Science.gov

Sample records for isotope separation factor

  1. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  2. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  3. Hydrogen Isotope Separation Factor Measurement for Single Stage Hydrogen Separators and Parameters for a Large-Scale Separation System

    SciTech Connect

    Luo, D.L.; Xiong, Y.F.; Song, J.F.; Huang, G.Q.

    2005-07-15

    A Concept design for large-scale hydrogen ISS based on a single Pd alloy membrane separator cascade has been presented. Separators to investigate the feasibility of the Pd membrane separator cascade concept have been designed and the separation performance of the separators is given. Results show that the separation factors, which are between 1.4 and 1.8 at the operation temperature, are large enough for a practical separation system design. Estimation results indicate that a 2.0m{sup 2} Pd membrane is needed for a 20mol/h and 12 stages batch ISS, and an approximately 50m{sup 2} Pd membrane is needed for a 200mol/h and 26 stages ISS. It is clear that the separator cascade concept is both reasonable and practicable for large-scale hydrogen isotope separation.

  4. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  5. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  6. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  7. Zirconium isotope separation

    SciTech Connect

    Siddall, M.B.

    1984-12-11

    A method of separating zirconium isotopes by converting the zirconium to its iodide salt prior to separation by usual isotope methods is disclosed. After separation the desired isotopes are converted from the salt to the metal by the van Arkel-de Boer iodide process.

  8. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  9. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  10. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  11. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  12. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  13. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  14. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  15. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  16. ISOTOPE SEPARATING APPARATUS CONTROL

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  17. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  18. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  19. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  20. Measurement of isotope separation factors in the palladium-hydrogen system using a thermistor technique

    SciTech Connect

    Ortiz, T.M.

    1998-05-01

    The range of available data on separation factors in the palladium-hydrogen/deuterium system has been extended. A matched pair of glass-coated bead thermistors was used to measure gas phase compositions. The compositions of the input gas--assumed also to be the solid phase composition--were measured independently be mass spectrometry as being within 0.5 mole% of the values used to calibrate the thermistors. This assumption is based on the fact that > 99% of the input gas is absorbed into the solid. Separation factors were measured for 175 K {le} T {le} 389 K and for 0.195 {le} x{sub H} {le} 0.785.

  1. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  2. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  3. Isotope separation by laser technology

    NASA Astrophysics Data System (ADS)

    Stoll, Wolfgang

    2002-03-01

    Isotope separation processes operate on very small differences, given either by the Quotient of masses with the same number of electrons or by their mass difference. When separating isotopes of light elements in mass quantities, thermodynamic processes accounting for the quotient, either in diffusion, chemical reactivity or distillation are used. For heavy elements those quotients are very small. Therefore they need a large number of separation steps. Large plants with high energy consumption result from that. As uranium isotope separation is the most important industrial field, alternatives, taking account for the mass difference, as e.g. gas centrifuges, have been developed. They use only a fraction of the energy input, but need a very large number of machines, as the individual throughput is small. Since it was discovered, that molecules of high symmetry like Uranium-Hexafluoride as a deep-cooled gas stream can be ionized by multiple photon excitation, this process was studied in detail and in competition to the selective ionization of metal vapors, as already demonstrated with uranium. The paper reports about the principles of the laser excitation for both processes, the different laboratory scale and prototypical plants built, the difficulties with materials, as far as the metal vapor laser separation is concerned, and the difficulties experienced in the similarity in molecular spectra. An overview of the relative economic merits of the different processes and the auspices in a saturated market for uranium isotope separation, together with other potential markets for molecular laser separation, is contained in the conclusions.

  4. Hydrogen isotope separation

    DOEpatents

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  5. Hydrogen isotope separation

    DOEpatents

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  6. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  7. Isotope separation using metallic vapor lasers

    NASA Technical Reports Server (NTRS)

    Russell, G. R.; Chen, C. J.; Harstad, K. G. (Inventor)

    1977-01-01

    The isotope U235 is separated from a gasified isotope mixture of U235 and U238 by selectively exciting the former from the ground state utilizing resonant absorption of radiation from precisely tuned lasers. The excited isotope is then selectively ionized by electron bombardment. It then is separated from the remaining isotope mixture by electromagnetic separation.

  8. Isotope separation apparatus and method

    DOEpatents

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  9. Apparatus and process for separating hydrogen isotopes

    DOEpatents

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  10. Laser system for isotope separation

    NASA Astrophysics Data System (ADS)

    Shirayama, Shimpey; Mikatsura, Takefumi; Ueda, Hiroaki; Konagai, Chikara

    1990-06-01

    Atomic vapor laser isotope separation (AVLIS) is regarded as the most promising method to obtain srightly enriched economical nuclear fuel for a nuclear power plant. However, achieving a high power laser seems to be the bottle neck in its industrialization. In 1985, after successful development of high power lasers, the U.S. announced that AVLIS would be used for future methods of uranium enrichment. In Japan , Laser Atomic Separation Enrichment Research Associates of Japan (LASER-J), a joint Japanese utility companies research organization, was founded in April, 1987, to push a development program for laser uranium enrichment. Based on research results obtained from Japanese National Labs, and Universities , Laser-J is now constructing an AVLIS experimental facility at Tokai-mura. It is planned to have a 1-ton swu capacity per year in 1991. Previous to the experimental facility construction , Toshiba proceeded with the preliminary testing of an isotope separation system, under contract with Laser-J. Since the copper vapor laser (CVL) and the dye laser (DL) form a good combination , which can obtain high power tunable visible lights ,it is suitable to resonate uranium atoms. The laser system was built and was successfully operated in Toshiba for two years. The system consist of three copper vapor lasers , three dye lasers and appropriate o Atomic vapor laser isotope separation (AVLIS) is regarded as the most promising method to obtain srightly enriched economical nuclear fuel for a nuclear power plant. However, achieving a high power laser seems to be the bottle neck in its industrialization. In 1985, after successful development of high power lasers, the U.S. announced that AVLIS would be used for future methods of uranium enrichment. In Japan , Laser Atomic Separation Enrichment Research Associates of Japan (LASER-J) , a joint Japanese utility companies research organization , was founded in April, 1987, to push a development program for laser uranium enrichment

  11. Separating Isotopes With Laser And Electron Beams

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor

    1989-01-01

    Need for second laser eliminated. In scheme for separation of isotopes, electrons of suitable kinetic energy ionize specific isotope excited by laser beam in magnetic field. Ionization by electron beams cheap and efficient in comparison to ionization by laser beams, and requires no special technical developments. Feasibility of new scheme demonstrated in selective ionization of Ba138, making possible separation of isotope from Ba isotopes of atomic weight 130, 132, 134, 135, 136, and 137.

  12. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  13. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  14. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  15. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  16. Method for isotope separation by photodeflection

    DOEpatents

    Bernhardt, Anthony F.

    1977-01-01

    In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states.

  17. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  18. Possible application of laser isotope separation

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1975-01-01

    The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials.

  19. Isotope separation by photoselective dissociative electron capture

    DOEpatents

    Stevens, Charles G. [Pleasanton, CA

    1978-08-29

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

  20. Isotope separation by photoselective dissociative electron capture

    DOEpatents

    Stevens, C.G.

    1978-08-29

    Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

  1. Hydrogen isotope separation from water

    DOEpatents

    Jensen, R.J.

    1975-09-01

    A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

  2. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  3. Device and method for separating oxygen isotopes

    DOEpatents

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  4. METHOD OF SEPARATING HYDROGEN ISOTOPES

    DOEpatents

    Salmon, O.N.

    1958-12-01

    The process of separating a gaseous mixture of hydrogen and tritium by contacting finely dlvided palladium with the mixture in order to adsorb the gases, then gradually heating the palladium and collecting the evolved fractlons, is described. The fraction first given off is richer in trltium than later fractions.

  5. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  6. Isotope Separation in Concurrent Gas Centrifuges

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borman, V. D.

    An analytical equation defining separative power of an optimized concurrent gas centrifuge is obtained for an arbitrary binary mixture of isotopes. In the case of the uranium isotopes the equation gives δU= 12.7(V/700 m/s)2(300 K/T)L, kg SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge, T is the temperature. This formula well agrees with an empirical separative power of counter current gas centrifuges.

  7. Apparatus for separating and recovering hydrogen isotopes

    DOEpatents

    Heung, Leung K.

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  8. Isotopes Separation Method using Physical Vapor Deposition Technique

    NASA Astrophysics Data System (ADS)

    Javed Akhtar, S. M.; Saleem, M.; Mahmood, Nasir

    2010-02-01

    An isotope separation technique using effusive emission of vapors from the heated molybdenum boat is presented. The technique is applied for the separation of the lithium isotopes. Lithium fluoride with natural isotopic abundance was chosen for evaporation and it was achieved by resistive heating of the molybdenum boat with an exit orifice in the center that provides a point source emission. Glass substrates were placed in a semi-circle around the source of evaporation at different positions of peripheral region to deposit the evaporated material. A non-commercial laboratory developed linear Time of Flight (TOF) mass spectrometer was used for isotopic abundance measurements of lithium in the deposited thin films. The dependence of the size of exit orifice on the separation is also studied for the three exit orifices with diameters of 0.3, 0.6 and 1.0 mm. The separation factors of the isotopes as a function of different peripheral locations are calculated and presented. The abundance of the 6Li isotope has been increased up to 16% on the peripheral positions.

  9. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  10. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  11. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  12. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  13. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  14. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  15. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    SciTech Connect

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  16. Separation of isotopes by cyclical processes

    DOEpatents

    Hamrin, Jr., Charles E.; Weaver, Kenny

    1976-11-02

    Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope.

  17. Present Status of KEK Isotope Separation System

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Jeong, S. C.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Miyatake, H.; Oyaizu, M.; Kim, Y. H.; Mukai, M.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2014-03-01

    KISS (KEK Isotope Separation System) has been constructed at Nishina Re-search Center (NRC) of RIKEN to study the decay properties of heavy neutron-rich iso-topes with mass number around A˜200 along the neutron magic number of N = 126 for the astrophysical interest. The isotopes of interest will be produced by multi-nucleon transfer reactions in neutron-rich heavy ion collisions (e.g. 136Xe projectile on 198Pt target). KISS consists of a gas-cell system for thermalizing (stopping and neutralizing) and fast-transporting reaction products to the gas cell exit hole, a laser system for the res-onant ionization, and a mass-separator system followed by a detection system for the decay spectroscopy. KISS will allow us to study unknown isotopes produced in weak re-action channels under low background conditions. The off-line test of the KISS has been finished. As a next step, on-line test experiments have been performed to investigate the overall efficiency and selectivity of the system as a function of the injected 56Fe beam intensity from the RIKEN Ring Cyclotron (RRC).

  18. Separation of uranium isotopes by chemical exchange

    DOEpatents

    Ogle, P.R. Jr.

    1974-02-26

    A chemical exchange method is provided for separating /sup 235/U from / sup 238/U comprising contacting a first phase containing UF/sub 6/ with a second phase containing a compound selected from the group consisting of NOUF/sub 6/, NOUF/sub 7/, and NO/sub 2/UF/sub 7/ until the U Fsub 6/ in the first phase becomes enriched in the /sup 235/U isotope. (Official Gazette)

  19. Laser-assisted isotope separation of tritium

    DOEpatents

    Herman, Irving P.; Marling, Jack B.

    1983-01-01

    Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

  20. CONTROL SYSTEM FOR ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Barnes, S.W.

    1960-01-26

    A method is described for controlling the position of the ion beams in a calutron used for isotope separation. The U/sup 238/ beams is centered over the U/sup 235/ receiving pocket, the operator monitoring the beam until a maximum reading is achieved on the meter connected to that pocket. Then both beams are simultaneously shifted by a preselected amount to move the U/sup 235/ beam over the U/sup 235/ pocket. A slotted door is placed over the entrance to that pocket during the U/sup 238/ beam centering to reduce the contamination to the pocket, while allowing enough beam to pass for monitoring purposes.

  1. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1985-01-01

    Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  2. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  3. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

  4. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  5. Method of isotope separation by chemi-ionization

    DOEpatents

    Wexler, Sol; Young, Charles E.

    1977-05-17

    A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.

  6. Methods for separating medical isotopes using ionic liquids

    DOEpatents

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  7. Analysis of gas centrifuge cascade for separation of multicomponent isotopes and optimal feed position

    SciTech Connect

    Chuntong Ying; Hongjiang Wu; Mingsheng Zhou; Yuguang Nie; Guangjun Liu

    1997-10-01

    Analysis of the concentration distribution in a gas centrifuge cascade for separation of multicomponent isotope mixtures is different from that in a cascade for separation of two-component mixtures. This paper presents the governing equations for a multicomponent isotope separation cascade. Numerically predicted separation factors for the gas centrifuge cascade agree well with the experimental data. A theoretical optimal feed position is derived for a short square cascade for a two-component mixture in a close-separation case. The optimal feed position for a gas centrifuge cascade for separation of multicomponent mixture is discussed.

  8. Isotope separation by selective photodissociation of glyoxal

    DOEpatents

    Marling, John B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

  9. Cost Estimate for Laser Isotope Separation for RIA

    SciTech Connect

    Scheibner, K

    2004-11-01

    Isotope enrichment of some elements is required in support of the Rare Isotope Accelerator (RIA) in order to obtain the beam intensities, source efficiencies and/or source lifetime required by RIA. The economics of using Atomic Vapor Laser Isotope Separation (AVLIS) technology as well as ElectroMagnetic (EM) separation technology has been evaluated. It is concluded that such an AVLIS would be about 10 times less expensive than a facility based on electromagnetic separation - $17 M versus $170 M. In addition, the AVLIS facility footprint would be about 10 times smaller, and operations would require about 4 years (including 2 years of startup) versus about 11 years for an EM facility.

  10. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  11. Efficient isotope separation by single-photon atomic sorting

    SciTech Connect

    Jerkins, M.; Chavez, I.; Raizen, M. G.; Even, U.

    2010-09-15

    We propose a general and scalable approach to isotope separation. The method is based on an irreversible change of the mass-to-magnetic moment ratio of a particular isotope in an atomic beam, followed by a magnetic multipole whose gradients deflect and guide the atoms. The underlying mechanism is a reduction of the entropy of the beam by the information of a single scattered photon for each atom that is separated. We numerically simulate isotope separation for a range of examples, which demonstrate this technique's general applicability to almost the entire periodic table. The practical importance of the proposed method is that large-scale isotope separation should be possible, using ordinary inexpensive magnets and the existing technologies of supersonic beams and lasers.

  12. VELOCITY SELECTOR METHOD FOR THE SEPARATION OF ISOTOPES

    DOEpatents

    Britten, R.J.

    1957-12-31

    A velocity selector apparatus is described for separating and collecting an enriched fraction of the isotope of a particular element. The invention has the advantage over conventional mass spectrometers in that a magnetic field is not used, doing away with the attendant problems of magnetic field variation. The apparatus separates the isotopes by selectively accelerating the ionized constituents present in a beam of the polyisotopic substance that are of uniform kinetic energy, the acceleration being applied intermittently and at spaced points along the beam and in a direction normal to the direction of the propagation of the uniform energy beam whereby a transverse displacement of the isotopic constituents of different mass is obtained.

  13. Infrared vibrational predissociation of van der Waals clusters: applications to isotope separation

    SciTech Connect

    Philippoz, J.M.; Zellweger, J.M.; van den Bergh, H.; Monot, R.

    1984-08-30

    Isotope separation is demonstrated following the selective infrared laser-induced photodissociation of van der Waals clusters in a free jet. Irradiation of a natural abundance mixture of SF/sub 6/ isotopomers diluted in argon with a 20-W cw CO/sub 2/ laser gives overall enrichment factors in excess of 1.1. By adjusting the wavelength one can either enrich or deplete the center of the free jet in any one of the sulfur isotopes. Furthermore, unselective photodissociation of clusters can be used to enhance the separation of isotopes in a recently reported selective condensation method. 8 references, 3 figures.

  14. Tritium Isotope Separation Using Adsorption-Distillation Column

    SciTech Connect

    Fukada, Satoshi

    2005-07-15

    In order to miniaturize the height of a distillation tower for the detritiation of waste water from fusion reactors, two experiments were conducted: (1) liquid frontal chromatography of tritium water eluting through an adsorption column and (2) water distillation using a column packed with adsorbent particles. The height of the distillation tower depends on the height equivalent to a theoretical plate, HETP, and the equilibrium isotope separation factor, {alpha}{sub H-T}{sup equi}. The adsorption action improved not only HETP but also {alpha}{sub H-T}{sup equi}. Since the adsorption-distillation method proposed here can shorten the tower height with keeping advantages of the distillation, it may bring an excellent way for miniaturizing the distillation tower to detritiate a large amount of waste water from fusion reactors.

  15. Cascades for hydrogen isotope separation using metal hydrides

    SciTech Connect

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  16. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  17. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  18. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  19. Investigation of the Photochemical Method for Uranium Isotope Separation

    DOE R&D Accomplishments Database

    Urey, H. C.

    1943-07-10

    To find a process for successful photochemical separation of isotopes several conditions have to be fulfilled. First, the different isotopes have to show some differences in the spectrum. Secondly, and equally important, this difference must be capable of being exploited in a photochemical process. Parts A and B outline the physical and chemical conditions, and the extent to which one might expect to find them fulfilled. Part C deals with the applicability of the process.

  20. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  1. Metal hydride compacts for hydrogen isotope separation

    SciTech Connect

    Heung, L.K.; Tran, R.S.; Stoner, K.J.

    1990-01-01

    A column packed with pellets of copper plated LaNi{sub 4.25}Al{sub 0.75} has been evaluated for its separation efficiency using a displacement method. Deuterium breakthrough curves were produced experimentally and compared with those calculated with a stage model. The height equivalent to a theoretical plate was attained and its dependence on temperature and gas flow rate was established. 6 refs., 4 figs.

  2. Separation of Hydrogen Isotopes by Thermal Diffusion

    SciTech Connect

    Rutherford, W. M.; Lindsay, C. N.

    1985-09-01

    At high hot wall temperatures the gas phase thermal diffusion column acts as an atomic rather than a molecular separator. A modified theory was developed to describe the process. Equivalent transport equations were derived for the two nuclides in a binary atomic mixture. The equations are identical in form to those normally encountered in thermal diffusion column theory. Experiments to test the theory were carried out with two 3-meter columns. Experimental results with deuterium-tritium mixtures were found to be in satisfactory agreement with theory, and it was concluded that the theory was sufficiently accurate for design purposes.

  3. Pulsed CO laser for isotope separation of uranium

    SciTech Connect

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  4. RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES

    DOEpatents

    Hunt, C.D.; Hanson, D.N.

    1961-10-17

    A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)

  5. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  6. Biomedical research applications of electromagnetically separated enriched stable isotopes

    NASA Astrophysics Data System (ADS)

    Lambrecht, R. M.

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.

  7. Advancement of isotope separation for the production of reference standards

    SciTech Connect

    Jared Horkley; Christopher McGrath; Andrew Edwards; Gaven Knighton; Kevin Carney; Jacob Davies; James Sommers; Jeffrey Giglio

    2012-03-01

    Idaho National Laboratory (INL) operates a mass separator that is currently producing high purity isotopes for use as internal standards for high precision isotope dilution mass spectrometry (IDMS). In 2008, INL began the revival of the vintage 1970’s era instrument. Advancements thus far include the successful upgrading and development of system components such as the vacuum system, power supplies, ion-producing components, and beam detection equipment. Progress has been made in the separation and collection of isotopic species including those of Ar, Kr, Xe, Sr, and Ba. Particular focuses on ion source improvements and developments have proven successful with demonstrated output beam currents of over 10 micro-amps 138Ba and 350nA 134Ba from a natural abundance source charge (approximately 2.4 percent 134Ba). In order to increase production and collection of relatively high quantities (mg levels) of pure isotopes, several advancements have been made in ion source designs, source material introduction, and beam detection and collection. These advancements and future developments will be presented.

  8. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  9. Uranium isotope separation from 1941 to the present

    NASA Astrophysics Data System (ADS)

    Maier-Komor, Peter

    2010-02-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  10. NOVEL CONCEPTS FOR ISOTOPIC SEPARATION OF 3HE/4HE

    SciTech Connect

    Roy, L.; Nigg, H.; Watson, H.

    2012-09-04

    The research outlined below established theoretical proof-of-concept using ab initio calculations that {sup 3}He can be separated from {sup 4}He by taking advantage of weak van der Waals interactions with other higher molecular weight rare gases such as xenon. To the best of our knowledge, this is the only suggested method that exploits the physical differences of the isotopes using a chemical interaction.

  11. On separation of heavy isotopes by means of selective ICRH

    SciTech Connect

    Kotelnikov, I.A.; Kuzmin, S.G.; Volosov, V.I.

    1998-12-31

    The authors present a theoretical study of the isotope separation by means of isotopically selective ion cyclotron resonance plasma heating (ICRH). The special attention is devoted to the separation of gadolinium isotopes. The ions are supposed to pass through the device shown on Fig. 1 where they are heated by the full-turn-loop antenna that excites RF field with azimuthal number m = 0. They calculate the distribution function of ions in a plasma stream at the orifice of the device. A satisfactory separation is achieved for the following values of parameters. The length of heating zone {ell} = 200 cm, initial temperature of plasma stream T{sub {parallel}} = 5 eV, T{sub {perpendicular}} = 60 eV, the plasma radius a = 10 cm, plasma density n = 10{sup 12} cm{sup {minus}3}, external magnetic field B = 30 kGs. The energy of resonance ions W = 100 {divided_by} 200 eV. The latter value is achieved if a current in the antenna loops is equal to 60A with full number of loops N = 150. With the specified parameters, the current in the plasma stream is equal to 15 {divided_by} 20A. Then the production rate equals to 100 kg of Gd{sup 157} per year. Energy of Gd`s ions after pass through the heating zone vs. their axial velocity.

  12. Bayesian attribution of uncertainty in isotope hydrograph separation

    NASA Astrophysics Data System (ADS)

    Larsen, Joshua; Tran, Maria; Andersen, Martin; Hartland, Adam; Baker, Andy; Mariethoz, Gregoire

    2014-05-01

    The stable isotopes of water can provide useful insights into catchment water sources and flow paths. As such, they are commonly used to separate hydrographs into (at least) two components: 1) stored catchment water which is mobilised during an event (pre-event water), and 2) Water derived directly from the event precipitation without significant storage delays (event water). This method of hydrograph separation typically employs a linear mixing model to partition the hydrograph components using end member source contributions or simple transfer functions. Whichever the case, the resulting components are usually defined with precise boundaries, with no attribution of uncertainty derived from the end members, the model, or other sources. Here, we use a Bayesian mixture model to prescribe the pre-event and event hydrograph components, and their uncertainty, from stable isotope samples collected during a large flood event in eastern Australia. Given the spatial and temporal variability of any rainfall and storage inputs during an event, the prior distribution for the hydrograph components is necessarily poorly defined, leaving the uncertainty estimates to be 'data driven' by the isotope samples throughout the event. When the model is constructed this way, the uncertainties become very large (up to 100%) and the hydrograph components are unconstrained. This is because a single isotope sample in time does not provide sufficient information on component partitioning given the poorly defined prior distribution. As a conceptual exercise, we artificially generated large populations within the range of neighbouring isotope samples, and then sub sampled from this range at different sampling densities. Interestingly, we find that 5 - 10 samples collected within a very short time frame are sufficient to considerably reduce the hydrograph component uncertainty so that each is now realistically constrained. These results demonstrate that the lack of uncertainty provided by

  13. Theoretical study on isotope separation of an ytterbium atomic beam by laser deflection

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Xu, Xin-Ye

    2014-01-01

    Isotope separation by laser deflecting an atomic beam is analyzed theoretically. Interacting with a tilted one-dimensional optical molasses, an ytterbium atomic beam is split into multi-beams with different isotopes like 172Yb,173Yb, and 174Yb. By using the numerical calculation, the dependences of the splitting angle on the molasses laser intensity and detuning are studied, and the optimal parameters for the isotope separation are also investigated. Furthermore, the isotope separation efficiency and purity are estimated. Finally a new scheme for the efficient isotope separation is proposed. These findings will give a guideline for simply obtaining pure isotopes of various elements.

  14. NEST-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect

    Heung, L; Henry Sessions, H; Anita Poore, A; William Jacobs, W; Christopher Williams, C

    2007-08-07

    A thermal cycling absorption process (TCAP) for hydrogen isotope separation has been in operation at Savannah River Site since 1994. The process uses a hot/cold nitrogen system to cycle the temperature of the separation column. The hot/cold nitrogen system requires the use of large compressors, heat exchanges, valves and piping that is bulky and maintenance intensive. A new compact thermal cycling (CTC) design has recently been developed. This new design uses liquid nitrogen tubes and electric heaters to heat and cool the column directly so that the bulky hot/cold nitrogen system can be eliminated. This CTC design is simple and is easy to implement, and will be the next generation TCAP system at SRS. A twelve-meter column has been fabricated and installed in the laboratory to demonstrate its performance. The design of the system and its test results to date is discussed.

  15. University Isotope Separator at Oak Ridge: The UNISOR Consortium.

    PubMed

    Hamilton, J H

    1974-09-01

    The UNISOR cooperative project, envisioned more than 3 years ago, is now successfully working. Research problems that involve a full range of experiments on nuclei far from beta stability are being investigated jointly by groups of scientists from several institutions. Some of the first work reported (16) included the identification, half-lives, and decay schemes of three new isotopes, (186)T1, (188)T1, and (116)I; the first or new decay schemes of (189)T1, (190)T1, (117)Xe, and (117)I; and the results of the perturbed gamma-gamma directional correlation work in (126)Xe. UNISOR is already stimulating international interest. A report (1) on the new research being planned with an isotope separator on-line to ORIC was presented at a Soviet Academy of Sciences meeting on nuclear structure in 1971. At an international nuclear physics conference in Munich in August 1973, Academician G. N. Flerov, director of the heavy-ion laboratory in Dubna, said the UNISOR project had inspired his laboratory to secure funds for a new, much improved isotope separator which is now installed on-line to their heavy-ion cyclotron to be used for detailed studies of nuclei far from stability. The UNISOR model for research has inspired a second such project, the Atomic Physics Consortium at Oak Ridge (APCOR). After an exploratory conference at Oak Ridge, scientists from ten institutions met in November 1973 to form an organizing committee for APCOR. As with UNISOR, the universities and the AEC will each provide a significant portion of the capital and operating costs. Heavy ions have opened up much new research in atomic physics, but such accelerator-based research represents a real "shift from traditional approaches concerning how, where, and on what time scale atomic physics experiments should be done" (17). PMID:17833690

  16. Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: Experimental calibration and theoretical models

    USGS Publications Warehouse

    Berndt, M.E.; Seal, R.R., II; Shanks, Wayne C., III; Seyfried, W.E., Jr.

    1996-01-01

    Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.

  17. INSTRUMENTS AND METHODS OF INVESTIGATION: Plasma isotope separation based on ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Dolgolenko, Dmitrii A.; Muromkin, Yurii A.

    2009-04-01

    Experiments that have been conducted in the USA, France, and Russia to investigate isotopically selective ion cyclotron resonance (ICR) as a tool for plasma isotope separation are analyzed. Because this method runs into difficulties at low values of the relative isotope mass difference ΔM/M, for some elements (for gadolinium, as an example) isotope separation still remains a problem. There are ways to solve it, however, as experimental results and theoretical calculations suggest.

  18. Hydrogen Isotope Separation by Combined Electrolysis Catalytic Exchange Under Reduced Pressure

    SciTech Connect

    Sugiyama, T.; Asakura, Y.; Uda, T.; Abe, Y.; Shiozaki, T.; Enokida, Y.; Yamamoto, I.

    2005-07-15

    At the National Institute for Fusion Science experimental studies on hydrogen isotope separation by a Combined Electrolysis Catalytic Exchange (CECE) process have been carried out in order to apply it to the system of water detritiation for D-D burning experiments of the Large Helical Device. As an improvement of the CECE process, we have developed a reduced-pressure method as a means of enhancing the separation factor. The feasibility of this method is examined through application to a CECE process using a prototype separation column. Hydrogen-deuterium isotope separation experiments are performed in the two cases where column pressures are 12 and 101 kPa, and the separation factors for hydrogen and deuterium are obtained as 6.8 and 5.6, respectively. It is confirmed that the present method is applicable and useful to the CECE process. The values of Height Equivalent to a Theoretical Plate (HETP) are estimated by analyses with the equilibrium stage model. The HETP values are 15 cm at 12 kPa and 13 cm at 101 kPa. The increase of superficial velocity with decreasing pressure may spoil the efficiency of the mass transfer.

  19. Separated isotopes: vital tools for science and medicine

    SciTech Connect

    Not Available

    1982-01-01

    Deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the Workshop is followed by reports of the four Workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.

  20. Innovative lasers for uranium isotope separation. [Progress report

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1991-06-01

    Copper vapor lasers have important applications to uranium atomic vapor laser isotope separation (AVLIS). The authors have spent the first two years of their project investigating two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. During the first year, the experiments have been designed and constructed and initial data has been taken. During the second year these experiments have been diagnosed. Highlights of some of the second year results as well as plans for the future include the following: Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated. A CW (0--500 W) signal heats and vaporizes the copper chloride to provide the atomic copper vapor. A pulsed (5 kW, 0.5--5kHz) signal is added to the incoming CW signal via a hybrid mixer to excite the copper states to the laser levels. An enhancement of the visible radiation has been observed during the pulsed pardon of the signal. Electrical probe measurements have been implemented on the system to verify the results of the electromagnetic model formulated last year. Laser gain measurements have been initiated with the use of a commercial copper vapor laser. Measurements of the spatial profile of the emission are also currently being made. The authors plan to increase the amount of pulsed microwave power to the system by implementing a high power magnetron. A laser cavity will be designed and added to this system.

  1. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  2. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  3. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  4. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  5. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  6. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as (3)He/(4)He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as (3)He/(4)He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high (3)He/(4)He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  7. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    PubMed Central

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  8. New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.

    2016-05-01

    We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.

  9. Isotope separation using tuned laser and electron beam

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor (Inventor)

    1987-01-01

    The apparatus comprises means for producing an atomic beam containing the isotope of interest and other isotopes. Means are provided for producing a magnetic field traversing the path of the atomic beam of an intensity sufficient to broaden the energy domain of the various individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough. A laser beam is produced of a frequency and polarization selected to maximize the activation of only individual magnetic sublevels of the isotope of interest with the portion of its broadened energy domain most removed from other isotopes with the stream. The laser beam is directed so as to strike the atomic beam within the magnetic field and traverse the path of the atomic beam whereby only the isotope of interest is activated by the laser beam. The apparatus further includes means for producing a collimated and high intensity beam of electrons of narrow energy distribution within the magnetic field which is aimed so as to strike the atomic beam while the atomic beam is simultaneously struck by the laser beam and at an energy level selected to ionize the activated isotope of interest but not ground state species included therewith. Deflection means are disposed in the usual manner to collect the ions.

  10. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  11. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  12. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  13. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  14. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  15. Membrane distillation employed for separation of water isotopic compounds

    SciTech Connect

    Chmielewski, A.G.; Zakrzewska-Trznadel, G.

    1995-04-01

    An attempt to apply membrane distillation (MD) for the enrichment of waste isotopic compounds was made. The process was conducted as a direct-contact MD with flat-sheet microporous, hydrophobic polytetrafluorethylene (PTFE) membranes in the temperature range 323-353K. The distillate condensation was carried out directly into a stream of cooling water. The comparison between calculated Rayleigh distillation curves and the results of permeation experiments demonstrated the MD process to be more efficient than simple distillation for enrichment of the heavy isotopes in water.

  16. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    SciTech Connect

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-09-02

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge.

  17. METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON

    DOEpatents

    Jenkins, F.A.

    1958-05-01

    Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.

  18. Recent progress of in-flight separators and rare isotope beam production

    NASA Astrophysics Data System (ADS)

    Kubo, Toshiyuki

    2016-06-01

    New-generation in-flight separators are being developed worldwide, including the Super-FRS separator at the GSI Facility for Antiproton and Ion Research (FAIR), the ARIS separator at the Michigan State University (MSU) Facility for Rare Isotopes Beams (FRIB), and the BigRIPS separator at the RIKEN RI Beam Factory (RIBF), each of which is aimed at expanding the frontiers of rare isotope (RI) production and advancing experimental studies on exotic nuclei far from stability. Here, the recent progress of in-flight separators is reviewed, focusing on the advanced features of these three representative separators. The RI beam production that we have conducted using the BigRIPS separator at RIKEN RIBF is also outlined.

  19. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOEpatents

    Grossman, M.W.

    1991-10-08

    The present invention is directed to an apparatus for use in [sup 196]Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for [sup 196]Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems. 6 figures.

  20. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOEpatents

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an apparatus for use in .sup.196 Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for .sup.196 Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems.

  1. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    SciTech Connect

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  2. Anisotropic alpha emission from on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Vanneste, L.

    1986-05-05

    A systematic on-line nuclear-orientation study of heavy isotopes using anisotropic ..cap alpha.. emission is reported for the first time. The anisotrophies recorded for /sup 199/At, /sup 201/At, and /sup 203/At are remarkably pronounced and strongly varying. At lower neutron number the ..cap alpha.. particles are more preferentially emitted perpendicularly to the nuclear-spin direction. This may be interpreted in terms of the high sensitivity of the ..cap alpha..-emission probability to changes in the nuclear shape.

  3. Photo-induced cataphoretic isotope separation. Final report, June 15, 1976-June 15, 1981

    SciTech Connect

    Carruthers, J A

    1981-03-01

    The original studies were undertaken to study the feasibility of radiation-induced cataphoretic separation. This part of the work is concerned with laser-induced cataphoretic separation in neon using a He-Ne 6328A laser. The basic concept of radiation-induced caphoretic isotope separation is based on the preferential excitation of one isotope with the result that one isotope is more readily ionized, and relatively more of its ions move toward the cathode in the dc discharge. For the later part of the work a second radiation source was added, a helical Ne/sup 20/ radiation lamp. Radiation-induced cataphoretic isotope separation has not been observed. Selective excitation has been achieved by both the He-Ne/sup 20/ 6328A laser and the Ne/sup 20/ helical radiation lamp in spite of the fact that the isotope shift is comprable with Doppler-broadened linewidths. Collisional excitation exchange between the Ne/sup 20/ and Ne/sup 22/ atoms does not appear to be a problem for the neon partial pressure range involved. The population of the 3S/sub 2/ and 2p/sub 4/ laser levels (6328A) are apparently too low to offer reasonable expectation of inducing observable cataphoretic isotope separation by means of the 6328A laser radiation, even with the high detection sensitivity of the scanning Fabry-Perot spectrometer sytem. The use of the additional radiation source in the form of a helical Ne/sup 20/ radiation lamp has not improved the effectiveness of the laser 6328A laser. It has become clear from these experiments, however, that for isotope separation in neon it is well to concentrate on using radiation sources that interact mainly with the ls population.

  4. Enhancement of Identity in the Hydraulic Characteristics of a Gas Centrifuge for Isotope Separation

    NASA Astrophysics Data System (ADS)

    Yatsenko, D. V.; Borisevich, V. D.; Godisov, O. N.

    The problem of non-identity in characteristics of the GCs for uranium isotope separation grows up with increase of a rotor speed of rotation. It may lead to noticeable decrease of the separative power of the centrifugal machines. The carried out assessments allowed to get the dependence of the relative separation performance losses on the non-identity in the hydraulic characteristics of the GCs connected in parallel. The results of calculation are compared with that of obtained in experiments.

  5. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    PubMed Central

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from −19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  6. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry.

    PubMed

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  7. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  8. Development of the detector system for β -decay spectroscopy at the KEK Isotope Separation System

    NASA Astrophysics Data System (ADS)

    Kimura, S.; Ishiyama, H.; Miyatake, H.; Hirayama, Y.; Watanabe, Y. X.; Jung, H. S.; Oyaizu, M.; Mukai, M.; Jeong, S. C.; Ozawa, A.

    2016-06-01

    The KEK Isotope Separation System has been developed to study the β -decay properties of the neutron-rich nuclei around the neutron magic number N = 126. These properties are essential for understanding the origin of the third peak in the r-process element abundance pattern. The detector system for β -decay spectroscopy at the KEK Isotope Separation System should have high detection efficiency for low-energy β -rays, and should be operated under a low-background environment. The detector system of the KEK Isotope Separation System consists of β -ray telescopes and a tape transport system. The solid angle covered by the β -ray telescopes is as large as 75% of 4 π in total. The Qβ -value dependence of the detection efficiency was estimated by Geant4 simulation. The background rate was 0.09 cps using a veto counter system and Pb shields. This background rate allows us to measure the lifetime of 202Os.

  9. Separation efficiency of the MASHA facility for short-lived mercury isotopes

    NASA Astrophysics Data System (ADS)

    Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Kliman, J.; Kondratiev, N. A.; Krupa, L.; Novoselov, A. S.; Oganessian, Yu. Ts.; Podshibyakin, A. V.; Salamatin, V. S.; Siváček, I.; Stepantsov, S. V.; Vanin, D. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2014-06-01

    The mass-separator MASHA built to identify Super Heavy Elements by their mass-to-charge ratios is described. The results of the off- and on-line measurements of its separation efficiency are presented. In the former case four calibrated leaks of noble gases were used. In the latter the efficiency was measured via 284 MeV Ar beam and with using the hot catcher. The ECR ion source was used in both cases. The -radioactive isotopes of mercury produced in the complete fusion reaction Ar+SmHg+xn were detected at the mass-separator focal plane. The half-lives and the separation efficiency for the short-lived mercury isotopes were measured. Potentialities of the MEDIPIX detector system have been demonstrated for future use at the mass-separator MASHA.

  10. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    SciTech Connect

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  11. A Model of Isotope Separation in Cells at the Early Stages of Evolution

    NASA Astrophysics Data System (ADS)

    Melkikh, A. V.; Bokunyaeva, A. O.

    2016-03-01

    The separation of the isotopes of certain ions can serve as an important criterion for the presence of life in the early stages of its evolution. A model of the separation of isotopes during their transport through the cell membrane is constructed. The dependence of the selection coefficient on various parameters is found. In particular, it is shown that the maximum efficiency of the transport of ions corresponds to the minimum enrichment coefficient. At the maximum enrichment, the efficiency of the transport system approaches ½. Calculated enrichment coefficients are compared with experimentally obtained values for different types of cells, and the comparison shows a qualitative agreement between these quantities.

  12. Multi-purpose hydrogen isotopes separation plant design

    SciTech Connect

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.; Suppiah, S.; Castillo, I.

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overall plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)

  13. Anisotropic. cap alpha. -emission of on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Van Haverbeke, J.; Vanneste, L.

    1987-12-10

    The technical realization of particle detection at very low temperatures (4K) has made it possible to study for the first time the anisotropic ..cap alpha..-decay of oriented nuclei which have been produced, separated and implanted on line. The measured ..cap alpha..-angular distributions reveal surprising new results on nuclear aspects as well as in solid state physics. The nuclear structure information from these data questions the older ..cap alpha..-decay theoretical interpretation and urges for a reaxamination of the earliest work on anisotropic ..cap alpha..-decay.

  14. Investigation related to hydrogen isotopes separation by cryogenic distillation

    SciTech Connect

    Bornea, A.; Zamfirache, M.; Stefanescu, I.; Preda, A.; Balteanu, O.; Stefan, I.

    2008-07-15

    Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (for The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)

  15. The iron isotope composition of enstatite meteorites: Implications for their origin and the metal/sulfide Fe isotopic fractionation factor

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Savage, Paul S.; Moynier, Frédéric

    2014-10-01

    due to intensive impact-induced shearing stress, or the ultimate destruction of the Shallowater parent body. Analysis of separated enstatite meteorite mineral phases show that the magnetic phase (Fe metal) is systematically enriched in the heavier Fe isotopes when compared to non-magnetic phases (Fe hosted in troilite), which agrees with previous experimental observations and theoretical calculations. The difference between magnetic and non-magnetic phases from enstatite achondrites provides an equilibrium metal-sulfide Fe isotopic fractionation factor of Δ56Femetal-troilite = δ56Femetal - δ56Fetroilite of 0.129 ± 0.060‰ (2 SE) at 1060 ± 80 K, which confirms the predictions of previous theoretical calculations.

  16. Packed bed reactor for photochemical .sup.196 Hg isotope separation

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

  17. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    SciTech Connect

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation

  18. A status of progress for the Laser Isotope Separation (LIS) process

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1976-01-01

    An overview of the Laser Isotope Separation (LIS) methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process. Applications were proposed for the LIS system which, in addition to enriching uranium, could in themselves develop into programs of tremendous scope and breadth. These include the treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs. Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser process promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.

  19. A Low Temperature Distillation System for Separating Mixtures of Protium, Deuterium, and Tritium Isotopes

    SciTech Connect

    Embury, Michael, C.; Watkins, Reed A.; Hinckley, Richard; Post, Jr., Arthur H.

    1985-04-30

    A low temperature (24 K) distillation system for separating mixtures of hydrogen isotopes has been designed, fabricated, and delivered for use as the main component of the Hydrogen Isotope Separation System (HISS) at Mound. The HISS will handle feed mixtures of all six isotopic species of hydrogen (H2, HD, HT, D2, DT, T2) and will enrich the tritium while producing a stackable raffinate. Arther D. Little, Inc. (ADL) was the prime contractor for the distillation system. The design and fabrication techniques used for the HISS distillation system are similar to those used for previous stills which were also designed and built by ADL. The distillation system was tested with mixtures of protium and deuterium at the ADL shop. This system, as well as the feed, product, and raffinate handling systems are presently being installed at Mound where integrated testing is scheduled next calendar year.

  20. TCAP HYDROGEN ISOTOPE SEPARATION USING PALLADIUM AND INVERSE COLUMNS

    SciTech Connect

    Heung, L.; Sessions, H.; Xiao, S.

    2010-08-31

    The Thermal Cycling Absorption Process (TCAP) was further studied with a new configuration. Previous configuration used a palladium packed column and a plug flow reverser (PFR). This new configuration uses an inverse column to replace the PFR. The goal was to further improve performance. Both configurations were experimentally tested. The results showed that the new configuration increased the throughput by a factor of more than 2.

  1. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.

    2007-01-01

    The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different

  2. The effect of small scale variablity in isotopic composition of precipitation on hydrograph separation results

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin; van Meerveld, Ilja; Seibert, Jan

    2016-04-01

    Understanding runoff processes is important for predictions of streamflow quantity and quality. The two-component isotope hydrograph separation (IHS) method is a valuable tool to study how catchments transform rainfall into runoff. IHS allows the stormflow hydrograph to be separated into rainfall (event water) and water that was stored in the catchment before the event (pre-event water). To be able to perform an IHS, water samples of baseflow (pre-event water) and stormflow are collected at the stream outlet. Rainfall is usually collected at one location by hand as an event total or sampled sequentially during the event. It is usually assumed that the spatial variability in rainfall and the isotopic composition of rainfall are negligible for small (<10km2) catchments. However, different studies have shown that precipitation can vary within short distances. Subsequently it remains unclear how the spatio-temproal variability of rainfall and the stable isotope composition of rainfall affect the results of an IHS. In this study, we investigated the effects of the spatio-temporal variability in the isotopic composition of rainfall across a small headwater catchment in Switzerland. Rainfall was measured at eight locations and three streams (catchment area of 0.15, 0.23, and 0.7 km2). The isotopic composition of rainfall and streamflow were sampled for 10 different rain events (P: 5 mm intervals, Q: 12 to 51 samples per events). This dataset was used to perform a two-component isotope hydrograph separation. The results show that for some events the spatial variability in total rainfall, mean and maximum rainfall intensity and stable isotope composition of rainfall was high. There was no relation between the stable isotope composition of rainfall and the rainfall sum, rainfall intensity or altitude. The spatial variability of the isotopic composition of rainfall was for 4 out of the 10 events as large as the temporal variability in the isotopic composition. Different

  3. CO-laser-induced photochemical reaction of UF6 with HCl for the isotope separation of uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Ding, Hong-Bin; Shen, Z. Y.; Zhang, Cun H.

    1993-05-01

    In this paper, we report the results of CO-laser induced photochemical reaction of UF6 with HCl for the isotope separation of uranium hexafluoride, we also discussed that the molecular collision inducing V-T, V-V relaxation process affects on the selectivity of the isotope separation. The obtained quantum coefficiency of the reaction is about 0.34.

  4. Calcium isotope separation by chemical exchange with polymer-bound crown compounds

    SciTech Connect

    Jepson, B.E.

    1990-01-01

    Chromatographic separation of calcium isotopes by chemical exchange with polymer-bound 18-crown-6 was investigated. The breakthrough technique of column chromatography was employed to determine the influence of solvent composition and ligand-tether structure on separation coefficients and heterogeneous calcium complex stability. The separation coefficient, {epsilon}, was found to be strongly dependent upon solvent composition. An {epsilon} of 0. 0025{plus minus}0.0002 (95% C.L.) for the {sup 44}Ca/{sup 40}Ca isotope pair was obtained with a 70/30 (by volume) methanol/chloroform solvent mixture at 20.0{degree}C. Differences in the structure of the tether binding the crown ring to the polymer had no influence on {epsilon} at that solvent composition. 8 refs., 5 figs., 1 tab.

  5. Isotopic Incorporation Rates and Discrimination Factors in Mantis Shrimp Crustaceans

    PubMed Central

    deVries, Maya S.; del Rio, Carlos Martínez; Tunstall, Tate S.; Dawson, Todd E.

    2015-01-01

    Stable isotope analysis has provided insights into the trophic ecology of a wide diversity of animals. Knowledge about isotopic incorporation rates and isotopic discrimination between the consumer and its diet for different tissue types is essential for interpreting stable isotope data, but these parameters remain understudied in many animal taxa and particularly in aquatic invertebrates. We performed a 292-day diet shift experiment on 92 individuals of the predatory mantis shrimp, Neogonodactylus bredini, to quantify carbon and nitrogen incorporation rates and isotope discrimination factors in muscle and hemolymph tissues. Average isotopic discrimination factors between mantis shrimp muscle and the new diet were 3.0 ± 0.6 ‰ and 0.9 ± 0.3 ‰ for carbon and nitrogen, respectively, which is contrary to what is seen in many other animals (e.g. C and N discrimination is generally 0–1 ‰ and 3–4 ‰, respectively). Surprisingly, the average residence time of nitrogen in hemolymph (28.9 ± 8.3 days) was over 8 times longer than that of carbon (3.4 ± 1.4 days). In muscle, the average residence times of carbon and nitrogen were of the same magnitude (89.3 ± 44.4 and 72.8 ± 18.8 days, respectively). We compared the mantis shrimps’ incorporation rates, along with rates from four other invertebrate taxa from the literature, to those predicted by an allometric equation relating carbon incorporation rate to body mass that was developed for teleost fishes and sharks. The rate of carbon incorporation into muscle was consistent with rates predicted by this equation. Our findings provide new insight into isotopic discrimination factors and incorporation rates in invertebrates with the former showing a different trend than what is commonly observed in other animals. PMID:25835953

  6. Isotopic incorporation rates and discrimination factors in mantis shrimp crustaceans.

    PubMed

    deVries, Maya S; Del Rio, Carlos Martínez; Tunstall, Tate S; Dawson, Todd E

    2015-01-01

    Stable isotope analysis has provided insights into the trophic ecology of a wide diversity of animals. Knowledge about isotopic incorporation rates and isotopic discrimination between the consumer and its diet for different tissue types is essential for interpreting stable isotope data, but these parameters remain understudied in many animal taxa and particularly in aquatic invertebrates. We performed a 292-day diet shift experiment on 92 individuals of the predatory mantis shrimp, Neogonodactylus bredini, to quantify carbon and nitrogen incorporation rates and isotope discrimination factors in muscle and hemolymph tissues. Average isotopic discrimination factors between mantis shrimp muscle and the new diet were 3.0 ± 0.6 ‰ and 0.9 ± 0.3 ‰ for carbon and nitrogen, respectively, which is contrary to what is seen in many other animals (e.g. C and N discrimination is generally 0-1 ‰ and 3-4 ‰, respectively). Surprisingly, the average residence time of nitrogen in hemolymph (28.9 ± 8.3 days) was over 8 times longer than that of carbon (3.4 ± 1.4 days). In muscle, the average residence times of carbon and nitrogen were of the same magnitude (89.3 ± 44.4 and 72.8 ± 18.8 days, respectively). We compared the mantis shrimps' incorporation rates, along with rates from four other invertebrate taxa from the literature, to those predicted by an allometric equation relating carbon incorporation rate to body mass that was developed for teleost fishes and sharks. The rate of carbon incorporation into muscle was consistent with rates predicted by this equation. Our findings provide new insight into isotopic discrimination factors and incorporation rates in invertebrates with the former showing a different trend than what is commonly observed in other animals. PMID:25835953

  7. FLOSHEET: microcomputerized flowsheeting/simulation program for simulating hydrogen isotope separation processes

    SciTech Connect

    Busigin, A.; Sepa, T.R.; Sood, S.K.

    1987-01-01

    Ontario Hydro has developed a comprehensive computer program, FLOSHEET, to simulate various hydrogen isotope separation processes, including water distillation and cryogenic distillation of elemental hydrogen isotopes. FLOSHEET was developed to assist in the operation and optimization of a Tritium Removal Facility Ontario Hydro is building at the Darlington Nuclear Generating Station. However, FLOSHEET is a general purpose simulator and allows the specification and simulation of complete process plants with various interconnected units. This paper discusses the development and features of FLOSHEET, as well as various simulation results which have emerged from the use of the program.

  8. Happiness and death distress: two separate factors.

    PubMed

    Abdel-Khalek, Ahmed M

    2005-12-01

    The aim of the present study was to explore the relationship between happiness and death distress (death anxiety, death depression, and death obsession) in 275 volunteer Kuwaiti undergraduates. They responded to the Oxford Happiness Inventory, the Death Anxiety Scale, the Arabic Scale of Death Anxiety, the Death Depression Scale-Revised, and the Death Obsession Scale. Gender differences were significant on all 5 scales, with women showing a lower mean score of happiness and a higher mean score for the death distress. All the correlations between happiness and the death distress scales were non-significant except one pertaining to happiness and death depression (negative) in women. Two oblique factors were extracted: death distress and happiness. Therefore, these constructs represent 2 distinct and independent factors. PMID:16265799

  9. Understanding runoff processes in a semi-arid environment through isotope and hydrochemical hydrograph separations

    NASA Astrophysics Data System (ADS)

    Camacho, V. V.; Saraiva Okello, A. M. L.; Wenninger, J. W.; Uhlenbrook, S.

    2015-01-01

    The understanding of runoff generation mechanisms is crucial for the sustainable management of river basins such as the allocation of water resources or the prediction of floods and droughts. However, identifying the mechanisms of runoff generation has been a challenging task, even more so in arid and semi-arid areas where high rainfall and streamflow variability, high evaporation rates, and deep groundwater reservoirs increase the complexity of hydrological process dynamics. Isotope and hydrochemical tracers have proven to be useful in identifying runoff components and their characteristics. Moreover, although widely used in humid-temperate regions, isotope hydrograph separations have not been studied in detail in arid and semi-arid areas. Thus the purpose of this study is to determine if isotope hydrograph separations are suitable for the quantification and characterization of runoff components in a semi-arid catchment considering the hydrological complexities of these regions. Through a hydrochemical characterization of the surface water and groundwater sources of the catchment and two and three component hydrograph separations, runoff components of the Kaap Catchment in South Africa were quantified using both, isotope and hydrochemical tracers. No major disadvantages while using isotope tracers over hydrochemical tracers were found. Hydrograph separation results showed that runoff in the Kaap catchment is mainly generated by groundwater sources. Two-component hydrograph separations revealed groundwater contributions between 64 and 98% of total runoff. By means of three-component hydrograph separations, runoff components were further separated into direct runoff, shallow and deep groundwater components. Direct runoff, defined as the direct precipitation on the stream channel and overland flow, contributed up to 41% of total runoff during wet catchment conditions. Shallow groundwater defined as the soil water and near-surface water component, contributed up to 45

  10. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  11. Unbiased isotope equilibrium factors from partial isotope exchange experiments in 3-exchange site systems

    NASA Astrophysics Data System (ADS)

    Agrinier, Pierre; Javoy, Marc

    2016-09-01

    Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high

  12. An isotope separator on-line with a 20-MV tandem accelerator

    NASA Astrophysics Data System (ADS)

    Ballestero, M.; Huck, H.; Jech, A.; Martí, G.; Pérez, M. L.; Rossi, J. J.

    1987-05-01

    A 20-MV tandem accelerator has been installed in Argentina, and has been operating for experiments since November 1985. A fast-neutron flux is produced by bombarding a thick Be target, and the emitted neutrons hit a natural uranium carbide sample covering the cylindrical anode of the on-line isotope-separator ion source. For the first experiments, gamma activity was measured with a germanium detector, collecting the mass of interest on a movable tape collector. The observed activities (10 4 atoms/s) are particularly suitable for nuclear spectroscopy studies in practically all the masses of interest. In addition, the low background, low residual activity, and no detectable mass contamination made it possible to obtain clean spectra. The most interesting fact is that a rather flat yield curve was obtained for the isotopes ranging in mass number from 113-141. Isotopes with half-lives as short as 0.5 s were well identified.

  13. Implications of Plutonium isotopic separation on closed fuel cycles and repository design

    SciTech Connect

    Forsberg, C.

    2013-07-01

    Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation. This would have large impacts on LWR closed fuel cycles and waste management. If Pu-240 is removed before recycling plutonium as mixed oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, Americium, and Curium. Pu-240 is a fertile material and thus can be replaced by U-238. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Eliminating fertile Pu-240 and Pu-242 reduces the plutonium content in MOX fuel and simplifies fabrication. Reducing production of Pu-241 reduces production of Am-241 - the primary heat generator in spent nuclear fuels after several decades. Reducing heat generating Am-241 would reduce repository cost and waste toxicity. Avoiding Am- 241 avoids its decay product Np-237, a nuclide that partly controls long-term oxidizing repository performance. Most of these benefits also apply to LWR plutonium recycled into fast reactors. There are benefits for plutonium isotopic separation in fast reactor fuel cycles (particularly removal of Pu-242) but the benefits are less. (author)

  14. In-gas-cell laser ion source for KEK isotope separation system

    NASA Astrophysics Data System (ADS)

    Mukai, M.; Hirayama, Y.; Jeong, S. C.; Imai, N.; Ishiyama, H.; Miyatake, H.; Oyaizu, M.; Watanabe, Y. X.; Kim, Y. H.

    2014-02-01

    The KEK isotope separation system (KISS) is an element-selective isotope separator under development at RIKEN. The in-gas-cell laser ion source is a critical component of the KISS, a gas cell filled with argon gas of 50 kPa enclosed in a vacuum chamber. In the gas cell, nuclear reaction products are stopped (i.e., thermalized and neutralized) and transported by a laminar flow of argon to the ionization region just upstream of the gas outlet, and thereby an element of interest among those reaction products is selectively ionized by two-color resonant laser irradiation. Recently, we succeeded to extract laser-ionized Fe ions by injecting an energetic Fe beam into the gas cell. Recent off- and on-line test results were presented and discussed.

  15. Aspects regarding at 13C isotope separation column control using Petri nets system

    NASA Astrophysics Data System (ADS)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  16. Separation of calcium-48 isotope by crown ether chromatography using ethanol/hydrochloric acid mixed solvent.

    PubMed

    Okumura, Shin; Umehara, Saori; Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Toshitaka; Ozawa, Masaki; Kishimoto, Tadafumi

    2015-10-01

    Benzo-18-crown-6 ether resin embedded in porous silica beads was synthesized and used as the packing material for chromatographic separation of (48)Ca isotope. The aim of the present work is to develop efficient isotope enrichment process for double β decay nuclide (48)Ca. To this end, ethanol/HCl mixed solvent was selected as the medium for the chromatographic separation. Adsorption of calcium on the resin was studied at different HCl concentrations and different ethanol mixing ratios in batch-wise experiments. A very interesting phenomenon was observed; Ca adsorption is controlled not by the overall HCl concentration of the mixed solvent, but by the initial concentration of added HCl solution. Calcium break-through chromatography experiments were conducted by using 75v/v% ethanol/25v/v% 8M HCl mixed solvent at different flow rates. The isotope separation coefficient between (48)Ca and (40)Ca was determined as 3.8×10(-3), which is larger than that of pure HCl solution system. Discussion is extended to the chromatographic HETP, height equivalent to a theoretical plate. PMID:26358563

  17. DEMONSTRATION OF THE NEXT-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect

    Heung, L; Henry Sessions, H; Steve Xiao, S; Heather Mentzer, H

    2009-01-09

    The first generation of TCAP hydrogen isotope separation process has been in service for tritium separation at the Savannah River Site since 1994. To prepare for replacement, a next-generation TCAP process has been developed. This new process simplifies the column design and reduces the equipment requirements of the thermal cycling system. An experimental twelve-meter column was fabricated and installed in the laboratory to demonstrate its performance. This new design and its initial test results were presented at the 8th International Conference on Tritium Science and Technology and published in the proceedings. We have since completed the startup and demonstration the separation of protium and deuterium in the experimental unit. The unit has been operated for more than 200 cycles. A feed of 25% deuterium in protium was separated into two streams each better than 99.7% purity.

  18. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  19. Cryogenic separation of oxygen-argon mixture in natural air samples for isotopic and molecular ratios

    NASA Astrophysics Data System (ADS)

    Habeeb Rahman, Keedakkadan; Abe, Osamu

    2014-05-01

    The discovery of mass independent isotope fractionation in oxygen during the formation of ozone in the stratosphere has initiated a wide application in isotope geochemistry field. Separation of oxygen-argon mixture has become the foundation of high precision analysis of Δ17O and δ(O2/Ar) for geochemical applications. Here we present precise and simplified cryogenic separation of argon oxygen mixture from the atmospheric and dissolved air using 30/60 mesh 5A molecular sieve zeolite. A pioneer study of this method was conducted by Thiemens and Meagher in 1984. The column which is made of glass tube contains about 1.1 grams of molecular sieve zeolite and both ends of column was filled with glass wools. The experimental set up was tested for different combination of molecular sieves and slurry temperatures. We found the most efficient condition for the separation was at a column temperature of -103°C. For complete transfer of O2 and Ar mixture usually takes in 15-20 minutes time. The isotopic ratios of oxygen were analyzed using mass spectrometer (Thermo Fischer Delta Plus) relative to reference oxygen-argon mixture at 3V of m/z 32 for both sample and reference side. The signals of m/z 28, 32, and 40 were measured by dynamically to determine oxygen -argon ratio and to check nitrogen contamination. Repeated measurements of atmospheric air yielded a reproducibility (SE n=80) of 0.006, 0.004 and 0.19‰ for δ17O, δ18O and δO2/Ar respectively. The isotopic and molecular fractionation of argon- oxygen mixture during gas adsorption and desorption while using molecular sieve under liquid nitrogen temperature was studied. We have established a linear relationship governing the effect of 13X and 5A molecular sieves on molecular fractionation. And suggested the use of single 1/8" pellet 13X molecular sieve provided a negligible fractionation.

  20. A Computer Program to Relate Factors Across Separately Factor Analyzed Variable Domains

    ERIC Educational Resources Information Center

    Morris, John D.; Guertin, Wilson H.

    1976-01-01

    A Fortran IV program is presented which will cross-correlate least squares estimated factor scores across separately factor analyzed variable domains without the tedious necessity of actually calculating the factor scores. (RC)

  1. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  2. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.

    1989-01-01

    A stable isotope-dilution method using resonance ionization mass spectrometry is suitable for the determination of rhenium and osmium abundances and osmium isotopic composition in carbonaceous chondrites and iron meteorites. The chemical procedure involves sodium peroxide fusion, followed by distillation of osmium from sulfuric acid/hydrogen peroxide and subsequent anion-exchange separation of rhenium from the same solution. ?? 1989.

  3. Hydrogen isotope separation by catalyzed exchange between hydrogen and liquid water

    SciTech Connect

    Butler, J.P.

    1980-04-01

    The discovery, at Chalk River Nuclear Laboratories, of a simple method of wetproofing platinum catalysts so that they retain their activity in liquid water stimulated a concentrated research program for the development of catalysts for the hydrogen-water isotopic exchange reaction. This paper reviews 10 years of study which have resulted in the development of highly active platinum catalysts which remain effective in water for periods greater than a year. The most efficient way to use these catalysts for the separation of hydrogen isotopes is in a trickle bed reactor which effects a continuous separation. The catalyst is packed in a column with hydrogen and water flowing countercurrently through the bed. The overall isotope transfer rate measured for the exchange reaction is influenced by various parameters, such as hydrogen and water flow rates, temperature, hydrogen pressure, and platinum metal loading. The effect of these parameters as well as the improved performance obtained by diluting the hydrophobic catalyst with inert hydrophilic packing are discussed. The hydrophobic catalysts can be effectively used in a variety of applications of particular interest in the nuclear industry. A Combined Electrolysis Catalytic Exchange - Heavy Water Process (CECE-HWP) is being developed at Chalk River with the ultimate aim of producing parasitic heavy water from electrolytic hydrogen streams. Other more immediate applications include the final enrichment of heavy water and the extraction of tritium from light and heavy water. Pilot plant studies on these latter processes are currently in progress.

  4. A Transient Model of Induced Natural Circulation Thermal Cycling for Hydrogen Isotope Separation

    SciTech Connect

    SHADDAY, MARTIN

    2005-07-12

    The property of selective temperature dependence of adsorption and desorption of hydrogen isotopes by palladium is used for isotope separation. A proposal to use natural circulation of nitrogen to alternately heat and cool a packed bed of palladium coated beads is under active investigation, and a device consisting of two interlocking natural convection loops is being designed. A transient numerical model of the device has been developed to aid the design process. It is a one-dimensional finite-difference model, using the Boussinesq approximation. The thermal inertia of the pipe walls and other heat structures as well as the heater control logic is included in the model. Two system configurations were modeled and results are compared.

  5. Study of collisions of 136Xe + 198Pt for the KEK isotope separator

    NASA Astrophysics Data System (ADS)

    Watanabe, Y. X.; Hirayama, Y.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Clement, E.; de France, G.; Navin, A.; Rejmund, M.; Schmitt, C.; Pollarolo, G.; Corradi, L.; Fioretto, E.; Montanari, D.; Choi, S. H.; Kim, Y. H.; Song, J. S.; Niikura, M.; Suzuki, D.; Nishibata, H.; Takatsu, J.

    2013-12-01

    Multinucleon transfer reactions between two heavy ions are an important tool for production and investigation of exotic neutron-rich nuclei, which are difficult to access by other methods. The 136Xe + 198Pt system is a candidate to efficiently produce neutron-rich nuclei around the neutron magic number N=126 for the KEK isotope separation project. In order to confirm this, measurements of the production cross sections with the large acceptance magnetic spectrometer VAMOS++ and de-excitation gamma rays from target-like fragments using the high efficiency germanium array EXOGAM at GANIL are reported. The measured isotopic distributions of the projectile-like fragments are compared with GRAZING calculations. The proton stripping channels show rough agreements between measurements and calculations. For the proton pick-up channels, the measured distributions are shifted toward the heavier masses and show enhanced cross sections in transfers of two or more protons.

  6. Enhanced Method for Molybdenum Separation and Isotopic Determination in Geological Samples and Uranium-Rich Materials

    NASA Astrophysics Data System (ADS)

    Migeon, V.; Bourdon, B.; Pili, E.

    2014-12-01

    Molybdenum (Mo) shares analogous geochemical properties with uranium. Mo ispresent as a minor or a trace element in uranium ores under two main oxidation states: +IVand +VI. Mo has seven stable isotopes (92, 94, 95, 96, 97, 98 and 100). In natural systems,Mo and Mo isotopes were shown to fractionate during redox reactions. Because Morepresents an impurity difficult to separate in the nuclear fuel cycle, it has the potential to beused as an indicator of the origins of uranium concentrates, in the framework of nuclearforensics. This work focuses on developing an enhanced separation method for Mo from auranium-rich matrix (uranium ore, uranium concentrate) in order to analyze the massfractionation induced by processes typical of the nuclear fuel cycle. Purification of Mo forisotope ratio measurements is performed with a three-step separation on ion-exchange resins,with yields between 45 and 82%. Matrix and isobaric interferences (Zr, Ru) were reduced ingeological and uranium standards, such as U/Mo ≤ 2*10-4, Zr/Mo ≤ 1*10-3, Ru/Mo ≤ 6*10-4and Fe/Mo ≤ 4*10-3. Mo isotopic compositions were measured on a Neptune Plus MC-ICPMSequipped with Jet cones, for a concentration of 30 ng/ml. The achieved sensitivity is~1200-1800 V/ppm with interferences below 10 mV and an overall reproducibility of 0.02 ‰on the δ98Mo values. A double spike, with 97Mo and 100Mo, was added to the samples beforethe purification. It allows for correction of the chemical and instrumental mass fractionations,without requiring a quantitative yield. For igneous rocks, δ98Mo values range between -0.55and -0.03 ‰, relative to the NIST-SRM 3134 molybdenum standard. Fractionation amonguranium ore concentrates is higher, with δ98Mo ranging between 0.02 and -2.84 ‰.

  7. Recent advances in nuclear physics through on-line isotope separation

    NASA Astrophysics Data System (ADS)

    Jenkins, David Gareth

    2014-12-01

    Nuclear physics is advancing rapidly at the precision frontier, where measurements of nuclear observables are challenging state-of-the-art nuclear models. A major contribution is associated with the increasing availability of accelerated beams of radioactive ions produced using the isotope separation on-line technique. These advances have come hand in hand with significant progress in the development of high-efficiency detector systems and improved target technologies which are invaluable in exploiting these beams to their full advantage. This article reviews some of the recent highlights in the field of nuclear structure profiting from these technological advances.

  8. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE PAGESBeta

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  9. RAPID SEPARATION METHOD FOR 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.; Noyes, G.

    2010-07-26

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using this two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  10. Laser enhanced microwave plasma isotope separation. Final report, September 30, 1992--September 29, 1995

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1996-06-01

    The experimental research was to focus on laser excitation of a low abundance isotope and then ionize and separate the isotope of low abundance using a microwave/ECR discharge at 2.45 GHz. A small compact electron cyclotron resonance ion source, which uses permanent magnets, was constructed during this project. The dye laser was purchased and later an excimer laser had to also be purchased because it turned out that the dye laser could not be pumped by our copper laser. It was intended that the dye laser be tuned to a wavelength of 670.8 nm, which would excite {sup 6}Li which would then be preferentially ionized by the ECR source and collected with a charged grid. The degree of enrichment was to be determined using thermal ionization mass spectrometry. The final objective of this project was to assess the feasibility of this system to large-scale production of stable isotopes. However the funding of this project was interrupted and we were not able to achieve all of our goals.

  11. Analogy between mission critical detection in distributed systems and 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, Maria L.; Secara, Mihai

    2015-02-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13 Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [2]. Distributed systems are increasingly being applied in critical real-time applications and their complexity forces programmers to use design methods which guarantee correctness and increase the maintainability of the products. Objectoriented methodologies are widely used to cope with complexity in any kind of system, but most of them lack a formal foundation to allow the analysis and verification of designs, which is one of the main requirements for dealing with concurrent and reactive systems. This research is intended to make an analogy between two tips of industrial processes, one 13C Isotope Separation Column and other one distributed systems. We try to highlight detection of "mission critical "situations for this two processes and show with one is more critical and needs deeply supervisyon [1], [3].

  12. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    SciTech Connect

    Xiao, X.; Kit Heung, L.; Sessions, H.T.

    2015-03-15

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects.

  13. Recent great impact by an Isotope Separator On-Line (ISOL) in nuclear and radiochemistry.

    PubMed

    Sakama, Minoru

    2016-01-01

    On April 9 2015, the Letter article titled "Measurement of the first ionization potential of lawrencium, element 103" is now published at News and Views on Nature (2015) which has been performed by our remarkably Japanese colleagues of nuclear and radiochemistry at JAEA (Japan Atomic Energy Agency). In this review, the author will state that the isotope separator on-line (ISOL) our regularly used, one of mass separation techniques, with a thermal surface ionization makes possible for determining the ionization potential of lawrencium based on the fruitful fundations of developing the ISOL system until now and also ever studying searches for unknown nuclei and these nuclear decay properties around actinide region in the past 20 years. PMID:27040048

  14. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry

    USGS Publications Warehouse

    Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F., Jr.

    1991-01-01

    Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.

  15. Rapid U separation and its precise isotopic measurements using ICP-QMS

    NASA Astrophysics Data System (ADS)

    Douville, E.; Salle, E.; Gourgiotis, A.; Ayrault, S.; Frank, N.

    2007-12-01

    Here we present a largely simplified analytical separation technique for U from marin carbonates and sediments and U isotopic measurements obtained by inductively coupled plasma-source quadrupole mass spectrometer (ICP-QMS) Xseries II - Thermo Scientific. The separation of U is done from dissolved carbonates and sediments using a single ion exchange column packed with ~500 μg of UTEVA resin from EICHROM industries. The column is pre-cleaned and loaded by several rinses of MilliQ water and 3N HNO3. Then earth alkali, transition metals and lanthanides are eluted quantitatively using 3N HNO3. Pure Th and U solutions are then successively extracted from the column using 3N HCl and 1N HCl at ~100% yield. U solutions at ~25-50 ppb were injected into the ICP-QMS at conventional sample flow rates of approximately 1ml/minute, without particular injection systems such as a desolvator or μ - nebuliser. 30 scans with 180 sweeps and a dwell time of 50 ms per isotope were used to collect 233U, 234U, 235U and 236U on an electron multiplier. Baseline sensitivity was followed on mass 228 with <1cps at ~ 1000cps on mass 234. Then, mass discrimination was corrected using the 233U/236U spike of known isotopic ratio and HU1 reference solutions were used to test the reproducibility and to correct drifts using standard - sample bracketing. Overall ICPMS analyses yield a stunning reproducibility of <0.4 % at 2 σ, which is close to the one obtained by conventional TIMS instruments ~0.2-0.4 %. We have applied this technique to organic rich sediments and marine carbonate samples previously measured by TIMS and found a perfect agreement for both U concentration and its isotopic composition. This rapid and effective chemical purification and isotopic measurement of U allows to process more than 20 samples a day allowing to investigate large numbers of natural samples for weathering, tracer and geochronological studies.

  16. Innovative lasers for uranium isotope separation. Final report, September 1, 1989--April 1, 1993

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1993-07-01

    Copper vapor laser have important applications to uranium atomic vapor laser isotope separation (AVLIS). We have investigated two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated in three separate experimental configurations. The first examined the application of CW (0-500W) power and was found to be an excellent method for producing an atomic copper vapor from copper chloride. The second used a pulsed (5kW, 0.5--5 kHz) signal superimposed on the CW signal to attempt to produce vaporization, dissociation and excitation to the laser states. Enhanced emission of the optical radiation was observed but power densities were found to be too low to achieve lasing. In a third experiment we attempted to increase the applied power by using a high power magnetron to produce 100 kW of pulsed power. Unfortunately, difficulties with the magnetron power supply were encountered leaving inconclusive results. Detailed modeling of the electromagnetics of the system were found to match the diagnostics results well. An electron beam pumped copper vapor system (350 kV, 1.0 kA, 300 ns) was investigated in three separate copper chloride heating systems, external chamber, externally heated chamber and an internally heated chamber. Since atomic copper spectral lines were not observed, it is assumed that a single pulse accelerator is not capable of both dissociating the copper chloride and exciting atomic copper and a repetitively pulsed electron beam generator is needed.

  17. Isotopic separation of He-3/He-4 from solar wind gases evolved from the lunar regolith

    NASA Astrophysics Data System (ADS)

    Wilkes, William R.; Wittenberg, Layton J.

    The potential benefits of He-3 when utilized in a nuclear fusion reactor to provide clean, safe electricity in the 21st century for the world's inhabitants has been documented. Unfortunately, He is scarce on earth. Large quantities of He-3, perhaps a million tons, are embedded in the lunar regolith, presumably implanted by the solar wind together with other elements, notably He-4, H, C, and N. Several studies have suggested processing the lunar regolith and recovering these valuable solar wind gases. Once released, these gases can be separated for use. The separation of helium isotopes is described in this paper. He-3 constitutes only 400 at. ppm of lunar He, too dilute to separate economically by distillation alone. A 'superfluid' separator is being considered to preconcentrate the He-3. The superfluid separator consists of a porous filter in a tube maintained at a temperature of 2.17 K or less. Although the He-4, which is superfluid below 2.17 K, flows readily through the filter, the He is blocked by the filter, and becomes enriched at the feed end. He can be enriched to about 10 percent in such a system. The enriched product from the superfluid separation serves as a feed to a distillation apparatus operating at a pressure of 9 kPa, with a boiler temperature of 2.4 K, and a condenser temperature of 1.6 K. Under constant flow conditions, a 99.9 percent enriched He product can be produced in this apparatus. The heat rejection load of the refrigeration equipment necessary to cool the separation operations would be conducted during the lunar nights.

  18. Resonance ionization laser ion sources for on-line isotope separators (invited).

    PubMed

    Marsh, B A

    2014-02-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented. PMID:24593628

  19. Resonance ionization laser ion sources for on-line isotope separators (invited)

    NASA Astrophysics Data System (ADS)

    Marsh, B. A.

    2014-02-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  20. Resonance ionization laser ion sources for on-line isotope separators (invited)

    SciTech Connect

    Marsh, B. A.

    2014-02-15

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  1. ARTICLES: Isotope separation by multiphoton dissociation of molecules using high-power CO2 laser radiation. Scaling of the process for carbon isotopes

    NASA Astrophysics Data System (ADS)

    Abdushelishvili, G. I.; Avatkov, O. N.; Bagratashvili, Viktor N.; Baranov, V. Yu; Bakhtadze, A. B.; Velikhov, E. P.; Vetsko, V. M.; Gverdtsiteli, I. G.; Dolzhikov, V. S.; Esadze, G. G.; Kazakov, S. A.; Kolomiĭskiĭ, Yu R.; Letokhov, V. S.; Pigul'skiĭ, S. V.; Pis'mennyĭ, V. D.; Ryabov, Evgenii A.; Tkeshelashvili, G. I.

    1982-04-01

    Data are presented on multiphoton dissociation of halogenated methanes, CF3I and CF3Br, in a pulsed CO2 laser field in the single-pulse irradiation regime. It is shown that the high parameters of an elementary separation event (dissociation yield and selectivity, quantum efficiency) for these molecules can be used to achieve efficient laser separation of the carbon isotopes 12C and 13C. An analysis is made of problems involved in organizing the chemical cycle when the process is scaled up. A description is given of an apparatus for scaled-up laser isotope separation, including a pulse-periodic CO2 laser with a kilowatt average power, and a laser separation cell. Experiments carried out using this apparatus showed that the high parameters obtained in the single-pulse regime can also be achieved using this design and a yield rate comparable with that of traditional separation systems can be achieved for fairly low energy losses. These results make it possible to develop a commercial system for laser isotope separation using multiphoton dissociation of molecules.

  2. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    PubMed

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation. PMID:24401459

  3. Column chromatographic boron isotope separation at 5 and 17 MPa with diluted boric acid solution.

    PubMed

    Musashi, Masaaki; Oi, Takao; Matsuo, Motoyuki; Nomura, Masao

    2008-08-01

    Boron isotopic fractionation factor (S) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25 degrees C, using 0.1 mM boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at the atmospheric pressure at 25 degrees C with the boron concentration of 10mM, but were larger than the values under the same condition with much higher concentration of 100 and 501 mM. Calculations based on the theory of isotope distribution between two phases estimated that 21% (5 MPa) and 47% (17 MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)(3)-form, instead of in the four-coordinated B(OH)(4)-form, at high pressures even with a very diluted boric acid solution. We discussed the present results by introducing (1) hydration and (2) a partial molar volume difference between isotopic molecules. Borate may have been partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Instead, it may be possible that the difference in the isotopic partial molar volume difference between B(OH)(3) and B(OH)(4)(-) caused the S value to decrease with increasing pressure. PMID:18585727

  4. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    SciTech Connect

    Fraanberg, H.; Ammann, M.; Gaeggeler, H.W.; Koester, U.

    2006-03-15

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO{sub x} and NO{sub x} on Al{sub 2}O{sub 3} and SiO{sub 2}. These materials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Scherrer Institute in Villigen, Switzerland.

  5. Identification of new astatine isotopes using the gas-filled magnetic separator, SASSY

    SciTech Connect

    Yashita, S.

    1984-02-01

    A He-filled on-line mass separator system was built at the SuperHILAC and used to study the fusion products in the reaction /sup 56/Fe + /sup 141/Pr. The new neutron-deficient isotopes /sup 194/At and /sup 195/At were produced in this bombardment as three- and two- neutron-out products, respectively, and were identified by the ..cap alpha..-..cap alpha.. time-correlation technique. The measured ..cap alpha.. energies and half lives are 7.20 +- 0.02 MeV and 180 +- 80 msec for /sup 194/At, and 7.12 +- 0.02 MeV and 200 +- 100 msec for /sup 195/At. 66 references.

  6. Identification of new astatine isotopes using the gas-filled magnetic separator, Sassy

    SciTech Connect

    Yashita, S.

    1983-01-01

    A He-filled on-line separator system was built at the SuperHILAC and used to study the fusion products in the reaction /sup 56/Fe + /sup 141/Pr. The new neutron-deficient isotopes /sup 194/At and /sup 195/At were produced in this bombardment as three- and two-neutron-out products, respectively, and were identified by the ..cap alpha..-..cap alpha.. time-correlation technique. The measured ..cap alpha.. energies and half lives are 7.20 +/- 0.02 MeV and 180 +/- 80 msec for /sup 194/At, and 7.12 +/- 0.02 MeV and 200 +/- 100 msec for /sup 195/At.

  7. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    SciTech Connect

    Ma, Y. Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-02-15

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  8. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    SciTech Connect

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  9. New Half-lives of r-process Zn and Ga Isotopes Measured with Electromagnetic Separation

    NASA Astrophysics Data System (ADS)

    Madurga, M.; Surman, R.; Borzov, I. N.; Grzywacz, R.; Rykaczewski, K. P.; Gross, C. J.; Miller, D.; Stracener, D. W.; Batchelder, J. C.; Brewer, N. T.; Cartegni, L.; Hamilton, J. H.; Hwang, J. K.; Liu, S. H.; Ilyushkin, S. V.; Jost, C.; Karny, M.; Korgul, A.; Królas, W.; Kuźniak, A.; Mazzocchi, C.; Mendez, A. J., II; Miernik, K.; Padgett, S. W.; Paulauskas, S. V.; Ramayya, A. V.; Winger, J. A.; Wolińska-Cichocka, M.; Zganjar, E. F.

    2012-09-01

    The β decays of neutron-rich nuclei near the doubly magic Ni78 were studied at the Holifield Radioactive Ion Beam Facility using an electromagnetic isobar separator. The half-lives of Zn82 (228±10ms), Zn83 (117±20ms), and Ga85 (93±7ms) were determined for the first time. These half-lives were found to be very different from the predictions of the global model used in astrophysical simulations. A new calculation was developed using the density functional model, which properly reproduced the new experimental values. The robustness of the new model in the Ni78 region allowed us to extrapolate data for more neutron-rich isotopes. The revised analysis of the rapid neutron capture process in low entropy environments with our new set of measured and calculated half-lives shows a significant redistribution of predicted isobaric abundances strengthening the yield of A>140 nuclei.

  10. Factors influencing adoption of manure separation technology in The Netherlands.

    PubMed

    Gebrezgabher, Solomie A; Meuwissen, Miranda P M; Kruseman, Gideon; Lakner, Dora; Oude Lansink, Alfons G J M

    2015-03-01

    Manure separation technologies are essential for sustainable livestock operations in areas with high livestock density as these technologies result in better utilization of manure and reduced environmental impact. Technologies for manure separation have been well researched and are ready for use. Their use, however, has been limited to the Netherlands. This paper investigates the role of farm and farmer characteristics and farmers' attitudes toward technology-specific attributes in influencing the likelihood of the adoption of mechanical manure separation technology. The analysis used survey data collected from 111 Dutch dairy farmers in 2009. The results showed that the age and education level of the farmer and farm size are important variables explaining the likelihood of adoption. In addition to farm and farmer characteristics, farmers' attitudes toward the different attributes of manure separation technology significantly affect the likelihood of adoption. The study generates useful information for policy makers, technology developers and distributors in identifying the factors that impact decision-making behaviors of farmers. PMID:25460418

  11. Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-06-01

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.

  12. Development of cadmium/silver/palladium separation by ion chromatography with quadrupole inductively coupled plasma mass spectrometry detection for off-line cadmium isotopic measurements.

    PubMed

    Gautier, C; Bourgeois, M; Isnard, H; Nonell, A; Stadelmann, G; Goutelard, F

    2011-08-01

    A separation method was investigated to perform off-line cadmium isotopic measurements on a (109)Ag transmutation target. Ion chromatography (IC) with Q ICPMS detection (quadrupole inductively coupled plasma mass spectrometry detection) was chosen to separate cadmium from the isobarically interfering elements, silver and palladium, present in the sample. The optimization of chromatographic conditions was particularly studied. Several anion and cation columns (Dionex AG11(®), CS10(®) and CS12(®)) were compared with different mobile phases (HNO(3), HCl). The separation procedure was achieved with a carboxylate-functionalized cation exchange CS12 column using 0.5 M HNO(3) as eluent. The developed technique yielded satisfactory results in terms of separation factors (greater than 5) and provides an efficient solution to obtain rapidly purified cadmium fractions (decontamination factors higher 100,000 for silver and palladium) which can directly be analyzed by multi collection inductively coupled plasma mass spectrometry (MC ICPMS). By applying the proposed procedure, accurate and precise cadmium isotope ratios were determined for the irradiated (109)Ag transmutation target. PMID:21703628

  13. Separation of synchronous sources through phase locked matrix factorization.

    PubMed

    Almeida, Miguel S B; Vigário, Ricardo; Bioucas-Dias, José

    2014-10-01

    In this paper, we study the separation of synchronous sources (SSS) problem, which deals with the separation of sources whose phases are synchronous. This problem cannot be addressed through independent component analysis methods because synchronous sources are statistically dependent. We present a two-step algorithm, called phase locked matrix factorization (PLMF), to perform SSS. We also show that SSS is identifiable under some assumptions and that any global minimum of PLMFs cost function is a desirable solution for SSS. We extensively study the algorithm on simulated data and conclude that it can perform SSS with various numbers of sources and sensors and with various phase lags between the sources, both in the ideal (i.e., perfectly synchronous and nonnoisy) case, and with various levels of additive noise in the observed signals and of phase jitter in the sources. PMID:25291741

  14. Isotopic separation of snowmelt runoff during an artificial rain-on-snow event

    NASA Astrophysics Data System (ADS)

    Juras, Roman; Pavlasek, Jirka; Šanda, Martin; Jankovec, Jakub; Linda, Miloslav

    2013-04-01

    Rain-on-snow events are common phenomenon in the climate conditions of central Europe, mainly during the spring snowmelt period. These events can cause serious floods in areas with seasonal snow. The snowpack hit by rain is able to store a fraction of rain water, but runoff caused by additional snowmelt also increases. Assessment of the rainwater ratio contributing to the outflow from the snowpack is therefore critical for discharge modelling. A rainfall simulator and water enriched by deuterium were used for the study of rainwater behaviour during an artificial rain-on-snow event. An area of 1 m2 of the snow sample, which was 1.2 m deep, consisting of ripped coarse-grained snow, was sprayed during the experiment with deuterium enriched water. The outflow from the snowpack was measured and samples of outflow water were collected. The isotopic content of deuterium was further analyzed from these samples by means of laser spectroscopy for the purpose of hydrograph separation. The concentration of deuterium in snow before and after the experiment was also investigated. The deuterium enriched water above the natural concentration of deuterium in snowpack was detected in the outflow in 7th minute from start of spraying, but the significant increase of deuterium concentration in outflow was observed in 19th minute. The isotopic hydrograph separation estimated, that deuterium enriched rainwater became the major part (> 50% volumetric) of the outflow in 28th minute. The culmination of the outflow (1.23 l min-1) as well as deuterium enriched rainwater fraction (63.5%) in it occurred in 63th minute, i.e. right after the end of spraying. In total, 72.7 l of deuterium enriched water was sprayed on the snowpack in 62 minutes. Total volume of outflow (after 12.3 hours) water was 97.4 l, which contained 48.3 l of deuterium enriched water (i.e. 49.6 %) and 49.1 l (50.4 %) of the melted snowpack. The volume of 24.4 l of deuterium enriched spray-water was stored in the snowpack. The

  15. First Principles Calculation on Equilibrium Si Isotope Fractionation Factors and its Implementation on Si Isotope Distributions in Earth Surface Environments

    NASA Astrophysics Data System (ADS)

    Liu, Y.; He, H. T.; Zhu, C.

    2014-12-01

    Several important equilibrium Si isotope fractionation factors are calculated here. We use a so-called volume-variable-cluster-model (VVCM) method for solids and the "water-droplet" method for aqueous species for isotope fractionation calculation at the same quantum chemistry level. The calculation results show that several silicate minerals, such as quartz, feldspar, kaolinite, etc., all enrich heavy Si isotopes relative to aqueous H4SiO4 and can be up to 3.3‰ at 25°C, different from most field observations. Meanwhile stable organosilicon complexes can enrich even lighter Si isotopes than aqueous H4SiO4. For explaining the difference between the calculation results and field observations, we calculate the kinetic isotope effect (KIE) associated with the formation of amorphous silica, and find that amorphous silica will enrich extremely light Si isotopes. From amorphous silica to crystalline quartz, the structural adjustment & transition needs getting rid of small amount of Si to re-organize the structure. Light Si isotopes will be preferentially lost and let the final crystalline quartz with a little bit more heavy Si isotopes. However, such late-stage Si heavy isotope enrichment cannot erase the total isotopic signal, crystalline quartz still inherit much light Si isotopic composition from amorphous quartz. That is the reason for the discrepancy between the calculation results and the field observations, because the formation of amorphous quartz is under a non-equilibrium process but theoretical calculations are for equilibrium isotope fractionations. With accurate equilibrium fractionation factors provided here, Si isotope distributions in earth surface environments including soil, groundwater and plants can be further interpreted. We find that δ30Si variations in soil are mainly driven by secondary minerals precipitation and adsorption. Also, bulk soil δ30Si maybe have a parabolic distribution with soil age, with a minimum value at where allophane is

  16. Equilibrium and kinetic Si isotope fractionation factors and their implications on Si isotope distributions in the Earth's surface environments

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhang, S.; Liu, Y.

    2015-12-01

    Several important equilibrium Si isotope fractionation factors among minerals, organic molecules and the H4SiO4 solution are complemented to facilitate explanation of distributions of Si isotope in the Earth's surface environments. The results reveal that heavy Si isotopes will be significantly enriched in the secondary silicate minerals in comparison to aqueous H4SiO4. On the contrary, quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution. The extent of 28Si-enrichment in hyper-coordinated organosilicon complexes is found the largest. In addition, the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer is calculated and the result supports previous statement that highly 28Si-enrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations. With equilibrium Si isotope fractionation factors provided here, Si isotope distributions in many surface systems of the Earth can be explained. For example, the change of bulk soil δ30Si can be predicted as a concave pattern with respect to weathering degree, with the minimum value where allophane completely dissolves and the total amount of sesqui-oxides and poorly crystalline minerals reaches its maximum. When well-crystallized clays start to precipitate from pore solutions under equilibrium conditions, the bulk soil δ30Si will increase again and reach a constant value. Similarly, the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain δ30Si variations in the ground water profile. Equilibrium Si isotope fractionations among quadra-coordinated organosilicon complexes and the H4SiO4 solution may also shed the light on the Si isotope distributions in Si-accumulating plants.

  17. Selection of a hydride former for the separation of hydrogen isotopes from inerts

    SciTech Connect

    Fisher, I.A.

    1990-01-01

    The properties of four hydride-forming materials have been investigated to determine their applicability for use in a process to separate hydrogen isotopes from inerts. These materials are Zr{sub 0.8}Ti{sub 0.2}Ni, Zr{sub 0.65}Ti{sub 0.35}Co, NdCo{sub 3}, and ErFe{sub 2}. The properties investigated while surveying these materials include ease of activation, isotherm characteristics, kinetics, cycling stability, and oxygen stability. The results of the survey indicate NdCo{sub 3} to be the hydride former of choice for use in the inert separation process. It is the most easily activated and has the most favorable isotherm characteristics (the largest usable capacity, flat plateaux, small hysteresis, and negligible heel) as well as the fastest absorption kinetics of the materials tested. NdCo{sub 3} also has good cycling and oxygen stability. As with most intermetallic alloys NdCo{sub 3} decrepitates into a fine powder after only a few sorption cycles in hydrogen and therefore must be consolidated in order to be used in the fixed-bed absorber envisioned for the inert separation process. Consolidation was achieved through support of the NdCo{sub 3} in a sinter-bonded aluminum matrix. Stable compacts of NdCo{sub 3} have been made consisting of 40 wt % Al in NdCo{sub 3} pellets, pressed at 27 kpsi, sintered under vacuum for 2 hr at 450{degree}C. These compacts retained the full absorptive capacity of NdCo{sub 3} and remained 99 wt % intact after 15 sorption cycles in protium. 16 refs., 9 figs.

  18. SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA

    PubMed Central

    Fosdick, Bailey K.; Hoff, Peter D.

    2014-01-01

    Human mortality data sets can be expressed as multiway data arrays, the dimensions of which correspond to categories by which mortality rates are reported, such as age, sex, country and year. Regression models for such data typically assume an independent error distribution or an error model that allows for dependence along at most one or two dimensions of the data array. However, failing to account for other dependencies can lead to inefficient estimates of regression parameters, inaccurate standard errors and poor predictions. An alternative to assuming independent errors is to allow for dependence along each dimension of the array using a separable covariance model. However, the number of parameters in this model increases rapidly with the dimensions of the array and, for many arrays, maximum likelihood estimates of the covariance parameters do not exist. In this paper, we propose a submodel of the separable covariance model that estimates the covariance matrix for each dimension as having factor analytic structure. This model can be viewed as an extension of factor analysis to array-valued data, as it uses a factor model to estimate the covariance along each dimension of the array. We discuss properties of this model as they relate to ordinary factor analysis, describe maximum likelihood and Bayesian estimation methods, and provide a likelihood ratio testing procedure for selecting the factor model ranks. We apply this methodology to the analysis of data from the Human Mortality Database, and show in a cross-validation experiment how it outperforms simpler methods. Additionally, we use this model to impute mortality rates for countries that have no mortality data for several years. Unlike other approaches, our methodology is able to estimate similarities between the mortality rates of countries, time periods and sexes, and use this information to assist with the imputations. PMID:25489353

  19. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.

    2015-07-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  20. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991--September 14, 1995

    SciTech Connect

    Guss, W.

    1996-09-05

    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as {sup 13}C, {sup 17}O, {sup 18}O, and {sup 203}Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes ({le} 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of {sup 26}Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation.

  1. Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses

    SciTech Connect

    Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.; Duckworth, Douglas C.

    2010-08-11

    The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast, and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.

  2. Isotope Separation and Advanced Manufacturing Technology. ISAM semiannual report, Volume 3, Number 1, October 1993--March 1994

    SciTech Connect

    Carpenter, J.; Kan, T.

    1994-10-01

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (I) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (II) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  3. Calculations on Isotope Separation by Laser Induced Photodissociation of Polyatomic Molecules. Final Report

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1978-11-01

    This report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. Newton`s equations of motion were integrated for the atoms of the SF{sub 6} molecule including the laser field interaction. The first year`s work has been largely dedicated to obtaining a suitable interatomic potential valid for arbitrary configurations of the seven particles. This potential gives the correct symmetry of the molecule, the equilibrium configuration, the frequencies of the six distinct normal modes of oscillation and the correct (or assumed) value of the total potential energy of the molecule. Other conditions can easily be imposed in order to obtain a more refined potential energy function, for example, by making allowance for anharmonicity data. A suitable expression was also obtained for the interaction energy between a laser field and the polyatomic molecule. The electromagnetic field is treated classically, and it would be easily possible to treat the cases of time dependent pulses, frequency modulation and noise.

  4. [Atomic Vapor Laser Isotope Separation (AVLIS) program]. Final report, [January--July 1992

    SciTech Connect

    Not Available

    1992-12-04

    This report summarizes work performed for the Atomic Vapor Laser Isotope Separation (AVLIS) program from January through July, 1992. Each of the tasks assigned during this period is described, and results are presented. Section I details work on sensitivity matrices for the UDS relay telescope. These matrices show which combination of mirror motions may be performed in order to effect certain changes in beam parameters. In Section II, an analysis is given of transmission through a clipping aperture on the launch telescope deformable mirror. Observed large transmission losses could not be simulated in the analysis. An EXCEL spreadsheet program designed for in situ analysis of UDS optical systems is described in Section III. This spreadsheet permits analysis of changes in beam first-order characteristics due to changes in any optical system parameter, simple optimization to predict mirror motions needed to effect a combination of changes in beam parameters, and plotting of a variety of first-order data. Optical systems may be assembled directly from OSSD data. A CODE V nonsequential model of the UDS optical system is described in Section IV. This uses OSSD data to build the UDS model; mirror coordinates may thus be verified. Section V summarizes observations of relay telescope performance. Possible procedures which allow more accurate assessment of relay telescope performance are given.

  5. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1. PMID:16496054

  6. Factors affecting the hydrogen isotopic composition of dissolved organic matter along a salinity gradient

    NASA Astrophysics Data System (ADS)

    Debond, A. A.; Ziegler, S. E.; Fogel, M. L.; Morrill, P. L.; Bowden, R.

    2010-12-01

    The role of terrestrial dissolved organic matter (DOM) in regulating estuarine ecosystem processes is poorly understood, in part due to difficulties in tracking terrestrial DOM in marine environments. Analysis of multiple stable isotopes (C, N, S) is often required due to poor separation of the carbon isotope signatures of marine and terrestrial sources. However, hydrogen isotopes exhibit greater fractionation. Marine DOM sources have a hydrogen isotope signature of 0‰ while terrestrial DOM can have signatures of up to -270‰ at the poles. Some challenges must be addressed before hydrogen isotopes can be used to track terrestrial DOM in aquatic environments. Hydrogen isotopes may undergo exchange between water and organic matter, obscuring terrestrial signatures. Riverine discharge into marine environments introduces terrestrial DOM to water of different chemical and isotopic compositions which could influence the isotopic composition of the terrestrial DOM. We investigate the effects of changes in water isotopic composition on DOM by introducing terrestrial DOM to freshwaters of isotopic compositions up to +1000‰ for up to two months. We also use surface water samples along a salinity transect at the Salmonier Arm, Newfoundland, Canada to investigate the effects of changes in water mass conditions (pH, salinity and water isotopes) on terrestrial DOM. In addition to changes in water mass conditions, methods for isolating estuarine DOM may regulate affect its isotopic composition. Ultrafiltration (UF), a size-exclusion technique, has been shown to isolate and concentrate the largest proportion of DOM in estuarine environments. UF separates DOM into low molecular weight (LMW, <1kDa) and high molecular weight (HMW, >1kDa) fractions. However, under certain processing conditions, some LMW DOM can be retained. During desalting (diafiltration), LMW DOM continues to be removed from the concentrate, whereas HMW DOM is retained. The proportion of LMW DOM retained

  7. Source separation in astrophysical maps using independent factor analysis.

    PubMed

    Kuruoğlu, Ercan E; Bedini, Luigi; Paratore, Maria T; Salerno, Emanuele; Tonazzini, Anna

    2003-01-01

    A microwave sky map results from a combination of signals from various astrophysical sources, such as cosmic microwave background radiation, synchrotron radiation and galactic dust radiation. To derive information about these sources, one needs to separate them from the measured maps on different frequency channels. Our insufficient knowledge of the weights to be given to the individual signals at different frequencies makes this a difficult task. Recent work on the problem led to only limited success due to ignoring the noise and to the lack of a suitable statistical model for the sources. In this paper, we derive the statistical distribution of some source realizations, and check the appropriateness of a Gaussian mixture model for them. A source separation technique, namely, independent factor analysis, has been suggested recently in the literature for Gaussian mixture sources in the presence of noise. This technique employs a three layered neural network architecture which allows a simple, hierarchical treatment of the problem. We modify the algorithm proposed in the literature to accommodate for space-varying noise and test its performance on simulated astrophysical maps. We also compare the performances of an expectation-maximization and a simulated annealing learning algorithm in estimating the mixture matrix and the source model parameters. The problem with expectation-maximization is that it does not ensure global optimization, and thus the choice of the starting point is a critical task. Indeed, we did not succeed to reach good solutions for random initializations of the algorithm. Conversely, our experiments with simulated annealing yielded initialization-independent results. The mixing matrix and the means and coefficients in the source model were estimated with a good accuracy while some of the variances of the components in the mixture model were not estimated satisfactorily. PMID:12672442

  8. Isotope separation of 17O by photodissociation of ozone with near-infrared laser irradiation

    NASA Astrophysics Data System (ADS)

    Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro; Kuze, Hiroaki

    2012-04-01

    Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of 17O, however, has been very costly due to the lack of appropriate methods that enable efficient production of 17O on an industrial level. In this paper, we report the first 17O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O3-90 vol% CF4 with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of 16O16O17O around 1 μm. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an 17O enrichment factor of 2.2 was attained.

  9. Isotope separation of {sup 17}O by photodissociation of ozone with near-infrared laser irradiation

    SciTech Connect

    Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro; Kuze, Hiroaki

    2012-04-01

    Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of {sup 17}O, however, has been very costly due to the lack of appropriate methods that enable efficient production of {sup 17}O on an industrial level. In this paper, we report the first {sup 17}O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O{sub 3}-90 vol% CF{sub 4} with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of {sup 16}O{sup 16}O{sup 17}O around 1 {mu}m. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an {sup 17}O enrichment factor of 2.2 was attained.

  10. Large magnitude change of water isotope influence by various factors over the Tibetan Plateau region

    NASA Astrophysics Data System (ADS)

    Tian, L.; Yao, T.; Yu, W.

    2010-12-01

    Paleoclimate and paleoenvironment have been rebuilt from isotopic record of ice cores, tree rings, lacustrine sediments, stalagmite and paleo-soil proxy records etc. This reconstruction method is based upon an established acceptance of relationship between present precipitation stable isotopes with one single climatic parameter, mostly air temperature. However, as hydrogen and oxygen isotopes are in the hydrological cycle, any other changes in atmosphere circulation and hydrological conditions also impact the water isotopic composition. The acknowledgment that parameters besides air temperature, affect water isotope composition is especially crucial when considering a long term geological time scale in which atmospheric circulation may not have been constant. Based on the present monitoring results of oxygen isotopes in precipitation, lake water, and glacial ice on the Tibetan Plateau region, we present here a list of the parameters that can result in significant water isotope variations, including seasonal change of precipitation, altitudinal effect, moisture source changes, long-term change of precipitation isotopes and land surface processes. Conclusions show that all these factors can result in 5-11‰ variations in water δ18O, significant enough to distort the paleo-records. Thus, particularly when considering extended geological timescales, it is crucial to consider all factors that affect stable water isotopes before establishing the true paleo-climate and paleo-environment in the Tibetan Plateau region.

  11. On-line experimental results of an argon gas cell-based laser ion source (KEK Isotope Separation System)

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2016-06-01

    KEK Isotope Separation System (KISS) has been developed at RIKEN to produce neutron rich isotopes with N = 126 to study the β -decay properties for application to astrophysics. The KISS is an element-selective mass-separation system which consists of an argon gas cell-based on laser ion source for atomic number selection and an ISOL mass-separation system. The argon gas cell of KISS is a key component to stop and collect the unstable nuclei produced in a multi-nucleon transfer reaction, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off- and on-line experiments to study the basic properties of the gas cell as well as of the KISS. We successfully extracted the laser-ionized stable 56Fe (direct implantation of a 56Fe beam into the gas cell) atoms and 198Pt (emitted from the 198Pt target by elastic scattering with a 136Xe beam) atoms from the KISS during the commissioning on-line experiments. We furthermore extracted laser-ionized unstable 199Pt atoms and confirmed that the measured half-life was in good agreement with the reported value.

  12. Separating temperature from other factors in phenological measurements

    NASA Astrophysics Data System (ADS)

    Schwartz, Mark D.; Hanes, Jonathan M.; Liang, Liang

    2014-09-01

    Phenological observations offer a simple and effective way to measure climate change effects on the biosphere. While some species in northern mixed forests show a highly sensitive site preference to microenvironmental differences (i.e., the species is present in certain areas and absent in others), others with a more plastic environmental response (e.g., Acer saccharum, sugar maple) allow provisional separation of the universal "background" phenological variation caused by in situ (possibly biological/genetic) variation from the microclimatic gradients in air temperature. Moran's I tests for spatial autocorrelation among the phenological data showed significant ( α ≤ 0.05) clustering across the study area, but random patterns within the microclimates themselves, with isolated exceptions. In other words, the presence of microclimates throughout the study area generally results in spatial autocorrelation because they impact the overall phenological development of sugar maple trees. However, within each microclimate (where temperature conditions are relatively uniform) there is little or no spatial autocorrelation because phenological differences are due largely to randomly distributed in situ factors. The phenological responses from 2008 and 2009 for two sugar maple phenological stages showed the relationship between air temperature degree-hour departure and phenological change ranged from 0.5 to 1.2 days earlier for each additional 100 degree-hours. Further, the standard deviations of phenological event dates within individual microclimates (for specific events and years) ranged from 2.6 to 3.8 days. Thus, that range of days is inferred to be the "background" phenological variation caused by factors other than air temperature variations, such as genetic differences between individuals.

  13. Influence of environmental factors on dissolved nitrate stable isotopes under denitrifying conditions - carbon sources and water isotopes

    NASA Astrophysics Data System (ADS)

    Wunderlich, A.; Meckenstock, R.; Einsiedl, F.

    2012-04-01

    Stable isotopes in dissolved nitrate are regularly used to identify sources of nitrate contamination in aquifers and water bodies. A dual isotope plot of 15N and 18O in nitrate can provide good evidence of the origin of such pollution as various sources have different isotopic signatures. Microbial denitrification changes both isotopic values by removing nitrate with lighter isotopes first, thereby increasing δ18O as well as δ15N. This change can distort the determination of sources but also has the potential to be used to identify and quantify microbial denitrification. Previous studies found a wide range of enrichment factors (ɛ) that did not allow conclusions towards the extent of microbial denitrification. However, it was found that during denitrification at each respective field site or laboratory experiment, there was a constant ratio in increase of the values of δ18O in relation to δ15N. That ratio was, however, not constant across field sites and the values published range from below 0.5 to more than 1.0. The reasons for these variations in enrichment factors and relative enrichment of oxygen compared to nitrogen are yet unknown. We conducted microcosm experiments with three different bacterial species to elucidate possible influences of environmental factors on these parameters. As a result we conclude that the type of carbon source available to denitrifying bacteria can play a role in the value of the enrichment factors, but not in the relative enrichment of the two isotopes. Specifically we found that complex hydrocarbons (toluene, benzoate) produce significantly different enrichment factors in nitrate than a simple hydrocarbon substrate (acetate). The relative enrichment of δ18O compared to δ15N was 0.86. We hypothesise that this influence is based on a variation in process kinetics of cross-membrane nitrate transport in relation to intracellular nitrate reduction. The core of the hypothesis is that nitrate transport into the cell becomes rate

  14. Optimized Chemical Separation and Measurement by TE TIMS Using Carburized Filaments for Uranium Isotope Ratio Measurements Applied to Plutonium Chronometry.

    PubMed

    Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Prohaska, Thomas

    2016-06-21

    An optimized method is described for U/Pu separation and subsequent measurement of the amount contents of uranium isotopes by total evaporation (TE) TIMS with a double filament setup combined with filament carburization for age determination of plutonium samples. The use of carburized filaments improved the signal behavior for total evaporation TIMS measurements of uranium. Elevated uranium ion formation by passive heating during rhenium signal optimization at the start of the total evaporation measurement procedure was found to be a result from byproducts of the separation procedure deposited on the filament. This was avoided using carburized filaments. Hence, loss of sample before the actual TE data acquisition was prevented, and automated measurement sequences could be accomplished. Furthermore, separation of residual plutonium in the separated uranium fraction was achieved directly on the filament by use of the carburized filaments. Although the analytical approach was originally tailored to achieve reliable results only for the (238)Pu/(234)U, (239)Pu/(235)U, and (240)Pu/(236)U chronometers, the optimization of the procedure additionally allowed the use of the (242)Pu/(238)U isotope amount ratio as a highly sensitive indicator for residual uranium present in the sample, which is not of radiogenic origin. The sample preparation method described in this article has been successfully applied for the age determination of CRM NBS 947 and other sulfate and oxide plutonium samples. PMID:27240571

  15. A groundwater separation study in boreal wetland terrain: the WATFLOOD hydrological model compared with stable isotope tracers.

    PubMed

    Stadnyk, T; St Amour, N; Kouwen, N; Edwards, T W D; Pietroniro, A; Gibson, J J

    2005-03-01

    Monitoring of stable water isotopes (18O and 2H) in precipitation and surface waters in the Mackenzie River basin of northern Canada has created new opportunities for researchers to study the complex hydrology and hydroclimatology of this remote region. A number of prior studies have used stable isotope data to investigate aspects of the hydrological regime of the wetland-dominated terrain near Fort Simpson, Northwest Territories, Canada. The present paper compares estimates of groundwater contributions to streamflow derived using the WATFLOOD distributed hydrological model, equipped with a new water isotope tracer module, with the results of conventional isotope hydrograph separation for five wetland-dominated catchments along the lower Liard River. The comparison reveals highly promising agreement, verifying that the hydrological model is simulating groundwater flow contributions to total streamflow with reasonable fidelity, especially during the crucial snowmelt period. Sensitivity analysis of the WATFLOOD simulations also reveals intriguing features about runoff generation from channelized fens, which may contribute less to streamflow than previously thought. PMID:15823857

  16. Beta-Decay Spectroscopy of r-Process Nuclei with N = 126 at KEK Isotope Separation System

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Mukai, M.; Kimura, S.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    The β-decay properties of nuclei with N = 126, which are believed to act as progenitors in the rapid neutron capture (r-) process path forming the third peak (A ˜ 195) in the observed r-abundance element distribution, are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We have constructed the KEK Isotope Separation System (KISS), which consists of a gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 and to study their β-decay properties, which are also of interest for astrophysics. We successfully extracted the stable 56Fe and 198Pt beam from KISS at the commissioning on-line experiments. The extraction efficiency was 0.25 and 0.15% for 56Fe and 198Pt, respectively. We can access the nuclei with N = 126 and measure their half-lives using the KISS in the case of the extraction efficiency of 0.1%.

  17. Separating the contributions of vegetation and soil to evapotranspiration using stable isotopes

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Dubbert, Maren; Piayda, Arndt; Correia, Alexandra; Silva, Filipe Costa e.; Kolle, Olaf; Maguás, Cristina; Mosena, Alexander; Pereira, João S.; Rebmann, Corinna; Werner, Christiane

    2015-04-01

    Semi-arid ecosystems contribute about 40% to global net primary productivity, although water-availability limits carbon uptake. Precipitation shows periodical summer droughts and evapotranspiration accounts for up to 95% of water loss of the ecosystem. Thus functional understanding of evapotranspiration and the contributions of evaporation and transpiration from over- and understorey vegetation to water cycling in semi-arid regions is key knowledge in forest management under future climate change. Water isotopes trace water through the compartments of an ecosystem from soil and the vegetation to the atmosphere. They are used to partition evapotranspiration ET into its components evaporation E and transpiration T . The method is, however, sensitive to the knowledge of the isotopic composition of water at the evaporating sites. This led to a discussion recently about the dominance of transpiration in water loss from the terrestrial biosphere, and also how methodological problems could bias these results. Here we present observations from a Portuguese cork-oak woodland. It is a bi-layered system of widely spaced cork-oak trees and a herbaceous layer dominated by native annual forbs and grasses. Water fluxes and their isotopic compositions were measured on bare soil and vegetated plots with a transparent through-flow chamber and a water isotope laser. Soil moisture and temperature were measured in several depths and soil samples were taken for soil water isotope analysis. Based on these observations, we review current strategies of ET partitioning. We highlight pitfalls in the presented strategies and show uncertainty analyses for the different approaches. We show that the isotopic composition of evaporation is very sensitive to the sampling strategy but is described well by a steady-state formulation (Dubbert et al., J Hydrolo 2013). The isotopic composition of transpiration, on the other hand, is not in steady state, most of the time (Dubbert et al., New Phytolo 2014

  18. Plutonium isotopes in the atmosphere of Central Europe: Isotopic composition and time evolution vs. circulation factors.

    PubMed

    Kierepko, Renata; Mietelski, Jerzy W; Ustrnul, Zbigniew; Anczkiewicz, Robert; Wershofen, Herbert; Holgye, Zoltan; Kapała, Jacek; Isajenko, Krzysztof

    2016-11-01

    This paper reports evidence of Pu isotopes in the lower part of the troposphere of Central Europe. The data were obtained based on atmospheric aerosol fraction samples collected from four places in three countries (participating in the informal European network known as the Ring of Five (Ro5)) forming a cell with a surface area of about 200,000km(2). We compared our original data sets from Krakow (Poland, 1990-2007) and Bialystok (Poland, 1991-2007) with the results from two other locations, Prague (Czech Republic; 1997-2004) and Braunschweig (Germany; 1990-2003) to find time evolution of the Pu isotopes. The levels of the activity concentration for (238)Pu and for ((239+240))Pu were estimated to be a few and some tens of nBqm(-3), respectively. However, we also noted some results were much higher (even about 70 times higher) than the average concentration of (238)Pu in the atmosphere. The achieved complex data sets were used to test a new approach to the problem of solving mixing isotopic traces from various sources (here up to three) in one sample. Results of our model, supported by mesoscale atmospheric circulation parameters, suggest that Pu from nuclear weapon accidents or tests and nuclear burnt-up fuel are present in the air. PMID:27450248

  19. Isotopic anomalies of Ne, Xe, and C in meteorites. I - Separation of carriers by density and chemical resistance

    NASA Technical Reports Server (NTRS)

    Ming, Tang; Lewis, Roy S.; Anders, Edward; Grady, M. M.; Wright, I. P.

    1988-01-01

    The carriers of presolar noble gases were studied by isotopically analyzing 19 separates from the Murray and Murchison C2 chondrites for Ne, Xe, C, and N. It is found that the carriers of Ne-E(H) and Xe-S are resistant to HCl, HF, boiling HClO4, and CrO3-H2SO4, and thus must be either diamond or some resistant carbide or oxide. The carrier of Ne-E(L) may be some form of amorphous carbon with delta C13 of about +340 percent. A new carbon component, C theta, found as 0.2-2-micron inclusions in Murchison spinel, is amorphous and contains little or no noble gas. A new heavy nitrogen component is found which has an abundance of about 1 ppm in the bulk meteorite, combusts at 450-500 C, and may be associated wtih isotopically normal carbon or with C-alpha.

  20. Isotopic anomalies of Ne, Xe, and C in meteorites. I - Separation of carriers by density and chemical resistance

    NASA Astrophysics Data System (ADS)

    Ming, T.; Lewis, R. S.; Anders, E.; Grady, M. M.; Wright, I. P.; Pillinger, C. T.

    1988-05-01

    The carriers of presolar noble gases were studied by isotopically analyzing 19 separates from the Murray and Murchison C2 chondrites for Ne, Xe, C, and N. It is found that the carriers of Ne-E(H) and Xe-S are resistant to HCl, HF, boiling HClO4, and CrO3-H2SO4, and thus must be either diamond or some resistant carbide or oxide. The carrier of Ne-E(L) may be some form of amorphous carbon with delta C13 of about +340 percent. A new carbon component, C theta, found as 0.2-2-micron inclusions in Murchison spinel, is amorphous and contains little or no noble gas. A new heavy nitrogen component is found which has an abundance of about 1 ppm in the bulk meteorite, combusts at 450-500 C, and may be associated wtih isotopically normal carbon or with C-alpha.

  1. Improvement of Pt/C/PTFE catalyst type used for hydrogen isotope separation

    SciTech Connect

    Vasut, F.; Preda, A.; Zamfirache, M.; Bornea, A. M.; Stefanescu, I.; Pearsica, C.

    2008-07-15

    The CANDU reactor from the Nuclear Power plant Cernavoda (Romania)) is the most powerful tritium source from Europe. This reactor is moderated and cooled by heavy water that becomes continuously contaminated with tritium. Because of this reason, the National R and amp;D Inst. for Cryogenic and Isotopic Technologies developed a detritiation technology based on catalytic isotopic exchange and cryogenic distillation. The main effort of our Inst. was focused on finding more efficient catalysts with a longer operational life. Some of the tritium removal processes involved in Fusion Science and Technology use this type of catalyst 1. Several Pt/C/PTFE hydrophobic catalysts that could be used in isotopic exchange process 2,3,4 were produced. The present paper presents a comparative study between the physical and morphological properties of different catalysts manufactured by impregnation at our institute. The comparison consists of a survey of specific surface, pores volume and pores distribution. (authors)

  2. Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Fitoussi, Caroline; Schmidt, Max W.; Bourdon, Bernard

    2014-02-01

    The conditions of core formation and the abundances of the light elements in Earth's core remain debated. Silicon isotope fractionation provides a tool contributing to this subject. We present experimentally determined Si isotope fractionation factors between liquid metal and liquid silicate at 1450 °C and 1750 °C, which allow calibrating the temperature dependence of Si isotope fractionation. Experiments were performed in a centrifuging piston cylinder at 1 GPa, employing both graphite and MgO capsules. Tin was used to lower the melting temperature of the metal alloys for experiments performed at 1450 °C. Tests reveal that neither Sn nor C significantly affects Si isotope fractionation. An alkaline fusion technique was employed to dissolve silicate as well as metal phases prior to ion exchange chemistry and mass spectrometric analysis. The results show that metal is consistently enriched in light isotopes relative to the silicate, yielding average metal-silicate fractionation factors of -1.48±0.08‰ and -1.11±0.14‰ at 1450 °C and 1750 °C, respectively. The temperature dependence of equilibrium Si isotope fractionation between metal and silicate can thus be described as Δ30SiMetal-Silicate=-4.42(±0.05)×106/T2. The Si isotope equilibrium fractionation is thus about 1.7 times smaller than previously proposed on the basis of experiments. A consequence of this smaller fractionation is that the calculated difference between the Si isotope composition of the bulk Earth and that of the bulk silicate Earth generated by core formation is smaller than previously thought. It is therefore increasingly difficult to match the Si isotope composition of the bulk silicate Earth with that of chondrites for metal-silicate equilibration temperatures above ∼2500 K. This suggests that Si isotopes were more sensitive to the early stages of core formation when low oxygen fugacities allowed significant incorporation of Si into metal.

  3. Determination of Plutonium Isotope Ratios at Very Low Levels by ICP-MS using On-Line Electrochemically Modulated Separations

    SciTech Connect

    Liezers, Martin; Lehn, Scott A; Olsen, Khris B; Farmer, Orville T; Duckworth, Douglas C

    2009-10-01

    Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by the applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.

  4. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter

    NASA Astrophysics Data System (ADS)

    Wang, Guoan; Jia, Yufu; Li, Wei

    2015-06-01

    Decomposition of soil organic matter (SOM) plays an important role in the global carbon cycle because the CO2 emitted from soil respiration is an important source of atmospheric CO2. Carbon isotopic fractionation occurs during SOM decomposition, which leads to 12C to enrich in the released CO2 while 13C to enrich in the residual SOM. Understanding the isotope fractionation has been demonstrated to be helpful for studying the global carbon cycle. Soil and litter samples were collected from soil profiles at 27 different sites located along a vertical transect from 1200 to 4500 m above sea level (a.s.l.) in the south-eastern side of the Tibetan Plateau. Their carbon isotope ratios, C and N concentrations were measured. In addition, fiber and lignin in litter samples were also analyzed. Carbon isotope fractionation factor (α) during SOM decomposition was estimated indirectly as the slope of the relationship between carbon isotope ratios of SOM and soil C concentrations. This study shows that litter quality and soil water play a significant role in isotope fractionation during SOM decomposition, and the carbon isotope fractionation factor, α, increases with litter quality and soil water content. However, we found that temperature had no significant impact on the α variance.

  5. Factors influencing stable isotopes and growth of algae in oil sands aquatic reclamation.

    PubMed

    Boutsivongsakd, Monique; Farwell, Andrea J; Chen, Hao; Dixon, D George

    2015-01-01

    Previous studies reported (15)N enrichment of biota in reclamation wetlands that contain oil sands processed material (e.g., processed water and tailings); however, there is little information on the factors controlling (15)N enrichment in these systems. In this microcosm study, the aim was to examine stable C and N isotopes and growth (chlorophyll a [chl a] and dry weight) of algae as a function of exposure to different sources and concentrations of water-soluble fractions (WSF) derived from tailings. Two sources of tailings including mature fine tailings (MFT) and consolidated tailings (CT) and peat-mineral overburden were utilized to generate separate WSF that differed in water quality. In general, there was (15)N enrichment of filamentous algae along the increasing gradient of WSF/nutrient concentrations in both CT and peat microcosms, and among the different sources, algae were more (15)N enriched in CT WSF than in peat WSF. Growth of filamentous algae was inhibited at higher WSF concentrations, possibly due to reduced light availability at elevated levels of fine clay particles in MFT microcosms and colored dissolved organic carbon (DOC) in peat microcosms. Filamentous algae displayed lower biomass and (15)N depletion in 100% peat WSF. This study indicated that both the quality (source) and quantity of WSF affected algal growth and directly and/or indirectly influenced δ(15)N of algae. The distinct (15)N enrichment of primary producers derived from tailings suggest that stable N isotopes might be useful to trace exposure to oil sands processed material in biota that utilize these resources in reclaimed systems constructed with tailings or natural systems that receive tailings dyke seepage. PMID:25506635

  6. Trophic Discrimination Factors of Stable Carbon and Nitrogen Isotopes in Hair of Corn Fed Wild Boar

    PubMed Central

    Holá, Michaela; Ježek, Miloš; Kušta, Tomáš; Košatová, Michaela

    2015-01-01

    Stable isotope measurements are increasingly being used to gain insights into the nutritional ecology of many wildlife species and their role in ecosystem structure and function. Such studies require estimations of trophic discrimination factors (i.e. differences in the isotopic ratio between the consumer and its diet). Although trophic discrimination factors are tissue- and species- specific, researchers often rely on generalized, and fixed trophic discrimination factors that have not been experimentally derived. In this experimental study, captive wild boar (Sus scrofa) were fed a controlled diet of corn (Zea mays), a popular and increasingly dominant food source for wild boar in the Czech Republic and elsewhere in Europe, and trophic discrimination factors for stable carbon (Δ13C) and nitrogen (Δ15N) isotopes were determined from hair samples. The mean Δ13C and Δ15N in wild boar hair were –2.3 ‰ and +3.5 ‰, respectively. Also, in order to facilitate future derivations of isotopic measurements along wild boar hair, we calculated the average hair growth rate to be 1.1 mm d-1. Our results serve as a baseline for interpreting isotopic patterns of free-ranging wild boar in current European agricultural landscapes. However, future research is needed in order to provide a broader understanding of the processes underlying the variation in trophic discrimination factors of carbon and nitrogen across of variety of diet types. PMID:25915400

  7. Trophic discrimination factors of stable carbon and nitrogen isotopes in hair of corn fed wild boar.

    PubMed

    Holá, Michaela; Ježek, Miloš; Kušta, Tomáš; Košatová, Michaela

    2015-01-01

    Stable isotope measurements are increasingly being used to gain insights into the nutritional ecology of many wildlife species and their role in ecosystem structure and function. Such studies require estimations of trophic discrimination factors (i.e. differences in the isotopic ratio between the consumer and its diet). Although trophic discrimination factors are tissue- and species-specific, researchers often rely on generalized, and fixed trophic discrimination factors that have not been experimentally derived. In this experimental study, captive wild boar (Sus scrofa) were fed a controlled diet of corn (Zea mays), a popular and increasingly dominant food source for wild boar in the Czech Republic and elsewhere in Europe, and trophic discrimination factors for stable carbon (Δ13C) and nitrogen (Δ15N) isotopes were determined from hair samples. The mean Δ13C and Δ15N in wild boar hair were -2.3‰ and +3.5‰, respectively. Also, in order to facilitate future derivations of isotopic measurements along wild boar hair, we calculated the average hair growth rate to be 1.1 mm d(-1). Our results serve as a baseline for interpreting isotopic patterns of free-ranging wild boar in current European agricultural landscapes. However, future research is needed in order to provide a broader understanding of the processes underlying the variation in trophic discrimination factors of carbon and nitrogen across of variety of diet types. PMID:25915400

  8. American Indians and Foster Care: Cultural Factors and Separation

    ERIC Educational Resources Information Center

    Ishisaka, Hideki

    1978-01-01

    Reports on a 2 1/2-year research and demonstration project which had as its major goal the development of procedures by which American Indian families could be assisted to avert child separation. Addendum contains comments on the relationship between the problems described by the author and the Indian Child Welfare Act. (BR)

  9. [Meta-analysis of stable carbon and nitrogen isotopic enrichment factors for aquatic animals].

    PubMed

    Guo, Liang; Sun, Cui-ping; Ren, Wei-zheng; Zhang, Jian; Tang, Jian-iun; Hu, Liana-liang; Chen, Xin

    2016-02-01

    Isotopic enrichment factor (Δ, the difference between the δ value of food and a consumer tissue) is an important parameter in using stable isotope analysis (SIA) to reconstruct diets, characterize trophic relationships, elucidate patterns of resource allocation, and construct food webs. Isotopic enrichment factor has been considered as a constancy value across a broad range of animals. However, recent studies showed that the isotopic enrichment factor differed among various types of animals although the magnitude of variation was not clear. Here, we conducted a meta-analysis to synthesize and compare Δ13C and Δ15N among four types of aquatic animals (teleosts, crustaceans, reptiles and molluscs). We searched for papers published before 2014 on Web of Science and CNKI using the key words "stable isotope or isotopic fractionation or fractionation factor or isotopic enrichment or trophic enrichment". Forty-two publications that contain 140 studies on Δ13C and 159 studies on Δ15N were obtained. We conducted three parallel meta-analyses by using three types of weights (the reciprocal of variance as weights, the sample size as weights, and equal weights). The results showed that no significant difference in Δ13C among different animal types (teleosts 1.0 per thousand, crustaceans 1.3 per thousand, reptiles 0.5 per thousand, and molluscs 1.5 per thousand), while Δ15N values were significantly different (teleosts 2.4 per thousand, crustaceans 3.6 per thousand, reptiles 1.0 per thousand and molluscs 2.5 per thousand). Our results suggested that the overall mean of Δ13C could be used as a general enrichment factor, but Δ15N should be chosen according to the type of aquatic animals in using SIA to analyze trophic relationships, patterns of resource allocation and food webs. PMID:27396136

  10. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  11. Stable isotope analysis of diet confirms niche separation of two sympatric species of Namib Desert lizard.

    PubMed

    Murray, Ian W; Lease, Hilary M; Hetem, Robyn S; Mitchell, Duncan; Fuller, Andrea; Woodborne, Stephan

    2016-01-01

    We used stable isotopes of carbon and nitrogen to study the trophic niche of two species of insectivorous lizards, the Husab sand lizard Pedioplanis husabensis and Bradfield's Namib day gecko living sympatrically in the Namib Desert. We measured the δ(13) C and δ(15) N ratios in lizard blood tissues with different turnover times (whole blood, red blood cells and plasma) to investigate lizard diet in different seasons. We also measured the δ(13) C and δ(15) N ratios in available arthropod prey and plant tissues on the site, to identify the avenues of nutrient movement between lizards and their prey. Through the use of stable isotope mixing models, we found that the two lizard species relied on a largely non-overlapping but seasonally variable array of arthropods: P. husabensis primarily fed on termites, beetles and wasps, while R. bradfieldi fed mainly on ants, wasps and hemipterans. Nutrients originating from C3 plants were proportionally higher for R. bradfieldi than for P. husabensis during autumn and late autumn/early winter, although not summer. Contrary to the few available data estimating the trophic transfer of nutrients in ectotherms in mixed C3 and C4 /crassulacean acid metabolism (CAM) plant landscapes, we found that our lizard species primarily acquired nutrients that originated from C4 /CAM plants. This work adds an important dimension to the general lack of studies using stable isotope analyses to estimate lizard niche partitioning and resource use. PMID:26817923

  12. Isotopic separation of sup 3 He/ sup 4 He from solar wind gases evolved from the lunar regolith

    SciTech Connect

    Wilkes, W.R. ); Wittenberg, L.J. )

    1992-01-01

    The potential benefits of {sup 3}He when utilized in a nuclear fusion reactor to provide clean, safe electricity in the 21st century for the world's inhabitants has been documented. Unfortunately, He is scarce on earth. Large quantities of {sup 3}He, perhaps a million tonnes, are embedded in the lunar regolith, presumably implanted by the solar wind together with other elements, notably {sup 4}He, H, C and N. Several studies have suggested processing the lunar regolith and recovering these valuable solar wind gases. Once released, these gases can be separated for use. The separation of helium isotopes is described in this paper. {sup 3}He constitutes only 400 at{center dot}ppm of lunar He, too dilute to separate economically by distillation alone. A superfluid'' separator is being considered to preconcentrate the {sup 3}He. The superfluid separator consists of a porous filter in a tube maintained at a temperature of 2.17 K or less. Although the {sup 4}He, which is superfluid below 2.17 K, flows readily through the filter, the He is blocked by the filter, and becomes enriched at the feed end. He can be enriched to about 10% in such a system. The enriched product from the superfluid separation serves as a feed to a distillation apparatus operating at a pressure of 9 kPa, with a boiler temperature of 2.4 K, and a condenser temperature of 1.6 K. Under constant flow conditions, a 99.9% enriched He product can be produced in this apparatus. The heat rejection load of the refrigeration equipment necessary to cool the separation operations would be conducted during the lunar nights.

  13. Isotopic separation of {sup 3}He/{sup 4}He from solar wind gases evolved from the lunar regolith

    SciTech Connect

    Wilkes, W.R.; Wittenberg, L.J.

    1992-09-01

    The potential benefits of {sup 3}He when utilized in a nuclear fusion reactor to provide clean, safe electricity in the 21st century for the world`s inhabitants has been documented. Unfortunately, He is scarce on earth. Large quantities of {sup 3}He, perhaps a million tonnes, are embedded in the lunar regolith, presumably implanted by the solar wind together with other elements, notably {sup 4}He, H, C and N. Several studies have suggested processing the lunar regolith and recovering these valuable solar wind gases. Once released, these gases can be separated for use. The separation of helium isotopes is described in this paper. {sup 3}He constitutes only 400 at{center_dot}ppm of lunar He, too dilute to separate economically by distillation alone. A ``superfluid`` separator is being considered to preconcentrate the {sup 3}He. The superfluid separator consists of a porous filter in a tube maintained at a temperature of 2.17 K or less. Although the {sup 4}He, which is superfluid below 2.17 K, flows readily through the filter, the He is blocked by the filter, and becomes enriched at the feed end. He can be enriched to about 10% in such a system. The enriched product from the superfluid separation serves as a feed to a distillation apparatus operating at a pressure of 9 kPa, with a boiler temperature of 2.4 K, and a condenser temperature of 1.6 K. Under constant flow conditions, a 99.9% enriched He product can be produced in this apparatus. The heat rejection load of the refrigeration equipment necessary to cool the separation operations would be conducted during the lunar nights.

  14. Continuous production of tritium in an isotope-production reactor with a separate circulation system

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

  15. Isotopic Separation Analysis of Infinitesimal Concentrations of Hydrogen Using Trace Reduction Detector

    SciTech Connect

    Kawano, Takao; Tsuboi, Naohiro; Tsujii, Hirotsugu; Asakura, Yamato; Uda, Tatsuhiko

    2005-07-15

    A previously developed analyzer for detecting extremely small concentrations of hydrogen in air was evaluated by using it to distinguish hydrogen isotopes. The analyzer utilizes the functions of a gas chromatograph and an atomic absorption spectrophotometer and is based on the reduction reaction of mercuric oxide with hydrogen. Three test samples were used: gas mixtures containing both protium and deuterium with almost equal concentrations of about 5, 20, or 50 cm{sup 3}/1000 m{sup 3} diluted in nitrogen. Each measurement was repeated more than 30 times, and chromatograms were obtained for each test sample. Examination of the chromatograms showed that the retention times for the protium and deuterium could be clearly distinguished. The retention times were virtually constant and indistinguishable, independent of the concentration and repetition time. The peak areas for the protium and deuterium were also stable, independent of the repetition time. Moreover, there was a clear linear relationship between the peak areas and concentrations for both elements. These results show that the analyzer can distinguish the two hydrogen isotopes and estimate concentrations of each as small as about 5 cm{sup 3}/1000 m{sup 3}. They also show that it may be possible to use the analyzer to monitor tritium concentrations.

  16. SEPARATING THE EFFECTS OF LEAD AND SOCIAL FACTORS ON IQ

    EPA Science Inventory

    Initial evaluations of 104 low-socioeconomic status black children screened by the local community health departments in North Carolina showed significant effects of lead in the range 6-59 micrograms/dl on IQ after controlling for concomitant social factors, such as socioeconomic...

  17. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    SciTech Connect

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent.

  18. Recent developments of the ion sources at Tri University Meson Factory/Isotope Separator and ACcelerator Facility

    SciTech Connect

    Bricault, P. G.; Ames, F.; Dombsky, M.; Labrecque, F.; Lassen, J.; Mjos, A.; Minor, G.; Tigelhoefer, A.

    2012-02-15

    This paper describes the recent progresses concerning the on-line ion source at the Tri University Meson Factory/Isotope Separator and ACcelerator (TRIUMF/ISAC) Radioactive Ion-Beam Facility; description of the new design of the surface-ion-source for improved stability of the beam intensity, description of the transport path to the east target station at ISAC, description of the new brazing techniques that solved recurrent problems with water leaks on the target/ion source assembly in the vacuum system, finally, recent developments concerning the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source are reported. In particular, a study on the effect of the plasma chamber volume on the ionization efficiency was completed.

  19. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  20. Conformational effect of dicyclo-hexano-18-crown-6 on isotopic fractionation of zinc: DFT approach

    SciTech Connect

    Boda, A.; Singha Deb, A. K.; Ali, Sk. M.; Shenoy, K. T.; Ghosh, S. K.

    2014-04-24

    Generalized gradient approximated BP86 density functional employing triple zeta valence plus polarization (TZVP) basis set has been used to compute the reduced partition function ratio and isotopic separation factor for zinc isotopes. The isotopic separation factor was found to be in good agreement with the experimental results. The isotopic separation factor was found to depend on the conformation of the crown ether ligand. The trans-trans conformation shows the highest fractionation compared to cis-cis conformer. The present theoretical results can thus be used to plan the isotope separation experiments.

  1. Innovative lasers for uranium isotope separation. Progress report for the period September 1, 1989--May 31, 1990

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1990-06-01

    Copper vapor lasers have important applications to uranium atomic vapor laser isotope separation (AVLIS). The authors have spent the first year of the project investigating two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave and (2) electron beam excitation/pumping of large-volume copper vapor lasers. During the first year, the experiments have been designed and constructed and initial data has been taken. Highlights of some of the first year results as well as plans for the future include the following: Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, both pulsed (5 kW, 5kHz) and CW (0--500 Watts) have been investigated using heated copper chloride as the copper source. The visible emitted light has been observed and intense lines at 510.6 nm and 578.2 nm have been observed. Initial measurements of the electric field strengths have been taken with probes, the plasma volume has been measured with optical techniques, and the power has been measured with power meters. A self-consistent electromagnetic model of the cavity/plasma system which uses the above data as input shows that the copper plasma has skin depths around 100 cm, densities around 10{sup 12} {number_sign}/cc, collisional frequencies around 10{sup 11}/sec., conductivities around 0.15 (Ohm-meter){sup {minus}1}. A simple model of the heat transfer predicts temperatures of {approximately}900 K. All of these parameters indicate that microwave discharges may be well suited as a pump source for copper lasers. These preliminary studies will be continued during the second year with additional diagnostics added to the system to verify the model results. Chemical kinetics of the system will also be added to the model.

  2. Two-cells phase separation in shallow submarine hydrothermal system at Milos Island, Greece: Boron isotopic evidence

    NASA Astrophysics Data System (ADS)

    Wu, Shein-Fu; You, Chen-Feng; Wang, Bo-Shian; Valsami-Jones, Eugenia; Baltatzis, Emmanuel

    2011-04-01

    Three types of hydrothermal vent fluids, herein referred to as cave, submarine-brine and seawater-like, were recovered from a shallow submerged system at Milos in the Aegean Sea, Greece, for detailed chemical and isotopic analyses. The cave fluids discharge through rock fissures near sea-level and have low pH, chlorinity, and B concentrations relative to seawater. The submarine-brine fluids are characterized by high Cl and contain >10 times seawater B concentrations. A scenario involving a two-cells circulation is proposed; one occurs at 1-2 km and another at shallower depth. The deeper saline reservoir has experienced subcritical phase separation, partitioning 0.42 mM B in vapor and 6.8 mM in brine with no detectable isotopic fractionation. The reaction temperature in the saline reservoir is 313°C calculated from the Na-K-Ca geothermometry. The vapors rise directly to form the cave vents, whereas the saline fluids transport in different pathways and are influenced by seawater mixing to form the variable submarine-brine fluids. The seawater-like fluids circulate at shallower depths, where calculated temperature is 248°C and show slightly diluted B (0.36-0.41 mM) and seawater δ11B. These fluids probably resulted from heating of down-flow seawater and may have experienced groundwater discharge and partial Mg removal. This study represents the first two-cells circulation occurring at Milos and emphasizes the important role of phase separation in shallow submarine hydrothermal system.

  3. Dipole-strength distributions up to the particle-separation energies and photodissociation of Mo isotopes

    NASA Astrophysics Data System (ADS)

    Schwengner, R.; Benouaret, N.; Beyer, R.; Dönau, F.; Erhard, M.; Frauendorf, S.; Grosse, E.; Junghans, A. R.; Klug, J.; Kosev, K.; Nair, C.; Nankov, N.; Rusev, G.; Schilling, K. D.; Wagner, A.

    2007-05-01

    Dipole-strength distributions in the nuclides 92Mo, 98Mo and 100Mo have been investigated in photon-scattering experiments with bremsstrahlung at the superconducting electron accelerator ELBE of the Forschungszentrum Rossendorf. A simulation of γ cascades was performed in order to estimate the distribution of inelastic transitions to low-lying states and thus to deduce the primary dipole-strength distribution up to the neutron-separation energies. The absorption cross sections obtained connect smoothly to ( γ, n) cross sections and give novel information about the low-energy tail of the Giant Dipole Resonance below the neutron-separation energies. The experimental cross sections are compared with predictions of a Quasiparticle-Random-Phase Approximation (QRPA) in a deformed basis. Photoactivation experiments were performed at various electron energies to study the 92Mo( γ, n), 92Mo( γ, p), 92Mo( γ, α) and 100Mo( γ, n) reactions. The deduced activation yields are compared with theoretical predictions.

  4. Separation of drainage runoff during rainfall-runoff episodes using the stable isotope method and drainage water temperature

    NASA Astrophysics Data System (ADS)

    Zajíček, Antonín; Kvítek, Tomáš; Pomije, Tomáš

    2014-05-01

    Stabile isotopes of 2H 18O and drainage water temperature were used as natural tracers for separation rainfall-runoff event hydrograph on several tile drained catchments located in Bohemian-Moravian Highland, Czech Republic. Small agricultural catchments with drainage systems built in slopes are typical for foothill areas in the Czech and Moravian highland. Often without permanent surface runoff, the drainage systems represent an important portion of runoff and nitrogen leaching out of the catchment. The knowledge of the drainage runoff formation and the origin of its components are prerequisites for formulation of measures leading to improvement of the drainage water quality and reduction of nutrient leaching from the drained catchments. The results have proved presence of event water in the drainage runoff during rainfall-runoff events. The proportion of event water observed in the drainage runoff varied between 15 - 60 % in the summer events and 0 - 50 % in winter events, while the sudden water temperature change was between 0,1 - 4,2 °C (2 - 35 %). The comparison of isotope separation of the drainage runoff and monitoring the drainage water temperature have demonstrated that in all cases of event water detected in the runoff, a rapid change in the drainage water temperature was observed as well. The portion of event water in the runoff grows with the growing change in water temperature. Using component mixing model, it was demonstrated that water temperature can be successfully used at least as a qualitative and with some degree of inaccuracy as a quantitative tracer as well. The drawback of the non-conservative character of this tracer is compensated by both its economic and technical accessibility. The separation results also resemble results of separations at small streams. Together with a similarly high speed of the discharge reaction to beginning of precipitation, it is obvious that the mechanism of surface runoff formation and drainage runoff formation

  5. Baseflow separation in a premontane transitional rainforest using stable isotope techniques

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; DuMont, A.; Roark, E.; Cahill, A. T.; Brumbelow, J. K.

    2013-12-01

    Hydrologic, geologic, and biologic processes are critical to understanding the ecosystem in the tropical premontane transitional forests of Costa Rica. Precipitation is significantly lower during the dry season, and incoming rainfall can be completely intercepted and re-evaporated by the canopy during light events. These canopy processes can affect the rates of runoff and infiltration by changing the quantity and timing of rainfall reaching the ground surface. However, the resulting partitioning of stream water sources between event-water and baseflow from groundwater is not well quantified due to limited accessibility and complex subsurface conditions. This study focuses on research conducted at the Texas A&M Soltis Center for Education and Research, near San Ramón, Costa Rica. We have monitored a 2.2 ha watershed there, measuring precipitation and transpiration rates for over two years, and groundwater levels and stream flow rates for nearly one year. Precipitation rates for the watershed averaged 4.4 m/yr since 2010. Stream flow (runoff, spring flow, and baseflow) averaged 0.09 m^3/sec during the 2012-2013 wet seasons. At 1.2 mm/day, transpiration was a relatively minor component of the water budget. Over a 40-day span during summer 2013, we collected a combination of daily and rain-event based samples from locations throughout the watershed. Sources included: the main stream and two small tributaries, groundwater from piezometers, pore water from suction lysimeters, throughfall and stemflow from under canopy collection systems, and xylem water from 8 tree species across the watershed. We then measured stable isotope fractions (δ18O and δD) in the water using a Picarro L2120i CRDS. Isotope ratios for all surface water averaged -5.50‰ for δ18O and -28.00‰ for δD, while that measured under baseflow conditions were -5.45‰ for δ18O and -29.18‰ for δD. These results indicate that baseflow is the dominate source of stream water even in the wet season

  6. Towards high precision measurements of nuclear g-factors for the Be isotopes

    NASA Astrophysics Data System (ADS)

    Takamine, A.; Wada, M.; Okada, K.; Ito, Y.; Schury, P.; Arai, F.; Katayama, I.; Imamura, K.; Ichikawa, Y.; Ueno, H.; Wollnik, H.; Schuessler, H. A.

    2016-06-01

    We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of 11Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.

  7. Separating Continental Mineral Dust from Cosmic Dust using Platinum Group Element Concentrations and Osmium Isotopes in Ancient Polar Ice

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Jackson, B.; Osterberg, E. C.; Sharma, M.

    2015-12-01

    The platinum group element (PGEs: Pt, Pd, Rh, Ir, Os, and Ru) accumulation in ancient polar archives have been argued to trace cosmic dust and "smoke" from larger meteors but the PGE concentration data lack specificity. For example, the extent to which the terrestrial volcanism/dust has contributed to the PGE inventory of polar ice cannot be readily evaluated. Since the Os isotope compositions (187Os/188Os ratio) of the terrestrial and extraterrestrial sources are distinctly different from each other, the PGE concentrations when combined with Os isotope composition have the potential to untangle contributions from these sources. Platinum group element concentration determinations in polar ice cores are highly challenging due to their extremely low concentrations (down to 10-15 g/g or fg/g). Here, a new procedure is presented that allows PGEs and Os isotope compositions to be determined from a ~50 g sample of polar ice. Decontaminated ice-melt is spiked with 101Ru, 106Pd, 190Os, 191Ir, and 198Pt and frozen at -20 °C in quartz-glass ampoules. A mixture of purified HNO3 and H2O2 is then added and the sample is heated to 300 °C at 128bar using a High Pressure Asher. This allows all spikes to be equilibrated with the sample PGEs and all Os species are oxidized to OsO4. The resulting OsO4 is extracted using distillation, purified, and measured using negative thermal ionization mass spectrometry. PGEs are then separated and purified using two stage column chromatography and their concentrations determined by isotope dilution using a triple quadruople inductively coupled plasma mass spectrometer coupled to an Apex de-solvation nebulizer. The developed method was applied to modern Greenland firn and snow. The PGE concentrations of the firn are 4.0 fg/g for Ir, 20 fg/g for Ru, 590 fg/g for Pt, 38 fg/g for Pd, and 1.3 fg/g for Os, while those of the snow are 3.0 fg/g for Ir, 53 fg/g for Ru, 360 fg/g for Pt, 32 fg/g for Pd, and 0.4 fg/g for Os, respectively. A comparison

  8. Cr isotope fractionation factors for Cr(VI) reduction by a metabolically diverse group of bacteria

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Johnson, Thomas M.; Sanford, Robert A.

    2014-10-01

    Reduction of Cr(VI) is an important process that determines the geochemical behavior, mobility and bioavailability of Cr in both terrestrial and marine environments. Many metabolically diverse microorganisms possess Cr(VI) reduction capacity. Cr(VI) reduction fractionates Cr isotopes and thus 53Cr/52Cr ratios can be used to monitor Cr(VI) reduction and redox conditions. The magnitude of isotopic fractionation (ε) for a variety of microbial reduction mechanisms must be known for accurate interpretation of observed shifts in 53Cr/52Cr ratios. We determined isotopic fractionation factors for Cr(VI) reduction by metal reducers Geobacter sulfurreducens and Shewanella sp. strain NR, a denitrifying soil bacterium Pseudomonas stutzeri DCP-Ps1, and a sulfate reducer Desulfovibrio vulgaris. All bacteria investigated in this study produced significant Cr isotope fractionation. The fractionation (ε) for G. sulfurreducens, Shewanella sp. (NR), P. stutzeri DCP-Ps1, and D. vulgaris were -3.03‰ ± 0.12‰, -2.17‰ ± 0.22‰, -3.14‰ ± 0.13‰, and -3.01‰ ± 0.11‰, respectively. Despite differences in microbial strains in this study, the ε did not vary significantly except for Shewanella sp. (NR). Our results suggest that strong isotopic fractionation is induced during Cr(VI) reduction under electron donor poor (∼300 μM) conditions.

  9. Factors Moderating Children's Adjustment to Parental Separation: Findings from a Community Study in England

    ERIC Educational Resources Information Center

    Cheng, Helen; Dunn, Judy; O'Connor, Thomas G.; Golding, Jean

    2006-01-01

    Research findings show that there is marked variability in children's response to parental separation, but few studies identify the sources of this variation. This prospective longitudinal study examines the factors modifying children's adjustment to parental separation in a community sample of 5,635 families in England. Children's…

  10. A gas chromatograph/mass spectrometry method for determining isotopic distributions in organic compounds used in the chemical approach to stable isotope separation

    SciTech Connect

    Martinez, A.M.; Spall, W.D.; Smith, B.F.

    1990-01-01

    A variety of gas chromatograph/mass spectrometry (GC/MS) methods have been developed to resolve benzene, benzophenone, anthracene, fluorenone, and their respective stable isotope analogs from other components by gas chromatography. The ratio of stable isotope-labeled material to natural isotopic abundance compounds is determined from the mass spectra averaged across the chromatographic peak. Both total ion and selective ion chromatographic approaches were used for relative data and comparison. 9 refs., 11 tabs.