anomalous, non-mass dependent fractionation of odd versus even isotopes when measured by TIMS using silica gel-phosphoric acid activator. The deviation from mass dependent fractionation (MDF) on the odd masses 111 and 113 varies by fractions of a per-cent between runs. The effects cannot be explained by isobaric interferences, but seem, instead, to reflect mass independent fractionation (MIF) of Cd isotopes, much like that recently documented for Hg isotopes in natural systems (Bergquist and Blum, 2007). The absence of comparable Cd isotope anomalies in the ICP torch, and during extreme in-vacuo volatilization of Cd metal (Wombacher et al., 2004) conclusively implicates the silica gel activator in the process. So far, MIF has been documented for Cd, Zn and Pb isotopes when measured using the silica gel technique (Thirlwall, 2000; Schmitt et al., 2006; Manhes and Göpel, 2007). These MIF effects on Cd isotopes might perhaps be related to the non-mass dependence of nuclear volume with mass number, as described by Bigeleisen (1996) - also known as the "nuclear field shift". The MIF caused by the nuclear field shift results is a departure from MDF broadly characterized by a odd-even staggering with mass number. These effects have been quantified by Schauble (2007) who showed that the magnitude of the non-mass dependence for Hg and Tl isotopes lies in the ppm range for some simple reactions. Such MIF effects would appear, overall, far too small to account for our data, which require MIF offsets on the odd masses 111 and 113 approaching a per-cent. Moreover, an in-depth examination along the lines of Fujii et al. (2006) predicts tell-tale offsets for the even-even isotope pairs 114Cd/112Cd and 116Cd/112Cd as well, based upon the theory and the respective nuclear radii, but such accompanying offsets are unequivocally absent in our data. The odd-even isotope effects seen in our runs using silica gel activator are better

  11. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  12. US Food and Drug Administration Perspectives on Clinical Mass Spectrometry.

    PubMed

    Lathrop, Julia Tait; Jeffery, Douglas A; Shea, Yvonne R; Scholl, Peter F; Chan, Maria M

    2016-01-01

    Mass spectrometry-based in vitro diagnostic devices that measure proteins and peptides are underutilized in clinical practice, and none has been cleared or approved by the Food and Drug Administration (FDA) for marketing or for use in clinical trials. One way to increase their utilization is through enhanced interactions between the FDA and the clinical mass spectrometry community to improve the validation and regulatory review of these devices. As a reference point from which to develop these interactions, this article surveys the FDA's regulation of mass spectrometry-based devices, explains how the FDA uses guidance documents and standards in the review process, and describes the FDA's previous outreach to stakeholders. Here we also discuss how further communication and collaboration with the clinical mass spectrometry communities can identify opportunities for the FDA to provide help in the development of mass spectrometry-based devices and enhance their entry into the clinic. © 2015 American Association for Clinical Chemistry.

  13. Recent developments in atmospheric pressure photoionization-mass spectrometry.

    PubMed

    Kauppila, Tiina J; Syage, Jack A; Benter, Thorsten

    2017-05-01

    Recent developments in atmospheric pressure photoionization (APPI), which is one of the three most important ionization techniques in liquid chromatography-mass spectrometry, are reviewed. The emphasis is on the practical aspects of APPI analysis, its combination with different separation techniques, novel instrumental developments - especially in gas chromatography and ambient mass spectrometry - and the applications that have appeared in 2009-2014. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:423-449, 2017. © 2015 Wiley Periodicals, Inc.

  14. Olive oil or lard?: distinguishing plant oils from animal fats in the archeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry.

    PubMed

    Steele, Valerie J; Stern, Ben; Stott, Andy W

    2010-12-15

    Distinguishing animal fats from plant oils in archaeological residues is not straightforward. Characteristic plant sterols, such as β-sitosterol, are often missing in archaeological samples and specific biomarkers do not exist for most plant fats. Identification is usually based on a range of characteristics such as fatty acid ratios, all of which indicate that a plant oil may be present, none of which uniquely distinguish plant oils from other fats. Degradation and dissolution during burial alter fatty acid ratios and remove short-chain fatty acids, resulting in degraded plant oils with similar fatty acid profiles to other degraded fats. Compound-specific stable isotope analysis of δ(13)C(18:0) and δ(13)C(16:0), carried out by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), has provided a means of distinguishing fish oils, dairy fats, ruminant and non-ruminant adipose fats, but plant oils are rarely included in these analyses. For modern plant oils where C(18:1) is abundant, δ(13)C(18:1) and δ(13)C(16:0) are usually measured. These results cannot be compared with archaeological data or data from other modern reference fats where δ(13)C(18:0) and δ(13)C(16:0) are measured, as C(18:0) and C(18:1) are formed by different processes resulting in different isotopic values. Eight samples of six modern plant oils were saponified, releasing sufficient C(18:0) to measure the isotopic values, which were plotted against δ(13)C(16:0). The isotopic values for these oils, with one exception, formed a tight cluster between ruminant and non-ruminant animal fats. This result complicates the interpretation of mixed fatty residues in geographical areas where both animal fats and plant oils were in use. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Mass dependence of calcium isotope fractionations in crown-ether resin chromatography.

    PubMed

    Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Tositaka; Sakuma, Yoichi; Suzuki, Tatsuya; Umehara, Saori; Kishimoto, Tadahumi

    2010-06-01

    Benzo 18-crown-6-ether resin was synthesised by the phenol condensation polymerisation process in porous silica beads, of which particle diameter was ca 60micro Calcium adsorption chromatography was performed with the synthesised resin packed in a glass column. The effluent was sampled in fractions, and the isotopic abundance ratios of (42)Ca, (43)Ca, (44)Ca, and (48)Ca against (40)Ca were measured by a thermo-ionisation mass spectrometer. The enrichment of heavier calcium isotopes was observed at the front boundary of calcium adsorption chromatogram. The mass dependence of mutual separation of calcium isotopes was analysed by using the three-isotope-plots method. The slopes of three-isotope-plots indicate the relative values of mutual separation coefficients for concerned isotopic pairs. The results have shown the normal mass dependence; isotope fractionation is proportional to the reduced mass difference, (M - M')/MM', where M and M' are masses of heavy and light isotope, respectively. The mass dependence clarifies that the isotope fractionations are originated from molecular vibration. The observed separation coefficient epsilon is 3.1x10(-3) for the pair of (40)Ca and (48)Ca. Productivity of enriched (48)Ca by crown-ether-resin was discussed as the function of the separation coefficient and the height equivalent to the theoretical plate.

  16. [Determination of 13C enrichment in soil amino acid enantiomers by gas chromatogram/mass spectrometry].

    PubMed

    He, Hong-Bo; Zhang, Wei; Ding, Xue-Li; Bai, Zhen; Liu, Ning; Zhang, Xu-Dong

    2008-06-01

    The transformation and renewal of amino acid enantiomers is of significance in indicating the turnover mechanism of soil organic matter. In this paper, a method of gas chromatogram/mass spectrometry combined with U-13 C-glucose incubation was developed to determine the 13C enrichment in soil amino acid enantiomers, which could effectively differentiate the original and the newly synthesized amino acids in soil matrix. The added U-13 C-glucose was utilized rapidly to structure the amino acid carbon skeleton, and the change of relative abundance of isotope ions could be determined by mass spectrometry. The direct incorporation of U-13 C glucose was estimated by the intensity increase of m/z (F + n) to F (F was parent fragment, and n was the carbon number in the fragment), while the total isotope incorporation from the added 13C could be calculated according to the abundance ratio increment summation from m/z (Fa + 1) through (Fa + T) (Fa was the fragment containing all original skeleton carbons, and T was the carbon number in the amino acid molecule). The 13C enrichment in the target compound was expressed as atom percentage excess (APE), and that of D-amino acid needed to be corrected by the coefficient of hydrolysis-induced racemization. The 13C enrichment reflected the carbon turnover velocity of individual amino acid enantiomers, and was powerful to investigate the dynamics of soil amino acids.

  17. Imaging Mass Spectrometry in Neuroscience

    PubMed Central

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  18. High mass accuracy assay for trimethylamine N-oxide using stable-isotope dilution with liquid chromatography coupled to orthogonal acceleration time of flight mass spectrometry with multiple reaction monitoring.

    PubMed

    Heaney, Liam M; Jones, Donald J L; Mbasu, Richard J; Ng, Leong L; Suzuki, Toru

    2016-01-01

    Trimethylamine N-oxide (TMAO) has attracted interest as circulating levels have reported prognostic value in patients with cardiovascular conditions, such as heart failure. With continual advances in accurate mass measurements, robust methods that can employ the capabilities of time of flight mass spectrometers would offer additional utility in the analysis of complex clinical samples. A Waters Acquity UPLC was coupled to a Waters Synapt G2-S high-resolution mass spectrometer. TMAO was measured in plasma by stable-isotope dilution-hydrophilic interaction liquid chromatography-time of flight mass spectrometry with multiple reaction monitoring (LC-ToF-MRM). Two transitions were monitored: m/z 76.1 to 58.066/59.073 and m/z 85.1 to 66.116/68.130. The method was assessed for linearity, lower limits of detection and quantitation, and reproducibility. A selected cohort of patients with systolic heart failure (SHF; n = 43) and healthy controls (n = 42) were measured to verify the assay is suitable for the analysis of clinical samples. Quantitative analysis of TMAO using LC-ToF-MRM enabled linearity to be established between 0.1 and 75 μmol/L, with a lower limit of detection of 0.05 μmol/L. Relative standard deviations reported an inter-day variation of ≤20.8% and an intra-day variation of ≤11.4% with an intra-study quality control variation of 2.7%. Run times were 2.5 min. Clinical application of the method reported that TMAO in SHF was elevated compared to that of healthy controls (p < 0.0005). LC-ToF-MRM offers a highly selective method for accurate mass measurement of TMAO with rapid and reproducible results. Applicability of the method was shown in a selected cohort of patient samples.

  19. Stabile Chlorine Isotope Study of Martian Shergottites and Nakhlites; Whole Rock and Acid Leachates and Residues

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2011-01-01

    We have established a precise analytical technique for stable chlorine isotope measurements of tiny planetary materials by TIMS (Thermal Ionization Mass Spectrometry) [1], for which the results are basically consistent with the IRMS tech-nique (gas source mass spectrometry) [2,3,4]. We present here results for Martian shergottites and nakhlites; whole rocks, HNO3-leachates and residues, and discuss the chlorine isotope evolution of planetary Mars.

  20. The selective determination of sulfates, sulfonates, and phosphates in urine by capillary electrophoresis/mass spectrometry.

    PubMed

    Bunz, Svenja-Catharina; Neusüß, Christian

    2013-01-01

    Metabolite identification and metabolite profiling are of major importance in the pharmaceutical and clinical context. However, anions of biological relevance such as sulfates, sulfonates, and phosphates are rarely included in common techniques for metabolite studies. In this protocol, we demonstrate a unique method to selectively determine these anions. The method comprises a capillary electrophoresis separation using an acidic background electrolyte (pH ≤ 2) and anodic detection by mass spectrometry via negative electrospray ionization. In this way, only anions of strong acids like sulfates are determined. The selectivity for sulfur-containing species is proved based on the specific isotopic ratios. In conjunction with the accurate mass from the time-of-flight mass spectrometer, the presented method is well suited for clinical and pharmaceutical applications to identify possible metabolites and to quantify known metabolites.