Science.gov

Sample records for isotope mass spectrometry

  1. Isotope ratio mass spectrometry in nutrition research

    SciTech Connect

    Luke, A.H.

    1994-12-31

    Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then used as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.

  2. Isotope ratio measurements by secondary ion mass spectrometry (SIMS) and glow discharge mass spectrometry (GDMS)

    NASA Astrophysics Data System (ADS)

    Betti, Maria

    2005-04-01

    The basic principles of secondary ion mass spectrometry and glow discharge mass spectrometry have been shortly revisited. The applications of both techniques as exploited for the isotope ratio measurements in several matrices have been reviewed. Emphasis has been given to research fields in expansions such as solar system studies, medicine, biology, environment and nuclear forensic. The characteristics of the two techniques are discussed in terms of sensitivity and methodology of quantification. Considerations on the different detection possibilities in SIMS are also presented.

  3. Hydrogen isotope analysis by quadrupole mass spectrometry

    SciTech Connect

    Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.

    1981-03-01

    The analysis of isotopes of hydrogen (H, D, T) and helium (/sup 3/He, /sup 4/He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/..delta..m < 150, for quantifying impurities from m/q = 2 to 44, and at medium resolution, m/..delta..m approx. 600, for determining concentrations of HD in /sup 3/He, and /sup 4/He in HT/D/sub 2/.

  4. Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Völkening, Joachim; Köppe, Manfred; Heumann, Klaus G.

    1991-07-01

    A precise determination of the isotopic abundances of tungsten with natural isotopic composition is presented. WO-3 ions are generated by negative thermal ionization (NTI) in a double-filament ion source. La2O3 is used as a chemical substance to reduce the electron work function of the rhenium filament material. An ionization efficiency of 1% is obtained for sample loadings of 100 ng. The isotopic abundances are measured with relative standard deviations of 0.2% for the least abundant 180W isotope and 0.02-0.004% for the other tungsten isotopes. These improved isotopic data are used to recalculate the atomic weight of tungsten as 183.8417 ± 0.0001. The new NTI technique is an ideal tool for the application of isotope dilution mass spectrometry to analyse tungsten traces and for the measurement of isotopic shifts of this element in meteorites produced by the decay of 182Hf.

  5. Calibration graphs in isotope dilution mass spectrometry.

    PubMed

    Pagliano, Enea; Mester, Zoltán; Meija, Juris

    2015-10-01

    Isotope-based quantitation is routinely employed in chemical measurements. Whereas most analysts seek for methods with linear theoretical response functions, a unique feature that distinguishes isotope dilution from many other analytical methods is the inherent possibility for a nonlinear theoretical response curve. Most implementations of isotope dilution calibration today either eliminate the nonlinearity by employing internal standards with markedly different molecular weight or they employ empirical polynomial fits. Here we show that the exact curvature of any isotope dilution curve can be obtained from three-parameter rational function, y = f(q) = (a0 + a1q)/(1 + a2q), known as the Padé[1,1] approximant. The use of this function allows eliminating an unnecessary source of error in isotope dilution analysis when faced with nonlinear calibration curves. In addition, fitting with Padé model can be done using linear least squares. PMID:26481988

  6. Mass spectrometry and isotopes: a century of research and discussion.

    PubMed

    Budzikiewicz, Herbert; Grigsby, Ronald D

    2006-01-01

    In 1815, the British physician William Prout had advanced the theory that the molecular masses of elements were multiples of the mass of hydrogen. This "whole number rule" (and especially deviations from it) played an important role in the discussion whether elements could be mixtures of isotopes. F. Soddy's discovery (1910) that lead obtained by decay of uranium and of thorium differed in mass was considered a peculiarity of radioactive materials. The question of the existence of isotopes came up when the instruments developed by J.J. Thomson and by W. Wien to study cathode and canal rays by deflection in electric and magnetic fields were steadily improved. In 1913, Thomson mentioned a weak line at mass 22 accompanying the expected one at mass 20 when he analyzed the mass spectrum of neon. Subsequently Aston obtained the mass spectrum of chlorine with masses at 35 and 37. Still in 1921, Thomson objected heavily to the idea of isotopes. The isotope problem was finally settled, but more accurate mass measurements showed that even isotopic weights differed to some extent from the whole numbers. Based on earlier ideas of P. Langevin and J.-L. Costa, F.W. Aston and A.J. Dempster developed the idea of packing fractions and mass defects due to the transformation of a portion of the matter comprising the atomic nucleus into energy. While the determination of the exact isotopic masses had improved over the years, the accurate determination of isotopic abundances remained a problem as long as photographic recording was used. Here especially A.O. Nier pioneered using dual collectors and compensation measurements. This was the prerequisite for the discovery that isotopic ratios varied somewhat in nature. M. Dole discovered the fractionation of oxygen isotopes by photosynthesis and respiration. Today 13C/12C-ratios are employed to detect adulterations of food and in doping analysis, and 14C/13C-ratios obtained by accelerator mass spectrometry are used for dating historical objects, just to give some examples. PMID:16134128

  7. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  8. Using isotope dilution mass spectrometry to determine aqueous trichloroacetic acid

    SciTech Connect

    Norwood, D.L.; Christman, R.F.; Johnson, J.D.; Hass, J.R.

    1986-01-01

    The development, verification, and application of a method based on isotope-dilution gas chromatography-mass spectrometry to determine aqueous trichloroacetic acid (TCAA) at the micrograms per litre level are described. The simultaneous determination of aqueous chloroform is also demonstrated. Trichloroacetic acid is shown to be a significant by-product of the chlorination of raw waters in the laboratory and to constitute a large fraction of the total organic halide (TOX) formed. Analysis of finished-water samples indicated that TCAA, like trihalomethanes is ubiquitous. Positive correlations exist between the levels of TCAA in laboratory-chlorinated raw waters and in finished waters and measured TOX.

  9. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    SciTech Connect

    Manuel J. Manard, Stephan Weeks, Kevin Kyle

    2010-05-27

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and separations. The system couples a high-resolution ion mobility (IM) drift cell to the front end of a mass spectrometer (MS) allowing for chemical separation prior to isotope distribution analyses. This will yield isotope ratio measurement capabilities with minimal sample preparation.

  10. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  11. Efficient Analysis of Mass Spectrometry Data Using the Isotope Wavelet

    SciTech Connect

    Hussong, Rene; Hildebrandt, Andreas; Tholey, Andreas

    2007-09-18

    Mass spectrometry (MS) has become today's de-facto standard for high-throughput analysis in proteomics research. Its applications range from toxicity analysis to MS-based diagnostics. Often, the time spent on the MS experiment itself is significantly less than the time necessary to interpret the measured signals, since the amount of data can easily exceed several gigabytes. In addition, automated analysis is hampered by baseline artifacts, chemical as well as electrical noise, and an irregular spacing of data points. Thus, filtering techniques originating from signal and image analysis are commonly employed to address these problems. Unfortunately, smoothing, base-line reduction, and in particular a resampling of data points can affect important characteristics of the experimental signal. To overcome these problems, we propose a new family of wavelet functions based on the isotope wavelet, which is hand-tailored for the analysis of mass spectrometry data. The resulting technique is theoretically well-founded and compares very well with standard peak picking tools, since it is highly robust against noise spoiling the data, but at the same time sufficiently sensitive to detect even low-abundant peptides.

  12. Efficient Analysis of Mass Spectrometry Data Using the Isotope Wavelet

    NASA Astrophysics Data System (ADS)

    Hussong, Rene; Tholey, Andreas; Hildebrandt, Andreas

    2007-09-01

    Mass spectrometry (MS) has become today's de-facto standard for high-throughput analysis in proteomics research. Its applications range from toxicity analysis to MS-based diagnostics. Often, the time spent on the MS experiment itself is significantly less than the time necessary to interpret the measured signals, since the amount of data can easily exceed several gigabytes. In addition, automated analysis is hampered by baseline artifacts, chemical as well as electrical noise, and an irregular spacing of data points. Thus, filtering techniques originating from signal and image analysis are commonly employed to address these problems. Unfortunately, smoothing, base-line reduction, and in particular a resampling of data points can affect important characteristics of the experimental signal. To overcome these problems, we propose a new family of wavelet functions based on the isotope wavelet, which is hand-tailored for the analysis of mass spectrometry data. The resulting technique is theoretically well-founded and compares very well with standard peak picking tools, since it is highly robust against noise spoiling the data, but at the same time sufficiently sensitive to detect even low-abundant peptides.

  13. Advances in Isotope Ratio Mass Spectrometry and Required Isotope Reference Materials

    PubMed Central

    Vogl, Jochen

    2013-01-01

    The article gives a condensed version of the keynote lecture held at the International Mass Spectrometry Conference 2012 in Kyoto. Starting with some examples for isotope research the key requirements for metrologically valid procedures enabling traceable and comparable isotope data are discussed. Of course multi-collector mass spectrometers are required which offer sufficiently high isotope ratio precision for the intended research work. Following this, corrections for mass fractionation/discrimination, validation of the analytical procedure including chemical sample preparation and complete uncertainty budgets are the most important issues for obtaining a metrologically valid procedure for isotope ratio determination. Only the application of such metrologically valid procedures enables the generation of traceable and comparable isotope data. To realize this suitable isotope and/or δ-reference materials are required, which currently are not sufficiently available for most isotope systems. Boron is given as an example, for which the situation regarding isotope and δ-reference materials is excellent. Boron may therefore serve as prototype for other isotope systems. PMID:24349939

  14. Isotope ratio monitoring gas chromatography/Mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry.

    PubMed

    Hilkert; Douthitt; Schlter; Brand

    1999-07-01

    Of all the elements, hydrogen has the largest naturally occurring variations in the ratio of its stable isotopes (D/H). It is for this reason that there has been a strong desire to add hydrogen to the list of elements amenable to isotope ratio monitoring gas chromatography/mass spectrometry (irm-GC/MS). In irm-GC/MS the sample is entrained in helium as the carrier gas, which is also ionized and separated in the isotope ratio mass spectrometer (IRMS). Because of the low abundance of deuterium in nature, precise and accurate on-line monitoring of D/H ratios with an IRMS requires that low energy helium ions be kept out of the m/z 3 collector, which requires the use of an energy filter. A clean mass 3 (HD(+.)) signal which is independent of a large helium load in the electron impact ion source is essential in order to reach the sensitivity required for D/H analysis of capillary GC peaks. A new IRMS system, the DELTA(plus)XL(trade mark), has been designed for high precision, high accuracy measurements of transient signals of hydrogen gas. It incorporates a retardation lens integrated into the m/z 3 Faraday cup collector. Following GC separation, the hydrogen bound in organic compounds must be quantitatively converted into H(2) gas prior to analysis in the IRMS. Quantitative conversion is achieved by high temperature conversion (TC) at temperatures >1400 degrees C. Measurements of D/H ratios of individual organic compounds in complicated natural mixtures can now be made to a precision of 2 per thousand (delta notation) or, better, with typical sample amounts of approximately 200 ng per compound. Initial applications have focused on compounds of interest to petroleum research (biomarkers and natural gas components), food and flavor control (vanillin and ethanol), and metabolic studies (fatty acids and steroids). Copyright 1999 John Wiley & Sons, Ltd. PMID:10407302

  15. Comparison of thermal ionization mass spectrometry and Multiple Collector Inductively Coupled Plasma Mass Spectrometry for cesium isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Isnard, H.; Granet, M.; Caussignac, C.; Ducarme, E.; Nonell, A.; Tran, B.; Chartier, F.

    2009-11-01

    In the nuclear domain, precise and accurate isotopic composition determination of elements in spent nuclear fuels is mandatory to validate neutron calculation codes and for nuclear waste disposal. The present study presents the results obtained on Cs isotope ratio by mass spectrometric measurements. Natural cesium is monoisotopic ( 133Cs) whereas cesium in spent fuels has 4 isotopes ( 133Cs, 134Cs, 135Cs, and 137Cs). As no standard reference material is available to evaluate the accuracy of Cs isotopic measurements, a comparison of cesium isotopic composition in spent nuclear fuels has been performed between Thermal Ionization Mass Spectrometry (TIMS) and a new method involving Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) measurements. For TIMS measurements, isotopic fractionation has been evaluated by studying the behavior of cesium isotope ratios ( 133Cs/ 137Cs and 135Cs/ 137Cs) during the analyses. For MC-ICPMS measurements, the mass bias effects have been corrected with an external mass bias correction using elements (Eu and Sb) close to cesium masses. The results obtained by the two techniques show good agreement: relative difference on 133Cs/ 137Cs and 135Cs/ 137Cs ratios for two nuclear samples, analyzed after chemical separation, ranges from 0.2% to 0.5% depending on the choice of reference value for mass bias correction by MC-ICPMS. Finally the quantification of the 135Cs/ 238U ratio by the isotope dilution technique is presented in the case of a MOx (mixed oxide) spent fuel sample. Evaluation of the global uncertainties shows that this ratio could be defined at an uncertainty of 0.5% ( k = 2). The intercomparison between two independent mass spectrometric techniques is fundamental for the evaluation of uncertainty when no isotopic standard is available.

  16. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  17. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry.

    PubMed

    Steinhauser, Matthew L; Lechene, Claude P

    2013-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  18. Forensic applications of isotope ratio mass spectrometry--a review.

    PubMed

    Benson, Sarah; Lennard, Chris; Maynard, Philip; Roux, Claude

    2006-02-10

    The key role of a forensic scientist is to assist in determining whether a crime has been committed, and if so, assist in the identification of the offender. Many people hold the belief that a particular item can be conclusively linked to a specific person, place or object. Unfortunately, this is often not achievable in forensic science. In performing their role, scientists develop and test hypotheses. The significance of those hypotheses that cannot be rejected upon completion of all available examinations/analyses is then evaluated. Although one can generally identify the substances present using available techniques, it is generally not possible to distinguish one source of the same substance from another. In such circumstances, although a particular hypothesis cannot be rejected, it cannot be conclusively proven, i.e. the samples could still have originated from different sources. This limitation of not being able to distinguish between sources currently extends to the analysis of other forensic samples including, but not limited to, ignitable liquids, paints, adhesives, textile fibres, plastics, and illicit drugs. Stable isotope ratio mass spectrometry (IRMS) is an additional technique that can be utilised to test a given hypothesis. This technique shows the potential to be able to individualise a range of materials of forensic interest. This paper provides a brief description of the technique, followed by a review of the various applications of IRMS in different scientific fields. The focus of this summary is on forensic applications of IRMS, in particular the analysis of explosives, ignitable liquids and illicit drugs. PMID:15919168

  19. Isotope Dilution Mass Spectrometry for the Quantification of Sulfane Sulfurs

    PubMed Central

    Liu, Chunrong; Zhang, Faya; Munske, Gerhard; Zhang, Hui

    2014-01-01

    Sulfane sulfurs are one type of important reactive sulfur species. These molecules have unique reactivity that can attach reversibly to other sulfur atoms and exhibit regulatory effects in diverse biological systems. Recent studies have suggested that sulfane sulfurs are involved in signal transduction processes regulated by hydrogen sulfide (H2S). Accurate and reliable measurements of sulfane sulfurs in biological samples are thus needed to reveal their production and mechanisms of actions. Herein we report a convenient and accurate method for the determination of sulfane sulfurs concentrations. The method employs a triphenylphosphine derivative (P2) to capture sulfane sulfurs as a stable phosphine sulphide product PS2. The concentration of PS2 was then determined by isotope dilution mass spectrometry, using a 13C3-labelled phosphine sulfide PS1 as the internal standard. The specificity and efficiency of the method were proved by model reactions. It was also applied in the measurement of sulfane sulfurs in mice tissues including brain, kidney, lung, liver, heart, spleen, and blood. PMID:25152234

  20. Computer Analysis of Isotope Clusters in Mass Spectrometry

    ERIC Educational Resources Information Center

    Bell, Harold M.

    1974-01-01

    Describes the application of a computer program designed to produce a formula determination simultaneously accounting for both elemental composition and probable isotopic species for a measured ion mass. (SLH)

  1. The use of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry to demonstrate progesterone treatment in bovines.

    PubMed

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; De Kimpe, Norbert; Matthijs, Bert; Le Bizec, Bruno

    2016-06-01

    Currently, no analytical method is available to demonstrate progesterone administration in biological samples collected in rearing animals, and therefore, tracking the abuse of this popular growth promoter is arduous. In this study, a method is presented to reveal progesterone (PG) treatment on the basis of carbon isotope measurement of 5β-pregnane-3α, 20α-diol (BAA-PD), a major PG metabolite excreted in bovine urine, by gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS). 5-Androstene-3β,17α-diol (AEdiol) is used as endogenous reference compound. Intermediate precisions (n=11) of 0.56‰ and 0.68‰ have been determined for AEdiol and BAA-PD, respectively. The analytical method was used for the very first time to successfully differentiate urine samples collected in treated and untreated animals. PMID:27157423

  2. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  3. Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry.

    PubMed

    Shouakar-Stash, Orfan; Drimmie, Robert J; Frape, Shaun K

    2005-01-01

    Chlorine stable isotope analyses of inorganic samples were conducted using continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with gas chromatography (GC). Inorganic chloride was precipitated in the form of silver chloride (AgCl) by using silver nitrate in a standard methodology. Chlorine stable isotope analysis was carried out on methyl chloride (CH3Cl) after converting AgCl into CH3Cl by reacting it with methyl iodide (CH3I). The reaction between AgCl and CH3I took place in 20 mL size vials. Addition of CH3I was performed in a glove bag under helium flow. An Agilent 6890 gas chromatograph equipped with a CTC Analytics CombiPAL autosampler and a DB-5MS 60 m column was used to separate CH3Cl from CH3I. This new technique uses samples as small as 0.2 mg of AgCl (1.4 micromol of Cl-). The chlorine stable isotope analysis using continuous flow technology showed excellent precision and accuracy. The internal precision using pure CH3Cl gas is better than +/-0.04 per thousand (+/-STDV). The external precision using seawater standard is better than +/-0.07 per thousand (+/-STDV) for n=12. Moreover, the sample analysis time is much shorter and many more samples can be analyzed in one day than by using the conventional off-line techniques. PMID:15593067

  4. Cholesterol efflux analyses using stable isotopes and mass spectrometry.

    PubMed

    Brown, Robert J; Shao, Fei; Baldán, Angel; Albert, Carolyn J; Ford, David A

    2013-02-01

    Cholesterol efflux from macrophages and the vascular wall is the initial step of the cardiovascular protective reverse cholesterol transport process. This study demonstrates a mass spectrometry based assay to measure the cellular and medium content of [d(7)]cholesterol and unlabeled cholesterol that can be used to measure cholesterol efflux from cell lines. Using a triple-quadrupole electrospray ionization-MS instrument in direct infusion mode, product ion scanning for m/z 83, neutral loss (NL) 375.5 scanning, and NL 368.5 scanning were used to detect cholesterol (as an acetylated derivative), [d(7)]cholesteryl ester (CE), and unlabeled CE, respectively. The same mass of [d(7)]cholesterol was substituted for [(3)H]cholesterol under standard efflux assay conditions. At the end of [d(7)]cholesterol loading, the intracellular mass of [d(7)]cholesterol was twofold greater than that of unlabeled cholesterol, and the intracellular [d(7)]CE profile was similar to that of unlabeled CE. Efflux of cholesterol to apolipoprotein A-I and high-density lipoproteins was similar comparing efflux of either [d(7)]cholesterol or [(3)H]cholesterol as measured by following efflux of the tracers only. This technique also can be used to assess the efflux of unlabeled cholesterol to acceptors in medium that are initially cholesterol-free (e.g., apolipoprotein A-I). Taken together, this mass spectrometry-based assay provides new molecular detail to assess cholesterol efflux. PMID:23072980

  5. Attogram measurement of rare isotopes by CW resonance ionization mass spectrometry

    SciTech Connect

    Bushaw, B.A.

    1992-05-01

    Three-color double-resonance ionization mass spectrometry, using two single-frequency cw dye lasers and a cw carbon dioxide laser, has been applied to the detection of attogram quantities of rare radionuclides. {sup 210}Pb has been measured in human hair and brain tissue samples to assess indoor radon exposure. Measurements on {sup 90}Sr have shown overall isotopic selectivity of greater than 10{sup 9} despite unfavorable isotope shifts relative to the major stable isotope, {sup 88}Sr.

  6. Cooling of radioactive isotopes for Schottky mass spectrometry

    SciTech Connect

    Steck, M.; Beckert, K.; Eickhoff, H.; Franzke, B.; Nolden, F.; Reich, H.; Schlitt, B.; Winkler, T.

    1999-01-15

    Nuclear masses of radioactive isotopes can be determined by measurement of their revolution frequency relative to the revolution frequency of reference ions with well-known masses. The resolution of neighboring frequency lines and the accuracy of the mass measurement is dependent on the achievable minimum longitudinal momentum spread of the ion beam. Electron cooling allows an increase of the phase space density by several orders of magnitude. For high intensity beams Coulomb scattering in the dense ion beam limits the beam quality. For low intensity beams a regime exists in which the diffusion due to intrabeam scattering is not dominating any more. The minimum momentum spread {delta}p/p=5x10{sup -7} which is observed by Schottky noise analysis is considerably higher than the value expected from the longitudinal electron temperature. The measured frequency spread results from fluctuations of the magnetic field in the storage ring magnets. Systematic mass measurements have started and can be presently used for ions with half-lives of some ten seconds. For shorter-lived nuclei a stochastic precooling system is in preparation.

  7. Mass spectrometry and natural variations of iron isotopes.

    PubMed

    Dauphas, Nicolas; Rouxel, Olivier

    2006-01-01

    Although the processes that govern iron isotope variations in nature are just beginning to be understood, multiple studies attest of the virtue of this system to solve important problems in geosciences and biology. In this article, we review recent advances in the geochemistry, cosmochemistry, and biochemistry of iron isotopes. In Section 2, we briefly address the question of the nucleosynthesis of Fe isotopes. In Section 3, we describe the different methods for purifying Fe and analyzing its isotopic composition. The methods of SIMS, RIMS, and TIMS are presented but more weight is given to measurements by MC-ICPMS. In Section 4, the isotope anomalies measured in extraterrestrial material are briefly discussed. In Section 5, we show how high temperature processes like evaporation, condensation, diffusion, reduction, and phase partitioning can affect Fe isotopic composition. In Section 6, the various low temperature processes causing Fe isotopic fractionation are presented. These involve aqueous and biologic systems. PMID:16463281

  8. Protein N- and C-Termini Identification Using Mass Spectrometry and Isotopic Labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new method for protein N- and C-terminal analysis using mass spectrometry is introduced. A novel stable isotopic labeling scheme has been developed to identify terminal peptides generated from an enzyme digestion for the determination of both N- and C-termini of the protein. This method works dire...

  9. DETERMINATION OF NIACIN IN FOOD MATERIALS BY ISOTOPE DILUTION MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of deuterium-labeled nicotinic acid makes stable isotope dilution mass spectrometry (SIDMS) coupled with liquid chromatography (LC) an attractive option for the determination of the water-soluble B-vitamin, niacin, in food samples. We present a method based on acid digestion, solid ...

  10. Isotope dilution mass spectrometry and the National Reference System.

    PubMed

    Bowers, G N; Fassett, J D; White, E

    1993-06-15

    The clinical laboratory community of the United States, which is well represented by the NRSCL/NCCLS, has endorsed the IDMS/DMs developed at NIST. These DMs provide the accuracy (true value) base for the U.S. National Reference System for a number of specific analytes in human serum. Fortunately, the U.S. government through (a) actions of NIST administrators and scientists, (b) financial support from NIH (NIGMS) and FDA, and (c) interagency agreements with CDC has accepted the responsibility for developing and maintaining IDMS/DMs for clinically important analytes as an essential part of this national measurement system infrastructure. Furthermore, it is important to note that several professional organizations, particularly, The American Association for Clinical Chemistry (AACC) and The College of American Pathologists (CAP), have interacted heavily with NIST in full support of these national standardization activities. CAP supports three full-time Research Associates at NIST so that target values on serum samples used in its Interlaboratory Comparison Survey Programs may be traced to DMs. This remarkable cooperation and teamwork between government agencies and private sector organizations, as well as numerous individual scientists and physicians, which promotes greater accuracy of patient results, depends heavily upon the continued timely availability of IDMS/DM measurements. In short, NIST's value assignments on human serum samples (e.g., SRMs and materials for CLIA '88 proficiency testing programs) by this critical IDMS/DM metrology provide the pragmatic base for assuring accurate test results in medicine. The resources required to support IDMS/DM technology at NIST over many decades are not trivial and from time to time require renewed R&D efforts to upgrade methodology and recapitalization in mass spectrometry instrumentation. PMID:8333621

  11. A new series of uranium isotope reference materials for investigating the linearity of secondary electron multipliers in isotope mass spectrometry

    NASA Astrophysics Data System (ADS)

    Richter, S.; Alonso, A.; Aregbe, Y.; Eykens, R.; Kehoe, F.; Kühn, He; Kivel, N.; Verbruggen, A.; Wellum, R.; Taylor, P. D. P.

    2009-04-01

    A new series of gravimetrically prepared uranium isotope reference materials, the so-called IRMM-074 series, with the n(235U)/n(238U) isotope ratio held constant at unity and the n(233U)/n(238U) isotope ratios varying from 1.0 to 10-6 has been prepared and certified. This series is suited for calibration of secondary electron multipliers used widely in isotope mass spectrometry, in particular for techniques such as thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS). The new IRMM-074 was prepared as a replacement for the already exhausted IRMM-072 predecessor series. Uranium materials with high isotopic enrichments of 233U, 235U and 238U were purified using identical methods involving separation on anion and cation column followed by a precipitation as peroxide. The oxides were calcined to convert them to U3O8 simultaneously, in an oven installed in a glove-box that provided a controlled low-humidity environment. The oxides of 235U and 238U were weighed and mixed with a mole ratio n(235U)/n(238U) = 1.0 and then dissolved. The 233U oxide was dissolved to form a separate solution with the same concentration and 6rom this primary solution three dilutions were made by weighing. A weighed amount of the n(235U)/n(238U) solution and weighed amounts of the 233U solutions were mixed in various proportions in order to achieve n(233U)/n(238U) isotope ratios varying from 1.0 to 10-6. The methods for the preparation, the mixing and the mixing calculations are described. The expanded uncertainties (coverage factor k = 2) of the certified isotope ratios for the IRMM-074 series are 0.015% for the n(235U)/n(238U) ratio and 0.025% for the n(233U)/n(238U) ratios, which constitutes an improvement compared to those of the predecessor IRMM-072 series. In addition, recent observations regarding the linearity response of secondary electron multipliers (SEMs) and suitable reference materials for investigating detector linearity are reviewed. Two measurement procedures for applying the IRMM-072 and IRMM-073 (diluted from the remaining fraction of IRMM-072) series as well as the new IRMM-074 series for assessing SEM linearity are suggested. The procedures are tailor-made for the specific instrumental characteristics of thermal ionization mass spectrometers (TIMS) and multiple-collector inductively coupled plasma mass spectrometers (MC-ICPMS) but can be adapted also for further types of isotope ratio mass spectrometers.

  12. Carbon isotope ratio measurements of glyphosate and AMPA by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Kujawinski, Dorothea M; Wolbert, J Benjamin; Zhang, Lijun; Jochmann, Maik A; Widory, David; Baran, Nicole; Schmidt, Torsten C

    2013-03-01

    The interest in compound-specific isotope analysis for product authenticity control and source differentiation in environmental sciences has grown rapidly during the last decade. However, the isotopic analysis of very polar analytes is a challenging task due to the lack of suitable chromatographic separation techniques which can be used coupled to isotope ratio mass spectrometry. In this work, we present the first method to measure carbon isotope compositions of the widely applied herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA) by liquid chromatography coupled to isotope ratio mass spectrometry. We demonstrate that this analysis can be carried out either in cation exchange or in reversed-phase separation modes. The reversed-phase separation yields a better performance in terms of resolution compared with the cation exchange method. The measurement of commercial glyphosate herbicide samples show its principal applicability and reveals a wide range of δ(13)C values between -24 and -34 ‰ for different manufacturers. The absolute minimum amounts required to perform a precise and accurate determination of carbon isotope compositions of glyphosate and AMPA were in the sub-microgram range. The method proposed is sensitive enough to further perform the experiments that are necessary to better understand the carbon isotope fractionation associated to the natural degradation of glyphosate into AMPA. Furthermore, it can be used for contaminant source allocation and product authenticity as well. PMID:23322349

  13. Illustrating the Concepts of Isotopes and Mass Spectrometry in Introductory Courses: A MALDI-TOF Mass Spectrometry Laboratory Experiment

    ERIC Educational Resources Information Center

    Dopke, Nancy Carter; Lovett, Timothy Neal

    2007-01-01

    Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory…

  14. Illustrating the Concepts of Isotopes and Mass Spectrometry in Introductory Courses: A MALDI-TOF Mass Spectrometry Laboratory Experiment

    ERIC Educational Resources Information Center

    Dopke, Nancy Carter; Lovett, Timothy Neal

    2007-01-01

    Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory

  15. In-Vivo Zinc Metabolism by Isotope Ratio Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this chapter is to highlight some of the methodological and technical issues surrounding the in vivo use of stable isotopes and to provide examples of how such studies have advanced our knowledge of human zinc metabolism. The advantages and disadvantages of the currently available in...

  16. Quantitative Analysis of Isotope Distributions In Proteomic Mass Spectrometry Using Least-Squares Fourier Transform Convolution

    PubMed Central

    Sperling, Edit; Bunner, Anne E.; Sykes, Michael T.; Williamson, James R.

    2008-01-01

    Quantitative proteomic mass spectrometry involves comparison of the amplitudes of peaks resulting from different isotope labeling patterns, including fractional atomic labeling and fractional residue labeling. We have developed a general and flexible analytical treatment of the complex isotope distributions that arise in these experiments, using Fourier transform convolution to calculate labeled isotope distributions and least-squares for quantitative comparison with experimental peaks. The degree of fractional atomic and fractional residue labeling can be determined from experimental peaks at the same time as the integrated intensity of all of the isotopomers in the isotope distribution. The approach is illustrated using data with fractional 15N-labeling and fractional 13C-isoleucine labeling. The least-squares Fourier transform convolution approach can be applied to many types of quantitive proteomic data, including data from stable isotope labeling by amino acids in cell culture and pulse labeling experiments. PMID:18522437

  17. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation plume, this study has developed a mass spectrometry characterization technique that may be useful for investigating chemical reactions during laser ablation.

  18. Performance and limits of liquid chromatography isotope ratio mass spectrometry system for halogenated compounds

    NASA Astrophysics Data System (ADS)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans

    2014-05-01

    Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time in the coil and increase in the concentration of radical but complete combustion of highly chlorinated or fluorinated compounds was not achieved. Due to these findings the limit for a LC-IRMS system for similar structure compounds can be predicted. 1. Elsner, M., et al., Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Analytical and Bioanalytical Chemistry, 2012. 403(9): p. 2471-2491. 2. Krummen, M., et al., A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2004. 18(19): p. 2260-2266.

  19. Position-specific carbon isotope analysis of trichloroacetic acid by gas chromatography/isotope ratio mass spectrometry.

    PubMed

    Breider, Florian; Hunkeler, Daniel

    2011-12-30

    Trichloroacetic acid (TCAA) is an important environmental contaminant present in soils, water and plants. A method for determining the carbon isotope signature of the trichloromethyl position in TCAA using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) was developed and tested with TCAA from different origins. Position-specific isotope analysis (PSIA) can provide direct information on the kinetic isotope effect for isotope substitution at a specific position in the molecule and/or help to distinguish different sources of a compound. The method is based on the degradation of TCAA into chloroform (CF) and CO₂ by thermal decarboxylation. Since thermal decarboxylation is associated with strong carbon isotope fractionation (ε = -34.6 ± 0.2‰) the reaction conditions were optimized to ensure full conversion. The combined isotope ratio of CF and CO₂ at the end of the reaction corresponded well to the isotope ratio of TCAA, confirming the reliability of the method. A method quantification limit (MQL) for TCAA of 18.6 µg/L was determined. Samples of TCAA produced by enzymatic and non-enzymatic chlorination of natural organic matter (NOM) and some industrially produced TCAA were used as exemplary sources. Significant different PSIA isotope ratios were observed between industrial TCAA and TCAA samples produced by chlorination of NOM. This highlights the potential of the method to study the origin and the fate of TCAA in the environment. PMID:22468322

  20. Analysis of 18O enrichment in biological fluids by continuous flow-isotope ratio mass spectrometry.

    PubMed

    McMillan, D C; Preston, T; Taggart, D P

    1989-08-01

    A novel method is described for the analysis of 18O in urine by continuous flow-isotope ratio mass spectrometry (CF-IRMS), after sample equilibration with CO2. The method is shown to be fast, precise and accurate and therefore facilitates studies of total body water and water turnover in the clinical field. The method uses existing CF-IRMS instrumentation with minor hardware modification which does not compromise routine analysis of 13C and 15N. This method emphasizes the versatility of CF-IRMS and thus its economy for the biomedical research group using stable isotope tracers. PMID:2804440

  1. Improving precision in resonance ionization mass spectrometry : influence of laser bandwidth in uranium isotope ratio measurements.

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Knight, K. B.; Pellin, M. J.; Hutcheon, I. D.; Prussin, S. G.

    2011-03-01

    The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios by resonance ionization mass spectrometry (RIMS) to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a three-color, three-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from 10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation.

  2. RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY

    SciTech Connect

    Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

    2010-06-23

    A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

  3. Determination of phthalate esters in Chinese spirits using isotope dilution gas chromatography with tandem mass spectrometry.

    PubMed

    Wang, Jing; Li, Xiaomin; Zhang, Qinghe; Xiong, Jinping; Li, Hongmei

    2015-05-01

    Phthalate esters are additives used in polyvinylchloride and are found as contaminants in many food products. An isotope dilution mass spectrometry technique has been developed for accurate analysis of 16 phthalate esters in Chinese spirits by adopting the 16 corresponding isotope-labeled phthalate esters. The ethanol in the spirit sample was first removed by heating with a water bath at 100°C with a stream of nitrogen, after which the residue was extracted with n-hexane twice. The phthalates collected were identified and quantified by gas chromatography with tandem mass spectrometry in multiple reaction monitoring mode. The spiking recoveries of 16 analytes ranged from 94.3 to 105.3% with relative standard deviation values of <6.5%. The detection limits for 16 analytes were <10.0 ng/g. The expanded relative uncertainties were from 3.0 to 14%. A survey was performed on Chinese spirits from the market. Six of the nine analyzed samples were contaminated by phthalates. Di-n-butyl phthalate and di-2-ethylhexyl phthalate showed higher detection frequency and concentrations. This isotope dilution gas chromatography with tandem mass spectrometry method is simple, rapid, accurate, and highly sensitive, which qualifies as a candidate reference method for the determination of phthalates in spirits. PMID:25755215

  4. Application of Uranium Isotope Dilution Mass Spectrometry in the preparation of New Certified Reference Materials

    NASA Astrophysics Data System (ADS)

    Hasözbek, A.; Mathew, K. J.; Orlowicz, G.; Srinivasan, B.; Narayanan, U.

    2012-04-01

    Proven measurement techniques play a critical role in the preparation of Certified Reference Materials (CRMs) - those requiring high accuracy and precision in the measurement results. Isotope Dilution Mass Spectrometry (IDMS) is one such measurement method commonly used in the quantitative analysis of uranium in nuclear safeguards and isotope geology applications. In this project, we evaluated the possibility of using some of the uranium isotopic and assay CRMs made earlier by the New Brunswick laboratory as IDMS spikes to define the uranium mass fraction in future preparations of CRMs. Uranium solutions prepared from CRM 112-A (a highly pure uranium metal assay standard) and CRM 115 (a highly pure uranium oxide isotopic and assay standard) were used as spikes in the determination of uranium. Two different thermal ionization mass spectrometer instruments (MAT 261 and TRITON) were used for the isotopic measurements. Standard IDMS equation was used for data reduction to yield results for uranium mass fraction along with uncertainties, the latter calculated according to GUM. The results show that uranium mass fraction measurements can be made with the required accuracy and precision for defining the uranium concentration in new CRMs as well as in routine samples analyses.

  5. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. PMID:21111176

  6. Determination of perchlorate in infant formula by isotope dilution ion chromatography/tandem mass spectrometry

    PubMed Central

    Wang, Z.; Lau, B.P.-Y.; Tague, B.; Sparling, M.; Forsyth, D.

    2011-01-01

    A sensitive and selective isotope dilution ion chromatography/tandem mass spectrometry (ID IC-MS/MS) method was developed and validated for the determination of perchlorate in infant formula. The perchlorate was extracted from infant formula by using 20 ml of methanol and 5 ml of 1% acetic acid. All samples were spiked with 18O4 isotope-labelled perchlorate internal standard prior to extraction. After purification on a graphitised carbon solid-phase extraction column, the extracts were injected into an ion chromatography system equipped with an Ionpac AS20 column for separation of perchlorate from other anions. The presence of perchlorate in samples was quantified by isotope dilution mass spectrometry. Analysis of both perchlorate and its isotope-labelled internal standard was carried out on a Waters Quattro Ultima triple quadrupole mass spectrometer operating in a multiple reaction monitoring (MRM) negative ionisation mode. The method was validated for linearity and range, accuracy, precision, sensitivity, and matrix effects. The limit of quantification (LOQ) was 0.4 μg 1−1 for liquid infant formula and 0.95 μg kg−1 for powdered infant formula. The recovery ranged from 94% to 110% with an average of 98%. This method was used to analyse 39 infant formula, and perchlorate concentrations ranging from

  7. High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry.

    PubMed

    Paul, Maxence; Bridgestock, Luke; Rehkmper, Mark; van DeFlierdt, Tina; Weiss, Dominik

    2015-03-10

    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 2821 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about 1 to 10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (124 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated with (207)Pb/(206)Pb, underlining the significant improvement achieved in the measurement of the minor (204)Pb isotope. PMID:25732313

  8. Ultratrace analysis of calcium with high isotopic selectivity by diode laser resonance ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wendt, Karen M.; Blaum, K.; Bushaw, Bruce A.; Mueller, P.; Noertershaeuser, W.; Schmitt, A.; Trautmann, N.; Wiche, B.

    1998-07-01

    A refined diode laser based resonance ionization mass spectrometer for highly selective ultratrace analysis is presented, which combines coherent narrow-band multistep resonance excitation and ionization with a compact quadruple mass spectrometer. The widespread analytical potential and applicability of this system is demonstrated in the determination of calcium trace and ultratrace isotopes for cosmochemical studies, medical investigations and radiodating. For a detailed theoretical understanding of the coherent high resolution multistep excitation process a description in the density matrix formalism was worked out. For calcium optical isotopic selectivities of more than 1010 and efficiencies of up to 5 percent are predicted, which compare well to the analytical requirements for 41Ca-determination, which reach a maximum isotopic selectivity of more than 1015. Experimentally different ionization schemes, including single-, double- and triple- resonance excitation of calcium, have been investigated. The first-step excitation at 422,7 nm requires frequency doubling of a diode laser, while second and third steps are directly excited with extended cavity diode lasers. Analytical measurements cover meteorite and blood samples and demonstrate the feasibility of the predicted specifications. Continuing work will focus towards the application of the full triple-resonance scheme for ultra low-level measurements of 41Ca and shall establish resonance ionization mass spectrometry as a competitive technology to accelerator mass spectrometry.

  9. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  10. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    PubMed Central

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from −19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  11. Determination of complex isotopomer patterns in isotopically labeled compounds by mass spectrometry.

    PubMed

    Jennings, Mark E; Matthews, Dwight E

    2005-10-01

    A classic problem in analytical chemistry has been determination of individual components in a mixture without availability of the pure individual components. Measurement of the distribution of isotopomers in a labeled compound or mixture of labeled compounds is an example of this problem that is commonly encountered when stable isotopically labeled metabolites are used to determine in vivo kinetics and metabolism. We present a method that uses the measured mass spectral data of the unlabeled material to represent any and all combinations of isotopomer variations of that material and to determine abundances of these isotopomers. Although examples of the method are presented for gas chromatography/mass spectrometry, the method is applicable to any type of mass spectrometry data. The method also accounts for errors induced by mass spectrometer ionization and resolution effects. To demonstrate this method, we determined the isotopomer distributions of samples of 13C-labeled leucine and glucose for both highly enriched isotopomers and labeled isotopomers present in low abundance against a natural isotopic abundance background. The method accurately and precisely determined isotopomer identity and abundance in the labeled materials without adding noise or error that was not inherent in the original mass spectral data. In examples shown here, isotopomer uncertainties were calculated with relative standard errors of <1% from good quality mass spectral data. PMID:16194110

  12. Applications of Structural Mass Spectrometry to Metabolomics: Clarifying Bond Specific Spectral Signatures with Isotope Edited Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorlova, Olga; Wolke, Conrad T.; Fournier, Joseph; Colvin, Sean; Johnson, Mark; Miller, Scott

    2015-06-01

    Comprehensive FTIR, MS/MS and NMR of pharmaceuticals are generally readily available but characterization of their metabolites has been an obstacle. Atorvastatin is a statin drug responsible for the maintenance of cholesterol in the body. Diovan is an angiostensin receptor antagonist used to treat high blood pressure and congestive heart failure. The field of metabolomics, however, is struggling to obtain the identity of their structures. We implement mass spectrometry with cryogenic ion spectroscopy to study gaseous ions of the desired metabolites which, in combination, not only identify the mass of the metabolite but also elucidate their structures through isotope-specific infrared spectroscopy.

  13. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  14. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry

    PubMed Central

    Lechene, Claude; Hillion, Francois; McMahon, Greg; Benson, Douglas; Kleinfeld, Alan M; Kampf, J Patrick; Distel, Daniel; Luyten, Yvette; Bonventre, Joseph; Hentschel, Dirk; Park, Kwon Moo; Ito, Susumu; Schwartz, Martin; Benichou, Gilles; Slodzian, Georges

    2006-01-01

    Background Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. Results The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as 12C15N- and 13C14N-, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of 14C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using 13C-oleic acid; to examine nitrogen fixation in bacteria using 15N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using 15N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using 15N-uridine and 81Br of bromodeoxyuridine or 14C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes 12C, 16O, 14N and 31P; and to track a few 15N-labeled donor spleen cells in the lymph nodes of the host mouse. Conclusion MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments. PMID:17010211

  15. Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur

    NASA Astrophysics Data System (ADS)

    Wieser, Michael Eugene

    1998-09-01

    Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron isotopes can be used to improve cultivation of coffee particularly in regions where 'organically grown' coffee had markedly different δ11B values than beans grown with boron- containing fertilizers in neighbouring regions. A regional dependence on the δ11B values of the coffee allow the sources of commercial coffee blends to be identified.

  16. Quantifying proteomes and their post-translational modifications by stable isotope label-based mass spectrometry

    PubMed Central

    Merrill, Anna E.; Coon, Joshua J.

    2013-01-01

    Stable isotope labeling coupled with mass spectrometry has revolutionized the scope and impact of protein expression studies. Label incorporation can occur metabolically or chemically, and each method bears specific strengths and weaknesses. Quantitative proteomics confidently identifies specific interactions between proteins and other biological species, such as nucleic acids and metabolites. Extending label-based methods to phosphorylation-modified forms of proteins enables the construction of signaling networks and their temporal responses to stimuli. The integration of multiple data types offers systems-level insight on coordinated biological processes. Finally, the development of methods applicable to tissue quantification suggests the emerging role of label-based, quantitative mass spectrometry in translational science. PMID:23835517

  17. Quantitation of vitamin B6 in biological samples by isotope dilution mass spectrometry

    SciTech Connect

    Hachey, D.L.; Coburn, S.P.; Brown, L.T.; Erbelding, W.F.; DeMark, B.; Klein, P.D.

    1985-11-15

    Methods have been developed for the simultaneous quantitative analysis of vitamin B6 forms in biological samples by isotope dilution mass spectrometry using deuterated forms of pyridoxine, pyridoxal, pyridoxamine, and pyridoxic acid. The biological fluid or tissue sample was homogenized and then treated with a cocktail containing appropriate amounts of each deuterated vitamer, as well as the deuterated, phosphorylated vitamer forms. The individual vitamers were isolated from the homogenate by a complex high-performance liquid chromatographic procedure that provided separate fractions for each of the six vitamers found in biological samples. Aldehydic B6 vitamers were reduced to the alcohol form prior to acetylation and analysis by gas chromatography/mass spectrometry (GC/MS). The three resulting vitamers were analyzed by electron ionization GC/MS using a silicone capillary column. The methods have been applied to analysis of vitamin B6 in liver, milk, urine, and feces at levels as low as 0.02 nmol/ml.

  18. Improving boron isotope ratio measurement precision with quadrupole inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Ammar, Assad; Reitznerová, Eva; Barnes, Ramon M.

    2000-12-01

    A method was developed to improve the precision of inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) for the determination of boron isotope ratios ( 11B/ 10B) in various environmental materials including seawater. This approach is based on the common analyte internal standardization (CAIS) chemometric algorithm. The sample solution obtained after digestion is spiked with lithium, and both 7Li/ 6Li and 11B/ 10B values are measured using long-counting periods (20 min). The CAIS algorithm corrects the measured 11B/ 10B values for (a) statistical fluctuations resulting from short-term noise; (b) drift in 11B-to- 10B ratio as a result of long-term deviation in instrumental parameters likely to occur during long counting times; (c) change in 11B-to- 10B ratio caused by variation in matrix elements concentrations; and (d) drift in mass bias correction factor. Comparing boron isotopic ratios in seawater measured by conventional and the new isotope ratio methods validates the procedure. A synthetic isotopic mixture of boron SRM 951 and enriched 10B SRM 952 also was examined. The CAIS method provided a measured boron isotopic ratio precision of 0.05% R.S.D. while eliminating 5.1% matrix concentration error and 0.25% instrumental drift error.

  19. The application of isotope ratio mass spectrometry for discrimination and comparison of adhesive tapes.

    PubMed

    Horacek, Micha; Min, Ji-Sook; Heo, Sangcheol; Park, Jongseo; Papesch, Wolfgang

    2008-06-01

    Forensic scientists are frequently requested to differentiate between, or compare, adhesive tapes from a suspect or a crime scene. The most common polymers used to back packaging tape are polypropylene and polyvinyl chloride. Much of the oriented polypropylene (OPP) needed to produce packaging tapes, regardless of the tape brand, is supplied by just a few polymer manufacturers. Consequently, the composition of the backing material varies little. Therefore, the discriminating power of classical methods (physical fit, tape dimensions, colour, morphology, FTIR, PyGC/MS, etc.) is limited. Analysis of stable isotopes using isotope ratio mass spectrometry (IRMS) has been applied in the broad area of forensics and it has been reported that isotope analysis is a valuable tool for the identification of adhesive tapes. We have tested the usefulness of this method by distinguishing different South Korean adhesive tapes produced by just a few manufacturers in the small South Korean market. Korean adhesive tapes were collected and analysed for their isotope signatures. The glue of the tapes was separated from the backing material and these sub-samples were analysed for their H- and C-isotope composition. The result shows the possibility for discriminating most tape samples, even from the same brand. Variations within single rolls have also been investigated, where no variations in H- and C-isotope composition significantly exceeding the standard deviation were found. PMID:18438979

  20. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  1. Isolation and derivatization of plasma taurine for stable isotope analysis by gas chromatography-mass spectrometry

    SciTech Connect

    Irving, C.S.; Klein, P.D.

    1980-09-01

    A method for the isolation and derivatization of plasma taurine is described that allows stable isotope determinations of taurine to be made by gas chromatography-mass spectrometry. The isolation procedure can be applied to 0.1 ml of plasma; the recovery of plasma taurine was 70 to 80%. For gc separation, taurine was converted to its dimethylaminomethylene methyl ester derivative which could not be detected by hydrogen flame ionization, but could be monitored readily by NH/sub 3/ chemical ionization mass spectrometry. The derivatization reaction occurred partially on-column and required optimization of injection conditions. Using stable isotope ratiometry multiple ion detection, (M + 2 + H)/sup +//(M + H)/sup +/ ion ratio of natural abundance taurine was determined with a standard deviation of less than +-0.07% of the ratio. The (1,2-/sup 13/C)taurine/taurine mole ratios of standard mixtures could be accurately determined to 0.001. This stable isotope gc-ms method is suitable for studying the plasma kinetics of (1,2-/sup 13/C)taurine in infants who are at risk with respect to taurine depletion.

  2. Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry

    USGS Publications Warehouse

    Fantle, M.S.; Bullen, T.D.

    2009-01-01

    The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a specific isotope system, it should be noted that the same methods can be used to evaluate any isotope system of interest. ?? 2008 Elsevier B.V.

  3. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François

    2016-06-01

    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the O isotopic composition of ocean water at that period in time.

  4. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate and precise method of measuring drug compounds in biological matrices.

  5. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.

  6. Comparison of gas chromatography-mass spectrometry and gas chromatography-combustion-isotope ratio mass spectrometry analysis for in vivo estimates of metabolic fluxes.

    PubMed

    Croyal, Mikaël; Bourgeois, Raphaëlle; Ouguerram, Khadija; Billon-Crossouard, Stéphanie; Aguesse, Audrey; Nguyen, Patrick; Krempf, Michel; Ferchaud-Roucher, Véronique; Nobécourt, Estelle

    2016-05-01

    Gas chromatography-mass spectrometry (GC-MS) was compared with gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for measurements of cholesterol (13)C enrichment after infusion of labeled precursor ([(13)C1,2]acetate). Paired results were significantly correlated, although GC-MS was less accurate than GC-C-IRMS for higher enrichments. Nevertheless, only GC-MS was able to provide information on isotopologue distribution, bringing new insights to lipid metabolism. Therefore, we assessed the isotopologue distribution of cholesterol in humans and dogs known to present contrasted cholesterol metabolic pathways. The labeled tracer incorporation was different in both species, highlighting the subsidiarity of GC-MS and GC-C-IRMS to analyze in vivo stable isotope studies. PMID:26898306

  7. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    SciTech Connect

    Marinelli, R; Hamilton, T; Brown, T; Marchetti, A; Williams, R; Tumey, S

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multi Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.

  8. Rapid determination of uranium isotopes in urine by inductively coupled plasma-mass spectrometry.

    PubMed

    Shi, Y; Dai, X; Collins, R; Kramer-Tremblay, S

    2011-08-01

    Following a radiological or nuclear emergency involving uranium exposure, rapid analytical methods are needed to analyze the concentration of uranium isotopes in human urine samples for early dose assessment. The inductively coupled plasma mass spectrometry (ICP-MS) technique, with its high sample throughput and high sensitivity, has advantages over alpha spectrometry for uranium urinalysis after minimum sample preparation. In this work, a rapid sample preparation method using an anion exchange chromatographic column was developed to separate uranium from the urine matrix. A high-resolution sector field ICP-MS instrument, coupled with a high sensitivity desolvation sample introduction inlet, was used to determine uranium isotopes in the samples. The method can analyze up to 24 urine samples in two hours with the limits of detection of 0.0014, 0.10, and 2.0 pg mL(-1) for (234)U, (235)U, and (238)U, respectively, which meet the requirement for isotopic analysis of uranium in a radiation emergency. PMID:21709502

  9. Using Theoretical Protein Isotopic Distributions to Parse Small-Mass-Difference Post-Translational Modifications via Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rhoads, Timothy W.; Williams, Jared R.; Lopez, Nathan I.; Morré, Jeffrey T.; Bradford, C. Samuel; Beckman, Joseph S.

    2013-01-01

    Small-mass-difference modifications to proteins are obscured in mass spectrometry by the natural abundance of stable isotopes such as 13C that broaden the isotopic distribution of an intact protein. Using a ZipTip (Millipore, Billerica, MA, USA) to remove salt from proteins in preparation for high-resolution mass spectrometry, the theoretical isotopic distribution intensities calculated from the protein's empirical formula could be fit to experimentally acquired data and used to differentiate between multiple low-mass modifications to proteins. We could readily distinguish copper from zinc bound to a single-metal superoxide dismutase (SOD1) species; copper and zinc only differ by an average mass of 1.8 Da and have overlapping stable isotope patterns. In addition, proteins could be directly modified while bound to the ZipTip. For example, washing 11 mM S-methyl methanethiosulfonate over the ZipTip allowed the number of free cysteines on proteins to be detected as S-methyl adducts. Alternatively, washing with the sulfhydryl oxidant diamide could quickly reestablish disulfide bridges. Using these methods, we could resolve the relative contributions of copper and zinc binding, as well as disulfide reduction to intact SOD1 protein present from <100 μg of the lumbar spinal cord of a transgenic, SOD1 overexpressing mouse. Although techniques like ICP-MS can measure total metal in solution, this is the first method able to assess the metal-binding and sulfhydryl reduction of SOD1 at the individual subunit level and is applicable to many other proteins.

  10. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  11. Temperature-programmed high-performance liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Godin, Jean-Philippe; Hopfgartner, Gérard; Fay, Laurent

    2008-09-15

    The utility of liquid chromatography coupled to the isotope ratio mass spectrometry technique (LC-IRMS) has already been established through a variety of successful applications. However, the analytical constraint related to the use of aqueous mobile phases limits the LC separation mechanism. We report here a new strategy for high-precision (13)C isotopic analyses based on temperature-programmed LC-IRMS using aqueous mobile phases. Under these conditions, the isotopic precision and accuracy were studied. On one hand, experiments were carried out with phenolic acids using isothermal LC conditions at high temperature (170 degrees C); on the other hand, several experiments were performed by ramping the temperature, as conventionally used in a gas chromatography-based method with hydrosoluble fatty acids and pulses of CO 2 reference gas. In isothermal conditions at 170 degrees C, despite the increase of the CO 2 background, p-coumaric acid and its glucuronide conjugate gave reliable isotopic ratios compared to flow injection analysis-isotopic ratio mass spectrometry (FIA-IRMS) analyses (isotopic precision and accuracy are lower than 0.3 per thousand). On the opposite, for its sulfate conjugate, the isotopic accuracy is affected by its coelution with p-coumaric acid. Not surprisingly, this study also demonstrates that at high temperature (170 degrees C), a compound eluting with long residence time (i.e., ferulic acid) is degraded, affecting thus the delta (13)C (drift of 3 per thousand) and the peak area (compared to FIA-IRMS analysis at room temperature). Quantitation is also reported in isothermal conditions for p-coumaric acid in the range of 10-400 ng/mL and with benzoic acid as an internal standard. For temperature gradient LC-IRMS, in the area of the LC gradient (set up at 20 degrees C/min), the drift of the background observed produces a nonlinearity of SD (delta (13)C) approximately 0.01 per thousand/mV. To circumvent this drift, which impacts severely the precision and accuracy, an alternative approach, i.e., eluting the compound on the plateau of temperature studied was reported here. Other experiments with temperature-programmed LC-IRMS experiments are also reported with the presence of methanol in the injected solution to mimic residual solvent originating from the sample preparation or to slightly increase the solubility of the targeted compound for high-precision measurement. PMID:18690698

  12. Isolation of Pu-isotopes from environmental samples using ion chromatography for accelerator mass spectrometry and alpha spectrometry.

    PubMed

    Chamizo, E; Jiménez-Ramos, M C; Wacker, L; Vioque, I; Calleja, A; García-León, M; García-Tenorio, R

    2008-01-14

    A radiochemical method for the isolation of plutonium-isotopes from environmental samples, based on the use of specific extraction chromatography resins for actinides (TEVA), Eichrom Industries, Inc.), has been set up in our laboratory and optimised for their posterior determination by alpha spectrometry (AS) or accelerator mass spectrometry (AMS). The proposed radiochemical method has replaced in our lab a well-established one based on the use of a relatively un-specific anion-exchange resin (AG) 1X8, Bio-rad Laboratories, Inc.), because it is clearly less time consuming, reduces the amounts and molarities of acid wastes produced, and reproducibly gives high radiochemical yields. In order to check the reliability of the proposed radiochemical method for the determination of plutonium-isotopes in different environmental matrixes, twin aliquots of a set of samples were prepared with TEVA and with AG 1X8 resins and measured by AS. Some samples prepared with TEVA resins were measured as well by AMS. As it is shown in the text, there is a comfortable agreement between AS and AMS, which adequately validates the method. PMID:18082656

  13. Direct analysis of carbon isotope variability in albumins by liquid flow-injection isotope ratio mass spectrometry.

    PubMed

    Caimi, R J; Brenna, J T

    1996-06-01

    We demonstrate the high precision C isotopic analysis of a series of purified albumins by liquid chromatography-combustion isotope ratio mass spectrometry (IRMS) by using direct aqueous liquid injection. Albumins from 18 species and albumens from chicken and turkey egg were obtained from a commercial source and shown to be of > 98% purity by capillary zone electrophoresis and high-performance liquid chromatography. One microliter of an aqueous protein solution with a total of < 40-pmol protein (2. 5 µg), which contained about 150-nmol C, was injected directly into a flowing stream of high-performance liquid chromatography grade water. The solution passed through a pneumatic nebulizer, was sprayed onto a moving wire, passed through a drying oven, and was combusted in a furnace. After the water of combustion was removed, the resulting CO2 gas was directed to a high precision IRMS instrument operated in continuous flow mode. The average precision across the 20 samples analyzed was SD(δ (13)C)=0.45%., and the average accuracy was δ(13)C < 0.4%. compared to aliquots analyzed by conventional preparation by using combustion tubes and dual inlet analysis. The observed isotope ratio range was about -22.5%. < δ (13)CPDB < -16%. as expected for modern materials from a natural source. These results demonstrate rapid, high precision, and accurate C isotopic analysis of untreated macromolecules in an aqueous stream by liquid source IRMS. PMID:24203433

  14. Calibration and Data Processing in Gas Chromatography Combustion Isotope Ratio Mass Spectrometry

    PubMed Central

    Zhang, Ying; Tobias, Herbert J.; Sacks, Gavin L.; Brenna, J. Thomas

    2013-01-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis (13C/12C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ13C = δ13CM – δ13CE difference measurements required for establishing adverse analytical findings for metabolites relative to endogenous reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  15. Stable Isotope Labeling Strategy for Curcumin Metabolite Study in Human Liver Microsomes by Liquid Chromatography-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Chen, Xiaowu; Yang, Xiaomei; Wu, Qin; Jin, Feng; Wen, Hongliang; Jiang, Yuyang; Liu, Hongxia

    2015-04-01

    The identification of drug metabolites is very important in drug development. Nowadays, the most widely used methods are isotopes and mass spectrometry. However, the commercial isotopic labeled reagents are usually very expensive, and the rapid and convenient identification of metabolites is still difficult. In this paper, an 18O isotope labeling strategy was developed and the isotopes were used as a tool to identify drug metabolites using mass spectrometry. Curcumin was selected as a model drug to evaluate the established method, and the 18O labeled curcumin was successfully synthesized. The non-labeled and 18O labeled curcumin were simultaneously metabolized in human liver microsomes (HLMs) and analyzed by liquid chromatography/mass spectrometry (LC-MS). The two groups of chromatograms obtained from metabolic reaction mixture with and without cofactors were compared and analyzed using Metabolynx software (Waters Corp., Milford, MA, USA). The mass spectra of the newly appearing chromatographic peaks in the experimental sample were further analyzed to find the metabolite candidates. Their chemical structures were confirmed by tandem mass spectrometry. Three metabolites, including two reduction products and a glucuronide conjugate, were successfully detected under their specific HLMs metabolic conditions, which were in accordance with the literature reported results. The results demonstrated that the developed isotope labeling method, together with post-acquisition data processing using Metabolynx software, could be used for fast identification of new drug metabolites.

  16. Isotope dilution mass spectrometry for quantitative elemental analysis of powdered samples by radiofrequency pulsed glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Fernandez, Beatriz; Malherbe, Julien; Claverie, Fanny; Molloy, John L; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-10-15

    In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios. As a result, a method has been developed for the direct and simultaneous multielement determination of trace elements in powdered geological samples by RF-PGD-ToFMS in combination with isotope dilution mass spectrometry (IDMS) as an absolute measurement method directly traceable to the International System of Units. Optimized operating conditions were 70 W of applied radiofrequency power, 250 Pa of pressure, 2 ms of pulse width and 4 ms of pulse period, being argon the plasma gas used. To homogeneously distribute the added isotopically-enriched standards, lithium borate fusion of powdered solid samples was used as sample preparation approach. In this way, Cu, Zn, Ba and Pb were successfully determined by RF-PGD-ToF(IDMS) in two NIST Standard Reference Materials (SRM 2586 and SRM 2780) representing two different matrices of geological interest (soil and rock samples). Cu, Zn, Ba and Pb concentrations determined by RF-PGD-ToF(IDMS) were well in agreement with the certified values at 95% confidence interval and precisions below 12% relative standard deviation were observed for three independent analyses. Elemental concentrations investigated were in the range of 81-5770 mg/kg, demonstrating the potential of RF-PGD-ToF(IDMS) for a sensitive, accurate and robust analysis of powdered samples. PMID:24054645

  17. Light Isotopes and Trace Organics Analysis of Mars Samples with Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Niemann, Hasso (Technical Monitor)

    2001-01-01

    Precision measurement of light isotopes in Mars surface minerals and comparison of this isotopic composition with atmospheric gas and other, well-mixed reservoirs such as surface dust are necessary to understand the history of atmospheric evolution from a possibly warmer and wetter Martian surface to the present state. Atmospheric sources and sinks that set these ratios are volcanism, solar wind sputtering, photochemical processes, and weathering. Measurement of a range of trace organic species with a particular focus on species such as amino acids that are the building blocks of terrestrial life are likewise important to address the questions of prebiotic and present or past biological activity on Mars. The workshop topics "isotopic mineralogy" and "biology and pre-biotic chemistry" will be addressed from the point of view of the capabilities and limitations of insitu mass spectrometry (MS) techniques such as thermally evolved gas analysis (TEGA) and gas chromatography (GC) surface experiments using MS, in both cases, as a final chemical and isotopic composition detector. Insitu experiments using straightforward adaptations of existing space proven hardware can provide a substantial improvement in the precision and accuracy of our present knowledge of isotopic composition both in molecular and atomic species in the atmosphere and those chemically bound in rocks and soils. Likewise, detection of trace organic species with greatly improved sensitivity from the Viking GCMS experiment is possible using gas enrichment techniques. The limits to precision and accuracy of presently feasible insitu techniques compared to laboratory analysis of returned samples will be explored. The insitu techniques are sufficiently powerful that they can provide a high fidelity method of screening samples obtained from a diverse set of surface locations such as the subsurface or the interior of rocks for selection of those that are the most interesting for return to Earth.

  18. Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities: Annual Report Year 2

    SciTech Connect

    Biegalski, S; Buchholz, B

    2009-08-26

    The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner. Significant progress has been made with this project within the past year: (1) Isotope production from commercial nuclear fuel cycles and nuclear weapons fuel cycles have been modeled with the ORIGEN and MCNPX codes. (2) MCNPX has been utilized to calculate isotopic inventories produced in a short burst fast bare sphere reactor (to approximate the signature of a nuclear weapon). (3) Isotopic ratios have been identified that are good for distinguishing between commercial and military fuel cycles as well as between nuclear weapons and commercial nuclear fuel cycles. (4) Mass spectrometry systems have been assessed for analysis of the fission products of interest. (5) A short-list of forensic ratios have been identified that are well suited for use in portable mass spectrometry systems.

  19. A Stable-Isotope Mass Spectrometry-Based Metabolic Footprinting Approach to Analyze Exudates from Phytoplankton

    PubMed Central

    Weber, Ralf J. M.; Selander, Erik; Sommer, Ulf; Viant, Mark R.

    2013-01-01

    Phytoplankton exudates play an important role in pelagic ecology and biogeochemical cycles of elements. Exuded compounds fuel the microbial food web and often encompass bioactive secondary metabolites like sex pheromones, allelochemicals, antibiotics, or feeding attractants that mediate biological interactions. Despite this importance, little is known about the bioactive compounds present in phytoplankton exudates. We report a stable-isotope metabolic footprinting method to characterise exudates from aquatic autotrophs. Exudates from 13C-enriched alga were concentrated by solid phase extraction and analysed by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. We used the harmful algal bloom forming dinoflagellate Alexandrium tamarense to prove the method. An algorithm was developed to automatically pinpoint just those metabolites with highly 13C-enriched isotope signatures, allowing us to discover algal exudates from the complex seawater background. The stable-isotope pattern (SIP) of the detected metabolites then allowed for more accurate assignment to an empirical formula, a critical first step in their identification. This automated workflow provides an effective way to explore the chemical nature of the solutes exuded from phytoplankton cells and will facilitate the discovery of novel dissolved bioactive compounds. PMID:24172212

  20. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative fuel or fuel additive. Results from this effort show that ethanol's unique isotopic signature can be incorporated into air chemistry models for fingerprinting and source apportionment purposes and can be used as a stable isotopic tracer for biofuel inputs to the atmosphere on local to regional scales.

  1. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity up to full saturation. References Lécuyer, C. et al. (2009). Chem. Geol., 264, 122-126. [doi:10.1016/j.chemgeo.2009.02.017] Martineau, F. et al. (2012). Chem. Geol., 291, 236-240. [doi:10.1016/j.chemgeo.2011.10.017] Stadler, S. et al. (2012). Chem. Geol., 294-295, 226-242. [doi:10.1016/j.chemgeo.2011.12.006

  2. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry

    SciTech Connect

    Fassett, J.D.; Murphy, T.J. )

    1990-02-15

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g.

  3. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  4. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry

    SciTech Connect

    Esteban, N.V.; Loughlin, T.; Yergey, A.L.; Zawadzki, J.K.; Booth, J.D.; Winterer, J.C.; Loriaux, D.L. )

    1991-01-01

    Growth retardation as well as the development of Cushingoid features in adrenally insufficient patients treated with the currently accepted replacement dose of cortisol (33-41 mumol/day.m2; 12-15 mg/m2.day) prompted us to reevaluate the cortisol production rate (FPR) in normal subjects and patients with Cushing's syndrome, using a recently developed thermospray liquid chromatography-mass spectrometry method. The stable isotope (9,12,12-2H3)cortisol was infused continuously for 31 h at about 5% of the anticipated FPR. Blood samples were obtained at 20-min intervals for 24 h, spun, and pooled in 4-h groups. Tracer dilution in plasma was determined by liquid chromatography/mass spectrometry. The method was validated with controlled infusions in 6 patients with adrenal insufficiency. Results from 12 normal volunteers revealed a FPR of 27.3 +/- 7.5 mumol/day (9.9 +/- 2.7 mg/day) or 15.7 mumol/day.m2; 5.7 mg/m2. day. A previously unreported circadian variation in FPR was observed. Patients with Cushing's syndrome demonstrated unequivocal elevation of FPR and cortisol concentration correlated during each sample period in normal volunteers, indicating that cortisol secretion, rather than metabolism, is mainly responsible for changes in plasma cortisol. Our data suggest that the FPR in normal subjects may be lower than previously believed.

  5. Determination of dithiocarbamate fungicide residues by liquid chromatography/mass spectrometry and stable isotope dilution assay.

    PubMed

    Crnogorac, Goranka; Schwack, Wolfgang

    2007-01-01

    A rapid and very sensitive high-performance liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) method for the simultaneous determination of dithiocarbamate (DTC) fungicide residues in fruits and vegetables was developed. The surface extraction of samples used an alkaline buffer consisting of sodium hydrogen carbonate and DL-penicillamine. The three DTC subclasses, i.e. dimethyldithiocarbamates (DMDs), ethylenebis(dithiocarbamates) (EBDs), and propylenebis(dithiocarbamates) (PBDs), were separated on a Sequant ZIC-pHILIC column using an acetonitrile/10 mM ammonia gradient. Because of the instability of DTC residues extracted from plant samples, a stable isotope dilution assay was applied. For each DTC subclass, the limits of detection and quantification were approximately 0.03 mg kg(-1) and 0.05 mg kg(-1), respectively. Recoveries from grapes, cucumbers, tomatoes, and rucola, spiked in the range of 0.01-0.9 mg kg(-1), averaged between 90 and 100%. PMID:18000839

  6. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    PubMed

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology industries as well as other life science areas. PMID:10097404

  7. Quantification of ferritin bound iron in human serum using species-specific isotope dilution mass spectrometry.

    PubMed

    Ren, Yao; Walczyk, Thomas

    2014-09-01

    Ferritin is a hollow sphere protein composed of 24 subunits that can store up to 4500 iron atoms in its inner cavity. It is mainly found in the liver and spleen but also in serum at trace levels. Serum ferritin is considered as the best single indicator in assessing body iron stores except liver or bone marrow biopsy. However, it is confounded by other disease conditions. Ferritin bound iron (FBI) and ferritin saturation have been suggested as more robust biomarkers. The current techniques for FBI determination are limited by low antibody specificity, low instrument sensitivity and possible analyte losses during sample preparation. The need for a highly sensitive and reliable method is widely recognized. Here we describe a novel technique to detect serum FBI using species-specific isotope dilution mass spectrometry (SS-IDMS). [(57)Fe]-ferritin was produced by biosynthesis and in vitro labeling with the (57)Fe spike in the form of [(57)Fe]-citrate after cell lysis and heat treatment. [(57)Fe]-ferritin for sample spiking was further purified by fast liquid protein chromatography. Serum ferritin and added [(57)Fe]-ferritin were separated from other iron species by ultrafiltration followed by isotopic analysis of FBI using negative thermal ionization mass spectrometry. Repeatability of our assay is 8% with an absolute detection limit of 18 ng FBI in the sample. As compared to other speciation techniques, SS-IDMS offers maximum control over sample losses and species conversion during analysis. The described technique may therefore serve as a reference technique for clinical applications of FBI as a new biomarker for assessing body iron status. PMID:25008269

  8. Measurement of deamidation of intact proteins by isotopic envelope and mass defect with ion cyclotron resonance Fourier transform mass spectrometry.

    PubMed

    Robinson, Noah E; Zabrouskov, Vlad; Zhang, Jennifer; Lampi, Kirsten J; Robinson, Arthur B

    2006-01-01

    After synthesis and folding, proteins undergo many post-synthetic modifications, including cleavage, oxidation, glycosylation, methylation, racemization, phosphorylation, and deamidation. Of these modifications, non-enymatic deamidation is the most prevalent. Each asparaginyl and glutaminyl residue in a protein is a miniature molecular clock that deamidates with a genetically determined half-time. These half-times vary from a few hours to more than a century, depending on a primary, secondary, tertiary, and quaternary structure near the amide residue. It has been suggested that these clocks regulate many biological processes. A few such processes have been discovered. These discoveries have been difficult because deamidation is inconvenient to measure. While most post-synthetic changes are easily measured by mass spectrometry, deamidation increases molecular mass by only one nominal Dalton, so the deamidated isotopic envelope overlaps the undeamidated isotopic envelope. While peptide deamidation rate determination through deconvolution of these envelopes has been accomplished for several hundred peptides, deconvolution becomes more difficult as the molecular weight increases. In high-resolution mass spectrometers, this deconvolution is possible for larger molecules and an alternative method based on the 19 mDa mass defect between the deamidated envelope and the isotopic envelope of protein fragments can also be utilized. We herein report a comparison of the envelope deconvolution and the mass defect methods for measurement of deamidation in human eye lens crystallins, with special emphasis on betaB2 crystallin and gammaS crystallin. Measurement of extent of deamidation of betaB2 crystallin in a 7 Tesla ion cyclotron resonance Fourier transform mass spectrometer is found to be accurate to a relative standard deviation in a single measurement of about 4% for each method. The envelope deconvolution method is further illustrated by detection of deamidation in intact gammaS crystallin, a 20 904 Da protein, and discovery of the principal gammaS deamidation site. PMID:17078105

  9. Carbon Stable Isotope Analysis of Methylmercury Toxin in Biological Materials by Gas Chromatography Isotope Ratio Mass Spectrometry.

    PubMed

    Masbou, Jeremy; Point, David; Guillou, Gaël; Sonke, Jeroen E; Lebreton, Benoit; Richard, Pierre

    2015-12-01

    A critical component of the biogeochemical cycle of mercury (Hg) is the transformation of inorganic Hg to neurotoxic monomethylmercury (CH3Hg). Humans are exposed to CH3Hg by consuming marine fish, yet the origin of CH3Hg in fish is a topic of debate. The carbon stable isotopic composition (δ(13)C) embedded in the methyl group of CH3Hg remains unexplored. This new isotopic information at the molecular level is thought to represent a new proxy to trace the carbon source at the origin of CH3Hg. Here, we present a compound-specific stable isotope analysis (CSIA) technique for the determination of the δ(13)C value of CH3Hg in biological samples by gas chromatography combustion isotope ratio mass spectrometry analysis (GC-C-IRMS). The method consists first of calibrating a CH3Hg standard solution for δ(13)C CSIA. This was achieved by comparing three independent approaches consisting of the derivatization and halogenation of the CH3Hg standard solution. The determination of δ(13)C(CH3Hg) values on natural biological samples was performed by combining a CH3Hg selective extraction, purification, and halogenation followed by GC-C-IRMS analysis. Reference δ(13)C values were established for a tuna fish certified material (ERM-CE464) originating from the Adriatic Sea (δ(13)C(CH3Hg) = -22.1 ± 1.5‰, ± 2 SD). This value is similar to the δ(13)C value of marine algal-derived particulate organic carbon (δ(13)CPOC = -21‰). PMID:26511394

  10. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  11. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    SciTech Connect

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  12. Environmental Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, Albert T.

    2013-06-01

    Environmental mass spectrometry is an important branch of science because it provides many of the data that underlie policy decisions that can directly influence the health of people and ecosystems. Environmental mass spectrometry is currently undergoing rapid development. Among the most relevant directions are a significant broadening of the lists of formally targeted compounds; a parallel interest in nontarget chemicals; an increase in the reliability of analyses involving accurate mass measurements, tandem mass spectrometry, and isotopically labeled standards; and a shift toward faster high-throughput analysis, with minimal sample preparation, involving various approaches, including ambient ionization techniques and miniature instruments. A real revolution in analytical chemistry could be triggered with the appearance of robust, simple, and sensitive portable mass spectrometers that can utilize ambient ionization techniques. If the cost of such instruments is reduced to a reasonable level, mass spectrometers could become valuable household devices.

  13. Precise determination of seawater calcium using isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Hou-Chun; You, Chen-Feng; Cai, Wei-Jun; Chung, Chuan-Hsiung; Huang, Kuo-Fang; Chen, Bao-Shan; Li, Yen

    2014-02-21

    We describe a method for rapid, precise and accurate determination of calcium ion (Ca(2+)) concentration in seawater using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). A 10 ?L aliquot of seawater was spiked with an appropriate (43)Ca enriched solution for (44)Ca/(43)Ca ID-ICP-MS analyses, using an Element XR (Thermo Fisher Scientific), operated at low resolution in E-scan acquisition mode. A standard-sample bracketing technique was applied to correct for potential mass discrimination and ratio drift at every 5 samples. A precision of better than 0.05% for within-run and 0.10% for duplicate measurements of the IAPSO seawater standard was achieved using 10 ?L solutions with a measuring time less than 3 minutes. Depth profiles of seawater samples collected from the Arctic Ocean basin were processed and compared with results obtained by the classic ethylene glycol tetra-acetic acid (EGTA) titration. Our new ID-ICP-MS data agreed closely with the conventional EGTA data, with the latter consistently displaying 1.5% excess Ca(2+) values, possibly due to a contribution of interference from Mg(2+) and Sr(2+) in the EGTA titration. The newly obtained Sr/Ca profiles reveal sensitive water mass mixing in the upper oceanic column to reflect ice melting in the Arctic region. This novel technique provides a tool for seawater Ca(2+) determination with small sample size, high throughput, excellent internal precision and external reproducibility. PMID:24434804

  14. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  15. Stable isotope labeling - Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids.

    PubMed

    Guo, Ning; Liu, Ping; Ding, Jun; Zheng, Shu-Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-28

    Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d5-Girard reagent P (d5-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4-504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones related diseases. PMID:26755144

  16. Iridium isotope ratio measurements by negative thermal ionization mass spectrometry and atomic weight of iridium

    NASA Astrophysics Data System (ADS)

    Walczyk, Thomas; Heumann, Klaus G.

    1993-02-01

    A technique of negative thermal ionization mass spectrometry (NTI-MS) for the precise iridium isotope ratio determination is presented. IrO-2 and IrO-3 ions are formed in a double-filament (Pt) ion source using (NH4)2IrCl6 as a sample compound. The IrO-2 ion current always exceeds the IrO-3 current by a factor of about 50-300 depending on the filament temperature and the oxygen gas introduced into the ion source. IrO-3 ion currents of more than 10-11 A can be obtained at the detector side from 100 ng iridium samples. The relative standard deviation of the 191Ir/193 ratio determination is 0.06%, which is much better than the data quoted in past literature. From such data the atomic weight of iridium could be calculated to be 192.21661 ± 0.00029. This value is a great improvement when compared with the iridium atomic weight of 192.22 ± 0.03 recommended by IUPAC. Additionally, an NTI-MS technique has been developed which allows the simultaneous measurement of iridium and osmium isotope ratio from osmiridium samples without any chemical separation. The iridium isotope ratios of three osmiridium samples agree well with the ratios determined from the hexachloroiridate compound. The direct 187Os/186OS determination from osmiridium samples opens the possibility of studying the evolution of osmium in the Earth's mantle due to the radioactive decay of 187Re into 187Os.

  17. Using Punnett Squares to Facilitate Students' Understanding of Isotopic Distributions in Mass Spectrometry

    ERIC Educational Resources Information Center

    Sein, Lawrence T., Jr.

    2006-01-01

    The isotopic distribution in mass spectroscopy is described for identifying pure compounds, being able to distinguish molecular fragments by masses. Punnett squares are familiar, easy to compute, and often graphical which makes helpful to students and the relative distribution of isotopic combination is easily generated for even isotopic…

  18. Investigation of bn-44 Peptide Fragments Using High Resolution Mass Spectrometry and Isotope Labeling

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Yu, Jiayi; Wang, Huixin; Wei, Zhonglin; Guo, Xinhua; Xiao, Zhaohui; Zeng, Zhoufang; Kong, Wei

    2014-12-01

    An N-terminal deuterohemin-containing hexapeptide (DhHP-6) was designed as a short peptide cytochrome c (Cyt c) mimetic to study the effect of N-terminal charge on peptide fragmentation pathways. This peptide gave different dissociation patterns than normal tryptic peptides. Upon collision-induced dissociation (CID) with an ion trap mass spectrometer, the singly charged peptide ion containing no added proton generated abundant and characteristic bn-44 ions instead of bn-28 (an) ions. Studies by high resolution mass spectrometry (HRMS) and isotope labeling indicate that elimination of 44 Da fragments from b ions occurs via two different pathways: (1) loss of CH3CHO (44.0262) from a Thr side chain; (2) loss of CO2 (43.9898) from the oxazolone structure in the C-terminus. A series of analogues were designed and analyzed. The experimental results combined with Density Functional Theory (DFT) calculations on the proton affinity of the deuteroporphyrin demonstrate that the production of these novel bn-44 ions is related to the N-terminal charge via a charge-remote rather than radical-directed fragmentation pathway.

  19. Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Brand, W. A.; Hayes, J. M.

    1994-01-01

    In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).

  20. Isotope Ratio Mass Spectrometry and Shale Gas - What Is Possible with Current Technology?

    NASA Astrophysics Data System (ADS)

    Barrie, C. D.; Kasson, A.

    2014-12-01

    With ever increasing exploration and exploitation of 'unconventional' hydrocarbon resources, the drive to understand the origins, history and importance of these resources and their effects on the surrounding environment (i.e. ground waters) has never been more important. High-throughput, high-precision isotopic measurements are therefore a key tool in this industry to both understand the gas generated and monitor the development and stability of wells through time. With the advent of cavity ringdown spectroscopy (CRDS) instrumentation, there has been a push in some applications - environmental & atmospheric - to gather more and more data directly at the location of collection or at dedicated field stations. Furthermore, CRDS has resulted in users seeking greater autonomy of instrumentation and so-called black box technology. Traditionally IRMS technology has not met any of these demands, requiring very specific and extensive footprint, power and environmental requirements. This has meant that the 'Oil & Gas' sector, which for natural gases measurements requires GC-IRMS technology - not possible via CRDS - loses time, money and manpower as samples get sent to central facility or contract labs with potentially long lee times. However, recent developments in technology mean that IRMS systems exist which are benchtop, have much lower power requirements, standard power connections and as long as housed in a temperature controlled field stations can be deployed anywhere. Furthermore, with advances in electronics and software IRMS systems are approaching the black box level of newer instrumentation while maintaining the flexibility and abilities of isotope ratio mass spectrometry. This presentation will outline changes in IRMS technology applicable to the Oil & Gas industry, discuss the feasibility of true 'field' deployability and present results from a range of Oil & Gas samples.

  1. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study.

    PubMed

    Tam, J; Pantazopoulos, P; Scott, P M; Moisey, J; Dabeka, R W; Richard, I D K

    2011-06-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products 'as consumed', pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[(13)C(20)]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply. PMID:21623499

  2. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study

    PubMed Central

    Tam, J.; Pantazopoulos, P.; Scott, P.M.; Moisey, J.; Dabeka, R.W.; Richard, I.D.K.

    2011-01-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products ‘as consumed’, pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[13C20]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply. PMID:21623499

  3. IDENTIFICATION AND QUANTITATIVE STUDIES OF PROTEIN IMMOBILIZATION SITES BY STABLE ISOTOPE LABELING AND MASS SPECTROMETRY

    PubMed Central

    Wa, Chunling; Cerny, Ron; Hage, David S.

    2008-01-01

    A method was developed for characterizing immobilization sites on a protein based on stable isotope labeling and MALDI-TOF mass spectrometry. The model for this work was human serum albumin (HSA) immobilized onto silica by the Schiff base method. The immobilized HSA was digested by various proteolytic enzymes in the presence of normal water, while soluble HSA was digested in 18O-enriched water for use as an internal standard. These two digests were mixed and analyzed, with the 18O/16O ratio for each detected peptide then being measured. Several peptides in the tryptic, Lys-C, and Glu-C digests gave significantly higher 18O/16O ratios than other peptides in the same digests, implying their involvement in immobilization. Analysis of these results led to identification of the N-terminus and several lysines as likely immobilization sites for HSA (e.g., K4, K41, K190, K225, K313 and K317). It was also possible from these results to quantitatively rank these sites in terms of the relative degree to which each might take part in immobilization. This method is not limited to HSA and silica but can be used with other proteins and supports. PMID:17134129

  4. Quantitation of Thioprolines in Grape Wine by Isotope Dilution-Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Liu, Jingjing; Meng, Xiangpeng; Chan, Wan

    2016-02-17

    Cysteine reacts with reactive carbonyls to form thioprolines, which have been demonstrated to possess various pharmaceutical properties. Therefore, thioproline formation is considered as a major detoxification pathway for carcinogenic reactive carbonyls. In this study, we report the initial identification of thiazolidine-4-carboxylic acid (1) and 2-methylthiazolidine-4-carboxylic acid (2), two very common thioprolines, formed by reacting formaldehyde and acetaldehyde with cysteine in grape wine samples. We have developed an isotope dilution-liquid chromatography-tandem mass spectrometry method featuring high sensitivity (limit of detection of ≤1.5 ng/mL) and selectivity to quantitate compounds 1 and 2. The method after validated to be highly accurate (recovery of ≥92%) and precise [intraday relative standard deviation (RSD) of ≤4.1% and interday RSD of ≤9.7%] was applied to determine the varying compound 1 and 2 contents in grape wine samples. Results revealed the grape type and storage duration-dependent formation of thioprolines in grape wines. Overall, the results are expected to facilitate compound-dependent investigations of the health benefits of grape wine, and our findings could be adopted to predict the age of grape wine. PMID:26806197

  5. Non-selective photoionization for isotope ratio measurements by time of flight mass spectrometry with laser ablation

    NASA Astrophysics Data System (ADS)

    Vors, E.; Semerok, A.; Wagner, J.-F.; Fomichev, S. V.

    2000-12-01

    Isotope ratio measurements of metallic uranium samples were carried out by linear TOF mass spectrometry in combination with laser ablation. To eliminate the problems resulting from laser plasma ion energy and spatial dispersions, the uranium atoms were post-ionized by the third harmonic of a Nd-YAG laser. Experimental and theoretical results of the LA-TOF performance and non-selective photoionization of uranium atoms produced by laser ablation are presented.

  6. Detection of exogenous hydrocortisone in horse urine by gas chromatography-combustion-carbon isotope ratio mass spectrometry.

    PubMed

    Aguilera, R; Becchi, M; Mateus, L; Popot, M A; Bonnaire, Y; Casabianca, H; Hatton, C K

    1997-11-21

    A gas chromatography-combustion-isotope ratio mass spectrometry method for confirmation of hydrocortisone abuse in horseracing and equine sports is proposed. Urinary hydrocortisone was converted to a bismethylenedioxy derivative which presents good gas chromatographic properties and brings an extra carbon contribution of only two carbon atoms. Synthetic hydrocortisone has a different 13C abundance from that of natural urinary horse hydrocortisone and the difference is significant, therefore exogenous and endogenous hydrocortisone can be distinguished. PMID:9449559

  7. Determination of serum levels of unesterified lathosterol by isotope dilution-mass spectrometry.

    PubMed

    Lund, E; Sisfontes, L; Reihner, E; Bjorkhem, I

    1989-04-01

    The synthesis of 2H3-labelled lathosterol is described. This compound was used together with 2H7-labelled cholesterol for simultaneous assay of unesterified lathosterol and cholesterol in serum by isotope dilution-mass spectrometry. After addition of a fixed amount of the two internal standards to a fixed amount of serum (in general 25 microliter), the steroids were extracted with chloroform and subjected to Lipidex 5000 chromatography. The fraction containing cholesterol and lathosterol was converted into trimethylsilyl ether and subjected to mass spectrometric analysis with selected monitoring of the ions at m/z 458 (molecular ion of the trimethylsilyl ether derivative of unlabelled cholesterol and lathosterol), m/z 461 (molecular ion of derivative of 2H3-labelled lathosterol) and m/z 465 (molecular ion of derivative of 2H7-labelled cholesterol). Individual standard curves were used for assay of each steroid. Under the conditions employed, the coefficient of variation of the two assays was less than 6%. In different recovery experiments the maximal difference between expected and found values was less than 7%. Using a less accurate method for analysis of lathosterol, we have shown previously that there is a high correlation between the hepatic HMG CoA reductase and the relative concentration of unesterified lathosterol in serum (concentration of lathosterol relative to cholesterol). This was confirmed with the present method and a correlation coefficient of about 0.94 was found between the two parameters. It is concluded that the present method may be suitable for detection of cases with accelerated rate of synthesis of cholesterol. PMID:2520369

  8. Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry

    SciTech Connect

    Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.; LaVoie, Stephen P.; Lipton, Mary S.; Summers, Anne O.; Miller, Susan M.

    2011-08-01

    The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate, we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.

  9. A computational drug metabolite detection using the stable isotopic mass-shift filtering with high resolution mass spectrometry in pioglitazone and flurbiprofen.

    PubMed

    Uchida, Masashi; Kanazawa, Mitsuhiro; Ogiwara, Atsushi; Sezaki, Hiroshi; Ando, Akihiro; Miyamoto, Yohei

    2013-01-01

    The identification of metabolites in drug discovery is important. At present, radioisotopes and mass spectrometry are both widely used. However, rapid and comprehensive identification is still laborious and difficult. In this study, we developed new analytical software and employed a stable isotope as a tool to identify drug metabolites using mass spectrometry. A deuterium-labeled compound and non-labeled compound were both metabolized in human liver microsomes and analyzed by liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS). We computationally aligned two different MS data sets and filtered ions having a specific mass-shift equal to masses of labeled isotopes between those data using our own software. For pioglitazone and flurbiprofen, eight and four metabolites, respectively, were identified with calculations of mass and formulas and chemical structural fragmentation analysis. With high resolution MS, the approach became more accurate. The approach detected two unexpected metabolites in pioglitazone, i.e., the hydroxypropanamide form and the aldehyde hydrolysis form, which other approaches such as metabolite-biotransformation list matching and mass defect filtering could not detect. We demonstrated that the approach using computational alignment and stable isotopic mass-shift filtering has the ability to identify drug metabolites and is useful in drug discovery. PMID:24084721

  10. Simultaneous Determination of Selected B Vitamins in the NIST SRM 3280 Multivitamin/Multielement Tablets by Liquid Chromatography Isotope Dilution Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increased interest in accurately assessing the total dietary intake of vitamins from all sources, including foods and dietary supplements. Isotope dilution mass spectrometry (IDMS) can be a definitive analytical method for very accurate concentration determinations. A liquid chromatographic...

  11. Isotope dilution gas chromatography/mass spectrometry for cadmium determination in urine.

    PubMed

    Aggarwal, S K; Orth, R G; Wendling, J; Kinter, M; Herold, D A

    1993-01-01

    A stable isotope dilution gas chromatographic/mass spectrometric method using 106Cd as an internal standard is described for determining Cd in urine. In this method, the urine matrix is digested with HNO3 + H2O2 and the Cd is chelated with lithium bis(trifluoroethyl)dithiocarbamate. All isotope ratio measurements are made with an organic mass spectrometer. Overall precision values for the five major isotopes relative to 114Cd are 1 to 3% when 10-ng samples of chelated Cd are analyzed. Accuracy of the method is established by measuring Cd in the NIST freeze-dried urine reference material. A small memory effect is observed when measuring isotope ratios differing by a factor of 10. This can, however, be minimized by optimum addition of the internal standard solution. PMID:8381496

  12. Stable isotope liquid chromatography-tandem mass spectrometry assay for fatty acid amide hydrolase activity.

    PubMed

    Rakers, Christin; Zoerner, Alexander A; Engeli, Stefan; Batkai, Sandor; Jordan, Jens; Tsikas, Dimitrios

    2012-02-15

    Fatty acid amide hydrolase (FAAH) is the main enzyme responsible for the hydrolysis of the endocannabinoid anandamide (arachidonoyl ethanolamide, AEA) to arachidonic acid (AA) and ethanolamine (EA). Published FAAH activity assays mostly employ radiolabeled anandamide or synthetic fluorogenic substrates. We report a stable isotope liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for specific, sensitive, and high-throughput capable FAAH activity measurements. The assay uses AEA labeled with deuterium on the EA moiety (d₄-AEA) as substrate and measures the specific reaction product tetradeutero-EA (d₄-EA) and the internal standard ¹³C₂-EA. Selected reaction monitoring of m/z 66→m/z 48 (d₄-EA) and m/z 64→m/z 46 (¹³C₂-EA) in the positive electrospray ionization mode after liquid chromatographic separation on a HILIC (hydrophilic interaction liquid chromatography) column is performed. The assay was developed and thoroughly validated using recombinant human FAAH (rhFAAH) and then was applied to human blood and dog liver samples. rhFAAH-catalyzed d₄-AEA hydrolysis obeyed Michaelis-Menten kinetics (K(M)=12.3 μM, V(max)=27.6 nmol/min mg). Oleoyl oxazolopyridine (oloxa) was a potent, partial noncompetitive inhibitor of rhFAAH (IC₅₀=24.3 nM). Substrate specificity of other fatty acid ethanolamides decreased with decreasing length, number of double bonds, and lipophilicity of the fatty acid skeleton. In human whole blood, we detected FAAH activity that was inhibited by oloxa. PMID:22146559

  13. Determination of trace iron in zirconium by isotope dilution-thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Elliot, N. L.; Campbell, M. A.; Green, L. W.

    1995-08-01

    An isotope dilution-thermal ionization mass spectrometry method for the determination of parts-per-million levels of iron in zirconium is required for precise, accurate analyses in studies of the effects of iron on the irradiation deformation of nuclear alloys. A two-stage purification procedure was developed to avoid the signal suppression and interference caused by the zirconium matrix. After sample dissolution and spiking with 54Fe, the bulk of the zirconium is removed by ion exchange chromatography, and the eluted Fe(III) is further purified by micro-solvent extraction into tributyl phosphate-impregnated resin beads. The iron is back-extracted, submicrogram amounts are loaded onto previously outgassed zone-refined Re filaments, and 54/56 ratios are measured at 1170°C. A silica gel/boric acid ionization enhancer is used to obtain stable Fe+ currents as strong as 2 × 10-14. A from nanogram loadings of pure iron. The procedural blank of 20 ± 6 ng is sufficiently low to allow determination of ppm levels of iron in 0.1 g zirconium samples. The analyses of solution standards showed agreement within 2% between measured and expected values, and a good fit, r2 = 0.99997, to a linear regression. The analyses of metal standards exhibited a similar good fit to a linear regression of measured against expected values, and showed good agreement with other methods. The method meets the requirements for zirconium metallurgical studies, and may be extended to other applications.

  14. Carbon isotope ratio mass spectrometry for detection of endogenous steroid use: a testing strategy.

    PubMed

    Ahrens, Brian D; Butch, Anthony W

    2013-07-01

    Isotope ratio mass spectrometry (IRMS) testing is performed to determine if an atypical steroid profile is due to administration of an endogenous steroid. Androsterone (Andro) and etiocholanolone (Etio), and/or the androstanediols (5α- and 5β-androstane-3α,17β-diol) are typically analyzed by IRMS to determine the (13) C/(12) C ratio. The ratios of these target compounds are compared to the (13) C/(12) C ratio of an endogenous reference compound (ERC) such as 5β-pregnane-3α,20α-diol (Pdiol). Concentrations of Andro and Etio are high so (13) C/(12) C ratios can easily be measured in most urine samples. Despite the potentially improved sensitivity of the androstanediols for detecting the use of some testosterone formulations, additional processing steps are often required that increase labour costs and turnaround times. Since this can be problematic when performing large numbers of IRMS measurements, we established thresholds for Andro and Etio that can be used to determine the need for additional androstanediol testing. Using these criteria, 105 out of 2639 urine samples exceeded the Andro and/or Etio thresholds, with 52 of these samples being positive based on Andro and Etio IRMS testing alone. The remaining 53 urine samples had androstanediol IRMS testing performed and 3 samples were positive based on the androstanediol results. A similar strategy was used to establish a threshold for Pdiol to identify athletes with relatively (13) C-depleted values so that an alternative ERC can be used to confirm or establish a true endogenous reference value. Adoption of a similar strategy by other laboratories can significantly reduce IRMS sample processing and analysis times, thereby increasing testing capacity. PMID:23303562

  15. Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia.

    PubMed

    Zhang, Duan-Sun; Piazza, Valeria; Perrin, Benjamin J; Rzadzinska, Agnieszka K; Poczatek, J Collin; Wang, Mei; Prosser, Haydn M; Ervasti, James M; Corey, David P; Lechene, Claude P

    2012-01-26

    Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a β-actin-GFP fusion, and evidence was found that actin is replaced, from the top down, in 2-3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12-24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory 'tip links' are replaced in 5-10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a (15)N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at <10% per day. Only stereocilia tips had rapid turnover and no treadmilling was observed. Other methods confirmed this: in hair cells expressing β-actin-GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of β- or γ-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process. PMID:22246323

  16. DETERMINATION OF 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    SciTech Connect

    Maxwell, S.

    2010-07-26

    A new method for the determination of {sup 237}Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of {sup 237}Np and Pu isotopes by ICP-MS. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via {sup 238}U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1 x 10{sup 6}. Alpha spectrometry can also be applied so that the shorter-lived {sup 238}Pu isotope can be measured successfully. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu and {sup 238}Pu were measured by alpha spectrometry.

  17. Determination of 237Np and Pu isotopes in large soil samples by inductively coupled plasma mass spectrometry.

    PubMed

    Maxwell, Sherrod L; Culligan, Brian K; Jones, Vernon D; Nichols, Sheldon T; Bernard, Maureen A; Noyes, Gary W

    2010-12-01

    A new method for the determination of (237)Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of (237)Np and Pu isotopes by ICP-MS. (238)U can interfere with (239)Pu measurement by ICP-MS as (238)UH(+) mass overlap and (237)Np via (238)U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1×10(6). Alpha spectrometry can also be applied so that the shorter-lived (238)Pu isotope can be measured successfully. (239) Pu, (242)Pu and (237)Np were measured by ICP-MS, while (236)Pu and (238)Pu were measured by alpha spectrometry. PMID:21056724

  18. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry.

    PubMed

    Coplen, Tyler B; Qi, Haiping

    2010-09-15

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN(2)) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ(2)H reproducibility (1σ standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1 ‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN(2) is used as a moisture trap for gaseous hydrogen. PMID:20718408

  19. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  20. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ??? in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) ??2H reproducibility (1?? standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1 ??? to 0.58 ???. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  1. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  2. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE PAGESBeta

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  3. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect

    J.J. Horkley; K.P E.M. Gantz; J.E. Davis; R.R. Lewis; J.P. Crow; C.A. Poole; T.S. Grimes; J.J. Giglio

    2015-03-01

    t Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure ‘‘spike’’ solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for ‘‘age’’ determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution,

  4. Precise Re isotope ratio measurements by negative thermal ionization mass spectrometry (NTI-MS) using total evaporation technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Katsuhiko; Miyata, Yoshiki; Kanazawa, Nobuyuki

    2004-06-01

    High precision rhenium isotope ratios, 187Re/185Re, have been determined by negative thermal ionization mass spectrometry (NTI-MS) using a total evaporation technique. The salient features of this method are evaporation of the entire sample and simultaneous integration of the signal from each isotope, which effectively eliminates isotope fractionation effects during the evaporation process. The 187Re/185Re ratio is obtained with a high reproducibility (1.6755+/-0.0014 (2[sigma]), R.S.D.=0.083%, n=28) for 50 pg-1 ng of a Re natural standard using the total evaporation with NTI-MS. This value is within analytical uncertainty of the previously reported accurate 187Re/185Re ratio (1.6740+/-0.0011) adopted by IUPAC as the Re isotopic composition, and is significantly more precise than the ratio obtained from conventional NTI-MS isotopic measurements in our laboratory (1.6772+/-0.0037 (2[sigma]), R.S.D.=0.22%, n=34). Based on these results, the total evaporation technique allows us to precisely determine Re isotope ratios, even for small sample amounts. In addition, this method is effective for highly precise Re abundance determinations using isotope dilution.

  5. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure spike solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for age determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  6. Ion microscopy with resonant ionization mass spectrometry : time-of-flight depth profiling with improved isotopic precision.

    SciTech Connect

    Pellin, M. J.; Veryovkin, I. V.; Levine, J.; Zinovev, A.; Davis, A. M.; Stephan, T.; Tripa, C. E.; King, B. V.; Savina, M. R.

    2010-01-01

    There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.

  7. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  8. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  9. Metabolic flux in carbohydrate biosynthesis. New methods using stable isotopes, mass spectrometry, and NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structural analysis of carbohydrates involves three parameters: composition, linkage, and conformation, and tends to rely on the various forms of two techniques; mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. These techniques are enhanced and extended by the use of stable...

  10. Structure elucidation of four possible biogenic organohalogens using isotope exchange mass spectrometry.

    PubMed

    Tittlemier, Sheryl A; Blank, David H; Gribble, Gordon W; Norstrom, Ross J

    2002-01-01

    The molecular structures of four unknown bioaccumulating halogenated compounds, C10H6N2Br3Cl3, C10H6N2Br4Cl2, C10H6N2Br5Cl, and C10H6N2Br6 were characterized using isotope exchange positive chemical ionization (IE-PCI) mass spectrometry (MS) and identified by comparison to synthesized standards. NH3 and ND3 were used as reagent gases for the IE-PCI-MS experiment. The shift in mass of the quasimolecular ion between the NH3 and ND3 PCI obtained spectra indicated the number of exchangeable hydrogens attached to the two nitrogen atoms in C10H6N2Br4Cl2, and thus the type of amines present (primary, secondary, or tertiary). 19 compounds (13 amines of varying degree of substitution; six containing no nitrogen) were used as reference compounds and controls in the experiment to validate the IE-PCI technique. The results of the IE-PCI-MS indicated the presence of two tertiary amine functional groups. The molecular structures of the four hexahalogenated compounds were then proposed to be 1,1'-dimethyl-3,3',4,-tribromo-4',5,5'-trichloro-2,2'-bipyrrole, 1,1'-dimethyl-3,3',4,4'-tetrabromo-5,5'-dichloro-2,2'-bipyrrole, 1,1'-dimethyl-3,3',4,4',5-pentabromo-5'-chloro-2,2'-bipyrrole, and 1,1'-dimethyl-3,3',4,4',5,5'-hexabromo-2,2'-bipyrrole and subsequently synthesized. Comparison of retention times and electron capture negative ionization (ECNI) full scans on various gas chromatography (GC) columns between the synthesized bipyrroles and the corresponding unknown compounds in biota indicated that three of the unknown compounds--possible marine natural products--were the proposed halogenated dimethyl bipyrroles. The placement of the halogen atoms on the fourth compound, C10H6N2Br3Cl3 could not be unequivocally determined since the synthesized standard could not be fully characterized. PMID:11838429

  11. The study of trace metal absoption using stable isotopes and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fennessey, P. V.; Lloyd-Kindstrand, L.; Hambidge, K. M.

    1991-12-01

    The absorption and excretion of zinc stable isotopes have been followed in more than 120 human subjects. The isotope enrichment determinations were made using a standard VG 7070E HF mass spectrometer. A fast atom gun (FAB) was used to form the ions from a dry residue on a pure silver probe tip. Isotope ratio measurements were found to have a precision of better than 2% (relative standard deviation) and required a sample size of 1-5 [mu]g. The average true absorption of zinc was found to be 73 ± 12% (2[sigma]) when the metal was taken in a fasting state. This absorption figure was corrected for tracer that had been absorbed and secreted into the gastrointestinal (GI) tract over the time course of the study. The average time for a majority of the stable isotope tracer to pass through the GI tract was 4.7 ± 1.9 (2[sigma]) days.

  12. Innovations in Mass Spectrometry for Precise and Accurate Isotope Ratio Determination from Very Small Analyte Quantities (Invited)

    NASA Astrophysics Data System (ADS)

    Lloyd, N. S.; Bouman, C.; Horstwood, M. S.; Parrish, R. R.; Schwieters, J. B.

    2010-12-01

    This presentation describes progress in mass spectrometry for analysing very small analyte quantities, illustrated by example applications from nuclear forensics. In this challenging application, precise and accurate () uranium isotope ratios are required from 1 - 2 m diameter uranium oxide particles, which comprise less than 40 pg of uranium. Traditionally these are analysed using thermal ionisation mass spectrometry (TIMS), and more recently using secondary ionisation mass spectrometry (SIMS). Multicollector inductively-coupled plasma mass spectrometry (MC-ICP-MS) can offer higher productivity compared to these techniques, but is traditionally limited by low efficiency of analyte utilisation (sample through to ion detection). Samples can either be introduced as a solution, or sampled directly from solid using laser ablation. Large multi-isotope ratio datasets can help identify provenance and intended use of anthropogenic uranium and other nuclear materials [1]. The Thermo Scientific NEPTUNE Plus (Bremen, Germany) with Jet Interface option offers unparalleled MC-ICP-MS sensitivity. An analyte utilisation of c. 4% has previously been reported for uranium [2]. This high-sensitivity configuration utilises a dry high-capacity (100 m3/h) interface pump, special skimmer and sampler cones and a desolvating nebuliser system. Coupled with new acquisition methodologies, this sensitivity enhancement makes possible the analysis of micro-particles and small sample volumes at higher precision levels than previously achieved. New, high-performance, full-size and compact discrete dynode secondary electron multipliers (SEM) exhibit excellent stability and linearity over a large dynamic range and can be configured to simultaneously measure all of the uranium isotopes. Options for high abundance-sensitivity filters on two ion beams are also available, e.g. for 236U and 234U. Additionally, amplifiers with high ohm (1012 - 1013) feedback resistors have been developed to optimise signal to noise ratios from low ion beam intensities on Faraday cups [2,3]. Data will be presented from the Thermo Scientific NEPTUNE Plus MC-ICP-MS, sampling sub-nanogram quantities of analyte from solution and by laser ablation. Faraday only measurements of sub-microgram analyte quantities will also be presented, using a 1012 ? amplifier for the minor isotope 234U. These data are compared to a dataset collected by a first generation MC-ICP-MS instrument, reported by Lloyd et al. [1]. [1] N. S. Lloyd, R. R. Parrish, M. S. A. Horstwood & S. R. N. Chenery, Journal of Analytical Atomic Spectrometry 24 (6), 752 (2009). [2] C. Bouman, J.B. Schwieters, M. Deerberg & D. Tuttas, Geochimica et Cosmochimica Acta 73 (13, Supplement 1) (2009). [3] D. Tuttas, J.B. Schwieters, & N.S. Lloyd, Geochimica et Cosmochimica Acta 74 (11, Supplement 1) (2010).

  13. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  14. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    SciTech Connect

    Isselhardt, B H

    2011-09-06

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  15. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1. PMID:16496054

  16. Determination of glycerol concentrations and glycerol isotopic enrichments in human plasma by gas chromatography/mass spectrometry.

    PubMed

    Ackermans, M T; Ruiter, A F; Endert, E

    1998-04-10

    An analytical method is presented to determine glycerol concentrations and stable isotope tracer enrichments in human plasma after intravenous tracer infusion in a single analytical run, using gas chromatography coupled to mass spectrometry. The method uses an internal standard, which is also a stable isotope labeled form of glycerol. Three substances were tested as model compounds viz. [2-13C]glycerol, and [1,2,3-13C3]glycerol, and [1,1,2,3, 3-2H5]glycerol. Any combination of two can be used (one as internal standard, one as tracer), even if overlapping of the mass spectra occurs. The method is precise (recovery of spiked glycerol and tracer are, respectively, 99.7 and 99.8%) and reproducible (intraassay variation <1.5%, interassay variation <6%) and needs only a small amount of plasma (100 microl). PMID:9527852

  17. Stable isotope- and mass spectrometry-based metabolomics as tools in drug metabolism: a study expanding tempol pharmacology.

    PubMed

    Li, Fei; Pang, Xiaoyan; Krausz, Kristopher W; Jiang, Changtao; Chen, Chi; Cook, John A; Krishna, Murali C; Mitchell, James B; Gonzalez, Frank J; Patterson, Andrew D

    2013-03-01

    The application of mass spectrometry-based metabolomics in the field of drug metabolism has yielded important insights not only into the metabolic routes of drugs but has provided unbiased, global perspectives of the endogenous metabolome that can be useful for identifying biomarkers associated with mechanism of action, efficacy, and toxicity. In this report, a stable isotope- and mass spectrometry-based metabolomics approach that captures both drug metabolism and changes in the endogenous metabolome in a single experiment is described. Here the antioxidant drug tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) was chosen because its mechanism of action is not completely understood and its metabolic fate has not been studied extensively. Furthermore, its small size (MW = 172.2) and chemical composition (C(9)H(18)NO(2)) make it challenging to distinguish from endogenous metabolites. In this study, mice were dosed with tempol or deuterated tempol (C(9)D(17)HNO(2)) and their urine was profiled using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Principal component analysis of the urinary metabolomics data generated a Y-shaped scatter plot containing drug metabolites (protonated and deuterated) that were clearly distinct from the endogenous metabolites. Ten tempol drug metabolites, including eight novel metabolites, were identified. Phase II metabolism was the major metabolic pathway of tempol in vivo, including glucuronidation and glucosidation. Urinary endogenous metabolites significantly elevated by tempol treatment included 2,8-dihydroxyquinoline (8.0-fold, P < 0.05) and 2,8-dihydroxyquinoline-β-d-glucuronide (6.8-fold, P < 0.05). Urinary endogenous metabolites significantly attenuated by tempol treatment including pantothenic acid (1.3-fold, P < 0.05) and isobutrylcarnitine (5.3-fold, P < 0.01). This study underscores the power of a stable isotope- and mass spectrometry-based metabolomics in expanding the view of drug pharmacology. PMID:23301521

  18. Osmium isotopic ratio measurements by inductively coupled plasma source mass spectrometry

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.; Date, A.R.

    1987-04-01

    The isotopic composition of nanogram quantities of osmium was measured by using an inductively coupled plasma source mass spectrometer. Sensitivity was enhanced a factor of approx.100 by the use of an osmium tetraoxide vapor generator rather than nebulization of solution. For samples less than or equal to5 ng, the ratios /sup 190/Os//sup 192/Os, /sup 189/Os//sup 192/Os, and /sup 188/Os//sup 192/Os were determined to better than +/- 0.5% (1sigma/sub m/) precision. For the minor isotopes, the ratios /sup 187/Os//sup 192/Os and /sup 186/Os//sup 192/Os were determined to +/-1%, and /sup 184/Os//sup 192/Os (4 x 10/sup -4/) was determined to approx.10%. Isotope ratios for common osmium are reported.

  19. MASS SPECTROMETRY

    DOEpatents

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  20. Determination of the sulfur isotope ratio in carbonyl sulfide using gas chromatography/isotope ratio mass spectrometry on fragment ions 32S+, 33S+, and 34S+.

    PubMed

    Hattori, Shohei; Toyoda, Akari; Toyoda, Sakae; Ishino, Sakiko; Ueno, Yuichiro; Yoshida, Naohiro

    2015-01-01

    Little is known about the sulfur isotopic composition of carbonyl sulfide (OCS), the most abundant atmospheric sulfur species. We present a promising new analytical method for measuring the stable sulfur isotopic compositions (?(33)S, ?(34)S, and ?(33)S) of OCS using nanomole level samples. The direct isotopic analytical technique consists of two parts: a concentration line and online gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions (32)S(+), (33)S(+), and (34)S(+). The current levels of measurement precision for OCS samples greater than 8 nmol are 0.42, 0.62, and 0.23 for ?(33)S, ?(34)S, and ?(33)S, respectively. These ? and ? values show a slight dependence on the amount of injected OCS for volumes smaller than 8 nmol. The isotope values obtained from the GC-IRMS method were calibrated against those measured by a conventional SF6 method. We report the first measurement of the sulfur isotopic composition of OCS in air collected at Kawasaki, Kanagawa, Japan. The ?(34)S value obtained for OCS (4.9 0.3) was lower than the previous estimate of 11. When the ?(34)S value for OCS from the atmospheric sample is postulated as the global signal, this finding, coupled with isotopic fractionation for OCS sink reactions in the stratosphere, explains the reported ?(34)S for background stratospheric sulfate. This suggests that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols. PMID:25439590

  1. The use of stable isotopes and gas chromatography/mass spectrometry in the identification of steroid metabolites in the equine

    SciTech Connect

    Houghton, E.; Dumasia, M.C.; Teale, P.; Smith, S.J.; Cox, J.; Marshall, D.; Gower, D.B. )

    1990-10-01

    Stable isotope gas chromatography/mass spectrometry has been used successfully in the elucidation of structures of urinary steroid metabolites in the horse and in the identification of metabolites isolated from in vivo perfusion and in vitro incubation studies using equine tissue preparations. Deuterium-labeled steroids, testosterone, dehydroepiandrosterone, and 5-androstene-3 beta,17 beta-diol have been synthesized by base-catalyzed isotope exchange methods and the products characterized by gas chromatography/mass spectrometry. (16,16(-2)H2)Dehydroepiandrosterone (plus radiolabeled dehydroepiandrosterone) was perfused into a testicular artery of a pony stallion and was shown to be metabolized into 2H2-labeled testosterone, 4-androstenedione, isomers of 5-androstene-3,17-diol, 19-hydroxytestosterone, and 19-hydroxy-4-androstenedione. In further studies, equine testicular minces have been incubated with 2H2-labeled and radiolabeled dehydroepiandrosterone and 5-androstene-3 beta, 17 beta-diol. The metabolites, whose identity was confirmed by stable isotope gas chromatography/mass spectrometry, proved the interconversion of the two substrates, as well as formation of testosterone and 4-androstenedione. The aromatization of dehydroepiandrosterone was also confirmed, together with the formation of an isomer of 5(10)-estrene-3,17-diol from both substrates showing 19-demethylation without concomitant aromatization. In studies of the feto-placental unit, the allantochorion was shown to aromatize (2H5)testosterone to (2H4)estradiol, the loss of one 2H from the substrate being consistent with aromatization of the A ring. The formation of 6-hydroxyestradiol was also confirmed in this study. The same technique has been valuable in determining the structure of two metabolites of nandrolone isolated from horse urine.

  2. Stable Isotope Analyses of water and Aqueous Solutions by Conventional Dual-inlet Mass Spectrometry

    SciTech Connect

    Horita, Juske; Kendall, C.

    2004-01-01

    The foundation of various analytical methods for the stable isotope composition of water and other aqueous samples (natural abundance, {sup 1}H : {sup 2}H (D) = 99.985 : 0.015 atom%, and {sup 16}O : {sup 17}O : {sup 18}O = 99.762 : 0.038 : 0.200 atom%) was established during the Manhatten Project in the U.S.A., when large amounts of heavy water were produced for nuclear reactors (see Kirshenbaum, 1951, for a detailed account). From early on, there was great interest in the oxygen and hydrogen isotopic compositions of water, because they are the ideal tracers of water sources and reactions. The increased analytical precisions made possible by the subsequent development of modern gas-source isotope-ratio mass spectrometers with dual-inlets and multi-collectors, have caused the proliferation of new analytical methods and applications for the oxygen and hydrogen isotopic compositions of water. These stable isotopes have found wide applications in basic as well as applied sciences (chemistry, geology, hydrology, biology, medical sciences, and food sciences). This is because water is ubiquitous, is an essential and predominant ingredient of living organisms, and is perhaps the most reactive compound in the Earth.

  3. Low blank rhenium isotope ratio determinations by V2O5 coated nickel filaments using negative thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Walczyk, Thomas; Hebeda, Erhard H.; Heumann, Klaus G.

    1994-02-01

    Thenium isotope ratio determinations are, in principle, possible by negative thermal ionization mass spectrometry (NTI-MS). Relatively high rhenium blanks from the commonly-used filament materials prevent accurate isotope ratio determinations, especially for small rhenium sample amounts which are of importance, for example, in geochronology in connection with the Re/Os dating method. Platinum and nickel filaments were tested by different preparation techniques to reduce the rhenium blank contribution from the filament material. The lowest rhenium blank of less than 1 pg was achieved by coating nickel filaments with V2O5 prior to degassing under high vacuum conditions at 850°C. Obviously, the vanadium--nickel oxide layer formed on the surface of the filament during this process prevents further emission of rhenium ions from the filament material. Using Ba(OH)2 for the enhancement of negative thermal ions, 1 ng of rhenium resulted in ion currents at the detector side of about 10-11 A with an ionization efficiency of up to 20%. The 185Re/187Re isotope ratio of a sample of natural isotopic composition could be determined to be 0.59818 ± 0.00026 with a relative precision of 0.04%. The isotope ratio determination for an 187Re spike was comparable in precision but the relative standard deviation of an 185Re spike was significantly higher, which could be explained by mass fractionations of oxygen in the measured ReO-4 ion. The ReO-4 ion is about 200 to 2500 times more abundant than the only other detectable rhenium ion in NTI-MSReO-3. The ReO-4/ReO-4 ratio decreases with increasing temperature. By the low blank NTI-MS technique described in this work, more precise and accurate determinations of the rhenium isotope ratio and the rhenium concentration by isotope dilution analysis from nanogramme samples are possible.

  4. Comparing the precision of selenium isotope ratio measurements using collision cell and sector field inductively coupled plasma mass spectrometry.

    PubMed

    Elwaer, Nagmeddin; Hintelmann, Holger

    2008-03-15

    The performance of two different types of inductively coupled plasma mass spectrometry (ICP-MS) instruments for resolving spectral overlaps on Se isotopes was compared by means of selenium isotopic ratio measurements. Examined were a quadrupole-based, hexapole collisions cell CC-ICP-MS and a double-focusing sector field SF-ICP-MS. Due to the importance of precise and accurate isotope ratio determination in environmental, clinical and nutritional studies, a thorough investigation of the critical instrumental parameters of each technique was performed. A hydride generation system was coupled with SF-ICP-MS to maintain high signal-to-noise ratios (S/N) at high mass resolution. However, 80Se+ was not completely separated from the argon dimer (40)Ar2+ at m/z=80, even in high-resolution mode. The same hydride generation system was coupled to a collision cell instrument and it was found that argon dimers are significantly reduced using a mixture of H2 and He gas with the cell. A lower mass bias of 2.5% per amu was determined for measured Se isotopes using the SF-ICP-MS instrument compared 3.6% observed for the CC-ICP-MS instrument. Under optimized conditions, the precision for Se isotope ratio measurements of both instruments was evaluated and compared measuring NIST-3149 Se standard solution. On average, the uncertainty determined by repeated measurements over the span of three individual measuring sessions in a period of 3 weeks ranged from 0.06% to 0.15% and 0.09% to 0.30% R.S.D. for the various isotope ratios using the CC-ICP-MS and SF-ICP-MS instrument, respectively. The detection limits (3) for total Se were determined by measuring 82Se and found to be 1.7 and 4.0 ng L(-1) for the CC-ICP-MS and SF-ICP-MS, respectively. PMID:18371869

  5. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative methods of isobar separation. These techniques are discussed in the latter part of the review. PMID:22031277

  6. MASS SPECTROMETRY

    DOEpatents

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  7. Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ricci, M. P.; Merritt, D. A.; Freeman, K. H.; Hayes, J. M.

    1994-01-01

    Methods are described for continuous monitoring of signals required for precise analyses of 13C, 18O, and 15N in gas streams containing varying quantities of CO2 and N2. The quantitative resolution (i.e. maximum performance in the absence of random errors) of these methods is adequate for determination of isotope ratios with an uncertainty of one part in 10(5); the precision actually obtained is often better than one part in 10(4). This report describes data-processing operations including definition of beginning and ending points of chromatographic peaks and quantitation of background levels, allowance for effects of chromatographic separation of isotopically substituted species, integration of signals related to specific masses, correction for effects of mass discrimination, recognition of drifts in mass spectrometer performance, and calculation of isotopic delta values. Characteristics of a system allowing off-line revision of parameters used in data reduction are described and an algorithm for identification of background levels in complex chromatograms is outlined. Effects of imperfect chromatographic resolution are demonstrated and discussed and an approach to deconvolution of signals from coeluting substances described.

  8. Delta13C stable isotope analysis of atmospheric oxygenated volatile organic compounds by gas chromatography-isotope ratio mass spectrometry.

    PubMed

    Giebel, Brian M; Swart, Peter K; Riemer, Daniel D

    2010-08-15

    We present a new method for analyzing the delta(13)C isotopic composition of several oxygenated volatile organic compounds (OVOCs) from direct sources and ambient atmospheric samples. Guided by the requirements for analysis of trace components in air, a gas chromatograph isotope ratio mass spectrometer (GC-IRMS) system was developed with the goal of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the isotope ratio mass spectrometer (IRMS). The technique relies on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. The instrument's measurement precision is 0.6 to 2.9 per thousand (1sigma), and results indicate that negligible sample fractionation occurs during gas sampling. Measured delta(13)C values have a minor dependence on sample size; linearity for acetone was 0.06 per thousand ng C(-1) and was best over 1-10 ng C. Sensitivity is approximately 10 times greater than similar instrumentation designs, incorporates the use of a diluted working reference gas (0.1% CO(2)), and requires collection of >0.7 ng C to produce accurate and precise results. With this detection limit, a 1.0 L sample of ambient air provides sufficient carbon for isotopic analysis. Emissions from vegetation and vehicle exhaust are compared and show clear differences in isotopic signatures. Ambient samples collected in metropolitan Miami and the Everglades National Park can be differentiated and reflect multiple sources and sinks affecting a single sampling location. Vehicle exhaust emissions of ethanol, and those collected in metropolitan Miami, have anomalously enriched delta(13)C values ranging from -5.0 to -17.2 per thousand; we attribute this result to ethanol's origin from corn and use as an additive in automotive fuels. PMID:20704369

  9. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    PubMed

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-01

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. PMID:25440666

  10. Mass spectrometry

    SciTech Connect

    Burlingame, A.L.; Maltby, D.; Russell, D.H.; Holland, P.T.

    1988-06-15

    This review series has served as a timely means to provide critical discussion of the advances and directions, strengths and weaknesses, and the state of maturity and promise of both new and established strategies and methods in a unifying single source. Widely disparate discoveries, inventions, and purposeful developments are required to enable mass spectrometric based strategies to take hold and make inroads into new types of issues at the molecular level of biological, medical, and chemical sciences. These are interdisciplinary endeavors. Of necessity, they have been selective both in the topics covered and in the contributions included but have endeavored to be sufficiently general so that both the new reader and the expert might readily find further literature and necessary detail. They have attempted to provide a thematic context for each topic. They note that this review series has a cumulative continuity about it, and the previous few Overview sections are still timely.

  11. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. PMID:18470926

  12. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Freeman, K. H.; Ricci, M. P.; Studley, S. A.; Hayes, J. M.

    1995-01-01

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  13. High accuracy determination of malachite green and leucomalachite green in salmon tissue by exact matching isotope dilution mass spectrometry.

    PubMed

    Hall, Zoe; Hopley, Chris; O'Connor, Gavin

    2008-10-15

    A high accuracy method for the quantification of malachite green (MG) and leucomalachite green (LMG) in salmon is described. Analytical challenges including the effects of analyte instability and matrix suppression were minimised by the use of exact matching isotope dilution mass spectrometry. The developed method included overnight extraction in acidified acetonitrile/ammonium acetate buffer and analysis by LC-MS/MS utilising isotopic internal standards. This method was used to determine the level of MG and LMG in a sample of salmon used in an international inter-comparison organised by the Comité Consultatif pour la Quantité de Matière (CCQM). The sum of MG and LMG was found to be 9.32+/-0.98ngg(-1) at the 95% confidence interval (relative expanded uncertainty 10.5% (k=2)). This encompassed the mean and median of the CCQM inter-comparison. PMID:18818128

  14. Measuring the Composition and Stable-Isotope Labeling of Algal Biomass Carbohydrates via Gas Chromatography/Mass Spectrometry.

    PubMed

    McConnell, Brian O; Antoniewicz, Maciek R

    2016-05-01

    We have developed a method to measure carbohydrate composition and stable-isotope labeling in algal biomass using gas chromatography/mass spectrometry (GC/MS). The method consists of two-stage hydrochloric acid hydrolysis, followed by chemical derivatization of the released monomer sugars and quantification by GC/MS. Fully (13)C-labeled sugars are used as internal standards for composition analysis. This convenient, reliable, and accurate single-platform workflow offers advantages over existing methods and opens new opportunities to study carbohydrate metabolism of algae under autotrophic, mixotrophic, and heterotrophic conditions using metabolic flux analysis and isotopic tracers such as (2)H2O and (13)C-glucose. PMID:27042946

  15. Simultaneous Measurement of Denitrification and Nitrogen Fixation Using Isotope Pairing with Membrane Inlet Mass Spectrometry Analysis†

    PubMed Central

    An, Soonmo; Gardner, Wayne S.; Kana, Todd

    2001-01-01

    A method for estimating denitrification and nitrogen fixation simultaneously in coastal sediments was developed. An isotope-pairing technique was applied to dissolved gas measurements with a membrane inlet mass spectrometer (MIMS). The relative fluxes of three N2 gas species (28N2, 29N2, and 30N2) were monitored during incubation experiments after the addition of 15NO3−. Formulas were developed to estimate the production (denitrification) and consumption (N2 fixation) of N2 gas from the fluxes of the different isotopic forms of N2. Proportions of the three isotopic forms produced from 15NO3− and 14NO3− agreed with expectations in a sediment slurry incubation experiment designed to optimize conditions for denitrification. Nitrogen fixation rates from an algal mat measured with intact sediment cores ranged from 32 to 390 μg-atoms of N m−2 h−1. They were enhanced by light and organic matter enrichment. In this environment of high nitrogen fixation, low N2 production rates due to denitrification could be separated from high N2 consumption rates due to nitrogen fixation. Denitrification and nitrogen fixation rates were estimated in April 2000 on sediments from a Texas sea grass bed (Laguna Madre). Denitrification rates (average, 20 μg-atoms of N m−2 h−1) were lower than nitrogen fixation rates (average, 60 μg-atoms of N m−2 h−1). The developed method benefits from simple and accurate dissolved-gas measurement by the MIMS system. By adding the N2 isotope capability, it was possible to do isotope-pairing experiments with the MIMS system. PMID:11229907

  16. Isotopic Measurement of Lead in Nanogram Quantities on Multi-Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lo, Y.; Shen, C.; Gallet, S.

    2007-12-01

    Lead isotopes have been used as geochemical tracers in Earth Sciences, such as geochemistry, paleoclimatology and chronology, due to the diverse ratios and variable elemental abundance. Determination of Pb isotope ratios, with 2-sigma external precisions of 200 ppm for 207Pb/206Pb and 208Pb/206Pb and 800 ppm for for 206Pb/204Pb, can be performed with a Faraday-cup protocol in static mode on a multi-collector ICP-MS (MC-ICP-MS), Thermo Electron Neptune. The sample size is as low as 3 ng of Pb consumed per measurement. Lead blanks, from acid, labware, and airborne particulate, was effectively reduced to less than 10 pg, which causes an isotopic ratio bias of 30-50 ppm at most. Isobaric interference of 204Hg on 204Pb was corrected by monitoring the ion beam intensity of 202Hg. Mass dependant instrumental fractionation was normalized to 205Tl/203Tl value. A desolvation nebulization system, Cetac Aridus, and an X-skimmer cone were used to enhance signal intensity. With a sample uptake rate of 50 μ L/min, Pb concentration of 5-10 ng/ml offers an ion beam intensity of larger than 1 volt for 208Pb. The measured isotope ratios with 2-sigma external uncertainty of an international standard of NIST- Pb 981 are: 206Pb/204Pb= 16.9419 ± 0.012, 207Pb/206Pb= 0.91475 ± 0.0002 and 208Pb/206Pb= 2.1674 ± 0.00035. The key merit of this technique is to provide a possibility of analyzing Pb isotopic composition in trace-quantity of 1-10 ng, mainly for sample with limited Pb content.

  17. Mass spectrometry in coupling with affinity capture-release and isotope-coded affinity tags for quantitative protein analysis.

    PubMed

    Turecek, Frantisek

    2002-01-01

    Affinity capture-release electrospray ionization mass spectrometry (ACESIMS) and isotope-coded affinity tags (ICAT) are two recently introduced techniques for the quantitation of protein activity and content with applications to clinical enzymology and functional proteomics, respectively. One common feature of these methods is that they use biotinylated tags that function as molecular handles for highly selective and reversible affinity capture of conjugates from complex biological mixtures such as cell homogenates and sub-cellular organelles. ACESIMS uses synthetic substrate conjugates specifically to target cellular enzymes that, when deficient, are the cause of genetic diseases. Multiplex determination of enzyme activities is used for the diagnosis of lysosomal storage diseases. The ICAT method relies on selective conjugation of cysteine thiol groups in proteins, followed by enzymatic digestion and quantitative analysis of peptide conjugates by mass spectrometry. Another common feature of the ACESIMS and ICAT approaches is that both use conjugates labeled with stable heavy isotopes as internal standards for quantitation. Selected applications of the ACESIMS and ICAT techniques are presented that include molecular-level diagnosis of genetic diseases in children and quantitative determination of protein expression in cells. PMID:11813306

  18. A guide through the computational analysis of isotope-labeled mass spectrometry-based quantitative proteomics data: an application study

    PubMed Central

    2011-01-01

    Background Mass spectrometry-based proteomics has reached a stage where it is possible to comprehensively analyze the whole proteome of a cell in one experiment. Here, the employment of stable isotopes has become a standard technique to yield relative abundance values of proteins. In recent times, more and more experiments are conducted that depict not only a static image of the up- or down-regulated proteins at a distinct time point but instead compare developmental stages of an organism or varying experimental conditions. Results Although the scientific questions behind these experiments are of course manifold, there are, nevertheless, two questions that commonly arise: 1) which proteins are differentially regulated regarding the selected experimental conditions, and 2) are there groups of proteins that show similar abundance ratios, indicating that they have a similar turnover? We give advice on how these two questions can be answered and comprehensively compare a variety of commonly applied computational methods and their outcomes. Conclusions This work provides guidance through the jungle of computational methods to analyze mass spectrometry-based isotope-labeled datasets and recommends an effective and easy-to-use evaluation strategy. We demonstrate our approach with three recently published datasets on Bacillus subtilis [1,2] and Corynebacterium glutamicum [3]. Special focus is placed on the application and validation of cluster analysis methods. All applied methods were implemented within the rich internet application QuPE [4]. Results can be found at http://qupe.cebitec.uni-bielefeld.de. PMID:21663690

  19. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  20. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-01-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  1. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling.

    PubMed

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C; Valentine, Stephen J

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H](2-) ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H](3-) ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H](2-) ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H](3-) ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented. Graphical Abstract ᅟ. PMID:26802030

  2. Rapid determination of (237)Np and plutonium isotopes in urine by inductively-coupled plasma mass spectrometry and alpha spectrometry.

    PubMed

    Maxwell, Sherrod L; Culligan, Brian K; Jones, Vernon D; Nichols, Sheldon T; Noyes, Gary W; Bernard, Maureen A

    2011-08-01

    A new rapid separation method was developed for the measurement of plutonium and neptunium in urine samples by inductively-coupled plasma mass spectrometry (ICP-MS) and/or alpha spectrometry with enhanced uranium removal. This method allows separation and preconcentration of plutonium and neptunium in urine samples using stacked extraction chromatography cartridges and vacuum box flow rates to facilitate rapid separations. There is an increasing need to develop faster analytical methods for emergency response samples. There is also enormous benefit to having rapid bioassay methods in the event that a nuclear worker has an uptake (puncture wound, etc.) to assess the magnitude of the uptake and guide efforts to mitigate dose (e.g., tissue excision and chelation therapy). This new method focuses only on the rapid separation of plutonium and neptunium with enhanced removal of uranium. For ICP-MS, purified solutions must have low salt content and low concentration of uranium due to spectral interference of (238)U(1)H(+) on m/z 239. Uranium removal using this method is enhanced by loading plutonium and neptunium initially onto TEVA resin, then moving plutonium to DGA resin where additional purification from uranium is performed with a decontamination factor of almost 1×10(5). If UTEVA resin is added to the separation scheme, a decontamination factor of ~3 × 10(6) can be achieved. PMID:21709507

  3. Accuracy and Reproducibility in Quantification of Plasma Protein Concentrations by Mass Spectrometry without the Use of Isotopic Standards

    PubMed Central

    Kramer, Gertjan; Woolerton, Yvonne; van Straalen, Jan P.; Vissers, Johannes P. C.; Dekker, Nick; Langridge, James I.; Beynon, Robert J.; Speijer, Dave; Sturk, Auguste; Aerts, Johannes M. F. G.

    2015-01-01

    Background Quantitative proteomic analysis with mass spectrometry holds great promise for simultaneously quantifying proteins in various biosamples, such as human plasma. Thus far, studies addressing the reproducible measurement of endogenous protein concentrations in human plasma have focussed on targeted analyses employing isotopically labelled standards. Non-targeted proteomics, on the other hand, has been less employed to this end, even though it has been instrumental in discovery proteomics, generating large datasets in multiple fields of research. Results Using a non-targeted mass spectrometric assay (LCMSE), we quantified abundant plasma proteins (43 mg/mL—40 ug/mL range) in human blood plasma specimens from 30 healthy volunteers and one blood serum sample (ProteomeXchange: PXD000347). Quantitative results were obtained by label-free mass spectrometry using a single internal standard to estimate protein concentrations. This approach resulted in quantitative results for 59 proteins (cut off ≥11 samples quantified) of which 41 proteins were quantified in all 31 samples and 23 of these with an inter-assay variability of ≤ 20%. Results for 7 apolipoproteins were compared with those obtained using isotope-labelled standards, while 12 proteins were compared to routine immunoassays. Comparison of quantitative data obtained by LCMSE and immunoassays showed good to excellent correlations in relative protein abundance (r = 0.72–0.96) and comparable median concentrations for 8 out of 12 proteins tested. Plasma concentrations of 56 proteins determined by LCMSE were of similar accuracy as those reported by targeted studies and 7 apolipoproteins quantified by isotope-labelled standards, when compared to reference concentrations from literature. Conclusions This study shows that LCMSE offers good quantification of relative abundance as well as reasonable estimations of concentrations of abundant plasma proteins. PMID:26474480

  4. Determination of Mineral-Specific Clumped Isotope Acid Digestion Fractionation Factors Using Heating Experiments and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Henry, D.; Tang, J.; Mosenfelder, J. L.; Eagle, R.; Tripati, A.

    2014-12-01

    Clumped isotope thermometry involves the determination of formation temperatures of carbonates from the fraction of isotopologues containing multiple rare isotopes (oxygen-18 and carbon-13). At high temperatures, the abundance of these isotopologues should be stochastic. At lower temperatures, there is a tendency for heavy isotopes to form bonds with each other. However, spectroscopic determination of isotope ratios with high precision is difficult in solids, and so 13C-18O bond abundance is not measured in the solid phase. Instead, analysis of carbonates is performed using gas source mass spectrometry, by reacting the carbonate samples with phosphoric acid and measuring the evolved CO2 gas. As an oxygen atom is lost during the conversion of CO32- groups to CO2, this reaction is hypothesized to result in mineral and acid digestion temperature-dependent fractionation. In order to quantify this fractionation between CO32- and CO2, this experiment seeks to determine acid fractionation factors for carbonate samples of varying composition by randomizing samples through intense heating and comparing analyte CO2 measured composition to the expected composition for a stochastically distributed sample. From this analysis, future carbonate measurements can be calibrated to account for acid digestion fractionation.

  5. Lead speciation in rainwater by isotope dilution-high performance liquid chromatography-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ebdon, Les; Hill, Steve J.; Rivas, Cristina

    1998-02-01

    A new method for lead speciation in rainwater by isotope dilution analysis (IDA) using directly coupled high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) is described and demonstrated. Samples containing trimethyllead (TML) chloride and triethyllead (TEL) chloride in the presence of large amounts of inorganic lead have been analysed by HPLC-ICP-MS using reverse phase ion-pairing chromatography. The detection limit for the procedure is 3 ng g -1 for TML as Pb and 14 ng g -1 for TEL as Pb, with a linear range exceeding 1000 ng g -1 and a relative standard deviation of 4% for TML in the range 50-1000 ng g -1. TML chloride isotopically enriched in the stable 206 isotope was prepared and used to enhance the accuracy of the method by isotope dilution analysis. The IDA-HPLC-ICP-MS method was successfully applied to the analysis of a sample of artificial rainwater used in a collaborative study.

  6. Discrimination of geographical origin of lentils (Lens culinaris Medik.) using isotope ratio mass spectrometry combined with chemometrics.

    PubMed

    Longobardi, F; Casiello, G; Cortese, M; Perini, M; Camin, F; Catucci, L; Agostiano, A

    2015-12-01

    The aim of this study was to predict the geographic origin of lentils by using isotope ratio mass spectrometry (IRMS) in combination with chemometrics. Lentil samples from two origins, i.e. Italy and Canada, were analysed obtaining the stable isotope ratios of δ(13)C, δ(15)N, δ(2)H, δ(18)O, and δ(34)S. A comparison between median values (U-test) highlighted statistically significant differences (p<0.05) for all isotopic parameters between the lentils produced in these two different geographic areas, except for δ(15)N. Applying principal component analysis, grouping of samples was observed on the basis of origin but with overlapping zones; consequently, two supervised discriminant techniques, i.e. partial least squares discriminant analysis and k-nearest neighbours algorithm were used. Both models showed good performances with external prediction abilities of about 93% demonstrating the suitability of the methods developed. Subsequently, isotopic determinations were also performed on the protein and starch fractions and the relevant results are reported. PMID:26041202

  7. Fission track-secondary ion mass spectrometry as a tool for detecting the isotopic signature of individual uranium containing particles.

    PubMed

    Esaka, Fumitaka; Lee, Chi-Gyu; Magara, Masaaki; Kimura, Takaumi

    2012-04-01

    A fission track technique was used as a sample preparation method for subsequent isotope abundance ratio analysis of individual uranium containing particles with secondary ion mass spectrometry (SIMS) to measure the particles with higher enriched uranium efficiently. A polycarbonate film containing particles was irradiated with thermal neutrons and etched with 6M NaOH solution. Each uranium containing particle was then identified by observing fission tracks created and a portion of the film having a uranium containing particle was cut out and put onto a glassy carbon planchet. The polycarbonate film, which gave the increases of background signals on the uranium mass region in SIMS analysis, was removed by plasma ashing with 200 W for 20 min. In the analysis of swipe samples having particles containing natural (NBL CRM 950a) or low enriched uranium (NBL CRM U100) with the fission track-SIMS method, uranium isotope abundance ratios were successfully determined. This method was then applied to the analysis of a real inspection swipe sample taken at a nuclear facility. As a consequence, the range of (235)U/(238)U isotope abundance ratio between 0.0276 and 0.0438 was obtained, which was higher than that measured by SIMS without using a fission track technique (0.0225 and 0.0341). This indicates that the fission track-SIMS method is a powerful tool to identify the particle with higher enriched uranium in environmental samples efficiently. PMID:22405310

  8. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water. PMID:26946020

  9. A comparison of lead-isotope measurements on exploration-type samples using inductively coupled plasma and thermal ionization mass spectrometry

    USGS Publications Warehouse

    Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.

    1989-01-01

    Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.

  10. Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    The performance of systems in which picomole quantities of sample are mixed with a carrier gas and passed through an isotope-ratio mass spectrometer system was examined experimentally and theoretically. Two different mass spectrometers were used, both having electron-impact ion sources and Faraday cup collector systems. One had an accelerating potential of 10kV and accepted 0.2 mL of He/min, producing, under those conditions, a maximum efficiency of 1 CO2 molecular ion collected per 700 molecules introduced. Comparable figures for the second instrument were 3 kV, 0.5 mL of He/min, and 14000 molecules/ion. Signal pathways were adjusted so that response times were <200 ms. Sample-related ion currents appeared as peaks with widths of 3-30 s. Isotope ratios were determined by comparison to signals produced by standard gases. In spite of rapid variations in signals, observed levels of performance were within a factor of 2 of shot-noise limits. For the 10-kV instrument, sample requirements for standard deviations of 0.1 and 0.5% were 45 and 1.7 pmol, respectively. Comparable requirements for the 3-kV instrument were 900 and 36 pmol. Drifts in instrumental characteristics were adequately neutralized when standards were observed at 20-min intervals. For the 10-kV instrument, computed isotopic compositions were independent of sample size and signal strength over the ranges examined. Nonlinearities of <0.04%/V were observed for the 3-kV system. Procedures for observation and subtraction of background ion currents were examined experimentally and theoretically. For sample/ background ratios varying from >10 to 0.3, precision is expected and observed to decrease approximately 2-fold and to depend only weakly on the precision with which background ion currents have been measured.

  11. Thermal-ionization isotope-dilution mass spectrometry as a definitive method for determination of potassium in serum

    SciTech Connect

    Gramlich, J.W.; Machlan, L.A.; Brletic, K.A.; Kelly, W.R.

    1982-06-01

    Thermal-ionization isotope-dilution mass spectrometry is a highly precise and accurate method for the determination of potassium concentrations in serum. Although not suited for routine use because of the time and expense required, the technique provides an extremely valuable tool for the characterization of reference materials and for evaluating other analytical methods. The technique has recently been used to determine the concentration of potassium in a human serum standard, NBS Standard Reference Material 909. Seven vials of the serum were chemically processed and then analyzed by two spectroscopists independently, using different mass spectrometers. The results confirm previous work that indicates that a precision of 0.1% relative can be routinely achieved. The systematic errors in the method have been thoroughly evaluated. When the precise results are thus corrected, they are essentially bias free and hence definitive.

  12. Simplified sample preparation procedure for measuring isotope-enriched methylmercury by gas chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Avramescu, Mary-Luyza; Zhu, Joy; Yumvihoze, Emmanuel; Hintelmann, Holger; Fortin, Danielle; Lean, David R S

    2010-06-01

    Many procedures have been developed to measure the concentration of monomethylmercury (MeHg) from different sample matrices, and the use of stable isotopes of mercury now provides opportunities to determine its formation and degradation rates. Here, a modified procedure for measuring mercury isotopes in sediment samples that uses acid leaching-ion exchange-thiosulfate extraction (TSE) to isolate and purify the methylated mercury from the matrix is proposed. The latter is followed by aqueous-phase ethylation, purge and trap on Tenax, gas chromatography separation of ethylated mercury compounds, and inductively coupled plasma mass spectrometry detection. The new TSE procedure bridges together two well-known methods, the acid-leaching and distillation-derivatization procedures, offering the advantages of artifact-free formation of the first, and low detection limits and the possibility of quantification of individual isotopes of mercury of the second. The modified procedure retains the derivatization, purge and trap, and gas chromatography and inductively coupled plasma mass spectrometry (GC-ICP-MS) detection steps from the distillation-derivatization procedure, and eliminates the distillation step, which is not only laborious but also expensive, due to the high cost of installation and time-consuming cleaning process. Major advantages of the TSE procedure proposed include the extraction and analysis of a large number of samples in a short time, excellent analyte recoveries, and the lack of artifact formation. Sediment certified reference materials (CRMs), BCR 580 and IAEA 405, were used to test the TSE procedure accuracy. Recoveries between 94 to 106% and 95 to 96% were obtained for CRMs and spiked samples (Milli-Q(R) water), respectively. Comparisons among thiosulfate extraction, distillation, and acid-leaching procedures have shown good agreement of methylmercury values. PMID:20821567

  13. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion-isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schmitt, Jochen; Seth, Barbara; Bock, Michael; van der Veen, Carina; Mller, Lars; Sapart, Celia; Prokopiou, Markella; Sowers, Todd; Rckmann, Thomas; Fischer, Hubertus

    2014-05-01

    Stable carbon isotope analysis of methane (?13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography isotope ratio mass spectrometry coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton can severely interfere during the mass spectrometric measurement leading to significant biases in ?13C of CH4 if krypton is not sufficiently separated during the analysis. According to our experiments, the krypton interference is likely composed of two individual effects with the lateral tailing of the doubly charged 86Kr peak affecting the neighbouring m/z 44 and partially the m/z 45 Faraday cups. Additionally, a broad signal affecting m/z 45 and especially m/z 46 is assumed to result from scattered ions of singly charged krypton. The introduced bias in the measured isotope ratios is dependent on the chromatographic separation, the Kr to CH4 mixing ratio in the sample, the mass spectrometer source tuning as well as the detector configuration and can amount to up to several permil in ?13C. Apart from technical solutions to avoid this interference we present correction routines to a posteriori remove the bias.

  14. On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion-isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Seth, B.; Bock, M.; van der Veen, C.; Mller, L.; Sapart, C. J.; Prokopiou, M.; Sowers, T.; Rckmann, T.; Fischer, H.

    2013-05-01

    Stable carbon isotope analysis of methane (?13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton (Kr) can severely interfere during the mass spectrometric measurement, leading to significant biases in ?13C of CH4, if krypton is not sufficiently separated during the analysis. According to our experiments, the krypton interference is likely composed of two individual effects, with the lateral tailing of the doubly charged 86Kr peak affecting the neighbouring m/z 44 and partially the m/z 45 Faraday cups. Additionally, a broad signal affecting m/z 45 and especially m/z 46 is assumed to result from scattered ions of singly charged krypton. The introduced bias in the measured isotope ratios is dependent on the chromatographic separation, the krypton-to-CH4 mixing ratio in the sample, the focusing of the mass spectrometer as well as the detector configuration and can amount to up to several per mil in ?13C. Apart from technical solutions to avoid this interference, we present correction routines to a posteriori remove the bias.

  15. High-temperature pyrolysis/gas chromatography/isotope ratio mass spectrometry: simultaneous measurement of the stable isotopes of oxygen and carbon in cellulose.

    PubMed

    Woodley, Ewan J; Loader, Neil J; McCarroll, Danny; Young, Giles H F; Robertson, Iain; Heaton, Timothy H E; Gagen, Mary H; Warham, Joseph O

    2012-01-30

    Stable isotope analysis of cellulose is an increasingly important aspect of ecological and palaeoenvironmental research. Since these techniques are very costly, any methodological development which can provide simultaneous measurement of stable carbon and oxygen isotope ratios in cellulose deserves further exploration. A large number (3074) of tree-ring α-cellulose samples are used to compare the stable carbon isotope ratios (δ(13)C) produced by high-temperature (1400°C) pyrolysis/gas chromatography (GC)/isotope ratio mass spectrometry (IRMS) with those produced by combustion GC/IRMS. Although the two data sets are very strongly correlated, the pyrolysis results display reduced variance and are strongly biased towards the mean. The low carbon isotope ratios of tree-ring cellulose during the last century, reflecting anthropogenic disturbance of atmospheric carbon dioxide, are thus overestimated. The likely explanation is that a proportion of the oxygen atoms are bonding with residual carbon in the reaction chamber to form carbon monoxide. The 'pyrolysis adjustment', proposed here, is based on combusting a stratified sub-sample of the pyrolysis results, across the full range of carbon isotope ratios, and using the paired results to define a regression equation that can be used to adjust all the pyrolysis measurements. In this study, subsamples of 30 combustion measurements produced adjusted chronologies statistically indistinguishable from those produced by combusting every sample. This methodology allows simultaneous measurement of the stable isotopes of carbon and oxygen using high-temperature pyrolysis, reducing the amount of sample required and the analytical costs of measuring them separately. PMID:22173798

  16. Comparative quantification and identification of phosphoproteins using stable isotope labeling and liquid chromatography/mass spectrometry.

    PubMed

    Weckwerth, W; Willmitzer, L; Fiehn, O

    2000-01-01

    A new liquid chromatography/mass spectrometry (LC/MS) method is described for relative quantification of phosphoproteins to simultaneously compare the phosphorylation status of proteins under two different conditions. Quantification was achieved by beta-elimination of phosphate from phospho-Ser/Thr followed by Micheal addition of ethanethiol and/or ethane-d(5)-thiol selectively at the vinyl moiety of dehydroalanine and dehydroamino-2-butyric acid. The method was evaluated using the model phosphoprotein alpha(S1)-casein, for which three phosphopeptides were found after tryptic digestion. Reproducibility of the relative quantification of seven independent replicates was found to be 11% SD. The dynamic range covered two orders of magnitude, and quantification was linear for mixtures of 0 to 100% alpha(S1)-casein and dephospho-alpha(S1)-casein (R(2) = 0.986). Additionally, the method allowed protein identification and determination of the phosphorylation sites via MS/MS fragmentation. PMID:10962490

  17. Authenticity of carbon dioxide bubbles in French ciders through multiflow-isotope ratio mass spectrometry measurements.

    PubMed

    Gaillard, Laetitia; Guyon, Francois; Salagoïty, Marie-Hélène; Médina, Bernard

    2013-12-01

    A procedure to detect whether carbon dioxide was added to French ciders has been developed. For this purpose, an optimised and simplified method is proposed to determine (13)C/(12)C isotope ratio of carbon dioxide (δ(13)C) in ciders. Three critical steps were checked: (1) influence of atmospheric CO2 remaining in the loaded vial, (2) impact of helium flush, (3) sampling speed. This study showed that atmospheric CO2 does not impact the measurement, that helium flush can lead to isotopic fractionation and finally, that a fractionation occurs only 5h after bottle opening. The method, without any other preparation, consists in sampling 0.2 mL of cold (4 °C) cider in a vial that is passed in an ultrasonic bath for 10 min at room temperature to enhance cider de-carbonation. The headspace CO2 is then analysed using the link Multiflow®-isotope ratio mass spectrometer. Each year, a data bank is developed by fermenting authentic apples juices in order to control cider authenticity. Over a four year span (2008-2011), the CO2 produced during the fermentation step was studied. This set of 61 authentic ciders, from various French production areas, was used to determine a δ(13)C value range of -22.59±0.92‰ for authentic ciders CO2 bubbles. 75 commercial ciders were analysed with this method. Most of the samples analysed present a gas δ(13)C value in the expected range. Nevertheless, some ciders have δ(13)C values outside the 3σ limit, revealing carbonation by technical CO2. This practice is not allowed for organic, "Controlled Appellation of Origin" ciders and ciders specifying natural carbonation on the label. PMID:23870934

  18. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pathirana, S. L.; van der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-12-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol-1, or 1-3 % of the typical sample size. The repeatability is 0.1 ‰ for δ13C and 0.2 ‰ for δ18O. The peak area allows for simultaneous determination of the mole fraction with an analytical repeatability of ~ 0.7 nmol mol-1 for 100 mL of ambient air (185.4 nmol mol-1 of CO). An automated single measurement is performed in only 18 min, and the achieved time efficiency (and small volume of sample air) allows for repetitive measurements practically.

  19. Quantitative analysis of global phosphorylation changes with high-resolution tandem mass spectrometry and stable isotopic labeling

    PubMed Central

    Kweon, Hye Kyong; Andrews, Philip C.

    2013-01-01

    Quantitative measurement of specific protein phosphorylation sites is a primary interest of biologists, as site-specific phosphorylation information provides insights into cell signaling networks and cellular dynamics at a system level. Over the last decade, selective phosphopeptide enrichment methods including IMAC and metal oxides (TiO2 and ZrO2) have been developed and greatly facilitate large scale phosphoproteome analysis of various cells, tissues and living organisms, in combination with modern mass spectrometers featuring high mass accuracy and high mass resolution. Various quantification strategies have been applied to detecting relative changes in expression of proteins, peptides, and specific modifications between samples. The combination of mass spectrometry-based phosphoproteome analysis with quantification strategies provides a straightforward and unbiased method to identify and quantify site-specific phosphorylation. We describe common strategies for mass spectrometric analysis of stable isotope labeled samples, as well as two widely applied phosphopeptide enrichment methods based on IMAC(NTA-Fe3+) and metal oxide (ZrO2). Instrumental configurations for on-line LC-tandem mass spectrometric analysis and parameters of conventional bioinformatic analysis of large data sets are also considered for confident identification, localization, and reliable quantification of site-specific phosphorylation. PMID:23611819

  20. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry.

    PubMed

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ. PMID:26902947

  1. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca2+ on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology.

  2. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-02-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca2+ on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology.

  3. Emerging use of isotope ratio mass spectrometry as a tool for discrimination of 3,4-methylenedioxymethamphetamine by synthetic route.

    PubMed

    Buchanan, Hilary A S; Daéid, Niamh Nic; Meier-Augenstein, Wolfram; Kemp, Helen F; Kerr, William J; Middleditch, Michael

    2008-05-01

    Drug profiling, or the ability to link batches of illicit drugs to a common source or synthetic route, has long been a goal of law enforcement agencies. Research in the past decade has explored drug profiling with isotope ratio mass spectrometry (IRMS). This type of research can be limited by the use of substances seized by police, of which the provenance is unknown. Fortunately, however, some studies in recent years have been carried out on drugs synthesized in-house and therefore of known history. In this study, 18 MDMA samples were synthesized in-house from aliquots of the same precursor by three common reductive amination routes and analyzed for 13C, 15N, and 2H isotope abundance using IRMS. For these three preparative methods, results indicate that 2H isotope abundance data is necessary for discrimination by synthetic route. Furthermore, hierarchical cluster analysis using 2H data on its own or combined with 13C and/or 15N provides a statistical means for accurate discrimination by synthetic route. PMID:18355086

  4. Lead isotopic analysis of infant bone tissue dating from the Roman era via multicollector ICP-mass spectrometry.

    PubMed

    De Muynck, David; Cloquet, Christophe; Smits, Elisabeth; de Wolff, Frederik A; Quitté, Ghylaine; Moens, Luc; Vanhaecke, Frank

    2008-01-01

    Archaeological samples originating from a cemetery of a Roman settlement, Pretorium Agrippinae (1st-3rd century A.D.), excavated near Valkenburg (The Netherlands) have been subjected to Pb isotopic analysis. The set of samples analysed consisted of infant bone tissue and possible sources of bone lead, such as the surrounding soil, garum, and lead objects (e.g., water pipes). After sample digestion with quantitative Pb recovery and subsequent quantitative and pure isolation of lead, the Pb isotopic composition was determined via multicollector ICP-mass spectrometry. The Pb isotope ratio results allowed distinction of three groups: bone, soil, and lead objects + garum. The 208Pb/206Pb ratio ranges were between 2.059 and 2.081 for the soils, between 2.067 and 2.085 for the bones, and between 2.087 and 2.088 for the lead objects. The garum sample is characterised by a 208Pb/206Pb ratio of 2.085. The bone group is situated on the mixing line between the soil and lead object groups, allowing the statement that diagenesis is not the main cause of the Pb found in the bones. PMID:17968533

  5. Determination of the natural abundance δ15N of taurine by gas chromatography-isotope ratio measurement mass spectrometry.

    PubMed

    Tea, Illa; Antheaume, Ingrid; Besnard, Jorick; Robins, Richard J

    2010-12-15

    The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance δ(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the δ(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4‰ (-0.02 to 0.39‰). When applied to four sources of taurine with various δ(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance δ(15)N values of taurine over the concentration range 1.5-7.84 µmol.mL(-1) in samples of biological origin. PMID:21072793

  6. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    PubMed Central

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1–11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines. PMID:26888486

  7. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Kita, Adriana; Cheng, Guilong; Kori, Yekaterina; Liu, Hongcheng

    2016-03-15

    Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in (18)O-labeled water. The sample from the digestion in (18)O-water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). The molecular weight differences between the peptides digested in normal water versus (18)O-water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of (18)O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation. PMID:26747642

  8. [Determination of polychlorinated naphthalenes in environmental samples by isotope dilution gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Liu, Zhitong; Zhang, Bing; Wang, Wenwen; Liu, Guorui; Gao, Lirong; Zheng, Minghui

    2013-09-01

    An isotope dilution gas chromatography combined with triple quadrupole mass spectrometry (GC-MS/MS) method was established for the analysis of twenty polychlorinated naphthalenes (PCNs) congeners in environmental samples. The linear correlation coefficients (R2) of calibration curves were greater than 0.99 in the concentration range of 0.5 - 200 microg/L for all the twenty PCN congeners. The average relative response factors (RRF) were calculated based on a seven-point calibration for the twenty PCN congeners. The relative standard deviations (RSDs) of all the congeners were below 15% (n = 7). The limits of detection (LOD) of the established method ranged from 0.04 to 0.48 microg/L for the twenty PCN congeners. The recoveries of matrix spiked samples ranged from 45.2% to 87.9%, and the RSDs ranged from 0.4% to 21.2%. The sediment samples and stack gas samples collected from secondary aluminum smelting were analyzed by the established method. The obtained results were also compared with the data analyzed by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) method. The comparison indicated that the data of the established method was in good agreement with those of HRGC/HRMS method with the RSDs of 0.5% - 41.4%. Consequently, the established GC-MS/MS method can be applied to the determination of PCNs in environmental samples. PMID:24392626

  9. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis.

    PubMed

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1-11.3 folds. In addition, the concentration of homocysteine, ?-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines. PMID:26888486

  10. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-02-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1-11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines.

  11. Quantitation of asparagine deamidation by isotope labeling and liquid chromatography coupled with mass spectrometry analysis.

    PubMed

    Liu, Hongcheng; Wang, Fengqiang; Xu, Wei; May, Kimberly; Richardson, Daisy

    2013-01-01

    Nonenzymatic asparagine (Asn) deamidation is one of the commonly observed posttranslational modifications of proteins. Recent development of several specific analytical methods has allowed for efficient identification and differentiation of the deamidation products (i.e., isoaspartate [isoAsp] and aspartate [Asp]). Isotope labeling of isoAsp and Asp that are generated during sample preparation by 18O has been developed and can differentiate isoAsp and Asp as analytical artifacts from those present in the samples prior to sample preparation for an accurate quantitation. However, the 18O labeling procedure has a limitation due to the additional incorporation of up to two 18O atoms into the peptide C-terminal carboxyl groups. Variability in the incorporation of 18O atoms into the peptide C-terminal carboxyl groups results in complicated mass spectra and hinders data interpretation. This limitation can be overcome by the dissection of the complicated mass spectra using a calculation method presented in the current study. The multiple-step calculation procedure has been successfully employed to determine the levels of isoAsp and Asp that are present in the sample prior to sample treatment. PMID:23017877

  12. Simultaneous determination of alachlor, metolachlor, atrazine, and simazine in water and soil by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect

    Huang, L.Q.

    1989-03-01

    A multiresidue method was developed for the simultaneous determination of low parts per billion (ppb) concentrations of the herbicides alachlor, metolachlor, atrazine, and simazine in water and soil using isotope dilution gas chromatography/mass spectrometry (GC/MS). Known amounts of /sup 15/N,/sup 13/C-alachlor and /sup 2/H/sub 5/-atrazine were added to each sample as internal standards. The samples were then prepared by a solid phase extraction with no further cleanup. A high resolution GC/low resolution MS system with data acquisition in selected ion monitoring mode was used to quantitate herbicides in the extract. The limit of detection was 0.05 ppb for water and 0.5 ppb for soil. Accuracy greater than 80% and precision better than 4% was demonstrated with spiked samples.

  13. Application of screening experimental designs to assess chromatographic isotope effect upon isotope-coded derivatization for quantitative liquid chromatography-mass spectrometry.

    PubMed

    Szarka, Szabolcs; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2014-07-15

    Isotope effect may cause partial chromatographic separation of labeled (heavy) and unlabeled (light) isotopologue pairs. Together with a simultaneous matrix effect, this could lead to unacceptable accuracy in quantitative liquid chromatography-mass spectrometry assays, especially when electrospray ionization is used. Four biologically relevant reactive aldehydes (acrolein, malondialdehyde, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal) were derivatized with light or heavy (d3-, (13)C6-, (15)N2-, or (15)N4-labeled) 2,4-dinitrophenylhydrazine and used as model compounds to evaluate chromatographic isotope effects. For comprehensive assessment of retention time differences between light/heavy pairs under various gradient reversed-phase liquid chromatography conditions, major chromatographic parameters (stationary phase, mobile phase pH, temperature, organic solvent, and gradient slope) and different isotope labelings were addressed by multiple-factor screening using experimental designs that included both asymmetrical (Addelman) and Plackett-Burman schemes followed by statistical evaluations. Results confirmed that the most effective approach to avoid chromatographic isotope effect is the use of (15)N or (13)C labeling instead of deuterium labeling, while chromatographic parameters had no general influence. Comparison of the alternate isotope-coded derivatization assay (AIDA) using deuterium versus (15)N labeling gave unacceptable differences (>15%) upon quantifying some of the model aldehydes from biological matrixes. On the basis of our results, we recommend the modification of the AIDA protocol by replacing d3-2,4-dinitrophenylhydrazine with (15)N- or (13)C-labeled derivatizing reagent to avoid possible unfavorable consequences of chromatographic isotope effects. PMID:24922593

  14. Application of Screening Experimental Designs to Assess Chromatographic Isotope Effect upon Isotope-Coded Derivatization for Quantitative Liquid Chromatography–Mass Spectrometry

    PubMed Central

    2015-01-01

    Isotope effect may cause partial chromatographic separation of labeled (heavy) and unlabeled (light) isotopologue pairs. Together with a simultaneous matrix effect, this could lead to unacceptable accuracy in quantitative liquid chromatography–mass spectrometry assays, especially when electrospray ionization is used. Four biologically relevant reactive aldehydes (acrolein, malondialdehyde, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal) were derivatized with light or heavy (d3-, 13C6-, 15N2-, or 15N4-labeled) 2,4-dinitrophenylhydrazine and used as model compounds to evaluate chromatographic isotope effects. For comprehensive assessment of retention time differences between light/heavy pairs under various gradient reversed-phase liquid chromatography conditions, major chromatographic parameters (stationary phase, mobile phase pH, temperature, organic solvent, and gradient slope) and different isotope labelings were addressed by multiple-factor screening using experimental designs that included both asymmetrical (Addelman) and Plackett–Burman schemes followed by statistical evaluations. Results confirmed that the most effective approach to avoid chromatographic isotope effect is the use of 15N or 13C labeling instead of deuterium labeling, while chromatographic parameters had no general influence. Comparison of the alternate isotope-coded derivatization assay (AIDA) using deuterium versus 15N labeling gave unacceptable differences (>15%) upon quantifying some of the model aldehydes from biological matrixes. On the basis of our results, we recommend the modification of the AIDA protocol by replacing d3-2,4-dinitrophenylhydrazine with 15N- or 13C-labeled derivatizing reagent to avoid possible unfavorable consequences of chromatographic isotope effects. PMID:24922593

  15. Determination of dicyandiamide in infant formula by stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry.

    PubMed

    Inoue, Koichi; Sakamoto, Tasuku; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2014-08-01

    Dicyandiamide is a compound for reducing the negative effects of greenhouse gas emissions and nitrate leaching into waterways. In this study, the trace contamination of dicyandiamide in infant formula was analysed by stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS). Dicyandiamide and a stable isotope internal standard were monitored by multiple reaction-monitoring with mass transitions: m/z 85→68/43 and m/z 89→71/45 in the electrospray positive ion mode. For sample preparation of the infant formula, a diluted/filtered procedure was developed for this assay. The calculated LOD and LOQ values were 0.01 or 0.05ng/mL for the standard solution, respectively. The averaged recovery and precision were 110.8% and 7.4%, respectively. This assay was applied to monitor 23 infant formulas, and the dicyandiamide contamination in one sample was detected and quantified at 79.1±1.2ng/g (ppb) powder. We suggest that it is necessary to cautiously monitor the DCD in common products from international countries. PMID:24629985

  16. Determination of 90Sr and Pu isotopes in contaminated groundwater samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, Miroslav V.; Ostapczuk, Peter; Halicz, Ludwik; Hille, Ralf; Becker, J. Sabine

    2005-04-01

    A sensitive analytical method for determining the artificial radionuclides 90Sr, 239Pu and 240Pu at the ultratrace level in groundwater samples from the Semipalatinsk Test Site area in Kazakhstan by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS) was developed. In order to avoid possible isobaric interferences at m/z 90 for 90Sr determination (e.g. 90Zr+, 40Ar50Cr+, 36Ar54Fe+, 58Ni16O2+, 180Hf2+, etc.), the measurements were performed at medium mass resolution under cold plasma conditions. Pu was separated from uranium by means of extraction chromatography using Eichrom TEVA resin with a recovery of 83%. The limits of detection for 90Sr, 239Pu and 240Pu in water samples were determined as 11, 0.12 and 0.1 fg ml-1, respectively. Concentrations of 90Sr and 239Pu in contaminated groundwater samples ranged from 18 to 32 and from 28 to 856 fg ml-1, respectively. The 240Pu/239Pu isotopic ratio in groundwater samples was measured as 0.17. This isotope ratio indicates that the most probable source of contamination of the investigated groundwater samples was the nuclear weapons tests at the Semipalatinsk Test Site conducted by the USSR in the 1960s.

  17. Inorganic mass spectrometry

    SciTech Connect

    Adams, F.; Gijbels, R.; Van Grieken, R.

    1988-01-01

    Inorganic mass spectrometry is enjoying a resurgence of interest among analytical chemists. Dramatic improvements in existing techniques, rapid development and commercialization of new methods, and successful application to increasingly difficult analytical problems are all factors responsible for the renewal of interest in MS as applied to inorganic, elemental, and isotopic analysis. Given the level of recent activity in this field, the book is both timely and needed. Edited by three faculty members of the University of Antwerp in Belgium, the book contains chapters contributed by these editors and other established mass spectrometrists. It fills a void that has existed too long in MS. Too many recent texts purporting to survey the technique of MS in general have ignored inorganic applications altogether. As the title implies, this book turns the tables somewhat and is devoted entirely to the importance of MS in inorganic analysis. The book contains detailed chapters on both established and newer methods of inorganic MS analysis, including spark source, glow discharge, secondary ion, laser microprobe, ICP source, and isotope dilution MS techniques. Introductory and concluding chapters discuss the historical and future roles of inorganic MS, respectively; this historical synopsis is particularly interesting and informative. The discussion of spark source MS includes an excellent and up-to-date treatment of the physics and dynamics of the spark discharge phenomenon as well as a thorough review of the technique's features.

  18. Simultaneous Detection of Androgen and Estrogen Abuse in Breeding Animals by Gas Chromatography-Mass Spectrometry/Combustion/Isotope Ratio Mass Spectrometry (GC-MS/C/IRMS) Evaluated against Alternative Methods.

    PubMed

    Janssens, Geert; Mangelinckx, Sven; Courtheyn, Dirk; De Kimpe, Norbert; Matthijs, Bert; Le Bizec, Bruno

    2015-09-01

    The administration of synthetic homologues of naturally occurring steroids can be demonstrated by measuring (13)C/(12)C isotopic ratios of their urinary metabolites. Gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) was used in this study to appraise in a global approach isotopic deviations of two 17β-testosterone metabolites (17α-testosterone and etiocholanolone) and one 17β-estradiol metabolite (17α-estradiol) together with those of 5-androstene-3β,17α-diol as endogenous reference compound (ERC). Intermediate precisions of 0.35‰, 1.05‰, 0.35‰, and 0.21‰, respectively, were observed (n = 8). To assess the performance of the analytical method, a bull and a heifer were treated with 17β-testosterone propionate and 17β-estradiol-3-benzoate. The sensitivity of the method permitted the demonstration of 17β-estradiol treatment up to 24 days. For 17β-testosterone treatment, the detection windows were 3 days and 24 days for the bull and the heifer, respectively. The capability of GC-MS/C/IRMS to demonstrate natural steroid abuse for urinary steroids was eventually compared to those of mass spectrometry (LC-MS/MS) when measuring intact steroid esters in blood and hair. PMID:26271751

  19. Potential of ion chromatography coupled to isotope ratio mass spectrometry via a liquid interface for beverages authentication.

    PubMed

    Guyon, Francois; Gaillard, Laetitia; Brault, Audrey; Gaultier, Nicolas; Salagoty, Marie-Hlne; Mdina, Bernard

    2013-12-27

    New tools for the determination of characteristic parameters for food authentication are requested to prevent food adulteration from which health concerns, unfair competition could follow. A new coupling in the area of compound-specific carbon 13 isotope ratio (?(13)C) analysis was developed to simultaneously quantify ?(13)C values of sugars and organic acids. The coupling of ion chromatography (IC) together with isotope ratio mass spectrometry (IRMS) can be achieved using a liquid interface allowing a chemical oxidation (co) of organic matter. Synthetic solutions containing 1 polyol (glycerol), 3 carbohydrates (sucrose, glucose and fructose) and 12 organic acids (gluconic, lactic, malic, tartaric, oxalic, fumaric, citric and isocitric) were used to optimize chromatographic conditions (concentration gradient and 3 types of column) and the studied isotopic range (-32.28 to -10.65) corresponds to the values found in food products. Optimum chromatographic conditions are found using an IonPac AS15, an elution flow rate of 0.3mLmin(-1) and a linear concentration gradient from 2 to 76mM (rate 21mMmin(-1)). Comparison between ?(13)C value individually obtained for each compound with the coupling IRMS and elemental analyzer, EA-IRMS, and the ones measured on the mixture of compounds by IC-co-IRMS does not reveal any isotope fractionation. Thus, under these experimental conditions, IC-co-IRMS results are accurate and reproducible. This new coupling was tested on two food matrices, an orange juice and a sweet wine. Some optimization is necessary as the concentration range between sugars and organic acids is too large: an increase in the filament intensity of the IRMS is necessary to simultaneously detect the two compound families. These first attempts confirm the good results obtained on synthetic solutions and the strong potential of the coupling IC-co-IRMS in food authentication area. PMID:24267317

  20. Metabolic Tracing Using Stable Isotope-Labeled Substrates and Mass Spectrometry in the Perfused Mouse Heart.

    PubMed

    Ruiz, Matthieu; Gélinas, Roselle; Vaillant, Fanny; Lauzier, Benjamin; Des Rosiers, Christine

    2015-01-01

    There has been a resurgence of interest for the field of cardiac metabolism catalyzed by evidence demonstrating a role of metabolic dysregulation in the pathogenesis of heart disease as well as the increased need for new therapeutic targets for patients with these diseases. In this regard, measuring substrate fluxes is critical in providing insight into the dynamics of cellular metabolism and in delineating the regulation of metabolite production and utilization. This chapter provides a comprehensive description of concepts, guidelines, and tips to assess metabolic fluxes relevant to energy substrate metabolism using (13)C-labeled substrates and (13)C-isotopomer analysis by gas chromatography-mass spectrometry (GC-MS), and the ex vivo working heart as study model. The focus will be on the mouse and on flux parameters, which are commonly assessed in the field, namely, those relevant to substrate selection for energy metabolism, specifically the relative contribution of carbohydrate (glucose, lactate, and pyruvate) and fatty acid oxidation to acetyl-CoA formation for citrate synthesis, glycolysis, as well as anaplerosis. We provide detailed procedures for the heart isolation and perfusion in the working mode as well as for sample processing for metabolite extraction and analysis by GC-MS and subsequent data processing for calculation of metabolic flux parameters. Finally, we address practical considerations and discuss additional applications and future challenges. PMID:26358903

  1. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    PubMed

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the selected pesticides in soya beans at appropriate uncertainty levels, making it suitable for the characterization of candidate reference materials. PMID:25770614

  2. Measurement of Niacin in a Variety of Food Samples by High Performance Liquid Chromatography-Stable Isotope Dilution Mass Spectrometry (AOAC Annual Meeting, Minneapolis, MN, Sept. 2006)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of deuterium-labeled nicotinic acid makes stable isotope dilution mass spectrometry (SIDMS) coupled with liquid chromatography (LC) an attractive option for the determination of the water-soluble B-vitamin, niacin, in food samples. We have developed a method based on AOAC Peer-Verif...

  3. DETERMINATION OF 5-METHYLTETRAHYDROFOLIC ACID IN HUMAN SERUM BY STABLE-ISOTOPE DILUTION HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes a stable isotope liquid chromatography-mass spectrometry (LC-MS) method that was developed for the quantitative determination of 5-methyltetrahydrofolic acid (5-MTHFA) and folic acid in a variety of citrus juices. Folates were extracted from juices and the polyglutamyl side ch...

  4. Measurement of Niacin in a Variety of Food Samples by High Performance Liquid Chromatography-Stable Isotope Dilution Mass Spectrometry (Experimental Biology, April, 2007, Washington, D.C.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of deuterium-labeled nicotinic acid makes stable isotope dilution mass spectrometry (SIDMS) coupled with liquid chromatography (LC) an attractive option for the determination of the water-soluble B-vitamin, niacin, in food samples. We have developed a method based on AOAC Peer-Verif...

  5. On the interference of 86Kr2+ during carbon isotope analysis of atmospheric methane using continuous flow combustion - isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Seth, B.; Bock, M.; van der Veen, C.; Mller, L.; Sapart, C. J.; Prokopiou, M.; Sowers, T.; Rckmann, T.; Fischer, H.

    2013-02-01

    Stable carbon isotope analysis of methane (?13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography isotope ratio mass spectrometry coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton can severely interfere during the mass spectrometric measurement leading to significant biases in ?13C of CH4 if krypton is not sufficiently separated during the analysis. The effect comes about by the lateral tailing of the peak of doubly charged 86Kr in the neighbouring m/z, 44, 45, and 46 Faraday cups. Accordingly, the introduced bias is dependent on the chromatographic separation, the Kr to CH4 mixing ratio in the sample, the mass spectrometer source tuning as well as the detector configuration and can amount to up to several permil in ?13C. Apart from technical solutions to avoid this interference we present correction routines to a posteriori remove the bias.

  6. Evaluation of matrix effect in isotope dilution mass spectrometry based on quantitative analysis of chloramphenicol residues in milk powder.

    PubMed

    Li, Xiu Qin; Yang, Zong; Zhang, Qing He; Li, Hong Mei

    2014-01-01

    In the present study, we developed a comprehensive strategy to evaluate matrix effect (ME) and its impact on the results of isotope dilution mass spectrometry (IDMS) in analysis of chloramphenicol (CAP) residues in milk powder. Stable isotope-labeled internal standards do not always compensate ME, which brings the variation of the ratio (the peak area of analyte/the peak area of isotope). In our investigation, impact factors of this variation were studied in the extraction solution of milk powder using three mass spectrometers coupled with different ion source designs, and deuterium-labeled chloramphenicol (D5-CAP) was used as the internal standard. ME from mobile phases, sample solvents, pre-treatment methods, sample origins and instruments was evaluated, and its impact on the results of IDMS was assessed using the IDMS correction factor (?). Our data showed that the impact of ME of mobile phase on the correction factor was significantly greater than that of sample solvent. Significant ion suppression and enhancement effects were observed in different pre-treated sample solutions. The IDMS correction factor in liquid-liquid extraction (LLE) and molecular imprinted polymer (MIP) extract with different instruments was greater or less 1.0, and the IDMS correction factor in hydrophilic lipophilic balance (HLB) and mix-mode cation exchange (MCX) extract with different instruments was all close to 1.0. To the instrument coupled with different ion source design, the impact of ME on IDMS quantitative results was significantly different, exhibiting a large deviation of 11.5%. Taken together, appropriate chromatographic conditions, pre-treatment methods and instruments were crucial to overcome ME and obtain reliable results, when IDMS methods were used in the quantitative analysis of trace target in complex sample matrix. PMID:24356223

  7. Determination of technetium-99 in aqueous samples by isotope dilution inductively coupled plasma-mass spectrometry

    SciTech Connect

    Beals, D.M.

    1992-09-01

    An isotope dilution/inductively coupled plasma mass spectrometric method (ID/ICP-MS) for measuring the concentration of technetium-99 in aqueous samples was developed at the Savannah River Technology Center (SRTC). The procedure is faster than radiometric techniques, is also less subject to interferences, and has equal or better detection limits. It is currently being used to measure the concentration of {sup 99}Tc in samples of Savannah River water collected in the vicinity of the Savannah River Site. In this method, one liter samples of water are spiked with {sup 97}Tc. After equilibration, the technetium is extracted from the sample with a chromatographic resin. Interfering elements, molybdenum and ruthenium, are either not retained by the resin or are washed off with dilute nitric acid. The technetium is then eluted with more concentrated nitric acid, and the {sup 99}Tc/{sup 97}Tc ratio in the eluant is measured with an ICP-MS. The {sup 99}Tc concentration in the original sample is calculated from the {sup 99}Tc/{sup 97}Tc ratio. The chemical recovery of the extraction procedure is greater than 90%. The detection limit of the instrument, taken as three times the background counts at m/z = 99, is 0.6 part per trillion (ppt). The detection limit of the procedure, taken as three times the standard deviation of several reagent blank analyses, is 0.33 pCi/L.

  8. Determination of technetium-99 in aqueous samples by isotope dilution inductively coupled plasma-mass spectrometry

    SciTech Connect

    Beals, D.M.

    1992-01-01

    An isotope dilution/inductively coupled plasma mass spectrometric method (ID/ICP-MS) for measuring the concentration of technetium-99 in aqueous samples was developed at the Savannah River Technology Center (SRTC). The procedure is faster than radiometric techniques, is also less subject to interferences, and has equal or better detection limits. It is currently being used to measure the concentration of {sup 99}Tc in samples of Savannah River water collected in the vicinity of the Savannah River Site. In this method, one liter samples of water are spiked with {sup 97}Tc. After equilibration, the technetium is extracted from the sample with a chromatographic resin. Interfering elements, molybdenum and ruthenium, are either not retained by the resin or are washed off with dilute nitric acid. The technetium is then eluted with more concentrated nitric acid, and the {sup 99}Tc/{sup 97}Tc ratio in the eluant is measured with an ICP-MS. The {sup 99}Tc concentration in the original sample is calculated from the {sup 99}Tc/{sup 97}Tc ratio. The chemical recovery of the extraction procedure is greater than 90%. The detection limit of the instrument, taken as three times the background counts at m/z = 99, is 0.6 part per trillion (ppt). The detection limit of the procedure, taken as three times the standard deviation of several reagent blank analyses, is 0.33 pCi/L.

  9. LC-quadrupole/Orbitrap high-resolution mass spectrometry enables stable isotope-resolved simultaneous quantification and (13)C-isotopic labeling of acyl-coenzyme A thioesters.

    PubMed

    Frey, Alexander J; Feldman, Daniel R; Trefely, Sophie; Worth, Andrew J; Basu, Sankha S; Snyder, Nathaniel W

    2016-05-01

    Acyl-coenzyme A (acyl-CoA) thioesters are evolutionarily conserved, compartmentalized, and energetically activated substrates for biochemical reactions. The ubiquitous involvement of acyl-CoA thioesters in metabolism, including the tricarboxylic acid cycle, fatty acid metabolism, amino acid degradation, and cholesterol metabolism highlights the broad applicability of applied measurements of acyl-CoA thioesters. However, quantitation of acyl-CoA levels provides only one dimension of metabolic information and a more complete description of metabolism requires the relative contribution of different precursors to individual substrates and pathways. Using two distinct stable isotope labeling approaches, acyl-CoA thioesters can be labeled with either a fixed [(13)C3 (15)N1] label derived from pantothenate into the CoA moiety or via variable [(13)C] labeling into the acyl chain from metabolic precursors. Liquid chromatography-hybrid quadrupole/Orbitrap high-resolution mass spectrometry using parallel reaction monitoring, but not single ion monitoring, allowed the simultaneous quantitation of acyl-CoA thioesters by stable isotope dilution using the [(13)C3 (15)N1] label and measurement of the incorporation of labeled carbon atoms derived from [(13)C6]-glucose, [(13)C5 (15)N2]-glutamine, and [(13)C3]-propionate. As a proof of principle, we applied this method to human B cell lymphoma (WSU-DLCL2) cells in culture to precisely describe the relative pool size and enrichment of isotopic tracers into acetyl-, succinyl-, and propionyl-CoA. This method will allow highly precise, multiplexed, and stable isotope-resolved determination of metabolism to refine metabolic models, characterize novel metabolism, and test modulators of metabolic pathways involving acyl-CoA thioesters. Graphical abstract LC-MS/HRMS allows resolution of variable stable isotopes incorporated into acyl-CoAs, enabling simultaneous quantitation and metabolic tracing. PMID:26968563

  10. Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography-chromium-based high-temperature conversion (Cr/HTC)-isotope ratio mass spectrometry.

    PubMed

    Renpenning, Julian; Kümmel, Steffen; Hitzfeld, Kristina L; Schimmelmann, Arndt; Gehre, Matthias

    2015-09-15

    The traditional high-temperature conversion (HTC) approach toward compound-specific stable isotope analysis (CSIA) of hydrogen for heteroatom-bearing (i.e., N, Cl, S) compounds has been afflicted by fractionation bias due to formation of byproducts HCN, HCl, and H2S. This study presents a chromium-based high-temperature conversion (Cr/HTC) approach for organic compounds containing nitrogen, chlorine, and sulfur. Following peak separation along a gas chromatographic (GC) column, the use of thermally stable ceramic Cr/HTC reactors at 1100-1500 °C and chemical sequestration of N, Cl, and S by chromium result in quantitative conversion of compound-specific organic hydrogen to H2 analyte gas. The overall hydrogen isotope analysis via GC-Cr/HTC-isotope ratio mass spectrometry (IRMS) achieved a precision of better than ± 5 mUr along the VSMOW-SLAP scale. The accuracy of GC-Cr/HTC-IRMS was validated with organic reference materials (RM) in comparison with online EA-Cr/HTC-IRMS and offline dual-inlet IRMS. The utility and reliability of the GC-Cr/HTC-IRMS system were documented during the routine measurement of more than 500 heteroatom-bearing organic samples spanning a δ(2)H range of -181 mUr to 629 mUr. PMID:26291200

  11. Measurement of the stable carbon isotope ratio of atmospheric volatile organic compounds using chromatography, combustion, and isotope ratio mass spectrometry coupled with thermal desorption

    NASA Astrophysics Data System (ADS)

    Kawashima, Hiroto; Murakami, Mai

    2014-06-01

    The isotopic analysis of atmospheric volatile organic compounds (VOCs), and in particular of their stable carbon isotope ratio (δ13C), could potentially be used as an effective tool for identifying the sources of VOCs. However, to date, there have been very few such analyses. In this work, we analyze the δ13C values of VOCs using thermal desorption coupled with chromatography, combustion, and isotope ratio mass spectrometry (TD-GC/C/IRMS). The measured peak shapes were of high quality and 36 compounds in a standard gas containing 58 VOCs (C5-C11) were detected. The measured δ13C varied widely, from -49.7‰ to -22.9‰, while the standard deviation of the δ13C values varied from 0.07‰ to 0.85‰ (n = 5). We then measured samples from two passenger cars in hot and cold modes, three gas stations, roadside air, and ambient air. In comparison with existing studies, the analytical precision for the 36 compounds in this study was reasonable. By comparing the δ13C values obtained from the cars and gas stations, we could identify some degree of the sources of VOCs in the roadside and ambient air samples.

  12. A universal SI-traceable isotope dilution mass spectrometry method for protein quantitation in a matrix by tandem mass tag technology.

    PubMed

    Li, Jiale; Wu, Liqing; Jin, Youxun; Su, Ping; Yang, Bin; Yang, Yi

    2016-05-01

    Isotope dilution mass spectrometry (IDMS), an important metrological method, is widely used for absolute quantification of peptides and proteins. IDMS employs an isotope-labeled peptide or protein as an internal standard although the use of a protein provides improved accuracy. Generally, the isotope-labeled protein is obtained by stable isotope labeling by amino acids in cell culture (SILAC) technology. However, SILAC is expensive, laborious, and time-consuming. To overcome these drawbacks, a novel universal SI-traceable IDMS method for absolute quantification of proteins in a matrix is described with human transferrin (hTRF). The hTRF and a human serum sample were labeled with different tandem mass tags (TMTs). After mixing the TMT-labeled hTRF and serum sample together followed by digestion, the peptides were separated by nano-liquid chromatography and analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Using the signature peptides, we calculated the ratios of reporter ions from the TMT-labeled peptides which, in turn, allowed determination of the mass fraction of hTRF. The recovery ranged from 97 % to 105 % with a CV of 3.9 %. The LOD and LOQ were 1.71 × 10(-5) g/g and 5.69 × 10(-5) g/g of hTRF in human serum, respectively, and the relative expanded uncertainty was 4.7 % with a mass fraction of 2.08 mg/g. For comparison, an enzyme-linked immunosorbent assay (ELISA) method for hTRF yielded a mass fraction of 2.03 mg/g. This method provides a starting point for establishing IDMS technology to accurately determine the mass fractions of protein biomarkers in a matrix with traceability to SI units. This technology should support the development of a metrological method useful for quantification of a wide variety of proteins. Graphical Abstract Absolute quantification of hTRF in human serum by TMT-IDMS. PMID:26942737

  13. Analysis of N-nitrosamines in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry.

    PubMed

    McDonald, James A; Harden, Nick B; Nghiem, Long D; Khan, Stuart J

    2012-09-15

    A method has been developed for the determination of eight N-nitrosamines in drinking water and treated municipal effluent. The method uses solid phase extraction (SPE), gas chromatography (GC) and analysis by tandem mass spectrometry (MS-MS) with electron ionization (EI). The target compounds are N-nitrosodimethylamine (NDMA), N-nitrosomethyethylamine (NMEA), N-nitrosodiethylamine NDEA), N-nitrosodipropylamine (NDPA), N-nitrosodi-n-butylamine (NDBuA), N-nitrosodiphenylamine (NDPhA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip), N-nitrosomorpholine (NMorph). The use of direct isotope analogues for isotope dilution analysis of all analytes ensures accurate quantification, accounting for analytical variabilities that may occur during sample processing, extraction and instrumental analysis. Method detection levels (MDLs) were determined to describe analyte concentrations sufficient to provide a signal with 99% certainty of detection. The established MDLs for all analytes were 0.4-4 ng L(-1) in a variety of aqueous matrices. Sample matrices were observed to have only a minor impact on MDLs and the method validation confirmed satisfactory method stability over intra-day and inter-day analyses of tap water and tertiary treated effluent samples. PMID:22967534

  14. Quantification of nerve agent adducts with albumin in rat plasma using liquid chromatography-isotope dilution tandem mass spectrometry.

    PubMed

    Bao, Yi; Liu, Qin; Chen, Jia; Lin, Ying; Wu, Bidong; Xie, Jianwei

    2012-03-16

    A sensitive method for the determination of the organophosphorus nerve agents sarin, soman and VX adducts with tyrosine residue of albumin in rat plasma has been developed and validated using liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS). O-(O-Alkyl methylphosphonyl) tyrosine adducts and their deuterated products that were used as the internal standards were synthesised to establish the quantitative isotope-dilution method. Protein purification and solid-phase extraction (SPE) were applied to improve the recovery efficiency, reduce interference and achieve high sensitivity. The method provided a detection limit of 0.01 ng/mL for sarin and soman adducts and 0.05 ng/mL for the VX adduct. The value of the intra-day relative standard deviation over the calibration range was less than 6.16% (n=6), and that of the inter-day was less than 12.7% (n=6). The recovery varied from 86% to 111%. This sensitive method was successfully applied to the analysis of adducts in rat plasma after nerve agent exposure, and the results demonstrated the dose-effect relationships. PMID:22305360

  15. Quantification of Cr(VI) in soil samples from a contaminated area in northern Italy by isotope dilution mass spectrometry.

    PubMed

    Guidotti, Laura; Queipo Abad, Silvia; Rodríguez-González, Pablo; García Alonso, J Ignacio; Beone, Gian Maria

    2015-11-01

    The aims of the work were to detect and quantify hexavalent chromium in 14 soil samples from an area in Lombardia (northern Italy) contaminated by two polluted water plumes. Cr(VI) was extracted from the solid samples by applying focused microwaves in an alkaline medium after Cr(III) complexation with EDTA. Cr(VI) was reduced to Cr(III) when previously reported extraction conditions for the analysis of certified reference materials were used, and Cr(VI) could not be reliably quantified in the soil samples. The influence of organic matter and iron contents in the samples on the reduction of Cr(VI) was subsequently studied using a new set of soil samples with different iron and organic matter concentrations. Isotope dilution mass spectrometry (IDMS) measured two different enriched stable isotopes of Cr (54 and 53) to evaluate the reduction extent of hexavalent chromium during the analytical procedure. The extraction conditions were optimized to obtain the lowest amount of Cr(VI) reduction and quantify Cr(VI) in the polluted soil samples from Lombardia. PMID:26141979

  16. Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry (CDSiL-MS)

    PubMed Central

    Kahsai, Alem W.; Rajagopal, Sudarshan; Sun, Jinpeng; Xiao, Kunhong

    2015-01-01

    Understanding the mechanism accompanying functional conformational changes associated with protein activation has important implications for drug design. Here, we describe a powerful method, CDSiL-MS (conformational changes and dynamics using stable-isotope labeling and mass-spectrometry), which involves chemical-labeling by isotope-coded forms of N-ethylmaleimide or succinic anhydride to site-specifically label the side-chains of cysteines or lysines, respectively, in native proteins. Subsequent MS-analysis allows the quantitative monitoring of reactivity of residues as a function of time, providing a measurement of the labeling kinetics, thereby enabling elucidation of conformational changes of proteins. We demonstrate the utility of this method using a model G-protein coupled receptor, the β2-adrenergic receptor including experiments that characterize the functional conformational-changes associated with activation of distinct signaling pathways induced by different β-adrenoceptor ligands. The procedure requires five days and can easily be adapted to systems where soluble and detergent-solubilized membrane protein targets, which undergo function-dependent conformational-changes, can be interrogated structurally to allow drug screening. PMID:24810039

  17. Chemometrics in mass spectrometry

    NASA Astrophysics Data System (ADS)

    Varmuza, Kurt

    1992-09-01

    New developments and applications of chemometric methods in mass spectrometry published since 1988 are summarized with emphasis on computer-assisted methods for the interpretation of mass spectral data and on analytical applications.

  18. Isotopic Ratio Outlier Analysis of the S. cerevisiae Metabolome Using Accurate Mass Gas Chromatography/Time-of-Flight Mass Spectrometry: A New Method for Discovery.

    PubMed

    Qiu, Yunping; Moir, Robyn; Willis, Ian; Beecher, Chris; Tsai, Yu-Hsuan; Garrett, Timothy J; Yost, Richard A; Kurland, Irwin J

    2016-03-01

    Isotopic ratio outlier analysis (IROA) is a (13)C metabolomics profiling method that eliminates sample to sample variance, discriminates against noise and artifacts, and improves identification of compounds, previously done with accurate mass liquid chromatography/mass spectrometry (LC/MS). This is the first report using IROA technology in combination with accurate mass gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS), here used to examine the S. cerevisiae metabolome. S. cerevisiae was grown in YNB media, containing randomized 95% (13)C, or 5%(13)C glucose as the single carbon source, in order that the isotopomer pattern of all metabolites would mirror the labeled glucose. When these IROA experiments are combined, the abundance of the heavy isotopologues in the 5%(13)C extracts, or light isotopologues in the 95%(13)C extracts, follows the binomial distribution, showing mirrored peak pairs for the molecular ion. The mass difference between the (12)C monoisotopic and the (13)C monoisotopic equals the number of carbons in the molecules. The IROA-GC/MS protocol developed, using both chemical and electron ionization, extends the information acquired from the isotopic peak patterns for formulas generation. The process that can be formulated as an algorithm, in which the number of carbons, as well as the number of methoximations and silylations are used as search constraints. In electron impact (EI/IROA) spectra, the artifactual peaks are identified and easily removed, which has the potential to generate "clean" EI libraries. The combination of chemical ionization (CI) IROA and EI/IROA affords a metabolite identification procedure that enables the identification of coeluting metabolites, and allowed us to characterize 126 metabolites in the current study. PMID:26820234

  19. The use of δ13C isotope ratio mass spectrometry for methamphetamine profiling: comparison of ephedrine and pseudoephedrine-based samples to P2P-based samples.

    PubMed

    Toske, Steven G; Morello, David R; Berger, Jennifer M; Vazquez, Etienne R

    2014-01-01

    Differentiating methamphetamine samples produced from ephedrine and pseudoephedrine from phenyl-2-propanone precursors is critical for assigning synthetic route information for methamphetamine profiling. The use of isotope ratio mass spectrometry data is now a key component for tracking precursor information. Recent carbon (δ(13)C) isotope results from the analysis of numerous methamphetamine samples show clear differentiation for ephedrine and pseudoephedrine-produced samples compared to P2P-produced samples. The carbon isotope differences were confirmed from synthetic route precursor studies. PMID:24378294

  20. Differential isotopic enrichment to facilitate characterization of asymmetric multimeric proteins using hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Pascal, Bruce D.; Bauman, Joseph D.; Patel, Disha; Arnold, Eddy; Griffin, Patrick R.

    2015-01-01

    Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry has emerged as a powerful tool for analyzing the conformational dynamics of protein-ligand and protein-protein interactions. Recent advances in instrumentation and methodology have expanded the utility of HDX for the analysis of large and complex proteins; however, asymmetric dimers with shared amino acid sequence present a unique challenge for HDX because assignment of peptides with identical sequence to their subunit of origin remains ambiguous. Here we report the use of differential isotopic labeling to facilitate HDX analysis of multimers using HIV-1 reverse transcriptase (RT) as a model. RT is an asymmetric heterodimer of 51 kDa (p51) and 66 kDa (p66) subunits. The first 440 residues of p51 and p66 are identical. In this study differentially labeled RT was reconstituted from isotopically enriched (15N-labeled) p51 and unlabeled p66. In order to enable detection of 15N-deuterated RT peptides, the software HDX Workbench was modified to follow a 100% 15N model. Our results demonstrated that 15N enrichment of p51 did not affect its conformational dynamics compared to unlabeled p51, but 15N-labeled p51 did show different conformational dynamics than p66 in the RT heterodimer. Differential HDX-MS of isotopically labeled RT in the presence of the nonnucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) showed subunit-specific perturbation in the rate of HDX consistent with previously published results and the RT-EFV co-crystal structure. PMID:25763479

  1. Investigation of the origin of ephedrine and methamphetamine by stable isotope ratio mass spectrometry: a Japanese experience.

    PubMed

    Makino, Y; Urano, Y; Nagano, T

    2005-01-01

    Illicit drug abuse is a serious global problem that can only be solved through international cooperation. In Asian countries, the abuse of methamphetamine is one of the most pressing problems. To assist in the control of methamphetamine, the authors investigated in detail the character of ephedrine, which is a key precursor for the illicit manufacture of methamphetamine. Commercial ephedrine is produced by one of three methods: (a) extraction from Ephedra plants, (b) full chemical synthesis or (c) via a semi-synthetic process involving the fermentation of sugar, followed by amination. Although chemically there is no difference between ephedrine samples from different origins (natural, synthetic or semi-synthetic), scientific and analytical tools such as drug-characterization and impurity-profiling programmes may provide valuable information for law enforcement and regulatory activities as part of precursor control strategies. During the research under discussion in the present article, in addition to classical impurity profiling of manufacturing by-products, the use of stable isotope ratio mass spectrometry was investigated for determining the origin of the ephedrine that had been used as a precursor in seized methamphetamine samples. The results of carbon and nitrogen stable isotope ratio (delta13C and delta15N) analysis of samples of crystalline methamphetamine seized in Japan suggested that the drug had been synthesized from either natural or semi-synthetic ephedrine and not from synthetic ephedrine. Stable isotope ratio analysis is expected to be a useful tool for tracing the origins of seized methamphetamine. It has attracted much interest from precursor control authorities in Japan and the East Asian region and may prove useful in the international control of precursors. PMID:21338016

  2. The Absolute Isotopic Composition of Zn in Terrestrial Materials Determined Using Double Spike Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ghidan, O. Y.; Loss, R. D.

    2008-12-01

    Although long suspected to be widespread in nature, until recently, little was known about the extent of the variation of the isotopic composition, or isotopic fractionation, of Zn in natural materials. During the last decade an increasing number of high precision Zn isotopic fractionation data have been reported using MC- ICP-MS (MARECHAL et al., 1999; PETIT et al., 2008; PICHAT et al., 2003), but none have been reported on an absolute scale which is essential for interlaboratory comparison of results. In this work we report sub- permil Zn fractionation in a range of natural materials relative to the internationally proposed absolute Zn isotopic reference material (δ zero) (PONZEVERA et al., 2006)using the Thermal Ionization Mass Spectrometry double spike technique. Repeated double spike analysis of the laboratory standard relative to itself demonstrated a long term reproducibility of +0.006 ± 0.039 permil amu-1. The measured isotopic composition of Zn in minerals and igneous rocks SRMs was found to be the same as the proposed absolute (δ zero) which makes it possible to consider the proposed absolute Zn isotopic standard as being representative of "bulk earth" Zn. A significant and consistent fractionation of ~+0.3 permil amu-1 was found in 5 sediments from a range of localities. The results obtained for metamorphic SRMs indicate that the fractionation of Zn in these rocks is the same as found in igneous rocks but are different from the Zn found in sedimentary rocks. A clay SRM sample TILL-3 appears to exhibit a consistently Zn fractionation of +0.12 ± 0.10 permil amu-1. The isotopic composition of Zn was also measured in two plant SRMs and one animal SRM sample. The fractionation of (-0.088 ± 0.070 permil amu-1) of Zn in the Rice (a C3 type plant material) sample suggested that Zn may be used to study Zn systematics in plants. The result obtained for MURST-ISS-A2 (Antarctic Krill) was +0.21 ± 0.11 permil amu-1 relative to the laboratory standard which is similar to the average Zn fractionation results of +0.281 ± 0.083 permil amu-1 obtained for marine sediments. The fractionation of Zn in seven ultra pure Zn standard materials was also measured relative to the laboratory standard and found to range from -5.11 ± 0.36 permil amu-1 for AE 10760 to +0.12 ± 0.16 permil amu-1 for Zn IRMM 10440 confirming that that significant care must be exercised in the selection of Zn isotope laboratory standards (TANIMIZU et al., 2002). A pilot study to determine the concentration and the isotopic composition of Zn in river and tap water, and a number of processed materials was also performed. The implications and applications of these results, such as on the atomic weight of Zn will be presented.

  3. Simultaneous detection of multiple hydroxylated polychlorinated biphenyls from a complex tissue matrix using gas chromatography/isotope dilution mass spectrometry.

    PubMed

    Eguchi, Akifumi; Nomiyama, Kei; Ochiai, Mari; Mizukawa, Hazuki; Nagano, Yasuko; Nakagawa, Katsuhiro; Tanaka, Kouki; Miyagawa, Haruhiko; Tanabe, Shinsuke

    2014-01-01

    In this study, we developed a comprehensive, highly sensitive, and robust method for determining 53 congeners of three to eight chlorinated OH-PCBs in liver and brain samples by using isotope dilution gas chromatography (GC) coupled with electron capture negative ionization mass spectrometry (ECNI-MS). These results were compared with those from GC coupled with electron ionization high-resolution mass spectrometry (EI-HRMS). Clean-up procedures for analysis of OH-PCBs homologs in liver and brain samples involve a pretreatment step consisting of acetonitrile partition and 5% hydrated silica-gel chromatography before derivatization. Recovery rates of tri- and tetra-chlorinated OH-PCBs in the acetonitrile partition method followed by the 5% hydrated silica-gel column (82% and 91%) were higher than conventional sulfuric acid treatment (2.0% and 3.5%). The method detection limits of OH-PCBs for each matrix obtained by GC/ECNI-MS and GC/EI-HRMS were 0.58-2.6 pg g(-1) and 0.36-1.6 pg g(-1) wet wt, respectively. Recovery rates of OH-PCB congeners in spike tests using sample matrices (10 and 50 pg) were 64.7-117% (CV: 4.7-14%) and 70.4-120% (CV: 2.3-12%), respectively. This analytical method may enable the simultaneous detection of various OH-PCBs from complex tissue matrices. Furthermore, this method allows more comprehensive assessment of the biological effects of OH-PCB exposure on critical organs. PMID:24274296

  4. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  5. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  6. Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Haijun; Blankenship, Robert E.; Gross, Michael L.

    2016-01-01

    We report an isotope-encoding method coupled with carboxyl-group footprinting to monitor protein conformational changes. The carboxyl groups of aspartic/glutamic acids and of the C-terminus of proteins can serve as reporters for protein conformational changes when labeled with glycine ethyl ester (GEE) mediated by carbodiimide. In the new development, isotope-encoded "heavy" and "light" GEE are used to label separately the two states of the orange carotenoid protein (OCP) from cyanobacteria. Two samples are mixed (1:1 ratio) and analyzed by a single LC-MS/MS experiment. The differences in labeling extent between the two states are represented by the ratio of the "heavy" and "light" peptides, providing information about protein conformational changes. Combining isotope-encoded MS quantitative analysis and carboxyl-group footprinting reduces the time of MS analysis and improves the sensitivity of GEE and other footprinting.

  7. Quantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuous-flow isotope-ratio mass spectrometry

    PubMed Central

    Waldron, Susan; Marian Scott, E; Vihermaa, Leena E; Newton, Jason

    2014-01-01

    RATIONALE We describe an analytical procedure that allows sample collection and measurement of carbon isotopic composition (δ13CV-PDB value) and dissolved inorganic carbon concentration, [DIC], in aqueous samples without further manipulation post field collection. By comparing outputs from two different mass spectrometers, we quantify with the statistical rigour uncertainty associated with the estimation of an unknown measurement. This is rarely undertaken, but it is needed to understand the significance of field data and to interpret quality assurance exercises. METHODS Immediate acidification of field samples during collection in evacuated, pre-acidified vials removed the need for toxic chemicals to inhibit continued bacterial activity that might compromise isotopic and concentration measurements. Aqueous standards mimicked the sample matrix and avoided headspace fractionation corrections. Samples were analysed using continuous-flow isotope-ratio mass spectrometry, but for low DIC concentration the mass spectrometer response could be non-linear. This had to be corrected for. RESULTS Mass spectrometer non-linearity exists. Rather than estimating precision as the repeat analysis of an internal standard, we have adopted inverse linear calibrations to quantify the precision and 95% confidence intervals (CI) of the δ13CDIC values. The response for [DIC] estimation was always linear. For 0.05–0.5 mM DIC internal standards, however, changes in mass spectrometer linearity resulted in estimations of the precision in the δ13CVPDB value of an unknown ranging from ± 0.44‰ to ± 1.33‰ (mean values) and a mean 95% CI half-width of ±1.1–3.1‰. CONCLUSIONS Mass spectrometer non-linearity should be considered in estimating uncertainty in measurement. Similarly, statistically robust estimates of precision and accuracy should also be adopted. Such estimations do not inhibit research advances: our consideration of small-scale spatial variability at two points on a small order river system demonstrates field data ranges larger than the precision and uncertainties. However, without such statistical quantification, exercises such as inter-lab calibrations are less meaningful. PMID:24711275

  8. Determination of a correction to improve mass measurement accuracy of isotopically unresolved polymerase chain reaction amplicons by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Null, Allison P; Muddiman, David C

    2003-01-01

    The experimental determination of average mass by mass spectrometry is limited for large molecules due to the negative bias introduced by the natural distribution of isotopic abundances. This results in the measurement of the top-of-centroid (ToC) as opposed to the true centroid. We have developed a practical correction factor that is applied to the ToC measurement to largely remove the systematic bias introduced by nature. The correction factor is calculated easily using the average molecular mass (<100 kDa) of the analyte molecule and the full-width half maximum resolving power (<3,500) of the measurement. In addition, an approach to calculating resolving power is described that accurately predicts resolving power achievable for Fourier transform ion cyclotron resonance (FT-ICR) mass analysis of large molecules. A combination of internal calibration with a dual-electrospray source and application of the correction factor to average mass measurements improved the mass error from 192.5 to -35.0 ppm for a 44 kDa PCR amplicon. PMID:12872276

  9. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N values. Comparative ??13C and ??15N on-line EA-IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA-IRMS reference materials.

  10. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different delta15N values. Comparative delta13C and delta15N on-line EA-IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA-IRMS reference materials. PMID:19844968

  11. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  12. Characterization of candidate reference materials for bone lead via interlaboratory study and double isotope dilution mass spectrometry

    PubMed Central

    Bellis, David J.; Hetter, Katherine M.; Verostek, Mary Frances; Parsons, Patrick J.

    2012-01-01

    Summary Four candidate ground bone reference materials (NYS RMs 05-01 through 04), were produced from lead-dosed bovine and caprine sources, and characterized by interlaboratory study. The consensus value ( X ) and expanded standard uncertainty (UX ) were determined from the robust average and standard deviation of the participants’ data for each NYS RM 05-01 through 04. The values were 1.08 ±0.04, 15.3 ±0.5, 12.4 ±0.5, and 29.9 ±1.1 μg g−1 Pb, respectively. Youden plots of z-scores showed a statistically significant correlation between the results for pairs of NYS RM 05-02 through 04, indicating common sources of between-laboratory variation affecting reproducibility. NYS RM 05-01 exhibited more random variability affecting repeatability at low concentration. Some participants using electrothermal atomic absorption spectrometry (ETAAS) exhibited a negative bias compared to the all-method consensus value. Other methods used included inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution (ID-) ICP-MS, and ICP atomic (optical) emission spectroscopy (-OES). The NYS RMs 05-01 through 04 were subsequently re-analyzed in house using double ID-ICP-MS to assign certified reference values (C ) and expanded uncertainty (UC ) of 1.09 ± 0.03, 16.1 ± 0.3, 13.2 ± 0.3 and 31.5 ± 0.7, respectively, indicating a low bias in the interlaboratory data. SRM 1486 Bone Meal was analyzed for measurement quality assessment obtaining results in agreement with the certified values within the stated uncertainty. Analysis using a primary reference method based on ID-ICP-MS with full quantification of uncertainty calculated according to ISO guidelines provided traceability to SI units. PMID:23087531

  13. Stable isotope imaging of biological samples with high resolution secondary ion mass spectrometry and complementary techniques

    PubMed Central

    Jiang, H.; Favaro, E.; Goulbourne, C. N.; Rakowska, P. D.; Hughes, G. M.; Ryadnov, M. G.; Fong, L.G.; Young, S. G.; Ferguson, D. J. P.; Harris, A. L.; Grovenor, C. R. M.

    2014-01-01

    Stable isotopes are ideal labels for studying biological processes because they have little or no effect on the biochemical properties of target molecules. The NanoSIMS is a tool that can image the distribution of stable isotope labels with up to 50 nm spatial resolution and with good quantitation. This combination of features has enabled several groups to undertake significant experiments on biological problems in the last decade. Combining the NanoSIMS with other imaging techniques also enables us to obtain not only chemical information but also the structural information needed to understand biological processes. This article describes the methodologies that we have developed to correlate atomic force microscopy and backscattered electron imaging with NanoSIMS experiments to illustrate the imaging of stable isotopes at molecular, cellular, and tissue scales. Our studies make it possible to address 3 biological problems: (1) the interaction of antimicrobial peptides with membranes; (2) glutamine metabolism in cancer cells; and (3) lipoprotein interactions in different tissues. PMID:24556558

  14. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  15. Determination of Mercury Content in a Shallow Firn Core from Summit, Greenland by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mann, Jacqueline L.; Long, Stephen E.; Shuman, Christopher A.; Kelly, W. Robert

    2003-01-01

    The total mercury Hg content was determined in 6 cm sections of a near-surface 7 m firn core and in surrounding surface snow from Summit, Greenland (elevation: 3238 m, 72.58 N, 38.53 W) in May 2001 by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS). The focus of this research was to evaluate the capability of the ID-CV-ICPMS technique for measuring trace levels of Hg typical of polar snow and firn. Highly enriched Hg-201 isotopic spike is added to approximately 10 ml melted core and thoroughly mixed. The Hg(+2) in the sample is reduced on line with tin (II) chloride (SnCl2) and the elemental Hg (Hg(0)) vapor pre-concentrated on to gold gauze using a commercial amalgam system. The Hg is then thermally desorbed and introduced into a quadrupole ICP-MS. The blank corrected Hg concentrations determined for all samples ranged from 0.25 ng/L to 1.74 ng/L (ppt) (average 0.59 ng/L plus or minus 0.28 ng/L) and fall within the range of those previously determined by Boutron et al., 1998 (less than or equal to 0.05 ng/L to 2.0 ng/L) for the Summit site. The average blank value was 0.19 ng/L plus or minus 0.045 ng/L (n=6). The Hg values specifically for the firn core range from 0.25 ng/L to 0.87 ng/L (average 0.51 ng/L plus or minus 0.13 ng/L) and show both values declining with time and larger variability in concentration in the top 1.8 m.

  16. A novel methodological approach for δ(18)O analysis of sugars using gas chromatography-pyrolysis-isotope ratio mass spectrometry.

    PubMed

    Zech, Michael; Saurer, Matthias; Tuthorn, Mario; Rinne, Katja; Werner, Roland A; Siegwolf, Rolf; Glaser, Bruno; Juchelka, Dieter

    2013-01-01

    Although the instrumental coupling of gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS) for compound-specific δ(18)O analysis has been commercially available for more than a decade, this method has been hardly applied so far. Here we present the first GC-Py-IRMS δ(18)O results for trimethylsilyl-derivatives of plant sap-relevant sugars and a polyalcohol (glucose, fructose, sucrose, raffinose and pinitol). Particularly, we focus on sucrose, which is assimilated in leaves and which is the most important transport sugar in plants and hence of utmost relevance in plant physiology and paleoclimate studies. Replication measurements of sucrose standards and concentration series indicate that the GC-Py-IRMS δ(18)O measurements are not stable over time and that they are amount (area) dependent. We, therefore, suggest running sample batch replication measurements in alternation with standard concentration series of reference material. This allows for carrying out (i) a drift correction, (ii) a calibration against reference material and (iii) an amount (area) correction. Tests with (18)O-enriched water do not provide any evidence for oxygen isotope exchange reactions affecting sucrose and raffinose. We present the first application of GC-Py-IRMS δ(18)O analysis for sucrose from needle extract (soluble carbohydrate) samples. The obtained δ(18)Osucrose/ Vienna Standard Mean Ocean Water (VSMOW) values are more positive and vary in a wider range (32.1-40.1 ‰) than the δ(18)Obulk/ VSMOW values (24.6-27.2 ‰). Furthermore, they are shown to depend on the climate parameters maximum day temperature, relative air humidity and cloud cover. These findings suggest that δ(18)Osucrose of the investigated needles very sensitively reflects the climatically controlled evaporative (18)O enrichment of leaf water and thus highlights the great potential of GC-Py-IRMS δ(18)Osucrose analysis for plant physiology and paleoclimate studies. PMID:24313371

  17. Differential Isotope Labeling of 38 Dietary Polyphenols and Their Quantification in Urine by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry.

    PubMed

    Achaintre, David; Buleté, Audrey; Cren-Olivé, Cécile; Li, Liang; Rinaldi, Sabina; Scalbert, Augustin

    2016-03-01

    A large number of polyphenols are consumed with the diet and may contribute to the prevention of chronic diseases such as cardiovascular diseases, diabetes, cancers, and neurodegenerative diseases. More comprehensive methods are needed to measure exposure to this complex family of bioactive plant compounds in epidemiological studies. We report here a novel method enabling the simultaneous measurement in urine of 38 polyphenols representative of the main classes and subclasses found in the diet. This method is based on differential (12)C-/(13)C-isotope labeling of polyphenols through derivatization with isotopic dansyl chloride reagents and on the analysis of the labeled polyphenols by tandem mass spectrometry. This derivatization approach overcomes the need for costly labeled standards. Different conditions for enzyme hydrolysis of polyphenol glucuronides and sulfate esters, extraction, and dansylation of unconjugated aglycones were tested and optimized. Limits of quantification varied from 0.01 to 1.1 μM depending on polyphenols. Intrabatch coefficients of variation varied between 3.9% and 9.6%. Interbatch variations were lower than 15% for 31 compounds and lower than 29% for 6 additional polyphenols out of the 38 tested. Thirty seven polyphenols were validated and then analyzed in 475, 24 h urine samples from the European Prospective Investigation on Cancer and Nutrition (EPIC) study. Thirty four polyphenols could be detected and successfully estimated and showed large interindividual variations of concentrations (2-3 orders of magnitude depending on the compound), with median concentrations spanning from 0.01 to over 1000 μM for all 34 compounds. PMID:26814424

  18. An accurate and transferable protocol for reproducible quantification of organic pollutants in human serum using direct isotope dilution mass spectrometry.

    PubMed

    Boggess, Andrew J; Rahman, G M Mizanur; Pamukcu, Matt; Faber, Scott; Kingston, H M Skip

    2014-12-01

    A robust method has been developed for easy transfer between analytical laboratories to obtain highly accurate and reproducible quantification of persistent organic pollutants (POPs) in micro-volumes of serum. This method is suited for analysts researching the impact of environmental exposure on human health. When performed by highly trained analysts, existing methods can produce high quality data; however, complex sample preparation steps often cannot be consistently replicated by laboratories, leading to variance in extraction recovery and quantitation. By combining stir-bar sorptive extraction (SBSE) with direct isotope dilution (D-ID) mass spectrometry quantification, a new analytical method was developed. The D-ID quantification significantly improved accuracy, corrected sample-to-sample irreproducibility, and reduced sample preparation time. Independent production of statistically identical data then confirmed transfer of the validated operating protocol to an off-site laboratory with different instrument models. SBSE performance was compared with industry-accepted extraction techniques. D-ID quantification was compared with peer-reviewed relative isotopic response factor (RF) quantification methods. Holding other variables constant, D-ID improved accuracy by 250% and precision by 300% compared with RF; SBSE improved accuracy by 37% compared to industry-accepted extraction methods. Limits of quantification of the analytes ranged from 60 pg g(-1) to 1 μg g(-1). Protocol transfer exhibited <7% mean between-laboratory error and <2% mean within-laboratory RSD. These results indicate that a transferable method has been developed for academic, government, commercial, and clinical laboratories seeking to maximize throughput and improve quantitative validity. This validated method was applied in a recent clinical study to assess non-communicable disease in children in Pennsylvania, USA. PMID:25302342

  19. Determination of ultratrace levels of tributyltin in waters by isotope dilution and gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Rodríguez-Cea, Andrés; Rodríguez-González, Pablo; Font Cardona, Nuria; Aranda Mares, José Luís; Ballester Nebot, Salomé; García Alonso, J Ignacio

    2015-12-18

    The current EU legislation lays down the Environmental Quality Standards (EQS) of 45 priority substances in surface water bodies. In particular, the concentration of tributyltin (TBT) must not exceed 0.2ngL(-1) and analytical methodologies with a Limit of Quantification (LOQ) equal or below 0.06ngL(-1) are urged to be developed. This work presents a procedure for the determination of ultratrace levels of TBT in water samples by Isotope Dilution and GC-MS/MS operating in Selected Reaction Monitoring (SRM) mode which meets current EU requirements. The method requires the monitorization of five consecutive transitions (287>175 to 291>179) for the sensitive and selective detection of TBT. The measured isotopic distribution of TBT fragment ions was in agreement with the theoretical values computed by a polynomial expansion algorithm. The combined use of Tandem Mass Spectrometry, a sample volume of 250mL, the preconcentration of 1mL of organic phase to 30μL and an injection volume of 25μL by Programmed Temperature Vaporization provided a LOQ of 0.0426ngL(-1) for TBT (calculated as ten times the standard deviation of nine independent blanks). The recovery for TBT calculated in Milli-Q water at the EQS level was 106.3±4%. A similar procedure was also developed for the quantification of dibutyltin (DBT) and monobutyltin (MBT) in water samples showing satisfactory results. The method was finally implemented in a routine testing laboratory to demonstrate its applicability to real samples obtaining quantitative recoveries for TBT at the EQS level in mineral water, river water and seawater. PMID:26614170

  20. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  1. Accurate determination of ochratoxin A in Korean fermented soybean paste by isotope dilution-liquid chromatography tandem mass spectrometry.

    PubMed

    Ahn, Seonghee; Lee, Suyoung; Lee, Joonhee; Kim, Byungjoo

    2016-01-01

    Ochratoxin A (OTA), a naturally occurring mycotoxin, has been frequently detected in doenjang, a traditional fermented soybean paste, when it is fermented under improper conditions. Reliable screening of OTA in traditional fermented soybean paste (doenjang) is a special food-safety issue in Korea. Our laboratory, the National Metrology Institute of Korea, established an isotope dilution-liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method as a higher-order reference method to be used for SI-traceable value-assignment of OTA in certified reference materials (CRMs). (13)C20-OTA was used as an internal standard. Sample preparation conditions and LC/MS measurement parameters were optimised for this purpose. The analytical method was validated by measuring samples fortified with OTA at various levels. Repeatability and reproducibility studies showed that the ID-LC/MS/MS method is reliable and reproducible within 2% relative standard deviation. The analytical method was applied to determine OTA in various commercial doenjang products and home-made doenjang products. PMID:26212984

  2. Determination of avilamycin as dichloroisoeverninic acid in poultry and porcine muscles by isotope dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Ho, Clare; Wong, Yiu-Tung

    2013-10-01

    Avilamycin residue in food is regulated as its marker residue dichloroisoeverninic acid (DIA). An isotope dilution liquid chromatography-tandem mass spectrometry method is established for the accurate determination of DIA in animal muscles without any pre-extraction and preconcentration prior to alkaline hydrolysis. Optimization of the sample cleanup procedures such as liquid-liquid extraction and solid phase extraction was performed by fine-tuning several critical parameters to reduce the matrix effects. Quantification of DIA in edible muscle was accomplished by using matrix-matched calibration with dichloroisoeverninic acid-d6 as internal standard. The method was validated with DIA and avilamycin-fortified poultry and porcine muscles at three different levels (25, 50, and 100 μg/kg). Conversion of avilamycin to DIA by alkaline hydrolysis was ≥92%. The recoveries of DIA in both muscles at three fortification levels ranged from 94 to 106% and RSDs were ≤11% in all cases. The estimated limit of detection values in poultry and porcine muscles were 2.7 and 0.7 μg/kg, respectively. The estimated limit of quantitation values in poultry and porcine muscles were 8.3 and 2.4 μg/kg, respectively. This method is suitable for routine monitoring of avilamycin residue in food safety surveillance programs. PMID:23975084

  3. Sensitive isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry method for the determination of acrylamide in chocolate.

    PubMed

    Ren, Yiping; Zhang, Yu; Jiao, Jingjing; Cai, Zengxuan; Zhang, Ying

    2006-03-01

    Isotope dilution liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) was applied to the quantification of acrylamide in chocolate matrixes (dark chocolate, milk chocolate, chocolate with nuts, chocolate with almonds, and chocolate with wheat best element). The method included defatting with petroleum ether, extracting with aqueous solution of 2 mol l(-1) sodium chloride and clean-up by solid-phase (SPE) with OASIS HLB 6 cm3 cartridges. Acrylamide was detected with an Atlantis dC18 5 microm 210 x 1.5 mm column using 10% methanol/0.1% formic acid in water as the mobile phase. The analytical method was in-house validated and good results were obtained with respect to repeatability (RSD < 3.5%) and recovery (86-93%), which fulfilled the requirements defined by European Union legislation. The acrylamide levels in chocolate were 23-537 microg kg(-1). Therefore, the method was successfully used for the quantitative analysis of acrlyamide in various chocolate products. PMID:16517524

  4. Analysis of nitromethane from samples exposed in vitro to chloropicrin by stable isotope dilution headspace gas chromatography with mass spectrometry.

    PubMed

    Halme, Mia; Pesonen, Maija; Grandell, Toni; Kuula, Matti; Pasanen, Markku; Vähäkangas, Kirsi; Vanninen, Paula

    2015-10-01

    Chloropicrin (trichloronitromethane) is a widely used soil fumigant and an old chemical warfare agent. The metabolism of chloropicrin is not well known in mammals but nitromethane has been shown to be one of its main metabolites. Here, a fast and simple headspace gas chromatography with mass spectrometry method was applied for the measurement of nitromethane from aqueous samples. The analytical method was validated using stable isotope labeled internal standard and a small sample volume of 260 μL. No conventional sample preparation steps were needed. The method was accurate (relative standard deviations ≤1.5%) and linear (R(2) = 0.9996) within the concentration range of 0.1-6.0 μg/mL. This method was used to measure nitromethane in in vitro incubations with human and pig liver cell fractions containing enzymes for xenobiotic metabolism, exposed to chloropicrin. The results indicate that the presence of glutathione is necessary for the formation of nitromethane from chloropicrin. Also, nitromethane was formed mostly in liver cytosol fractions, but not in microsomal fractions after the incubation with chloropicrin. Our results suggest that although nitromethane is not the unequivocal biomarker of chloropicrin exposure, this method could be applied for screening the elevated levels in humans after chloropicrin exposure. PMID:26255649

  5. Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry.

    PubMed

    Kolkman, Annemieke; Martijn, Bram J; Vughs, Dennis; Baken, Kirsten A; van Wezel, Annemarie P

    2015-04-01

    Advanced oxidation processes are important barriers for organic micropollutants (e.g., pharmaceuticals, pesticides) in (drinking) water treatment. Studies indicate that medium pressure (MP) UV/H2O2 treatment leads to a positive response in Ames mutagenicity tests, which is then removed after granulated activated carbon (GAC) filtration. The formed potentially mutagenic substances were hitherto not identified and may result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM). In this study we present an innovative approach to trace the formation of disinfection byproducts (DBPs) of MP UV water treatment, based on stable isotope labeled nitrate combined with high resolution mass spectrometry. It was shown that after MP UV treatment of artificial water containing NOM and nitrate, multiple nitrogen containing substances were formed. In total 84 N-DBPs were detected at individual concentrations between 1 to 135 ng/L bentazon-d6 equivalents, with a summed concentration of 1.2 μg/L bentazon-d6 equivalents. The chemical structures of three byproducts were confirmed. Screening for the 84 N-DBPs in water samples from a full-scale drinking water treatment plant based on MP UV/H2O2 treatment showed that 22 of the N-DBPs found in artificial water were also detected in real water samples. PMID:25760315

  6. Measurement of the isotopic composition of uranium micrometer-size particles by femtosecond laser ablation-inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubert, Amélie; Claverie, Fanny; Pécheyran, Christophe; Pointurier, Fabien

    In this paper, we will describe and indicate the performance of a new method based on the use of femtosecond laser ablation (fs-LA) coupled to a quadrupole-based inductively coupled plasma mass spectrometer (ICP-QMS) for analyzing the isotopic composition of micrometer-size uranium particles. The fs-LA device was equipped with a high frequency source (till 10 kHz). We applied this method to 1-2 μm diameter-uranium particles of known isotopic composition and we compared this technique with the two techniques currently used for uranium particle analysis: Secondary Ionization Mass Spectrometry (SIMS) and Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS). By optimizing the experimental conditions, we achieved typical accuracy and reproducibility below 4% on 235U/238U for short transient signals of only 15 s related to 10 to 200 pg of uranium. The detection limit (at the 3 sigma level) was ~ 350 ag for the 235U isotope, meaning that 235U/238U isotope ratios in natural uranium particles of ~ 220 nm diameter can be measured. We also showed that the local contamination resulting from the side deposition of ablation debris at ~ 100 μm from the ablation crater represented only a small percentage of the initial uranium signal of the ablated particle. Despite the use of single collector ICP-MS, we were able to demonstrate that fs-LA-ICP-MS is a promising alternative technique for determining uranium isotopic composition in particle analysis.

  7. Protein Stable Isotope Fingerprinting (P-SIF): Multidimensional Protein Chromatography Coupled to Stable Isotope-Ratio Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.

    2012-12-01

    As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.

  8. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE PAGESBeta

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; Want, Elizabeth J.; Smith, Colin; O'Maille, Paul; NordstrÖm, Anders; Morita, Hirotoshi; Qin, Chuan; Uritboonthai, Wilasinee; et al

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  9. Advances in low level uranium and plutonium isotope mass spectrometry using multiple ion counting and filament carburization

    NASA Astrophysics Data System (ADS)

    Richter, S.; Jakopic, R.; Kuehn, H.; Alonso, A.; Aregbe, Y.

    2008-12-01

    After upgrading IRMM's mass spectrometric capabilities for certification measurements for uranium and plutonium using large sample sizes during the previous years, in 2006-2007 we focused on necessary improvements in the area of low-level isotopic analyses for uranium and plutonium. This project was driven firstly by the need for reliable verification measurements for the Nuclear Signatures Measurement Evaluation Programme (NUSIMEP) samples at IRMM, secondly by the need for verification measurements on single uranium oxide reference particles and thirdly by the request from the IAEA's Safeguards Analytical Laboratory (SAL) to provide assistance for this type of analyses through the EC support programme. Improving low-level isotope mass spectrometry for uranium and plutonium at IRMM consisted of three steps. First a new thermal ionization mass spectrometer was acquired in order to have an instrument which can be used for peak-jumping measurements in ion counting mode, and which can be subsequently upgraded with a "Multiple Ion Counting" (MIC) system. This detector system allows the simultaneous detection of up to seven small ion beams with currents of 10-19 - 10-14 Ampere in ion counting mode, corresponding to count rates of 1-60.000 counts per second. As a result of test measurements with the MIC system it turned out that static measurements using the MIC system with a sample-versus-standard type external calibration can be associated with uncertainties even higher than in peak-jumping mode. The second step of improvement to tackle this situation was to implement the principle of "multi-dynamic" measurements for both uranium and plutonium measurements. This "multi- dynamic" measurement procedure provides an internal calibration of the MIC system and therefore circumvents the need for complicated inter-calibration routines. As a third step, a filament carburization procedure was implemented by which the ionization efficiencies for uranium and plutonium were improved by a factor of 3 and 10, respectively. Results for measurements performed on samples of previous NUSIMEP campaigns will be shown in comparison to results from various techniques employed by participating laboratories.

  10. An in-depth evaluation of accuracy and precision in Hg isotopic analysis via pneumatic nebulization and cold vapor generation multi-collector ICP-mass spectrometry.

    PubMed

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Vanhaecke, Frank

    2016-01-01

    Mercury (Hg) isotopic analysis via multi-collector inductively coupled plasma (ICP)-mass spectrometry (MC-ICP-MS) can provide relevant biogeochemical information by revealing sources, pathways, and sinks of this highly toxic metal. In this work, the capabilities and limitations of two different sample introduction systems, based on pneumatic nebulization (PN) and cold vapor generation (CVG), respectively, were evaluated in the context of Hg isotopic analysis via MC-ICP-MS. The effect of (i) instrument settings and acquisition parameters, (ii) concentration of analyte element (Hg), and internal standard (Tl)-used for mass discrimination correction purposes-and (iii) different mass bias correction approaches on the accuracy and precision of Hg isotope ratio results was evaluated. The extent and stability of mass bias were assessed in a long-term study (18 months, n = 250), demonstrating a precision ≤0.006% relative standard deviation (RSD). CVG-MC-ICP-MS showed an approximately 20-fold enhancement in Hg signal intensity compared with PN-MC-ICP-MS. For CVG-MC-ICP-MS, the mass bias induced by instrumental mass discrimination was accurately corrected for by using either external correction in a sample-standard bracketing approach (SSB) or double correction, consisting of the use of Tl as internal standard in a revised version of the Russell law (Baxter approach), followed by SSB. Concomitant matrix elements did not affect CVG-ICP-MS results. Neither with PN, nor with CVG, any evidence for mass-independent discrimination effects in the instrument was observed within the experimental precision obtained. CVG-MC-ICP-MS was finally used for Hg isotopic analysis of reference materials (RMs) of relevant environmental origin. The isotopic composition of Hg in RMs of marine biological origin testified of mass-independent fractionation that affected the odd-numbered Hg isotopes. While older RMs were used for validation purposes, novel Hg isotopic data are provided for the latest generations of some biological RMs. PMID:26549115

  11. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  12. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their

  13. Stable isotope gas chromatography-tandem mass spectrometry determination of aminoethylcysteine ketimine decarboxylated dimer in biological samples.

    PubMed

    Tsikas, Dimitrios; Evans, Christopher E; Denton, Travis T; Mitschke, Anja; Gutzki, Frank-Mathias; Pinto, John T; Khomenko, Tetyana; Szabo, Sandor; Cooper, Arthur J L

    2012-11-01

    Aminoethylcysteine ketimine decarboxylated dimer (AECK-DD; systematic name: 1,2-3,4-5,6-7,8-octahydro-1,8a-diaza-4,6-dithiafluoren-9(8aH)-one) is a previously described metabolite of cysteamine that has been reported to be present in mammalian brain, urine, plasma, and cells in culture and vegetables and to possess potent antioxidative properties. Here, we describe a stable isotope gas chromatography-tandem mass spectrometry (GC-MS/MS) method for specific and sensitive determination of AECK-DD in biological samples. (13)C(2)-labeled AECK-DD was synthesized and used as the internal standard. Derivatization was carried out by N-pentafluorobenzylation with pentafluorobenzyl bromide in acetonitrile. Quantification was performed by selected reaction monitoring of the mass transitions m/z 328 to 268 for AECK-DD and m/z 330 to 270 for [(13)C(2)]AECK-DD in the electron capture negative ion chemical ionization mode. The procedure was systematically validated for human plasma and urine samples. AECK-DD was not detectable in human plasma above approximately 4nM but was present in urine samples of healthy humans at a maximal concentration of 46nM. AECK-DD was detectable in rat brain at very low levels of approximately 8pmol/g wet weight. Higher levels of AECK-DD were detected in mouse brain (∼1nmol/g wet weight). Among nine dietary vegetables evaluated, only shallots were found to contain trace amounts of AECK-DD (∼6.8pmol/g fresh tissue). PMID:22858756

  14. Online oxygen kinetic isotope effects using membrane inlet mass spectrometry can differentiate between oxidases for mechanistic studies and calculation of their contributions to oxygen consumption in whole tissues.

    PubMed

    Cheah, Mun Hon; Millar, A Harvey; Myers, Ruth C; Day, David A; Roth, Justine; Hillier, Warwick; Badger, Murray R

    2014-05-20

    The reduction chemistry of molecular oxygen underpins the energy metabolism of multicellular organisms, liberating free energy needed to catalyze a plethora of enzymatic reactions. Measuring the isotope signatures of (16)O and (18)O during O2 reduction can provide insights into both kinetic and equilibrium isotope effects. However, current methods to measure O2 isotope signatures are time-consuming and disruptive. This paper describes the application of membrane inlet mass spectrometry to determine the oxygen isotope discrimination of a range of O2-consuming reactions, providing a rapid and convenient method for determining these values. A survey of oxygenase and oxidase reactions provides new insights into previously uncharacterized amino acid oxidase enzymes. Liquid and gas phase measurements show the ease of assays using this approach for purified enzymes, biological extracts and intact tissues. PMID:24786640

  15. Compound-specific bromine isotope analysis of methyl bromide using gas chromatography hyphenated with inductively coupled plasma multiple-collector mass spectrometry.

    PubMed

    Horst, Axel; Holmstrand, Henry; Andersson, Per; Andersson, August; Carrizo, Daniel; Thornton, Brett F; Gustafsson, Orjan

    2011-09-15

    Methyl bromide is the most important natural bromine contributor to stratospheric ozone depletion, yet there are still large uncertainties regarding quantification of its sources and sinks. The stable bromine isotope composition of CH(3)Br is potentially a powerful tool to apportion its sources and to study both its transport and its reactive fate. A novel compound-specific method to measure (81)Br/(79)Br isotope ratios in CH(3)Br using gas chromatography hyphenated with inductively coupled plasma multiple-collector mass spectrometry (GC/MCICPMS) was developed. Sample amounts of >40 ng could be measured with a precision of 0.1‰ (1σ, n = 3). The method results are reproducible over the long term as shown with 36 analyses acquired over 3 months, yielding a standard deviation (1σ) better than 0.4‰. This new method demonstrates for the first time Br isotope ratio determination in gaseous brominated samples. It is three orders of magnitude more sensitive than previously existing isotope ratio mass spectrometry methods for Br isotope determination of other organobromines, thus allowing applications towards ambient atmospheric samples. PMID:21818801

  16. Quantitative Analysis of rRNA Modifications Using Stable Isotope Labeling and Mass Spectrometry

    PubMed Central

    2015-01-01

    Post-transcriptional RNA modifications that are introduced during the multistep ribosome biogenesis process are essential for protein synthesis. The current lack of a comprehensive method for a fast quantitative analysis of rRNA modifications significantly limits our understanding of how individual modification steps are coordinated during biogenesis inside the cell. Here, an LC-MS approach has been developed and successfully applied for quantitative monitoring of 29 out of 36 modified residues in the 16S and 23S rRNA from Escherichia coli. An isotope labeling strategy is described for efficient identification of ribose and base methylations, and a novel metabolic labeling approach is presented to allow identification of MS-silent pseudouridine modifications. The method was used to measure relative abundances of modified residues in incomplete ribosomal subunits compared to a mature 15N-labeled rRNA standard, and a number of modifications in both 16S and 23S rRNA were present in substoichiometric amounts in the preribosomal particles. The RNA modification levels correlate well with previously obtained profiles for the ribosomal proteins, suggesting that RNA is modified in a schedule comparable to the association of the ribosomal proteins. Importantly, this study establishes an efficient workflow for a global monitoring of ribosomal modifications that will contribute to a better understanding of mechanisms of RNA modifications and their impact on intracellular processes in the future. PMID:24422502

  17. Investigation of the feeding effect on the 13C/12C isotope ratio of the hormones in bovine urine using gas chromatography/combustion isotope ratio mass spectrometry.

    PubMed

    Balizs, Gabor; Jainz, Annett; Horvatovich, Peter

    2005-03-01

    The effect of the feeding on the 13C/12C isotope ratio of four endogenous steroid hormones testosterone (T), epi-testosterone (epi-T), dehydroepiandrosterone (DHEA) and etiocholanolone (ETIO) in bovine urine was investigated. An analytical method to determine the accurate isotope ratio was developed including an extensive clean up followed by enrichment of the analytes in two steps of HPLC fractionation. Feeding experiments with four young animals were performed using C3 and C4 plants (grass, maize silage, hay, etc.) over a time period of about 280 days. One cattle was used as a control animal with no change of its diet over the full period. The detection of the 13C/12C isotope ratio of the acetylated extracts was performed by gas chromatography/combustion isotope ratio mass spectrometry. After the first change of the feeding from C4 to C3 plants significant changes of the delta 13C % values were observed from the -19 to -23% level to the -24 to -32% level for etiocholanolone and epi-testosterone in urine of three animals, whereas the DHEA values remained under the level of the two metabolites. Testosterone could not be detected with GC-C-IRMS due to its low concentration in young animals. After the second change of the diet from C3 to C4 plants (after 222 days), the measured delta 13C % values have been stabilised at the original level. The results show that in case of the feeding with only C3 plants the endogenous delta values of -32% can be reached. In this case the contribution of exogenous material with a delta value of -32% could not be detected independently of the concentration. If the diet contains C4 plants the difference or the ratio of the delta 13C % values becomes the determinant in the discriminatory power. For validation of the method a human and a cattle were treated with testosterone and the delta 13C % values were measured in incurred human and cattle urine. PMID:15844538

  18. Comparison of secondary ion mass spectrometry and micromilling/continuous flow isotope ratio mass spectrometry techniques used to acquire intra-otolith delta18O values of wild Atlantic salmon (Salmo salar).

    PubMed

    Hanson, N N; Wurster, C M; Todd, C D

    2010-09-15

    The chemical signals in the sequential layers of fish otoliths have the potential to provide fisheries biologists with temporal and spatial details of migration which are difficult to obtain without expensive tracking methods. Signal resolution depends, however, on the extraction technique used. We compared the use of mechanical micromilling and continuous flow isotope ratio mass spectrometry (CF-IRMS) methods with secondary ion mass spectrometry (SIMS) to obtain delta(18)O profiles from otoliths of wild Atlantic salmon (Salmo salar) and used these to corroborate the time of freshwater emigration of the juvenile with macroscopic patterns within the otolith. Both techniques showed the transition occurring at the same visible feature on the otolith, allowing future analyses to easily identify the juvenile (freshwater) versus adult (marine) life-stages. However, SIMS showed a rapid and abrupt transition whereas micromilling provided a less distinct signal. The number of samples that could be obtained per unit area sampled using SIMS was 2 to 3 times greater than that when using micromilling/CF-IRMS although the delta(18)O values and analytical precisions (approximately 0.2 per thousand) of the two methods were comparable. In addition, SIMS delta(18)O results were used to compare otolith aragonite values with predicted values calculated using various isotope fractionation equations. PMID:20740522

  19. Comprehensive and highly sensitive urinary steroid hormone profiling method based on stable isotope-labeling liquid chromatography-mass spectrometry.

    PubMed

    Dai, Weidong; Huang, Qiang; Yin, Peiyuan; Li, Jia; Zhou, Jia; Kong, Hongwei; Zhao, Chunxia; Lu, Xin; Xu, Guowang

    2012-12-01

    Steroid hormones are crucial substances that mediate a wide range of vital physiological functions of the body. Determination of the levels of steroid hormones plays an important role in understanding the mechanism of the steroid hormone-related diseases. In this study, we present a novel targeted metabolic profiling method based on the introduction of an easily protonated stable isotope tag to a hydroxyl-containing steroid hormone with a synthesized derivatization reagent, deuterium 4-(dimethylamino)-benzoic acid (d(4)-DMBA), and liquid chromatography-mass spectrometry (LC-MS). Different from other reported derivatization reagents that have been used to enhance the sensitivities for estrogens or androgens, our method is comprehensive with the capability of covering hydroxyl-containing androgens, estrogens, corticoids, and progestogens. Furthermore, the nonderivatized steroid hormones (e.g., 17α-hydroxyprogesterone, progesterone, and androstenedione) were not destroyed during the derivatization process, and their levels could still be obtained in one LC-MS run. We were able to detect 24 steroid hormones at subng/mL levels (the lower limit of detection could reach 5 pg/mL for estrone and 16α-hydroxy estrone, which is equivalent to 0.1 pg on column) with maximum sensitivity enhancement factors of more than 10(3)- to 10(4)-fold after derivatization. The method was successfully applied to the measurement of free (unconjugated) steroid hormones in urine samples of males, females, and pregnant women. Because the significant role the steroid hormone pathway plays in humans, a comprehensive, sensitive, specific, and accurate method for profiling the steroid hormone metabolome shall offer new insights into hormone-related diseases. PMID:23110480

  20. Analysis of exogenous nandrolone metabolite in horse urine by gas chromatography/combustion/carbon isotope ratio mass spectrometry.

    PubMed

    Yamada, Masayuki; Kinoshita, Kenji; Kurosawa, Masahiko; Saito, Koichi; Nakazawa, Hiroyuki

    2007-11-30

    Nandrolone (17beta-hydroxy-4-estren-3-one, NAD) is an endogenous steroid hormone; thus, the detection of its metabolites is not conclusive of NAD doping in racehorses. NAD doping control in male horses is based on the threshold, namely, the concentration ratio of 5alpha-estran-3beta,17alpha-diol (ETA) to 5(10)-estren-3beta,17alpha-diol (ETE). The ETA/ETE ratio of 1/1 was determined based on statistical data of authentic horses in International Federation of Horseracing Authorities. To individuals with complex metabolic disorders, however, such a threshold might not be applicable. The aim of this study was to establish an analytical method that discriminates endogenous steroids from exogenous ones in horse urine after NAD administration using gas chromatography/combustion/carbon isotope ratio mass spectrometry (GC/C/IRMS). Urine was sampled from NAD-administered and authentic horses. Ten millilitres of urine was hydrolyzed and subjected to liquid-liquid extraction and solid phase extraction. The residue of the extracts purified by HPLC was derivatized by acetylation. As a result of measurement of the (13)C/(12)C ratio (delta(13)C) by GC/C/IRMS, the delta(13)C values of ETA for NAD-administered and authentic horses were -32.20+/-0.35 per thousand and -27.85+/-0.75 per thousand (n=60), respectively. The detection limit of ETA in this GC/C/IRMS analysis was approximately 25 ng/ml. This study indicates that the measurement of delta(13)C by GC/C/IRMS enables us to discriminate exogenous ETA derived from NAD administration from endogenous ETA, proving that GC/C/IRMS is a useful technique to complement the ETA/ETE ratio. PMID:17714906

  1. Simultaneous detection of five one-carbon metabolites in plasma using stable isotope dilution liquid chromatography tandem mass spectrometry.

    PubMed

    Adaikalakoteswari, Antonysunil; Webster, Craig; Goljan, Ilona; Saravanan, Ponnusamy

    2016-02-15

    Disturbance in one-carbon (1-C) cycle occurs due to nutritional deficiencies (vitamin B12/folate) or specific genetic polymorphisms. This leads to altered levels of key 1-C metabolites such as SAM (s-adenosyl methionine), SAH (s-adenosyl homocysteine), methionine, homocysteine and MMA (methyl malonic acid). These 1-C metabolites are determinants of cellular methylation potential and epigenetic modifications of DNA which impairs metabolic pathways in several pathological diseases and developmental programming. Though methods were able to measure these analytes only independently, none of the methods detect simultaneously. Therefore we developed a method to measure these five 1-C metabolites in a single run using liquid chromatography tandem mass spectrometry (LC-MS/MS). We used stable isotopes dilution LC-MS/MS to measure the 1-C metabolites in human plasma. Blood samples were collected from pregnant women (n=30) at early gestation in the ongoing, multicentre, prospective PRiDE study. Linearity exhibited across the calibration range for all the analytes with the limit of detection (LOD) of 1.005nmol/l for SAM, 0.081nmol/l for SAH, 0.002?mol/l for methionine, 0.046?mol/l for homocysteine and 3.920nmol/l for MMA. The average recovery for SAM was 108%, SAH-110%, methionine-97%, homocysteine-91% and MMA-102%. The inter-assay CV for SAM was 7.3, SAH-5.6%, methionine-3.5%, homocysteine-7.0% and MMA-4.0%. The intra-assay CV for SAM was 8.7%, SAH-4.7%, methionine-5.4%, homocysteine-8.1% and MMA-6.1%. Pregnant women at early gestation with low B12 levels had significantly higher homocysteine, MMA, lower levels of methionine, SAM and SAM:SAH ratio and higher triglycerides. We developed a simple and rapid method to simultaneously quantify 1-C metabolites such as SAM, SAH, methionine, homocysteine and MMA in plasma by stable isotope dilution LC-MS/MS which would be useful to elucidate the epigenetic mechanisms related in the gene-nutrient interactions. PMID:26851522

  2. Profiling oestrogens and testosterone in human urine by stable isotope dilution/benchtop gas chromatography-mass spectrometry.

    PubMed

    Hoffmann, Philipp; Hartmann, Michaela F; Remer, Thomas; Zimmer, Klaus-Peter; Wudy, Stefan A

    2010-12-12

    Oestrogens, such as oestrone (E(1)), 17β-oestradiol (E(2)), oestriol (E(3)) and their biologically active metabolites 2-methoxyoestrone (2-MeOE(1)), 2-hydroxyoestradiol (2-OHE(2)) 16-ketooestradiol (16-OE(2)), 16-epioestriol (16-epiE(3)), as well as testosterone (T) play an important role in physiological and pathological developmental processes during human development. We therefore aimed at developing an isotope dilution/bench top gas chromatography-mass spectrometry (ID/GC-MS) method, based on benchtop GC-MS, for the simultaneous determination ('profiling') of the above analytes in children. The method consisted of equilibration of urine (5 ml) with a cocktail containing stable isotope-labelled analogues of the analytes as internal standards ([2,4-(2)H(2)]E(1), [2,4,16,16-(2)H(4)]E(2), [2,4,17-(2)H(3)]E(3), [16,16,17-(2)H(3)]T, [1,4,16,16-(2)H(4)]2-MeOE(1), [1,4,16,16,17-(2)H(5)]2-OHE(2), [2,4,15,15,17-(2)H(5)]16-OE(2) and [2,4-(2)H(2)]16-epiE(3)). Then, solid-phase extraction (C(18) cartridges), enzymatic hydrolysis (sulphatase from Helix pomatia (type H-1)), re-extraction, purification by anion exchange chromatography and derivatisation to trimethylsilyl ethers followed. The samples were analysed by GC-MS (Agilent GC 6890N/5975MSD; fused silica capillary column 25 m × 0.2 mm i.d., film 0.10 μm). Calibration plots were linear and showed excellent reproducibility with coefficients of determination (r(2)) between 0.999 and 1.000. Intra- and inter-assay coefficients of variation (CV) were <2.21% for all quantified metabolites. Sensitivity was highest for 2-OHE(2) (0.25 pg per absolute injection: signal-to-noise ratio (S/N)=3) and lowest for 16-epiE(3) (2 pg per absolute injection: S/N=2.6), translating into corresponding urine sample analyte concentrations of 0.025 ng ml(-1) and 0.2 ng ml(-1), respectively. Accuracy - determined in a two-level spike experiment - showed relative errors ranging between 0.15% for 16-OE(2) and 11.63% for 2-OHE(2). Chromatography showed clear peak shapes for the components analysed. In summary, we describe a practical, sensitive and specific ID/GC-MS assay capable of profiling the above-mentioned steroids in human urine from childhood onwards. PMID:20619283

  3. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  4. Absolute quantification of NAD(P)H:quinone oxidoreductase 1 in human tumor cell lines and tissues by liquid chromatography-mass spectrometry/mass spectrometry using both isotopic and non-isotopic internal standards.

    PubMed

    Tang, Zhiyuan; Wu, Mengqiu; Li, Yingchun; Zheng, Xiao; Liu, Huiying; Cheng, Xuefang; Xu, Lin; Wang, Guangji; Hao, Haiping

    2013-04-15

    NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase) is a prognostic biomarker and a potential therapeutic target for various tumors. Therefore, it is of significance to develop a robust method for the absolute quantification of NQO1. This study aimed to develop and validate a LC-MS/MS based method and to test the appropriateness of using non-isotopic analog peptide as the internal standard (IS) by comparing with a stable isotope labeled (SIL) peptide. The chromatographic performance and mass spectra between the selected signature peptide of NQO1 and the non-isotopic peptide were observed to be very similar. The use of the two internal standards was validated appropriate for the absolute quantification of NQO1, as evidenced by satisfactory validation results over a concentration range of 1.62-162 fmol μL(-1). This method has been successfully applied to the absolute quantification of NQO1 expression in various tumor cell lines and tissues. NQO1 expression in human tumor tissues is much higher than that in the neighboring normal tissues in both the cases of lung and colon cancer. The quantitative results obtained from the isotopic and non-isotopic methods are quite similar, further supporting that the use of non-isotopic analog peptide as internal standard is appropriate and feasible for the quantification of NQO1. By comparing with a classical isotopic IS, the present study indicates that the use of a non-isotopic peptide analog to the proteotypic peptide as the internal standard can get equal accuracy and preciseness in measuring NQO1. The universal applicability of the non-isotopic IS approach for the quantification of proteins warrants further research. PMID:23540248

  5. Conceptual Study on New Isotope Analysis Technique with Resonance Ionization Mass Spectrometry Using Inductively Coupled Plasma as an Atomic Source (ICP-RIMS)

    SciTech Connect

    Watanabe, K.; Uritani, A.; Higuchi, Y.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2009-03-17

    We have proposed the novel isotope analysis technique with Resonance Ionization Mass Spectrometry using Inductively Coupled Plasma as an atomic source (ICP-RIMS). Each component of ICP-RIMS is conceptually designed. We conclude that the orthogonal acceleration time-of-flight mass spectrometer (oa-TOF-MS) driven by a high-repetition-rate pulsed laser would be suitable system for ICP-RIMS. We, additionally, suggest that the first vacuum stage of the vacuum interface, which is between the sampling and skimmer cones, is desired to maintain as low pressure as possible in order to suppress the Doppler broadening and to skim the supersonic jet effectively.

  6. Conceptual Study on New Isotope Analysis Technique with Resonance Ionization Mass Spectrometry Using Inductively Coupled Plasma as an Atomic Source (ICP-RIMS)

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Higuchi, Y.; Tomita, H.; Kawarabayashi, J.; Uritani, A.; Iguchi, T.

    2009-03-01

    We have proposed the novel isotope analysis technique with Resonance Ionization Mass Spectrometry using Inductively Coupled Plasma as an atomic source (ICP-RIMS). Each component of ICP-RIMS is conceptually designed. We conclude that the orthogonal acceleration time-of-flight mass spectrometer (oa-TOF-MS) driven by a high-repetition-rate pulsed laser would be suitable system for ICP-RIMS. We, additionally, suggest that the first vacuum stage of the vacuum interface, which is between the sampling and skimmer cones, is desired to maintain as low pressure as possible in order to suppress the Doppler broadening and to skim the supersonic jet effectively.

  7. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements.

    PubMed

    Ohata, Masaki; Nonose, Naoko; Dorta, Ladina; Gnther, Detlef

    2015-01-01

    The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder. PMID:26656823

  8. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  9. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  10. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    SciTech Connect

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  11. Improvement in Thermal-Ionization Mass Spectrometry (TIMS) using Total Flash Evaporation (TFE) method for lanthanides isotope ratio measurements in transmutation targets

    SciTech Connect

    Mialle, S.; Gourgiotis, A.; Aubert, M.; Stadelmann, G.; Gautier, C.; Isnard, H.

    2011-07-01

    The experiments involved in the PHENIX french nuclear reactor to obtain precise and accurate data on the total capture cross sections of the heavy isotopes and fission products require isotopic ratios measurements with uncertainty of a few per mil. These accurate isotopic ratio measurements are performed with mass spectrometer equipped with multi-collector system. The major difficulty for the analyses of these actinides and fission products is the low quantity of the initial powder enclosed in steel container (3 to 5 mg) and the very low quantities of products formed (several {mu}g) after irradiation. Specific analytical developments are performed by Thermal Ionization Mass Spectrometry (TIMS) to be able to analyse several nanograms of elements with this technique. A specific method of acquisition named Total Flash Evaporation was adapted in this study in the case of lanthanide measurements for quantity deposited on the filament in the order of 2 ng and applied on irradiated fuel. To validate the analytical approach and discuss about the accuracy of the data, the isotopic ratios obtained by TIMS are compared with other mass spectrometric techniques such as Multiple-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). (authors)

  12. Determination of Atto- to Femtogram Levels of Americium and Curium Isotopes in Large-Volume Urine Samples by Compact Accelerator Mass Spectrometry.

    PubMed

    Dai, Xiongxin; Christl, Marcus; Kramer-Tremblay, Sheila; Synal, Hans-Arno

    2016-03-01

    Ultralow level analysis of actinides in urine samples may be required for dose assessment in the event of internal exposures to these radionuclides at nuclear facilities and nuclear power plants. A new bioassay method for analysis of sub-femtogram levels of Am and Cm in large-volume urine samples was developed. Americium and curium were co-precipitated with hydrous titanium oxide from the urine matrix and purified by column chromatography separation. After target preparation using mixed titanium/iron oxides, the final sample was measured by compact accelerator mass spectrometry. Urine samples spiked with known quantities of Am and Cm isotopes in the range of attogram to femtogram levels were measured for method evaluation. The results are in good agreement with the expected values, demonstrating the feasibility of compact accelerator mass spectrometry (AMS) for the determination of minor actinides at the levels of attogram/liter in urine samples to meet stringent sensitivity requirements for internal dosimetry assessment. PMID:26822907

  13. Mass Spectrometry and Glycomics

    PubMed Central

    2010-01-01

    Abstract Glycosylation defines the adhesive properties of animal cell surfaces and the surrounding extracellular environments. Because cells respond to stimuli by altering glycan expression, glycan structures vary according to spatial location in tissue and temporal factors. These dynamic structural expression patterns, combined with the essential roles glycans play in physiology, drive the need for analytical methods for glycoconjugates. In addition, recombinant glycoprotein drug products represent a multibillion dollar market. Effective analytical methods are needed to speed the identification of new targets and the development of industrial glycoprotein products, both new and biosimilar. Mass spectrometry is an enabling technology in glycomics. This review summarizes mass spectrometry of glycoconjugate glycans. The intent is to summarize appropriate methods for glycans given their chemical properties as distinct from those of proteins, lipids, and small molecule metabolites. Special attention is given to the uses of mass spectral profiling for glycomics with respect to the N-linked, O-linked, ganglioside, and glycosaminoglycan compound classes. Next, the uses of tandem mass spectrometry of glycans are summarized. The review finishes with an update on mass spectral glycoproteomics. PMID:20443730

  14. MASS SPECTROMETRY OF RNA

    PubMed Central

    Meng, Zhaojing; Limbach, Patrick A.

    2008-01-01

    Ribonucleic acids (RNAs) are continuing to attract increased attention as they are found to play pivotal roles in biological system. Just as genomics and proteomics have been enabled by the development of effective analytical techniques and instrumentation, the large-scale analysis of non-protein coding (nc)RNAs will benefit as new analytical methodologies are developed which are appropriate to RNA analysis. Mass spectrometry offers a number of advantageous for RNA analysis arising from its ability to provide mass and sequence information starting with limited amounts of sample. This Briefings will highlight recent developments in the field that enable the characterization of RNA modification status, RNA tertiary structures, and ncRNA expression levels. These developments will also be placed in perspective of how mass spectrometry of RNAs can help elucidate the link between the genome and proteome. PMID:16769684

  15. Development of a stable isotope approach for the inductively coupled plasma-mass spectrometry determination of oxidized metallothionein in biological materials.

    PubMed

    Valles Mota, J P; Linde Arias, A R; Fernández de la Campa, M R; García Alonso, J I; Sanz-Medel, A

    2000-07-01

    The use of isotope dilution analysis (IDA) with inductively coupled plasma-mass spectrometry (ICP-MS) for the determination of oxidized metallothionein (MT) by a Cd-saturation method is investigated. The method developed here is a modification of an earlier methodology which used a radioactive Cd isotope ((109)Cd). While retaining the many advantages of this previous approach, the procedure presented here uses stable isotope ratio measurements ((114)Cd/(111)Cd) for the determination of MT. Experimental parameters governing the instrumental precision and accuracy for isotope ratio measurements of Cd by ICP-MS were characterized. Systematic errors, including mass bias, detector dead time, and spectroscopic interferences, could be easily corrected. The isotope dilution ICP-MS method was validated by the determination of very low levels of cadmium in biological certified reference materials (NIST SRM 2670 freeze-dried urine, IAEA H-8 horse kidney, and BCR TP-25 lichens). Finally, the IDA procedure was evaluated for the determination of oxidized MT by a Cd-saturation method previously developed using radioactive (109)Cd. The final procedure was applied to the quantification of MT in Long-Evans Cinnamon rat liver cytosol samples and the results were compared with data obtained for the same samples using the reference (109)Cd methodology. A good agreement between the analytical values obtained by both methods was observed. PMID:10873273

  16. Comparison of water isotope-ratio determinations using two cavity ring-down instruments and classical mass spectrometry in continuous ice-core analysis.

    PubMed

    Maselli, Olivia J; Fritzsche, Diedrich; Layman, Lawrence; McConnell, Joseph R; Meyer, Hanno

    2013-01-01

    We present a detailed comparison between subsequent versions of commercially available wavelength-scanned cavity ring-down water isotope analysers (L2120-i and L2130-i, Picarro Inc.). The analysers are used in parallel in a continuous mode by adaption of a low-volume flash evaporation module. Application of the analysers to ice-core analysis is assessed by comparison between continuous water isotope measurements of a glacial ice-core from Severnaya Zemlya with discrete isotope-ratio mass spectrometry measurements performed on parallel samples from the same ice-core. The great advances between instrument versions, particularly in the measurement of δ(2)H, allow the continuous technique to achieve the same high level of accuracy and precision obtained using traditional isotope spectrometry techniques in a fraction of the experiment time. However, when applied to continuous ice-core measurements, increased integration times result in a compromise of the achievable depth resolution of the ice-core records. PMID:23713832

  17. Determination of the 87Sr/86Sr isotope ratio in USGS silicate reference materials by multi-collector ICP-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Balcaen, Lieve; Schrijver, Isabel De; Moens, Luc; Vanhaecke, Frank

    2005-04-01

    Multi-collector ICP-mass spectrometry (MC-ICP-MS) was used for 87Sr/86Sr isotope ratio determination in newly introduced silicate reference materials from the US Geological Survey (USGS): granite G-3, andesite AGV-2, and basalt BCR-2. Next to the SrCO3 isotopic standard NIST SRM 987, also analogous USGS reference materials from the previous generation, and for which reference 87Sr/86Sr data obtained by TIMS are available, were analysed for validation purposes. Sample preparation consisted of acid digestion and subsequent isolation of Sr by means of a dedicated and commercially available crown ether-based resin. The Sr fractions thus obtained were analysed via MC-ICP-MS whereby mass discrimination was corrected for internally, while the isobaric interference at a mass-to-charge ratio of 86 caused by Kr impurities in the Ar gas was mathematically corrected for by using the signal for a Kr isotope free from spectral overlap. Finally, also the effect of the small amount of Rb that may still be present in the Sr fraction was corrected for mathematically on the basis of the signal intensity for 85Rb. The MC-ICP-MS results for G-2, AGV-1 and BCR-1 showed an excellent agreement with the corresponding TIMS values (<0.003% bias in all cases), such that it can be assumed that also the 87Sr/86Sr isotope ratio results obtained for the new reference materials are reliable.

  18. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system measurements of 2H/1H, 13C/12C and 15N/14N and apply it to study of microbial metabolic heterogeneity and nitrogen metabolism in a continuous culture case study. Our data provide insight into both the diversity of microbial activity rates, as well as patterns of ammonium utilization at the single cell level.

  19. Biological Cluster Mass Spectrometry

    PubMed Central

    Winograd, Nicholas; Garrison, Barbara J.

    2010-01-01

    This article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C60, exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry. When the beams are microfocused to a spot on the sample, bioimaging experiments in two and three dimensions are feasible. We describe emerging theoretical models that allow the energy-deposition process to be understood on an atomic and molecular basis. Moreover, experiments on model systems are described that allow protocols for imaging on biological materials to be implemented. Finally, we present recent applications of imaging to biological tissue and single cells to illustrate the future directions of this methodology. PMID:20055679

  20. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  1. Bromine isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry with a conventional sample introduction system.

    PubMed

    de Gois, Jefferson S; Vallelonga, Paul; Spolaor, Andrea; Devulder, Veerle; Borges, Daniel L G; Vanhaecke, Frank

    2016-01-01

    A simple and accurate methodology for Br isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with pneumatic nebulization for sample introduction was developed. The Br(+) signals could be measured interference-free at high mass resolution. Memory effects for Br were counteracted using 5 mmol L(-1) of NH4OH in sample, standard, and wash solutions. The major cation load of seawater was removed via cation exchange chromatography using Dowex 50WX8 resin. Subsequent Br preconcentration was accomplished via evaporation of the sample solution at 90 °C, which did not induce Br losses or isotope fractionation. Mass discrimination was corrected for by external correction using a Cl-matched standard measured in a sample-standard bracketing approach, although Sr, Ge, and Se were also tested as potential internal standards for internal correction for mass discrimination. The δ(81)Br (versus standard mean ocean bromide (SMOB)) values thus obtained for the NaBr isotopic reference material NIST SRM 977 and for IRMM BCR-403 seawater certified reference material are in agreement with literature values. For NIST SRM 977, the (81)Br/(79)Br ratio (0.97291) was determined with a precision ≤0.08‰ relative standard deviation (RSD). PMID:26123436

  2. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles.

    PubMed

    Erdmann, N; Kratz, J-V; Trautmann, N; Passler, G

    2009-11-01

    Micro-particles containing actinides are of interest for risk assessments of contaminated areas, nuclear forensic analyses, and IAEA as well as Euratom safeguards programs. For their analysis, secondary ion mass spectrometry (SIMS) has been established as the state-of-the-art standard technique. In the case of actinide mixtures within the particles, however, SIMS suffers from isobaric interferences (e.g., (238)U/(238)Pu, (241)Am/(241)Pu). This can be eliminated by applying resonance ionization mass spectrometry which is based on stepwise resonant excitation and ionization of atoms with laser light, followed by mass spectrometric detection of the produced ions, combining high elemental selectivity with the analysis of isotopic compositions. This paper describes the instrumental modifications for coupling a commercial time-of-flight (TOF)-SIMS apparatus with three-step resonant post-ionization of the sputtered neutrals using a high-repetition-rate (kHz) Nd:YAG laser pumped tunable titanium:sapphire laser system. Spatially resolved ion images obtained from actinide-containing particles in TOF-SIMS mode demonstrate the capability for isotopic and spatial resolution. Results from three-step resonant post-ionization of bulk Gd and Pu samples successfully demonstrate the high elemental selectivity of this process. PMID:19557397

  3. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry for Applications in Stable Isotope Probing.

    PubMed

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L; Mohn, William W

    2014-12-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating (13)C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography-tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% (13)C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  4. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  5. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles.

    PubMed

    Claverie, Fanny; Hubert, Amélie; Berail, Sylvain; Donard, Ariane; Pointurier, Fabien; Pécheyran, Christophe

    2016-04-19

    The isotope drift encountered on short transient signals measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) is related to differences in detector time responses. Faraday to Faraday and Faraday to ion counter time lags were determined and corrected using VBA data processing based on the synchronization of the isotope signals. The coefficient of determination of the linear fit between the two isotopes was selected as the best criterion to obtain accurate detector time lag. The procedure was applied to the analysis by laser ablation-MC-ICPMS of micrometer sized uranium particles (1-3.5 μm). Linear regression slope (LRS) (one isotope plotted over the other), point-by-point, and integration methods were tested to calculate the (235)U/(238)U and (234)U/(238)U ratios. Relative internal precisions of 0.86 to 1.7% and 1.2 to 2.4% were obtained for (235)U/(238)U and (234)U/(238)U, respectively, using LRS calculation, time lag, and mass bias corrections. A relative external precision of 2.1% was obtained for (235)U/(238)U ratios with good accuracy (relative difference with respect to the reference value below 1%). PMID:27031645

  6. Determination of tellurium in urine by isotope dilution gas chromatography/mass spectrometry using (4-fluorophenyl)magnesium bromide as a derivatizing agent and a comparison with electrothermal atomic absorption spectrometry.

    PubMed

    Aggarwal, S K; Kinter, M; Nicholson, J; Herold, D A

    1994-04-15

    The antitumor drug AS-101 [ammoniumtrichloro (dioxoethylene-O,O')tellurate(IV)] is the first tellurium-containing compound that has been identified as possessing immunomodulating properties and minimal toxicity. We have developed a stable isotope dilution gas chromatography/mass spectrometry method using 120Te as an internal standard and (4-fluorophenyl)magnesium bromide as a derivatizing agent for Te determination in urine. The urine samples were digested using HNO3 + H2O2 prior to derivatization with lithium bis(trifluoroethyl)dithiocarbamate at a pH of 3. The trifluorodiethyldithiocarbamate of tellurium was reacted with the Grignard reagent in anhydrous diethyl ether to obtain Te-(FC6H4)2 for GC/MS analysis. All isotope ratio measurements were made by selected ion monitoring with a Finnigan MAT 8230 organic mass spectrometer using a 10-m fused silica capillary column. Overall percision values for the five major Te isotopes relative to 130Te were 0.6-3.1% when 10-ng samples of chelated Te were analyzed. No appreciable memory or carry-over effect was observed when two synthetic mixtures differing in 120Te:130Te ratios by a factor of 50 were sequentially analyzed. The isotope dilution GC/MS method was validated by determining Te in urine samples and comparing the values with electrothermal atomic absorption spectrometry. Te concentrations were determined in the 100-500 micrograms/L range with CVs of 1-4%. PMID:8210046

  7. Using Gas Chromatography/Isotope Ratio Mass Spectrometry to Determine the Fractionation Factor for H2 Production by Hydrogenases

    SciTech Connect

    Yang, Hui; Ghandi, H.; Shi, Liang; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2012-01-15

    Hydrogenases catalyze the reversible formation of H2, and they are key enzymes in the biological cycling of H2. H isotopes should be a very useful tool in quantifying proton trafficking in biological H2 production processes, but there are several obstacles that have thus far limited the use of this tool. In this manuscript, we describe a new method that overcomes some of these barriers and is specifically designed to measure isotopic fractionation during enzyme-catalyzed H2 evolution. A key feature of this technique is that purified hydrogenases are employed, allowing precise control over the reaction conditions and therefore a high level of precision. A custom-designed high-throughput gas chromatography-isotope ratio mass spectrometer is employed to measure the isotope ratio of the H2. Using this method, we determined that the fractionation factor of H2 production by the [NiFe]-hydrogenase from Desulfivibrio fructosovran is 0.27. This result indicates that, as expected, protons are highly favored over deuterons during H2 evolution. Potential applications of this new method are discussed.

  8. The use of static mass spectrometry to determine the combined stable isotopic composition of small samples of atmospheric methane.

    PubMed

    Jackson; Morgan; Morse; Butterworth; Pillinger

    1999-07-01

    Global budgets of atmospheric trace gases are increasingly being constrained by means of stable isotope measurements. Published analytical techniques for studying the parallel stable isotopic composition of methane (delta(13)C and deltaD) require prohibitively large quantities of methane for analysis, making them unsuitable for studies where sample size is small, e.g. soil methane fluxes. A highly sensitive static mass spectrometer has been developed which uniquely uses CH(4) as the analyte. The method requires only 8 ng of CH(4) for analysis (<10 mL ambient air), making replicated measurements of the isotopic composition of CH(4) in small samples feasible for the first time. This paper provides the first detailed description of the instrumentation and the analytical technique. The technique has been used to analyse small samples of air collected in Snowdonia over 21 months. The combined stable isotopic composition (delta(17)M) ranged from 29.5 to 35.5 per thousand, with an average value of 32.2 per thousand, and was strongly correlated with wind direction (p <0.01, r(2) = 0.71). Copyright 1999 John Wiley & Sons, Ltd. PMID:10407320

  9. δ13C of volatile organic compounds (VOCS) in airborne samples by thermal desorption-gas chromatography-isotope ratio-mass spectrometry (TD-GC-IR-MS)

    NASA Astrophysics Data System (ADS)

    Turner, Nicole; Jones, Mark; Grice, Kliti; Dawson, Daniel; Ioppolo-Armanios, Marisa; Fisher, Steven J.

    This paper is a preliminary investigation into the use of a thermal desorption-gas chromatography-isotope ratio mass spectrometry (TD-GC-IR-MS) method to determine stable carbon isotopic compositions ( δ13C) of low molecular-weight volatile organic compounds (VOCs) in airborne samples (e.g. industrial and car exhaust emissions) as a means of differentiating their sources in the environment. A TD-GC-IR-MS method for obtaining δ13C of VOCs (benzene, toluene, chlorobenzene, ethylbenzene, m-xylene and propylbenzene) in air samples has been optimised, and is proven to be both reproducible and linear. The δ13C of the VOC standards was found to be comparable (within analytical error) to that obtained from direct GC-IR-MS analysis. This novel method of VOC analysis is valuable in environmental and forensic investigations.

  10. Determination of stable isotopic enrichment and concentration of glycerol in plasma via gas chromatography-mass spectrometry for the estimation of lipolysis in vivo.

    PubMed

    Flakoll, P J; Zheng, M; Vaughan, S; Borel, M J

    2000-07-01

    Measuring glycerol's rate of appearance into the plasma compartment provides an excellent estimation of whole-body lipolysis. The glycerol rate of appearance can be calculated by estimating the plasma dilution of continuously infused stable or radioactive isotopes of glycerol. Previously, determination of glycerol stable isotopic enrichment has required either chemical ionization gas chromatography-mass spectrometry (GC-MS) or electron impact ionization GC-MS in which a fragment containing only a portion of the glycerol molecule was measured. The present method uses tert.-butyldimethylsilyl (tBDMS) derivatization and electron impact ionization to measure a fragment including the entire glycerol molecule. The method determines concentration and enrichment of plasma glycerol in a simple, precise, and cost-efficient manner, providing a basis from which lipid homeostasis can be assessed. PMID:10985565

  11. Easy Extraction Method To Evaluate δ13C Vanillin by Liquid Chromatography-Isotopic Ratio Mass Spectrometry in Chocolate Bars and Chocolate Snack Foods.

    PubMed

    Bononi, Monica; Quaglia, Giancarlo; Tateo, Fernando

    2015-05-20

    An easy extraction method that permits the use of a liquid chromatography-isotopic ratio mass spectrometry (LC-IRMS) system to evaluate δ(13)C of vanillin in chocolate products and industrial flavorings is presented. The method applies the determination of stable isotopes of carbon to discriminate between natural vanillin from vanilla beans and vanillin from other sources (mixtures from beans, synthesis, or biotechnology). A series of 13 chocolate bars and chocolate snack foods available on the Italian market and 8 vanilla flavorings derived from industrial quality control processes were analyzed. Only 30% of products considered in this work that declared "vanilla" on the label showed data that permitted the declaration "vanilla" according to European Union (EU) Regulation 1334/2008. All samples not citing "vanilla" or "natural flavoring" on the label gave the correct declaration. The extraction method is presented with data useful for statistical evaluation. PMID:25965784

  12. Direct isotope ratio analysis of individual uranium-plutonium mixed particles with various U/Pu ratios by thermal ionization mass spectrometry.

    PubMed

    Suzuki, Daisuke; Esaka, Fumitaka; Miyamoto, Yutaka; Magara, Masaaki

    2015-02-01

    Uranium and plutonium isotope ratios in individual uranium-plutonium (U-Pu) mixed particles with various U/Pu atomic ratios were analyzed without prior chemical separation by thermal ionization mass spectrometry (TIMS). Prior to measurement, micron-sized particles with U/Pu ratios of 1, 5, 10, 18, and 70 were produced from uranium and plutonium certified reference materials. In the TIMS analysis, the peaks of americium, plutonium, and uranium ion signals were successfully separated by continuously increasing the evaporation filament current. Consequently, the uranium and plutonium isotope ratios, except the (238)Pu/(239)Pu ratio, were successfully determined for the particles at all U/Pu ratios. This indicates that TIMS direct analysis allows for the measurement of individual U-Pu mixed particles without prior chemical separation. PMID:25479434

  13. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  14. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  15. High-Precision Tungsten Isotopic Analysis by Multicollection Negative Thermal Ionization Mass Spectrometry Based on Simultaneous Measurement of W and (18)O/(16)O Isotope Ratios for Accurate Fractionation Correction.

    PubMed

    Trinquier, Anne; Touboul, Mathieu; Walker, Richard J

    2016-02-01

    Determination of the (182)W/(184)W ratio to a precision of ± 5 ppm (2σ) is desirable for constraining the timing of core formation and other early planetary differentiation processes. However, WO3(-) analysis by negative thermal ionization mass spectrometry normally results in a residual correlation between the instrumental-mass-fractionation-corrected (182)W/(184)W and (183)W/(184)W ratios that is attributed to mass-dependent variability of O isotopes over the course of an analysis and between different analyses. A second-order correction using the (183)W/(184)W ratio relies on the assumption that this ratio is constant in nature. This may prove invalid, as has already been realized for other isotope systems. The present study utilizes simultaneous monitoring of the (18)O/(16)O and W isotope ratios to correct oxide interferences on a per-integration basis and thus avoid the need for a double normalization of W isotopes. After normalization of W isotope ratios to a pair of W isotopes, following the exponential law, no residual W-O isotope correlation is observed. However, there is a nonideal mass bias residual correlation between (182)W/(i)W and (183)W/(i)W with time. Without double normalization of W isotopes and on the basis of three or four duplicate analyses, the external reproducibility per session of (182)W/(184)W and (183)W/(184)W normalized to (186)W/(183)W is 5-6 ppm (2σ, 1-3 μg loads). The combined uncertainty per session is less than 4 ppm for (183)W/(184)W and less than 6 ppm for (182)W/(184)W (2σm) for loads between 3000 and 50 ng. PMID:26751903

  16. Neuroscience and Accelerator Mass Spectrometry

    SciTech Connect

    Palmblad, M N; Buchholz, B A; Hillegonds, D J; Vogel, J S

    2004-08-02

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.

  17. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  18. A novel approach to measure isotope ratios via multi-collector-inductively coupled plasma-mass spectrometry based on sample mixing with a non-enriched standard.

    PubMed

    Costas-Rodríguez, Marta; Lobo, Lara; Vanhaecke, Frank

    2014-07-01

    In this work, a novel approach to measure isotope ratios via multi-collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) for low amounts of target element is proposed. The methodology is based on mixing of the sample (target element isolate) with a non-enriched in-house standard, previously characterized for its isotopic composition. This methodology has been applied to isotopic analysis of Cu and of Fe in whole blood samples. For this purpose, different mixtures of sample + in-house standard were prepared and adjusted to a final concentration of 500 μg/L of the target elements for isotopic analysis. δ(65)Cu, δ(56)Fe, and δ(57)Fe varied linearly as a function of the amount of in-house standard (or of sample) present in the mixture. The isotopic composition of the sample was calculated considering the isotope ratios measured for (i) the mixture and (ii) the in-house standard and (iii) the relative concentrations of target element contributed by the sample and the standard to the mixture, respectively. For validation purposes, the isotopic analysis of whole blood Cu was carried out using both the conventional (using 2 mL of whole blood) and the newly developed approach (using 500 μL of whole blood). The δ(65)Cu values obtained using mixtures containing 40 % (200 μg/L) of Cu from the blood samples and 60 % (300 μg/L) of Cu from the in-house standard were in good agreement with the δ(65)Cu value obtained using the conventional approach (bias ≤0.15 ‰). PMID:24828978

  19. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Assonov, Sergey S.

    2010-01-01

    Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≈ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.

  20. [Photon burst mass spectrometry technique.] Final report

    SciTech Connect

    Fairbank, W.M. Jr

    1996-04-01

    The basic tools have been developed and demonstrated for selective detection of Kr isotopes in the Photon Burst Mass Spectrometry technique. The effort is divided into: photon burst measurements on Mg{sup +} demonstrating high isotopic selectivity, charge exchange of Kr{sup +} with Cs and Rb to produce metastable Kr atoms, development of a diode laser system for photon burst detection of Kr{sup +}, and measurements of photon bursts detection of Kr.

  1. Accelerator mass spectrometry

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.; Finkel, R.; Nelson, D.E.

    1995-06-01

    Accelerator mass spectroscopy (AMS) can be used for efficient detection of long-lived isotopes at part-per-quadrillion sensitivities with good precision. In this article we present an overview of AMS and its recent use in archaeology, geochemistry and biomolecular tracing. All AMS systems use cesium sputter ion sources to produce negative ions from a small button of a solid sample containing the element of interest, such as graphite, metal halide, or metal oxide, often mixed with a metal powder as binder and thermal conductor. Experience shows that both natural and biomedical samples are compatible in a single AMS system, but few other AMS sites make routine {sup 14}C measurements for both dating and tracing. AMS is, in one sense, just `a very sensitive decay counter`, but if AMS sensitivity is creatively coupled to analytical chemistry of certain isotopes, whole new areas of geosciences, archaeology, and life sciences can be explored. 29 refs., 2 figs., 1 tab.

  2. Nuclear applications of inorganic mass spectrometry.

    PubMed

    De Laeter, John

    2010-01-01

    There are several basic characteristics of mass spectrometry that are not always fully appreciated by the science community. These characteristics include the distinction between relative and absolute isotope abundances, and the influence of isotope fractionation on the accuracy of isotopic measurements. These characteristics can be illustrated in the field of nuclear physics with reference to the measurement of nuclear parameters, which involve the use of enriched isotopes, and to test models of s-, r-, and p-process nucleosynthesis. The power of isotope-dilution mass spectrometry (IDMS) to measure trace elements in primitive meteorites to produce accurate Solar System abundances has been essential to the development of nuclear astrophysics. The variety of mass spectrometric instrumentation used to measure the isotopic composition of elements has sometimes been accompanied by a lack of implementation of basic mass spectrometric protocols which are applicable to all instruments. These metrological protocols are especially important in atomic weight determinations, but must also be carefully observed in cases where the anomalies might be very small, such as in studies of the daughter products of extinct radionuclides to decipher events in the early history of the Solar System. There are occasions in which misleading conclusions have been drawn from isotopic data derived from mass spectrometers where such protocols have been ignored. It is important to choose the mass spectrometer instrument most appropriate to the proposed experiment. The importance of the integrative nature of mass spectrometric measurements has been demonstrated by experiments in which long, double beta decay and geochronological decay half-lives have been measured as an alternative to costly radioactive-counting experiments. This characteristic is also illustrated in the measurement of spontaneous fission yields, which have accumulated over long periods of time. Mass spectrometry is also a valuable tool in the determination of neutron capture cross-section measurements and the application of such determinations in Planetary Science. PMID:19877268

  3. Bioaffinity Mass Spectrometry Screening.

    PubMed

    Yang, Ben; Feng, Yun Jiang; Vu, Hoan; McCormick, Brendan; Rowley, Jessica; Pedro, Liliana; Crowther, Gregory J; Van Voorhis, Wesley C; Forster, Paul I; Quinn, Ronald J

    2016-02-01

    Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS or ESI-FTMS) was used to screen 192 natural product extracts and a 659-member natural product-based fragment library for bindings to a potential malaria drug target, Plasmodium falciparum Rab11a (PfRab11a, PF13_0119). One natural product extract and 11 fragments showed binding activity. A new natural product, arborside E, was identified from the active extract of Psydrax montigena as a weak binder. Its binding activity and inhibitory activity against PfRab11a were confirmed by ESI-FTMS titration experiments and an orthogonal enzyme assay. PMID:26773071

  4. Multiple spiking species-specific isotope dilution analysis by molecular mass spectrometry: simultaneous determination of inorganic mercury and methylmercury in fish tissues.

    PubMed

    Castillo, Angel; Rodríguez-González, Pablo; Centineo, Giuseppe; Roig-Navarro, Antoni Francesc; García Alonso, J Ignacio

    2010-04-01

    This work demonstrates, for the first time, the applicability of multiple spiking isotope dilution analysis to molecular mass spectrometry exemplified by the speciation analysis of mercury using GC(EI)MS instrumentation. A double spike isotope dilution approach using isotopically enriched mercury isotopes has been applied for the determination of inorganic mercury Hg(II) and methylmercury (MeHg) in fish reference materials. The method is based on the application of isotope pattern deconvolution for the simultaneous determination of degradation-corrected concentrations of methylmercury and inorganic mercury. Mass isotopomer distributions are employed instead of isotope ratios to calculate the corrected concentrations of the Hg species as well as the extent of species degradation reactions. The isotope pattern deconvolution equations developed here allow the calculation of the different molar fractions directly from the GC(EI)MS mass isotopomer distribution pattern and take into account possible impurities present in the spike solutions employed. The procedure has been successfully validated with the analysis of two different certified reference materials (BCR-464 and DOLT-4) and with the comparison of the results obtained by GC(ICP)MS. For the tuna fish matrix (BCR-464), no interconversion reactions were observed at the optimized conditions of open focused microwave extraction at 70 degrees C during 8 min. However, significant demethylation was found under the same conditions in the case of the certified dogfish liver DOLT-4. Methylation and demethylation factors were confirmed by GC(ICP)MS. Transformation reactions have been found to depend on the sample matrix and on the derivatization reagent employed. Thus, it is not possible to recommend optimum extraction conditions suitable for all types of matrices demonstrating the need to apply multiple spiking methodologies for the determination of MeHg and Hg(II) in biological samples. Double spike isotope dilution analysis methodologies using widespread GC(EI)MS instrumentation are proposed here for the routine analysis of inorganic mercury and methylmercury in fish samples. The estimated method detection limits were below 10 ng g(-1) for both mercury species. Precision was evaluated for the concentrations present in the certified reference materials (CRMs) which vary from 0.1 to 5 microg g(-1), achieving values of coefficients of variation ranging from 7% to 2%. The concentrations obtained in both CRMs analyzed were in excellent agreement with the certified values, demonstrating the accuracy of the method at these concentration levels. PMID:20192179

  5. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  6. Deletion of Genes Encoding Arginase Improves Use of “Heavy” Isotope-Labeled Arginine for Mass Spectrometry in Fission Yeast

    PubMed Central

    Borek, Weronika E.; Zou, Juan; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    The use of “heavy” isotope-labeled arginine for stable isotope labeling by amino acids in cell culture (SILAC) mass spectrometry in the fission yeast Schizosaccharomyces pombe is hindered by the fact that under normal conditions, arginine is extensively catabolized in vivo, resulting in the appearance of “heavy”-isotope label in several other amino acids, most notably proline, but also glutamate, glutamine and lysine. This “arginine conversion problem” significantly impairs quantification of mass spectra. Previously, we developed a method to prevent arginine conversion in fission yeast SILAC, based on deletion of genes involved in arginine catabolism. Here we show that although this method is indeed successful when 13C6-arginine (Arg-6) is used for labeling, it is less successful when 13C615N4-arginine (Arg-10), a theoretically preferable label, is used. In particular, we find that with this method, “heavy”-isotope label derived from Arg-10 is observed in amino acids other than arginine, indicating metabolic conversion of Arg-10. Arg-10 conversion, which severely complicates both MS and MS/MS analysis, is further confirmed by the presence of 13C515N2-arginine (Arg-7) in arginine-containing peptides from Arg-10-labeled cells. We describe how all of the problems associated with the use of Arg-10 can be overcome by a simple modification of our original method. We show that simultaneous deletion of the fission yeast arginase genes car1+ and aru1+ prevents virtually all of the arginine conversion that would otherwise result from the use of Arg-10. This solution should enable a wider use of heavy isotope-labeled amino acids in fission yeast SILAC. PMID:26075619

  7. Isotopic analysis of Cu in blood serum by multi-collector ICP-mass spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis?

    PubMed

    Costas-Rodríguez, Marta; Anoshkina, Yulia; Lauwens, Sara; Van Vlierberghe, Hans; Delanghe, Joris; Vanhaecke, Frank

    2015-03-01

    The isotopic composition of blood serum Cu has been investigated as a potential parameter for the diagnosis and prognosis of liver cirrhosis. Serum samples from supposedly healthy women (reference population) and from a group of female patients suffering from liver cirrhosis of different etiologies were analysed. The procedure for isolation of serum Cu and the measurement protocol for its isotopic analysis by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) were evaluated. Significant differences in the isotopic composition of Cu were observed between the reference population and the patients. A wide spread in δ(65)Cu was observed within the cirrhosis population and δ(65)Cu seems to be linked to the severity of the disease. Patients with end-stage liver disease showed a significantly lighter serum Cu isotopic composition. Many clinical parameters used for the diagnosis and monitoring of liver diseases, i.e. the levels of aspartate aminotransferase, De Ritis ratio, prothrombin and international normalized ratio, albumin, bilirubin, Na and C-reactive protein, correlate well with the δ(65)Cu values, as did the ceruloplasmin level and the ceruloplasmin/Cu concentration ratio. The isotopic composition of serum Cu appears to reveal the synthetic and hepatocellular function of the liver synergistically with inflammation and fluid retention in the cohort studied. A relevant relationship was also observed between δ(65)Cu and scores of mortality risk, such as the Model for End-stage Liver Disease (MELD) and MELD-Na. Thus, the isotopic composition of serum Cu shows potential as a new approach for the prognosis of liver disease, and although further investigation is required, for evaluation of the mortality risk in end-stage liver disease and prioritization of liver transplants. PMID:25644127

  8. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    SciTech Connect

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.; White, Byron M.

    2015-05-01

    135Cs/137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide variety of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2σ) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/137Cs ratio measurements currently reported for soil samples at the femtogram level.

  9. Stable isotope-dilution liquid chromatography/tandem mass spectrometry method for determination of thyroxine in saliva.

    PubMed

    Higashi, Tatsuya; Ichikawa, Takuya; Shimizu, Chikara; Nagai, So; Inagaki, Shinsuke; Min, Jun Zhe; Chiba, Hitoshi; Ikegawa, Shigeo; Toyo'oka, Toshimasa

    2011-04-15

    A liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) method for the determination of thyroxine (T(4)) in human saliva has been developed and validated. The saliva was deproteinized with methanol, purified using a Strata-X™ cartridge, and subjected to LC/ESI-MS/MS. Quantification was based on selected reaction monitoring, and [(13)C(6)]-T(4) was used as the internal standard. This method allowed the reproducible (intra- and inter-assay relative standard deviations, <4.8%) and accurate (analytical recovery, 96.5-99.6%) quantification of the salivary T(4) using a 400 μl sample, and the limit of quantification was 25.0 pg/ml. A preliminary study using the developed method found that there is a diagnosable difference in the salivary T(4) concentration between the euthyroid subjects and the patients with Graves disease. PMID:21435959

  10. Molecular formula analysis of fragment ions by isotope-selective collision-induced dissociation tandem mass spectrometry of pharmacologically active compounds.

    PubMed

    Bianco, Giuliana; Buchicchio, Alessandro; Lelario, Filomena; Cataldi, Tommaso R I

    2014-12-01

    The purpose of this work is to explore the mass fragment characterization of commonly used drugs through a novel approach, which involves isotope-selective tandem mass spectrometry (MS/MS). Collision-induced dissociation (CID) was performed with a low-resolution linear ion trap mass spectrometer in positive electrospray ionization. Three pharmacologically active ingredients, i.e. omeprazole, meloxicam and brinzolamide, selected as model compounds in their own formulation, were investigated as a sodiated adduct [C17 H19 N3 O3 S + Na](+) (omeprazole) and as protonated adducts, [C14 H13 N3 O4 S2  + H](+) and [C12 H21 N3 O5 S3  + H](+) , meloxicam and brinzolamide, respectively. Selecting a narrow window of ±0.5 m/z units, precursor ion fragmentation by CID-MS/MS of isotopologues A + 0, A + 1 and A + 2 was found very useful to confirm the chemical formula of product ions, thus aiding the establishment of characteristic fragmentation pathways of all three examined compounds. The correctness of putative molecular formula of product ions was easily demonstrated by exploiting the isotope peak abundance ratios (i.e. IF+0 /IF+1 and IF+0 /IF+2 ) as simple constraints in low-resolution MS instrumentations. PMID:25476951

  11. Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bürger, S.; Riciputi, L. R.; Bostick, D. A.; Turgeon, S.; McBay, E. H.; Lavelle, M.

    2009-09-01

    A ThermoFisher "Triton" multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotope ratio analysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (104 atoms to 105 atoms) for 239-242+244Pu, 233+236U, 241-243Am, 89,90Sr, and 134,135,137Cs, and <=1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 × 106 or better using a SEM are reported here. Precisions of RSD [approximate]0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.

  12. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.; Driedger, Arthur R., III

    1993-01-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  13. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate. PMID:25967147

  14. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  15. Laser ablation molecular isotopic spectrometry of carbon isotopes

    SciTech Connect

    Bol'shakov, Alexander A.; Jain, Jinesh; Russo, Richard E.; McIntyre, Dustin; Mao, Xianglei

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  16. Determination of lead, cadmium, indium, thallium and silver in ancient ices from Antarctica by isotope dilution-thermal ionization mass spectrometry

    USGS Publications Warehouse

    Matsumoto, A.; Hinkley, T.K.

    1997-01-01

    The concentrations of five chalcophile elements (Pb, Cd, In, Tl and Ag) and the lead isotope rarios in ancient ices from the Taylor Dome near coastal Antarctica, have been determined by the isotope dilutionthermal ionization mass spectrometry (ID-TIMS), with ultra-clean laboratory techniques. The samples were selected from segments of cores, one of which included a visible ash layer. Electric conductivity measurement (ECM) or dielectric properties (DEP) gave distinctive sharp peaks for some of the samples c hosen. Exterior portions of the sample segments were trimmed away by methods described here. Samples w ere evaporated to dryness and later separated into fractions for the five elements using an HBr-HNO3 a nion exchange column method. The concentrations are in the range 2.62-36.7 pg Pb/g of ice, 0.413-2.83 pg Cd/g, 0.081-0.34 pg In/g, 0.096-2.8 pg Tl/g and 0.15-0.84 pg Ag/g. respectively. The dispersions in duplicate analyses are about ??1% for lead and cadmium, ??2% for indium. ??4% for thallium and ??6% for silver, respectively. The concentrations of lead obtained are commonly higher than those in the present-day Antarctic surface snows, but the isotope ratios are distinctively higher than those of the present-day snows and close to those of the other ancient ice collected from a different Antarctic area.

  17. Combining capillary electrophoresis matrix-assisted laser desorption/ionization mass spectrometry and stable isotopic labeling techniques for comparative crustacean peptidomics.

    PubMed

    Wang, Junhua; Zhang, Yuzhuo; Xiang, Feng; Zhang, Zichuan; Li, Lingjun

    2010-06-25

    Herein we describe a sensitive and straightforward off-line capillary electrophoresis (CE) matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) interface in conjunction with stable isotopic labeling (SIL) technique for comparative neuropeptidomic analysis in crustacean model organisms. Two SIL schemes, including a binary H/D formaldehyde labeling technique and novel, laboratory-developed multiplexed dimethylated leucine-based isobaric tagging reagents, have been evaluated in these proof-of-concept experiments. We employ these isotopic labeling techniques in conjunction with CE-MALDI-MS for quantitative peptidomic analyses of the pericardial organs isolated from two crustacean species, the European green crab Carcinus maenas and the blue crab Callinectes sapidus. Isotopically labeled peptide pairs are found to co-migrate in CE fractions and quantitative changes in relative abundances of peptide pairs are obtained by comparing peak intensities of respective peptide pairs. Several neuropeptide families exhibit changes in response to salinity stress, suggesting potential physiological functions of these signaling peptides. PMID:20334868

  18. Rapid analysis of biogenic amines from rice wine with isotope-coded derivatization followed by high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Cai, Yiping; Sun, Zhiwei; Chen, Guang; Liu, Xiaomei; You, Jinmao; Zhang, Caiqing

    2016-02-01

    A pair of isotope-coded derivatization reagents, d0-10-methyl-acridone-2-sulfonyl chloride (d0-MASC, light form) and d3-10-methyl-acridone-2-sulfonyl chloride (d3-MASC, heavy form), were used for labeling biogenic amines (BAs). On basis of the isotope-coded derivatization, a global isotope internal standard quantitative method for determining seven BAs by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The d0-MASC and d3-MASC can easily label BAs under mild conditions within 15 min at 50 °C. The obtained light and heavy labeled BAs were monitored by the transitions of [M+H](+) → 208 and [M+H](+) → 211, respectively. Relative quantification of BAs was achieved by calculation of the peak area ratios of d0-MASC/d3-MASC labeled derivatives. Excellent linear responses for relative quantification were observed in the range of 1/10-10/1. The developed method has been successfully applied to the quantification of BAs in Chinese rice wine with recoveries ranging from 94.9% to 104.5%. PMID:26304364

  19. Use of Isotope Ratio Mass Spectrometry (IRMS) Determination ((18)O/(16)O) to Assess the Local Origin of Fish and Asparagus in Western Switzerland.

    PubMed

    Rossier, Joël S; Maury, Valérie; de Voogd, Blaise; Pfammatter, Elmar

    2014-10-01

    Here we present the use of isotope ratio mass spectrometry (IRMS) for the detection of mislabelling of food produced in Switzerland. The system is based on the analysis of the oxygen isotope distribution in water (δ(18)O). Depending on the location on the earth, lake or groundwater has a specific isotopic distribution, which can serve as a fingerprint in order to verify whether a product has grown by means of the corresponding water. This report presents specifically the IRMS technique and the results obtained in the origin detection of fish grown in selected Swiss lakes as well as asparagus grown in Valais ground. Strengths and limitations of the method are presented for both cited products; on one hand, the technique is relatively universal for any product which contains significant water but on the other hand, it necessitates a rather heavy workload to build up a database of water δ(18)O values of products of different origins. This analytical tool is part of the concept of combating fraud currently in use in Switzerland. PMID:25437160

  20. An analytical system for studying the stable isotopes of carbon monoxide using continuous flow-isotope ratio mass spectrometry (CF-IRMS)

    NASA Astrophysics Data System (ADS)

    Pathirana, S. L.; van der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-02-01

    In the atmosphere, carbon monoxide (CO) is the major sink for the hydroxyl radical (OH •), has multiple anthropogenic and natural sources and considerable spatial and seasonal variability. Measurements of CO isotopic composition are useful in constraining the strengths of its individual source and sink processes and thus its global cycle. A fully automated system for δ13C and δ18O analysis has been developed to extract CO from an air sample, convert CO into carbon dioxide (CO2) using the Schütze reagent, and then determine the isotopic composition in an isotope ratio mass spectrometer (IRMS). The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is only 1-3% of the typical sample size. The repeatability is 0.1‰ for δ13C and 0.2‰ for δ18O. The peak area allows simultaneous determination of the mole fraction with an analytical repeatability of ~0.7 nmol mol-1 for 100 mL of typical ambient air (185.4 nmol mol-1 of CO). A single, automated, measurement is performed in 18 min, so multiple measurements can be combined conveniently to improve precision.

  1. Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Loftin, Keith A.; Lee, Edward A.; Hinshaw, Gary H.; Dietze, Julie E.; Scribner, Elisabeth A.

    2009-01-01

    The U.S. Geological Survey method (0-2141-09) presented is approved for the determination of glyphosate, its degradation product aminomethylphosphonic acid (AMPA), and glufosinate in water. It was was validated to demonstrate the method detection levels (MDL), compare isotope dilution to standard addition, and evaluate method and compound stability. The original method USGS analytical method 0-2136-01 was developed using liquid chromatography/mass spectrometry and quantitation by standard addition. Lower method detection levels and increased specificity were achieved in the modified method, 0-2141-09, by using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The use of isotope dilution for glyphosate and AMPA and pseudo isotope dilution of glufosinate in place of standard addition was evaluated. Stable-isotope labeled AMPA and glyphosate were used as the isotope dilution standards. In addition, the stability of glyphosate and AMPA was studied in raw filtered and derivatized water samples. The stable-isotope labeled glyphosate and AMPA standards were added to each water sample and the samples then derivatized with 9-fluorenylmethylchloroformate. After derivatization, samples were concentrated using automated online solid-phase extraction (SPE) followed by elution in-line with the LC mobile phase; the compounds separated and then were analyzed by LC/MS/MS using electrospray ionization in negative-ion mode with multiple-reaction monitoring. The deprotonated derivatized parent molecule and two daughter-ion transition pairs were identified and optimized for glyphosate, AMPA, glufosinate, and the glyphosate and AMPA stable-isotope labeled internal standards. Quantitative comparison between standard addition and isotope dilution was conducted using 473 samples analyzed between April 2004 and June 2006. The mean percent difference and relative standard deviation between the two quantitation methods was 7.6 plus or minus 6.30 (n = 179), AMPA 9.6 plus or minus 8.35 (n = 206), and glufosinate 9.3 plus or minus 9.16 (n = 16). The analytical variation of the method, comparison of quantitation by isotope dilution and multipoint linear regressed standard curves, and method detection levels were evaluated by analyzing six sets of distilled-water, groundwater, and surface-water samples spiked in duplicate at 0.0, 0.05, 0.10 and 0.50 microgram per liter and analyzed on 6 different days during 1 month. The grand means of the normalized concentration percentage recovery for glyphosate, AMPA, and glufosinate among all three matrices and spiked concentrations ranged from 99 to 114 plus or minus 2 to 7 percent of the expected spiked concentration. The grand mean of the percentage difference between concentrations calculated by standard addition and linear regressed multipoint standard curves ranged from 8 to 15 plus or minus 2 to 9 percent for the three compounds. The method reporting levels calculated from all the 0.05- microgram per liter spiked samples were 0.02 microgram per liter for all three compounds. Compound stability experiments were conducted on 10 samples derivatized four times for periods between 136 to 269 days. The glyphosate and AMPA concentrations remained relatively constant in samples held up to 136 days before derivatization. The half life of glyphosate varied from 169 to 223 days in the underivatized samples. Derivatized samples were analyzed the day after derivitization, and again 54 and 64 days after derivatization. The derivatized samples analyzed at days 52 and 64 were within 20 percent of the concentrations of the derivatized samples analyzed the day after derivatization.

  2. Analytical approach for the determination of steroid profile of humans by gas chromatography isotope ratio mass spectrometry aimed at distinguishing between endogenous and exogenous steroids.

    PubMed

    Bulska, Ewa; Gorczyca, Damian; Zalewska, Izabela; Pokrywka, Andrzej; Kwiatkowska, Dorota

    2015-03-15

    The contamination of commonly used supplements by unknown steroids as well as their metabolites (parent compounds) become a challenge for the analytical laboratories. Although the determination of steroids profile is not trivial because of the complex matrix and low concentration of single compound, one of the most difficult current problem is to distinguish, during analytical procedure, endogenous androgens such as testosterone, dehydrotestosterone or dehydroepiandrosterone from their synthetic equivalents. The aim of this work was to develop and validate an analytical procedure for determination of the steroid profile in human urine by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) toward distinguishing between endogenous and exogenous steroids. Beside the optimization of the experimental parameters for gas chromatography separation and mass spectrometry, attention was focused on urine sample preparation. Using an optimized sample preparation protocol it was possible to achieve better chromatographic resolutions and better sensitivity enabling the determination of 5 steroids, androsterone, etiocholanolone, testosterone, 5-androstandiol, 11-hydroxyandrdostane, pregnandiol, with the expanded uncertainty (k=2) below 1‰. This enable to evaluate the significant shift of the δ(13)C/(12)C [‰] values for each of examined steroids (excluding ERC). The analytical protocol described in this work was successfully used for the confirmation of positive founding urine by evaluation T/E ratio after GC/C/IRMS analysis. PMID:25498150

  3. Direct determination of fatty acid esters of 3-chloro-1, 2-propanediol in edible vegetable oils by isotope dilution - ultra high performance liquid chromatography - triple quadrupole mass spectrometry.

    PubMed

    Li, Heli; Chen, Dawei; Miao, Hong; Zhao, Yunfeng; Shen, Jianzhong; Wu, Yongning

    2015-09-01

    A selective and sensitive ultra-high performance liquid chromatography - triple quadrupole mass spectrometry (UHPLC-MS/MS) method coupled with matrix solid phase dispersion (MSPD) extraction was developed for the direct determination of fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD esters) in edible vegetable oils. The method integrated the isotope dilution technique, MSPD extraction and UHPLC - MS/MS analysis with multi-reaction monitoring mode (MRM). Matrix-matched calibration curves showed good linearity within the range of 0.01-10mgL(-1) with the correlation coefficient not less than 0.999. Limits of detection (LODs) and limit of quantification (LOQs) of the 3-MCPD esters fell into the range of 0.0001-0.02mgkg(-1) and 0.0004-0.05mgkg(-1), respectively. The recoveries for the spiked extra virgin olive oils ranged from 94.4% to 108.3%, with the relative standard deviations (RSD) ranging from 0.6% to 10.5%. The method was applied for the oil sample (T2642) of the official Food Analysis Performance Assessment Scheme (FAPAS) in 2014 and other real samples from supermarket, and the results showed that the present method was comparative to the gas chromatography-mass spectrometry (GC-MS) method based on the improved German Society for Fat Science (DGF) standard method C-III 18 (09) except for palm oil. PMID:26239698

  4. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  5. Electronic nose and isotope ratio mass spectrometry in combination with chemometrics for the characterization of the geographical origin of Italian sweet cherries.

    PubMed

    Longobardi, F; Casiello, G; Ventrella, A; Mazzilli, V; Nardelli, A; Sacco, D; Catucci, L; Agostiano, A

    2015-03-01

    Sweet cherries from two Italian regions, Apulia and Emilia Romagna, were analysed using electronic nose (EN) and isotope ratio mass spectrometry (IRMS), with the aim of distinguishing them according to their geographic origin. The data were elaborated by statistical techniques, examining the EN and IRMS datasets both separately and in combination. Preliminary exploratory overviews were performed and then linear discriminant analyses (LDA) were used for classification. Regarding EN, different approaches for variable selection were tested, and the most suitable strategies were highlighted. The LDA classification results were expressed in terms of recognition and prediction abilities and it was found that both EN and IRMS performed well, with IRMS showing better cross-validated prediction ability (91.0%); the EN-IRMS combination gave slightly better results (92.3%). In order to validate the final results, the models were tested using an external set of samples with excellent results. PMID:25306321

  6. Measurement of U and Pu isotope ratios in hair and nail samples using extraction chromatography and multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Brown, J N W; Robertson, J D; Brockman, J D

    2014-11-01

    A bioassay capable of monitoring occupational or environmental exposure to special nuclear materials would be a useful tool for nuclear nonproliferation programs. Hair and nail are potential biomonitors of exposure to U and Pu. A method is described to measure isotope ratios of ultra-trace concentrations of U and Pu in hair and nail samples. The method uses multiple extraction chromatography resins to separate U and Pu fractions from the sample matrix. The U recovery was quantitative while the Pu recovery ranged from 81% to 109%, with a U decontamination factor of 5×10(4). Following the separation (234)U/(238)U, (235)U/(238)U and (240)Pu/(239)Pu were measured in human hair and hair and nail samples using multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The human hair and nail samples had elevated ratios of (234)U/(238)U which could reflect exposure to naturally fractionated U. PMID:25127622

  7. Application of Microwave-Induced Combustion and Isotope Dilution Strategies for Quantification of Sulfur in Coals via Sector-Field Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Christopher, Steven J; Vetter, Thomas W

    2016-05-01

    In recent years, microwave-induced combustion (MIC) has proved to be a robust sample preparation technique for difficult-to-digest samples containing high carbon content, especially for determination of halogens and sulfur. National Institute of Standards and Technology (NIST) has applied the MIC methodology in combination with isotope dilution analysis for sulfur determinations, representing the first-reported combination of this robust sample preparation methodology and high-accuracy quantification approach. Medium-resolution mode sector-field inductively coupled plasma mass spectrometry was invoked to avoid spectral interferences on the sulfur isotopes. The sample preparation and instrumental analysis scheme was used for the value assignment of total sulfur in Standard Reference Material (SRM) 2682c Subbituminous Coal (nominal mass fraction 0.5% sulfur). A description of the analytical procedures required is provided, along with metrological results, including an estimation of the overall method uncertainty (<1.5% relative expanded uncertainty) calculated using the IDMS measurement function and a Kragten spreadsheet approach. PMID:27032706

  8. Oxygen isotopic distribution along the otolith growth axis by secondary ion mass spectrometry: Applications for studying ontogenetic change in the depth inhabited by deep-sea fishes

    NASA Astrophysics Data System (ADS)

    Shiao, Jen-Chieh; Itoh, Shoichi; Yurimoto, Hisayoshi; Iizuka, Yoshiyuki; Liao, Yun-Chih

    2014-02-01

    This study using tuna otoliths as working standards established a high lateral resolution and precision analysis to measure δ18Ootolith by secondary ion mass spectrometry. This analytical approach of the ion probe was applied to deep-sea fishes to reconstruct the likely depths inhabited by the fishes at different life history stages based on the measured δ18Ootolith values as a proxy of water temperature. Dramatic increases up to 5-6‰ in δ18Ootolith, representing a temperature decrease of approximately 20 °C, were detected in a blind cusk eel (Barathronus maculatus) otolith and in the otoliths of Synaphobranchus kaupii during leptocephalus metamorphosis to glass eel, inferred from the drop of otolith Sr/Ca ratios and increase of otolith growth increment width. δ18Ootolith profiles clearly divided the fish's life history into a planktonic stage in the mixed layer of the ocean and a benthic stage on the deep-sea ocean bottom. The habitat shift signal was recorded within a 150 μm width of otolith growth zone, which was too narrow to be clearly detected by mechanical drilling and conventional isotopic ratio mass spectrometry. However, variations down to -7‰ were found in δ18Ootolith profiles as the result of Cs2+ beam sputter in the core and larval portions of the otoliths. Carbon mapping by electron probe microanalyzer and staining by toluidine blue suggested abundant proteins existed in the areas with anomaly negative δ18Ootolith values, which cannot be interpreted as a habitat change but due to the isotopic fractionation by O emission from the proteins. These results implied that careful design and understanding of the chemical composition of the analytical areas or tracks on the heterogeneous otolith was essential for highly accurate and precise analysis.

  9. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry.

    PubMed

    Zhu, Quan-Fei; Hao, Yan-Hong; Liu, Ming-Zhou; Yue, Jiang; Ni, Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-09-01

    Cytochrome P450 metabolites of arachidonic acid (AA) belong to eicosanoids and are potent lipid mediators of inflammation. It is well-known that eicosanoids play an important role in numerous pathophysiological processes. Therefore, quantitative analysis of cytochrome P450 metabolites of AA, including hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatreinoic acids (EETs), and dihydroxyeicosatrienoic acids (DHETs) can provide crucial information to uncover underlying mechanisms of cytochrome P450 metabolites of AA related diseases. Herein, we developed a highly sensitive method to identify and quantify HETEs, EETs, and DHETs in lipid extracts of biological samples based on stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry. To this end, a pair of stable isotope probes, 2-dimethylaminoethylamine (DMED) and d4-2-dimethylaminoethylamine (d4-DMED), were utilized to facilely label eicosanoids. The heavy labeled eicosanoid standards were prepared and used as internal standards for quantification to minimize the matrix and ion suppression effects in mass spectrometry analysis. In addition, the detection sensitivities of DMED labeled eicosanoids improved by 3-104 folds in standard solution and 5-138 folds in serum matrix compared with unlabeled analytes. Moreover, a good separation of eicosanoids isomers was achieved upon DMED labeling. The established method provided substantial sensitivity (limit of quantification at sub-picogram), high specificity, and broad linear dynamics range (3 orders of magnitude). We further quantified cytochrome P450 metabolites of AA in rat liver, heart, brain tissues and human serum using the developed method. The results showed that 19 eicosanoids could be distinctly detected and the contents of 11-, 15-, 16-, 20-HETE, 5,6-EET, and 14,15-EET in type 2 diabetes mellitus patients and 5-, 11-, 12-, 15-, 16-, 20-HETE, 8,9-EET, and 5,6-DHET in myeloid leukemia patients had significant changes, demonstrating that these eicosanoids may have important roles on the pathogenesis of type 2 diabetes mellitus and myeloid leukemia. PMID:26253834

  10. Collision-induced dissociation of the A + 2 isotope ion facilitates glucosinolates structure elucidation by electrospray ionization-tandem mass spectrometry with a linear quadrupole ion trap.

    PubMed

    Cataldi, Tommaso R I; Lelario, Filomena; Orlando, Donatella; Bufo, Sabino A

    2010-07-01

    An approach is presented that can be of general applicability for structural elucidation of naturally occurring glucosinolates (GLSs) in crude plant extracts based on the fragmentation of isotopic A and A + 2 peaks. The most important fragmentation pathways were studied by tandem mass spectrometry (MS(n), n = 2, 3) using a linear quadrupole ion trap (LTQ) upon GLSs separation by optimized reversed-phase liquid chromatography (RPLC) and electrospray ionization (ESI) in negative ion mode. As the LTQ MS analyzer ensures high sensitivity and linearity, the fragmentation behavior under collision induced dissociation (CID) of the isotopic peaks A and A + 2 as precursor ions was carefully examined. All GLSs (R-C(7)H(11)O(9)NS(2)(-)) share a common structure with at least two sulfur atoms and significant isotopic abundance of (34)S. Thus, dissociation of the +2 Da isotopomeric ions results in several fragment ion doublets containing a combination of (32)S and (34)S. Accordingly, their relative abundances allow one to speed up the structural recognition of GLSs with great confidence, as it produces more structurally informative ions than conventional tandem MS performed on A ions. This approach has been validated on known GLSs bearing two, three, four, and six sulfur atoms by comparing expected and measured isotopic peak abundance ratios (I(A)/I(A)(+2)). Both group- and compound-specific fragments were observed; the predominant pathway of fragmentation of GLSs gives rise to species having the following m/z values, [M - SO(3) - H](-), [M - 196 - H](-), [M - 178 - H](-), and [M - 162 - H](-) after H rearrangement from the R- side chain. The present strategy was successfully applied to extracts of rocket salad leaves (Eruca sativa L.), which was sufficient for the chemical identification of a not already known 6-methylsulfonyl-3-oxohexyl-GLS, a long-chain-length aliphatic glucosinolate, which contains three sulfurs and exhibits a deprotonated molecular ion at m/z 494.1. PMID:20521824

  11. Rapid determination of plutonium isotopes in environmental samples using sequential injection extraction chromatography and detection by inductively coupled plasma mass spectrometry.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel

    2009-10-01

    This article presents an automated method for the rapid determination of 239Pu and 240Pu in various environmental samples. The analytical method involves the in-line separation of Pu isotopes using extraction chromatography (TEVA) implemented in a sequential injection (SI) network followed by detection of isolated analytes with inductively coupled plasma mass spectrometry (ICP-MS). The method has been devised for the determination of Pu isotopes at environmentally relevant concentrations, whereby it has been successfully applied to the analyses of large volumes/amounts of samples, for example, 100-200 g of soil and sediment, 20 g of seaweed, and 200 L of seawater following analyte preconcentration. The investigation of the separation capability of the assembled SI system revealed that up to 200 g of soil or sediment can be treated using a column containing about 0.70 g of TEVA resin. The analytical results of Pu isotopes in the reference materials showed good agreement with the certified or reference values at the 0.05 significance level. Chemical yields of Pu ranged from 80 to 105%, and the decontamination factors for uranium, thorium, mercury and lead were all above 10(4). The duration of the in-line extraction chromatographic run was <1.5 h, and the proposed setup was able to handle up to 20 samples (14 mL each) in a fully automated mode using a single chromatographic column. The SI manifold is thus suitable for rapid and automated determination of Pu isotopes in environmental risk assessment and emergency preparedness scenarios. PMID:19722516

  12. Quantitative measurement of salivary testosterone in Korean adults by stable isotope-dilution liquid chromatographyelectrospray-tandem mass spectrometry.

    PubMed

    Lee, Sanghoo; Kwon, Soonho; Shin, Hye-Jin; Park, Jimyeong; Lim, Hwan-Sub; Lee, Kyoung-Ryul; Kim, Young-Jin

    2010-11-01

    Salivary testosterone levels in Korean adults were quantitatively measured for the first time by liquid chromatography-electrospray-tandem mass spectrometry (LC ESI MS/MS). Salivary testosterone was separated on a multiple reaction monitoring (MRM) chromatogram within 7 min. The LC ESI MS/MS assay was validated over the linearity range of 0.01-2.00 ng/ml (r=0.99987) using testosterone-d(3) as an internal standard. The lower limit of quantification (LOQ) was 0.01 ng/ml. The intra- and inter-assay precisions were 1.54% to 4.09% and 0.96% to 4.29%, respectively. The mean recovery was 93.32% (range 88.43-98.05%). The validated assay was then applied to measure the salivary testosterone levels of Korean adults. In men, the salivary testosterone level collected between 9:00-11:00 am was approximately 2.8 times higher than that in women (P < 0.0001). Salivary testosterone levels in both sexes negatively correlated with age. The present assay would also be useful in measuring salivary testosterone levels in clinical laboratories. PMID:21110921

  13. Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry.

    PubMed

    Schieltz, David M; McWilliams, Lisa G; Kuklenyik, Zsuzsanna; Prezioso, Samantha M; Carter, Andrew J; Williamson, Yulanda M; McGrath, Sara C; Morse, Stephen A; Barr, John R

    2015-03-01

    The seeds of the Ricinus communis (Castor bean) plant are the source of the economically important commodity castor oil. Castor seeds also contain the proteins ricin and R. communis agglutinin (RCA), two toxic lectins that are hazardous to human health. Radial immunodiffusion (RID) and the enzyme linked immunosorbent assay (ELISA) are two antibody-based methods commonly used to quantify ricin and RCA; however, antibodies currently used in these methods cannot distinguish between ricin and RCA due to the high sequence homology of the respective proteins. In this study, a technique combining antibody-based affinity capture with liquid chromatography and multiple reaction monitoring (MRM) mass spectrometry (MS) was used to quantify the amounts of ricin and RCA independently in extracts prepared from the seeds of eighteen representative cultivars of R. communis which were propagated under identical conditions. Additionally, liquid chromatography and MRM-MS was used to determine rRNA N-glycosidase activity for each cultivar and the overall activity in these cultivars was compared to a purified ricin standard. Of the cultivars studied, the average ricin content was 9.3 mg/g seed, the average RCA content was 9.9 mg/g seed, and the enzymatic activity agreed with the activity of a purified ricin reference within 35% relative activity. PMID:25576235

  14. Simultaneous analysis of phthalates, adipate and polycyclic aromatic hydrocarbons in edible oils using isotope dilution-gas chromatography-mass spectrometry.

    PubMed

    Oh, Min-Seok; Lee, Seon-Hwa; Moon, Myeong Hee; Lee, Dong Soo; Park, Hyun-Mee

    2014-01-01

    A method for simultaneous determination of 12 priority phthalates, adipate and polycyclic aromatic hydrocarbons (PAHs) in edible oils by isotope dilution-gas chromatography-mass spectrometry (ID-GC-MS) was developed for fast, accurate and trace analysis. The extraction and clean-up procedures were optimised, and using stable isotope-labelled internal standards for each analyte, relative standard deviations (RSDs) of 0.92-10.6% and spiked sample recoveries of 80.6-97.8% were obtained. Limits of detection for PAHs were in the range of 0.15-0.77 µg/kg and those for phthalates were in the range of 4.6-10.0 µg/kg. The calibration curves exhibited good linearities with regression coefficients of R(2) ≥ 0.99. Twelve edible oils were examined to evaluate the efficiency of this method. Among the 12 analytes, dibutyl phthalates (DBP), diethylhexyl phthalates (DEHP), diethylhexyl adipate (DEHA), benzo[a]anthracene (B[a]A), chrysene (Chry) and benzo[b]fluoranthene (B[b]F) were detected in the range of 1.17-806 µg/kg. PMID:25029399

  15. Use of stable isotopically enriched proteins and directly coupled high-performance liquid chromatography inductively coupled plasma mass spectrometry for quantitatively monitoring the transfer of metals between proteins.

    PubMed

    Mason, Andrew Z; Moeller, Rhonda; Thrippleton, Kelly A; Lloyd, Douglas

    2007-10-01

    Studies have shown that metallothionein (MT) may play an important role in modulating the activity of certain Zn-regulated enzymes under various oxidoreductive conditions by either donating or removing Zn. To better determine the role of MT in interprotein metal transfer, we describe a procedure that uses stable isotopically enriched (67)Zn(7) metallothionein 2 ((67)Zn(7)-MT-2) to quantitatively determine the stoichiometry of transfer of Zn from the protein to a recipient apo-metalloenzyme, apo-carbonic anhydrase (apo-CA) by directly coupled ion exchange high-performance liquid chromatography inductively coupled plasma mass spectrometry. Quantitatively, the transfer of (67)Zn was consistent with the enzymatic activation of the apo-enzyme as judged by its esterase activity and ability to cleave p-nitrophenyl acetate. Maximum enzyme activation occurred at an MT-2:apo-CA molar ratio of 1, implying the release of a single atom of Zn from MT-2. Preincubation of (67)Zn(7)-MT-2 with an excess of oxidized glutathione (GSSG) increased metal donation fourfold, whereas reduced glutathione (GSH) inhibited donation by approximately 50%. By using multiple recipient and donor proteins having different stable isotopic signatures, the technique has the potential for quantitatively studying the kinetic and thermodynamic aspects of Zn transfer between numerous competing ligands in vitro, an important first step toward understanding the regulatory role of this metal in protein functioning and cellular metabolism in vivo. PMID:17673155

  16. Re-evaluation of interferences of doubly charged ions of heavy rare earth elements on Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Yue-Heng; Wu, Fu-Yuan; Xie, Lie-Wen; Chu, Zhu-Yin; Yang, Jin-Hui

    2014-07-01

    We re-evaluate the interference of doubly charged heavy rare earth elements during Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). A series of mixed solutions of standard reference material SRM 987, rare earth elements, and Sr separated from rock reference materials are measured to assess the influence of isobaric interferences on the MC-ICP-MS analysis of Sr isotopes. After sample dissolution, conventional cation-exchange chromatography is employed for Sr purification of rock reference materials prior to MC-ICP-MS measurement. It has been demonstrated that if the natural abundances of Er and Yb are used to correct for doubly charged ion interferences on Sr, an overcorrection results. In contrast, the use of measured doubly charged ion ratios results in an accurate and precise correction of isobaric interference. This finding is confirmed by analytical results for several certified reference materials from mafic (basaltic) to felsic (granitic) silicate rocks. It is noteworthy that, because Er is more prone to doubly charged ion formation, it dominates over Yb doubly charged ions as an interference source.

  17. Development of isotope labeling liquid chromatography-mass spectrometry for metabolic profiling of bacterial cells and its application for bacterial differentiation.

    PubMed

    Wu, Yiman; Li, Liang

    2013-06-18

    Quantitative and comprehensive profiling of cellular metabolites is currently a challenging task in bacterial metabolomics. In this work, a simple and robust method for profiling the amine- and phenol-containing metabolome of bacterial cells is described. The overall workflow consists of methanol-based cell lysis and metabolite extraction with ultrasonication, differential isotope dansylation labeling of cellular metabolites, and analysis of the labeled metabolites by liquid chromatography-mass spectrometry (LC-MS). Over a thousand peak pairs or putative metabolites can be detected from bacterial cells in a 25 min LC-MS run and near 2500 putative metabolites can be found in one bacterium from combined results of multiple analyses. After careful examination and optimization of the sample preparation process, this method is shown to be effective for both Gram-positive and Gram-negative bacteria. An idea of applying LC-ultraviolet (UV) detection to quantify the total amount of labeled metabolites is shown to be effective for normalizing the amounts of metabolites present in different samples for metabolome comparison. The use of differential isotopic labeling allows relative quantification of each individual metabolite, which facilitates comparative metabolomics studies and the generation of a metabolic fingerprint of a bacterium. Finally, this method is demonstrated to be useful for the differentiation of three bacterial species in cultured media and spiked human urine samples. PMID:23495969

  18. Simultaneous determination of α-, β- and γ-hexabromocyclododecane diastereoisomers in water samples by isotope dilution mass spectrometry using (81)Br-labeled analogs.

    PubMed

    Somoano-Blanco, Lourdes; Rodriguez-Gonzalez, Pablo; Centineo, Giusepe; Fonseca, Sergio García; Garcia Alonso, J Ignacio

    2016-01-15

    This work describes the synthesis, characterization and application of three (81)Br-labeled diastereosiomers of hexabromocyclododecane (HBCD) for the accurate and precise determination of α-, β- and γ-HBCD in water samples by isotope dilution mass spectrometry. The synthesis of the labeled analogs was carried out by bromination of cis, trans, trans-1,5,9-cyclododecatriene with (81)Br-enriched bromine. After isolation and purification by semipreparative HPLC, each diastereoisomer was characterized in terms of concentration and isotopic enrichment. Then, they were added to the samples to simultaneously quantify the three HBCD diastereoisomers in a single LC-MS/MS injection without resorting to a methodological calibration graph. The results obtained here demonstrate that the use of (81)Br-labeled analogs provides accurate and precise determinations of α-, β- and γ-HBCD in real water samples. The limits of quantification obtained in real samples for α-, β- and γ-HBCD were 0.022, 0.073 and 0.015ngL(-1), respectively, significantly lower than those required by the European Directive 2013/39/EC. PMID:26739916

  19. Determination of the alkylpyrazine composition of coffee using stable isotope dilution-gas chromatography-mass spectrometry (SIDA-GC-MS).

    PubMed

    Pickard, Stephanie; Becker, Irina; Merz, Karl-Heinz; Richling, Elke

    2013-07-01

    A stable isotope dilution analysis based on gas chromatography-mass spectrometry analysis (SIDA-GC-MS) was developed for the quantitative analysis of 12 alkylpyrazines found in commercially available coffee samples. These compounds contribute to coffee flavor. The accuracy of this method was tested by analyzing model mixtures of alkylpyrazines. Comparisons of alkylpyrazine-concentrations suggested that water as extraction solvent was superior to dichloromethane. The distribution patterns of alkylpyrazines in different roasted coffees were quite similar. The most abundant alkylpyrazine in each coffee sample was 2-methylpyrazine, followed by 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-5-methylpyrazine, and 2,3,5-trimethylpyrazine, respectively. Among the alkylpyrazines tested, 2,3-dimethylpyrazine, 2-ethyl-3-methylpyrazine, 2-ethyl-3,6-dimethylpyrazine, and 2-ethyl-3,5-dimethylpyrazine revealed the lowest concentrations in roasted coffee. By the use of isotope dilution analysis, the total concentrations of alkylpyrazines in commercially available ground coffee ranged between 82.1 and 211.6 mg/kg, respectively. Decaffeinated coffee samples were found to contain lower amounts of alkylpyrazines than regular coffee samples by a factor of 0.3-0.7, which might be a result of the decaffeination procedure. PMID:23745606

  20. Quantitative isomer-specific N-glycan fingerprinting using isotope coded labeling and high performance liquid chromatography-electrospray ionization-mass spectrometry with graphitic carbon stationary phase.

    PubMed

    Michael, Claudia; Rizzi, Andreas M

    2015-02-27

    Glycan reductive isotope labeling (GRIL) using (12)C6-/(13)C6-aniline as labeling reagent is reported with the aim of quantitative N-glycan fingerprinting. Porous graphitized carbon (PGC) as stationary phase in capillary scale HPLC coupled to electrospray mass spectrometry with time of flight analyzer was applied for the determination of labeled N-glycans released from glycoproteins. The main benefit of using stable isotope-coding in the context of comparative glycomics lies in the improved accuracy and precision of the quantitative analysis in combined samples and in the potential of correcting for structure-dependent incomplete enzymatic release of oligosaccharides when comparing identical target proteins. The method was validated with respect to mobile phase parameters, reproducibility, accuracy, linearity and limit of detection/quantification (LOD/LOQ) using test glycoproteins. It is shown that the developed method is capable of determining relative amounts of N-glycans (including isomers) comparing two samples in one single HPLC-MS run. The analytical potential and usefulness of GRIL in combination with PGC-ESI-TOF-MS is demonstrated comparing glycosylation in human monoclonal antibodies produced in Chinese hamster ovary cells (CHO) and hybridoma cell lines. PMID:25638265

  1. Secondary ion mass spectrometry combined with alpha track detection for isotope abundance ratio analysis of individual uranium-bearing particles.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki

    2014-03-01

    Secondary ion mass spectrometry (SIMS) was used in combination with alpha track detection for the efficient analysis of uranium-bearing particles with higher (235)U abundances in environmental samples. A polycarbonate film containing particles was prepared and placed in contact with a CR-39 plastic detector. After exposure for 28 days, the detector was etched in a NaOH solution and each uranium-bearing particle was identified through observation of the alpha tracks recorded in the detector. A portion of the film containing each uranium-bearing particle was cut out and put onto a glassy carbon planchet. The films on the planchet were decomposed through plasma ashing for subsequent uranium abundance ratio analysis with SIMS. The alpha track-SIMS analysis of 10 uranium-bearing particles in a sample taken from a nuclear facility enabled n((235)U)/n((238)U) abundance ratios in the range 0.0072-0.25 to be detected, which were significantly higher than those obtained by SIMS without alpha track detection. The duration of the whole analytical process for analysis of 10 particles was about 32 days. The detection efficiency was calculated to be 27.1±6.5%, based on the analysis of the particles in uranium reference materials. The detection limits, defined as the diameter of the particle which produces alpha tracks more than one for a 28-days exposure, were estimated to be 0.8, 0.9, 1.1, 2.1 and 3.0 μm for the particles having the same uranium abundance ratios with NBL CRM U850, U500, U350, U050 and U010 reference materials, respectively. The use of alpha track detection for subsequent SIMS analysis is an inexpensive and an efficient way to measure uranium-bearing particles with higher (235)U abundances. PMID:24468381

  2. Methadone concentrations in blood, plasma, and oral fluid determined by isotope-dilution gas chromatography-mass spectrometry.

    PubMed

    Hsu, Ya-Ching; Chen, Bud-Gen; Yang, Shu-Ching; Wang, Yu-Shan; Huang, Shiao-Ping; Huang, Mei-Han; Chen, Tai-Jui; Liu, Hsu-Chun; Lin, Dong-Liang; Liu, Ray H; Jones, A Wayne

    2013-05-01

    Methadone (MTD) is widely used for detoxification of heroin addicts and also in pain management programs. Information about the distribution of methadone between blood, plasma, and alternative specimens, such as oral fluid (OF), is needed in clinical, forensic, and traffic medicine when analytical results are interpreted. We determined MTD and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in blood, plasma, blood cells, and OF by gas chromatography-mass spectrometry (GC-MS) after adding deuterium-labeled internal standards. The analytical limits of quantitation for MTD and EDDP by this method were 20 and 3 ng/mL, respectively. The amounts of MTD and EDDP were higher in plasma (80.4 % and 76.5 %) compared with blood cells (19.6 % and 23.5 %) and we found that repeated washing of blood cells with phosphate-buffered saline increased the amounts in plasma (93.6 % and 88.6 %). Mean plasma/blood concentration ratios of MTD and EDDP in spiked samples (N = 5) were 1.27 and 1.21, respectively. In clinical samples from patients (N = 46), the concentrations of MTD in plasma and whole blood were highly correlated (r = 0.92, p < 0.001) and mean (median) plasma/blood distribution ratios were 1.43 (1.41). The correlations between MTD in OF and plasma (r = 0.46) and OF and blood (r = 0.52) were also statistically significant (p < 0.001) and the mean OF/plasma and OF/blood distribution ratios were 0.55 and 0.77, respectively. The MTD concentration in OF decreased as salivary pH increased (more basic). These results will prove useful in clinical and forensic medicine when MTD concentrations in alternative specimens are compared and contrasted. PMID:23090648

  3. Analysis of LDEF experiment AO187-2: Chemically and isotopic measurements of micrometeoroids by secondary ion mass spectrometry

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells have been successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data have been obtained from the trailing edge cells where 45 of 58 impacts have been classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultra-violet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noticed in simulation experiment but is more pronounced in the Long Duration Exposure Facility (LDEF) capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si but also containing Mg and Al provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  4. Multiplexed Immunoaffinity Enrichment of Peptides with Anti-peptide Antibodies and Quantification by Stable Isotope Dilution Multiple Reaction Monitoring Mass Spectrometry.

    PubMed

    Kuhn, Eric; Carr, Steven A

    2016-01-01

    Immunoaffinity enrichment of peptides using anti-peptide antibodies and their subsequent analysis by targeted mass spectrometry using stable isotope-labeled peptide standards is a sensitive and relatively high-throughput assay technology for unmodified and modified peptides in cells, tissues, and biofluids. Suppliers of antibodies and peptides are increasingly aware of this technique and have started incorporating customized quality measures and production protocols to increase the success rate, performance, and supply of the necessary reagents. Over the past decade, analytical biochemists, clinical diagnosticians, antibody experts, and mass spectrometry specialists have shared ideas, instrumentation, reagents, and protocols, to demonstrate that immuno-MRM-MS is reproducible across laboratories. Assay performance is now suitable for verification of candidate biomarkers from large scale discovery "omics" studies, measuring diagnostic proteins in plasma in the clinical laboratory, and for developing a companion assay for preclinical drug studies. Here we illustrate the process for developing these assays with a step-by-step guide for a 20-plex immuno-MRM-MS assay. We emphasize the need for analytical validation of the assay to insure that antibodies, peptides, and mass spectrometer are working as intended, in a multiplexed manner, with suitable assay performance (median values for 20 peptides: CV = 12.4 % at 740 amol/μL, LOD = 310 amol/μL) for applications in quantitative biology and candidate biomarker verification. The assays described conform to Tier 2 (of 3) level of analytical assay validation (1), meaning that the assays are capable of repeatedly measuring sets of analytes of interest within and across samples/experiments and employ internal standards for each analyte for confident detection and precise quantification. PMID:26867743

  5. Determination of very low stable isotope enrichments of [(2)H(5)]-phenylalanine in chicken liver using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    PubMed

    Wilkerling, Katrin; Valenta, Hana; Kersten, Susanne; Dänicke, Sven

    2012-12-12

    Stable isotope labeled amino acids are frequently used to examine nutritive effects on protein synthesis. This technique is characterized by tracing the incorporation of the label into newly synthesized proteins. In the present investigation, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of very low enrichment of protein-bound l-[(2)H(5)]-phenylalanine ([(2)H(5)]-phe) in chicken liver. The LC-MS/MS measurements were carried out in positive atmospheric pressure chemical ionization (APCI) mode. Two mass transitions each for [(2)H(5)]-phe (171.1/125.1 and 171.1/106.1) and l-phenylalanine (phe) (166.1/91.1 and 166.1/93.1) were chosen for quantification and qualification. Due to the high excesses of phe, less sensitive transitions were chosen in the case of phe. The separation was carried out on a phenyl-hexyl column using 0.1% formic acid as eluent A and methanol as eluent B. The method was calibrated with calibration standard solutions in the range of 0.01-0.5 mole percent excess (MPE). Linear regression analysis led to coefficients of determination (r(2)) greater than 0.9995. The method was applied on liver samples from experiments investigating nutritive effects on tissue protein synthesis in broiler chickens. These samples were analyzed with a gas chromatography-mass spectrometry (GC-MS) method and reanalyzed with the developed LC-MS/MS method one year later. Compared to GC-MS, the main advantages of the LC-MS/MS method are its higher selectivity as well as the elimination of the need to convert and derivatize the samples prior to measuring. PMID:23217318

  6. Development and co-validation of porcine insulin certified reference material by high-performance liquid chromatography-isotope dilution mass spectrometry.

    PubMed

    Wu, Liqing; Takatsu, Akiko; Park, Sang-Ryoul; Yang, Bin; Yang, Huaxin; Kinumi, Tomoya; Wang, Jing; Bi, Jiaming; Wang, Yang

    2015-04-01

    This article concerns the development and co-validation of a porcine insulin (pINS) certified reference material (CRM) produced by the National Institute of Metrology, People's Republic of China. Each CRM unit contained about 15 mg of purified solid pINS. The moisture content, amount of ignition residue, molecular mass, and purity of the pINS were measured. Both high-performance liquid chromatography-isotope dilution mass spectrometry and a purity deduction method were used to determine the mass fraction of the pINS. Fifteen units were selected to study the between-bottle homogeneity, and no inhomogeneity was observed. A stability study concluded that the CRM was stable for at least 12 months at -20 °C. The certified value of the CRM was (0.892 ± 0.036) g/g. A co-validation of the CRM was performed among Chinese, Japanese, and Korean laboratories under the framework of the Asian Collaboration on Reference Materials. The co-validation results agreed well with the certified value of the CRM. Consequently, the pINS CRM may be used as a calibration material or as a validation standard for pharmaceutical purposes to improve the quality of pharmaceutical products. PMID:25534116

  7. Automated high-speed analysis of selected organic compounds in urban air by on-line isotopic dilution cryofocusing gas chromatography/mass spectrometry.

    PubMed

    Davoli, E; Cappellini, L; Maggi, M; Fanelli, R

    1994-11-01

    An automated environmental air monitor has been developed to measure selected organic compounds in urban air. The instrument is based on a cryofocusing-thermal desorption gas chromatographic mass spectrometry technique where the mass spectrometer is a slightly modified residual gas analyzer (RGA). The RGA was chosen as a detector because the whole system must be robust for long periods, with 24-h continuous air monitoring. RCA are extremely simple and seemed the most reliable mass spectrometers for this purpose. Moreover, because they have no physically limited ion source, contamination is considerably reduced, so maintenance intervals are longer.The gas chromatograph is equipped with a computer-controlled six-way sampling valve, with a 100-mL sampling loop and thermal desorption cold trap injector. Environmental air is enriched with an isotopically labeled internal standard in the sampling line. This internal standard is added with a validated, custom-made, permeation tube device. The "on-line" internal standard provides for high quality quantitative data because all variations in instrument sensitivity in cryofocusing or in thermal desorption efficiency are taken into account. High repetition rates (down to 5 min for a full analytical cycle) are obtained with the use of an isothermal gas chromatography program, microbore capillary column, and environmental air sampling during the gas chromatography run. PMID:24226389

  8. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.

    PubMed

    Tomlinson-Phillips, Jill; Wooten, Alfred; Kozole, Joseph; Deline, James; Beresford, Pamela; Stairs, Jason

    2014-09-01

    Identification of the fragment ion species associated with the ion reaction mechanism of triacetone triperoxide (TATP), a homemade peroxide-based explosive, is presented. Ion mobility spectrometry (IMS) has proven to be a key analytical technique in the detection of trace explosive material. Unfortunately, IMS alone does not provide chemical identification of the ions detected; therefore, it is unknown what ion species are actually formed and separated by the IMS. In IMS, ions are primarily characterized by their drift time, which is dependent on the ion׳s mass and molecular cross-section; thus, IMS as a standalone technique does not provide structural signatures, which is in sharp contrast to the chemical and molecular information that is generally obtained from other customary analytical techniques, such as NMR, Raman and IR spectroscopy and mass spectrometry. To help study the ion chemistry that gives rise to the peaks observed in IMS, the hardware of two different commercial IMS instruments has been directly coupled to triple quadrupole (QQQ) mass spectrometers, in order to ascertain each ion׳s corresponding mass/charge (m/z) ratios with different dopants at two temperatures. Isotope labeling was then used to help identify and confirm the molecular identity of the explosive fragment and adduct ions of TATP. The m/z values and isotope labeling experiments were used to help propose probable molecular formulas for the ion fragments. In this report, the fragment and adduct ions m/z 58 and 240 of TATP have been confirmed to be [C3H6NH·H](+) and [TATP·NH4](+), respectively; while the fragment ions m/z 73 and 89 of TATP are identified as having the molecular formulas [C4H9NH2](+) and [C4H9O2](+), respectively. It is anticipated that the work in this area will not only help to facilitate improvements in mobility-based detection (IMS and MS), but also aid in the development and optimization of MS-based detection algorithms for TATP. PMID:24913870

  9. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided. PMID:18200615

  10. Methods to reduce interference effects in thermal conversion elemental analyzer/continuous flow isotope ratio mass spectrometry delta18O measurements of nitrogen-containing compounds.

    PubMed

    Accoe, Frederik; Berglund, Michael; Geypens, Benny; Taylor, Philip

    2008-07-01

    On-line determination of the oxygen isotopic composition (delta(18)O value) in organic and inorganic samples is commonly performed using a thermal conversion elemental analyzer (TC-EA) linked to a continuous flow isotope ratio mass spectrometry (IRMS) system. Accurate delta(18)O analysis of N-containing compounds (like nitrates) by TC-EA-IRMS may be complicated because of interference of the N(2) peak on the m/z 30 signal of the CO peak. In this study we evaluated the effectiveness of two methods to overcome this interference which do not require any hardware modifications of standard TC-EA-IRMS systems. These methods were (1) reducing the amount of N(2) introduced into the ion source through He dilution of the N(2) peak and (2) an improved background correction on the CO m/z 30 sample peak integration. Our results show that He dilution is as effective as diverting the N(2) peak in order to eliminate this interference. We conclude that the He-dilution technique is a viable method for the delta(18)O analysis of nitrates and other N-containing samples (which are not routinely measured using He dilution) using TC-EA-IRMS, since it can easily be programmed in the standard software of IRMS systems. With the He-dilution technique delta(18)O values of the nitrate isotope standards USGS34, IAEA-N3 and USGS35 were measured using the shortest possible traceability chain to the VSMOW-SLAP scale, and the results were -28.1 +/- 0.1 per thousand, +25.5 +/- 0.1 per thousand and +57.5 +/- 0.2 per thousand, respectively. An improved background correction was also an effective method, but required manual correction of the raw data. PMID:18561208

  11. A World without Sample Preparation: Developing Rapid Uranium Isotope Measurement Capabilities by Resonance Ionization Mass Spectrometry (RIMS)

    SciTech Connect

    Knight, K B; Hutcheon, I D; Isselhardt, B H; Savina, M R; Prussin, S G

    2009-06-08

    We are developing highly sensitive, highly discriminating laser-based techniques for rapid determination of isotopic compositions. Rapid command of such information is critical to assessment of the origin and history of nuclear materials, particularly in post-detonation scenarios.

  12. A novel strategy for Cr(III) and Cr(VI) analysis in dietary supplements by speciated isotope dilution mass spectrometry.

    PubMed

    Unceta, Nora; Astorkia, Maider; Abrego, Zuriñe; Gómez-Caballero, Alberto; Goicolea, M Aránzazu; Barrio, Ramón J

    2016-07-01

    In recent years, Cr speciation in dietary supplements has become decisive in the evaluation of their health risks. Despite being an beneficial micronutrient, Cr(III) can be toxic at living organisms at high concentrations, while Cr(VI) is known to be highly toxic and carcinogenic. The main objective of this work was to optimize an analytical methodology for the extraction and accurate quantification of Cr(III) and Cr(VI) in dietary supplements. The extraction of Cr species was carried out with 50mM EDTA solution on a hotplate under optimized conditions. Special attention was paid to bidirectional species transformations. No noticeable oxidation of Cr(III) into Cr(VI) was observed and the reduction to Cr(III) only occurred at very high Cr(VI) concentrations. Cr(III) as Cr(EDTA)(-) complex was chromatographically separated from Cr(VI), retained as CrO4(2-), on an anion exchange column coupled to inductively coupled plasma mass spectrometry (LC-ICP-MS). The limit of quantification (0.08µgg(-1)) was below the limit established for Cr enriched yeasts by the European Union. Eleven dietary supplements were analyzed and Cr(III) and Cr(VI) quantification was carried out by external calibration monitoring (52)Cr isotope and by speciated isotope dilution mass spectrometry (SIDMS) adding (50)Cr(III) and (53)Cr(VI) spikes. Total Cr was also quantified by ICP-MS and mass balance between total Cr and the sum of Cr(III) and Cr(VI) was achieved. In eight of the eleven tested supplements Cr(III) calculated amounts were higher than those indicated by the manufacturer, but only one of them exceeded the 250µgday(-1) recommended by World Health Organization (WHO). In contrast, it is worth noting that Cr(VI) amounts beyond the recommendations of the European Union for Cr enriched yeasts were found in five supplements. These results revealed that more accurate and rigorous quality assurance protocols should be applied to the testing of the final products, including the analysis of both Cr(III) and Cr(VI). PMID:27154672

  13. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  14. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  15. Investigation of amino acid δ 13C signatures in bone collagen to reconstruct human palaeodiets using liquid chromatography-isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Choy, Kyungcheol; Smith, Colin I.; Fuller, Benjamin T.; Richards, Michael P.

    2010-11-01

    This research presents the individual amino acid δ 13C values in bone collagen of humans ( n = 9) and animals ( n = 27) from two prehistoric shell midden sites in Korea. We obtained complete baseline separation of 16 of the 18 amino acids found in bone collagen by using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). The isotopic results reveal that the humans and animals in the two sites had similar patterns in essential amino acids (EAAs) and non-essential amino acids (NEAAs). The EAA and NEAA δ 13C values in humans are intermediate between those in marine and terrestrial animals. However, the threonine δ 13C values in humans and animals measured in this study are more highly enriched than those of other amino acids. At both sites, all amino acids in marine animals are 13C-enriched relative to those of the terrestrial animals. The isotopic evidence suggests that the Tongsamdong human had EAAs and NEAAs from marine food resources, while the Nukdo humans mainly had EAAs from terrestrial food resources but obtained NEAAs from both terrestrial and marine resources. The δ 13C isotopic differences in amino acids between marine and terrestrial animals were the largest for glycine (NEAA) and histidine (EAA) and the smallest for tyrosine (NEAA) and phenylalanine (EAA). In addition, threonine among the EAAs also had a large difference (˜8‰) in δ 13C values between marine and terrestrial animals, and has the potential to be used as an isotopic marker in palaeodietary studies. Threonine δ 13C values were used in conjunction with the established Δ 13C Glycine-phenylalanine values and produced three distinct dietary groups (terrestrial, omnivorous, and marine). In addition, threonine δ 13C values and Δ 13C Serine-phenylalanine values were discovered to separate between two dietary groups (terrestrial vs. marine), and these δ 13C values may provide a potential new indicator for investigating the distinction between marine and terrestrial protein sources in human diets.

  16. Stable isotope dilution ultra-high performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan-related neuroactive substances in human serum and cerebrospinal fluid.

    PubMed

    Hnykov, Eva; Vrnov, Hana P?ikrylov; Amakorov, Petra; Pospil, Tom; ukauskait?, Asta; Vl?kov, Magdalna; Urbnek, Lubor; Novk, Ond?ej; Mare, Jan; Ka?ovsk, Petr; Strnad, Miroslav

    2016-03-11

    Many compounds related to L-tryptophan (L-TRP) have interesting biological or pharmacological activity, and their abnormal neurotransmission seems to be linked to a wide range of neurodegenerative and psychiatric diseases. A high-throughput method based on ultra-high performance liquid chromatography connected to electrospray tandem mass spectrometry (UHPLC-ESI-MS/MS) was developed for the quantitative analysis of L-TRP and 16 of its metabolites in human serum and cerebrospinal fluid (CSF), representing both major and minor routes of L-TRP catabolism. The combination of a fast LC gradient with selective tandem mass spectrometry enabled accurate analysis of almost 100 samples in 24h. The standard isotope dilution method was used for quantitative determination. The method's lower limits of quantification for serum and cerebrospinal fluid ranged from 0.05 to 15nmol/L and 0.3 to 45nmol/L, respectively. Analytical recoveries ranged from 10.4 to 218.1% for serum and 22.1 to 370.0% for CSF. The method's accuracy ranged from 82.4 to 128.5% for serum matrix and 90.7 to 127.7% for CSF matrix. All intra- and inter-day coefficients of variation were below 15%. These results demonstrate that the new method is capable of quantifying endogenous serum and CSF levels of a heterogeneous group of compounds spanning a wide range of concentrations. The method was used to determine the physiological levels of target analytes in serum and CSF samples from 18 individuals, demonstrating its reliability and potential usefulness in large-scale epidemiological studies. PMID:26879452

  17. Quantification of cellular poly(ADP-ribosyl)ation by stable isotope dilution mass spectrometry reveals tissue- and drug-dependent stress response dynamics.

    PubMed

    Martello, Rita; Mangerich, Aswin; Sass, Sabine; Dedon, Peter C; Bürkle, Alexander

    2013-07-19

    Poly(ADP-ribosyl)ation is an essential post-translational modification with the biopolymer poly(ADP-ribose) (PAR). The reaction is catalyzed by poly(ADP-ribose) polymerases (PARPs) and plays key roles in cellular physiology and stress response. PARP inhibitors are currently being tested in clinical cancer treatment, in combination therapy, or as monotherapeutic agents by inducing synthetic lethality. We have developed an accurate and sensitive bioanalytical platform based on isotope dilution mass spectrometry in order to quantify steady-state and stress-induced PAR levels in cells and tissues and to characterize pharmacological properties of PARP inhibitors. In contrast to existing PAR-detection techniques, the LC-MS/MS method uses authentic isotope-labeled standards, which provide unequivocal chemical specificity to quantify cellular PAR in absolute terms with femtomol sensitivity. Using this platform we analyzed steady-state levels as well as stress-induced dynamics of poly(ADP-ribosyl)ation in a series of biological systems including cancer cell lines, mouse tissues, and primary human lymphocytes. Our results demonstrate a rapid and transient stress-induced increase in PAR levels by >100-fold in a dose- and time-dependent manner with significant differences between cell types and individual human lymphocyte donors. Furthermore, ex vivo pharmacodynamic studies in human lymphocytes provide new insight into pharmacological properties of clinically relevant PARP inhibitors. Finally, we adapted the LC-MS/MS method to quantify poly(ADP-ribosyl)ation in solid tissues and identified tissue-dependent associations between PARP1 expression and PAR levels in a series of different mouse organs. In conclusion, this study demonstrates that mass spectrometric quantification of cellular poly(ADP-ribosyl)ation has a wide range of applications in basic research as well as in drug development. PMID:23631432

  18. Determination of trace sulfur in biodiesel and diesel standard reference materials by isotope dilution sector field inductively coupled plasma mass spectrometry.

    PubMed

    Amais, Renata S; Long, Stephen E; Nóbrega, Joaquim A; Christopher, Steven J

    2014-01-01

    A method is described for quantification of sulfur at low concentrations on the order of mgkg(-1) in biodiesel and diesel fuels using isotope dilution and sector field inductively coupled plasma mass spectrometry (ID-SF-ICP-MS). Closed vessel microwave-assisted digestion was employed using a diluted nitric acid and hydrogen peroxide decomposition medium to reduce sample dilution volumes. Medium resolution mode was employed to eliminate isobaric interferences at (32)S and (34)S related to polyatomic phosphorus and oxygen species, and sulfur hydride species. The method outlined yielded respective limits of detection (LOD) and limits of quantification (LOQ) of 0.7 mg kg(-1) S and 2.5 mg kg(-1) S (in the sample). The LOD was constrained by instrument background counts at (32)S but was sufficient to facilitate value assignment of total S mass fraction in NIST SRM 2723b Sulfur in Diesel Fuel Oil at 9.06±0.13 mg kg(-1). No statistically significant difference at a 95% confidence level was observed between the measured and certified values for certified reference materials NIST SRM 2773 B100 Biodiesel (Animal-Based), CENAM DRM 272b and NIST SRM 2723a Sulfur in Diesel Fuel Oil, validating method accuracy. PMID:24331043

  19. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  20. Characterization and quantification of histidine degradation in therapeutic protein formulations by size exclusion-hydrophilic interaction two dimensional-liquid chromatography with stable-isotope labeling mass spectrometry.

    PubMed

    Wang, Chunlei; Chen, Sike; Brailsford, John A; Yamniuk, Aaron P; Tymiak, Adrienne A; Zhang, Yingru

    2015-12-24

    Two dimensional liquid chromatography (2D-LC) coupling size exclusion (SEC) and hydrophilic interaction chromatography (HILIC) is demonstrated as a useful tool to study polar excipients, such as histidine and its degradant, in protein formulation samples. The SEC-HILIC setup successfully removed interferences from complex sample matrices and enabled accurate mass measurement of the histidine degradation product, which was then determined to be trans-urocanic acid. Because the SEC effluent is a strong solvent for the second dimension HILIC, experimental parameters needed to be carefully chosen, i.e., small transferring loop, fast gradient at high flow rates for the second dimension gradient, in order to mitigate the solvent mismatch and to ensure good peak shapes for HILIC separations. In addition, the generation of trans-urocanic acid was quantified by single heart-cutting SEC-HILIC 2D-LC combined with stable-isotope labeling mass spectrometry. Compared with existing 2D quantification methods, the proposed approach is fast, insensitive to solvent mismatch between dimensions, and tolerant of small retention time shifts in the first dimension. Finally, the first dimension diode array detector was found to be a potential degradation source for photolabile analytes such as trans-urocanic acid. PMID:26674608

  1. High-Performance Chemical Isotope Labeling Liquid Chromatography-Mass Spectrometry for Profiling the Metabolomic Reprogramming Elicited by Ammonium Limitation in Yeast.

    PubMed

    Luo, Xian; Zhao, Shuang; Huan, Tao; Sun, Difei; Friis, R Magnus N; Schultz, Michael C; Li, Liang

    2016-05-01

    Information about how yeast metabolism is rewired in response to internal and external cues can inform the development of metabolic engineering strategies for food, fuel, and chemical production in this organism. We report a new metabolomics workflow for the characterization of such metabolic rewiring. The workflow combines efficient cell lysis without using chemicals that may interfere with downstream sample analysis and differential chemical isotope labeling liquid chromatography mass spectrometry (CIL LC-MS) for in-depth yeast metabolome profiling. Using (12)C- and (13)C-dansylation (Dns) labeling to analyze the amine/phenol submetabolome, we detected and quantified a total of 5719 peak pairs or metabolites. Among them, 120 metabolites were positively identified using a library of 275 Dns-metabolite standards, and 2980 metabolites were putatively identified based on accurate mass matches to metabolome databases. We also applied (12)C- and (13)C-dimethylaminophenacyl (DmPA) labeling to profile the carboxylic acid submetabolome and detected over 2286 peak pairs, from which 33 metabolites were positively identified using a library of 188 DmPA-metabolite standards, and 1595 metabolites were putatively identified. Using this workflow for metabolomic profiling of cells challenged by ammonium limitation revealed unexpected links between ammonium assimilation and pantothenate accumulation that might be amenable to engineering for better acetyl-CoA production in yeast. We anticipate that efforts to improve other schemes of metabolic engineering will benefit from application of this workflow to multiple cell types. PMID:26947805

  2. The determination of carbon dioxide concentration using atmospheric pressure ionization mass spectrometry/isotopic dilution and errors in concentration measurements caused by dryers.

    PubMed

    DeLacy, Brendan G; Bandy, Alan R

    2008-01-01

    An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying. PMID:18574165

  3. Simultaneous determination of water-soluble vitamins in SRM 1849 Infant/Adult Nutritional Formula powder by liquid chromatography-isotope dilution mass spectrometry.

    PubMed

    Goldschmidt, Robert J; Wolf, Wayne R

    2010-05-01

    Assessing dietary intake of vitamins from all sources, including foods, dietary supplements, and fortified foods, would be aided considerably by having analytical methodologies that are capable of simultaneous determination of several vitamins. Vitamins naturally present in foods may occur in different chemical forms, with levels ranging over several orders of magnitude. Vitamins in dietary supplements and fortified foods, however, are typically added in a single chemical form, and matrix issues are usually not as complex. These sources should thus be relatively amenable to approaches that aim for simultaneous determination of multiple vitamins. Our recent work has focused on development of liquid chromatography (LC)-UV/fluorescence and LC-tandem mass spectrometry methods for the simultaneous determination of water-soluble vitamins (thiamine, niacin, pyridoxine, pantothenic acid, folic acid, biotin, and riboflavin) in dietary supplement tablets and fortified foods, such as formula powders and breakfast cereals. As part of the validation of our methods and collaboration in characterization of a new NIST SRM 1849 Infant/Adult Nutritional Formula powder, we report data on SRM 1849 using isotope dilution mass spectrometric methods. Use of available NIST Standard Reference Materials(R) as test matrices in our method development and validation gives a benchmark for future application of these methods. We compare three chromatographic approaches and provide data on stability of vitamin standard solutions for LC-based multiple vitamin determinations. PMID:20063152

  4. Accelerator mass spectrometry as a bioanalytical tool for nutritional research

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.

    1997-09-01

    Accelerator Mass Spectrometry is a mass spectrometric method of detecting long-lived radioisotopes without regard to their decay products or half-life. The technique is normally applied to geochronology, but recently has been developed for bioanalytical tracing. AMS detects isotope concentrations to parts per quadrillion, quantifying labeled biochemicals to attomole levels in milligram- sized samples. Its advantages over non-isotopeic and stable isotope labeling methods are reviewed and examples of analytical integrity, sensitivity, specificity, and applicability are provided.

  5. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  6. Resonance Ionization Mass Spectrometry in biochemical analysis

    SciTech Connect

    Anderson, J.E.; Perez-Lopez, B.L.; Nogar, N.S.; Estler, R.C.; Conia, J.E.

    1992-08-01

    Resonance Ionization Mass Spectrometry (RIMS) is a form of laser-based mass that is finding increasing applications in elemental and isotopic analysis, particular in biochemical systems. Significant attributes include: (1) excellent sensitivity-- sub-fg, absolute; sub-ppb, relative (2) information on isotopic distributions (3) reduction of background (relative to conventional mass spectrometry) due to the sample matrix. The high sensitivity allows the use of very small sample sizes; this is potentially important in trace element analysis for infants, neonates, or other hard-to-obtain samples. Isotopic measurements can provide direct absolute signal calibration, as well as being applicable to kinetic analysis, such as trace metal uptake studies. The selectivity of RIMS provides for accurate measurements with little or no sample preparation. This, in turn, improves the speed and accuracy of the analysis. Furthermore, resonance ionization can be adapted for use with many pre-existing mass spectrometric systems. We report here on three applications of RIMS: the detection of trace levels of chromium; the quantification of trace chromium in urine; and, the uptake of copper by single cells.

  7. Detection of Synthetic Testosterone Use by Novel Comprehensive Two-Dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC×GCC-IRMS)

    PubMed Central

    Tobias, Herbert J.; Zhang, Ying; Auchus, Richard J.; Brenna, J. Thomas

    2011-01-01

    We report the first demonstration of Comprehensive Two-dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC×GCC-IRMS) for the analysis of urinary steroids to detect illicit synthetic testosterone use, of interest in sport doping. GC coupled to IRMS (GCC-IRMS) is currently used to measure the carbon isotope ratios (CIR, δ13C) of urinary steroids in anti-doping efforts; however, extensive cleanup of urine extracts is required prior to analysis to enable baseline separation of target steroids. With its greater separation capabilities, GC×GC has the potential to reduce sample preparation requirements and enable CIR analysis of minimally processed urine extracts. Challenges addressed include on-line reactors with minimized dimensions to retain narrow peaks shapes, baseline separation of peaks in some cases, and reconstruction of isotopic information from sliced steroid chromatographic peaks. Difficulties remaining include long-term robustness of on-line reactors and urine matrix effects that preclude baseline separation and isotopic analysis of low concentration and trace components. In this work, steroids were extracted, acetylated, and analyzed using a refined, home-built GC×GCC-IRMS system. 11-hydroxy-androsterone (11OHA) and 11-ketoetiocolanolone (11KE) were chosen as endogenous reference compounds (ERC) because of their satisfactory signal intensity, and their CIR was compared to target compounds (TC) androsterone (A) and etiocholanolone (E). Separately, a GC×GC-qMS system was used to measure testosterone (T)/EpiT concentration ratios. Urinary extracts of urine pooled from professional athletes, and urine from one individual that received testosterone gel (T-gel) and one individual that received testosterone injections (T-shot) were analyzed. The average precisions of δ13C and Δδ13C measurements were SD(δ13C) approximately ± 1‰ (n=11). The T-shot sample resulted in a positive for T use with a T/EpiT ratio of > 9 and CIR measurements of Δδ13C > 5‰, both fulfilling World Anti-Doping Agency criteria. These data show for the first time that synthetic steroid use is detectable by GC×GCC-IRMS without need for extensive urine cleanup. PMID:21846122

  8. Measurement of δ18O, δ17O, and 17O-excess in Water by Off-Axis Integrated Cavity Output Spectroscopy and Isotope Ratio Mass Spectrometry

    PubMed Central

    Berman, Elena S.F.; Levin, Naomi E.; Landais, Amaelle; Li, Shuning; Owano, Thomas

    2013-01-01

    Stable isotopes of water have long been used to improve understanding of the hydrological cycle, catchment hydrology, and polar climate. Recently, there has been increasing interest in measurement and use of the less-abundant 17O isotope in addition to 2H and 18O. Off-axis integrated cavity output spectroscopy (OA-ICOS) is demonstrated for accurate and precise measurements δ18O, δ17O, and 17O-excess in liquid water. OA-ICOS involves no sample conversion and has a small footprint, allowing measurements to be made by researchers collecting the samples. Repeated (514) high-throughput measurements of the international isotopic reference water standard GISP demonstrate the precision and accuracy of OA-ICOS: δ18OVSMOW-SLAP =−24.74 ± 0.07 ‰ (1σ) and δ17OVSMOW-SLAP = −13.12 ± 0.05 ‰ (1σ). For comparison, the IAEA value for δ18OVSMOW-SLAP is −24.76 ± 0.09 ‰ (1σ) and an average of previously reported values for δ17OVSMOW-SLAP is −13.12 ± 0.06 ‰ (1σ). Multiple (26) high-precision measurements of GISP provide a 17O-excessVSMOW-SLAP of 23 ± 10 per meg (1σ); an average of previously reported values for 17O-excessVSMOW-SLAP is 22 ± 11 per meg (1σ). For all these OA-ICOS measurements, precision can be further enhanced by additional averaging. OA-ICOS measurements were compared with two independent isotope ratio mass spectrometry (IRMS) laboratories and shown to have comparable accuracy and precision as the current fluorination-IRMS techniques in δ18O, δ17O, and 17O-excess. The ability to measure accurately δ18O, δ17O, and 17O-excess in liquid water inexpensively and without sample conversion is expected to increase vastly the application of δ17O and 17O-excess measurements for scientific understanding of the water cycle, atmospheric convection, and climate modeling among others. PMID:24032448

  9. Simple and accurate measurement of carbamazepine in surface water by use of porous membrane-protected micro-solid-phase extraction coupled with isotope dilution mass spectrometry.

    PubMed

    Teo, Hui Ling; Wong, Lingkai; Liu, Qinde; Teo, Tang Lin; Lee, Tong Kooi; Lee, Hian Kee

    2016-03-17

    To achieve fast and accurate analysis of carbamazepine in surface water, we developed a novel porous membrane-protected micro-solid-phase extraction (μ-SPE) method, followed by liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS) analysis. The μ-SPE device (∼0.8 × 1 cm) was fabricated by heat-sealing edges of a polypropylene membrane sheet to devise a bag enclosing the sorbent. The analytes (both carbamazepine and isotope-labelled carbamazepine) were first extracted by μ-SPE device in the sample (10 mL) via agitation, then desorbed in an organic solvent (1 mL) via ultrasonication. Several parameters such as organic solvent for pre-conditioning of μ-SPE device, amount of sorbent, adsorption time, and desorption solvent and time were investigated to optimize the μ-SPE efficiency. The optimized method has limits of detection and quantitation estimated to be 0.5 ng L(-1) and 1.6 ng L(-1), respectively. Surface water samples spiked with different amounts of carbamazepine (close to 20, 500, and 1600 ng L(-1), respectively) were analysed for the validation of method precision and accuracy. Good precision was obtained as demonstrated by relative standard deviations of 0.7% for the samples with concentrations of 500 and 1600 ng kg(-1), and 5.8% for the sample with concentration of 20 ng kg(-1). Good accuracy was also demonstrated by the relative recoveries in the range of 96.7%-103.5% for all samples with uncertainties of 1.1%-5.4%. Owing to the same chemical properties of carbamazepine and isotope-labelled carbamazepine, the isotope ratio in the μ-SPE procedure was accurately controlled. The use of μ-SPE coupled with IDMS analysis significantly facilitated the fast and accurate measurement of carbamazepine in surface water. PMID:26920772

  10. Measurement of ?18O, ?17O, and 17O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.

    PubMed

    Berman, Elena S F; Levin, Naomi E; Landais, Amaelle; Li, Shuning; Owano, Thomas

    2013-11-01

    Stable isotopes of water have long been used to improve understanding of the hydrological cycle, catchment hydrology, and polar climate. Recently, there has been increasing interest in measurement and use of the less-abundant (17)O isotope in addition to (2)H and (18)O. Off-axis integrated cavity output spectroscopy (OA-ICOS) is demonstrated for accurate and precise measurements ?(18)O, ?(17)O, and (17)O-excess in liquid water. OA-ICOS involves no sample conversion and has a small footprint, allowing measurements to be made by researchers collecting the samples. Repeated (514) high-throughput measurements of the international isotopic reference water standard Greenland Ice Sheet Precipitation (GISP) demonstrate the precision and accuracy of OA-ICOS: ?(18)OVSMOW-SLAP = -24.74 0.07 (1?) and ?(17)OVSMOW-SLAP = -13.12 0.05 (1?). For comparison, the International Atomic Energy Agency (IAEA) value for ?(18)OVSMOW-SLAP is -24.76 0.09 (1?) and an average of previously reported values for ?(17)OVSMOW-SLAP is -13.12 0.06 (1?). Multiple (26) high-precision measurements of GISP provide a (17)O-excessVSMOW-SLAP of 23 10 per meg (1?); an average of previously reported values for (17)O-excessVSMOW-SLAP is 22 11 per meg (1?). For all these OA-ICOS measurements, precision can be further enhanced by additional averaging. OA-ICOS measurements were compared with two independent isotope ratio mass spectrometry (IRMS) laboratories and shown to have comparable accuracy and precision as the current fluorination-IRMS techniques in ?(18)O, ?(17)O, and (17)O-excess. The ability to measure accurately ?(18)O, ?(17)O, and (17)O-excess in liquid water inexpensively and without sample conversion is expected to increase vastly the application of ?(17)O and (17)O-excess measurements for scientific understanding of the water cycle, atmospheric convection, and climate modeling among others. PMID:24032448

  11. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  12. [Mass spectrometry for steroid assays].

    PubMed

    Dufour-Rainfray, Diane; Moal, Valérie; Cloix, Lucie; Mathieu, Elisabeth; Gauchez, Anne-Sophie; Brossaud, Julie; Corcuff, Jean-Benoît; Fraissinet, François; Collet, Christine; Boux de Casson, Florence; Guilloteau, Denis; Emond, Patrick; Reynier, Pascal

    2015-01-01

    Steroid hormone measurement, first developed with radioimmunoassay, is now becoming easier with the use of automated platforms of immunoassay. However, some hormones remain uneasily detectable because of their low blood concentration, their structural homology or the presence of interferences. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) can be considered as an alternative to immunoassays. This approach allows the simultaneous determination of several parameters thanks to its selectivity led by the detector mass spectrometer and the separate dimension of chromatography liquid. In addition, recourse to UHPLC (ultra high performance liquid chromatography) allows improving selectivity and sensitivity while limiting the samples volumes. The "ready-to-use" kits are now available and added to the "homemade" techniques developed by laboratories, thus giving opportunity for measurement of a wide steroid panel with only one sample. Finally, mass spectrometry methods, including a prior extraction step, allow the use of varied biological fluids (blood, urine, saliva…). Also, several clinical indications could gain from mass spectrometry, especially when hormone levels are low, when several steroids have to be identified, when the sample volume is low. However, this technology represents an important financial investment and in-depth staff training. In addition, some steroids are not easily quantifiable by mass spectrometry. It is likely by immunoassay and mass spectrometry, well-matched technologies, that we could answer the best to clinical questions about steroids. PMID:25582724

  13. Validation of an isotope dilution gas chromatography-mass spectrometry method for combined analysis of oxysterols and oxyphytosterols in serum samples.

    PubMed

    Schtt, Hans-Frieder; Ltjohann, Dieter

    2015-07-01

    We describe the validation of a method for the analysis of oxysterols, i.e. oxycholesterols and oxyphytosterols, in human serum using gas chromatography-mass spectrometry selected ion monitoring (GC-MS-SIM). Concentrations of 7?- and 7?-hydroxy-, and 7oxo-cholesterol, -campesterol, and -sitosterol as well as 4?-hydroxycholesterol and side-chain oxygenated 24S-, 25-, and 27-hydroxycholesterol were determined by isotope dilution methodology. After saponification at room temperature the oxysterols were extracted, separated from their substrates, cholesterol, campesterol, and sitosterol, by solid phase extraction, and subsequently derivatised to their corresponding trimethylsilyl-ethers prior to GC-MS-SIM. In order to prevent artificial autoxidation butylated hydroxytoluene and ethylenediaminetetraacetic acid were added. The validation of the method was performed according to the International Conference on Harmonisation guidance, including limits of detection and quantification, ranges, recovery and precision. Due to improved instrumental settings and work-up procedure, limits of detection and quantification ranged between 8.0-202.0pg/mL and 28.0-674pg/mL, respectively. Recovery data in five calibration points varied between 91.9% and 116.8% and in serum samples between 93.1% and 118.1%. The mean coefficient of variation (CV) for the recovery of all compounds was <10%. Well satisfying CVs for within-day precision (2.1-10.8%) and for between-day precision (2.3-12.1%) were obtained. More than 20 samples could be processed in a single routine day and test series of about 300 samples can be realised without impairment of the validation parameters during a sequence. Comparison of oxysterol and oxyphytosterol content in serum and plasma revealed no difference. A fully validated isotope dilution methodology for the quantification of oxycholesterols and oxyphytosterols from human serum or plasma is presented. PMID:25701095

  14. Quantification of carcinogenic 4- to 6-ring polycyclic aromatic hydrocarbons in human urine by solid-phase microextraction gas chromatography-isotope dilution mass spectrometry.

    PubMed

    Campo, Laura; Fustinoni, Silvia; Bertazzi, Pieralberto

    2011-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are pollutants found in living and working environments. The aim of this study was to develop a solid-phase microextraction (SPME) gas chromatography (GC)-isotope dilution mass spectrometry method for the quantification of 10 four- to six-ring PAHs in urine samples. Seven of the selected PAHs have been classified as carcinogenic. Under the final conditions, analytes were sampled with a 100-?m polydimethylsiloxane SPME fibre for 60 min at 80 C and desorbed in the injection port of the GC at 270 C. Fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene were separated using a highly arylene-modified phase capillary column and quantified by MS using eight deuterated PAHs as surrogate internal standards. Limits of quantification (LOQ) were in the 0.5- to 2.2-ng/L range. Validation showed linear dynamic ranges up to 340 ng/L, inter- and intra-run precisions <20%, and accuracies within 20% of spiked concentrations. Matrix effect evaluation and the use of control charts to monitor process performances showed that the isotope dilution approach allowed for the control of bias sources. Urinary PAHs were above or equal to LOQ, depending on different compounds, in 58-100% (min-max), 40-100% and 5-39% of samples from coke oven workers (n?=?12), asphalt workers (n?=?10) and individuals not occupationally exposed to PAHs (n?=?18), respectively. Chrysene was the most abundant PAH determined with median levels of 62.6, 6.9 and <0.6 ng/L, respectively. These results show that the method is suitable for quantifying carcinogenic PAHs in specimens from individuals with different levels of PAH exposure. PMID:21626187

  15. Determination of the 13C/12C ratio of ethanol derived from fruit juices and maple syrup by isotope ratio mass spectrometry: collaborative study.

    PubMed

    Jamin, Eric; Martin, Frédérique; Martin, Gilles G

    2004-01-01

    A collaborative study of the carbon-13 isotope ratio mass spectrometry (13C-IRMS) method based on fermentation ethanol for detecting some sugar additions in fruit juices and maple syrup is reported. This method is complementary to the site-specific natural isotope fractionation by nuclear magnetic resonance (SNIF-NMR) method for detecting added beet sugar in the same products (AOAC Official Methods 995.17 and 2000.19), and uses the same initial steps to recover pure ethanol. The fruit juices or maple syrups are completely fermented with yeast, and the alcohol is distilled with a quantitative yield (>96%). The carbon-13 deviation (delta13C) of ethanol is then determined by IRMS. This parameter becomes less negative when exogenous sugar derived from plants exhibiting a C4 metabolism (e.g., corn or cane) is added to a juice obtained from plants exhibiting a C3 metabolism (most common fruits except pineapple) or to maple syrup. Conversely, the delta13C of ethanol becomes more negative when exogenous sugar derived from C3 plants (e.g., beet, wheat, rice) is added to pineapple products. Twelve laboratories analyzed 2 materials (orange juice and pure cane sugar) in blind duplicate and 4 sugar-adulterated materials (orange juice, maple syrup, pineapple juice, and apple juice) as Youden pairs. The precision of that method for measuring delta13C was similar to that of other methods applied to wine ethanol or extracted sugars in juices. The within-laboratory (Sr) values ranged from 0.06 to 0.16%o (r = 0.17 to 0.46 percent per thousand), and the among-laboratories (SR) values ranged from 0.17 to 0.26 percent per thousand (R = 0.49 to 0.73 percent per thousand). The Study Directors recommend that the method be adopted as First Action by AOAC INTERNATIONAL. PMID:15287660

  16. Influence of relative abundance of isotopes on depth resolution for depth profiling of metal coatings by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Fariñas, Juan C; Coedo, Aurora G; Dorado, Teresa

    2010-04-15

    A systematic study on the influence of relative abundance of isotopes of elements in the coating (A(c)) and in the substrate (A(s)) on both shape of time-resolved signals and depth resolution (Delta z) was performed for depth profile analysis of metal coatings on metal substrates by ultraviolet (266 nm) nanosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. Five coated samples with coating thicknesses of the same order of magnitude (20-30 microm) were tested: nickel coating on aluminium, chromium and copper, and steel coated with copper and zinc. A laser repetition rate of 1 Hz and a laser fluence of 21 J cm(-2) were used. Five different depth profile types were established, which showed a clear dependence on A(c)/A(s) ratio. In general, depth profiles obtained for ratios above 1-10 could not be used to determine Delta z. We found that Delta z increased non-linearly with A(c)/A(s) ratio. The best depth profile types, leading to highest depth resolution and reproducibility, were attained in all cases by using the isotopes with low/medium A(c) values and with the highest A(s) values. In these conditions, an improvement of up to 4 times in Delta z values was achieved. The average ablation rates were in the range from 0.55 microm pulse(-1) for copper coating on steel to 0.83 microm pulse(-1) for zinc coating on steel, and the Delta z values were between 2.74 microm for nickel coating on chromium and 5.91 microm for nickel coating on copper, with RSD values about 5-8%. PMID:20188923

  17. Thiazolidinedione bioactivation: a comparison of the bioactivation potentials of troglitazone, rosiglitazone, and pioglitazone using stable isotope-labeled analogues and liquid chromatography tandem mass spectrometry.

    PubMed

    Alvarez-Sanchez, Rubén; Montavon, François; Hartung, Thomas; Pähler, Axel

    2006-08-01

    Troglitazone, a thiazolidinedione (TZD) type insulin sensitizer for the treatment of diabetes, was withdrawn from the U.S. market after several fatal cases of hepatotoxicity. Although the mechanism(s) of these idiosyncratic adverse reactions are not completely understood, circumstantial evidence suggests at least a partial contribution of reactive metabolite formation. Despite isolated case reports of hepatotoxicity, the other TZD derivatives pioglitazone and rosiglitazone are comparatively safe. Herein, we report on the bioactivation potential of these drugs and their TZD ring isotope-labeled 2-(15)N-3,4,5-(13)C(3) analogues in rat and human liver microsomes supplemented with glutathione (GSH). Screening for GSH adducts as surrogate markers for reactive intermediate formation was performed by liquid chromatography tandem mass spectrometry. Chemical characterization of the GSH conjugates was conducted by acquisition of their respective product ion spectra and the comparison between unlabeled and stable isotope-labeled TZD derivatives. The data suggest that all drugs undergo bioactivation processes via a common metabolic activation on the TZD ring, yielding disulfide type GSH conjugates as evidenced by the loss of labeled positions in the TZD moiety. Additional bioactivation processes leading to GSH adducts not involving TZD ring scission were evident for troglitazone. In human liver microsomes at low substrate concentrations, only troglitazone yielded a predominant GSH adduct not involving TZD ring scission. This property may contribute, together with other factors such as the relatively high dose administered as well as its potential to induce hepatic cholestasis and oxidative stress, to the hepatotoxicity of this drug. PMID:16918252

  18. Digital imaging mass spectrometry.

    PubMed

    Bamberger, Casimir; Renz, Uwe; Bamberger, Andreas

    2011-06-01

    Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by matrix-assisted laser desorption/ionization (MALDI) directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84 ± 35) μm with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm(2). Extended laser spots of ~5 mm(2) on structured specimens allows parallel imaging of selected masses. The digital imaging mass spectrometer proves high hit-multiplicity, straightforward image reconstruction, and potential for high-speed readout at 4 kHz or more. This device demonstrates a simple way of true image acquisition like a digital photographic camera. The technology may enable a fast analysis of biomolecular samples in near future. PMID:21953049

  19. Qualitative Metabolome Analysis of Human Cerebrospinal Fluid by 13C-/12C-Isotope Dansylation Labeling Combined with Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by 13C-dansyl and 12C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner.

  20. Regional water-quality analysis of 2,4-D and dicamba in river water using gas chromatography-isotope dilution mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Zimmerman, L.R.; Aga, D.S.; Gilliom, R.J.

    2001-01-01

    Gas chromatography with isotope dilution mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA) were used in regional National Water Quality Assessment studies of the herbicides, 2,4-D and dicamba, in river water across the United States. The GC-MS method involved solid-phase extraction, derivatized with deutemted 2,4-D, and analysis by selected ion monitoring. The ELISA method was applied after preconcentration with solid-phase extraction. The ELISA method was unreliable because of interference from humic substances that were also isolated by solid-phase extraction. Therefore, GC-MS was used to analyzed 80 samples from river water from 14 basins. The frequency of detection of dicamba (28%) was higher than that for 2,4-D (16%). Concentrations were higher for dicamba than for 2,4-D, ranging from less than the detection limit (<0.05 ??g/L) to 3.77 ??g/L, in spite of 5 times more annual use of 2,4-D as compared to dicamba. These results suggest that 2,4-D degrades more rapidly in the environment than dicamba.

  1. [Determination of atmospheric polybrominated diphenyl ethers and polybrominated biphenyl 153 using isotope dilution-high resolution gas chromatography/high resolution mass spectrometry].

    PubMed

    Zheng, Xiaoyan; Yu, Jianzhao; Xu, Xiuyan; Yu, Haibin; Chen, Ye; Tan, Li; Lü, Yibing

    2015-10-01

    Considering the features and demands of the environmental monitoring, an isotope dilution-high resolution gas chromatography/high resolution mass spectrometry method was developed for the determination of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyls 153 (BB153) in the ambient air. PBDEs and BB153 were extracted using an accelerated solvent extraction apparatus with a mixture of hexane-dichloromethane (v/v, 1:1) and hexane, respectively. The concentrated extracts were loaded on the composite silica gel column for cleanup. The mean recoveries of native compounds at 10% and 90% of the highest levels of calibration curves were 100% and 104% with 5% and 6% of the mean relative standard deviations (n = 7), respectively. The recoveries of 13C labeled surrogates for di- to deca-brominated diphenyl ethers and BB153 were in the range of 36.5%-133%. However, the recoveries of 13C-monobrominated diphenyl ethers were relatively low, maybe due to the different physicochemical properties compared with the other homologues. No breakthrough of pollutants was estimated under real sampling volume of 300 m3. The limits of detection were lower than 2 x 10(-4) ng/Nm3. The recoveries of 13C labeled surrogates were between 56% and 126%, except monoBDEs. The results demonstrated that the method is suitable for the analysis of di- to decabrominated diphenyl ethers and BB153 in the ambient air with precise quantification. PMID:26930965

  2. Multiresidue method for the determination of nitroimidazoles and their hydroxy-metabolites in poultry muscle, plasma and egg by isotope dilution liquid chromatography-mass spectrometry.

    PubMed

    Mitrowska, Kamila; Posyniak, Andrzej; Zmudzki, Jan

    2010-06-15

    A multiresidue analytical procedure for the determination of four nitroimidazoles (metronidazole, dimetridazole, ronidazole, ipronidazole) and their hydroxy-metabolites in poultry muscle, plasma and egg is presented. The procedure is based on ion-exchange solid phase extraction with acetonitrile as an extractant followed by liquid chromatography-mass spectrometry. The separation of analytes was performed on a C18 column using a mobile phase of 0.1% formic acid in acetonitrile and 0.1% formic acid in water with gradient elution. The electrospray ionization was used to obtain the protonated molecules [M+H](+) and two product ions were monitored for each compound. For the quantification stable isotope-labelled analogues of the analytes were used as internal standards. The whole procedure was evaluated according to EU Commission Decision 2002/657/EC requirements. Specificity, decision limit (CCalpha), detection capacity (CCbeta), recovery and precision were determined during validation process. The overall recoveries ranged between 93 and 103% with a good coefficient of variation, less than 14.0% under within-laboratory reproducibility conditions. CCalpha and CCbeta were 0.05-0.44 and 0.08-0.90microgkg(-1) depending on analyte and matrix. PMID:20441895

  3. Development of an SI-Traceable HPLC-Isotope Dilution Mass Spectrometry Method To Quantify β-Lactoglobulin in Milk Powders.

    PubMed

    Yang, Wang; Liqing, Wu; Fei, Duan; Bin, Yang; Yi, Yang; Jing, Wang

    2014-03-31

    β-Lactoglobulin (β-LG) is one of the major allergenic proteins in milk. There is an urgent demand for an accurate and traceable method to develop β-LG certified reference material (CRM). In this work, β-LG was enzymatically digested and a specific peptide was chosen for quantitation by isotope-dilution mass spectrometry (IDMS). With amino acid CRMs as standards, the results could be traced to SI unit. By the proposed method, the recovery ranged from 86.0% to 118.3% with CVs <9.0%. The LOD and LOQ were 4.8 × 10(-5) g/g and 1.6 × 10(-4) g/g of β-LG in milk powder, respectively. Ten samples from domestic market were analyzed with CVs <5.6%, and the relative expanded uncertainties ranged from 4.2% to 5.9% (k = 2). With the CRMs, it is expected that the comparability of β-LG quantitation results will be improved among different laboratories. PMID:24628306

  4. Determination of nerve agent metabolites in human urine by isotope-dilution gas chromatography-tandem mass spectrometry after solid phase supported derivatization.

    PubMed

    Lin, Ying; Chen, Jia; Yan, Long; Guo, Lei; Wu, Bidong; Li, Chunzheng; Feng, Jianlin; Liu, Qin; Xie, Jianwei

    2014-08-01

    A simple and sensitive method has been developed and validated for determining ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), isobutyl methylphosphonic acid (iBuMPA), and pinacolyl methylphosphonic acid (PMPA) in human urine using gas chromatography-tandem mass spectrometry (GC-MS/MS) coupled with solid phase derivatization (SPD). These four alkyl methylphosphonic acids (AMPAs) are specific hydrolysis products and biomarkers of exposure to classic organophosphorus (OP) nerve agents VX, sarin, RVX, and soman. The AMPAs in urine samples were directly derivatized with pentafluorobenzyl bromide on a solid support and then extracted by liquid-liquid extraction. The analytes were quantified with isotope-dilution by negative chemical ionization (NCI) GC-MS/MS in a selected reaction monitoring (SRM) mode. This method is highly sensitive, with the limits of detection of 0.02 ng/mL for each compound in a 0.2 mL sample of human urine, and an excellent linearity from 0.1 to 50 ng/mL. It is proven to be very suitable for the qualitative and quantitative analyses of degradation markers of OP nerve agents in biomedical samples. PMID:24633564

  5. Comparison of digestion procedures and methods for quantification of trace lead in breast milk by isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Amarasiriwardena, Chitra J; Jayawardene, Innocent; Lupoli, Nicola; Barnes, Ramon M; Hernandez-Avila, Mauricio; Hu, Howard; Ettinger, Adrienne S

    2013-01-01

    Measurement of lead in breast milk is an important public health consideration and can be technically quite challenging. The reliable and accurate determination of trace lead in human breast milk is difficult for several reasons including: potential for contamination during sample collection, storage, and analysis; complexities related to the high fat content of human milk; and poor analytic sensitivity at low concentrations. Breast milk lead levels from previous published studies should therefore be reviewed with caution. Due to the difficulty in identifying a method that would successfully digest samples with 100% efficiency, we evaluated three different digestion procedures including: (1) dry ashing in a muffle furnace, (2) microwave oven digestion, and (3) digestion in high pressure asher. High temperature, high pressure asher digestion was selected as the procedure of choice for the breast milk samples. Trace lead analysis was performed using isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS). Measured lead concentrations in breast milk samples (n = 200) from Mexico ranged from 0.2 to 6.7 ng ml(-1). The precision for these measurements ranged from 0.27-7.8% RSD. Use of strict contamination control techniques and of a very powerful digestion procedure, along with an ID-ICP-MS method for lead determination, enables us to measure trace lead levels as low as 0.2 ng ml(-1) in milk (instrument detection limit = 0.01 ng ml(-1)). PMID:24808927

  6. Absolute quantification of Pru av 2 in sweet cherry fruit by liquid chromatography/tandem mass spectrometry with the use of a stable isotope-labelled peptide.

    PubMed

    Ippoushi, Katsunari; Sasanuma, Motoe; Oike, Hideaki; Kobori, Masuko; Maeda-Yamamoto, Mari

    2016-08-01

    Pru av 2, a pathogenesis-related (PR) protein present in the sweet cherry (Prunus avium L.) fruit, is the principal allergen of cherry and one of the chief causes of pollen food syndrome (oral allergy syndrome). In this study, a quantitative assay for this protein was developed with the use of the protein absolute quantification (AQUA) method, which consists of liquid chromatography/tandem mass spectrometry (LC/MS/MS) employing TGC[CAM]STDASGK[(13)C6,(15)N2], a stable isotope-labelled internal standard (SIIS) peptide. This assay gave a linear relationship (r(2)>0.99) in a concentration range (2.3-600fmol/μL), and the overall coefficient of variation (CV) for multiple tests was 14.6%. Thus, the contents of this allergenic protein in sweet cherry products could be determined using this assay. This assay should be valuable for allergological investigations of Pru av 2 in sweet cherry and detection of protein contamination in foods. PMID:26988485

  7. Isotope dilution gas chromatography with mass spectrometry for the analysis of 4-octyl phenol, 4-nonylphenol, and bisphenol A in vegetable oils.

    PubMed

    Wu, Pinggu; Zhang, Liqun; Yang, Dajin; Zhang, Jing; Hu, Zhengyan; Wang, Liyuan; Ma, Bingjie

    2016-03-01

    By the combination of solid-phase extraction as well as isotope dilution gas chromatography with mass spectrometry, a sensitive and reliable method for the determination of endocrine-disrupting chemicals including bisphenol A, 4-octylphenol, and 4-nonylphenol in vegetable oils was established. The application of a silica/N-(n-propyl)ethylenediamine mixed solid-phase extraction cartridge achieved relatively low matrix effects for bisphenol A, 4-octylphenol, and 4-nonylphenol in vegetable oils. Experiments were designed to evaluate the effects of derivatization, and the extraction parameters were optimized. The estimated limits of detection and quantification for bisphenol A, 4-octylphenol, and 4-nonylphenol were 0.83 and 2.5 μg/kg, respectively. In a spiked experiment in vegetable oils, the recovery of the added bisphenol A was 97.5-110.3%, recovery of the added 4-octylphenol was 64.4-87.4%, and that of 4-nonylphenol was 68.2-89.3%. This sensitive method was then applied to real vegetable oil samples from Zhejiang Province of China, and none of the target compounds were detected. PMID:26698324

  8. A study of the elimination of water from lithium-cationized tripeptide methyl esters by means of tandem mass spectrometry and isotope labeling.

    PubMed

    Talaty, Erach R; Cooper, Travis J; Piland, Debra L; Bateman, David J; Syed, Adeel; Stevenson, William; Van Stipdonk, Michael J

    2006-01-01

    Extensive isotope labeling (2H, 13C and 15N), collision-induced dissociation (CID) and multiple-stage tandem mass spectrometry were used to investigate the elimination of H2O from a series of model, metal-cationized tripeptide methyl esters. The present results corroborate our earlier suggestion that loss of water from lithiated peptides is initiated by a nucleophilic attack from the N-terminal side upon an amide carbonyl carbon atom to form a five-membered ring as an intermediate followed by 1,2-elimination of water. We show that the nucleophilic atom is the oxygen atom of the N-terminal amide group in the fragmentation of [AcGGGOMe+Li]+ as well as [GGGOMe+Li]+. However, the subsequent fragmentation is markedly different in the two cases as a result of the absence and presence of a free amino group. In particular, extensive scrambling of protons in the alpha-positions of GGGOMe is observed, presumably as a consequence of intervention of the basic amino group. PMID:16969769

  9. A Simplified Method for Quantifying Sulfur Mustard Adducts to Blood Proteins by Ultra-High Pressure Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry

    PubMed Central

    Pantazides, Brooke G.; Crow, Brian S.; Garton, Joshua W.; Quiñones-González, Jennifer A.; Blake, Thomas A.; Thomas, Jerry D.; Johnson, Rudolph C.

    2016-01-01

    Sulfur mustard binds to reactive cysteine residues, forming a stable sulfur-hydroxyethylthioethyl [S-HETE] adduct that can be used as a long-term biomarker of sulfur mustard exposure in humans. The digestion of sulfur mustard-exposed blood samples with proteinase K following total protein precipitation with acetone produces the tripeptide biomarker [S-HETE]-Cys-Pro-Phe. The adducted tripeptide is purified by solid phase extraction, separated by ultra-high pressure liquid chromatography, and detected by isotope dilution tandem mass spectrometry. This approach was thoroughly validated and characterized in our laboratory. The average interday relative standard deviation was ≤ 9.49%, and the range of accuracy was between 96.1-109% over a concentration range of 3.00 to 250. ng/mL with a calculated limit of detection of 1.74 ng/mL. A full 96-well plate can be processed and analyzed in 8 h which is five times faster than our previous 96-well plate method and only requires 50 µL of serum, plasma, or whole blood. Extensive ruggedness and stability studies and matrix comparisons were conducted to create a robust, easily transferrable method. As a result, a simple and high-throughput method has been developed and validated for the quantitation of sulfur mustard blood protein adducts in low volume blood specimens which should be readily adaptable for quantifying human exposures to other alkylating agents. PMID:25622494

  10. Quantitative analysis of metabolites in complex biological samples using ion-pair reversed-phase liquid chromatography-isotope dilution tandem mass spectrometry.

    PubMed

    Seifar, Reza M; Zhao, Zheng; van Dam, Jan; van Winden, Wouter; van Gulik, Walter; Heijnen, Joseph J

    2008-04-11

    A rapid, sensitive and selective ion-pair reversed-phase liquid chromatography-electrospray ionization isotope dilution tandem mass spectrometry (IP-LC-ESI-ID-MS/MS) was developed for quantitative analysis of free intracellular metabolites in cell cultures. As an application a group of compounds involved in penicillin biosynthesis pathway of Penicillium chrysogenum cells, such as penicillin G (PenG), 6-aminopenicillanic acid (6-APA), benzylpenicilloic acid (PIO), ortho-hydroxyphenyl acetic acid (o-OH-PAA), phenylacetic acid (PAA), 6-oxopipeidine-2-carboxylic acid (OPC), 8-hydroxypenicillic acid (8-HPA), L-alpha-(delta-aminoadipyl)-L-alpha-cystenyl-D-alpha-valine (ACV) and isopenicillin N (IPN) were chosen. (13)C-labeled analogs of the metabolites were added to the sample solutions as internal standards (I.S.). Sample mixtures were analyzed without any sample pretreatment. No extraction recovery check was needed because I.S. was added to the cell samples before extraction process. The method showed excellent precision (relative standard deviation (RSD)

  11. Identification of sinensetin metabolites in rat urine by an isotope-labeling method and ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Wei, Guor-Jien; Sheen, Jenn-Feng; Lu, Wen-Chien; Hwang, Lucy Sun; Ho, Chi-Tang; Lin, Ching-I

    2013-05-29

    Sinensetin (SIN), one of the major polymethoxyflavones (PMFs) contained mainly in the citrus peels, has been reported to possess various bioactivities, including antifungal, antimutagenic, anticancer, and anti-inflammatory activities. Although the biotransformation of SIN in fungi and insects has been reported, the information about the metabolism of SIN in mammals is still unclear. In this study, formation of SIN metabolites in rats was investigated. Four isotope-labeled SINs ([4'-D3]SIN, [3'-D3]SIN, [5-D3]SIN, and [6-D3]SIN) were synthesized and administered to rat. The urine samples were collected and main metabolites were monitored by ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry. The administered compound and four SIN metabolites were detected in rat urine. These metabolites were identified as 4'-hydroxy-5,6,7,3'-tetramethoxyflavone, 5-hydroxy-6,7,3',4'-tetramethoxyflavone, 6-hydroxy-5,7,3',4'-tetramethoxyflavone, and 7-hydroxy-5,6,3',4'-tetramethoxyflavone sulfate. PMID:23647150

  12. An optimised method for the accurate determination of zeranol and diethylstilbestrol in animal tissues using isotope dilution-liquid chromatography/mass spectrometry.

    PubMed

    Han, Hyesun; Kim, Byungjoo; Lee, Sueg Geun; Kim, Jeongkwon

    2013-09-01

    Isotope dilution-liquid chromatography/mass spectrometry (ID-LC/MS) has been established as a candidate reference method for the accurate determination of growth promoters (zeranol, taleranol, and diethylstilbesterol) in raw meat samples. Sample preparation processes including an enzymatic hydrolysis, extraction, and SPE clean-up were optimised. The sensitivity difference of trans- and cis-diethylstilbestrol (isomerizing in sample preparation processes) by the LC/MS was measured by running a trans/cis mixture (ratio measured by a quantitative NMR) with and without sample matrices, and applied for the determination of total diethylstilbestrol. Validity, repeatability, and reproducibility of the analytical method were tested by measuring gravimetrically fortified samples (chicken breast, bovine muscles, and porcine muscle) in a number of different time periods. Measurement results agreed with the fortified values within their uncertainties. The method provided accurate results of the target analytes in the range of 0.05-15 μg/kg with the relative expanded uncertainty of 2-15%. PMID:23578613

  13. [Preparation and certification of mussel reference material for organochlorine pesticides and polychlorinated biphenyls using isotope dilution-high resolution mass spectrometry].

    PubMed

    Lu, Xianbo; Chen, Jiping; Wang, Shuqiu; Zou, Lili; Tian, Yuzeng; Ni, Yuwen; Su, Fan

    2012-09-01

    A method for the preparation and certification of the reference material of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in mussel tissue is described. The mussel tissue from Dalian Bay was frozen-dried, comminuted, sieved, homogenized, packaged, and sterilized by 60Co radiation sterilization in turn. The certified values for 18 OCPs and 16 PCBs were determined by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using isotope dilution and internal standard quantitation techniques. The certified values were validated and given based on seven accredited laboratories, and these values are traceable to the SI (international system of units) through gravimetrically prepared standards of established purity and measurement intercomparisons. The certified values of PCBs and OCPs in mussel span 4 orders of magnitude with a relative uncertainty of about 10%. This material is a natural biological material with confirmed good homogeneity and stability, and it was approved as the grade "primary reference material" (GBW10069) in June 2012 in China. This reference material provided necessary quality control products for our country to implement the Stockholm Treaty on the monitoring of persistent organic pollutants (POPs). The material is intended to be used for the method validation and quality control in the determination of OCPs and PCBs in biota samples. PMID:23285973

  14. Simplified Method for Quantifying Sulfur Mustard Adducts to Blood Proteins by Ultrahigh Pressure Liquid Chromatography−Isotope Dilution Tandem Mass Spectrometry.

    PubMed

    Pantazides, Brooke G; Crow, Brian S; Garton, Joshua W; Quiñones-González, Jennifer A; Blake, Thomas A; Thomas, Jerry D; Johnson, Rudolph C

    2015-02-16

    Sulfur mustard binds to reactive cysteine residues, forming a stable sulfur-hydroxyethylthioethyl [SHETE]adduct that can be used as a long-term biomarker of sulfur mustard exposure in humans. The digestion of sulfur mustard-exposed blood samples with proteinase K following total protein precipitation with acetone produces the tripeptide biomarker [S-HETE]-Cys-Pro-Phe. The adducted tripeptide is purified by solid phase extraction, separated by ultra high pressure liquid chromatography, and detected by isotope dilution tandem mass spectrometry. This approach was thoroughly validated and characterized in our laboratory. The average interday relative standard deviation was ≤ 9.49%, and the range of accuracy was between 96.1 and 109% over a concentration range of 3.00 to 250. ng/mL with a calculated limit of detection of1.74 ng/mL. A full 96-well plate can be processed and analyzed in 8 h, which is 5 times faster than our previous 96-well plate method and only requires 50 μL of serum, plasma, or whole blood. Extensive ruggedness and stability studies and matrix comparisons were conducted to create a robust, easily transferrable method. As a result, a simple and high-throughput method has been developed and validated for the quantitation of sulfur mustard blood protein adducts in low volume blood specimens which should be readily adaptable for quantifying human exposures to other alkylating agents. PMID:25622494

  15. Measurement of (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines in DNA in vivo by liquid chromatography/isotope-dilution tandem mass spectrometry

    SciTech Connect

    Jaruga, Pawel; Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz ; Xiao, Yan; Nelson, Bryant C.; Dizdaroglu, Miral

    2009-09-04

    Oxidatively induced DNA lesions (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines (R-cdA and S-cdA) are detectable and accumulate in vivo due to disease states and defects in DNA repair. They block transcription and inhibit gene expression, and may play a role in disease processes. Accurate measurement of these lesions in DNA in vivo is necessary to understand their biological effects. We report on a methodology using liquid chromatography/isotope-dilution tandem mass spectrometry to measure R-cdA and S-cdA in DNA. This methodology permitted the detection of these compounds at a level of 0.1 fmol on-column. Levels of R-cdA and S-cdA in mouse liver DNA amounted to 0.133 {+-} 0.024 and 0.498 {+-} 0.065 molecules/10{sup 7} DNA 2'-deoxynucleosides, respectively. The successful measurement of R-cdA and S-cdA in DNA in vivo suggests that this methodology will be used for understanding of their repair and biological consequences, and that these compounds may be used as putative biomarkers for disease states.

  16. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Provencher, Gilles; Bérubé, René; Dumas, Pierre; Bienvenu, Jean-François; Gaudreau, Eric; Bélanger, Patrick; Ayotte, Pierre

    2014-06-27

    Bisphenol A (BPA) and triclosan (TCS) are ubiquitous environmental phenols exhibiting endocrine disrupting activities that may be involved in various health disorders in humans. There is a need to measure separately free forms and conjugated metabolites because only the former are biologically active. We have developed sensitive methods using isotope-dilution liquid chromatography-tandem mass spectrometry for individual measurements of free BPA and TCS as well as their metabolites, BPA glucuronide (BPAG), BPA monosulfate (BPAS), BPA disulfate (BPADS), TCS glucuronide (TCSG) and TCS sulfate (TCSS) in urine. Comparative analyses of urine samples from 46 volunteers living in the Quebec City area using the new methods and a GC-MS/MS method previously used in our laboratory revealed very strong correlations for total BPA (Spearman's rs=0.862, p<0.0001) and total TCS concentrations (rs=0.942, p<0.0001). Glucuronide metabolites were the most abundant BPA and TCS species in urine samples (>94% of total urinary concentrations). Unconjugated TCS concentrations represented a small proportion of total TCS species (median=1.6%) but its concentration was likely underestimated due to losses by adsorption to the surface of polypropylene tubes used for sample storage. To our knowledge, we are the first to report levels of free, sulfated and glucuronidated TCS levels in human urine. PMID:24835763

  17. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  18. Counting individual sulfur atoms in a protein by ultrahighresolution Fourier transform ion cyclotron resonance mass spectrometry: Experimental resolution of isotopic fine structure in proteins

    PubMed Central

    Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.

    1998-01-01

    A typical molecular ion mass spectrum consists of a sum of signals from species of various possible isotopic compositions. Only the monoisotopic peak (e.g., all carbons are 12C; all nitrogens are 14N, etc.) has a unique elemental composition. Every other isotope peak at approximately integer multiples of ∼1 Da higher in nominal mass represents a sum of contributions from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass). At sufficiently high mass resolving power, each of these nominal-mass peaks resolves into its isotopic fine structure. Here, we report resolution of the isotopic fine structure of proteins up to 15.8 kDa (isotopic 13C,15N doubly depleted tumor suppressor protein, p16), made possible by electrospray ionization followed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass analysis at 9.4 tesla. Further, a resolving power of m/Δm50% ≈8,000,000 has been achieved on bovine ubiquitin (8.6 kDa). These results represent a 10-fold increase in the highest mass at which isotopic fine structure previously had been observed. Finally, because isotopic fine structure reveals elemental composition directly, it can be used to confirm or determine molecular formula. For p16, for example, we were able to determine (5.1 ± 0.3) the correct number (five) of sulfur atoms solely from the abundance ratio of the resolved 34S peak to the monoisotopic peak. PMID:9751700

  19. Symposium on accelerator mass spectrometry

    SciTech Connect

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  20. Screening multimycotoxins in food-grade gums by stable isotope dilution and liquid chromatography/tandem mass spectrometry.

    PubMed

    Zhang, Kai; Wong, Jon W; Jia, Zhengwei; Vaclavikova, Marta; Trucksess, Mary W; Begley, Timothy H

    2014-01-01

    Stable isotope dilution with LC/MSIMS was used to determine the following 11 mycotoxins in food grade gums: aflatoxins B1, B2, G1, and G2; deoxynivalenol; fumonisins B1, B2, and B3; ochratoxin A; T-2 toxin; and zearalenone. Samples were fortified with 11 [13C]-uniformly labeled internal standard ([13C]-IS) mycotoxins that corresponded to the 11 target mycotoxins and extracted by acetonitrile-water (4 + 1, v/v), followed by LC/MS/MS analysis. Mycotoxins were quantitated with the fortified [13C]-IS in each sample. The average recoveries of aflatoxins B1, B2, G1, and G2 (1, 5, and 25 microg/kg); deoxynivalenol and fumonisins B1, B2, and B3 (25, 100, and 500 microg/kg); and ochratoxin A, T-2 toxin, and zearalenone (10, 50, and 250 microg/kg) ranged from 84 to 117% with RSDs less than 20%. Method-dependent LOQs were from 0.1 (aflatoxin B1) to 25 microg/kg (fumonisin B3). Among 20 market samples, aflatoxin B1 (< LOQ) was detected in a Guar gum and a Tragacanth gum, and zearalenone (6 +/- 0.6 microg/kg) was detected in a Xanthan gum. The detected mycotoxins were further confirmed by comparing their enhanced product ion spectra to those of reference standards. The single laboratory validated stable isotope dilution and LC/MSIMS method provides sufficient selectivity, sensitivity, accuracy, and reproducibility with a simple sample preparation to screen the 11 mycotoxins in gums. PMID:25051639

  1. Mass spectrometry for biomarker development

    SciTech Connect

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  2. Application of mass spectrometry for metabolite identification.

    PubMed

    Ma, Shuguang; Chowdhury, Swapan K; Alton, Kevin B

    2006-06-01

    Metabolism studies play a pivotal role in drug discovery and development. Characterization of metabolic "hot-spots" as well as reactive and pharmacologically active metabolites is critical to designing new drug candidates with improved metabolic stability, toxicological profile and efficacy. Metabolite identification in the preclinical species used for safety evaluation is required in order to determine whether human metabolites have been adequately tested during non-clinical safety assessment. From an instrumental standpoint, high performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) dominates all analytical tools used for metabolite identification. The general strategies employed for metabolite identification in both drug discovery and drug development settings together with sample preparation techniques are reviewed herein. These include a discussion of the various ionization methods, mass analyzers, and tandem mass spectrometry (MS/MS) techniques that are used for structural characterization in a modern drug metabolism laboratory. Mass spectrometry-based techniques, such as stable isotope labeling, on-line H/D exchange, accurate mass measurement to enhance metabolite identification and recent improvements in data acquisition and processing for accelerating metabolite identification are also described. Rounding out this review, we offer additional thoughts about the potential of alternative and less frequently used techniques such as LC-NMR/MS, CRIMS and ICPMS. PMID:16787159

  3. Characterization of Diesel Fuel by Chemical Separation Combined with Capillary Gas Chromatography (GC) Isotope Ratio Mass Spectrometry (IRMS)

    SciTech Connect

    Harvey, Scott D.; Jarman, Kristin H.; Moran, James J.; Sorensen, Christina M.; Wright, Bob W.

    2011-09-15

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish between the diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for detecting fuel tax evasion schemes. Two fractionation techniques were used to isolate the n-alkanes from the fuel. Both δ13C and δD values for the n-alkanes were then determined by CSIA in each sample. Plots of δD versus δ13C with sample n-alkane points connected in order of increasing carbon number gave well separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with δ13C, δD, or combined δ13C and δD data on the yielded scores plots that could clearly differentiate the samples, thereby demonstrating the potential of this approach for fingerprinting fuel samples using the δ13C and δD values.

  4. High-precision measurements of uranium and thorium isotopic ratios by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS)

    NASA Astrophysics Data System (ADS)

    Wang, Lisheng; Ma, Zhibang; Duan, Wuhui

    2015-04-01

    Isotopic compositions of U-Th and 230Th dating have been widely used in earth sciences, such as chronology, geochemistry, oceanography and hydrology. In this study, five ages of different carbonate samples were measured using 230Th dating technique with U-Th high-precision isotopic measurements by multi-collector inductively coupled plasma mass spectrometry, in Uranium-series Chronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences.In this study, the precision and accuracy of uranium isotopic composition were estimated by measuring the uranium ratios of NBS-CRM 112A, NBS-CRM U500 and HU-1. The mean measured ratios, 234U/238U = 52.86 (±0.04) × 10-6 and δ234U = -38.36 (±0.77) × 10-3 for NBS-CRM 112A, 234U/238U = 10.4184 (±0.0001) × 10-3, 236U/238U = 15.43 (±0.01) × 10-4 and 238U/235U = 1.00021 (±0.00002) for NBS-CRM U500, 234U/238U = 54.911 (±0.007) and δ234U = -1.04 (±0.13) × 10-3 for HU-1 (95% confidence levels). The U isotope data for standard reference materials are in excellent agreement with previous studies, further highlighting the reliability and analytical capabilities of our technique. We measured the thorium isotopic ratios of three different thorium standards by MC-ICPMS. The three standards (Th-1, Th-2 and Th-3) were mixed by HU-1 and NBS 232Th standard, with the 230Th/232Th ratios from 10-4 to 10-6. The mean measured atomic ratios, 230Th/232Th = 2.1227 (±0.0024) × 10-6, 2.7246 (±0.0026) × 10-5, and 2.8358 (±0.0007) × 10-4 for Th-1, Th-2 and Th-3 (95% confidence levels), respectively. Using this technique, the following standard samples were dated by MC-ICPMS. Sample RKM-4, collected from Babardos Kendal Hill terrace, was used during the first stage of the Uranium-Series Intercomparison Project (USIP-I). Samples 76001, RKM-5 and RKM-6 were studied during the second stage of the USIP program (USIP-II). Sample 76001 is a laminated flowstone, collected from Sumidero Terejapa, Chiapas, Mexico, and samples RKM-5 and RKM-6 are from the Babardos III terrace and the lower terrace (6 to 10m) of Curacao, respectively. China RCM GBW04412 was also analyzed. The ages of the five standard samples mentioned above are 197970±1590 yr BP, 47520±220 yr BP, 129300±650 yr BP, 130830±550 yr BP, and 86940±300 yr BP for samples RKM-4, 76001, RKM-5, RKM-6 and GBW04412, respectively. The results are consistent with the data of the same samples analyzed in Institute of Global Environmental Change, Xi'an Jiaotong University and Department of Earth Sciences, University of Minnesota, USA within errors, which suggests that the technique in our lab is reliable.

  5. Establishing a chromium-reactor design for measuring delta2H values of solid polyhalogenated compounds using direct elemental analysis and stable isotope ratio mass spectrometry.

    PubMed

    Armbruster, Wolfgang; Lehnert, Katja; Vetter, Walter

    2006-01-01

    2H/1H isotope ratios of polyhalogenated compounds were determined by elemental analysis and isotope ratio mass spectrometry (EA-IRMS). Initial measurements with standard EA-IRMS equipment, which used high-temperature pyrolysis to convert the organic compounds into hydrogen, did not achieve significant signals for polychlorinated pesticides and related compounds, presumably due to the formation of HCl instead of hydrogen. To reverse this problematic reaction, a chromium reactor was incorporated into the element analyzer system, which scavenged Cl, forming chromium chloride and releasing hydrogen again in the form of H2. The optimized system therefore allowed the delta2H values of polyhalogenated compounds to be determined. A quality assurance program was developed based on several parameters. (i) Each compound was analyzed using a sequence of five injections, where the first measurement was discarded. (ii) Recovery of H (when calculated relative to acetanilide) had to be >90% for all replicates in a sequence. (iii) All delta-values within a sequence had to vary by less than 10/1000. (iv) Results had to be reproducible on another day with a different sample scheme. Once this reproducibility had been established, variabilities in the delta2H values of organohalogen standards were investigated using the technique. The highest delta2H value of +75/1000 was found for o,p'-DDD, whereas the strongest depletion in deuterium was found for Melipax (-181/1000). The most important results for comparable compounds were as follows. DDT-related compounds gave delta2H values of between +59 and +75/1000 (technical DDT, o,p'- and p,p'-DDD) or in the range of approximately -1/1000, indicative of the different sources/methods of producing this compound. Four HCH isomers from the same supplier showed relatively similar hydrogen isotope distributions, whereas two lindane (gamma-HCH) standards from other sources had 39/1000 less deuterium. This difference is likely due to different purification steps during the isolation of pure lindane from the technical HCH mixture. An even greater difference was observed between the delta2H values of Toxaphene (US product dating from 1978) and Melipax (product from the former East Germany, dating from 1979), which gave delta2H values of -101/1000 and -181/1000, respectively, meaning that both products were easily distinguished via delta2H-IRMS. Fractioning of hydrogen isotopes in the atmospheric water cycle was suggested as one reason for the different values. In this theory, the water (which had different delta2H values depending on where it was taken from) was incorporated during the biosynthesis of camphene, which is the natural product used to produce both products. These results indicate that hydrogen isotope-specific analysis can be a valuable tool for tracing the origins of a compound in certain cases. PMID:16283262

  6. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  7. Quantitative determination of free and total bisphenol A in human urine using labeled BPA glucuronide and isotope dilution mass spectrometry.

    PubMed

    Kubwabo, Cariton; Kosarac, Ivana; Lalonde, Kaela; Foster, Warren G

    2014-07-01

    Bisphenol A (BPA) is a widely used industrial chemical in the manufacturing of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt normal hormonal function and hence, potentially, have negative effects on the human health. While total BPA is frequently reported, it is recognized that free BPA is the biologically active form and is rarely reported in the literature. The objective of this study was to develop a sensitive and improved method for the measurement of free and total BPA in human urine. Use of a labeled conjugated BPA (bisphenol A-d6 β-D-glucuronide) allowed for the optimization of the enzymatic reaction and permitted an accurate determination of the conjugated BPA concentration in urine samples. In addition, a (13)C12-BPA internal standard was used to account for the analytical recoveries and performance of the isotope dilution method. Solid-phase extraction (SPE) combined with derivatization and analysis using a triple quadrupole GC-EI/MS/MS system achieved very low method detection limit of 0.027 ng/mL. BPA concentrations were measured in urine samples collected during the second and third trimesters of pregnancy in 36 Canadian women. Total maternal BPA concentrations in urine samples ranged from not detected to 9.40 ng/mL (median, 1.21 ng/mL), and free BPA concentrations ranged from not detected to 0.950 ng/mL (median, 0.185 ng/mL). Eighty-six percent of the women had detectable levels of conjugated BPA, whereas only 22 % had detectable levels of free BPA in their urine. BPA levels measured in this study agreed well with data reported internationally. PMID:24817354

  8. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  9. [2H/H] Isotope ratio analyses of [2H5]cholesterol using high-temperature conversion elemental analyser isotope-ratio mass spectrometry: determination of cholesterol absorption in normocholesterolemic volunteers.

    PubMed

    Godin, Jean-Philippe; Richelle, Myriam; Metairon, Sylviane; Fay, Laurent-Bernard

    2004-01-01

    This paper validates the use of high-temperature conversion elemental analyser isotope-ratio mass spectrometry (TC-EA/IRMS) for measuring the [(2)H/H] enrichment of plasma [(2)H(5)]cholesterol. From a molecular point of view, the free cholesterol is initially separated from plasma by thin-layer chromatography (TLC) and then injected onto the TC-EA reactor which converts cholesterol molecules into CO and H(2) gases. The slope of the curve of the experimental mole percent excess (MPE((exp.))) versus MPE((theor.)) was very close to 1, demonstrating that no significant isotopic fractionation was observed during all processing of the samples (i.e., isolation of plasma free cholesterol by TLC and pyrolysis in the TC-EA reactor). Excellent linearity (r(2) = 0.9994, n = 4) of delta ( per thousand ) of [(2)H/H] isotopic measurements versus mole percent (MP) was assessed over the range 0 to 0.1 MP. The precision of the [(2)H/H] measurement, evaluated with two calibration points processed with TLC, was delta(2)H(V-SMOW) = -192.5 +/- 3.4 per thousand and delta(2)H(V-SMOW) = -136.9 +/- 2.9 per thousand. The standard deviations of the within-assay and between-assay repeatabilities of the analytical process, evaluated using the quality control (QC) of plasma samples, were 4.6 and 6.1 per thousand, respectively. Plant sterols are known to reduce cholesterol absorption and therefore were used as a positive control in a clinical study performed with normocholesterolemic volunteers. This present method produces biological results consistent with those already reported in the literature. PMID:14755619

  10. Gold assay with Knudsen effusion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bardi, U.; Niccolai, F.; Tosti, M.; Tolstogouzov, A.

    2008-06-01

    Commercial 18 carat (ct) gold alloys along with pure coinage metals have been studied with Knudsen effusion mass spectrometry. Isotopic fractionation in vapour phase and the enthalpies of vaporization were estimated for Au, Ag and Cu samples. The assaying of the gold content was carried out by means of calibration with respect to standard reference alloys measured with energy dispersive X-ray spectroscopy. The accuracy of the gold determination resulted of about 1.5 wt.[per mille sign] in the ternary Au-Ag-Cu alloy.

  11. Adaptation of continuous-flow cavity ring-down spectroscopy for batch analysis of ?13C of CO2 and comparison with isotope ratio mass spectrometry.

    PubMed

    Berryman, E M; Marshall, J D; Rahn, T; Cook, S P; Litvak, M

    2011-08-30

    Measurements of ?(13)C in CO(2) have traditionally relied on samples stored in sealed vessels and subsequently analyzed using magnetic sector isotope ratio mass spectrometry (IRMS), an accurate but expensive and high-maintenance analytical method. Recent developments in optical spectroscopy have yielded instruments that can measure ?(13)CO(2) in continuous streams of air with precision and accuracy approaching those of IRMS, but at a fraction of the cost. However, continuous sampling is unsuited for certain applications, creating a need for conversion of these instruments for batch operation. Here, we present a flask (syringe) adaptor that allows the collection and storage of small aliquots (20-30 mL air) for injection into the cavity ring-down spectroscopy (CRDS) instrument. We demonstrate that the adaptor's precision is similar to that of traditional IRMS (standard deviation of 0.3 for 385 ppm CO(2) standard gas). In addition, the concentration precision (0.3% of sample concentration) was higher for CRDS than for IRMS (7% of sample concentration). Using the adaptor in conjunction with CRDS, we sampled soil chambers and found that soil-respired ?(13)C varied between two different locations in a pion-juniper woodland. In a second experiment, we found no significant discrimination between the respiration of a small beetle (~5 mm) and its diet. Our work shows that the CRDS system is flexible enough to be used for the analysis of batch samples as well as for continuous sampling. This flexibility broadens the range of applications for which CRDS has the potential to replace magnetic sector IRMS. PMID:21766378

  12. Determination of the H isotopic composition of individual components in fine-scale mixtures of organic matter and phyllosilicates with the nanoscale secondary ion mass spectrometry.

    PubMed

    Piani, Laurette; Remusat, Laurent; Robert, Franois

    2012-12-01

    When organic matter is mixed on a nanometer scale with clay minerals, the individual D/H ratios of the two H-bearing phases cannot be directly measured even with the nominal spatial resolution of nanoscale secondary ion mass spectrometry (NanoSIMS, 50-100 nm). To overcome this limitation, a new analytical protocol is proposed based on the deconvolution of the D(-)/H(-) and (16)OD(-)/(16)OH(-) ionic ratios measured by NanoSIMS. Indeed, since the yields of H(-) and (16)OH(-) are different for organics and clays, it should be theoretically possible to determine the mixing ratio of these two components in the area analyzed by the ion probe. Using organics with different D/H ratios, the interdependence of the D(-)/H(-) and (16)OD(-)/(16)OH(-) ionic ratios was determined in pure samples. Then using the H(-) and (16)OH(-) yields and the isotopic ratios measured on pure organic matter and clays, the expected D(-)/H(-) and (16)OD(-)/(16)OH(-) variations as a function of the mixing proportions were determined. These numerical predictions are consistent with measurements on laboratory prepared mixtures of D-rich organic matter and D-poor phyllosilicates, validating both the proposed experimental protocol and its use for meteorites. With an improvement of the precision of the ionic ratios by a factor of 10, it should possible to expend this protocol to samples having natural terrestrial D/H variations. Such an improvement could be attainable with the development of synthetic deuterated reference samples. PMID:23121456

  13. Determination of agmatine using isotope dilution UPLC-tandem mass spectrometry: application to the characterization of the arginine decarboxylase pathway in Pseudomonas aeruginosa.

    PubMed

    Dalluge, Joseph J; McCurtain, Jennifer L; Gilbertsen, Adam J; Kalstabakken, Kyle A; Williams, Bryan J

    2015-07-01

    A method has been developed for the direct determination of agmatine in bacterial culture supernatants using isotope dilution ultra performance liquid chromatography (UPLC)-tandem mass spectrometry (UPLC-MS/MS). Agmatine determination in bacterial supernatants is comprised of spiking culture or isolate supernatants with a fixed concentration of uniformly labeled (13)C5,(15)N4-agmatine (synthesized by decarboxylation of uniformly labeled (13)C6,(15)N4-arginine using arginine decarboxylase from Pseudomonas aeruginosa) as an internal standard, followed by derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBDF) to improve the reversed-phase chromatographic retention characteristics of agmatine, as well as the selectivity and sensitivity of UPLC-MS/MS detection of this amine in complex biologically derived mixtures. Intrasample precisions for measurement of agmatine in culture supernatants average 4.1% (relative standard deviation). Calibration curves are linear over the range 5 nM to 10 μM, and the detection limit is estimated at 1.5 nM. To demonstrate the utility of the method, agmatine levels in supernatants of overnight cultures of wild-type (UCBPP-PA14), as well as arginine decarboxylase and agmatine deiminase mutant strains of P. aeruginosa strain UCBPP-PA14 were measured. This method verified that the mutant strains are lacking the specific metabolic capabilities to produce and metabolize agmatine. In addition, measurement of agmatine in supernatants of a panel of clinical isolates from patients with cystic fibrosis revealed that three of the P. aeruginosa isolates hyper-secreted agmatine into the supernatant, hypothesized to be a result of a mutation in the aguA gene. Because agmatine has potential inflammatory activities in the lung, this phenotype may be a virulence factor for P. aeruginosa in the lung environment of cystic fibrosis patients. PMID:25957842

  14. Simplified method for microlitre deuterium measurements in water and urine by gas chromatography-high-temperature conversion-isotope ratio mass spectrometry.

    PubMed

    Gucciardi, Antonina; Cogo, Paola E; Traldi, Umberto; Eaton, Simon; Darch, Tegan; Simonato, Manuela; Ori, Carlo; Carnielli, Virgilio P

    2008-07-01

    Deuterium (2H) in water and urine can be measured by off-line and, more recently, on-line techniques using isotope ratio mass spectrometry (IRMS). We describe a new simple on-line pyrolysis method for the analysis of 2H/1H in water and urine samples by continuous flow IRMS, normally used for 2H/1H measurements in organic compounds. A deactivated column connected the split injector to a high-temperature conversion reactor (TC HD), and 0.5 microL of sample was injected. Accuracy and precision were determined with Vienna Standard Mean Ocean Water (VSMOW), Standard Light Antarctic Precipitation (SLAP), and Greenland Ice Sheet Precipitation (GISP). The range of linearity was measured with a calibration curve of enriched water from 0 up to 0.1 atom percent excess (APE) (i.e. -72 up to 6323 delta per mil (deltaD per thousand)) with a precision of <5 per thousand and accuracy ranging between 1 and 55 per thousand. Blinded reanalysis of urine samples by an equilibration device (Gas Bench) and by a dedicated pyrolysis system (TC/EA) was performed and results compared by the Bland-Altman test. Enrichments ranged between 600 and 2400 per thousand deltaD(VSMOW) with a precision of +/-5 per thousand. Urine enrichments described by our method were strongly correlated with values obtained by Gas Bench and TC/EA (p < 0.0001). There was a significant memory effect that was reduced by injecting the sample 15 times and discarding the first 10 injections, together with accurate furnace conditioning and appropriate cleaning of the syringe. Data indicate that the method is accurate, and that it can be used for water and urine deuterium determination when a Gas Bench or TC/EA instrument is not available and the amount of sample is limited. PMID:18512843

  15. Addiction to MTH1 protein results in intense expression in human breast cancer tissue as measured by liquid chromatography-isotope-dilution tandem mass spectrometry.

    PubMed

    Coskun, Erdem; Jaruga, Pawel; Jemth, Ann-Sofie; Loseva, Olga; Scanlan, Leona D; Tona, Alessandro; Lowenthal, Mark S; Helleday, Thomas; Dizdaroglu, Miral

    2015-09-01

    MTH1 protein sanitizes the nucleotide pool so that oxidized 2'-deoxynucleoside triphosphates (dNTPs) cannot be used in DNA replication. Cancer cells require MTH1 to avoid incorporation of oxidized dNTPs into DNA that results in mutations and cell death. Inhibition of MTH1 eradicates cancer, validating MTH1 as an anticancer target. By overexpressing MTH1, cancer cells may mediate cancer growth and resist therapy. To date, there is unreliable evidence suggesting that MTH1 is increased in cancer cells, and available methods to measure MTH1 levels are indirect and semi-quantitative. Accurate measurement of MTH1 in disease-free tissues and malignant tumors of patients may be essential for determining if the protein is truly upregulated in cancers, and for the development and use of MTH1 inhibitors in cancer therapy. Here, we present a novel approach involving liquid chromatography-isotope-dilution tandem mass spectrometry to positively identify and accurately quantify MTH1 in human tissues. We produced full length (15)N-labeled MTH1 and used it as an internal standard for the measurements. Following trypsin digestion, seven tryptic peptides of both MTH1 and (15)N-MTH1 were identified by their full scan and product ion spectra. These peptides provided a statistically significant protein score that would unequivocally identify MTH1. Next, we identified and quantified MTH1 in human disease-free breast tissues and malignant breast tumors, and in four human cultured cell lines, three of which were cancer cells. Extreme expression of MTH1 in malignant breast tumors was observed, suggesting that cancer cells are addicted to MTH1 for their survival. The approach described is expected to be applicable to the measurement of MTH1 levels in malignant tumors vs. surrounding disease-free tissues in cancer patients. This attribute may help develop novel treatment strategies and MTH1 inhibitors as potential drugs, and guide therapies. PMID:26202347

  16. Application of the reference method isotope dilution gas chromatography mass spectrometry (ID/GC/MS) to establish metrological traceability for calibration and control of blood glucose test systems.

    PubMed

    Andreis, Elisabeth; Kllmer, Kai; Appel, Matthias

    2014-05-01

    Self-monitoring of blood glucose (BG) by means of handheld BG systems is a cornerstone in diabetes therapy. The aim of this article is to describe a procedure with proven traceability for calibration and evaluation of BG systems to guarantee reliable BG measurements. Isotope dilution gas chromatography mass spectrometry (ID/GC/MS) is a method that fulfills all requirements to be used in a higher-order reference measurement procedure. However, this method is not applicable for routine measurements because of the time-consuming sample preparation. A hexokinase method with perchloric acid (PCA) sample pretreatment is used in a measurement procedure for such purposes. This method is directly linked to the ID/GC/MS method by calibration with a glucose solution that has an ID/GC/MS-determined target value. BG systems are calibrated with whole blood samples. The glucose levels in such samples are analyzed by this ID/GC/MS-linked hexokinase method to establish traceability to higher-order reference material. For method comparison, the glucose concentrations in 577 whole blood samples were measured using the PCA-hexokinase method and the ID/GC/MS method; this resulted in a mean deviation of 0.1%. The mean deviation between BG levels measured in >500 valid whole blood samples with BG systems and the ID/GC/MS was 1.1%. BG systems allow a reliable glucose measurement if a true reference measurement procedure, with a noninterrupted traceability chain using ID/GC/MS linked hexokinase method for calibration of BG systems, is implemented. Systems should be calibrated by means of a traceable and defined measurement procedure to avoid bias. PMID:24876614

  17. Simultaneous determination of four sulfur mustard-DNA adducts in rabbit urine after dermal exposure by isotope-dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Yajiao; Yue, Lijun; Nie, Zhiyong; Chen, Jia; Guo, Lei; Wu, Bidong; Feng, Jianlin; Liu, Qin; Xie, Jianwei

    2014-06-15

    Sulfur mustard (SM) is a classic vesicant agent, which has been greatly employed in several wars or military conflicts. The most lesion mechanism is its strong alkylation of DNAs in vivo. Until now there are four specific DNA adducts of SM identified for further retrospective detection, i.e., N(7)-(2-hydroxyethylthioethyl)-2'-guanine (N(7)-HETEG), bis(2-ethyl-N(7)-guanine)thioether (Bis-G), N(3)-(2-hydroxyethylthioethyl)-2'-adenine (N(3)-HETEA) and O(6)-(2-hydroxyethylthioethyl)-2'-guanine (O(6)-HETEG), respectively. Here, a novel and sensitive method of isotope-dilution ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combining with solid phase extraction was reported for the simultaneous determination of four SM-DNA adducts. A lower limit of detection of 2-5ngL(-1), and a lower limit of quantitation of 5-10ngL(-1) were achieved, respectively, and the recoveries ranged from 87% to 116%. We applied this method in the determination of four SM-DNA adducts in rabbit urine after dermal exposure by SM in three dose levels (2, 5, 15mgkg(-1)), so as to investigate the related metabolic behavior in vivo. For the first time, in SM exposed rabbit urine, our results revealed the relative accumulation abundance of four SM-DNA adducts, i.e., 67.4% for N(7)-HETEG, 22.7% for Bis-G, 9.8% for N(3)-HETEA, 0.1% for O(6)-HETEG, and significant dose and time dependent responses of these SM-DNA adducts. The four adducts were detectable after 8h, afterwards, their contents continuously increased, achieved maximum in the first two or three days and then gradually decreased till the end of one month. Meanwhile, the amounts of SM-DNA adducts were positively correlated with the exposure doses. PMID:24858262

  18. Development and validation of a stable-isotope dilution liquid chromatography-tandem mass spectrometry method for the determination of bisphenols in ready-made meals.

    PubMed

    Regueiro, Jorge; Wenzl, Thomas

    2015-10-01

    Due to their growing consumption, ready-made meals are a major dietary component for many people in today's society, representing an important potential route of human exposure to several food contaminants. The recent restrictions in the use of bisphenol A have led the plastic industry to look for alternative chemicals, most of them belonging to the same family of p,p'-bisphenols. The aim of the current work was to develop and validate a method based on stable-isotope dilution liquid chromatography-tandem mass spectrometry for the analysis of bisphenol A and its main analogs - bisphenol S, 4,4'-sulfonylbis(2-methylphenol), bisphenol F, bisphenol E, bisphenol B, bisphenol Z, bisphenol AF, bisphenol AP, tetrabromobisphenol A and bisphenol P - in solid foodstuffs, and particularly in ready-made meals. Extraction was carried out by ultrasound-assisted extraction after sample disruption with sand. A selective solid-phase extraction procedure was then applied to reduce potential matrix interferences. Derivatization of bisphenols with pyridine-3-sulfonyl chloride increased their ionization efficiency by electrospray ionization. Validation of the proposed method was performed in terms of selectivity, matrix effects, linearity, precision, measurement uncertainty, trueness and limits of detection. Satisfactory repeatability and intermediate precision were obtained; the related relative standard deviations were ≤7.8% and ≤10%, respectively. The relative expanded uncertainty (k=2) was below 17% for all bisphenol analogs and the trueness of the method was demonstrated by spike recovery experiments. Low limits of detection, in the range from 0.025μgkg(-1) to 0.140μgkg(-1), were obtained for all compounds. To demonstrate the applicability of the proposed method, it was eventually applied to several ready-made meals purchased from different supermarkets in Belgium. PMID:26456223

  19. Determination of 43 polycyclic aromatic hydrocarbons in air particulate matter by use of direct elution and isotope dilution gas chromatography/mass spectrometry.

    PubMed

    Li, Zheng; Pittman, Erin N; Trinidad, Debra A; Romanoff, Lovisa C; Mulholland, James; Sjödin, Andreas

    2010-02-01

    We are reporting a method for measuring 43 polycyclic aromatic hydrocarbons (PAH) and their methylated derivatives (Me-PAHs) in air particulate matter (PM) samples using isotope dilution gas chromatography/high-resolution mass spectrometry (GC/HRMS). In this method, PM samples were spiked with internal standards, loaded into solid phase extraction cartridges, and eluted by dichloromethane. The extracts were concentrated, spiked with a recovery standard, and analyzed by GC/HRMS at 10,000 resolution. Sixteen (13)C-labeled PAHs and two deuterated Me-PAHs were used as internal standards to account for instrument variability and losses during sample preparation. Recovery of labeled internal standards was in the range of 86-115%. The proposed method is less time-consuming than commonly used extraction methods, such as sonication and accelerated solvent extraction (ASE), and it eliminates the need for a filtration step required after the sonication extraction method. Limits of detection ranged from 41 to 332 pg/sample for the 43 analytes. This method was used to analyze reference materials from the National Institute of Standards and Technology. The results were consistent with those from ASE and sonication extraction, and these results were also in good agreement with the certified or reference concentrations. The proposed method was then used to measure PAHs on PM(2.5) samples collected at three sites (urban, suburban, and rural) in Atlanta, GA. The results showed distinct seasonal and spatial variation and were consistent with an earlier study measuring PM(2.5) samples using an ASE method, further demonstrating the compatibility of this method and the commonly used ASE method. PMID:19936717

  20. Quantification of key red blood cell folates from subjects with defined MTHFR 677C>T genotypes using stable isotope dilution liquid chromatography/mass spectrometry

    PubMed Central

    Huang, Yuehua; Khartulyari, Stefanie; Morales, Megan E.; Stanislawska-Sachadyn, Anna; Von Feldt, Joan M.; Whitehead, Alexander S.; Blair, Ian A.

    2014-01-01

    Red blood cell (RBC) folate levels are established at the time of erythropoiesis and therefore provide a surrogate biomarker for the average folate status of an individual over the preceding four months. Folates are present as folylpolyglutamates, highly polar molecules that cannot be secreted from the RBCs, and must be converted into their monoglutamate forms prior to analysis. This was accomplished using an individual’s plasma pteroylpolyglutamate hydrolase by lysing the RBCs in whole blood at pH 5 in the presence of ascorbic acid. Quantitative conversion of formylated tetrahydrofolate derivatives into the stable 5,10-methenyltetrahydrofolate (5,10-MTHF) form was conducted at pH 1.5 in the presence of [13C5]-5-formyltetrahydrofolate. The resulting [13C5]-5,10-MTHF was then used as an internal standard for the formylated forms of tetrahydrofolate that had been converted into 5,10-MTHF as well any 5,10-MTHF that had been present in the original sample. A stable isotope dilution liquid chromatography-multiple reaction monitoring/mass spectrometry method was validated and then used for the accurate and precise quantification of RBC folic acid, 5-methyltetrahydrofolate (5-MTHF), tetrahydrofolate (THF), and 5,10-MTHF. The method was sensitive and robust and was used to assess the relationship between different methylenetetrahydrofolate reductase (MTHFR) 677C>T genotypes and RBC folate phenotypes. Four distinct RBC folate phenotypes could be identified. These were classified according to the relative amounts of individual RBC folates as type I (5-MTHF >95%; THF <5%; 5,10-MTHF <5%), type II (5-MTHF <95%; THF 5% to 20%; 5,10-MTHF <5%), type III (5-MTHF >55%; THF >20%; 5,10-MTHF >5%), and type IV (5-MTHF <55%; THF >20%; 5,10-MTHF >5%). PMID:18634122

  1. Studies on the analysis of 25-hydroxyvitamin D{sub 3} by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation

    SciTech Connect

    Abdel-Khalik, Jonas; Crick, Peter J.; Carter, Graham D.; Makin, Hugh L.; Wang, Yuqin; Griffiths, William J.

    2014-04-11

    Highlights: • New method for the analysis of 25-hydroxyvitamin D{sub 3} exploiting Girard P derivatisation. • Method also applicable to vitamin D{sub 3}, 1α,25- and 24,25-dihydroxyvitamin D{sub 3}. • By modification of the method 3-epi-25-hydroxyvitamin D{sub 3} can also be analysed. - Abstract: The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D{sub 3} and 25-hydroxyvitamin D{sub 2}) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantification of 25-hydroxyvitamins D are needed. Here we present a novel enzyme-assisted derivatisation method for the analysis of vitamins D metabolites in adult serum utilising 25-[26,26,26,27,27,27-{sup 2}H{sub 6}]hydroxyvitamin D{sub 3} as the internal standard. Extraction of 25-hydroxyvitamins D from serum is performed with acetonitrile, which is shown to be more efficient than ethanol. Cholesterol oxidase is used to oxidize the 3β-hydroxy group in the vitamins D metabolites followed by derivatisation of the newly formed 3-oxo group with Girard P reagent. 17β-Hydroxysteroid dehydrogenase type 10 is shown to oxidize selectively the 3α-hydroxy group in the 3α-hydroxy epimer of 25-hydroxyvitamin D{sub 3}. Quantification is achieved by isotope-dilution liquid chromatography–tandem mass spectrometry. Recovery experiments for 25-hydroxyvitamin D{sub 3} performed on adult human serum give recovery of 102–106%. Furthermore in addition to 25-hydroxyvitamin D{sub 3}, 24,25-dihydroxyvitamin D{sub 3} and other uncharacterised dihydroxy metabolites, were detected in adult human serum.

  2. Simultaneous quantification of S-adenosyl methionine and S-adenosyl homocysteine in human plasma by stable-isotope dilution ultra performance liquid chromatography tandem mass spectrometry.

    PubMed

    Kirsch, Susanne H; Knapp, Jean-Pierre; Geisel, Jürgen; Herrmann, Wolfgang; Obeid, Rima

    2009-11-15

    S-adenosyl methionine (SAM) is an important methyl group donor that is formed from methionine. S-adenosyl homocysteine (SAH) is formed after demethylation of SAM and represents a potent inhibitor of many methyltransferases. We developed an improved stable-isotope dilution ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification of SAM and SAH in biological samples. The method comprises a phenylboronic acid-containing solid-phase extraction procedure, serving for binding and clean-up of SAM and SAH. After extraction, samples were separated and detected using either a HPLC SymmetryShield RP(18) or an Acquity UPLC BEH C(18) column with a HPLC-MS/MS or an UPLC-MS/MS system. The best results were obtained by Acquity UPLC BEH C(18) column. In plasma samples, the estimated intraassay coefficients of variation (CVs) for SAM and SAH were 3.3% and 3.9%, respectively, the interassay CVs were 10.1% for SAM and 8.3% for SAH. Mean recovery of SAM and SAH at two different concentrations was 100.0% for SAM and 101.7% for SAH. The quantification limits were 0.5 and 0.7nmol/L for SAM and SAH, respectively. In 31 plasma samples, the mean concentrations (SD) were 85.5 (11.1)nmol/L for SAM and 13.3 (5.0)nmol/L for SAH with a SAM/SAH ratio of 7.0 (1.8). The new UPLC-MS/MS method showed very high sensitivity and selectivity for SAM and SAH, low CVs and fast sample preparation (40 samples in 60min) and analysis time (3min). This new assay can be used for large-scale clinical studies. PMID:19828381

  3. Flavor authenticity studies by (2)h/(1)h ratio determination using on-line gas chromatography pyrolysis isotope ratio mass spectrometry.

    PubMed

    Hör, K; Ruff, C; Weckerle, B; König, T; Schreier, P

    2001-01-01

    Based on (2)H/(1)H ratio measurements of commercial synthetic and "natural" references, the recently developed on-line gas chromatography pyrolysis isotope ratio mass spectrometry (HRGC-P-IRMS) technique was used to determine the delta(2)H(SMOW) values of the flavor compounds decanal, linalool, and linalyl acetate, as well as those of E-2-hexenal and E-2-hexenol in foods and essential oils. In preceding model studies, the influence of sample preparation steps (simultaneous distillation extraction, SDE; solvent extraction, SE; liquid liquid extraction, LLE) on the delta(2)H values was found to be negligible. For decanal, the typical (2)H abundance, with higher content of (2)H for synthetic material (delta(2)H(SMOW) from -90 to -156 per thousand) and lower (2)H content for natural references (delta(2)H(SMOW) from -138 to -262 per thousand) was observed. Although the delta(2)H data recorded for linalool did not allow one to distinguish between synthetic (delta(2)H(SMOW) from -207 to -301 per thousand) and natural (delta(2)H(SMOW) from -234 to -333 per thousand) materials, the situation was somewhat more encouraging for linalyl acetate; delta(2)H(SMOW) values from -199 to -239 per thousand and from -213 to -333 per thousand were found for synthetic and natural samples, respectively. E-2-Hexenal and E-2-hexenol showed clear-cut origin-dependent differences in their (2)H/(1)H ratios; that is, delta(2)H(SMOW) values from -14 to -109 per thousand and from -263 to -415 per thousand as well as from -41 to -131 per thousand and from -238 to -348 per thousand were recorded for products from synthetic and natural origins, respectively. PMID:11170554

  4. An optimized method for the accurate determination of patulin in apple products by isotope dilution-liquid chromatography/mass spectrometry.

    PubMed

    Seo, Miyeong; Kim, Byungjoo; Baek, Song-Yee

    2015-07-01

    Patulin, a mycotoxin produced by several molds in fruits, has been frequently detected in apple products. Therefore, regulatory bodies have established recommended maximum permitted patulin concentrations for each type of apple product. Although several analytical methods have been adopted to determine patulin in food, quality control of patulin analysis is not easy, as reliable certified reference materials (CRMs) are not available. In this study, as a part of a project for developing CRMs for patulin analysis, we developed isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC/MS/MS) as a higher-order reference method for the accurate value-assignment of CRMs. (13)C7-patulin was used as internal standard. Samples were extracted with ethyl acetate to improve recovery. For further sample cleanup with solid-phase extraction (SPE), the HLB SPE cartridge was chosen after comparing with several other types of SPE cartridges. High-performance liquid chromatography was performed on a multimode column for proper retention and separation of highly polar and water-soluble patulin from sample interferences. Sample extracts were analyzed by LC/MS/MS with electrospray ionization in negative ion mode with selected reaction monitoring of patulin and (13)C7-patulin at m/z 153→m/z 109 and m/z 160→m/z 115, respectively. The validity of the method was tested by measuring gravimetrically fortified samples of various apple products. In addition, the repeatability and the reproducibility of the method were tested to evaluate the performance of the method. The method was shown to provide accurate measurements in the 3-40 μg/kg range with a relative expanded uncertainty of around 1%. PMID:25925860

  5. Urinary profiling of cis-diol-containing metabolites in rats with bisphenol A exposure by liquid chromatography-mass spectrometry and isotope labeling.

    PubMed

    Li, Shangfu; Jin, Yibao; Wang, Jue; Tang, Zhi; Xu, Shunqing; Wang, Tiejie; Cai, Zongwei

    2016-02-01

    Exposure to bisphenol A (BPA), an environmental contaminant, has been linked to metabolic disorders. However, there are no reports describing the effects of BPA on the profiling of cis-diol metabolites. It is challenge to detect these metabolites in biological samples because of their low abundance, high polarity and serious matrix interference. In this study, a chemical isotope-labeling method was applied to solve these problems. Acetone and deuterated acetone (acetone-d6) were used as chemical tags to label the rat urine samples, respectively. The light and heavy labeling products were recognized using the ShiftedIonsFinder software. The selected cis-diol metabolite signals were used to build a data set. The data set was applied to evaluate the changes in the urinary profiling of cis-diol-containing metabolites in rats with BPA exposure. The results showed that chromatographic separation and mass spectrometry detection of cis-diol metabolites were improved after acetone labeling. Using this method, the cis-diol metabolites were recognized easily from the urine samples. By comparing different dose administration on rats, the influence of BPA exposure on cis-diol metabolites was investigated. The analytes showing noticeable differences were identified. It was found that high-dose BPA exposure had strong effects on the cis-diol compound metabolism. The influences were mostly related to the metabolism of galactose and nucleoside and its analogues. The disturbance of the galactose metabolism by BPA is reported for the first time, to the best of our knowledge. This may have some implications for exploring the toxic effects of BPA exposure. PMID:26739229

  6. Determination of the cardiac glycosides digoxin and digitoxin by liquid chromatography combined with isotope-dilution mass spectrometry (LC-IDMS)--a candidate reference measurement procedure.

    PubMed

    Kaiser, Patricia; Kramer, Udo; Meissner, Dieane; Kress, Michael; Wood, William Graham; Reinauer, Hans

    2003-01-01

    This article describes a method of high analytical sensitivity, reproducibility and trueness for the determination of digoxin and digitoxin in serum or plasma at therapeutic levels using a combination of high-pressure liquid chromatography (HPLC), isotope-dilution mass spectrometry (IDMS) and caesium-adduct formation. A method for threefold deuterium substitution in the glycosides was developed, which could be performed within 24 hours without distillation giving yields > 98% of the theoretical value. Extraction from a serum or plasma matrix was performed using a liquid-phase extraction with ammonium acetate buffer/tertiary butylmethyl ether/ethyl acetate at pH 9.5. The HPLC-separation used a 10 x 2 mm LiChrospher RP-18 5 microm guard column in combination with a 125 x 2 mm main column of the same material and a gradient containing methanol, caesium ions and formic acid. Quantification of digoxin and digitoxin was made with IDMS using deuterated internal standards and the system run in single ion monitoring (SIM) mode. The methods had a lower limit of determination of 0.25 microg/l for digoxin and digitoxin, a trueness between 97.5 and 104% for digoxin and between 98 and 101% for digitoxin, respectively and had a coefficient of variation of less than 3% in the therapeutic range for both glycosides. Maximally 1 ml serum or plasma was needed for the procedure. The method is used to set target values for materials used in external quality assessment surveys (EQAS) run by INSTAND as part of a national EQAS-programme.) PMID:12908733

  7. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer's disease.

    PubMed

    Peng, Jun; Guo, Kevin; Xia, Jianguo; Zhou, Jianjun; Yang, Jing; Westaway, David; Wishart, David S; Li, Liang

    2014-10-01

    Because of a limited volume of urine that can be collected from a mouse, it is very difficult to apply the common strategy of using multiple analytical techniques to analyze the metabolites to increase the metabolome coverage for mouse urine metabolomics. We report an enabling method based on differential isotope labeling liquid chromatography mass spectrometry (LC-MS) for relative quantification of over 950 putative metabolites using 20 ?L of urine as the starting material. The workflow involves aliquoting 10 ?L of an individual urine sample for C-dansylation labeling that target amines and phenols. Another 10 ?L of aliquot was taken from each sample to generate a pooled sample that was subjected to C-dansylation labeling. The C-labeled individual sample was mixed with an equal volume of the C-labeled pooled sample. The mixture was then analyzed by LC-MS to generate information on metabolite concentration differences among different individual samples. The interday repeatability for the LC-MS runs was assessed, and the median relative standard deviation over 4 days was 5.0%. This workflow was then applied to a metabolomic biomarker discovery study using urine samples obtained from the TgCRND8 mouse model of early onset familial Alzheimer's disease (FAD) throughout the course of their pathological deposition of beta amyloid (A?). It was showed that there was a distinct metabolomic separation between the AD prone mice and the wild type (control) group. As early as 15-17 weeks of age (presymptomatic), metabolomic differences were observed between the two groups, and after the age of 25 weeks the metabolomic alterations became more pronounced. The metabolomic changes at different ages corroborated well with the phenotype changes in this transgenic mice model. Several useful candidate biomarkers including methionine, desaminotyrosine, taurine, N1-acetylspermidine, and 5-hydroxyindoleacetic acid were identified. Some of them were found in previous metabolomics studies in human cerebrospinal fluid or blood samples. This work illustrates the utility of this isotope labeling LC-MS method for biomarker discovery using mouse urine metabolomics. PMID:25164377

  8. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  9. Quantification of polycyclic aromatic hydrocarbons based on comprehensive two-dimensional gas chromatography-isotope dilution mass spectrometry.

    PubMed

    Amador-Muñoz, Omar; Villalobos-Pietrini, Rafael; Aragón-Piña, Antonio; Tran, Tin C; Morrison, P; Marriott, Philip J

    2008-08-01

    Comprehensive two-dimensional gas chromatography (GCxGC) offers favourable resolution and sensitivity compared with conventional one-dimensional gas chromatography (1D-GC), as reported in many studies. These characteristics are of major interest when analytes are in trace concentration, and are present in complex mixtures, as is the case of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate samples. Whilst GCxGC has been widely applied to identification of different types of analytes in several matrices, less seldom has it been used for quantification of these analytes. Although several quantitative methods have been proposed, they may be tedious and/or require considerable user development. Whereas quantification in 1D-GC is a routine and well-established procedure, in GCxGC, it is not so straightforward, especially where novel or untested procedures have yet to be incorporated into software packages. In the present study, it is proposed that a subset of the modulated peaks generated for each solute may be summed, based on the specific target ion mass of each compound present in a certified standard reference material (SRM) 1649a (urban dust). The ratio between a PAH and its corresponding deuterated (PAH-d) form showed that there is no statistical loss of sensitivity when this ratio is calculated based on whether the total sum of modulated peaks, or if only the two or the three most intense modulated peaks, are employed. Manual integration may be required, and here was found to give more acceptable values than automatic integration. Automated integration has been shown here to underestimate the modulated peak responses when low concentrations of PAHs were analyzed. Although for most PAHs good agreement with the certified values were observed, the analytical method needs to be further optimized for some of the other PAH, as can be see with those PAH with high variability in the range of urban dust analyzed. PMID:18620359

  10. Using Mass Spectrometry for Proteins

    NASA Astrophysics Data System (ADS)

    Vestling, Martha M.

    2003-02-01

    The 2002 Chemistry Nobel Prize has mass spectrometrists everywhere celebrating. It recognizes work that put large proteins, 10,000 Da and up, into mass spectrometers. A description of Koichi Tanaka's experiments using laser desorption ionization and John B. Fenn's experiments using electrospray ionization is given along with a brief summary with references to previous researchers' work that Tanaka and Fenn were familiar with. The techniques Tanaka and Fenn used for their Prize-winning worktechniques that have revolutionized mass spectrometryhave yet to reach current chemistry textbooks, whatever their level.

  11. Mass spectrometry and renal calculi

    PubMed Central

    Purcarea, VL; Sisu, I; Sisu, E

    2010-01-01

    The present review represents a concise and complete survey of the literature covering 2004–2009, concerning the mass spectrometric techniques involved in the structural investigation of renal calculi. After a short presentation of the fundamental mass spectrometric techniques (MALDI–TOF, QTOF, MS–MS) as well as hyphenated methods (GC–MS, LC–MS, CE–MS), an extensive study of the urinary proteome analysis as well as the detection and quantification by mass spectrometry of toxins, drugs and metabolites from renal calculi is presented. PMID:20968197

  12. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  13. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  14. Determination of 135Cs by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Charles, C. R. J.; Zhao, X.-L.; Kieser, W. E.; Cornett, R. J.; Litherland, A. E.

    2015-10-01

    The ratio of anthropogenic 135Cs and 137Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying 135Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn2, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10-3 and 1.7 × 10-7 respectively. This quantification of 135Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  15. Quantification of Activated NF-κB/RelA Complexes Using ssDNA Aptamer Affinity – Stable Isotope Dilution—Selected Reaction Monitoring—Mass Spectrometry*

    PubMed Central

    Zhao, Yingxin; Widen, Steven G.; Jamaluddin, Mohammad; Tian, Bing; Wood, Thomas G.; Edeh, Chukwudi B.; Brasier, Allan R.

    2011-01-01

    Nuclear Factor-κB (NF-κB) is a family of inducible transcription factors regulated by stimulus-induced protein interactions. In the cytoplasm, the NF-κB member RelA transactivator is inactivated by binding inhibitory IκBs, whereas in its activated state, the serine-phosphorylated protein binds the p300 histone acetyltransferase. Here we describe the isolation of a ssDNA aptamer (termed P028F4) that binds to the activated (IκBα-dissociated) form of RelA with a KD of 6.4 × 10−10, and its application in an enrichment-mass spectrometric quantification assay. ssDNA P028F4 competes with cognate duplex high affinity NF-κB binding sites for RelA binding in vitro, binds activated RelA in eukaryotic nuclei and reduces TNFα-stimulated endogenous NF-κB dependent gene expression. Incorporation of P028F4 as an affinity isolation step enriches for serine 536 phosphorylated and p300 coactivator complexed RelA, simultaneously depleting IκBα·RelA complexes. A stable isotope dilution (SID)-selected reaction monitoring (SRM)- mass spectrometry (MS) assay for RelA was developed that produced a linear response over 1,000 fold dilution range of input protein and had a 200 amol lower limit of quantification. This multiplex SID-SRM-MS RelA assay was used to quantify activated endogenous RelA in cytokine-stimulated eukaryotic cells isolated by single-step P028F4 enrichment. The aptamer-SID-SRM-MS assay quantified the fraction of activated RelA in subcellular extracts, detecting the presence of a cytoplasmic RelA reservoir unresponsive to TNFα stimulation. We conclude that aptamer-SID-SRM-MS is a versatile tool for quantification of activated NF-κB/RelA and its associated complexes in response to pathway activation. PMID:21502374

  16. Imaging Mass Spectrometry in Neuroscience

    PubMed Central

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  17. Mass spectrometry. [review of techniques

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  18. Isotopic Analysis of OS and RE with Negative Thermal Ion Mass Spectrometry and Application to the Age and Evolution of Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1992-07-01

    The ^187Re-^187Os isotope system has long been recognized as a method by which the age of iron meteorites can be directly determined (Herr et al., 1961). Pioneering work by Luck and Allegre (1983) established a whole-rock isochron for iron meteorites and the results, were used to determine indirectly the half-life of ^187Re. We have developed: a) high ionization efficiency mass spectrometry techniques for platinum group elements, including both Re and Os separated from iron meteorites (Creaser et al., 1991, 1992); b) low filament loading blanks for both Re and Os (<0.1 picogram, each); c) high yield and low blanks for the chemical separation techniques (yields 70-80%; blanks 1 pg for Os, <10 pg for Re). We have developed a new method for the rapid, clean and efficient separation of Os and Re from 10^-2 g samples of iron meteorites. This will permit taking advantage of variations of Re/Os on a small scale. The chemical separation scheme involves acid dissolution, preconcentration of Os and Re from Fe-Ni, oxidative solvent extraction of Os and ion exchange chromatography to recover Re. We have established that Os and Re thus chemically separated from iron meteorites show the same ionization efficiency as Os and Re from standard solutions, namely ~20% for each element. Of primary importance is the degree of isotope exchange and equilibration between sample and spike for Os. By analyzing the isotopic composition of Os at different stages of the chemical separation we are able to demonstrate that isotopic equilibration can be achieved to the level of +-1o/oo. However, this is not yet a routinely resolved issue. We believe, based on experience during the development of this technique, that isotope equilibration for Os prior to chemical separation is a critical issue that needs further attention. The results we have obtained so far from iron meteorites are given in Table 1. We have started analyses of the large magmatic group of IIA irons, which are little shocked and little metamorphosed, in order to attempt to establish a high precision isochron for these objects. For two samples, where we have high precision data for both Os and Re, the slope indicated is 0.077, which yields an age of 4530 Ma using the best estimate of the ^187Re half-life by direct measurement (Lindner et al., 1989). These results are in close agreement with the revised data of Horan et al. (1992) but markedly different from published iron meteorite data using the lower precision techniques where slopes of 0.070-0.074 indicate apparent ages of 4150-4350 Ma. We believe that previously reported data, including the data on the half-life of ^187Re, require confirmation using the current high-precision and high- sensitivity techniques, before the reliability and utility of the Re-Os technique can be ascertained. Acknowledgement. This work was supported by NASA, Grant NAG 943. Contribution No. 779. References Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J. (1991a) Geochim. Cosmochim. Acta 55, 397-401. Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J. (1992) Lunar Planet. Sci. XXIII (abstract), 255-256. Herr, W., Hoffmeister, W., Hirt, B., Geiss, J., and Houtermans, F. G. (1961) Z. Naturforsch. 16a, 1053-1058. Horan, M. F., Morgan, J. W., Walker, R. J., and Grossman, J. N. (1992) Science 255, 1118-1121. Lindner, M., Leich, D. A., Russ, G. P., Bazan, J. M., and Borg, R. J. (1989) Geochim. Cosmochim. Acta 53, 1597-1606. Luck, J. M. and Allegre, C. J. (1983) Nature 302, 130-132. Table 1. Re-Os isotopic data from iron meteorites. Os ppm Re ppb 187Os/188Os 187Re/188Os Bennett County IIA 59.6+-0.1 0.12503+-5 Coahuila IIA 9.87+-0.02 0.14158+-7 Tocopilla IIA 1.062+-0.002 207.9 0.16913+-15 0.9451 Negrillos IIA 69.4+-0.1 5022.7 0.12315+-2 0.3497 Cape York IIIA 0.13374+-9 Canyon Diablo IA 0.13464+-11 Tlacotepc IVB 0.12068+-8 Osmium standard (NHr)2OsCl6 0.14911+-3

  19. Development of imaging mass spectrometry.

    PubMed

    Saito, Yusuke; Waki, Michihiko; Hameed, Saira; Hayasaka, Takahiro; Setou, Mitsutoshi

    2012-01-01

    We have developed a mass microscope in which a microscope is combined with high-resolution matrix assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). This technique is a powerful tool for investigating the spatial distribution of biomolecules without the need for any time-consuming extraction, purification, and labeling procedures for biological tissue sections. The mass microscope provides clear images with regards to the distribution of hundreds of biomolecules in a single measurement, and also helps in determining the cellular profile of the biological system. In this review, we focus on some of the recent developments in clinical applications and describe how the mass microscope can be employed to assess pathomorphology and pharmacokinetics. PMID:22975490

  20. Detection Technologies. Ambient mass spectrometry.

    PubMed

    Cooks, R Graham; Ouyang, Zheng; Takats, Zoltan; Wiseman, Justin M

    2006-03-17

    A recent innovation in mass spectrometry is the ability to record mass spectra on ordinary samples, in their native environment, without sample preparation or preseparation by creating ions outside the instrument. In desorption electrospray ionization (DESI), the principal method described here, electrically charged droplets are directed at the ambient object of interest; they release ions from the surface, which are then vacuumed through the air into a conventional mass spectrometer. Extremely rapid analysis is coupled with high sensitivity and high chemical specificity. These characteristics are advantageously applied to high-throughput metabolomics, explosives detection, natural products discovery, and biological tissue imaging, among other applications. Future possible uses of DESI for in vivo clinical analysis and its adaptation to portable mass spectrometers are described. PMID:16543450

  1. Visualizing Life With Ambient Mass Spectrometry

    PubMed Central

    Hsu, Cheng-Chih; Dorrestein, Pieter C.

    2014-01-01

    Since the development of desorption electrospray ionization (DESI), many other ionization methods for ambient and atmospheric pressure mass spectrometry have been developed. Ambient ionization mass spectrometry has now been used for a wide variety of biological applications, including plant science, microbiology, neuroscience, and cancer pathology. Multimodal integration of atmospheric ionization sources with the other biotechnologies, as well as high performance computational methods for mass spectrometry data processing is one of the major emerging area's for ambient mass spectrometry. In this opinion article, we will highlight some of the most influential technological advances of ambient mass spectrometry in recent years and their applications to the life sciences. PMID:25146170

  2. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  3. High mass accuracy assay for trimethylamine N-oxide using stable-isotope dilution with liquid chromatography coupled to orthogonal acceleration time of flight mass spectrometry with multiple reaction monitoring.

    PubMed

    Heaney, Liam M; Jones, Donald J L; Mbasu, Richard J; Ng, Leong L; Suzuki, Toru

    2016-01-01

    Trimethylamine N-oxide (TMAO) has attracted interest as circulating levels have reported prognostic value in patients with cardiovascular conditions, such as heart failure. With continual advances in accurate mass measurements, robust methods that can employ the capabilities of time of flight mass spectrometers would offer additional utility in the analysis of complex clinical samples. A Waters Acquity UPLC was coupled to a Waters Synapt G2-S high-resolution mass spectrometer. TMAO was measured in plasma by stable-isotope dilution-hydrophilic interaction liquid chromatography-time of flight mass spectrometry with multiple reaction monitoring (LC-ToF-MRM). Two transitions were monitored: m/z 76.1 to 58.066/59.073 and m/z 85.1 to 66.116/68.130. The method was assessed for linearity, lower limits of detection and quantitation, and reproducibility. A selected cohort of patients with systolic heart failure (SHF; n = 43) and healthy controls (n = 42) were measured to verify the assay is suitable for the analysis of clinical samples. Quantitative analysis of TMAO using LC-ToF-MRM enabled linearity to be established between 0.1 and 75 μmol/L, with a lower limit of detection of 0.05 μmol/L. Relative standard deviations reported an inter-day variation of ≤20.8 % and an intra-day variation of ≤11.4 % with an intra-study quality control variation of 2.7 %. Run times were 2.5 min. Clinical application of the method reported that TMAO in SHF was elevated compared to that of healthy controls (p < 0.0005). LC-ToF-MRM offers a highly selective method for accurate mass measurement of TMAO with rapid and reproducible results. Applicability of the method was shown in a selected cohort of patient samples. PMID:26573169

  4. Monitoring urinary metabolites resulting from sulfur mustard exposure in rabbits, using highly sensitive isotope-dilution gas chromatography-mass spectrometry.

    PubMed

    Nie, Zhiyong; Zhang, Yajiao; Chen, Jia; Lin, Ying; Wu, Bidong; Dong, Yuan; Feng, Jianlin; Liu, Qin; Xie, Jianwei

    2014-08-01

    A highly sensitive method for the determination of sulfur mustard (SM) metabolites thiodiglycol (TDG) and thiodiglycol sulfoxide (TDGO) in urine was established and validated using isotope-dilution negative-ion chemical ionization (NICI) gas chromatography-mass spectrometry (GC-MS). TDGO in the samples was reduced with TiCl3, and then determined together with TDG as a single analyte. The sample preparation procedures, including two solid-phase-extraction (SPE) clean-up steps, were optimized to improve the sensitivity of the method. The limits of detection (LOD) for both TDG and TDG plus TDGO (TDG + TDGO) were 0.1 ng mL(-1), and the limits of quantitation (LOQ) for both were 0.3 ng mL(-1). The method was used in a rabbit cutaneous SM exposure model. Domestic rabbits were exposed to neat liquid SM at three dosage levels (0.02, 0.05, and 0.15 LD50), and the urinary excretion of four species of hydrolysis metabolites, namely free TDG, free plus conjugated TDG (total TDG), free TDG + TDGO, and free plus conjugated TDG + TDGO (total TDG + TDGO), was evaluated to investigate the metabolic processes. The total urinary excretion profiles of the metabolites, including the peak time, time window, and dose-response and time-response relationships, were clarified. The results revealed that the concentrations of TDG and TDG + TDGO in the urine increased quickly and then decreased rapidly in the first two days after SM exposure. The cumulative amount of total TDG + TDGO excreted in urine during the first five days accounted for 0.5-1% of the applied dose of SM. It is also concluded that TDG and TDGO in urine existed mainly in free form, the levels of glucuronide and of sulfate conjugates of TDG or TDGO were very low, and most hydrolysis metabolites were present in the oxidized form (TDGO). The study indicates that the abnormal increase of TDG and TDGO excretion levels can be used as a diagnostic indicator and establishes a reference time-window for retrospective analysis and sampling after SM exposure. PMID:24924210

  5. Hydrogen Radical Removal Causes Complex Overlapping Isotope Patterns of Aromatic Carboxylic Acids in Negative-Ion Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    PubMed Central

    Yamagaki, Tohru; Watanabe, Takehiro

    2012-01-01

    We studied the ionization process of aromatic carboxylic acids, including ones with or without hydroxy groups in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), because many natural products, metabolites, and drags contain those structural units. In the actual experimental data, benzoic acid was ionized as only deprotonated molecule [M−H]−. In contrast, both of negative molecular ion M− and deprotonated molecule [M−H]− were generated from 2-naphthoic acid and 2-anthracenecarboxylic acid, and the ratio of negative molecular ion to deprotonated molecule M−/[M−H]− was increased in 2-anthracenecarboxylic acid. In addition, the ratio of 2-anthracenecarboxylic acid was much higher than those of 1- and 9-anthracenecarboxylic acids among the three isomers. Therefore, 2-substitution induced the generation of the negative molecular ion M−, which can made us prediction of the substituted positions from their overlapping peak isotope patterns. 2,5-Dihydroxybenzoic acid (2,5-DHBA) showed two deprotonated molecules, [M−H]− and [M−H*−H]−, which was generated from a neutral hydrogen radical (H*) removal from a phenolic hydroxy group. The deprotonated molecule [M−H*−H]− of 2,5-DHBA was the most abundant among six DHBAs and three hydroxybenzoic acids (hBAs). This observation raises the possibility that such a property of 2,5-DHBA could be a clue to explain its highest efficiency as a MALDI matrix. The order of the hydrogen radical removal from the phenolic hydroxy groups was the 3-<4-≪5-positions in the DHBAs, and the 3-<4-positions in hBAs. We can distinguish among six DHBA isomers and three hBA isomers from their spectral pattern around the deprotonated molecules [M−H*−H]− and [M−H]−. The intra-molecular hydrogen bonding between 1-carboxy and 2-hydroxy groups was an important factor in hydrogen radical removal in the hydroxylbenzoic acids and dihydroxybenzoic acids. PMID:24349906

  6. Quantification of benzo[a]pyrene diol epoxide DNA-adducts by stable isotope dilution liquid chromatography/tandem mass spectrometry.

    PubMed

    Ruan, Qian; Kim, Hye-Young H; Jiang, Hao; Penning, Trevor M; Harvey, Ronald G; Blair, Ian A

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants found in car exhausts, charbroiled food, and tobacco smoke. Three pathways for the metabolic activation of B[a]P to ultimate carcinogens have been proposed. The most widely accepted pathway involves cytochrome-P450 (CYP) 1A1- and/or 1B1-mediated formation of B[a]P-7,8-oxide, which undergoes epoxide hydrolase-mediated metabolism to the proximate carcinogen B[a]P-7,8-dihydro-7,8-diol. Further CYP1A1- and/or CYP1B1-mediated activation of the dihydrodiol results in the formation of 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]PDE), the ultimate carcinogen. In previous studies, it was demonstrated that (+)-anti-B[a]PDE was the most potent tumorigen of the CYP-derived B[a]PDE diastereomers. We have developed a stable isotope dilution, liquid chromatography multiple reaction monitoring/mass spectrometry (LC-MRM/MS) assay for all eight (+/-)-anti-B[a]PDE-derived dGuo and dAdo DNA-adducts. The LC-MRM/MS assay was rigorously validated and used to show that (+)-anti-trans-B[a]PDE-dGuo was the major adduct formed when naked DNA and human bronchoalveolar adenocarcinoma H358 cells were treated with (+/-)-anti-B[a]PDE. The preference for DNA-adducts derived from (+)-anti-B[a]PDE was even more apparent in cellular DNA. Thus, the increased potency of (+)-anti-B[a]PDE as a tumorigen is most likely due its ability to preferentially form DNA-adducts when compared with (-)-anti-B[a]PDE. Also, the adduct profile suggests that this occurs by binding of (+)-anti-B[a]PDE to DNA in a manner that facilitates covalent binding to dGuo rather than dAdo residues. PMID:16557497

  7. Determination of mycotoxins in milk-based products and infant formula using stable isotope dilution assay and liquid chromatography tandem mass spectrometry.

    PubMed

    Zhang, Kai; Wong, Jon W; Hayward, Douglas G; Vaclavikova, Marta; Liao, Chia-Ding; Trucksess, Mary W

    2013-07-01

    A stable isotope dilution assay and liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of 12 mycotoxins, aflatoxins B₁, B₂, G₁, G₂, and M₁, deoxynivalenol, fumonisins B₁, B₂, and B₃, ochratoxin A, T-2 toxin, and zearalenone, in milk-based infant formula and foods. Samples were fortified with 12 ¹³C uniformly labeled mycotoxins ([¹³C]-mycotoxins) that correspond to the 12 target mycotoxins and prepared by dilution and filtration, followed by LC-MS/MS analysis. Quantitation was achieved using the relative response factors of [¹³C]-mycotoxins and target mycotoxins. The average recoveries in fortified milk, milk-based infant formula, milk powder, and baby yogurt of aflatoxins B₁, B₂, G₁, and G₂ (2, 10, and 50 μg/kg), aflatoxin M₁ (0.5, 2.5, and 12.5 μg/kg), deoxynivalenol, fumonisins B₁, B₂, and B₃ (40, 200, and 1000 μg/kg), ochratoxin A, T-2 toxin, and zearalenone (20, 100, and 500 μg/kg), range from 89 to 126% with RSDs of <20%. The individual recoveries in the four fortified matrices range from 72% (fumonisin B₃, 20 μg/kg, milk-based infant formula) to 136% (T-2 toxin, 20 μg/kg, milk powder), with RSDs ranging from 2 to 25%. The limits of quantitation (LOQs) were from 0.01 μg/kg (aflatoxin M₁) to 2 (fumonisin B₁) μg/kg. Aflatoxin M₁ was detected in two European Reference materials at 0.127 ± 0.013 μg/kg (certified value = 0.111 ± 0.018 μg/kg) and 0.46 ± 0.04 μg/kg (certified value = 0.44 ± 0.06 μg/kg), respectively. In 60 local market samples, aflatoxins B₁ (1.14 ± 0.10 μg/kg) and B₂ (0.20 ± 0.03 μg/kg) were detected in one milk powder sample. Aflatoxin M₁ was detected in three imported samples (condensed milk, milk-based infant formula, and table cream), ranging from 0.10 to 0.40 μg/kg. The validated method provides sufficient selectivity, sensitivity, accuracy, and reproducibility to screen for aflatoxin M₁ at nanograms per kilogram concentrations and other mycotoxins, without using standard addition or matrix-matched calibration to compensate for matrix effects. PMID:23746324

  8. Determining the isotopic abundance of a labeled compound by mass spectrometry and how correcting for natural abundance distribution using analogous data from the unlabeled compound leads to a systematic error.

    PubMed

    Schenk, David J; Lockley, William J S; Elmore, Charles S; Hesk, Dave; Roberts, Drew

    2016-04-01

    When the isotopic abundance or specific activity of a labeled compound is determined by mass spectrometry (MS), it is necessary to correct the raw MS data to eliminate ion intensity contributions, which arise from the presence of heavy isotopes at natural abundance (e.g., a typical carbon compound contains ~1.1% (13) C per carbon atom). The most common approach is to employ a correction in which the mass-to-charge distribution of the corresponding unlabeled compound is used to subtract the natural abundance contributions from the raw mass-to-charge distribution pattern of the labeled compound. Following this correction, the residual intensities should be due to the presence of the newly introduced labeled atoms only. However, this will only be the case when the natural abundance mass isotopomer distribution of the unlabeled compound is the same as that of the labeled species. Although this may be a good approximation, it cannot be accurate in all cases. The implications of this approximation for the determination of isotopic abundance and specific activity have been examined in practice. Isotopically mixed stable-atom labeled valine batches were produced, and both these and [(14) C6 ]carbamazepine were analyzed by MS to determine the extent of the error introduced by the approach. Our studies revealed that significant errors are possible for small highly-labeled compounds, such as valine, under some circumstances. In the case with [(14) C6 ]carbamazepine, the errors introduced were minor but could be significant for (14) C-labeled compounds with particular isotopic distributions. This source of systematic error can be minimized, although not eliminated, by the selection of an appropriate isotopic correction pattern or by the use of a program that varies the natural abundance distribution throughout the correction. PMID:26916110

  9. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  10. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  11. Calculation of Transactinide Homolog Isotope Production Reactions Possible with the Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory

    SciTech Connect

    Moody, K J; Shaughnessy, D A; Gostic, J M

    2011-11-29

    The LLNL heavy element group has been investigating the chemical properties of the heaviest elements over the past several years. The properties of the transactinides (elements with Z > 103) are often unknown due to their low production rates and short half-lives, which require lengthy cyclotron irradiations in order to make enough atoms for statistically significant evaluations of their chemistry. In addition, automated chemical methods are often required to perform consistent and rapid chemical separations on the order of minutes for the duration of the experiment, which can last from weeks to months. Separation methods can include extraction chromatography, liquid-liquid extraction, or gas-phase chromatography. Before a lengthy transactinide experiment can be performed at an accelerator, a large amount of preparatory work must be done both to ensure the successful application of the chosen chemical system to the transactinide chemistry problem being addressed, and to evaluate the behavior of the lighter elemental homologs in the same chemical system. Since transactinide chemistry is literally performed on one single atom, its chemical properties cannot be determined from bulk chemical matrices, but instead must be inferred from the behavior of the lighter elements that occur in its chemical group and in those of its neighboring elements. By first studying the lighter group homologs in a particular chemical system, when the same system is applied to the transactinide element under investigation, its decay properties can be directly compared to those of the homologues, thereby allowing an inference of its own chemistry. The Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory (LLNL) includes a 1 MV Tandem accelerator, capable of accelerating light ions such as protons to energies of roughly 15 MeV. By using the CAMS beamline, tracers of transactinide homolog elements can be produced both for development of chemical systems and for evaluation of homolog chemical properties. CAMS also offers an environment for testing these systems 'online' by incorporating automated chemical systems into the beamline so that tracers can be created, transported, and chemically separated all on the shorter timescales required for transactinide experiments. Even though CAMS is limited in the types and energies of ions they can accelerate, there are still a wide variety of reactions that can be performed there with commercially available target materials. The half-lives of these isotopes vary over a range that could be used for both online chemistry (where shorter half-lives are required) and benchtop tracers studies (where longer lived isotopes are preferred). In this document, they present a summary of tracer production reactions that could be performed at CAMS, specifically for online, automated chemical studies. They are from chemical groups four through seven, 13, and 14, which would be appropriate for studies of elements 104-107, 113, and 114. Reactions were selected that had (a) commercially available target material, (b) half-lives long enough for transport from a target chamber to an automated chemistry system, and (c) cross-sections at CAMS available projectile energies that were large enough to produce enough atoms to result in a statistically relevant signal after losses for transport and chemistry were considered. In addition, the resulting product atoms had to decay with an observable gamma-ray using standard Ge gamma-ray detectors. The table includes calculations performed for both metal targets and their corresponding oxides.

  12. Resonant Laser Ionization Mass Spectrometry: An Alternative to AMS?

    SciTech Connect

    Wendt, Klaus; Trautmann, N.; Bushaw, Bruce A.

    2001-02-15

    Resonant laser ionization mass spectrometry (RIMS) has developed into a versatile experimental method particularly concerning applications for highly selective ultratrace analaysis. Apart from providing nearly complete isobaric suspression and high overall efficiency, the possibolility for combining optical isotpic selectivity with that of hte mass spectrometer leads to remarkable specifications. The widespread analytical potential and applicability of different techniques based on resonant laser ionization is demonstrated in investigations on stable and radioactive ultratrace isotopes with the focus on applications which require high selectivity, concerning, e.g., the noble gas isotopes, 81,85KR, PU isotopes, 89,90SR, 99Tc and 41Ca. Selective ultratrace determination of these radioisotopes proved access to a variety of fundamental research problems in environmental sciences, geo- and cosmochemistry, archaeology, and biomedicine, which previously were often an exclusive domain for accelerator mass spectrometry (AMS).

  13. Diagnosing Prion Diseases: Mass Spectrometry-Based Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass spectrometry is an established means of quantitating the prions present in infected hamsters. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to stable isotope labeled internal standards were prepared. The limit of detection (LOD) and limi...

  14. Utility of mass spectrometry in the diagnosis of prion diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a sensitive mass spectrometry-based method of quantitating the prions present in a variety of mammalian species. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to their homologous stable isotope labeled internal standards were pre...

  15. Evaluation of a combination of isotope dilution and single standard addition as an alternative calibration method for the determination of precious metals in lead fire assay buttons by laser ablation-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Compernolle, Sien; Wambeke, Dorine; De Raedt, Ine; Vanhaecke, Frank

    2012-01-01

    This paper reports on an evaluation of the application of isotope dilution (for Pt, Pd and Ag) and single standard addition and internal standardization (for the mono-isotopic elements Au and Rh) in the analysis of lead buttons obtained by fire assay using laser ablation-inductively coupled plasma-mass spectrometry as an attempt to improve and evaluate the ultimate accuracy and precision of the analytical method. For this purpose, first, a spike lead button, containing the elements of interest in an altered isotopic composition, was prepared. Subsequently, the spike button thus obtained was checked for its homogeneity in terms of element contents and isotope ratios. Additional inductive melting was shown to further improve its homogeneity. In a next step, appropriate portions of this spike button were melted together with an adequate amount of every sample (lead button) to be analyzed and the resulting 'blend' lead buttons were then analyzed using either isotope dilution or single standard addition/internal standardization for quantification. Also external calibration versus matrix-matched lead standards was performed to determine the precious metal concentrations in the same samples, thus allowing comparison of the figures of merit with those of the combined isotope dilution and standard addition/internal standardization approach. Isotope dilution was shown to provide results for the determination of Pt, Pd, and Ag in lead buttons that are more accurate (average deviation between ID result and reference value of < 2%) than those obtained by external calibration (average deviation between experimental result and reference value ≈ 8%). For the mono-isotopic elements Au and Rh, determined via single standard addition and internal standardization, no significant difference was observed between the results provided by the three methods investigated.

  16. In vivo prediction of goat kids body composition from the deuterium oxide dilution space determined by isotope-ratio mass spectrometry.

    PubMed

    Lerch, S; Lastel, M L; Grandclaudon, C; Brechet, C; Rychen, G; Feidt, C

    2015-09-01

    Deuterium oxide dilution space (DOS) determination is one of the most accurate methods for in vivo estimation of ruminant body composition. However, the time-consuming vacuum sublimation of blood preceding infrared spectroscopy analysis, which is traditionally used to determine deuterium oxide (DO) concentration, limits its current use. The use of isotope-ratio mass spectrometry (IRMS) to determine the deuterium enrichment and thus quantify DO in plasma could counteract this limitation by reducing the sample preparation for plasma deproteinisation through centrifugal filters. The aim of this study was to validate the DOS technique using IRMS in growing goat kids to establish in vivo prediction equations of body composition. Seventeen weaned male Alpine goat kids (8.6 wk old) received a hay-based diet supplemented with 2 types of concentrates providing medium ( = 9) or high ( = 8) energy