Science.gov

Sample records for isotope shift measurement

  1. Measurement of isotope shifts and hyperfine structure in Zr II

    NASA Astrophysics Data System (ADS)

    Rosner, S. D.; Holt, R. A.

    2016-06-01

    We have applied fast-ion-beam laser-fluorescence spectroscopy to measure the isotope shifts (IS) of 51 optical transitions in the wavelength range 420.6–461.4 nm and the hyperfine structures (hfs) of 11 even parity and 30 odd parity levels in Zr II. The IS and many of the hfs measurements are the first for these transitions and levels. These atomic data are very important for astrophysical studies of chemical abundances, allowing correction for saturation and the effects of blended lines. They also provide important constraints on stellar diffusion modeling and provide a benchmark for theoretical atomic structure calculations.

  2. Isotope shift measurements on the D1 line in francium isotopes at TRIUMF

    NASA Astrophysics Data System (ADS)

    Collister, R.; Tandecki, M.; Gwinner, G.; Behr, J. A.; Pearson, M. R.; Gomez, E.; Aubin, S.; Zhang, J.; Orozco, L. A.

    2013-05-01

    Francium is the heaviest alkali and has no stable isotopes. The longest-lived among them, with half-lives from seconds to a few minutes, are now available in the new Francium Trapping Facility at TRIUMF, Canada, for future weak interaction studies. We present isotope shift measurements on the 7S1 / 2 --> 7P1 / 2 (D 1) transition on three isotopes, 206, 207 and 213 in a magneto-optical trap. The shifts are measured using a c.w. Ti:sapphire laser locked to a stabilized cavity at the mid-point between two hyperfine transitions of the reference isotope 209Fr. Scanning tunable microwave sidebands locate transitions in the other isotopes. In combination with the D 2 isotope shifts, analysis can provide a separation of the field shift, due to a changing nuclear charge radius, and specific mass shift, due to changing electron correlations, in these isotopes. Work supported by NSERC and NRC from Canada, NSF and DOE from USA, CONYACT from Mexico.

  3. Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination

    SciTech Connect

    Noertershaeuser, W.; Sanchez, R.; Ewald, G.; Dax, A.; Goette, S.; Kluge, H.-J.; Kuehl, Th.; Wojtaszek, A.; Behr, J.; Bricault, P.; Dilling, J.; Dombsky, M.; Lassen, J.; Levy, C. D. P.; Pearson, M.; Bushaw, B. A.; Drake, G. W. F.; Pachucki, K.; Puchalski, M.; Yan, Z.-C.

    2011-01-15

    Changes in the mean square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8-ms-lifetime isotope with production rates on the order of only 10 000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope {sup 11}Li at the on-line isotope separators at GSI, Darmstadt, Germany, and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

  4. Isotope-Shift Measurement of High-energy Highly Charged Ion Beams

    NASA Astrophysics Data System (ADS)

    Ozawa, S.; Ariga, T.; Inabe, N.; Kase, M.; Tanihata, I.; Wakasugi, M.; Yano, Y.

    2001-10-01

    Isotope-shift measurement by the laser spectroscopic method was aimed to apply for radioactive isotope beams up to uranium created by projectile fragmentation at RIKEN RI beam factory (T. Katayama, et al.,): Nucl. Phys., A626, 545c (1997).to make a systematic study of the mean square nuclear charge radii. The present work was started to verify the feasibility of the method. Projectile fragments are high-energy highly charged ions and weak currents. Therefore we designed ultralow-background photon-detection system (M. Wakasugi, et al.,): Nucl. Instr. and Meth., A419, 50 (1998).for collinear laser spectroscopy of such ion beams. To demonstrate isotope-shift measurement, we measured precisely the 1s2s ^3S_1-1s2p ^3P_0,1,2 transition energy of He-like ^12C ion accelerated up to 0.9 MeV/u and ^13C ion 0.6 MeV/u. For the precision measurement, the uncertainty coming from the ambiguity in the absolute ion beam velocity was suppressed by means of that the resonance energy was measured by two laser beams which propagate in parallel and anti-parallel directions to the ion beam. As the result, isotope shifts of these transitions were obtained with the accuracy of 10 %. The lower limit of the ion-beam intensity for the measurement is estimated to be 2000 ions/s.

  5. A precise few-nucleon size difference by isotope shift measurements of helium

    NASA Astrophysics Data System (ADS)

    Rezaeian, Nima Hassan

    We perform high precision measurements of an isotope shift between the two stable isotopes of helium. We use laser excitation of the 23 S1 -- 23P0 transition at 1083 .... in a metastable beam of 3He and 4He atoms. A newly developed tunable laser frequency selector along with our previous electro-optic frequency modulation technique provides extremely reliable, adaptable, and precise frequency and intensity control. The intensity control contributes negligibly to overall experimental uncertainty by selecting (t selection < 50 ) and stabilizing the intensity of the required sideband and eliminating (˜10-5) the unwanted frequencies generated during the modulation of 1083 nm laser carrier frequency. The selection technique uses a MEMS based fiber switch (tswitch ≈ 10 ms) and several temperature stabilized narrow band (˜3 GHz) fiber gratings. A fiber based optical circulator and an inline fiber amplifier provide the desired isolation and the net gain for the selected frequency. Also rapid (˜2 sec.) alternating measurements of the 23 S1 -- 23P0 interval for both species of helium is achieved with a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates residual Doppler effects during the isotope shift measurement. An improved detection design and software control makes negligible subtle potential biases in the data collection. With these advances, combined with new internal and external consistency checks, we are able to obtain results consistent with the best previous measurements, but with substantially improved precision. Our measurement of the 23S 1 -- 23P0 isotope shift between 3He and 4He is 31 097 535.2 (5)kHz. The most recent theoretic calculation combined with this measuremen. yields a new determination for nuclear size differences between 3He and 4He: Deltarc = 0.292 6 (1)exp (8)th(52)expfm, with a precision of less than a part in 104 coming from the experimental uncertainty (first parenthesis), and a

  6. Isotope shift in chromium

    NASA Astrophysics Data System (ADS)

    Furmann, B.; Jarosz, A.; Stefańska, D.; Dembczyński, J.; Stachowska, E.

    2005-01-01

    Thirty-three spectral lines of chromium atom in the blue-violet region (425-465 nm) have been investigated with the method of laser-induced resonance fluorescence on an atomic beam. For all the lines, the isotope shifts for every pair of chromium isotopes have been determined. The lines can be divided into six groups, according to the configuration of the upper and lower levels. Electronic factors of the field shift and the specific mass shift ( Fik and MikSMS, respectively) have been evaluated and the values for each pure configuration involved have been determined. Comparison of the values Fik and MikSMS to the ab initio calculations results has been performed. The presence of crossed second order (CSO) effects has been observed.

  7. New lifetime measurements in the stable semimagic Sn isotopes using the Doppler-shift attenuation technique

    NASA Astrophysics Data System (ADS)

    Jungclaus, A.; Walker, J.; Leske, J.; Speidel, K.-H.; Stuchbery, A. E.; East, M.; Boutachkov, P.; Cederkäll, J.; Doornenbal, P.; Egido, J. L.; Ekström, A.; Gerl, J.; Gernhäuser, R.; Goel, N.; Górska, M.; Kojouharov, I.; Maier-Komor, P.; Modamio, V.; Naqvi, F.; Pietralla, N.; Pietri, S.; Prokopowicz, W.; Schaffner, H.; Schwengner, R.; Wollersheim, H.-J.

    2011-09-01

    Precise measurements of lifetimes in the picosecond range of excited states in the stable even-A Sn isotopes 112,114,116,122Sn have been performed using the Doppler shift attenuation technique. For the first excited 2+ states in 112Sn, 114Sn and 116Sn the E2 transition strengths deduced from the measured lifetimes are in disagreement with the previously adopted values. They indicate a shallow minimum at N = 66 in contrast to the maximum at mid-shell predicted by modern shell model calculations.

  8. Accurate measurements of transition frequencies and isotope shifts of laser-trapped francium.

    PubMed

    Sanguinetti, S; Calabrese, R; Corradi, L; Dainelli, A; Khanbekyan, A; Mariotti, E; de Mauro, C; Minguzzi, P; Moi, L; Stancari, G; Tomassetti, L; Veronesi, S

    2009-04-01

    An interferometric method is used to improve the accuracy of the 7S-7P transition frequencies of three francium isotopes by 1 order of magnitude. The deduced isotope shifts for 209-211Fr confirm the ISOLDE data. The frequency of the D2 transition of 212Fr--the accepted reference for all Fr isotope shifts--is revised, and a significant difference with the ISOLDE value is found. Our results will be a benchmark for the accuracy of the theory of Fr energy levels, a necessary step to investigate fundamental symmetries. PMID:19340162

  9. Few-Nucleon Charge Radii and a Precision Isotope Shift Measurement in Helium

    NASA Astrophysics Data System (ADS)

    Hassan Rezaeian, Nima; Shiner, David

    2015-10-01

    Recent improvements in atomic theory and experiment provide a valuable method to precisely determine few nucleon charge radii, complementing the more direct scattering approaches, and providing sensitive tests of few-body nuclear theory. Some puzzles with respect to this method exist, particularly in the muonic and electronic measurements of the proton radius, known as the proton puzzle. Perhaps this puzzle will also exist in nuclear size measurements in helium. Muonic helium measurements are ongoing while our new electronic results will be discussed here. We measured precisely the isotope shift of the 23S - 23P transitions in 3He and 4He. The result is almost an order of magnitude more accurate than previous measured values. To achieve this accuracy, we implemented various experimental techniques. We used a tunable laser frequency discriminator and electro-optic modulation technique to precisely control the frequency and intensity. We select and stabilize the intensity of the required sideband and eliminate unused sidebands. The technique uses a MEMS fiber switch (ts = 10 ms) and several temperature stabilized narrow band (3 GHz) fiber gratings. A beam with both species of helium is achieved using a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates Doppler effects. Careful detection design and software are essential for unbiased data collection. Our new results will be compared to previous measurements.

  10. Precision Isotope Shift Measurements in Calcium Ions Using Quantum Logic Detection Schemes.

    PubMed

    Gebert, Florian; Wan, Yong; Wolf, Fabian; Angstmann, Christopher N; Berengut, Julian C; Schmidt, Piet O

    2015-07-31

    We demonstrate an efficient high-precision optical spectroscopy technique for single trapped ions with nonclosed transitions. In a double-shelving technique, the absorption of a single photon is first amplified to several phonons of a normal motional mode shared with a cotrapped cooling ion of a different species, before being further amplified to thousands of fluorescence photons emitted by the cooling ion using the standard electron shelving technique. We employ this extension of the photon recoil spectroscopy technique to perform the first high precision absolute frequency measurement of the 2D(3/2)→2P(1/2) transition in calcium, resulting in a transition frequency of f=346 000 234 867(96)  kHz. Furthermore, we determine the isotope shift of this transition and the 2S(1/2)→2P(1/2) transition for 42Ca+, 44Ca+, and 48Ca+ ions relative to 40Ca+ with an accuracy below 100 kHz. Improved field and mass shift constants of these transitions as well as changes in mean square nuclear charge radii are extracted from this high resolution data. PMID:26274418

  11. Few-Nucleon Charge Radii and a Precision Isotope Shift Measurement in Helium

    NASA Astrophysics Data System (ADS)

    Hassan Rezaeian, Nima; Shiner, David

    2015-05-01

    Precision atomic theory and experiment provide a valuable method to determine few nucleon charge radii, complementing the more direct scattering approaches, and providing sensitive tests of few-body nuclear theory. Some puzzles with respect to this method exist, particularly in the muonic and electronic measurements of the proton radius, and as well with respect to measurements of nuclear size in helium. We perform precision measurements of the isotope shift of the 23S -23P transitions in 3He and 4He. A tunable laser frequency discriminator and electro-optic modulation technique give precise frequency and intensity control. We select (ts <50 ms) and stabilize the intensity of the required sideband and eliminate the unused sidebands (<= 10¬5) . The technique uses a MEMS fiber switch (ts = 10 ms) and several temperature stabilized narrow band (3 GHz) fiber gratings. A fiber based optical circulator and amplifier provide the desired isolation and net gain for the selected frequency. A beam with both species of helium is achieved using a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates Doppler effects. Careful detection design and software control allows for unbiased data collection. Current results will be discussed. This work is supported by NSF PHY-1068868 and PHY-1404498.

  12. Vibrational isotope shifts in hexafluoride molecules

    NASA Astrophysics Data System (ADS)

    McDowell, Robin S.

    Central-atom isotope frequency shifts for the v3 stretching fundamentals of octahedral hexafluorides are reviewed. Accurate shifts have been measured for the hexafluorides of S, Se, Mo, Te, W and U, and can be calculated from force fields for those of Rh, Ir, Pt, Np and Pu. A theoretical treatment of the relation between the vibrational frequency v3 and the central-atom mass m establishes the parametric dependence of the isotope shift Δ v3. This yields a semi-empirical formula Δ v3(cm -1amu -1) = -4.20 v3m-1.75, with v3 in cm -1 and m in amu. Frequency shifts calculated from this formula agree with measured shifts generally to within 5%, and it promises to be useful in estimating such shifts for Jahn—Teller hexafluorides and for hexafluoride ions. The relative precision of isotope frequency shifts and Coriolis constants in constraining the general quadratic force fields of XF 6 molecules has also been considered. For a given precision in measuring frequency shifts, Δ v3 is more effective than Δ v4, by the ratio v3/ v4, for determining the off-diagonal symmetry force constant F34. F34 is about equally well constrained by the Coriolis constants for all molecules, but the frequency shifts become much less effective for this purpose as the central-atom mass increases.

  13. Isotope shifts in francium isotopes Fr-213206 and 221Fr

    NASA Astrophysics Data System (ADS)

    Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L. A.; Aubin, S.; Gomez, E.; FrPNC Collaboration

    2014-11-01

    We present the isotope shifts of the 7 s1 /2 to 7 p1 /2 transition for francium isotopes 206 -213Fr with reference to 221Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7 s1 /2 to 7 p3 /2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D1 and D2 transitions, of sufficient precision to differentiate between ab initio calculations.

  14. Isotope shifts in methane near 6000/cm

    NASA Technical Reports Server (NTRS)

    Fox, K.; Halsey, G. W.; Jennings, D. E.

    1976-01-01

    Isotope shifts for cleanly resolved vibrational-rotational absorption lines of CH4-12 and CH4-13 were measured by a 5-m focal length Littrow spectrometer in the 6000/cm range. The methane isotopes were held in separate absorption cells: 20 torr of CH4-13 in a 1-m cell, and 5 torr of CH4-12 in a White cell of 4-m optical path length. Measured shifts for the cleanly resolved singlets R(0), R(1), Q(1) and P(1) are summarized in tabular form.

  15. Doppler-Free Spectroscopy Measurements of Isotope Shifts and Hyperfine Components of Near-IR Xenon Lines

    SciTech Connect

    Mazouffre, S.; Pawelec, E.; Tran Bich, N.; Sadeghi, N.

    2006-01-15

    Xenon is currently used as propellant gas in electric thrusters, in which ejection of corresponding ions produces the desired thrust. As such a gas contains 9 stable isotopes, a non-intrusive determination of the velocity distribution function of atoms and ions in the thruster plasma plume, by means of absorption or fluorescence techniques, requires a precise knowledge of the line structure. We used Doppler-free Lamb-dip spectroscopy to determine isotopic shifts and hyperfine components of odd isotopes of several spectral lines of Xe atom and Xe+ ion in the 825 - 835 nm range.

  16. Theory of the Helium Isotope Shift

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Yerokhin, V. A.

    2015-09-01

    Theory of the isotope shift of the centroid energies of light few-electron atoms is reviewed. Numerical results are presented for the isotope shift of the 23P-23S and 21S-23S transition energies of 3He and 4He. By comparing theoretical predictions for the isotope shift with the experimental results, the difference of the squares of the nuclear charge radii of 3He and 4He, δR2, is determined with high accuracy.

  17. Isotope shift measurements in the 660 spectral lines of Er I covering the 340-605 nm wavelength region with a Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Ankush, B. K.; Deo, M. N.

    2015-04-01

    Isotope shift measurements in 660 spectral lines covering the 340-605 nm wavelength region of Er I were carried out using a Fourier Transform Spectrometer. The spectra were recorded using a liquid nitrogen cooled hollow cathode discharge source containing highly enriched 166Er and 170Er isotopes in the oxide form and two different detectors namely PMT and silicon photo diodes. Out of 660 spectral lines involving 216 even and 182 odd Er I levels, the isotope shift data were new in the 406 lines. On the basis of their level isotope shifts out of 114 unassigned even parity levels 27 levels assigned to 4f116s26p, 72 to 4f115d6s6p and 15 to 4f126s6d configuration whereas 12 each of unassigned odd parity levels assigned to 4f115d6s2, and 4f126s6p configurations and 16 unassigned odd parity levels assigned to 4f115d26s configuration. Configuration mixing for 30 odd parity energy levels has been theoretically calculated applying 'Sharing Rule' to the experimentally derived level isotope shifts, which were finally compared with mixings available in the literature.

  18. Double-Resonance Measurements of Isotope Shifts and Hyperfine Structure in Gd I with Hyperfine-State Selection in an Intermediate Level

    SciTech Connect

    Nortershauser, Wilfried; Bushaw, Bruce A.; Blaum, K.

    2000-06-01

    Isotope shifts and hyperfine structure have been measured in the 4f7 5d6s2 9D6 -- X9 D6 (;38 024. 9 cm-1) transition in atomic gadolinium using high- resolution resonance ionization mass spectroscopy. Excitation was performed as a resonance-enhanced two-photon transition with the 4f7 5d6s6p 9F7 state as an intermediate level. Selective population of hyperfine states in the first excitation step allowed assignment of all transitions in the complex hyperfine spectrum of the odd isotopes 155,157Gd and evaluation of the magnetic dipole and electric quadrupole hyperfine structure constants for the X 9D6 state. Measured values for the isotope shifts of all stable Gd isotopes have been used to derive specific mass shift and field shift factors. The obtained spectroscopic information leads to the conclusion that the X 9D6 state is a 4f75d6s8s configuration.

  19. Theory of the Helium Isotope Shift

    SciTech Connect

    Pachucki, Krzysztof; Yerokhin, V. A.

    2015-09-15

    Theory of the isotope shift of the centroid energies of light few-electron atoms is reviewed. Numerical results are presented for the isotope shift of the 2{sup 3}P-2{sup 3}S and 2{sup 1}S-2{sup 3}S transition energies of {sup 3}He and {sup 4}He. By comparing theoretical predictions for the isotope shift with the experimental results, the difference of the squares of the nuclear charge radii of {sup 3}He and {sup 4}He, δR{sup 2}, is determined with high accuracy.

  20. Precise measurements of 203 Tl and 205 Tl excited state hyperfine splittings and isotope shifts using two-step vapor cell spectroscopy

    NASA Astrophysics Data System (ADS)

    Majumder, P. K.; Cheng, Sau Man; Rupasinghe, P. M.

    2016-05-01

    We have undertaken a series of high-precision atomic structure measurement in thallium to test ongoing ab initio atomic structure calculations of relevance to symmetry violation tests in this element. We are currently completing two-step spectroscopy measurements of the 8P1 / 2 and 8P3 / 2 hyperfine structure and isotope shift using a heated thallium vapor cell and two external cavity semiconductor diode lasers. One laser, locked to the thallium 6P1 / 2 --> 7S1 / 2 378 nm transition excites one or both naturally-occurring isotopes to an intermediate state. A second red laser overlaps the UV beam within the thallium vapor cell in both a co-propagating and counter-propagating configuration. Analysis of subsequent Doppler-free absorption spectra of the 7S1 / 2 --> 8P1 / 2 , 3 / 2 visible transitions allows us to extract both hyperfine and isotope shift information for these excited states with uncertainties below 1 MHz. Frequency modulation of the red laser provides convenient in situ frequency calibration. Recent measurements in our group have shown significant discrepancies from older hyperfine structure measurements in thallium excited states. Current results will be presented. Work supported by NSF Grant # 1404206.

  1. Hitting the moving target: modelling ontogenetic shifts with stable isotopes reveals the importance of isotopic turnover.

    PubMed

    Hertz, Eric; Trudel, Marc; El-Sabaawi, Rana; Tucker, Strahan; Dower, John F; Beacham, Terry D; Edwards, Andrew M; Mazumder, Asit

    2016-05-01

    Ontogenetic niche shifts are widely prevalent in nature and are important in shaping the structure and dynamics of ecosystems. Stable isotope analysis is a powerful tool to assess these shifts, with δ(15) N providing a measure of trophic level and δ(13) C a measure of energy source. Previous applications of stable isotopes to study ontogenetic niche shifts have not considered the appreciable time lag between diet and consumer tissue associated with isotopic turnover. These time lags introduce significant complexity into field studies of ontogenetic niche shifts. Juvenile Chinook salmon (Oncorhynchus tshawytscha) migrate from freshwater to marine ecosystems and shift their diet from feeding primarily on invertebrates to feeding primarily on fish. This dual ontogenetic habitat and diet shift, in addition to the long time lag associated with isotopic turnover, suggests that there is potential for a disconnect between the prey sources that juvenile salmon are consuming, and the inferred prey sources from stable isotopes. We developed a model that considered ontogenetic niche shifts and time lags associated with isotopic turnover, and compared this 'ontogeny' model to one that considered only isotopic turnover. We used a Bayesian framework to explicitly account for parameter uncertainty. Data showed overwhelming support for the ontogeny model relative to the isotopic turnover model. Estimated variables from best model fits indicate that the ontogeny model predicts a much greater reliance on fish prey than does the stomach content data. Overall, we found that this method of quantifying ontogenetic niche shifts effectively accounted for both isotopic turnover and ontogenetic diet shifts; a finding that could be widely applicable to a variety of systems. PMID:26880007

  2. Isotope shifts in francium isotopes Fr 206 - 213 and Fr 221

    DOE PAGESBeta

    Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L. A.; Aubin, S.; Gomez, E.; FrPNC Collaboration

    2014-11-07

    We present the isotope shifts of the 7s1/2 to 7p1/2 transition for francium isotopes ²⁰⁶⁻²¹³Fr with reference to ²²¹Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7s1/2 to 7p3/2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D₁ and D₂ transitions, of sufficient precision to differentiate between ab initio calculations.

  3. Relativistic calculations of isotope shifts in highly charged ions

    SciTech Connect

    Tupitsyn, I.I.; Shabaev, V.M.; Crespo Lopez-Urrutia, J.R.; Soria Orts, R.; Ullrich, J.; Draganic, I.

    2003-08-01

    The isotope shifts of forbidden transitions in Be- and B-like argon ions are calculated. It is shown that only using the relativistic recoil operator can provide a proper evaluation of the mass isotope shift, which strongly dominates over the field isotope shift for the ions under consideration. Comparing the isotope shifts calculated with the current experimental uncertainties indicates very good perspectives for a first test of the relativistic theory of the recoil effect in middle-Z ions.

  4. New even-parity high-lying levels of Sm I and measurement of isotope shifts by two-color resonance ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Seema, A. U.; Mandal, P. K.; Rath, Asawari D.; Dev, Vas

    2014-09-01

    In this work, we investigate the even-parity high-lying levels of Sm I in the energy region 33136-33960 cm-1 by performing two-color three-photon resonance ionization spectroscopy in an atomic beam coupled to a time-of-flight mass spectrometer using two tunable pulsed dye lasers. We observe twenty-one new and confirm eight previously reported even-parity energy levels of Sm I in this spectral region. Absolute energies of these levels are determined with an accuracy of ±0.3 cm-1. Using electric dipole selection rule, total angular momentum (J-value) of the most newly observed levels is assigned uniquely. Further, employing two-color three-step resonance ionization mass spectrometry, we measure the isotope shift between 154Sm and 144Sm of sixteen high-lying levels with a moderate accuracy of ±30 mK.

  5. Instrument Measures Shift In Focus

    NASA Technical Reports Server (NTRS)

    Steimle, Lawrence J.

    1992-01-01

    Optical components tested at wavelengths from ultraviolet to infrared. Focus-shift-measuring instrument easy to use. Operated in lighted room, without having to make delicate adjustments while peering through microscope. Measures distance along which focal point of converging beam of light shifted by introduction of nominally plane parallel optical component into beam. Intended primarily for measuring focus shifts produced by windows and filters at wavelengths from 120 to 1,100 nanometers. Portable, compact, and relatively inexpensive for degree of precision.

  6. Observation of an unexpected negative isotope shift in +229Th and its theoretical explanation

    NASA Astrophysics Data System (ADS)

    Okhapkin, M. V.; Meier, D. M.; Peik, E.; Safronova, M. S.; Kozlov, M. G.; Porsev, S. G.

    2015-08-01

    We have measured the hyperfine structure and isotope shifts of the 402.0- and 399.6-nm resonance lines in +229Th . These transitions could provide pathways towards the excitation of the 229Th low-energy isomeric nuclear state. An unexpected negative isotope shift relative to +232Th is observed for the 399.6-nm line, indicating a strong Coulomb coupling of the excited state to the nucleus. We have developed an all-order approach to the isotope shift calculations that is generally applicable to heavy atoms and ions with several valence electrons. The theoretical calculations provide an explanation for the negative isotope shift of the 399.6-nm transition and yield a corrected classification of the excited state. The calculated isotope shifts are in good agreement with experimental values.

  7. Probing the Higgs force with isotope shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Ozeri, Roee; Delaunay, Cedric; Perez, Gilad; Soreq, Yotam

    2016-05-01

    The Higgs boson, the last missing piece of the Standard Model (SM) of elementary particles, was recently observed by experiments in the Large Hadron Collider (LHC). To check whether this is indeed the SM Higgs, its coupling to other elementary particles should be experimentally measured. Current limits placed by LHC experiments on the coupling of the Higgs to the main building block of matter; the electron and the up and down quarks; are orders of magnitude larger than the SM predictions. Here, we propose to use the measurement of isotope shifts in optical atomic clock transitions to probe the Higgs boson coupling to electrons and nuclei. We show that the Higgs force between nuclei and bound electrons induces measurable nonlinearities to the King relation between isotope shifts. With current state-of-the-art accuracy in frequency comparison, limits which compete with, or even surpass, the bounds provided by LHC experiments can be achieved. Improved knowledge of these couplings is an important test of the SM. Similarly, this measurement could lead to an improved sensitivity to the presence of new physics.

  8. ESTIMATING THE TIMING OF DIET SHIFTS USING STABLE ISOTOPES

    EPA Science Inventory

    Stable isotope analysis has become an important tool in studies of trophic food webs and animal feeding patterns. When animals undergo rapid dietary shifts due to migration, metamorphosis, or other reasons, the isotopic composition of their tissues begins changing to reflect tha...

  9. Application of the laser ion source for isotope shift and hyperfine structure investigations

    NASA Astrophysics Data System (ADS)

    Barzakh, A. E.; Chubukov, I. Ya.; Fedorov, D. V.; Panteleev, V. N.; Seliverstov, M. D.; Volkov, Yu. M.

    1998-12-01

    A high-efficient method for measuring isotope shifts and hyperfine structures in optical transitions of radioactive atoms is presented. The method is based on application of laser resonance ionization in the mass-separator ion source. The sensitivity of the method is determined by a high efficiency of the laser ion source and low background of the detection system, making use of counting α-particles following the decay of the isotope under investigation. The possibilities of this method are shown in the experiment with 155Yb and 154Tm (I=9). The isotope shifts and electromagnetic moments have been measured.

  10. Calculation of isotope shifts for cesium and francium

    SciTech Connect

    Dzuba, V.A.; Johnson, W.R.; Safronova, M.S.

    2005-08-15

    We perform ab initio calculations of isotope shifts for isotopes of cesium (from A=123 to A=137) and francium (from A=207 to A=228). These calculations start from the relativistic Hartree-Fock method and make use of several techniques to include correlations. The field (volume) isotope shift is calculated by means of an all-order correlation potential method and within the singles-doubles-partial-triples linearized coupled-cluster approach. Many-body perturbation theory in two different formulations is used to calculate the specific mass shift. We discuss the strong points and shortcomings of the different approaches and implications for parity nonconservation in atoms. Changes in nuclear charge radii are found by comparing the present calculations with experiment.

  11. Modeling nuclear field shift isotope fractionation in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2013-12-01

    In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results

  12. Cometary Isotopic Measurements

    NASA Astrophysics Data System (ADS)

    Bockelée-Morvan, Dominique; Calmonte, Ursina; Charnley, Steven; Duprat, Jean; Engrand, Cécile; Gicquel, Adeline; Hässig, Myrtha; Jehin, Emmanuël; Kawakita, Hideyo; Marty, Bernard; Milam, Stefanie; Morse, Andrew; Rousselot, Philippe; Sheridan, Simon; Wirström, Eva

    2015-12-01

    Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 14N/15N, 16O/18O, 12C/13C, and 32S/34S ratios in cometary grains and gases, and discuss their cosmogonic implications. The review includes analyses of potential cometary material available in collections on Earth, recent measurements achieved with the Herschel Space Observatory, large optical telescopes, and Rosetta, as well as recent results obtained from models of chemical-dynamical deuterium fractionation in the early solar nebula. Prospects for future measurements are presented.

  13. Application of the laser ion source for isotope shift and hyperfine structure investigation

    NASA Astrophysics Data System (ADS)

    Seliverstov, M. D.; Barzakh, A. E.; Chubukov, I. Ya.; Fedorov, D. V.; Panteleev, V. N.; Volkov, Yu. M.

    2000-08-01

    The study of nuclei far from stability requires high sensitivity of the experimental technique. The method of Resonance Ionization Spectroscopy in a Laser Ion Source (RIS/LIS) allows one to carry out measurements of the isotope shifts and hyperfine splittings for isotopes at the production rate about 102 atoms per second. The sensitivity of this method is determined by the high efficiency of the laser ion source and the low background of the detection system afforded by characteristic α particle registration. The isotope shifts and hyperfine structures of 155Yb, 154Tm (I=9 and I=2) and 153Tm (I=11/2) have been measured and the isotopic changes in mean square charge radii and nuclear electromagnetic moments have been determined. The further development of this experimental method - enhanced Target Ion Source system aimed to suppress thermionic background - enables direct detection of the photoions and widens the range of the applicability of the RIS/LIS method.

  14. First Principle Predictions of Isotopic Shifts in H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We compute isotope independent first and second order corrections to the Born-Oppenheimer approximation for water and use them to predict isotopic shifts. For the diagonal correction, we use icMRCI wavefunctions and derivatives with respect to mass dependent, internal coordinates to generate the mass independent correction functions. For the non-adiabatic correction, we use scaled SCF/CIS wave functions and a generalization of the Handy method to obtain mass independent correction functions. We find that including the non-adiabatic correction gives significantly improved results compared to just including the diagonal correction when the Born-Oppenheimer potential energy surface is optimized for H2O-16. The agreement with experimental results for deuterium and tritium containing isotopes is nearly as good as our best empirical correction, however, the present correction is expected to be more reliable for higher, uncharacterized levels.

  15. Isotope shift and hyperfine splitting of the 4s→5p transition in potassium

    NASA Astrophysics Data System (ADS)

    Behrle, Alexandra; Koschorreck, Marco; Köhl, Michael

    2011-05-01

    We have investigated the 4s2S1/2→5p2P1/2 transition (D1 line) of the potassium isotopes K39, K40, and K41 using Doppler-free laser saturation spectroscopy. Our measurements reveal the hyperfine splitting of the 5p2P1/2 state of K40, and we have determined the specific mass shift and the nuclear field shift constants for the blue (405 nm) D1 line.

  16. The Late Miocene Carbon Isotope Shift and Marine Biological Productivity.

    NASA Astrophysics Data System (ADS)

    Diester-Haass, L.; Billups, K.; Emeis, K. C.

    2004-12-01

    The late Miocene global carbon isotope shift of approximately 1 per mil is not well understood. Is it linked to ocean-related processes such as the AƒAøAøâ_sA¬A.â_oBiologic BloomAƒAøAøâ_sA¬ \\(Farrell et al., 1995\\), or to changes in type \\(C3/C4 plants\\) or cover of terrestrial vegetation? Here we examine the evolution of marine biological productivity during the isotope shift at ODP Site 846 \\(Pacific equatorial upwelling, where the AƒAøAøâ_sA¬A.â_oBiologic BloomAƒAøAøâ_sA¬ has been first described, Farrell al, 1995\\) and at Indian Ocean Site 721 \\(monsoon-driven upwelling\\), and compare their productivity history with non upwelling locations in the Atlantic Ocean. The onset of the carbon isotope shift is accompanied at all locations by an increase in paleoproductivity derived from benthic foraminiferal accumulation rates \\(expressed as gC/cm2 * ky; Huerguera, 2000\\) and increased abundance of Uvigerina spp.. At the equatorial upwelling sites the increase is comparable to half present-day values to present-day values; in the Atlantic Ocean paleoproductivity increases from present-day up to 3 times present-day values. But the productivity maxima are not concurrent. The carbon isotope shift is accompanied by severe carbonate dissolution and reduced ventilation of bottom waters, as reflected in the occurrence of pyrite and good preservation of cartilageous fish debris. Carbonate preservation is good since about 6 Ma despite high productivity. We discuss changing deep water circulation patterns, increased weathering and continental nutrient delivery, as well as erosion of terrestrial vegetation as possible factors to explain our findings.

  17. Isotope shift of the electric-dipole transition in Os{sup -}

    SciTech Connect

    Kellerbauer, A.; Canali, C.; Fischer, A.; Warring, U.; Fritzsche, S.

    2011-12-15

    The isotope shift of the bound-bound electric dipole transition at 1162.75 nm in the osmium anion was measured by high-precision collinear laser spectroscopy. The transition was observed in all naturally occurring isotopes, including {sup 184}Os{sup -} with a natural abundance of 0.02%. We combined the data with our prior measurements of the hyperfine structure in {sup 187}Os{sup -} and {sup 189}Os{sup -} and used them to determine experimental values for the isotope shift coefficients. The normal mass shift, specific mass shift, and field shift coefficients were found to be M{sub NMS}=141.4 GHz u, M{sub SMS}=2.4(12.6) THz u, and F=16.2(9.9) GHz fm{sup -2}, respectively. Theoretical values for the M{sub SMS} and F parameters were calculated based on a series of relativistic configuration interaction computations and a Fermi-like charge distribution and found to be in good agreement with the experimental values.

  18. Isotope shifts and hyperfine structure of the laser-cooling Fe I 358-nm line

    NASA Astrophysics Data System (ADS)

    Huet, N.; Pettens, M.; Bastin, T.

    2015-11-01

    We report on the measurement of the isotope shifts of the 3 d74 s a 5F5-3 d74 p z 5G6o Fe i line at 358 nm between all four stable isotopes ,Fe56Fe54,Fe57 , and Fe58 , as well as the hyperfine structure of that line for Fe57 , the only stable isotope having a nonzero nuclear spin. This line is of primary importance for laser-cooling applications. In addition, an experimental value of the field and specific mass shift coefficients of the transition is reported as well as the hyperfine structure magnetic dipole coupling constant A of the transition excited state in Fe57 , namely A (3 d74 p z 5G6o) =31.241 (48 ) MHz. The measurements were carried out by means of laser-induced fluorescence spectroscopy performed on an isotope-enriched iron atomic beam. All measured frequency shifts are reported with relative uncertainties below one third percent.

  19. Miocene Global Carbon Isotope Shifts and Marine Biological Productivity.

    NASA Astrophysics Data System (ADS)

    Diester-Haass, L.; Billups, K.

    2005-12-01

    The Miocene contains two major global carbon isotope shifts: a negative shift during the late Miocene (~8-6 Ma) and a positive shift during the mid-Miocene (16-14 Ma). We aim at deciphering possible changes in marine biological export productivity during these shifts by calculating paleoproductivity in gC/cm*ky from benthic foraminiferal numbers and accumulation rates at a number of sites spanning the world oceans. Our previous work has illustrated that the onset of the late Miocene negative d 13C shift, which has been attributed to enhanced erosion of terrestrial biomass and expansion of C4 plants, is also accompanied by an increase in marine export productivity from lower than present day values up to 2-3 times modern values at six sites (982, 1088, 721, 846, 1146, 1172; Diester-Haass et al, in press; Diester-Haass et al., in preparation). The Mid-Miocene 'Monterey Event', on the other hand, has been attributed to sequestration of organic material in circum-Pacific basins (Vincent and Berger, 1985) or wide spread deposition of brown coal and drowning of carbonate platforms (Föllmi et al., 2005) . For this particular time interval, our initial results from Site 608 (Atlantic Ocean) reveal relatively constant paleoproductivity values similar to modern ones ( about 10 gC/cm*ky) until 16.5 Ma, after which time paleoproductivity begins to increase until the end of our record at 11 Ma. Superimposed on the trend of generally increasing productivity, there are a number of productivity minima spaced roughly 0.5 million years apart. The long term trend in the paleoproductivity finds some similarities in the global composite benthic foraminiferal d 13C record as both proxies show an overall increase until ~14 Ma. Thereafter, however, paleoproductivity continues to increase while d 13C values decrease marking the end of the Monterey excursion. Stable isotope analyses from these same intervals will show to what extend the smaller scale fluctuations in paleoproductivity can

  20. Hyperfine structure and isotope shifts of transitions in neutral and singly ionized ytterbium

    NASA Technical Reports Server (NTRS)

    Berends, R. W.; Maleki, L.

    1992-01-01

    The present experimental investigation of the hyperfine structure and isotopic shifts of transitions in neutral and singly-ionized Yb, which constitute a system of some interest to microwave-frequency standards, used counterpropagating pump and probe laser beams directed through a hollow-cathode discharge lamp. The results obtained are in agreement with previous measurements except in the case of the Yb-173(+) 6 2P0 sub 3/2 state, which is more accurately determined.

  1. Environmental Implications of Ediacaran C-isotopic Shifts

    NASA Astrophysics Data System (ADS)

    Kelly, A. E.; Rothman, D. H.; Love, G. D.; Grosjean, E.; Fike, D. A.; Zumberge, J. E.; Summons, R. E.

    2008-12-01

    Compound-specific carbon isotope analyses of biomarkers show a widespread reversal in isotopic patterns in the Ediacaran. We analyzed oils and/or rocks from Eastern Siberia, Oman and Australia and confirmed that, in sediments and oils older than ~550 Ma, n-alkanes are enriched in 13C relative to the acyclic isoprenoids pristane and phytane. In younger sediments, the n-alkanes are depleted compared to these isoprenoids with the possible exception of those deposited during Phanerozoic oceanic anoxic events.1 Pristane and phytane are considered to be derived from photosynthetic primary inputs and, based on established biosynthetic relationships of organisms that dominate the modern ocean, should be 13C- enriched relative to n-alkanes from the same source. Therefore, the presence of n-alkanes with anomalously enriched isotopic compositions before 550 Ma may signify a high relative abundance of bacterial heterotrophs that extensively recycled organic matter (Corg) in the water column.2 The switch from anomalous isotopic ordering to isoprenoid: n-alkyl biosynthetic relationships characteristic of the Phanerozoic is observed to take place in the Ediacaran. In Oman, this coincides with the termination of the Shuram Excursion when marine carbonates show very negative δ13C values with no corresponding shift in the isotopic composition of co-occurring Corg.3 This has been attributed to the oxidation of a large pool of Corg in the deep ocean3 with a corresponding fundamental change in C-cycle dynamics.4 Several hypotheses, many ultimately linked to release of molecular oxygen via enhanced Corg burial, have been proposed to explain these phenomena. They include the evolution of: bilaterian animals with guts that rapidly export organic matter to the ocean floor as fecal pellets, reducing the amount of heterotrophy in the water column,2 biomineralization, providing ballast for organic export,4 and algae with decay-resistant biopolymers.4 Alternatively, tectonism and the rifting

  2. Isotope shift in the electron affinity of lithium

    SciTech Connect

    Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik

    2009-12-21

    Very accurate electron affinity (EA) calculations of {sup 6}Li and {sup 7}Li (and {sup {infinity}L}i) have been performed using explicitly correlated Gaussian functions and a variational approach that explicitly includes the nuclear motion in the calculations (i.e., the approach that does not assume the Born-Oppenheimer approximation). The leading relativistic and quantum electrodynamics corrections to the electron affinities were also calculated. The results are the most accurate theoretical values obtained for the studied systems to date. Our best estimates of the {sup 7}Li and {sup 6}Li EAs are 4984.9842(30) and 4984.9015(30) cm{sup -1}, respectively, and of the {sup 7}Li/{sup 6}Li EA isotope shift is 0.0827 cm{sup -1}.

  3. Isotope shift and hyperfine splitting of the 4s{yields}5p transition in potassium

    SciTech Connect

    Behrle, Alexandra; Koschorreck, Marco; Koehl, Michael

    2011-05-15

    We have investigated the 4s {sup 2}S{sub 1/2}{yields}5p {sup 2}P{sub 1/2} transition (D{sub 1} line) of the potassium isotopes {sup 39}K, {sup 40}K, and {sup 41}K using Doppler-free laser saturation spectroscopy. Our measurements reveal the hyperfine splitting of the 5p {sup 2}P{sub 1/2} state of {sup 40}K, and we have determined the specific mass shift and the nuclear field shift constants for the blue (405 nm) D{sub 1} line.

  4. RIS3: A program for relativistic isotope shift calculations

    NASA Astrophysics Data System (ADS)

    Nazé, C.; Gaidamauskas, E.; Gaigalas, G.; Godefroid, M.; Jönsson, P.

    2013-09-01

    An atomic spectral line is characteristic of the element producing the spectrum. The line also depends on the isotope. The program RIS3 (Relativistic Isotope Shift) calculates the electron density at the origin and the normal and specific mass shift parameters. Combining these electronic quantities with available nuclear data, isotope-dependent energy level shifts are determined. Program summaryProgram title:RIS3 Catalogue identifier: ADEK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEK_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5147 No. of bytes in distributed program, including test data, etc.: 32869 Distribution format: tar.gz Programming language: Fortran 77. Computer: HP ProLiant BL465c G7 CTO. Operating system: Centos 5.5, which is a Linux distribution compatible with Red Hat Enterprise Advanced Server. Classification: 2.1. Catalogue identifier of previous version: ADEK_v1_0 Journal reference of previous version: Comput. Phys. Comm. 100 (1997) 81 Subprograms used: Cat Id Title Reference ADZL_v1_1 GRASP2K VERSION 1_1 to be published. Does the new version supersede the previous version?: Yes Nature of problem: Prediction of level and transition isotope shifts in atoms using four-component relativistic wave functions. Solution method: The nuclear motion and volume effects are treated in first order perturbation theory. Taking the zero-order wave function in terms of a configuration state expansion |Ψ>=∑μcμ|Φ(γμPJMj)>, where P, J and MJ are, respectively, the parity and angular quantum numbers, the electron density at the nucleus and the normal and specific mass shift parameters may generally be expressed as ∑cμcν<γμPJMj|V|γνPJMj> where V is the relevant operator. The matrix elements, in turn, can be expressed as sums over radial

  5. Isotope Shifts and Hyperfine Structure in Calcium 4snp1P1 and 4snf F Rydberg States

    SciTech Connect

    Muller, P.; Bushaw, Bruce A.; Nortershauser, Wilfried; Wendt, K.

    2000-06-01

    Isotope shifts and hyperfine structure have been measured in 4snp 1P1 and 4snf F Rydberg states for all stable calcium isotopes and the radioisotope 41Ca using high-resolution laser spectroscopy. Triple-resonance excitation via 4s2 1S0 --- 4s4p 1P1 --- 4s4d 1D2 --- Rydberg State was followed by photoionization with a CO2 laser and mass selective ion detection. Isotope shifts for the even-mass isotopes have been analyzed to derive specific mass shift and field shift factors. The apparent isotope shifts for 41Ca and 43Ca exhibit anomalous values that are n-dependent. This is interpreted in terms of hyperfine-induced fine structure mixing, which becomes very pronounced when singlet-triplet fine structure splitting is comparable to the hyperfine interaction energy. Measurements of fine structure splittings for the predominant isotope 40Ca have been used as input parameters for theoretical calculation of the perturbed hyperfine structure. Results obtained by diagonalizing the second-order hyperfine interaction matrices agree very well with experimentally observed spectra.

  6. Experimental verification of isotope shift and hyperfine structure of some even parity levels of neutral Eu

    NASA Astrophysics Data System (ADS)

    Furmann, B.; Stefanska, D.

    2014-09-01

    The results of measurements of the hyperfine structure of 31 classified and four unclassified spectral lines in the europium atom, obtained by using the laser induced fluorescence method, are presented. On the basis of experimental results, the values of the hyperfine structure constants and the isotope shifts for seven hitherto unmeasured levels belonging to even configurations (among them for three entirely new levels with unknown energies) were determined and the respective values known from literature for another 19 levels were verified. Since the motivation for undertaking investigations within this work was an inconsistency in the semi-empirical description of the hyperfine structure and the isotope shifts for some even levels in the europium atom, a detailed discussion of this problem is presented.

  7. Progress in speckle-shift strain measurement

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Barranger, John P.; Oberle, Lawrence G.; Greer, Lawrence C., III

    1991-01-01

    The Instrumentation and Control Technology Division of the Lewis Research Center has been developing an in-house capability to make one dimensional and two dimensional optical strain measurements on high temperature test specimens. The measurements are based on a two-beam speckle-shift technique. The development of composite materials for use in high temperature applications is generating interest in using the speckle-shift technique to measure strains on small diameter fibers and wires of various compositions. The results of preliminary speckle correlation tests on wire and fiber specimens are covered, and the advanced system currently under development is described.

  8. Stable isotope evidence for shifting Mediterranean climatic influences in Western Romania, East-Central Europe

    NASA Astrophysics Data System (ADS)

    Perşoiu, Aurel; Viorica, Nagavciuc; Carmen, Bădăluţă

    2015-04-01

    The stable isotopic composition of oxygen and hydrogen in precipitation, preserved in various sedimentary archives (speleothems, cave ice, tree rings) is being intensively used to reconstruct past climatic variability in western Romania. These studies heavily rely on the assumption that air temperature is the main factor controlling the isotopic composition of precipitation and hence this climatic parameter is the one reconstructed. However, ongoing monitoring studies are increasingly showing that this, especially along Romania's western border, moisture source is playing an important role in determining the isotopic composition of precipitation, hence complicating the simplistic picture outlined above. One of the main factors influencing climate variability in Romania is the North Atlantic Oscillation (NAO), a measure of the strength of the Icelandic Low and Azores High. Over During the positive NAO phase, the Atlantic storms are displaced northward and, although reduced in strength, Mediterranean cyclones penetrate further north. During the negative phase however, the Atlantic storms track is displaced southward, restricting the area receiving Mediterranean precipitation to the SW corner of Romania. Here we present isotopic evidence for a shift in the source of precipitation from North Atlantic to Mediterranean ones in SW Romania that masks the temperature signal recorded in the stable isotopic composition of precipitation. Between April 2012 and 2014 we have collected monthly samples of precipitation along a N-S transect in Western Romania and have analyzed them for their δ18O and δ2H. Precipitation in NW Romania are derived solely from North Atlantic sources, while those in SW Romania mix moisture evaporated from both the North Atlantic and the Mediterranean Sea. The northern boundary of the Mediterranean influence is shifting in phase with the NAO index and the position of the jet-stream. As a result, during periods with high NAO index, the stable isotope

  9. Measuring Oxygen Isotopes with COSIMA

    NASA Astrophysics Data System (ADS)

    Paquette, J. A.; Engrand, C.; Stenzel, O.; Hilchenbach, M.

    2014-12-01

    Oxygen isotopes in a variety of solar system solids show non-mass-dependent fractionation, i.e. are fractionated along a slope = 1 line in a three isotope plot, rather than the equilibrium fractionation line whose slope is close to 0.5 (Clayton, 1973). Many models have been put forward to explain this observation, such as galactic chemical evolution (Clayton, 1988), photochemical self-shielding (Thiemens and Jackson, 1987; Clayton, 2002; Yurimoto and Kuramoto, 2004; Lyons and Young, 2005), quantum chemical explanations (Hathorn and Marcus, 1999, 2000; Gao and Marcus, 2002; Marcus, 2004), the processing of solids via nebular lightning (Nuth et al, 2011), and others. Some of the models were invalidated when the Genesis results showed that the oxygen isotopic fractionation of solar wind (and hence of the Sun) was relatively much richer in 16O than such bodies as the Earth or the Moon. Whatever the process that produced non-mass-dependent fractionation in some chondrules and calcium aluminum inclusions, its signature may also be detectable in other solar system solids. If at least some cometary dust was produced in the inner nebula and only later transported outward to be incorporated into comets, then such dust may also show some degree of non-mass-dependent fractionation. The COSIMA instrument on the Rosetta spacecraft (Kissel et al 2009) is a secondary ion mass spectrometer designed to measure the composition of cometary dust. Using calibration data from the COSIMA reference model and flight data if possible, measurement all three isotopes of oxygen will be attempted, and the results compared to other solar system bodies.

  10. Strong-interaction shifts and widths of kaonic helium isotopes

    NASA Astrophysics Data System (ADS)

    SIDDHARTA Collaboration; Ishiwatari, T.; Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A. M.; Cargnelli, M.; Curceanu (Petrascu), C.; d'Uffizi, A.; Fiorini, C.; Frizzi, T.; Ghio, F.; Guaraldo, C.; Hayano, R. S.; Iliescu, M.; Iwasaki, M.; Kienle, P.; Levi Sandri, P.; Longoni, A.; Marton, J.; Okada, S.; Pietreanu, D.; Ponta, T.; Rizzo, A.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tudorache, A.; Tudorache, V.; Vazquez Doce, O.; Widmann, E.; Wünschek, B.; Zmeskal, J.

    2013-09-01

    The kaonic 3He and 4He 3d→2p transitions in gaseous targets were observed by the SIDDHARTA experiment. The X-ray energies of these transitions were measured with large-area silicon-drift detectors using the timing information of the K+K- pairs produced by the DAΦNE e+e- collider. The strong-interaction shifts and widths both of the kaonic 3He and 4He 2p states were determined, which are much smaller than the results obtained by the previous experiments. The "kaonic helium puzzle" (a discrepancy between theory and experiment) was now resolved.

  11. Strong-interaction shifts and widths of kaonic helium isotopes

    NASA Astrophysics Data System (ADS)

    Ishiwatari, T.; Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A. M.; Cargnelli, M.; Curceanu (Petrascu), C.; D'Uffizi, A.; Fiorini, C.; Frizzi, T.; Ghio, F.; Guaraldo, C.; Hayano, R. S.; Iliescu, M.; Iwasaki, M.; Kienle, P.; Levi Sandri, P.; Longoni, A.; Marton, J.; Okada, S.; Pietreanu, D.; Ponta, T.; Rizzo, A.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tudorache, A.; Tudorache, V.; Vazquez Doce, O.; Widmann, E.; Wünschek, B.; Zmeskal, J.; Siddharta Collaboration

    2013-09-01

    The kaonic 3He and 4He 3d→2p transitions in gaseous targets were observed by the SIDDHARTA experiment. The X-ray energies of these transitions were measured with large-area silicon-drift detectors using the timing information of the K+K- pairs produced by the DAΦNE e+e- collider. The strong-interaction shifts and widths both of the kaonic 3He and 4He 2p states were determined, which are much smaller than the results obtained by the previous experiments. The “kaonic helium puzzle” (a discrepancy between theory and experiment) was now resolved.

  12. Shifting sediment sources in the world's longest river: A strontium isotope record for the Holocene Nile

    NASA Astrophysics Data System (ADS)

    Woodward, Jamie; Macklin, Mark; Fielding, Laura; Millar, Ian; Spencer, Neal; Welsby, Derek; Williams, Martin

    2015-12-01

    We have reconstructed long-term shifts in catchment sediment sources by analysing, for the first time, the strontium (Sr) and neodymium (Nd) isotope composition of dated floodplain deposits in the Desert Nile. The sediment load of the Nile has been dominated by material from the Ethiopian Highlands for much of the Holocene, but tributary wadis and aeolian sediments in Sudan and Egypt have also made major contributions to valley floor sedimentation. The importance of these sources has shifted dramatically in response to global climate changes. During the African Humid Period, before c. 4.5 ka, when stronger boreal summer insolation produced much higher rainfall across North Africa, the Nile floodplain in northern Sudan shows a tributary wadi input of 40-50%. Thousands of tributary wadis were active at this time along the full length of the Saharan Nile in Egypt and Sudan. As the climate became drier after 4.5 ka, the valley floor shows an abrupt fall in wadi inputs and a stronger Blue Nile/Atbara contribution. In the arid New Kingdom and later periods, in palaeochannel fills on the margins of the valley floor, aeolian sediments replace wadi inputs as the most important secondary contributor to floodplain sedimentation. Our sediment source data do not show a measurable contribution from the White Nile to the floodplain deposits of northern Sudan over the last 8500 years. This can be explained by the distinctive hydrology and sediment delivery dynamics of the upper Nile basin. High strontium isotope ratios observed in delta and offshore records - that were previously ascribed to a stronger White Nile input during the African Humid Period - may have to be at least partly reassessed. Our floodplain Sr records also have major implications for bioarchaeologists who carry out Sr isotope-based investigations of ancient human remains in the Nile Valley because the isotopic signature of Nile floodplain deposits has shifted significantly over time.

  13. The second spectrum of niobium: III. Evaluation of line isotope shifts

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2013-03-01

    Using isotope shift values of only one Nb II line, we propose for the first time to predict isotope shifts of all spectral lines for this ion for any pair of isotopes. For this purpose, we had recourse to ab intio calculations to determine specific mass and field shifts of all relevant Nb II configuration averages, which are respectively proportional to the Vinti integral k-factor and the charge density at the nucleus, 4л|Ψ(o)|2. With the help of very accurate level eigenvectors of these configurations and using the sharing rule, we computed specific mass and field shifts of each level. Since a transition wavenumber is the difference between two energy levels, we then deduced line isotope shifts.

  14. Accurate electron affinity of Pb and isotope shifts of binding energies of Pb(.).

    PubMed

    Chen, Xiaolin; Ning, Chuangang

    2016-08-28

    Lead (Pb) was the last element of the group IVA whose electron affinity had a low accuracy around 10 meV before the present work. This was due to the generic threshold photodetachment measurement that cannot extent well below 0.5 eV due to the light source limitation. In the present work, the electron affinity of Pb was determined to be 2877.33(13) cm(-1) or 0.356 743(16) eV for the isotope m = 208. The accuracy was improved by a factor of 500 with respect to the previous laser photodetachment electron spectroscopy. Moreover, remarkable isotope shifts of the binding energy of Pb(-) 6p(3) (4)S3/2 - Pb 6p(2) (3)P2 were observed for m = 206, 207, and 208. PMID:27586918

  15. Stable Isotopic Shifts in Fish Bones from Multiple Archeological Coastal Middens in Penobscot Bay, Maine

    NASA Astrophysics Data System (ADS)

    Harris, C.; Johnson, B.; Ambrose, W. G.; Bourque, B.; Dostie, P.; Crowley, E.

    2010-12-01

    The carbon and nitrogen stable isotope compositions of collagen extracted from well-preserved archeological fish bones has the potential to provide useful information on fish diets and food web dynamics over time. Previous work on the Turner Farm archaeological site in Penobscot Bay, Gulf of Maine, reveals significant shifts in fish diets have occurred since European colonization (post 1620’s). The objective of the present study was to analyze samples from other archaeological sites within Penobscot Bay to characterize the spatial extent of the isotopic shift measured at Turner Farm. Stratified cod, flounder, and sculpin bones were analyzed from eight coastal middens located approximately 50km apart from one another within Penobscot Bay. The bones were sampled from three time horizons (0kya, 0.5-1kya, and 2.2-2.4kya). All bone samples were demineralized in 0.2M HCl at 4°C for 2 to 7 days and then extracted in 0.25M NaOH at 4°C for 1 to 2 hours. After freeze-drying, the bulk isotopic composition of each sample was analyzed using the EA-IRMS. In all stratigraphic horizons analyzed, cod were more enriched in δ13C and δ15N than sculpin, and flounder were the most depleted in δ13C and δ15N . However, the isotopic offsets between the fish species decreased from 2.4kya to the present. The nitrogen isotope composition was relatively constant over time and space for all species, implying that trophic levels for the fishes analyzed have not changed significantly in Penobscot Bay for the last 2,400 years. The carbon isotope composition also appears to be constant spatially in Penobscot Bay, however, the modern signal was more depleted than the paleo signal in all three species. The difference between the modern and paleo δ13C is ~5‰ for cod and flounder, and ~9‰ for sculpin. These shifts may, in part, be explained by decreases in both primary producer and prey species diversity, as kelp forests replace eelgrass beds in the Gulf of Maine.

  16. Purdue Rare Isotope Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Caffee, M.; Elmore, D.; Granger, D.; Muzikar, P.

    2002-12-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is a dedicated research and service facility for accelerator mass spectrometry. AMS is an ultra-sensitive analytical technique used to measure low levels of long-lived cosmic-ray-produced and anthropogenic radionuclides, and rare trace elements. We measure 10Be (T1/2 = 1.5 My), 26Al (.702 My), 36Cl (.301 My), and 129I (16 My), in geologic samples. Applications include dating the cosmic-ray-exposure time of rocks on Earth's surface, determining rock and sediment burial ages, measuring the erosion rates of rocks and soils, and tracing and dating ground water. We perform sample preparation and separation chemistries for these radio-nuclides for our internal research activities and for those external researchers not possessing this capability. Our chemical preparation laboratories also serve as training sites for members of the geoscience community developing these techniques at their institutions. Research at Purdue involves collaborators among members of the Purdue Departments of Physics, Earth and Atmospheric Sciences, Chemistry, Agronomy, and Anthropology. We also collaborate and serve numerous scientists from other institutions. We are currently in the process of modernizing the facility with the goals of higher precision for routinely measured radio-nuclides, increased sample throughput, and the development of new measurement capabilities for the geoscience community.

  17. Relativistic calculations of the isotope shifts in highly charged Li-like ions

    NASA Astrophysics Data System (ADS)

    Zubova, N. A.; Kozhedub, Y. S.; Shabaev, V. M.; Tupitsyn, I. I.; Volotka, A. V.; Plunien, G.; Brandau, C.; Stöhlker, Th.

    2014-12-01

    Relativistic calculations of the isotope shifts of energy levels in highly charged Li-like ions are performed. The nuclear recoil (mass shift) contributions are calculated by merging the perturbative and large-scale configuration-interaction Dirac-Fock-Sturm (CI-DFS) methods. The nuclear size (field shift) contributions are evaluated by the CI-DFS method including the electron-correlation, Breit, and QED corrections. The nuclear deformation and nuclear polarization corrections to the isotope shifts in Li-like neodymium, thorium, and uranium are also considered. The results of the calculations are compared with the theoretical values obtained with other methods.

  18. Miniature Laser Spectrometer for Stable Isotope Measurements

    NASA Technical Reports Server (NTRS)

    Becker, J. F.; Kojiro, D. R.

    1999-01-01

    As a first step in successfully measuring carbon isotopes optically we have previously demonstrated the measurement of C-13/C-12 to a precision of 0.1% using a tunable diode laser and CO2 spectral lines in the 2300/cm spectral region. This precision of 0.1% (1 per mil) for carbon isotopes is a value sufficiently precise to provide important isotopic data of interest to astrobiologists. The precision presently attainable in gases is sufficient to permit our instrument to be used in the measurement of isotopic ratios of interest to astrobiologists as well as geologists and planetary scientists.

  19. Shifting material source of Chinese loess since ~2.7 Ma reflected by Sr isotopic composition

    PubMed Central

    Zhang, Wenfang; Chen, Jun; Li, Gaojun

    2015-01-01

    Deciphering the sources of eolian dust on the Chinese Loess Plateau (CLP) is fundamental to reconstruct paleo-wind patterns and paleo-environmental changes. Existing datasets show contradictory source evolutions of eolian dust on the CLP, both on orbital and tectonic timescales. Here, the silicate Sr and Nd isotopic compositions of a restricted grain size fraction (28–45 μm) were measured to trace the source evolution of the CLP since ~2.7 Ma. Our results revealed an unchanged source on orbital timescales but a gradual source shift from the Qilian Mountains to the Gobi Altay Mountains during the past 2.7 Ma. Both tectonic uplift and climate change may have played important roles for this shift. The later uplift of the Gobi Altay Mountains relative to the Qilian Mountains since 5 ± 3 Ma might be responsible for the increasing contribution of Gobi materials to the source deserts in Alxa arid lands. Enhanced winter monsoon may also facilitate transportation of Gobi materials from the Alxa arid lands to the CLP. The shifting source of Asian dust was also reflected in north Pacific sediments. The finding of this shifting source calls for caution when interpreting the long-term climate changes based on the source-sensitive proxies of the eolian deposits. PMID:25996645

  20. MCHF calculations of isotope shifts; I program implementation and test runs II large-scale active space calculations

    SciTech Connect

    Joensson, P.; Fischer, C.F.

    1994-03-30

    A new isotope shift program, part of the MCHF atomic structure package, has been written and tested. The program calculates the isotope shift of an atomic level from MCHF or CI wave functions. The program is specially designed to be used with very large CI expansions, for which angular data cannot be stored on disk. To explore the capacity of the program, large-scale isotope shift calculations have been performed for a number of low lying levels in B I and B II. From the isotope shifts of these levels the transition isotope shift have been calculated for the resonance transitions in B I and B II. The calculated transition isotope shifts in B I are in very good agreement with experimental shifts, and compare favourably with shifts obtained from a many-body perturbation calculation.

  1. Multiple linear regression for isotopic measurements

    NASA Astrophysics Data System (ADS)

    Garcia Alonso, J. I.

    2012-04-01

    There are two typical applications of isotopic measurements: the detection of natural variations in isotopic systems and the detection man-made variations using enriched isotopes as indicators. For both type of measurements accurate and precise isotope ratio measurements are required. For the so-called non-traditional stable isotopes, multicollector ICP-MS instruments are usually applied. In many cases, chemical separation procedures are required before accurate isotope measurements can be performed. The off-line separation of Rb and Sr or Nd and Sm is the classical procedure employed to eliminate isobaric interferences before multicollector ICP-MS measurement of Sr and Nd isotope ratios. Also, this procedure allows matrix separation for precise and accurate Sr and Nd isotope ratios to be obtained. In our laboratory we have evaluated the separation of Rb-Sr and Nd-Sm isobars by liquid chromatography and on-line multicollector ICP-MS detection. The combination of this chromatographic procedure with multiple linear regression of the raw chromatographic data resulted in Sr and Nd isotope ratios with precisions and accuracies typical of off-line sample preparation procedures. On the other hand, methods for the labelling of individual organisms (such as a given plant, fish or animal) are required for population studies. We have developed a dual isotope labelling procedure which can be unique for a given individual, can be inherited in living organisms and it is stable. The detection of the isotopic signature is based also on multiple linear regression. The labelling of fish and its detection in otoliths by Laser Ablation ICP-MS will be discussed using trout and salmon as examples. As a conclusion, isotope measurement procedures based on multiple linear regression can be a viable alternative in multicollector ICP-MS measurements.

  2. Isotope-shift exponent, pressure coefficient of [ital T][sub [ital c

    SciTech Connect

    Sarkar, S.; Das, A.N. )

    1994-05-01

    Exact expression for the isotope-shift exponent and the pressure coefficient of the transition temperature are derived from the BCS gap equation for a density of states (DOS) with a van Hove singularity (VHS). The variations of these quantities with the shift of the Fermi level from the VHS and with [ital T][sub [ital c

  3. Measuring SNM Isotopic Distributions using FRAM

    SciTech Connect

    Geist, William H.

    2015-12-02

    The first group of slides provides background information on the isotopic composition of plutonium. It is shown that 240Pu is the critical isotope in neutron coincidence/multiplicity counting. Next, response function analysis to determine isotopic composition is discussed. The isotopic composition can be determined by measuring the net peak counts from each isotope and then taking the ratio of the counts for each isotope relative to the total counts for the element. Then FRAM (Fixed energy Response function Analysis with Multiple efficiencies) is explained. FRAM can control data acquisition, automatically analyze newly acquired data, analyze previously acquired data, provide information on the quality of the analysis, and facilitate analysis in unusual situations (non-standard energy calibrations, gamma rays from non-SNM isotopes, poor spectra (within limits)).

  4. Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling?

    NASA Astrophysics Data System (ADS)

    Carilli, J. E.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2013-06-01

    Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.

  5. Feasibility of Isotopic Measurements: Graphite Isotopic Ratio Method

    SciTech Connect

    Wood, Thomas W.; Gerlach, David C.; Reid, Bruce D.; Morgan, W. C.

    2001-04-30

    This report addresses the feasibility of the laboratory measurements of isotopic ratios for selected trace constituents in irradiated nuclear-grade graphite, based on the results of a proof-of-principal experiment completed at Pacific Northwest National Laboratory (PNNL) in 1994. The estimation of graphite fluence through measurement of isotopic ratio changes in the impurity elements in the nuclear-grade graphite is referred to as the Graphite Isotope Ratio Method (GIRM). Combined with reactor core and fuel information, GIRM measurements can be employed to estimate cumulative materials production in graphite moderated reactors. This report documents the laboratory procedures and results from the initial measurements of irradiated graphite samples. The irradiated graphite samples were obtained from the C Reactor (one of several production reactors at Hanford) and from the French G-2 Reactor located at Marcoule. Analysis of the irradiated graphite samples indicated that replicable measurements of isotope ratios could be obtained from the fluence sensitive elements of Ti, Ca, Sr, and Ba. While these impurity elements are present in the nuclear-grade graphite in very low concentrations, measurement precision was typically on the order of a few tenths of a percent to just over 1 percent. Replicability of the measurements was also very good with measured values differing by less than 0.5 percent. The overall results of this initial proof-of-principal experiment are sufficiently encouraging that a demonstration of GIRM on a reactor scale basis is planned for FY-95.

  6. Strontium isotopes provide clues for a process shift in base cation dynamics in young volcanic soils

    NASA Astrophysics Data System (ADS)

    Bingham, N.; Jackson, M. G.; Bookhagen, B.; Maher, K.; Chadwick, O.

    2015-12-01

    Despite advances in soil development theory based on studies of old soils or over long timescales, little is known about soil thresholds (dramatic changes in soil properties associated with only small shifts in external forcing factors) that might be expressed in young soils (less than 10 kyr). Therefore, we seek to understand infant soil development in a tropical environment through the sourcing of plant available base cations by measuring the strontium (Sr) isotopic composition of the soil exchange complex. Our sampling strategy spans soils in three different precipitation ranges (950-1060 mm, 1180-1210 mm, and 1450-1500) and an array of soil ages from 500 to 7500 years in the Kona region on the island of Hawaii. In Hawaiian soils, 87Sr/86Sr values are determined by a mixture of three components: a mantle-derived component from the lava (0.7034), a rainfall component (0.7093) and a component from continental dust (0.720). Elevation-controlled leaching intensity in the wettest localities produces a decline in the concentration of base cations supplied by basalt and a dilute resupply by rainfall. In the driest sites, where leaching intensity is dramatically reduced, there is a buildup of rainfall-derived extractable Sr in the soil over time. Slow rock weathering rates produce a small rock-derived cation input to the soil. Thus, Sr isotope signatures reflect both the input of rainfall-derived cations and rock-derived cations with values that fall between rainfall and basaltic signatures. Soils in the intermediate precipitation range have Sr isotopic signatures consistent with both the wet and dry trends; suggesting that they lie close to the critical precipitation amount that marks a shift between these two processes. For the Kona region, this transition seems to occur at 1200 mm /yr. In contrast to the clear-cut differentiation in strontium isotopes with precipitation shifts observed in older soils, patterns on these young soils in Kona are complicated by low soil

  7. Carbon and nitrogen isotopes from top predator amino acids reveal rapidly shifting ocean biochemistry in the outer California Current.

    PubMed

    Ruiz-Cooley, Rocio I; Koch, Paul L; Fiedler, Paul C; McCarthy, Matthew D

    2014-01-01

    Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure. PMID:25329915

  8. Carbon and Nitrogen Isotopes from Top Predator Amino Acids Reveal Rapidly Shifting Ocean Biochemistry in the Outer California Current

    PubMed Central

    Ruiz-Cooley, Rocio I.; Koch, Paul L.; Fiedler, Paul C.; McCarthy, Matthew D.

    2014-01-01

    Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure. PMID:25329915

  9. Isotopic Differences in CO Air Broadening and Shift Parameters

    NASA Astrophysics Data System (ADS)

    Smith, Mary-Ann H.; Malathy Devi, V.; Benner, D. Chris; Mantz, A. W.; Sung, K.; Brown, L. R.

    2012-10-01

    Line shape parameters were measured in the 2-0 bands at 2.3 µm for the three most abundant isotopologues of carbon monoxide at temperatures between 150 K and 298 K and total pressures up to 0.9 atm. These parameters include the Lorentz half-width coefficients with their temperature dependence exponents; pressure-induced line shift coefficients with their temperature dependences, speed dependence parameters, and off-diagonal relaxation matrix elements. For this, we recorded more than 50 high resolution (0.005 cm-1) spectra of CO and two of its isotopologues (13CO and C18O) using a coolable absorption cell [1] in the sample compartment of the Bruker IFS 125HR Fourier transform spectrometer at Jet Propulsion Laboratory. Line parameters were retrieved by broad-band constrained multispectrum least-squares fitting [2] of 16 or more spectra simultaneously. The individual line positions and intensities were constrained to their theoretical relationships in order to obtain the rovibrational (G, B, D, and H) and band intensity parameters, including Herman-Wallis coefficients, as has been done for CO2 previously [3]. Differences between the air-broadening results for the 12C16O band [4] and the 13C16O and 12C18O 2-0 bands [5] are examined. This research is supported by NASA’s Earth Science Atmospheric Composition Laboratory Research Program. Part of the research at the Jet Propulsion Laboratory, California Institute of Technology, the College of William and Mary, and Connecticut College was performed under contracts and grants with the National Aeronautics and Space Administration. 1. K. Sung et al., J. Mol. pectrosc. 262 (2010) 122. 2. D. C. Benner et al., J. Quant. Spectrosc. Radiat. Transfer 53 (1995) 705. 3. V. Malathy Devi et al., J. Mol. Spectrosc. 242 (2007) 90. 4. V. Malathy Devi et al., J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1013. 5. V. Malathy Devi et al., J. Mol. Spectrosc. 276-277 (2012) 33.

  10. Species-specific ontogenetic diet shifts among Neotropical Crenicichla: using stable isotopes and tissue stoichiometry.

    PubMed

    Burress, E D; Duarte, A; Serra, W S; Gangloff, M M; Siefferman, L

    2013-06-01

    Ontogenetic diet shifts were compared among five sympatric pike cichlids Crenicichla in a subtropical South American stream using stable C and N isotopes and tissue stoichiometry (C:N). Within species, stable N isotopes were positively related to body size while C:N showed negative relationships. Stable C isotopes, however, were not related to body size in any species. By modelling the switch to piscivory using gut content-isotope-body size relationships, diet shifts were shown to be species-specific with regard to both rate and degree of piscivory. Compared to other piscivorous lineages, Crenicichla appear to be unusually small-bodied (based on maximum body size). Because of their diversity, abundance and dynamic size-structured functional roles, Crenicichla may exert broad and complex predation pressures on the aquatic community. PMID:23731144

  11. Attogram measurement of rare isotopes by CW resonance ionization mass spectrometry

    SciTech Connect

    Bushaw, B.A.

    1992-05-01

    Three-color double-resonance ionization mass spectrometry, using two single-frequency cw dye lasers and a cw carbon dioxide laser, has been applied to the detection of attogram quantities of rare radionuclides. {sup 210}Pb has been measured in human hair and brain tissue samples to assess indoor radon exposure. Measurements on {sup 90}Sr have shown overall isotopic selectivity of greater than 10{sup 9} despite unfavorable isotope shifts relative to the major stable isotope, {sup 88}Sr.

  12. Phase-shifting behaviour revisited: An alternative measure

    NASA Astrophysics Data System (ADS)

    Kang, Bo Soo; Ryu, Doojin; Ryu, Doowon

    2014-05-01

    This study re-examines the recently documented phase-shifting behaviour of financial markets using an alternative measure, an intraday return-based measure. While most previous studies on phase-shifting behaviour adopt the volume-imbalance measure proposed by Plerou et al. (2003), we find that our return-based measure successfully captures phase-shifting behaviour, and moreover exhibits a unique pattern of phase-shifting that is not detected when the classical volume imbalance measure is used. By analysing a high-frequency dataset of KOSPI200 futures, we also find that large trades reveal phase-shifting behaviour more clearly and significantly than smaller trades.

  13. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  14. Isotopic stack - measurement of heavy cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Beaujean, R.

    1981-01-01

    Heavy cosmic ray nuclei with nuclear charge, Z, equal to or greater than 3 are to be measured using an isotopic stack consisting of passive visual track detectors which remain sensitive throughout the entire mission. The scientific data are stored in latent tracks which are produced by heavy ions and which can be revealed in the investigator's laboratory after recovery. During the mission, only housekeeping data have to be collected. The exposure onboard Spacelab 1 allows the study of the chemical composition and energy spectrum of articles which have energies in the range 20 to 100 million electron volts per atomic mass unit, as well as the isotopic composition of heavy galactic cosmic rays with energies in the range 100 to 1000 million electron volts per atomic mass unit.

  15. Correlations of experimental isotope shifts with spectroscopic and mass observables

    SciTech Connect

    Cakirli, R. B.; Casten, R. F.; Blaum, K.

    2010-12-15

    Experimental differential observables relating to mean square charge radii, spectroscopic, and mass observables of even-even nuclei are presented for different regions in the nuclear chart. They exhibit remarkable correlations, not heretofore recognized, that provide a new perspective on structural evolution, especially in exotic nuclei. This can also be a guide for future measurements of charge radii, spectroscopic observables, and masses, as well as for future theoretical approaches.

  16. Isotopic ratio measurements with ICP-MS

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.

    1986-06-03

    An inductively-coupled-plasma source mass spectrometer (ICP-MS) has been used to measure the isotopic composition of U, Pb, Os, and B standards. Particular emphasis has been placed on uranium because of its nuclear and environmental interest and because of the availability of a well-characterized set of standards with a wide range of isotopic compositions. The precision and accuracy obtainable in isotope ratio measurements by ICP-MS depend on many factors including background, interferences, dead time, mass fractionation (bias), abundance sensitivity, and counting statistics. Which, if any, of these factors controls accuracy and precision depends on the type of sample being analyzed and the characteristics of the mass spectrometer. These issues are discussed in detail.

  17. Mass measurement of radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Kluge, H.-J.; Blaum, K.; Scheidenberger, C.

    2004-10-01

    The highest precision in mass measurements on short-lived radionuclides is obtained using trapping and cooling techniques. Here, the experimental storage ring (ESR) at GSI/Darmstadt and the tandem Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN play an important role. Status and recent results on mass measurements of radioactive nuclides with ESR and ISOLTRAP are summarized.

  18. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Nazé, C.; Verdebout, S.; Godefroid, M.

    2014-09-15

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  19. Isotope shift of 40,42,44,48Ca in the 4s 2S1/2 → 4p 2P3/2 transition

    NASA Astrophysics Data System (ADS)

    Gorges, C.; Blaum, K.; Frömmgen, N.; Geppert, Ch; Hammen, M.; Kaufmann, S.; Krämer, J.; Krieger, A.; Neugart, R.; Sánchez, R.; Nörtershäuser, W.

    2015-12-01

    We report on improved isotope shift measurements of the isotopes {}{40,42,{44,48}}Ca in the 4{{s}}{ }2{{{S}}}1/2\\to 4{{p}}{ }2{{{P}}}3/2 (D2) transition using collinear laser spectroscopy. Accurately known isotope shifts in the 4{{s}}{ }2{{{S}}}1/2\\to 4{{p}}{ }2{{{P}}}1/2(D1) transition were used to calibrate the ion beam energy with an uncertainty of {{Δ }}U≈ +/- 0.25 {{V}}. The accuracy in the D2 transition was improved by a factor of 5-10. A King-plot analysis of the two transitions revealed that the field shift factor in the D2 line is about 1.8(13)% larger than in the D1 transition which is ascribed to relativistic contributions of the 4{{{p}}}1/2 wave function.

  20. Precise laser frequency scanning using frequency-synthesized optical frequency sidebands - Application to isotope shifts and hyperfine structure of mercury

    NASA Technical Reports Server (NTRS)

    Rayman, M. D.; Aminoff, C. G.; Hall, J. L.

    1989-01-01

    Based on an efficient broadband electrooptic modulator producing RF optical sidebands locked to a stable cavity, a tunable dye laser can be scanned under computer control with frequency-synthesizer precision. Cavity drift is suppressed in software by using a strong feature in the spectrum for stabilization. Mercury isotope shifts are measured with a reproducibility of about 50 kHz. This accuracy of about 1/300 of the linewidth illustrates the power of the technique. Derived hyperfine-structure constants are compared with previous atomic-beam data.

  1. Uranium isotope ratio measurements in field settings

    SciTech Connect

    Shaw, R.W.; Barshick, C.M.; Young, J.P.; Ramsey, J.M.

    1997-06-01

    The authors have developed a technique for uranium isotope ratio measurements of powder samples in field settings. Such a method will be invaluable for environmental studies, radioactive waste operations, and decommissioning and decontamination operations. Immediate field data can help guide an ongoing sampling campaign. The measurement encompasses glow discharge sputtering from pressed sample hollow cathodes, high resolution laser spectroscopy using conveniently tunable diode lasers, and optogalvanic detection. At 10% {sup 235}U enrichment and above, the measurement precision for {sup 235}U/({sup 235}U+{sup 238}U) isotope ratios was {+-}3%; it declined to {+-}15% for 0.3% (i.e., depleted) samples. A prototype instrument was constructed and is described.

  2. Carbon isotope variation in mid-continent Ordovician-type oils: relationship to a major middle Ordovician carbon isotope shift

    SciTech Connect

    Hatch, J.R.; Jacobson, S.R.; Witzke, B.J.; Anders, D.E.; Watney, W.L.; Newell, K.D.

    1985-05-01

    Detailed organic geochemical comparisons of Mid-Continent Ordovician oils with extracts of potential source rocks show that in the Forest City basin of northeastern Kansas and southeastern Nebraska, oil source rocks are Middle Ordovician shales of the Simpson Group. For the Keota Dome field, Washington County, Iowa, the oil source rock is the Middle Ordovician Glenwood Shale Member of the Platteville Formation. Analyses of saturated and aromatic hydrocarbon fractions of Ordovician-type oils from the Forest City basin, Keota Dome field, and the Michigan basin show that sigma TC of the two fractions are similar and that sigma T varies over a considerable range, from -32.5 per mil to -25.5 per mil (PDB). This large range in sigma TC reflects a major shift in the carbon isotope composition of organic matter during the Middle Ordovician. This shift is shown in a 62.5-ft (19 m) interval of core from the Decorah and Platteville Formations in the E.M. Greene 1 well in Washington County, Iowa, where organic carbon sigma TC changes regularly upward from -32.2 per mil to -22.7 per mil (PDB). The change in organic carbon sigma TC in this core is not related to variations in amount (0.13-41.4% TOC) or type (hydrogen index = 69 to 1000 mg HC/g TOC) of the marginally mature (T/sub max/ = 440 +/- 5C) organic matter. Ordovician-type oils in both the Forest City and Michigan basins show variable sigma TC, suggesting that the sigma TC shift displayed in the Middle Ordovician rocks of southeastern Iowa is a regional and possibly a global effect, related to changes in the sigma TC of the ocean-atmosphere carbon reservoir. Isotopic analyses of coexisting carbonate minerals support this interpretation.

  3. Magnetic Polarity Stratigraphy of Siwalik Group Sediments in Nepal: Diachronous Lithostratigraphy and Isochronous Carbon Isotope Shift

    NASA Astrophysics Data System (ADS)

    Butler, R. F.; Ojha, T. P.; Quade, J.; DeCelles, P. G.

    2001-12-01

    , Muksar, and Bakiya kholas, a shift in δ 13C in paleosol carbonate occurs within chron C3Ar at ~6.8 Ma, indicating that the carbon isotopic shift is isochronous. This isotopic shift has also been observed in Siwalik Group sediments of Pakistan (where the isotope shift appears to commence slightly earlier) and oceanic deposits of the Bengal Fan. The shift in carbon isotopes is interpreted as an ecological transition from dominantly C3 plants (trees) to dominantly C4 plants (grasses).

  4. An orbital origin for large oxygen isotopic shifts and sea-level changes during the Oligocene

    NASA Astrophysics Data System (ADS)

    Pekar, S. F.; Christie-Blick, N.

    2004-12-01

    Recently, it was shown that a relatively rare orbital congruence involving low-amplitude variance in obliquity and a minimum in eccentricity coincides at the Miocene/Oligocene boundary with a large increase in oxygen isotopes (Mi1 event) and ice volume, suggesting a possible causal mechanism for such events at the million-year timescale. We tested this idea against the Oligocene oxygen isotopic and sea-level records and the astronomical timescale of Shackleton et al. (1999). As in the Miocene, large isotopic shifts (Oi events; δ 18O >0.5\\permil, with maximum values >2.7\\permil) and sea-level changes (30-70 m) occurred in the Oligocene at the million-year timescale. Smaller variations in sea level (and corresponding isotopic values) characterize obliquity (104 years) and eccentricity (105 years) timescales: 15-20 m and 20-30 m, respectively. Our analysis shows that, as with the Mi1 event, Oi events relate to the anticipated orbital congruence - resolving one of the outstanding conundrums of the late Paleogene paleoclimate. It also provides support for the robustness of the astronomical time scale of Shackleton et al. (1999) for the Oligocene Epoch.

  5. Measurement of Plutonium Isotopic Composition - MGA

    SciTech Connect

    Vo, Duc Ta

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  6. FAST TRACK COMMUNICATION Accurate estimate of α variation and isotope shift parameters in Na and Mg+

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2010-12-01

    We present accurate calculations of fine-structure constant variation coefficients and isotope shifts in Na and Mg+ using the relativistic coupled-cluster method. In our approach, we are able to discover the roles of various correlation effects explicitly to all orders in these calculations. Most of the results, especially for the excited states, are reported for the first time. It is possible to ascertain suitable anchor and probe lines for the studies of possible variation in the fine-structure constant by using the above results in the considered systems.

  7. Isotope Shift in the Dielectronic Recombination of Three-Electron {sup A}Nd{sup 57+}

    SciTech Connect

    Brandau, C.; Kozhuharov, C.; Bosch, F.; Kluge, H.-J.; Stoehlker, Th.; Beckert, K.; Beller, P.; Nolden, F.; Steck, M.; Gumberidze, A.; Reuschl, R.; Spillmann, U.; Harman, Z.; Jentschura, U. D.; Keitel, C. H.; Wolf, A.; Mueller, A.; Schippers, S.; Bernhardt, D.; Boehm, S.

    2008-02-22

    Isotope shifts in dielectronic recombination spectra were studied for Li-like {sup A}Nd{sup 57+} ions with A=142 and A=150. From the displacement of resonance positions energy shifts {delta}E{sup 142} {sup 150}(2s-2p{sub 1/2})=40.2(3)(6) meV [(stat)(sys)] and {delta}E{sup 142} {sup 150}(2s-2p{sub 3/2})=42.3(12)(20) meV of 2s-2p{sub j} transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of {sup 142} {sup 150}{delta}=-1.36(1)(3) fm{sup 2}. The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size.

  8. Temperature measurements from oxygen isotope ratios of fish otoliths.

    PubMed

    Devereux, I

    1967-03-31

    Measurements have shown that the temperature of a fish's habitat can be deduced from the Oxygen isotope ratio of its otoliths (ear bones). Isotope ratios Obtained from fossil otoliths indicate a water temperature which agrees wiht that found by isotope measurements on associated benthonic foraminifera. PMID:6020293

  9. Wideband Doppler frequency shift measurement and direction ambiguity resolution using optical frequency shift and optical heterodyning.

    PubMed

    Lu, Bing; Pan, Wei; Zou, Xihua; Yan, Xianglei; Yan, Lianshan; Luo, Bin

    2015-05-15

    A photonic approach for both wideband Doppler frequency shift (DFS) measurement and direction ambiguity resolution is proposed and experimentally demonstrated. In the proposed approach, a light wave from a laser diode is split into two paths. In one path, the DFS information is converted into an optical sideband close to the optical carrier by using two cascaded electro-optic modulators, while in the other path, the optical carrier is up-shifted by a specific value (e.g., from several MHz to hundreds of MHz) using an optical-frequency shift module. Then the optical signals from the two paths are combined and detected by a low-speed photodetector (PD), generating a low-frequency electronic signal. Through a subtraction between the specific optical frequency shift and the measured frequency of the low-frequency signal, the value of DFS is estimated from the derived absolute value, and the direction ambiguity is resolved from the derived sign (i.e., + or -). In the proof-of-concept experiments, DFSs from -90 to 90 kHz are successfully estimated for microwave signals at 10, 15, and 20 GHz, where the estimation errors are lower than ±60  Hz. The estimation errors can be further reduced via the use of a more stable optical frequency shift module. PMID:26393729

  10. Stable isotopes in fossil hominin tooth enamel suggest a fundamental dietary shift in the Pliocene.

    PubMed

    Lee-Thorp, Julia A; Sponheimer, Matt; Passey, Benjamin H; de Ruiter, Darryl J; Cerling, Thure E

    2010-10-27

    Accumulating isotopic evidence from fossil hominin tooth enamel has provided unexpected insights into early hominin dietary ecology. Among the South African australopiths, these data demonstrate significant contributions to the diet of carbon originally fixed by C(4) photosynthesis, consisting of C(4) tropical/savannah grasses and certain sedges, and/or animals eating C(4) foods. Moreover, high-resolution analysis of tooth enamel reveals strong intra-tooth variability in many cases, suggesting seasonal-scale dietary shifts. This pattern is quite unlike that seen in any great apes, even 'savannah' chimpanzees. The overall proportions of C(4) input persisted for well over a million years, even while environments shifted from relatively closed (ca 3 Ma) to open conditions after ca 1.8 Ma. Data from East Africa suggest a more extreme scenario, where results for Paranthropus boisei indicate a diet dominated (approx. 80%) by C(4) plants, in spite of indications from their powerful 'nutcracker' morphology for diets of hard objects. We argue that such evidence for engagement with C(4) food resources may mark a fundamental transition in the evolution of hominin lineages, and that the pattern had antecedents prior to the emergence of Australopithecus africanus. Since new isotopic evidence from Aramis suggests that it was not present in Ardipithecus ramidus at 4.4 Ma, we suggest that the origins lie in the period between 3 and 4 Myr ago. PMID:20855312

  11. Stable isotopes reveal habitat-related diet shifts in facultative deposit-feeders

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Baeta, Alexandra; Marques, João C.

    2015-01-01

    Seagrass patches interspersed in a sediment matrix may vary environmental conditions and affect feeding habits of consumers and food-web structure. This paper investigates diet shifts between bare sediments and a Zostera noltei (Hornemann, 1832) meadow for three facultative deposit-feeding macrofaunal consumers, notably the bivalve Scrobicularia plana (da Costa, 1778), the polychaete Hediste diversicolor (O.T. Müller, 1776), and the gastropod Hydrobia ulvae (Pennant, 1778). In July 2008, one eelgrass meadow and two bare sediment locations were chosen in the Mondego estuary (40° 08″ N, 8° 50‧ W, Portugal) and sampled for stable isotope signatures (δ13C and δ15N) of macrofauna consumers and some of their potential basal food sources, such as sedimentary organic matter (SOM), microphytobenthos (MPB), seagrass shoots, leaves and seaweeds laying on the surface sediment. The δ15N of H. diversicolor was 3‰ higher in the eelgrass meadow than in bare sediment, indicating a change of trophic position, whereas the Bayesian stable-isotope mixing model showed that S. plana assimilated more macroalgal detritus than microphytobenthos in the eelgrass bed. Such habitat-related diet shifts have the potential to change structure and spatial dynamics of benthic food webs.

  12. Regime shift signatures from stable oxygen isotopic records of otoliths of Atlantic cod (Gadus morhua).

    PubMed

    Gao, Y W

    2002-12-01

    The sudden collapse of Atlantic cod (Gadus morhua) may relate to ocean climate, or regime shifts as demonstrated in production of Pacific salmon. This paper reports the results of stable oxygen isotope ratio analyses (18O/16O or delta18OA) from 91 otoliths of cod over a period of about 20 years. Seasonal delta18OA variations of individual otoliths started at an initial value of about -0.5 to 0 per thousand VPDB, and then reached a stable level in the range of +2.5 to +3.5 per thousand VPDB after 4-5 years. The initial low values correspond to the natal sources of mature cod, while the higher delta18OA values represent the water conditions before the cod was caught. This pattern of delta18OA variation was observed over the life history of all cod examined. Furthermore, the calculated isotopic temperatures agreed with those obtained from summer bottom trawl survey, indicating that delta18OA of otoliths could be used as a thermometer in determining the ambient seawater temperature where the cod lived. Comparison of long-term delta18OA records and biological and meteorological observations suggested that decadal-scale ecosystem changes did occur in the late 1970s and early 1990s in Atlantic Canada, comparable to regime shifts occurred in the North Pacific. PMID:12725428

  13. Effects of high count rate and gain shift on isotope identification algorithms

    SciTech Connect

    Robinson, Sean M.; Kiff, Scott D.; Ashbaker, Eric D.; Flumerfelt, Eric L.; Salvitti, Matthew

    2009-11-01

    Spectroscopic gamma-ray detectors are used for many research, industrial, and homeland- security applications. Thallium-doped sodium iodide, (NaI(Tl)), scintillation crystals coupled to photomultiplier tubes provide medium-resolution spectral data about the surrounding environment. NaI(Tl)-based detectors, paired with spectral identification algorithms, are often effective for identifying gamma-ray sources by isotope. However, intrinsic limitations for NaI(Tl) systems exist, including gain shifts and spectral marring (e.g., loss of resolution and count-rate saturation) at high count rates. These effects are hardware dependent and have strong effects on the radioisotopic identification capability of NaI(Tl)-based systems. In this work, the effects of high count rate on the response of isotope-identification algorithms are explored. It is shown that a small gain shift of a few tens of keV is sufficient to disturb identification. The onset of this and other spectral effects is estimated for NaI(Tl) crystals, and a mechanism for mitigating these effects by estimating and correcting for them is implemented and evaluated.

  14. Effects of High Count Rate and Gain Shift on Isotope Identification Algorithms

    SciTech Connect

    Robinson, Sean M.; Kiff, Scott D.; Ashbaker, Eric D.; Bender, Sarah E.; Flumerfelt, Eric L.; Salvitti, Matthew; Borgardt, James D.; Woodring, Mitchell L.

    2007-12-31

    Spectroscopic gamma-ray detectors are used for many research applications, as well as Homeland Security screening applications. Sodium iodide (NaI) scintillator crystals coupled with photomultiplier tubes (PMTs) provide medium-resolution spectral data about the surrounding environment. NaI based detectors, paired with spectral identification algorithms, are often effective in identifying sources of interest by isotope. However, intrinsic limitations exist for NaI systems because of gain shifts and spectral marring (e.g., loss of resolution and count-rate saturation) at high count rates. These effects are hardware dependent, and have strong effects on the radioisotopic identification capability of these systems. In this work, the effects of high count rate on the capability of isotope identification algorithms are explored. It is shown that a small gain shift of a few tens of keV is sufficient to disturb identification. The onset of this and other spectral effects are estimated for several systems., and a mechanism for mitigating these effects by estimating and correcting for them is implemented and evaluated.

  15. Quantitative analysis of deuterium using the isotopic effect on quaternary (13)C NMR chemical shifts.

    PubMed

    Darwish, Tamim A; Yepuri, Nageshwar Rao; Holden, Peter J; James, Michael

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual (1)H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D2O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary (13)C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing (13)C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve (13)C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ((1)H, (2)H) resolves closely separated quaternary (13)C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. PMID:27237841

  16. Measurement and Calibration of PSD with Phase-shifting Interferometers

    NASA Technical Reports Server (NTRS)

    Lehan, J. P.

    2008-01-01

    We discuss the instrumental aspects affecting the measurement accuracy when determining PSD with phase shifting interferometers. These include the source coherence, optical train effects, and detector effects. The use of a carefully constructed calibration standard will also be discussed. We will end with a recommended measurement and data handling procedure.

  17. A Carbon Source Apportionment Shift in Mexico City Atmospheric Particles During 2003-2004 as Determined with Stable Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Lopez-Veneroni, D. G.; Vega, E.

    2013-05-01

    The stable carbon isotope composition of atmospheric particles (PM2.5) was measured at La Merced (MER), a commercial site in the eastern sector, and at Xalostoc (XAL) an industrial site in the NE sector of Mexico City, during three sampling periods in autumn 2003, and spring and autumn 2004. At each site and sampling campaign particle samples were collected daily with minivol samplers during two week periods. Ancillary data included organic and elemental carbon, trace elements and ionic species. This data base was complement with air quality data from the RAMA (Automatic Atmospheric Monitoring Network). In general, particle concentrations, ionic species and some air quality species showed higher concentrations in autumn and lowest values in spring. Moreover, the concentrations of these chemical species were highest at XAL compared to MER. The stable carbon isotope composition of PM2.5 during autumn 2003 and spring 2004 had and average value of -26.04 (± 1.54) ‰ vs. PDB. Differences in the isotopic composition between the two sites were non significant. The average δ13C during these seasons were 1 ‰ lighter relative to data collected previously at these sites during 2000 and 2001, and is consistent with a predominant source of hydrocarbon combustion. In autumn 2004, however, average δ13C at XAL and MER increased to -22.8 (± 0.9) and -20.6 (± 3.1) ‰, respectively. Organic carbon concentrations during this period increased concomitantly at these sites. The shift in the isotopic composition in ambient particles suggests a predominance of soil-derived carbon during this period. The possible causes and implications of this are discussed.

  18. Using tensor light shifts to measure and cancel a cell's quadrupolar frequency shift

    NASA Astrophysics Data System (ADS)

    Peck, S. K.; Lane, N.; Ang, D. G.; Hunter, L. R.

    2016-02-01

    We have developed a technique that uses the tensor light shift to measure and cancel the frequency shift produced by the quadrupolar anisotropy of a vapor cell. We demonstrate the technique on the 6 S1 /2 ,F =4 level of Cs using the D1 transition. The method extends our ability to study quadrupolar wall interactions beyond diamagnetic atoms. We have deduced the twist angle per wall adhesion for cesium on an alkene coating to be θCs -alkene=1.4 mrad . This value is about 37 times larger than the twist angle observed in 131Xe, suggesting that it is not produced by the interaction of the nuclear quadrupole moment with a collisional electric-field gradient. Alternative mechanisms that may be responsible for the observed quadrupolar frequency shifts are discussed. By canceling the cell-induced quadrupole shift we have extended our cells' effective spin-relaxation times by as much as a factor of 2. This cancellation improves magnetometer sensitivity in highly anisotropic cells and could reduce systematic uncertainties in some precision measurements.

  19. Using Tensor Light Shifts to Measure and Cancel a Cell's Quadruopolar Frequency Shift

    NASA Astrophysics Data System (ADS)

    Hunter, Larry; Peck, Stephen; Lane, Nathanael; Ang, Daniel

    2016-05-01

    We have developed a new technique that uses the tensor light shift to measure and cancel the frequency shift produced by the quadrupolar anisotropy of a vapor cell. We demonstrate the technique on the 6 S1/2, F = 4 level of Cs using the D1 transition. The method extends our ability to study quadrupolar wall interactions beyond diamagnetic atoms. We have deduced the twist angle per wall adhesion for cesium on an alkene coating to be about 1.4 mrad. This value is about 37 times larger than the twist angle observed in 131 Xe, suggesting that it is not produced by the interaction of the nuclear quadrupole moment with a collisional electric-field gradient. Alternative mechanisms that may be responsible for the observed quadrupolar frequency shifts are discussed. By cancelling the cell-induced quadrupole shift we have extended our cells' effective spin-relaxation times by as much as a factor of two. This cancellation improves magnetometer sensitivity in highly anisotropic cells and could reduce systematic uncertainties in some precision measurements. This work was supported by NSF Grant No. PHY1205824 and No. PHY1519265.

  20. Precision measurement of transition matrix elements via light shift cancellation.

    PubMed

    Herold, C D; Vaidya, V D; Li, X; Rolston, S L; Porto, J V; Safronova, M S

    2012-12-14

    We present a method for accurate determination of atomic transition matrix elements at the 10(-3) level. Measurements of the ac Stark (light) shift around "magic-zero" wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s - 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea(0) and 0.5230(8)ea(0) for the 5s - 6p(1/2) and 5s - 6p(3/2) elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information. PMID:23368314

  1. Penning trap mass measurements on nobelium isotopes

    SciTech Connect

    Dworschak, M.; Block, M.; Ackermann, D.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Vorobyev, G. K.; Audi, G.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Eliseev, S.; Ketter, J.; Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ketelaer, J.; Kluge, H.-J.

    2010-06-15

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes {sup 252-254}No were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a {sup 48}Ca beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  2. Laser spectroscopic measurement of helium isotope ratios.

    SciTech Connect

    Wang, L.-B.; Mueller, P.; Holt, R. J.; Lu, Z.-T.; O'Connor, T. P.; Sano, Y.; Sturchio, N.; Univ. of Illinois; Univ. of Tokyo; Univ. of Illinois at Chicago

    2003-06-13

    A sensitive laser spectroscopic method has been applied to the quantitative determination of the isotope ratio of helium at the level of {sup 3}He/{sup 4}He = 10{sup -7}--10{sup -5}. The resonant absorption of 1083 nm laser light by the metastable {sup 3}He atoms in a discharge cell was measured with the frequency modulation saturation spectroscopy technique while the abundance of {sup 4}He was measured by a direct absorption technique. The results on three different samples extracted from the atmosphere and commercial helium gas were in good agreement with values obtained with mass spectrometry. The achieved 3{sigma} detection limit of {sup 3}He in helium is 4 x 10{sup -9}. This demonstration required a 200 {mu}L STP sample of He. The sensitivity can be further improved, and the required sample size reduced, by several orders of magnitude with the addition of cavity enhanced spectroscopy.

  3. ICP-MS for isotope ratio measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of stable isotopes in mineral nutrition research has become a fundamental aspect of conducting this research. A gradual transition has occurred, now virtually complete, from radioactive isotope studies to those using stable isotopes. Although primarily used in human research, mineral stable ...

  4. In-plane displacement measurement using optical vortex phase shifting.

    PubMed

    Sun, Haibin; Wang, Xinghai; Sun, Ping

    2016-07-20

    In this paper, we propose a new method for in-plane displacement measurement by application of phase shifting based on an optical vortex. The phase shifts are obtained by displaying computer-generated fork holograms on the screen of a liquid-crystal spatial light modulator (LC-SLM). Furthermore, the vortex beam that is generated by the LC-SLM can be used as a reference light in the experiment. Eight speckle patterns with phase-shift increments of 0, π/2, π, and 3π/2 were captured by a CCD camera before and after the deformation. The displacement of the deformed object was obtained by unwrapping. Experimental results demonstrated the efficacy of the proposed method for in-plane displacement measurement. PMID:27463914

  5. Oxygen Isotopes in Fresh Water Biogenic Opal: Northeastern US Alleroed-Younger Dryas Temperature Shift

    NASA Technical Reports Server (NTRS)

    Shemesh, Aldo; Peteet, Dorothy

    1997-01-01

    The first oxygen isotope analysis of biogenic opal from lake sediments, from the Allerod/Younger Dryas transition in a core from Linsley Pond, Connecticut, gives an average estimate of a 6 C drop in temperature during the Younger Dryas. This shift represents temperatures during the bloom season, and may be less than the winter temperature drop. The sharp transition itself, with a duration of about 200 years, suggests that the temperature decrease may have been as large as 12 C. Previous estimates of the Allerod/Younger Dryas temperature shifts are controversial, and range from 3-20 C, suggesting that further interdisciplinary research on the same samples is warranted. One way that global climate change manifests itself is by redistributing energy throughout the globe. The Northern Hemisphere latitudinal temperature gradient during the late-glacial is at present a controversial topic. The magnitude of air temperature shifts during the Allerod/Younger Dryas (YD) oscillation are estimated from mid-latitude pollen records surrounding the North Atlantic to be 3-5 C in Europe [Lowe et al., 19941 and 3-4 C in the eastern US [Peteet et al., 1993]. In contrast, lake temperatures estimates derived from aquatic midge larvae in the Canadian eastern maritimes and Maine range from 6-20 C, with larger shifts at more southern sites [Levesque et al., 1997]. The magnitude of YD cooling in Greenland ice cores ranges from at least 7 C from the Bolling warming [Dansgaard et al., 1989] to 15 C - a more recent estimate from borehole temperatures [Cuffey et al., 1995]. The ice core geochemical records reveal that massive frequent and short-term (decadal or less) changes in atmospheric composition occurred throughout this event, suggesting a very dynamic circulation [Mayewski et al., 1993).

  6. Using C stable isotopes to infer shifting metabolism in response to variable environmental conditions

    NASA Astrophysics Data System (ADS)

    Ballantyne, Ford; Billings, Sharon; Lehmeier, Christoph; Min, Kyungjin

    2014-05-01

    The flow of carbon (C) from organic matter substrates through microbial biomass and into CO2 comprises a complex suite of processes. Organic matter compounds are modified by extracellular enzyme activity, potentially taken up by microbes, and can either remain as altered organic compounds in the soil matrix, or are transformed into inorganic C forms, including CO2. During these transformations, discrimination between 12C and 13C occurs. The net result of all fractionations is what we observe in the δ13C of respired CO2. However, our understanding of fractionations associated with soil organic matter (SOM) transformations is far from complete, especially for biologically-mediated transformations. To make proper inference from δ13C values of respired CO2, we need a more comprehensive understanding of what governs isotopic fractionation along the path from SOM to CO2 release. Here, we present equations for 12C and 13C dynamics in a chemostat system, with which C flux data coupled to isotopic ratios can be used to infer the degree of fractionation associated with functionally distinct processes. Using patterns in the fractionation between substrate and biomass and between biomass and respired CO2 observed for Pseudomonas fluorescens in the experimental chemostat system, we argue that a single mechanism cannot be responsible for temperature-induced changes in the flow rates of 12C and 13C from a single substrate, cellobiose, into respired CO2. We further describe how changing C availability can influence fractionation among C pools and compare predictions to chemostat runs for which C availability varied. Our modeling applied to observed C isotope fluxes strongly suggests that significant discrimination against 13C occurs during cellobiose uptake by P. fluorescens, and that apparently smooth changes in specific respiration rates and associated C use efficiency are actually the result of discontinuous shifts in C flow through anabolic and catabolic pathways. Accounting

  7. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) × 10-6.

  8. Isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions

    NASA Astrophysics Data System (ADS)

    Zubova, N. A.; Malyshev, A. V.; Tupitsyn, I. I.; Shabaev, V. M.; Kozhedub, Y. S.; Plunien, G.; Brandau, C.; Stöhlker, Th.

    2016-05-01

    Isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z =8 -92 . The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large-scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions is significantly improved.

  9. Stable isotope analysis of energy dynamics in aquatic ecosystems suggests trophic shifts following severe wildfire

    NASA Astrophysics Data System (ADS)

    Martens, A. M.; Silins, U.; Bladon, K. D.; Williams, C.; Wagner, M. J.; Luchkow, E.

    2015-12-01

    Wildfire alters landscapes and can have significant impacts on stream ecosystems. The 2003 Lost Creek wildfire was one of the most severe on Alberta's eastern rocky mountain slopes, resulting in elevated sediment production and nutrient (phosphorus, nitrogen, and carbon) export in impacted streams. These resulted in increased algal productivity and macroinvertebrate abundance and diversity, and as a result, fish in watersheds draining wildfire affected catchments were larger than those in the same age class from reference (unburned) watersheds. In the present investigation, stable isotope analysis of C and N was utilized to evaluate ecosystem energy dynamics and describe trophic relationships in those watersheds. Aquatic invertebrates from burned catchments showed enrichment in δ13C and δ15N relative to algae suggesting a reliance on algae (autochthony) as a primary source of energy. Invertebrates from unburned systems were depleted in δ13C relative to algae indicating reliance on allochthonous or terrestrial primary energy sources. Preliminary analysis of δ15N in macroinvertebrates showed slight enrichment in burned catchments suggesting a trophic shift. More comprehensive macroinvertebrate sampling and identification has been conducted; isotopic analysis will provide greater resolution of how specific families within feeding guilds have been affected by wildfire. This will provide more robust insights into how wildfires may impact stream ecology in mountain environments.

  10. Dissolved organic carbon lability and stable isotope shifts during microbial decomposition in a tropical river system

    NASA Astrophysics Data System (ADS)

    Geeraert, N.; Omengo, F. O.; Govers, G.; Bouillon, S.

    2016-01-01

    A significant amount of carbon is transported to the ocean as dissolved organic carbon (DOC) in rivers. During transport, it can be transformed through microbial consumption and photochemical oxidation. In dark incubation experiments with water from the Tana River, Kenya, we examined the consumption of DOC through microbial decomposition and the associated change in its carbon stable isotope composition (δ13C). In 15 of the 18 incubations, DOC concentrations decreased significantly by 10 to 60 %, with most of the decomposition taking place within the first 24-48 h. After 8 days, the remaining DOC was up to 3 ‰ more depleted in 13C compared with the initial pool, and the change in δ13C correlated strongly with the fraction of DOC remaining. We hypothesize that the shift in δ13C is consistent with greater microbial lability of DOC originating from herbaceous C4 vegetation than DOC derived from woody C3 vegetation in the semi-arid lower Tana. The results complement earlier findings that the stable isotope concentration of riverine DOC does not necessarily reflect the proportion of C3 and C4-derived DOC in the catchment: besides spatial distribution patterns of different vegetation types, processing within the river can further influence the δ13C of riverine OC.

  11. Facial Soft Tissue Measurement in Microgravity-induces Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas; Cole, Richard; Pavela, James; Garcia, Kathleen; Sargsyan, Ashot

    2014-01-01

    Fluid shifts are a well-known phenomenon in microgravity, and one result is facial edema. Objective measurement of tissue thickness in a standardized location could provide a correlate with the severity of the fluid shift. Previous studies of forehead tissue thickness (TTf) suggest that when exposed to environments that cause fluid shifts, including hypergravity, head-down tilt, and high-altitude/lowpressure, TTf changes in a consistent and measurable fashion. However, the technique in past studies is not well described or standardized. The International Space Station (ISS) houses an ultrasound (US) system capable of accurate sub-millimeter measurements of TTf. We undertook to measure TTf during long-duration space flight using a new accurate, repeatable and transferable technique. Methods: In-flight and post-flight B-mode ultrasound images of a single astronaut's facial soft tissues were obtained using a Vivid-q US system with a 12L-RS high-frequency linear array probe (General Electric, USA). Strictly mid-sagittal images were obtained involving the lower frontal bone, the nasofrontal angle, and the osseo-cartilaginous junction below. Single images were chosen for comparison that contained identical views of the bony landmarks and identical acoustical interface between the probe and skin. Using Gingko CADx DICOM viewing software, soft tissue thickness was measured at a right angle to the most prominent point of the inferior frontal bone to the epidermis. Four independent thickness measurements were made. Conclusions: Forehead tissue thickness measurement by ultrasound in microgravity is feasible, and our data suggest a decrease in tissue thickness upon return from microgravity environment, which is likely related to the cessation of fluid shifts. Further study is warranted to standardize the technique with regard to the individual variability of the local anatomy in this area.

  12. Theoretical analysis of geometry and NMR isotope shift in hydrogen-bonding center of photoactive yellow protein by combination of multicomponent quantum mechanics and ONIOM scheme

    SciTech Connect

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-11-14

    Multicomponent quantum mechanical (MC-QM) calculation has been extended with ONIOM (our own N-layered integrated molecular orbital + molecular mechanics) scheme [ONIOM(MC-QM:MM)] to take account of both the nuclear quantum effect and the surrounding environment effect. The authors have demonstrated the first implementation and application of ONIOM(MC-QM:MM) method for the analysis of the geometry and the isotope shift in hydrogen-bonding center of photoactive yellow protein. ONIOM(MC-QM:MM) calculation for a model with deprotonated Arg52 reproduced the elongation of O–H bond of Glu46 observed by neutron diffraction crystallography. Among the unique isotope shifts in different conditions, the model with protonated Arg52 with solvent effect reasonably provided the best agreement with the corresponding experimental values from liquid NMR measurement. Our results implied the availability of ONIOM(MC-QM:MM) to distinguish the local environment around hydrogen bonds in a biomolecule.

  13. Short course on St-02 applications of isotope dilutions and isotopic measurements

    SciTech Connect

    Miller, P.

    1998-01-05

    This short course includes information on these topics and subtopics: (I) Nuclear Properties: (A) Historic roots; (B) Nomenclature; (C) Nuclear Stability and abundance; (D) Uses of isotopic techniques; (II) Instrumentation: (A) Sources; (B) Mass resolving elements; (C) Detectors; (III) Making Isotopic Measurements by ICP-MS: (A) Deadtime Correction; (B) Mass Discrimination; (C) Signal /Noise considerations; (IV) Applications and examples: (A) Isotope dilution; (B) Double Spike; (C) Biological Application; (D) Environmental Application; (E) Geological.

  14. Further carbon isotope measurements of LEW 88516

    NASA Technical Reports Server (NTRS)

    Wright, I. P.; Douglas, C.; Pillinger, C. T.

    1993-01-01

    Douglas et al. have previously analyzed the carbon content and isotopic composition of a crushed sample (sub-sample 13) of the shergottite, LEW 88516. The powder, which was from a relatively large portion of the meteorite in order to obtain a representative sample, was distributed amongst the scientific community. However, it is probable that the preparation procedure was not optimized for the purposes of carbon measurements. Indeed, it was found that LEW 88516,13 contained over 1200 ppm carbon, a concentration which is greater than that present in any other SNC meteorite. That a close relative, ALH A77005, contains only 141 ppm carbon seems to implicate the preparation procedure as being responsible for the apparently high carbon content of LEW 88516. However, it may also be the nature of the fine powder which has resulted in contamination. The observation of high carbon content in LEW 88516,13 highlights the extreme difficulty of trying to obtain representative samples of whole meteorites for this kind of investigation. Presented herein are some further measurements of LEW 88516 which should serve to clarify some of the issues raised by the previous investigation.

  15. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  16. Progress in high temperature speckle-shift strain measurement system

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Barranger, John P.

    1990-01-01

    A fast, easy to use speckle tracking system is under development for the speckle-shift strain measurement technique. Preliminary correlation tests on wire specimens show strong correlations of well-developed speckle patterns. Stable cross-correlations were obtained from a tungsten filament at 2480 C. An analysis of the optical system determines the minimum required sampling frequency of the speckle pattern to be 2.55 pixels per speckle.

  17. Line shift, line asymmetry, and the ^6Li/^7Li isotopic ratio determination

    NASA Astrophysics Data System (ADS)

    Cayrel, R.; Steffen, M.; Chand, H.; Bonifacio, P.; Spite, M.; Spite, F.; Petitjean, P.; Ludwig, H.-G.; Caffau, E.

    2007-10-01

    Context: Line asymmetries are generated by convective Doppler shifts in stellar atmospheres, especially in metal-poor stars, where convective motions penetrate to higher atmospheric levels. Such asymmetries are usually neglected in abundance analyses. The determination of the ^6Li/^7Li isotopic ratio is prone to suffering from such asymmetries, as the contribution of ^6Li is a slight blending reinforcement of the red wing of each component of the corresponding ^7Li line, with respect to its blue wing. Aims: The present paper studies the halo star HD 74000 and estimates the impact of convection-related asymmetries on the Li isotopic ratio determination. Methods: Two methods are used to meet this aim. The first, which is purely empirical, consists in deriving a template profile from another element that can be assumed to originate in the same stellar atmospheric layers as Li I, producing absorption lines of approximately the same equivalent width as individual components of the ^7Li I resonance line. The second method consists in conducting the abundance analysis based on NLTE line formation in a 3D hydrodynamical model atmosphere, taking into account the effects of photospheric convection. Results: The results of the first method show that the convective asymmetry generates an excess absorption in the red wing of the ^7Li absorption feature that mimics the presence of ^6Li at a level comparable to the hitherto published values. This opens the possibility that only an upper limit on ^6Li/^7Li has thus far been derived. The second method confirms these findings. Conclusions: From this work, it appears that a systematic reappraisal of former determinations of ^6Li abundances in halo stars is warranted. Based on observations carried out at the European Southern Observatory (ESO), under prog. ID 75.D-0600. Tables 1-3, and additional references are only available in electronic form at http://www.aanda.org

  18. Isotope shifts in francium isotopes Fr 206 - 213 and Fr 221

    SciTech Connect

    Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L. A.; Aubin, S.; Gomez, E.; FrPNC Collaboration

    2014-11-07

    We present the isotope shifts of the 7s1/2 to 7p1/2 transition for francium isotopes ²⁰⁶⁻²¹³Fr with reference to ²²¹Fr collected from two experimental periods. The shifts are measured on a sample of atoms prepared within a magneto-optical trap by a fast sweep of radio-frequency sidebands applied to a carrier laser. King plot analysis, which includes literature values for 7s1/2 to 7p3/2 isotope shifts, provides a field shift constant ratio of 1.0520(10) and a difference between the specific mass shift constants of 170(100) GHz amu between the D₁ and D₂ transitions, of sufficient precision to differentiate between ab initio calculations.

  19. Isotopic CO2 Instrumentation for UAV Measurements

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Silver, J.

    2013-12-01

    Carbon dioxide is the largest component of anthroprogenic green house gas emissions. Knowing atmospheric 13CO2/12CO2 ratios precisely is important for understanding biogenic and anthroprogenic sources and sinks for carbon. Instrumentation mounted on UAV aircraft would enable important spatial isotopic CO2 information. However, current isotopic CO2 instrumentation have unfavorable attributes for UAV use, such as high power requirements, high cost, high weight, and large size. Here we present the early development of a compact isotopic CO2 instrument that is designed to nullify effects of pressure, temperature and moisture, and will ultimately be suitable for UAV deployment.

  20. Spectroscopy and isotope shifts of the 4s3d {sup 1}D{sub 2}-4s5p {sup 1}P{sub 1} repumping transition in magneto-optically trapped calcium atoms

    SciTech Connect

    Dammalapati, U.; Norris, I.; Burrows, C.; Arnold, A. S.; Riis, E.

    2010-02-15

    We investigate a repumping scheme for magneto-optically trapped calcium atoms. It is based on excitation of the 4s3d{sup 1}D{sub 2}-4s5p{sup 1}P{sub 1} transition at 672 nm with an extended cavity diode laser. The effect of the repumping is approximately a factor of three increase in trap lifetime and a doubling of the trapping efficiency from a Zeeman slowed thermal beam. Added to this, the 672-nm laser repumps atoms from an otherwise dark state to yield an overall increase in detected fluorescence signal from the magneto-optic trap (MOT) of more than an order of magnitude. Furthermore, we report isotope shift measurements of the 672-nm transition, for the first time, for four naturally occurring even isotopes. Using available charge radii data, the observed shifts, extending up to 4.3 GHz, display the expected linear dependence in a King plot analysis. The measured shifts are used to determine the isotope shifts of the remaining {sup 41,43,46}Ca isotopes. These might be of interest where less abundant isotopes are used enabling isotope selective repumping, resulting in enhanced trapping and detection efficiencies.

  1. Spatial-heterodyne interferometry for transmission (SHIFT) measurements

    DOEpatents

    Bingham, Philip R.; Hanson, Gregory R.; Tobin, Ken W.

    2006-10-10

    Systems and methods are described for spatial-heterodyne interferometry for transmission (SHIFT) measurements. A method includes digitally recording a spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis using a reference beam, and an object beam that is transmitted through an object that is at least partially translucent; Fourier analyzing the digitally recorded spatially-heterodyned hologram, by shifting an original origin of the digitally recorded spatially-heterodyned hologram to sit on top of a spatial-heterodyne carrier frequency defined by an angle between the reference beam and the object beam, to define an analyzed image; digitally filtering the analyzed image to cut off signals around the original origin to define a result; and performing an inverse Fourier transform on the result.

  2. Using Doppler Shifts of GPS Signals To Measure Angular Speed

    NASA Technical Reports Server (NTRS)

    Campbell, Charles E., Jr.

    2006-01-01

    A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.

  3. Two-Color Laser Speckle Shift Strain Measurement System

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Krasowski, Michael J.; Oberle, Lawrence G.; Greer, Lawrence C., III; Spina, Daniel; Barranger, John

    1996-01-01

    A two color laser speckle shift strain measurement system based on the technique of Yamaguchi was designed. The dual wavelength light output from an Argon Ion laser was coupled into two separate single-mode optical fibers (patchcords). The output of the patchcords is incident on the test specimen (here a structural fiber). Strain on the fiber, in one direction, is produced using an Instron 4502. Shifting interference patterns or speckle patterns will be detected at real-time rates using 2 CCD cameras with image processing performed by a hardware correlator. Strain detected in fibers with diameters from 21 microns to 143 microns is expected to be resolved to 15 mu epsilon. This system was designed to be compact and robust and does not require surface preparation of the structural fibers.

  4. Measurements of Isotopic Composition of Vapour on the Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Casado, M.; Landais, A.; Masson-Delmotte, V.; Genthon, C.; Prie, F.; Kerstel, E.; Kassi, S.; Arnaud, L.; Steen-Larsen, H. C.; Vignon, E.

    2015-12-01

    The oldest ice core records are obtained on the East Antarctic plateau. The composition in stable isotopes of water (δ18O, δD, δ17O) permits to reconstruct the past climatic conditions over the ice sheet and also at the evaporation source. Paleothermometer accuracy relies on good knowledge of processes affecting the isotopic composition of surface snow in Polar Regions. Both simple models such as Rayleigh distillation and global atmospheric models with isotopes provide good prediction of precipitation isotopic composition in East Antarctica but post deposition processes can alter isotopic composition on site, in particular exchanges with local vapour. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum water vapour - precipitation - surface snow - buried snow. While precipitation and snow sampling are routinely performed in Antarctica, climatic conditions in Concordia, very cold (-55°C in average) and very dry (less than 1000ppmv), impose difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20ppmv). Here we present the results of a campaign of measurement of isotopic composition in Concordia in 2014/2015. Two infrared spectrometers have been deployed or the first time on top of the East Antarctic Plateau allowing a continuous vapour measurement for a month. Comparison of the results from infrared spectroscopy with cryogenic trapping validates the relevance of the method to measure isotopic composition in dry conditions. Identification of different behaviour of isotopic composition in the water vapour associated to turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction.

  5. Isotopic evidence for an early shift to C₄ resources by Pliocene hominins in Chad.

    PubMed

    Lee-Thorp, Julia; Likius, Andossa; Mackaye, Hassane T; Vignaud, Patrick; Sponheimer, Matt; Brunet, Michel

    2012-12-11

    Foods derived from C(4) plants were important in the dietary ecology of early Pleistocene hominins in southern and eastern Africa, but the origins and geographic variability of this relationship remain unknown. Carbon isotope data show that Australopithecus bahrelghazali individuals from Koro Toro in Chad are significantly enriched in (13)C, indicating a dependence on C(4) resources. As these sites are over 3 million years in age, the results extend the pattern of C(4) dependence seen in Paranthropus boisei in East Africa by more than 1.5 million years. The Koro Toro hominin fossils were found in argillaceous sandstone levels along with abundant grazing and aquatic faunal elements that, in combination, indicate the presence of open to wooded grasslands and stream channels associated with a greatly enlarged Lake Chad. In such an environment, the most abundant C(4) plant resources available to A. bahrelghazali were grasses and sedges, neither of which is usually considered as standard great ape fare. The results suggest an early and fundamental shift in hominin dietary ecology that facilitated the exploitation of new habitats. PMID:23150583

  6. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad

    PubMed Central

    Lee-Thorp, Julia; Likius, Andossa; Mackaye, Hassane T.; Vignaud, Patrick; Sponheimer, Matt; Brunet, Michel

    2012-01-01

    Foods derived from C4 plants were important in the dietary ecology of early Pleistocene hominins in southern and eastern Africa, but the origins and geographic variability of this relationship remain unknown. Carbon isotope data show that Australopithecus bahrelghazali individuals from Koro Toro in Chad are significantly enriched in 13C, indicating a dependence on C4 resources. As these sites are over 3 million years in age, the results extend the pattern of C4 dependence seen in Paranthropus boisei in East Africa by more than 1.5 million years. The Koro Toro hominin fossils were found in argillaceous sandstone levels along with abundant grazing and aquatic faunal elements that, in combination, indicate the presence of open to wooded grasslands and stream channels associated with a greatly enlarged Lake Chad. In such an environment, the most abundant C4 plant resources available to A. bahrelghazali were grasses and sedges, neither of which is usually considered as standard great ape fare. The results suggest an early and fundamental shift in hominin dietary ecology that facilitated the exploitation of new habitats. PMID:23150583

  7. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    NASA Astrophysics Data System (ADS)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p << 10-15). This phenomenon has numerous implications for the origin of life studies and astrobiology, and possible applications in agriculture, biotechnology, medicine, chemistry and other areas.

  8. Crossed-second-order specific-mass isotope shift in the Nickel atom

    NASA Astrophysics Data System (ADS)

    Fonseca, A. L. A.; Bauche, J.

    1983-10-01

    The crossed-second-order corrections to the specific mass shifts of the lowest terms of the two lowest configurations of the Nickel atom are evaluated ab initio in the Multiconfigurational Hartree-Fock scheme. The excitations towards the nf( l=3) empty subshells play the major role. If the contributions obtained are added to the Hartree-Fock values, the discrepancy between experiment and theory for the 3 d 8 4 s 2-3 d 9 4 s (virtual) transition is only reduced by one third. As concerns the differences between the specific shifts of the five Russell-Saunders terms of 3 d 8 4 s 2, the crossed-second-order contributions are predicted to be practically as large as the Hartree-Fock values, which makes the total definitely measurable.

  9. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    NASA Astrophysics Data System (ADS)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  10. Towards a Lamb shift measurement in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Kottmann, F.; Biraben, F.; Conde, C. A. N.; Donche-Gay, C.; Hänsch, T. W.; Hartmann, F. J.; Hauser, P.; Hughes, V. W.; Huot, O.; Indelicato, P.; Knowles, P.; Liu, Y.-W.; Markushin, V. E.; Mulhauser, F.; Nez, F.; Pohl, R.; Rabinowitz, P.; dos Santos, J. M. F.; Schaller, L. A.; Schneuwly, H.; Schott, W.; Taqqu, D.; Veloso, J. F. C. A.

    2001-04-01

    A measurement of the 2S Lamb shift (2S-2P energy difference) in muonic hydrogen (μ-p) is being prepared at the Paul Scherrer Institute (PSI). The goal of the experiment is to measure the Lamb shift with 30 ppm precision and to deduce the root mean square (rms) proton charge radius with 10-3 relative accuracy, 20 times more precise than presently known. The experiment is based on the availability of long-lived metastable muonic hydrogen atoms in the 2S state which has been investigated in a recent series of experiments at PSI. From the low-energy part of the initial kinetic energy distribution of μp(2S) atoms we determined the fraction of long-lived μp(2S) to be ˜1.5% for H2 gas pressures between 1 and 64 hPa. Another analysis involving μp(1S) with a kinetic energy of 0.9 keV originating from quenching of thermalized μp(2S) via the resonant process μp(2S)+H2→{[(ppμ)+]*pee}*→μp(1S)+p+…+2 keV gives the same result. This is the first direct observation of long-lived μp(2S) atoms. The realization of the μp Lamb shift experiment involves a new low-energy negative muon beam with entrance detectors for keV-muons, a xenon gas-proportional-scintillation-chamber (GPSC) read out by a microstrip-gas-chamber (MSGC) for the detection of 2 keV X-rays, and a randomly triggered 3-stage laser system providing 0.5 mJ, 7 ns laser pulses at 6.02 μm wavelength.

  11. Fossil mice and rats show isotopic evidence of niche partitioning and change in dental ecomorphology related to dietary shift in Late Miocene of Pakistan.

    PubMed

    Kimura, Yuri; Jacobs, Louis L; Cerling, Thure E; Uno, Kevin T; Ferguson, Kurt M; Flynn, Lawrence J; Patnaik, Rajeev

    2013-01-01

    Stable carbon isotope analysis in tooth enamel is a well-established approach to infer C3 and C4 dietary composition in fossil mammals. The bulk of past work has been conducted on large herbivorous mammals. One important finding is that their dietary habits of fossil large mammals track the late Miocene ecological shift from C3 forest and woodland to C4 savannah. However, few studies on carbon isotopes of fossil small mammals exist due to limitations imposed by the size of rodent teeth, and the isotopic ecological and dietary behaviors of small mammals to climate change remain unknown. Here we evaluate the impact of ecological change on small mammals by fine-scale comparisons of carbon isotope ratios (δ(13)C) with dental morphology of murine rodents, spanning 13.8 to ∼2.0 Ma, across the C3 to C4 vegetation shift in the Miocene Siwalik sequence of Pakistan. We applied in-situ laser ablation GC-IRMS to lower first molars and measured two grazing indices on upper first molars. Murine rodents yield a distinct, but related, record of past ecological conditions from large herbivorous mammals, reflecting available foods in their much smaller home ranges. In general, larger murine species show more positive δ(13)C values and have higher grazing indices than smaller species inhabiting the same area at any given age. Two clades of murine rodents experienced different rates of morphological change. In the faster-evolving clade, the timing and trend of morphological innovations are closely tied to consumption of C4 diet during the vegetation shift. This study provides quantitative evidence of linkages among diet, niche partitioning, and dental morphology at a more detailed level than previously possible. PMID:23936324

  12. Fossil Mice and Rats Show Isotopic Evidence of Niche Partitioning and Change in Dental Ecomorphology Related to Dietary Shift in Late Miocene of Pakistan

    PubMed Central

    Kimura, Yuri; Jacobs, Louis L.; Cerling, Thure E.; Uno, Kevin T.; Ferguson, Kurt M.; Flynn, Lawrence J.; Patnaik, Rajeev

    2013-01-01

    Stable carbon isotope analysis in tooth enamel is a well-established approach to infer C3 and C4 dietary composition in fossil mammals. The bulk of past work has been conducted on large herbivorous mammals. One important finding is that their dietary habits of fossil large mammals track the late Miocene ecological shift from C3 forest and woodland to C4 savannah. However, few studies on carbon isotopes of fossil small mammals exist due to limitations imposed by the size of rodent teeth, and the isotopic ecological and dietary behaviors of small mammals to climate change remain unknown. Here we evaluate the impact of ecological change on small mammals by fine-scale comparisons of carbon isotope ratios (δ13C) with dental morphology of murine rodents, spanning 13.8 to ∼2.0 Ma, across the C3 to C4 vegetation shift in the Miocene Siwalik sequence of Pakistan. We applied in-situ laser ablation GC-IRMS to lower first molars and measured two grazing indices on upper first molars. Murine rodents yield a distinct, but related, record of past ecological conditions from large herbivorous mammals, reflecting available foods in their much smaller home ranges. In general, larger murine species show more positive δ13C values and have higher grazing indices than smaller species inhabiting the same area at any given age. Two clades of murine rodents experienced different rates of morphological change. In the faster-evolving clade, the timing and trend of morphological innovations are closely tied to consumption of C4 diet during the vegetation shift. This study provides quantitative evidence of linkages among diet, niche partitioning, and dental morphology at a more detailed level than previously possible. PMID:23936324

  13. Position-specific measurement of oxygen isotope ratios in cellulose: Isotopic exchange during heterotrophic cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Waterhouse, John S.; Cheng, Shuying; Juchelka, Dieter; Loader, Neil J.; McCarroll, Danny; Switsur, V. Roy; Gautam, Lata

    2013-07-01

    We describe the first reported method for the measurement of oxygen isotope ratios at each position in the glucose units of the cellulose molecule. The overall process comprises a series of synthetic organic sequences, by which α-cellulose is hydrolysed to glucose, and oxygen atoms at specific positions in the glucose molecule are removed in samples of benzoic acid for measurement of δ18O. Values of δ18O at specific positions in cellulose are calculated from these δ18O values and the overall δ18O value of the cellulose. We apply the method to determine the degree to which oxygen atoms at each position undergo isotopic exchange with water during heterotrophic cellulose synthesis, such as occurs in the cambium of trees. To do this we extract α-cellulose from wheat seedlings germinated in the dark in aqueous media of differing oxygen isotope ratios. Results indicate that oxygen atoms at positions 5 and 6 (O-5 and O-6 respectively) undergo around 80% exchange with medium water, O-3 undergoes around 50% exchange, and O-2 and O-4 do not undergo isotopic exchange. The results have important implications for extracting palaeoclimatic records from oxygen isotope time series obtained from tree ring cellulose. As O-5 and O-6 undergo significant exchange with medium water during heterotrophic cellulose synthesis, oxygen isotopes at these positions in tree ring cellulose should carry a predominantly trunk (source) water signal. On the other hand, O-2 and O-4 should retain the isotopic signature of leaf water in tree ring cellulose. Our method therefore potentially enables the separate reconstruction of past temperature and humidity data from oxygen isotope ratios of tree ring cellulose - something that has hitherto not been possible. The measured degrees of isotopic exchange are to some extent unexpected and cannot be fully explained using current biochemical mechanisms, suggesting that knowledge of these processes is incomplete.

  14. LITERATURE SURVEY ON ISOTOPIC ABUNDANCE RATIO MEASUREMENTS - 2001-2005

    SciTech Connect

    HOLDEN, N.E.

    2005-08-13

    Along with my usual weekly review of the published literature for new nuclear data, I also search for new candidates for best measurements of isotopic abundances from a single source. Most of the published articles, that I previously had found in the Research Library at the Brookhaven Lab, have already been sent to the members of the Atomic Weights Commission, by either Michael Berglund or Thomas Walczyk. In the last few days, I checked the published literature for any other articles in the areas of natural variations in isotopic abundance ratios, measurements of isotopic abundance ratios on samples of extra-terrestrial material and isotopic abundance ratio measurements performed using ICPMS instruments. Hopefully this information will be of interest to members of the Commission, the sub-committee on isotopic abundance measurements (SIAM), members of the former sub-committee on natural isotopic fractionation (SNIF), the sub-committee on extra-terrestrial isotope ratios (SETIR), the RTCE Task Group and the Guidelines Task Group, who are dealing with ICPMS and TIMS comparisons. In the following report, I categorize the publications in one of four areas. Measurements performed using either positive or negative ions with Thermal Ionization Mass Spectrometer, TIMS, instruments; measurements performed on Inductively Coupled Plasma Mass Spectrometer, ICPMS, instruments; measurements of natural variations of the isotopic abundance ratios; and finally measurements on extra-terrestrial samples with instrumentation of either type. There is overlap in these areas. I selected out variations and ET results first and then categorized the rest of the papers by TIMS and ICPMS.

  15. Precision lifetime measurements of exotic nuclei based on Doppler-shift techniques

    SciTech Connect

    Iwasaki, Hironori

    2013-04-19

    A recent progress in precision lifetime measurements of exotic nuclei at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University is presented. The Recoil Distance Doppler-shift (RDDS) technique has been applied to nuclear reactions involving intermediate-energy rare isotope (RI) beams, to determine absolute transition strengths between nuclear states model independently from level lifetimes of interest. As such an example, recent lifetime measurements of the first 2{sup +} states in the neutron-rich {sup 62,64,66}Fe isotopes at and around N=40 are introduced. The experiment was performed at the Coupled Cyclotron Facility at NSCL using a unique combination of several experimental instruments; the Segmented Germanium Array (SeGA), the plunger device, and the S800 spectrograph. The reduced E2 transition probabilities B(E2) are determined directly from the measured lifetimes. The observed trend of B(E2) clearly demonstrates that an enhanced collectivity persists in {sup 66}Fe despite the harmonic-oscillator magic number N=40. The present results are also discussed in comparison with the large-scale shell model calculations, pointing to a possible extension of the deformation region beyond N=40.

  16. Ion microprobe isotopic measurements of individual interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.; Walker, R. M.; Zinner, E.

    1985-09-01

    The results of the first extended ion probe study of interplanetary dust particles (IDPs) are reported. The analytic procedures and the current limits on the precision and accurary of isotopic measurements of light elements are discussed in considerable detail. It is shown that isotopic measurements of several elements can be made on different individual fragments of a single IDP of 10-15 microns in size. The deuterium enrichments observed in several of the particles are shown to be intrinsic, providing independent proof that the particles are extraterrestrial. Carbon isotopic measurements on fragments of three IDPs give ratios similar to terrestrial values and show a largely uniform isotopic composition for a given particle. Small, but significant, differences in delta C-13 of about 40 percent between particles are seen.

  17. Isotopic Measurements: Interpretation and Implications of Plutonium Data

    SciTech Connect

    Luksic, Andrzej T.; Collins, Brian A.; Friese, Judah I.; Schwantes, Jon M.; Starner, Jason R.; Wacker, John F.

    2010-08-11

    One of the fundamental activities within the field of nuclear forensics is the laboratory analysis of nuclear material; one aspect is providing the isotopic composition of the material under investigation. For both plutonium and uranium, this includes a unique suite of isotopes that, individually and collectively (i.e. an isotopic vector), will help characterize these materials, and potentially provide insight into their mode of production, intended utilization, and processing history. A full understanding of how this information is used provides the basis for defining the need for these measurements and helps determine the precision and accuracy requirements for those measurements. This paper provides an overview of this process as it applies to plutonium, discussing how reactor design and operating parameters can impact the resultant plutonium vector, thereby giving us the ability to infer those reactor traits based on isotopic measurements.

  18. Measuring Isotope Ratios Across the Solar System

    NASA Technical Reports Server (NTRS)

    Webster, Chris R.; Mahaffy, Paul R.

    2012-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biology [1]. For the Allan Hills 84001 meteorite, for example, the (sup 1)(sup 3)C/(sup 1)(sup 2)C ratio identifies it as a Mars (SNC) meteorite; the ??K/??Ar ratio tells us the last time the rock cooled to solid, namely 4 Gya; isotope ratios in (sup 3)He, (sup 2)(sup 1)Ne and (sup 3)?Ar show it was in space (cosmic ray exposure) for 10-20 million years; (sup 1)?C dating that it sat in Antarctica for 13,000 years before discovery; and clumped isotope analysis of (sup 1)?O(sup 1)(sup 3)C(sup 1)?O in its carbonate that it was formed at 18+/-4 ?C in a near-surface aqueous environment [2]. Solar System Formation

  19. Quantitative Measurement of the Doppler Shift at an Ultrasonic Frequency

    ERIC Educational Resources Information Center

    Nerbun, R. C.; Leskovec, R. A.

    1976-01-01

    Discussed is a Doppler shift laboratory experiment for an introductory college physics course. Ultrasonic transducers and a digital phase detector circuit "black box" are used to overcome room noise and "standing waves" and to produce an observable frequency shift. (SL)

  20. Venous compliance and fluid shift measurements on Spacelab IML-1

    NASA Technical Reports Server (NTRS)

    Leiski, D.; Thirsk, R. B.; Charles, J. B.; Bennett, B.

    1992-01-01

    During the first few hours of a human spaceflight mission, a headward fluid shift out of the abdomen, pelvis, and legs initiates a number of adaptive cardiovascular responses, including a loss of intravascular and extravascular fluid volume. On return to earth, these cardiovascular changes may lead to debilitating symptoms of orthostatic intolerance in an unprotected astronaut. To test the hypothesis that an inflight increase in compliance of the leg veins may contribute to this condition, measurements of lower leg fluid shift and bulk venous compliance were collected from crew members during the eight-day First International Microgravity Laboratory shuttle mission. An ultrasonic limb plethysmograph, in conjunction with two compression cuffs encircling the calf and thigh, was used to determine bulk compliance of the underlying veins over a range of negative and positive transmural pressures. The data from inflight experiment sessions were compared to preflight and postflight sessions. The preliminary results indicate that the volume of the lower leg decreased by over 10 percent by the sixth day of flight, but there was no apparent change in venous compliance.

  1. Isotopic noble gas signatures released from medical isotope production facilities - Simulations and measurements

    SciTech Connect

    Saey, Paul R.; Bowyer, Ted W.; Ringbom, Anders

    2010-09-09

    Journal article on the role that radioxenon isotopes play in confirming whether or not an underground explosion was nuclear in nature. Radioxenon isotopes play a major role in confirming whether or not an underground explosion was nuclear in nature. It is then of key importance to understand the sources of environmental radioxenon to be able to distinguish civil sources from those of a nuclear explosion. Based on several years of measurements, combined with advanced atmospheric transport model results, it was recently shown that the main source of radioxenon observations are strong and regular batch releases from a very limited number of medical isotope production facilities. This paper reviews production processes in different medical isotope facilities during which radioxenon is produced. Radioxenon activity concentrations and isotopic compositions are calculated for six large facilities. The results are compared with calculated signals from nuclear explosions. Further, the outcome is compared and found to be consistent with radioxenon measurements recently performed in and around three of these facilities. Some anomalies in measurements in which {sup 131m}Xe was detected were found and a possible explanation is proposed. It was also calculated that the dose rate of the releases is well below regulatory values. Based on these results, it should be possible to better understand, interpret and verify signals measured in the noble gas measurement systems in the International Monitoring of the Comprehensive Nuclear-Test-Ban Treaty.

  2. Stable platinum isotope measurements in presolar nanodiamonds by TEAMS.

    PubMed

    Wallner, A; Melber, K; Merchel, S; Ott, U; Forstner, O; Golser, R; Kutschera, W; Priller, A; Steier, P

    2013-01-01

    Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of (198)Pt/(195)Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction. PMID:23565017

  3. Stable platinum isotope measurements in presolar nanodiamonds by TEAMS

    PubMed Central

    Wallner, A.; Melber, K.; Merchel, S.; Ott, U.; Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.

    2013-01-01

    Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of 198Pt/195Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction. PMID:23565017

  4. Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen-Global change or diagenetic artifact?

    NASA Astrophysics Data System (ADS)

    Mii, Horng-Sheng; Grossman, Ethan L.; Yancey, Thomas E.

    1997-03-01

    We performed petrographic, cathodoluminescence, electron-microprobe, and isotopic analyses of brachiopod shells from the Permian Kapp Starostin Formation in West Spitsbergen to reevaluate the >9‰ negative shift in δ13C and δ18O values reported in 1989 by M. Gruszczynski, S. Halas, A. Hoffman, and K. Malkowski. The δ13C and δ18O values within shells typically decrease with increasing luminescence, indicating diagenesis. Nonluminescent (NL) shell δ13C and δ18O values are 4.3‰ and 6.2‰ higher, respectively, than those of associated cements and matrix. For the same stratigraphic interval, δ13C and δ18O values of the NL shells are equal to, or substantially greater than, those reported by Gruszczynski et al. For the interval where those authors saw a 10‰ δ13C shift, our mostly NL Spiriferella polaris shells only yield a 1.5‰ shift. Gruszczynski et al. reported a 9‰ δ18O shift, whereas we observe almost none. Our results strongly suggest that the >9‰ isotopic shifts reported in Gruszczynski et al. are diagenetic artifacts. On the other hand, their Kazanian-Tatarian δ13C maximum of 7.5‰ is substantiated by our data. This Late Permian 13C maximum represents the highest spiriferid brachiopod δ13C values in the Phanerozoic and, within stratigraphic uncertainty, correlates with the whole-rock δ13C maximum in East Greenland and northwestern Europe. The δ13C shift may reflect changes in global storage of organic carbon indicated by coal-volume changes in the Late Permian.

  5. MG Isotopic Measurement of FIB-Isolated Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Nguyen, A.; Ito, M.; Rahman, Z.

    2010-01-01

    The majority of presolar oxide and silicate grains are ascribed to origins in low-mass red giant and asymptotic giant branch (AGB) stars based on their O isotopic ratios. However, a minor population of these grains (< 10%) has O isotopic ratios incompatible with these sources. Two principle alternative sources are higher-than-solar metallicity (Z) stars or, more likely, supernovae (SN) [1-3]. These rare (Group 4) grains [3] are characterized by enrichments in O-18, and typically also enrichments in O-17. An even rarer subset of grains with extremely large enrichments in O-17 and smaller depletions in O-18 were suggested to come from binary star systems [2]. To establish the origins of these isotopically unusual grains, it is necessary to examine isotopic systems in addition to O. Presolar silicates offer several elements diagnostic of their stellar sources and nuclear processes, including O, Si, Mg, Fe and Ca. However, the database for minor element isotopic compositions in silicates is seriously lacking. To date only two silicate grains have been analyzed for Mg [4] or Fe [5]. One major complicating factor is their small size (average 230 nm), which greatly limits the number of measurements that can be performed on any one grain and makes it more difficult to obtain statistically relevant data. This problem is compounded because the grains are identified among isotopically solar silicates, which contribute a diluting signal in isotopic measurements [1]. Thus, relatively small isotopic anomalies are missed due to this dilution effect. By applying focused ion beam (FIB) milling, we obtain undiluted Mg isotopic ratios of isolated rare presolar silicate grains to investigate their sources.

  6. Edge technique for measurement of laser frequency shifts including the Doppler shift

    NASA Technical Reports Server (NTRS)

    Korb, Larry (Inventor)

    1991-01-01

    A method is disclosed for determining the frequency shift in a laser system by transmitting an outgoing laser beam. An incoming laser beam having a frequency shift is received. A first signal is acquired by transmitting a portion of the incoming laser beam to an energy monitor detector. A second signal is acquired by transmitting a portion of the incoming laser beam through an edge filter to an edge detector, which derives a first normalized signal which is proportional to the transmission of the edge filter at the frequency of the incoming laser beam. A second normalized signal is acquired which is proportional to the transmission of the edge filter at the frequency of the outgoing laser beam. The frequency shift is determined by processing the first and second normalized signals.

  7. Measuring rainwater content by radar using propagation differential phase shift

    NASA Technical Reports Server (NTRS)

    Jameson, A. R.

    1994-01-01

    While radars measure several quantities closely coupled to the rainfall rate, for frequencies less than 15 GHz, estimates of the rainwater content W are traditionally computed from the radar reflectivity factor Z or the rate of attenuation A--quantities only weakly related to W. Consequently, instantaneous point estimates of W using Z and A are often erroneous. A more natural, alternative parameter for estimating W at these frequencies is the specific polarization propagation differential phase shift phi(sub DP), which is a measure of the change in the difference between phases of vertically (V) and horizontally (H) polarized waves with increasing distance from a radar. It is now well known that W is nearly linearly related to phi(sub DP) divided by (1 - reversed R), where reversed R is the mass-weighted mean axis ratio of the raindrops. Unfortunately, such relations are not widely used in part because measurements of phi(sub DP) are scarce but also because one must determine reversed R. In this work it is shown that this parameter can be estimated using the differential reflectivity (Z(sub H)/Z(sub V) at 3 GHz. An alternative technique is suggested for higher frequencies when the differential reflectivity becomes degraded by attenuation. While theory indicates that it should be possible using phi(sub DP) to estimate W quite accurately, measurement errors increase the uncertainty to +/- 18%-35% depending on reversed R. While far from ideal, it appears that these estimates are likely to be considerably more accurate than those deduced using currently available methods.

  8. Guide to plutonium isotopic measurements using gamma-ray spectrometry

    SciTech Connect

    Lemming, J.F.; Rakel, D.A.

    1982-08-26

    Purpose of this guide is to assist those responsible for plutonium isotopic measurements in the application of gamma-ray spectrometry. Objectives are to promote an understanding of the measurement process, including its limitations and applicability, by reviewing the general features of a plutonium spectrum and identifying the quantities which must be extracted from the data; to introduce state-of-the-art analysis techniques by reviewing four isotopic analysis packages and identifying their differences; to establish the basis for measurement control and assurance by discussing means of authenticating the performance of a measurement system; and to prepare for some specific problems encountered in plutonium isotopic analyses by providing solutions from the practical experiences of several laboratories. 29 references, 12 figures, 17 tables.

  9. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes

    NASA Astrophysics Data System (ADS)

    Ma, Minmin; Dong, Guanghui; Jia, Xin; Wang, Hui; Cui, Yifu; Chen, Fahu

    2016-08-01

    Human diets rely on natural resource availability and can reflect social and cultural values. When environments, societies, and cultures change, diets may also shift. This study traced the extent of dietary change and the factors influencing such change. Through stable carbon and nitrogen isotopic analysis of late Neolithic and early Bronze Age human and animal bone collagen, we found that significant shifts in human diets were closely associated with intercontinental cultural exchanges in Eurasia and climate change in northwestern China. The isotopic evidence indicated that human diets mainly consisted of C4 foodstuffs (presumably millet and/or animals fed with C4 foods) around 4000 calibrated years before the present (cal yr BP), corresponding to the flourishing of millet agriculture in the context of the optimal climate conditions of the mid-Holocene. Subsequently, more C3 foods (probably wheat, barley, and animals fed with C3 foods) were added to human diets post-3600 cal yr BP when the climate became cooler and drier. Such dietary variation is also consistent with the increasing intensity of long-distance exchange after 4000 cal yr BP. While many factors can lead to human dietary shifts (e.g. climate change, population growth, cultural factors, and human migration), climate may have been a key factor in Gansu and Qinghai.

  10. Stable Isotopes in Pocket Gopher Teeth as Evidence of a Late Matuyama Climate Shift in the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Rogers, Karel L.; Wang, Yang

    2002-03-01

    Previous work in the San Luis Valley of south-central Colorado and northern New Mexico at the Hansen Bluff and SAM Cave localities has allowed reconstruction of the paleoclimate in the region during the interval from ∼0.6 myr to ∼2.6 myr. Surface exposures at Hansen Bluff have been correlated to deep-sea oxygen isotope core stages 18-23 and one of the glacial periods contained therein to the oldest "Nebraskan" till in southwestern Iowa. Deposits in SAM Cave correlate to Hansen Bluff on the basis of paleomagnetics, climate interpretation, and microtine rodent biochronology. In this paper, carbon and oxygen stable isotope data of herbivorous rodent teeth are used as indicators of change in the predominance of C3, C4, and CAM plants and of changes in temperature and precipitation. Taken together with other previously analyzed data from these localities, the evidence indicates a shift in the severity of glacial events that is mainly related to the hydrologic characteristics of the climate. This shift may have been caused by broad regional uplift that may have been instrumental in shifting global climate cycles from the 41,000-yr Matuyama cycles to the Brunhes 100,000-yr-dominated cycles.

  11. Characterising ontogenetic niche shifts in Nile crocodile using stable isotope (δ13C, δ15N) analyses of scute keratin.

    PubMed

    Radloff, Frans G T; Hobson, Keith A; Leslie, Alison J

    2012-09-01

    Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ(13) C) and nitrogen (δ(15) N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35-463 cm total length), we found prominent size-related changes in the scute keratin δ(13) C and δ(15) N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods. PMID:22462522

  12. Continuous on-line water vapor isotope measurements in Antarctica

    NASA Astrophysics Data System (ADS)

    Landsberg, Janek; Romanini, Daniele; Holmen, Kim; Isaksson, Elisabeth; Meijer, Harro; Kerstel, Erik

    2010-05-01

    In the context of a globally warming climate it is crucial to study the climate variability in the past and to understand the underlying mechanisms (1). Precipitation deposited on the polar ice caps provides a means to retrieve information on temperature changes (through the paleo-temperature dependence of the isotopic composition of the ice) and atmospheric composition (of gas stored in bubbles in the ice) on time scales from one to almost one million years, with sub-annual resolution in the most recent centuries. However, it is now widely recognized that the calibration of the paleo-thermometer is highly problematic. For this reason attempts to model the global water cycle, including the isotope signals, are ongoing with the aim of providing a more physical basis of the isotope - temperature relation. Currently, there is a large divergence in the results obtained by different modeling strategies. The missing link in these model studies is their forcing by experimental data on the pre-deposition isotopic composition of the vapor phase compartment of the hydrological cycle. We propose to measure the isotopic composition of moisture carried towards and deposited on Antarctica, in order to constrain the numerical models. In this context we are developing a modified, more sensitive and precise, version of a laser water vapor isotope spectrometer, originally designed for stratospheric studies (2, 3). This instrument, which will first be operated at the Norwegian station of Troll in Queen Maud Land, will enable the continuous, online measurement of all three stable isotope ratios of atmospheric water vapor. So far, such data is non-existent. Our data should improve the validity of the models and improve the understanding of the physical mechanisms at the basis of the isotope thermometer. This in turn will lead to an increased confidence in the predictions of (general circulation) models concerning climate variability. (1) International Panel on Climate Change (IPCC), 4

  13. Isotopic noble gas signatures released from medical isotope production facilities--simulations and measurements.

    PubMed

    Saey, Paul R J; Bowyer, Theodore W; Ringbom, Anders

    2010-09-01

    Radioxenon isotopes play a major role in confirming whether or not an underground explosion was nuclear in nature. It is then of key importance to understand the sources of environmental radioxenon to be able to distinguish civil sources from those of a nuclear explosion. Based on several years of measurements, combined with advanced atmospheric transport model results, it was recently shown that the main source of radioxenon observations are strong and regular batch releases from a very limited number of medical isotope production facilities. This paper reviews production processes in different medical isotope facilities during which radioxenon is produced. Radioxenon activity concentrations and isotopic compositions are calculated for six large facilities. The results are compared with calculated signals from nuclear explosions. Further, the outcome is compared and found to be consistent with radioxenon measurements recently performed in and around three of these facilities. Some anomalies in measurements in which (131m)Xe was detected were found and a possible explanation is proposed. It was also calculated that the dose rate of the releases is well below regulatory values. Based on these results, it should be possible to better understand, interpret and verify signals measured in the noble gas measurement systems in the International Monitoring of the Comprehensive Nuclear-Test-Ban Treaty. PMID:20447828

  14. Absolute frequency and isotope shift of the magnesium (3 s2) 1S0→(3 s 3 d ) 1D2 two-photon transition by direct frequency-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Peters, E.; Reinhardt, S.; Hänsch, Th. W.; Udem, Th.

    2015-12-01

    We use a picosecond frequency-doubled mode-locked titanium sapphire laser to generate a frequency comb at 431 nm in order to probe the (3 s2) 1S0 →(3 s 3 d ) 1D2 transition in atomic magnesium. Using a second, self-referenced femtosecond frequency comb, the absolute transition frequency and the 24Mg and 26Mg isotope shift is determined relative to a global-positioning-system-referenced hydrogen maser. Our result for the transition frequency of the main isotope 24Mg of 1 391 128 606.14 (12 ) MHz agrees with previous measurements and reduces its uncertainty by four orders of magnitude. For the isotope shift we find δ ν26 ,24=3915.13 (39 ) MHz. Accurate values for transition frequencies in Mg are relevant in astrophysics and to test atomic structure calculations.

  15. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    PubMed Central

    Zubarev, Roman A.

    2015-01-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some “resonance” isotopic compositions, the kinetics increases, while at “off-resonance” compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error ±0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p ≪ 10−15). This phenomenon has numerous implications for the origin of life studies and astrobiology, and possible applications in agriculture, biotechnology, medicine, chemistry and other areas. PMID:25782666

  16. Ab initio estimations of the isotope shift for the first three elements of the K isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Roy, Sourav; Majumder, Sonjoy

    2015-07-01

    Isotope shifts (ISs) of D1(n s S1/22 →n p P1/22 ) and D2(n s S1/22 →n p P3/22 ) transitions for the first three elements of the K isoelectronic sequence are calculated with all-order correlated relativistic coupled-cluster theory. To get precise ab initio results, all the orbitals of the reference states have been optimized by a linear regression technique. Some of the important IS estimations reported here were not available in literature. Interesting features of odd-even staggering and magic neutron number effects are also observed in the case of volume shift calculations. Energy-level corrections for a few levels due to a change in the nuclear model from a point nucleus to a Fermi nucleus have been studied with interesting correlation features and compared with other theoretical results available in literature.

  17. Mass Spectrometric Measurement of Martian Krypton and Xenon Isotopic Abundance

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Mauersberger, K.

    1993-01-01

    The Viking gas chromatograph mass spectrometer experiment provided significant data on the atmospheric composition at the surface of Mars, including measurements of several isotope ratios. However, the limited dynamic range of this mass spectrometer resulted in marginal measurements for the important Kr and Xe isotopic abundance. The Xe-129 to Xe-132 ratio was measured with an uncertainty of 70%, but none of the other isotope ratios for these species were obtained. Accurate measurement of the Xe and Kr isotopic abundance in this atmosphere provides an important data point in testing theories of planetary formation and atmospheric evolution. The measurement is also essential for a stringent test for the Martian origin of the SNC meteorites, since the Kr and Xe fractionation pattern seen in gas trapped in glassy nodules of an SNC (EETA 79001) is unlike any other known solar system resevoir. Current flight mass spectrometer designs combined with the new technology of a high-performance vacuum pumping system show promise for a substantial increase in gas throughput and the dynamic range required to accurately measure these trace species. Various aspects of this new technology are discussed.

  18. Human-Induced Long-Term Shifts in Gull Diet from Marine to Terrestrial Sources in North America's Coastal Pacific: More Evidence from More Isotopes (δ2H, δ34S).

    PubMed

    Hobson, Keith A; Blight, Louise K; Arcese, Peter

    2015-09-15

    Measurements of naturally occurring stable isotopes in tissues of seabirds and their prey are a powerful tool for investigating long-term changes in marine foodwebs. Recent isotopic (δ(15)N, δ(13)C) evidence from feathers of Glaucous-winged Gulls (Larus glaucescens) has shown that over the last 150 years, this species shifted from a midtrophic marine diet to one including lower trophic marine prey and/or more terrestrial or freshwater foods. However, long-term isotopic patterns of δ(15)N and δ(13)C cannot distinguish between the relative importance of lower trophic-level marine foods and terrestrial sources. We examined 48 feather stable-hydrogen (δ(2)H) and -sulfur (δ(34)S) isotope values from this same 150-year feather set and found additional isotopic evidence supporting the hypothesis that gulls shifted to terrestrial and/or freshwater prey. Mean feather δ(2)H and δ(34)S values (± SD) declined from the earliest period (1860-1915; n = 12) from -2.5 ± 21.4 ‰ and 18.9 ± 2.7 ‰, respectively, to -35.5 ± 15.5 ‰ and 14.8 ± 2.4 ‰, respectively, for the period 1980-2009 (n = 12). We estimated a shift of ∼ 30% increase in dependence on terrestrial/freshwater sources. These results are consistent with the hypothesis that gulls increased terrestrial food inputs in response to declining forage fish availability. PMID:26302356

  19. Thermocline Temperature Variability Reveals Shifts in the Tropical Pacific Mean State across Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Hertzberg, J. E.; Schmidt, M. W.

    2014-12-01

    The eastern equatorial Pacific (EEP) is one of the most dynamic oceanographic regions, making it a critical area for understanding past climate change. Despite this, there remains uncertainty on the climatic evolution of the EEP through the last glacial period. According to the ocean dynamical thermostat theory, warming (cooling) of the tropical Pacific Ocean may lead to a more La Niña (El Niño)-like mean state due to zonally asymmetric heating and subsequent easterly (westerly) wind anomalies at the equator (Clement and Cane, 1999). Attempts to understand these feedbacks on millennial timescales across Marine Isotope Stage 3 (MIS 3) have proven to be fruitful in the western equatorial Pacific (WEP) (Stott et al., 2002), yet complimentary, high-resolution records from the EEP are lacking. To provide a more complete understanding of the feedback mechanisms of the dynamical thermostat across periods of abrupt climate change, we reconstruct thermocline temperature variability across MIS 3 from a sediment core located in the EEP, directly within the equatorial cold tongue upwelling region (core MV1014-02-17JC). Temperature anomalies in thermocline waters of the EEP are integrally linked to the ENSO system, with large positive and negative anomalies recorded during El Niño and La Niña events, respectively. Mg/Ca ratios in the thermocline-dwelling planktonic foraminifera Neogloboquadrina dutertrei were measured at 2 cm intervals, resulting in a temporal resolution of <200 years. Preliminary results across Interstadials 5-7 reveal warmer thermocline temperatures (an increase in Mg/Ca of .25 ± .02 mmol/mol) during periods of cooling following peak Interstadial warmth over Greenland, as seen from the NGRIP δ18O record. Thus, periods of cooling over Greenland appear to correspond to an El Niño-like mean state in the tropical Pacific, in line with predictions of an ocean dynamical thermostat. Interestingly, Heinrich Event 3 corresponds to cooler thermocline

  20. Radioactive halos and ion microprobe measurement of Pb isotope ratios

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1974-01-01

    This investigation was to obtain, if possible, the Pb isotope ratios of both lunar and meteoritic troilite grains by utilizing ion microprobe techniques. Such direct in situ measurement of Pb isotope ratios would eliminate contamination problems inherent in wet chemistry separation procedures, and conceivably determine whether lunar troilite grains were of meteoritic origin. For comparison purposes two samples of meteoritic troilite were selected (one from Canyon Diablo) for analysis along with two very small lunar troilite grains (approximately 50-100 microns). It was concluded that the ion microprobe as presently operating, does not permit the in situ measurement of Pb isotope ratios in lunar or meteoritic troilite. On the basis of these experiments no conclusions could be drawn as to the origin of the lunar troilite grains.

  1. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  2. Measuring sulfur isotopes by multicollector ICP-MS

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Adkins, J. F.

    2011-12-01

    The stable isotopes of sulfur have traditionally been measured by converting analytes to SO2, which is then introduced to a gas-source isotope ratio mass spectrometer (IRMS). Recently, we and several other groups have begun measuring S isotopes using a multicollector inductively-coupled plasma mass spectrometer (MC-ICP-MS). The approach offers several advantages, including decreased reliance on preparatory chemical conversion (including combustion) of analytes, greater flexibility of sample introduction, and increased sensitivity. Sulfur is measured as monoatomic S+ ions produced in the plasma source, and can be introduced in a variety of forms including dissolved sulfate or sulfide, or as organosulfur compounds either in solution or in the gas phase. A primary requirement for accurate measurements is resolving isobaric interferences from O2+, which requires a mass analyzer with resolution > 4000. Using a Thermo Neptune system, we document accuracy and precision for δ34S near the shot-noise limit (ie, counting statistics) for both aqueous solutions and gas streams. For samples containing 50 pmol S (as gaseous SF6), this corresponds to ~0.3%; for 50 nmol S (as aqueous SO4) this is ~0.02%. One important application of this new analytical approach is the measurement of S isotopes in volatile and semivolatile organic compounds. No IRMS-based methods for measuring compound-specific S isotopes currently exist. We have demonstrated this capability by coupling a capillary gas chromatograph (GC) directly to the ICP-MS via a heated transfer line. Isotope ratios (δ34S values) are calculated relative to co-injected peaks of SF6 reference gas, in the same manner as is used by GC-combustion-IRMS approaches. As a demonstration of this capability, we measured the δ34S values of individual thiophene isomers separated by GC from a crude oil, which range over 20% for compounds from the same oil. A second application of ICP-MS to sulfur isotopes is the measurement of dissolved

  3. A Time-Measurement System Based on Isotopic Ratios.

    SciTech Connect

    Vo, Duc T.; Karpius, P. J.; MacArthur, D. W.; Thron, J. L.

    2007-01-01

    A time-measurement system can be built based on the ratio of gamma-ray peak intensities from two radioactive isotopes. The ideal system would use a parent isotope with a short half-life decaying to a long half-life daughter. The activities of the parent-daughter isotopes would be measured using a gamma-ray detector system. The time can then be determined from the ratio of the activities. The best-known candidate for such a system is the {sup 241}Pu-{sup 241}Am parent-daughter pair. However, this {sup 241}Pu-{sup 241}Am system would require a high-purity germanium detector system and sophisticated software to separate and distinguish between the many gamma-ray peaks produced by the decays of the two isotopes. An alternate system would use two different isotopes, again one with a short half-life and one with a half-life that is long relative to the other. The pair of isotopes {sup 210}Pb and {sup 241}Am (with half-lives of 22 and 432 years, respectively) appears suitable for such a system. This time-measurement system operates by measuring the change in the ratio of the 47-keV peak of {sup 210}Pb to the 60-keV peak of {sup 241}Am. For the system to work reasonably well, the resolution of the detector would need to be such that the two gamma-ray peaks are well separated so that their peak areas can be accurately determined using a simple region-of-interest (ROI) method. A variety of detectors were tested to find a suitable system for this application. The results of these tests are presented here.

  4. High precision zinc isotopic measurements applied to mouse organs.

    PubMed

    Moynier, Frédéric; Le Borgne, Marie

    2015-01-01

    We present a procedure to measure with high precision zinc isotope ratios in mouse organs. Zinc is composed of 5 stable isotopes ((64)Zn, (66)Zn, (67)Zn, (68)Zn and (70)Zn) which are naturally fractionated between mouse organs. We first show how to dissolve the different organs in order to free the Zn atoms; this step is realized by a mixture of HNO3 and H2O2. We then purify the zinc atoms from all the other elements, in particular from isobaric interferences (e.g., Ni), by anion-exchange chromatography in a dilute HBr/HNO3 medium. These first two steps are performed in a clean laboratory using high purity chemicals. Finally, the isotope ratios are measured by using a multi-collector inductively-coupled-plasma mass-spectrometer, in low resolution. The samples are injected using a spray chamber and the isotopic fractionation induced by the mass-spectrometer is corrected by comparing the ratio of the samples to the ratio of a standard (standard bracketing technique). This full typical procedure produces an isotope ratio with a 50 ppm (2 s.d.) reproducibility. PMID:26065372

  5. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  6. Precise measurement of chromium isotopes by MC-ICPMS

    PubMed Central

    Schiller, Martin; Van Kooten, Elishevah; Holst, Jesper C.; Olsen, Mia B.; Bizzarro, Martin

    2014-01-01

    We report novel analytical procedures allowing for the concurrent determination of the stable and mass-independent Cr isotopic composition of silicate materials by multiple collector inductively coupled mass spectrometry (MC-ICPMS). In particular, we focus on improved precision of the measurement of the neutron-rich isotope 54Cr. Because nitride and oxide interferences are a major obstacle to precise and accurate 54Cr measurements by MC-ICPMS, our approach is designed to minimize these interferences. Based on repeat measurements of standards, we show that the mass-independent 53Cr and 54Cr compositions can be routinely determined with an external reproducibility better than 2.5 and 5.8 ppm (2 sd), respectively. This represents at least a two-fold improvement compared to previous studies. Although this approach uses significantly more Cr (30–60 μg) than analysis by thermal ionization mass spectrometry (TIMS), our result indicate that it is possible to obtain an external reproducibility of 19 ppm for the μ54Cr when consuming amounts similar to that typically analyzed by TIMS (1 μg). In addition, the amount of time required for analysis by MC-ICPMS is much shorter thereby enabling a higher sample throughput. As a result of the improved analytical precision, we identified small apparent mass-independent differences between different synthetic Cr standards and bulk silicate Earth (BSE) when using the kinetic law for the mass bias correction. These differences are attributed to the Cr loss by equilibrium processes during production of the synthetic standards. The stable isotope data concurrently obtained have a precision of 0.05‰ Da −1, which is comparable to earlier studies. Comparison of the measured isotopic composition of four meteorites with published data indicates that Cr isotope data measured by the technique described here are accurate to stated uncertainties. The stable Cr composition of the Bilanga and NWA 2999 achondrites suggests that the

  7. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on <25 μg of Ca. Results from this new study show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density by X-ray measurements occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker. Bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged over this period. Ca isotopes can in principle be used to quantify net changes in bone mass. Using a mass-balance model, our results indicate an average loss of 0.62 ± 0.16 % in bone mass over the course of this 30-day study. This is consistent with the rate of bone loss in longer-term studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  8. Shifts in stable-isotope signatures confirm parasitic relationship of freshwater mussel glochidia attached to host fish

    USGS Publications Warehouse

    Fritts, Mark W.; Fritts, Andrea K.; Carleton, Scott A.; Bringolf, Robert B.

    2013-01-01

    The parasitic nature of the association between glochidia of unionoidean bivalves and their host fish (i.e. the role of fish hosts in providing nutritional resources to the developing glochidia) is still uncertain. While previous work has provided descriptions of development of glochidia on fish hosts, earlier studies have not explicitly documented the flow of nutrition from the host fish to the juvenile mussel. Therefore, our objective was to use stable isotope analysis to quantitatively document nutrient flow between fish and glochidia. Glochidia were collected from nine adult Lampsilis cardium and used to inoculate Micropterus salmoides(n = 27; three fish per maternal mussel) that produced juvenile mussels for the experiment. Adult mussel tissue samples, glochidia, transformed juvenile mussels and fish gill tissues were analysed for δ15N and δ13C isotope ratios. We used a linear mixing model to estimate the fraction of juvenile mussel tissue derived from the host fish's tissue during attachment. Our analyses indicate a distinct shift in both C and N isotopic ratios from the glochidial stage to the juvenile stage during mussel attachment and development. Linear mixing model analysis indicated that 57.4% of the δ15N in juvenile tissues were obtained from the host fish. This work provides novel evidence that larval unionoideans are true parasites that derive nutrition from host fish during their metamorphosis into the juvenile stage.

  9. Isotopic Measurements of Organic Sulfonates From The Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, G. W.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Organic sulfonates and phosphonates have been extracted from the Murchison meteorite for stable isotope measurements. Preliminary stable isotope measurements of individual alkyl sulfonates, R-SO3H (R=C(sub n)H(sub 2n+l)), are shown. These compounds were found in aqueous extracts of Murchison. Both groups show trends similar to other homologous series of organic compounds indigenous to Murchison. Molecular abundances decrease with increasing carbon number, and all possible isomers at each carbon number (through C-4) are present. Carbon isotope measurements of the sulfonates show a decrease in the C-13/C-12 ratio with increasing carbon number. The overall objectives of this project are to obtain dime element carbon, hydrogen, and sulfur - intramolecular isotopic analyses of individual sulfonates, and isotopic measurement of carbon and hydrogen of the phosphonates as a group. The Murchison meteorite is the best characterized carbonaceous chondrite with respect to organic chemistry. The finding of organic sulfonates and phosphonates in Murchison is of interest because they are the first well-characterized series of sulfur and phosphorus containing organic compounds found in meteorites. Also, meteorites, comets, and interplanetary dust particles may have been involved in chemical evolution on the early Earth. Because of the critical role of organic phosphorus and sulfur in all living systems, it is particularly interesting to see examples of abiotic syntheses of these classes of compounds. The study of the isotopic composition of the sulfonates and phosphonates can yield insight into their possible interstellar origin as well as their mechanisms of synthesis in the early solar system. Previous isotopic analyses of other classes of organic compounds indigenous to meteorites, e.g., amino acids, carboxylic acids, and hydrocarbons indicate the possibility that interstellar molecules were incorporated into meteorite parent bodies. In these compounds the ratios of heavy to

  10. Integrating Ontogenetic Shift, Growth and Mortality to Determine a Species' Ecological Role from Isotopic Signatures

    PubMed Central

    Fontoura, Nelson F.; Rodrigues, Lúcia R.; Batista, Cibele B.; Persch, Tanilene S. P.; Janowicz, Mariola E.

    2015-01-01

    Understanding species linkages and energy transfer is a basic goal underlying any attempt at ecosystem analysis. Although the first food-web studies were based on gut contents of captured specimens, the assessment of stable isotopes, mainly δ13C and δ15N, has become a standard methodology for wide-range analyses in the last 30 years. Stable isotopes provide information on the trophic level of species, food-web length, and origin of organic matter ingested by consumers. In this study, we analyzed the ontogenetic variability of δ13C and δ15N obtained from samples of three Neotropical fish species: silver sardine (Lycengraulis grossidens, n=46), white lambari (Cyanocharax alburnus, n= 26), and the red-tail lambari (Astyanax fasciatus, n=23) in Pinguela Lagoon, southern Brazil. We developed a new metric, called the Weighted Isotopic Signature (φ 15N or φ 13C, ‰), that incorporates ontogenetic variability, body growth, and natural mortality into a single number. PMID:25996777

  11. Lifetime measurements in neutron-rich 63,65Co isotopes using the AGATA demonstrator

    NASA Astrophysics Data System (ADS)

    Modamio, V.; Valiente-Dobón, J. J.; Lunardi, S.; Lenzi, S. M.; Gadea, A.; Mengoni, D.; Bazzacco, D.; Algora, A.; Bednarczyk, P.; Benzoni, G.; Birkenbach, B.; Bracco, A.; Bruyneel, B.; Bürger, A.; Chavas, J.; Corradi, L.; Crespi, F. C. L.; de Angelis, G.; Désesquelles, P.; de France, G.; Depalo, R.; Dewald, A.; Doncel, M.; Erduran, M. N.; Farnea, E.; Fioretto, E.; Fransen, Ch.; Geibel, K.; Gottardo, A.; Görgen, A.; Habermann, T.; Hackstein, M.; Hess, H.; Hüyük, T.; John, P. R.; Jolie, J.; Judson, D.; Jungclaus, A.; Karkour, N.; Kempley, R.; Leoni, S.; Melon, B.; Menegazzo, R.; Michelagnoli, C.; Mijatović, T.; Million, B.; Möller, O.; Montagnoli, G.; Montanari, D.; Nannini, A.; Napoli, D. R.; Podolyak, Zs.; Pollarolo, G.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Rother, W.; Sahin, E.; Salsac, M. D.; Scarlassara, F.; Sieja, K.; Söderström, P. A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Theisen, Ch.; Travers, B.; Ur, C. A.

    2013-10-01

    Lifetimes of the low-lying (11/2-) states in 63,65Co have been measured employing the recoil distance doppler shift method (RDDS) with the AGATA γ-ray array and the PRISMA mass spectrometer. These nuclei were populated via a multinucleon transfer reaction by bombarding a 238U target with a beam of 64Ni. The experimental B(E2) reduced transition probabilities for 63,65Co are well reproduced by large-scale shell-model calculations that predict a constant trend of the B(E2) values up to the N=40 67Co isotope.

  12. Isotope shifts of the 6d{sup 2} D{sub 3/2}-7 p{sup 2} P{sub 1/2} transition in trapped short-lived {sup 209-214}Ra{sup +}

    SciTech Connect

    Giri, G. S.; Versolato, O. O.; Berg, J. E. van den; Boell, O.; Dammalapati, U.; Hoek, D. J. van der; Jungmann, K.; Kruithof, W. L.; Mueller, S.; Nunez Portela, M.; Onderwater, C. J. G.; Santra, B.; Timmermans, R. G. E.; Wansbeek, L. W.; Willmann, L.; Wilschut, H. W.

    2011-08-15

    Laser spectroscopy of short-lived radium isotopes in a linear Paul trap has been performed. The isotope shifts of the 6d{sup 2} D{sub 3/2} -7 p{sup 2} P{sub 1/2} transition in {sup 209-214}Ra{sup +}, which are sensitive to the short-range part of the atomic wave functions, were measured. The results are essential experimental input for improving the precision of atomic structure calculations. This is indispensable for parity violation in Ra{sup +} aiming at the determination of the weak mixing angle.

  13. An isotope technique for measuring lactose absorption

    PubMed Central

    Salmon, P. R.; Read, A. E.; McCarthy, C. F.

    1969-01-01

    Expired radiocarbon dioxide has been collected by a simple autotitration method following the ingestion of lactose-1-14C. With this method, which is suitable for clinical use, 12 subjects with alactasia have been readily separated from 24 normals, both groups being defined by strict criteria. This test, which may be used to measure the absorption of other sugars, is especially suitable for population surveys and may be used to investigate the distribution of disaccharidase deficiency. A further advantage is that false low readings resulting from rapid plasma clearance of absorbed sugar do not occur with this method although they may do so in up to one in three lactose tolerance tests, thereby overestimating the prevalence of alactasia. PMID:5810982

  14. Accurate and Precise Zinc Isotope Ratio Measurements in Urban Aerosols

    NASA Astrophysics Data System (ADS)

    Weiss, D.; Gioia, S. M. C. L.; Coles, B.; Arnold, T.; Babinski, M.

    2009-04-01

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of δ66Zn determinations in aerosols is around 0.05 per mil per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in δ66Zn ranging between -0.96 and -0.37 per mil in coarse and between -1.04 and 0.02 per mil in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source.

  15. Solar Doppler-shift measurements in the Ne VII 465 A emission line

    NASA Technical Reports Server (NTRS)

    Mariska, John T.; Dowdy, James F., Jr.

    1992-01-01

    Using a Dopplergram obtained with the Naval Research Laboratory extreme ultraviolet spectrograph on Skylab, we have searched for Doppler shifts in the Ne VII 465 A emission line, which is formed at a temperature of about 500,000 K. In the quiet sun we find no measurable average Doppler shift to a measurement accuracy of +/- 18 km/s. Small regions of the quiet sun do, however, display measurable Doppler shifts. In active regions, we measure Doppler shifts indicating downflow velocities of up to 70 km/s.

  16. Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks

    NASA Astrophysics Data System (ADS)

    Li, Gaojun; West, A. Joshua

    2014-09-01

    The Li isotopic record of seawater shows a dramatic increase of ∼9‰ over the past ∼60 million years. Here we use a model to explore what may have caused this change. We focus particularly on considering how changes in the “reverse weathering” sinks that remove Li from seawater can contribute to explain the observed increase. Our interpretation is based on dividing the oceanic sink, which preferentially removes light Li, into two components: (i) removal into marine authigenic clays in sediments at low temperatures, with associated high fractionation factors, and (ii) removal into altered oceanic basalt at higher temperatures and resulting lower fractionation factors. We suggest that increases in the flux of degraded continental material delivered to the oceans over the past 60 Ma could have increased removal of Li into sedimentary authigenic clays versus altered basalt. Because altered basalt is associated with a smaller isotopic fractionation, an increasing portion of the lower temperature (authigenic clay-associated) sink could contribute to the rise of the seawater Li isotope value. This effect would moderate the extent to which the isotopic value of continental inputs must have changed in order to explain the seawater record over the Cenozoic. Nonetheless, unless the magnitude of fractionation during removal differs significantly from current understanding, substantial change in the δLi7 of inputs from continental weathering must have occurred. Our modeling suggests that dissolved riverine fluxes in the early Eocene were characterized by δLi7 of ∼0 to +13‰, with best estimates of 6.6-12.6‰; these values imply increases over the past 60 Myrs of between 10 and 24‰, and we view a ∼13‰ increase as a likely scenario. These changes would have been accompanied by increases in both the dissolved Li flux from continental weathering and the removal flux from seawater into marine authigenic clays. Increases in δLi7 of continental input are

  17. Guidelines for Auditory Threshold Measurement for Significant Threshold Shift.

    PubMed

    Campbell, Kathleen; Hammill, Tanisha; Hoffer, Michael; Kil, Jonathan; Le Prell, Colleen

    2016-09-01

    The purpose of this article is to provide guidelines for determining a Significant Noise-Induced Threshold Shift in clinical trials involving human populations. The article reviews recommendations for the standards to be referenced for human subjects, equipment, test environment, and personnel. Additional guidelines for military populations are provided. Guidelines for the calibration of audiometers, sound booth noise levels, and immitance equipment are provided. In addition the guidance provides specific suggestions for the subjects history before study onset, and otoscopy.Test frequencies for threshold determination and methods of threshold determination are reviewed for both air conduction and bone conduction for both baseline testing and later determination of either a temporary (TTS) or permanent threshold shift (PTS). Once a Significant Noise-Induced Threshold Shift has been determined, subjects should be retested, conductive component should be ruled out or addressed, and the subject should be counseled or referred for additional medical evaluation. Guidance for reporting procedures and the computerized study database are described. Finally, experimental designs suggested for noise-induced otoprotection clinical trials are described. PMID:27518134

  18. Hyperfine structure constants and isotope shift of the levels of the configuration 4 f 6 5 d 6 s 2 in Eu I

    NASA Astrophysics Data System (ADS)

    Elantkowska, M.; Bernard, A.; Dembczyński, J.; Ruczkowski, J.

    1993-06-01

    The hyperfine structure (hfs) and the isotope shift (IS) of transitions between metastable levels of the configuration 4 f 7 5 d 6 s and levels of the configuration 4 f 6 5 d 6 s 2 of151Eu and153Eu were studied by means of the high resolution laser-atomic-beam technique. New data for the hfs in151Eu and153Eu were obtained as well as new and more accurate for the IS between151Eu and153Eu. The measured hfs constants A and B of the 4 f 6 5 d 6 s 2 configuration allow to perform a parametric analysis using the Sandars and Beck theory. The value of the Sternheimer correction is also disscused.

  19. Direct measurement of biosphere-atmosphere isotopic CO2 exchange using the eddy covariance technique

    NASA Astrophysics Data System (ADS)

    Griffis, T. J.; Sargent, S. D.; Baker, J. M.; Lee, X.; Tanner, B. D.; Greene, J.; Swiatek, E.; Billmark, K.

    2008-04-01

    Quantifying isotopic CO2 exchange between the biosphere and atmosphere presents a significant measurement challenge, but has the potential to provide important constraints on local, regional, and global carbon cycling. Past approaches have indirectly estimated isotopic CO2 exchange using relaxed eddy accumulation, the flask-based isoflux method, and flux-gradient techniques. Eddy covariance (EC) is an attractive method because it has the fewest theoretical assumptions and the potential to give a direct measure of isotopic CO2 flux, but it requires a highly sensitive and relatively fast response instrument. To date, no such field measurements have been reported. Here we describe the use of a closed-path tunable diode laser absorption spectroscopy and eddy covariance (EC-TDL) system for isotopic (C16O2, 13CO2, C18O16O) flux measurements. Results are presented from an intensive field experiment conducted over a soybean canopy from 18 July to 20 September 2006. This experiment represents a rigorous field test of the EC-TDL technique because the transport was dominated by relatively high frequency eddies. Net ecosystem CO2 exchange (FN) measured with the EC-TDL system showed strong correlation (r2 = 0.99) in the half-hourly fluxes with an EC open-path infrared gas analyzer (EC-IRGA) over the 60-d period. Net CO2 flux measured with the EC-IRGA and EC-TDL systems agreed to within 9%. Flux loss associated with diminished frequency response beyond 1 Hz for the EC-TDL system was approximately 8% during daytime windy (>4 m s-1) conditions. There was no significant evidence of a kinetic-type fractionation effect related to a phase shift among isotopologues due to tube attenuation. Investigation of isotopic spectral similarity in the flux ratio (δNx) for both 13CO2 and C18O16O transport showed that δNx was relatively independent of eddy scale for this ecosystem type. Flux loss, therefore, did not significantly bias δNx. There was excellent agreement between isofluxes (F

  20. Phase shifting interferometry using a spatial light modulator to measure optical thin films.

    PubMed

    Villalobos-Mendoza, Brenda; Granados-Agustín, Fermín S; Aguirre-Aguirre, Daniel; Cornejo-Rodríguez, Alejandro

    2015-09-10

    This work describes a process for measuring thin film steps, using phase shifting interferometry (PSI). The phase shifts are applied only in the region where the thin film steps are located. The phase shift is achieved by displaying different gray levels on a spatial light modulator (SLM Holoeye LC2012) placed in one arm of a Twyman-Green (T-G) interferometer. Before measuring the thin film steps, it was necessary to quantify the phase shifts achieved with this SLM by measuring the fringe shifts in experimental interferograms. The phase shifts observed in the interference patterns were produced by displaying the different gray levels on the SLM one by one, from 0 to 255. The experimental interferograms and the thicknesses of the thin film steps were successfully quantified, proving that this method can be used to measure thin films by applying the PSI method only on the region occupied by them. PMID:26368976

  1. Regime shifts in the Arctic North Atlantic during the Neoglacial revealed by seabirds and precipitation isotopes on Bjørnøya, Svalbard

    NASA Astrophysics Data System (ADS)

    D'Andrea, William J.; Hormes, Anne; Bakke, Jostein; Nicolaisen, Line

    2016-04-01

    The northeastern North Atlantic Ocean, and the Norwegian and Greenland Seas are subject to large hydrographic changes. These variations can influence oceanic heat transport to the Arctic, meridional overturning circulation, and atmospheric circulation patterns and thereby impact global climate patterns. Marine records suggest that numerous large-scale changes in the hydrography of the northern North Atlantic took place during the middle to late Holocene. We report a record of nitrogen and hydrogen isotope measurements from a lake sediment core from Bjørnøya, Svalbard (74.38°N, 19.02°E) that documents major regime shifts in the climate of the northern North Atlantic during the past 6,000 years. Bjørnøya is the nesting ground for one of the largest seabird populations in the North Atlantic. As top predators in the marine ecosystem, seabirds (and their guano) are enriched in 15N; during spring and summer months they deliver isotopically enriched nitrogen to nesting areas. We developed a record of seabird population changes on Bjørnøya based on the nitrogen isotope composition of sediments in a core collected from lake Ellasjøen. The record reveals multiple multicentennial scale changes in δ15N values (varying between ~8-12‰) that track past changes in the size of seabird populations. From the same sediment core, we also developed a record of δD of precipitation, using δD values of sedimentary n-alkanes. Past intervals with the largest inferred bird populations correspond with the most enriched δD of precipitation, which we interpret to represent a more Atlantic climate. Periods with reduced seabird populations correspond with intervals with more negative δD of precipitation and representing a more Arctic climate. Together, the nitrogen and hydrogen isotope records signify regime shifts in the oceanography, marine ecosystem, and atmospheric circulation of the northern North Atlantic that are related to variations in the strength of the subpolar gyre.

  2. Measurement of Neutron Capture Cross Sections of Selenium Isotopes

    NASA Astrophysics Data System (ADS)

    Dearmon, Howard D.; Krane, Kenneth S.

    2011-10-01

    There have been numerous measurements of the neutron capture cross sections of the stable Se isotopes, most dating from at least 40 years ago. The various results for individual isotopes are often in poor agreement with one another, but as yet there has been no attempt at a systematic measurement of the capture cross sections leading to all seven radioisotopes formed from capture by natural Se, which range in halflife from 17 s to 120 d. Using cadmium-shielded and unshielded irradiations of natural Se in various irradiation sites in OSU's TRIGA reactor, we have determined the thermal cross sections and resonance integrals for captures leading to ^75,77m,79m,81g,81m,83g,83mSe.

  3. Advances in Multicollector ICPMS for precise and accurate isotope ratio measurements of Uranium isotopes

    NASA Astrophysics Data System (ADS)

    Bouman, C.; Lloyd, N. S.; Schwieters, J.

    2011-12-01

    The accurate and precise determination of uranium isotopes is challenging, because of the large dynamic range posed by the U isotope abundances and the limited available sample material. Various mass spectrometric techniques are used for the measurement of U isotopes, where TIMS is the most accepted and accurate one. Multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) can offer higher productivity compared to TIMS, but is traditionally limited by low efficiency of sample utilisation. This contribution will discuss progress in MC-ICPMS for detecting 234U, 235U, 236U and 238U in various uranium reference materials from IRMM and NBL. The Thermo Scientific NEPTUNE Plus with Jet Interface offers a modified dry plasma ICP interface using a large interface pump combined with a special set of sample and skimmer cones giving ultimate sensitivity for all elements across the mass range. For uranium, an ion yield of > 3 % was reported previously [1]. The NEPTUNE Plus also offers Multi Ion Counting using discrete dynode electron multipliers as well as two high abundance-sensitivity filters to discriminate against peak tailing effects on 234U and 236U originating from the major uranium beams. These improvements in sensitivity and dynamic range allow accurate measurements of 234U, 235U and 236U abundances on very small samples and at low concentration. In our approach, minor U isotopes 234U and 236U were detected on ion counters with high abundance sensitivity filters, whereas 235U and 238U were detected on Faraday Cups using a high gain current amplifier (10e12 Ohm) for 235U. Precisions and accuracies for 234U and 236U were down to ~1%. For 235U, subpermil levels were reached.

  4. Mass spectrometric measurements of the isotopic anatomies of molecules (Invited)

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Krumwiede, D.; Schlueter, H.

    2013-12-01

    Site-specific and multiple isotopic substitutions in molecular structures potentially provide an extraordinarily rich set of constraints on their sources, conditions of formation, reaction and transport histories, and perhaps other issues. Examples include carbonate ';clumped isotope' thermometry, clumped isotope measurements of CO2, O2, and, recently, methane, ethane and N2O; site-specific 15N measurements in N2O and 13C and D analyses of fatty acids, sugars, cellulose, food products, and, recently, n-alkanes. Extension of the principles behind these tools to the very large number of isotopologues of complex molecules could potentially lead to new uses of isotope chemistry, similar to proteomics, metabolomics and genomics in their complexity and depth of detail (';isotomics'?). Several technologies are potentially useful for this field, including ';SNIF-NMR', gas source mass spectrometry and IR absorption spectroscopy. However, all well established methods have restrictive limits in the sizes of samples, types of analyzes, and the sorts of isotopologues that can be measured with useful precision. We will present an overview of several emerging instruments and techniques of high-resolution gas source mass spectrometry that may enable study of a large proportion of the isotopologues of a wide range of volatile and semi-volatile compounds, including many organics, with precisions and sample sizes suitable for a range of applications. A variety of isotopologues can be measured by combining information from the Thermo 253 Ultra (a new high resolution, multi-collector gas source mass spectrometer) and the Thermo DFS (a very high resolution single collector, but used here on a novel mode to achieve ~per mil precision ratio measurements), sometimes supplemented by conventional bulk isotopic measurements. It is possible to design methods in which no one of these sources of data meaningfully constrain abundances of specific isotopologues, but their combination fully and

  5. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: Carbon and nitrogen stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Doi, Hideyuki; Matsumasa, Masatoshi; Toya, Terumasa; Satoh, Nobuya; Mizota, Chitoshi; Maki, Yonosuke; Kikuchi, Eisuke

    2005-08-01

    Carbon and nitrogen stable isotope ( δ13C and δ15N, respectively) analyses were made on estuarine macrozoobenthos in order to examine the relationships between their feeding habits (feeding mode and food selectivity) and the spatial shifts in food sources from upstream to downstream in an estuary. The δ13C values of two ocypodid crabs were similar to those of benthic diatoms, indicating that they use their specialized mouth parts to selectively feed on benthic diatoms. The δ13C values of a gastropod and another ocypodid crab at the site furthest downstream were higher than values at an upstream site, suggesting that these unselective deposit feeders shift from feeding mainly on benthic diatoms downstream to feeding on sediment organic matter (SOM) upstream. The δ13C values of deposit feeding polychaetes were not significantly different among sampling sites, indicating that they feed mainly on SOM at all sites. These results show that species- and site-specific feeding habits must be considered when evaluating the roles of macrozoobenthos in regulating estuarine material flows.

  6. Resonance ionization mass spectrometry for isotopic abundance measurements

    NASA Technical Reports Server (NTRS)

    Miller, C. M.

    1986-01-01

    Resonance ionization mass spectrometry (RIMS) is a relatively new laser-based technique for the determination of isotopic abundances. The resonance ionization process depends upon the stepwise absorption of photons from the laser, promoting atoms of the element of interest through progressively higher electronic states until an ion is formed. Sensitivity arises from the efficiency of the resonant absorption process when coupled with the power available from commercial laser sources. Selectivity derives naturally from the distinct electronic structure of different elements. This isobaric discrimination has provided the major impetus for development of the technique. Resonance ionization mass spectrometry was used for analysis of the isotopic abundances of the rare earth lutetium. Isobaric interferences from ytterbium severely effect the ability to measure small amounts of the neutron-deficient Lu isotopes by conventional mass spectrometric techniques. Resonance ionization for lutetium is performed using a continuous-wave laser operating at 452 nm, through a sequential two-photon process, with one photon exciting the intermediate resonance and the second photon causing ionization. Ion yields for microgram-sized quantities of lutetium lie between 10(6) and 10(7) ions per second, at overall ionization efficiencies approaching 10(-4). Discrimination factors against ytterbium greater than 10(6) have been measured. Resonance ionization for technetium is also being explored, again in response to an isobaric interference, molybdenum. Because of the relatively high ionization potential for Tc, three-photon, two-color RIMS processes are being developed.

  7. Leaf water oxygen isotope measurement by direct equilibration.

    PubMed

    Song, Xin; Barbour, Margaret M

    2016-08-01

    The oxygen isotope composition of leaf water imparts a signal to a range of molecules in the atmosphere and biosphere, but has been notoriously difficult to measure in studies requiring a large number of samples as a consequence of the labour-intensive extraction step. We tested a method of direct equilibration of water in fresh leaf samples with CO2 , and subsequent oxygen isotope analysis on an optical spectrometer. The oxygen isotope composition of leaf water measured by the direct equilibration technique was strongly linearly related to that of cryogenically extracted leaf water in paired samples for a wide range of species with differing anatomy, with an R(2) of 0.95. The somewhat more enriched values produced by the direct equilibration method may reflect lack of full equilibration with unenriched water in the vascular bundles, but the strong relationship across a wide range of species suggests that this difference can be adequately corrected for using a simple linear relationship. PMID:27147584

  8. Evaluating Nitrogen Isotope Measurements in Unconventional Hydrocarbon Reservoirs

    NASA Astrophysics Data System (ADS)

    Quan, T. M.; Rivera, K.; Adigwe, E.; Riedinger, N.; Puckette, J.

    2014-12-01

    Nitrogen isotope (δ15N) measurements from core samples taken from unconventional hydrocarbon reservoirs may provide important information on depositional environment, reservoir characterization, and post-depositional processes. In order to evaluate the potential of nitrogen isotopes as geochemical proxies for resource evaluation, we measured δ15Nbulk values for six Woodford Shale (Late Devonian-Early Mississippian) cores and three Caney Shale (Early Mississippian) cores and compared the profiles with other geochemical, lithological, maturation, and well-log data. The strongest correlation is between δ15Nbulk and redox-sensitive trace metals and other redox proxies, as predicted by previous research into δ15Nbulk values. This indicates that δ15Nbulk can be used in unconventional reservoirs as a proxy for depositional redox conditions. Unlike other redox proxies, δ15Nbulk reflects the redox state of the deep-water column, rather than that of the deposited sediment, providing a representation of water column processes during deposition. The δ15Nbulk proxy also appears not to be overprinted by catagenic processes. Associations of δ15Nbulk with thermal maturity, gamma ray response, and catagenesis and diagenesis proxies were found to be minimal. The δ15Nbulk profiles do not appear to be overprinted during catagenesis and therefore are not a reliable record of post-depositional processes. Including nitrogen isotope analyses in a geochemical assessment can provide valuable information about the original redox state of the reservoir unit, and assist in characterizing depositional environment.

  9. Proton Radioactivity Measurements at HRIBF: Ho, Lu, and Tm Isotopes

    SciTech Connect

    Akovali, Y.; Batchelder, J.C.; Bingham, C.R.; Davinson, T.; Ginter, T.N.; Gross, C.J.; Grzywacz, R.; Hamilton, J.H.; Janas, Z.; Karny, M.; Kim, S.H.; MacDonald, B.D.; Mas, J.F.; McConnell, J.W.; Piechaczek, A.; Ressler, J.J.; Rykaczewski, K.; Slinger, R.C.; Szerypo, J.; Toth, K.S.; Weintraub, W.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    1998-11-13

    Two new isotopes, {sup 145}Tm and {sup 140}Ho and three isomers in previously known isotopes, {sup 141m}Ho, {sup 150m}Lu and {sup 151m}Lu have been discovered and studied via their decay by proton emission. These proton emitters were produced at the Holifield Radioactive Ion Beam Facility (HRIBF) by heavy-ion fusion-evaporation reactions, separated in A/Q with a recoil mass spectrometer (RMS), and detected in a double-sided silicon strip detector (DSSD). The decay energy and half-life was measured for each new emitter. An analysis in terms of a spherical shell model is applied to the Tm and Lu nuclei, but Ho is considerably deformed and requires a collective model interpretation.

  10. Development of a Micropyrolyzer for Enhanced Isotope Ratio Measurement

    SciTech Connect

    Hu, Jianli; Dagle, Robert A.; Johnson, Bradley R.; Kreuzer, Helen W.; Gaspar, Daniel J.; Roberts, Benjamin Q.; Alexander, M. L.

    2008-11-19

    This paper presents design, fabrication and testing of a micro scale reactor for the pyrolysis of organic compounds. The reactor system described here is suitable for use in enhanced isotope ratio measurement in a continuous flow mode. A characteristic of such a system is it can be utilized to pyrolyze organic compounds with sample size 20-50 times smaller than conventional. Results have shown that organic compounds, such as 1-butanol, ethanol, and ethanol amine, can be fully decomposed to desired products CO and H2, at temperature of 1200oC, which is 200oC lower than conventionally reported. Undesired products methane and CO2 are eliminated in the pyrolysis process. The proof-of-concept experimental results clearly demonstrate that the micro pyrolyzer can be readily integrated with isotope ratio mass spectrometer (IRMS) to differentiate between different sources of the same materials.

  11. Cross-Section Measurements with the Radioactive Isotope Accelerator (RIA)

    SciTech Connect

    Stoyer, M A; Moody, K J; Wild, J F; Patin, J B; Shaughnessy, D A; Stoyer, N J; Harris, L J

    2002-11-19

    RIA will produce beams of exotic nuclei of unprecedented luminosity. Preliminary studies of the feasibility of measuring cross-sections of interest to the science based stockpile stewardship (SBSS) program will be presented, and several experimental techniques will be discussed. Cross-section modeling attempts for the A = 95 mass region will be shown. In addition, several radioactive isotopes could be collected for target production or medical isotope purposes while the main in-beam experiments are running. The inclusion of a broad range mass analyzer (BRAMA) capability at RIA will enable more effective utilization of the facility, enabling the performance of multiple experiments at the same time. This option will be briefly discussed.

  12. (n,γ) measurements on radioactive isotopes for astrophysics

    NASA Astrophysics Data System (ADS)

    Reifarth, Rene; Herwig, Falk

    2004-10-01

    Almost all of the heavy elements are produced via neutron capture reactions in a multitude of stellar production sites. Stellar models yield the element production during the quiescent phase as well as the initial configuration for supernova simulations. Their predictive power is currently limited because they contain poorly constrained physics components such as convection, rotation or magnetic fields. With a neutron facility at RIA and a calorimetric γ-ray detector similar to DANCE at LANL we could largely improve these physics components. Neutron captures on heavy radioactive isotopes provide a unique opportunity to largely improve these physics components. The analysis of branch-points of the s-process path in combination with isotopic abundance information from pre-solar meteoritic grains offer a very powerful tool to address important questions of nuclear astrophysics. The astrophysical implications of recent measurements at DANCE and possibilities for future (n,γ) experiments at RIA will be presented during the talk.

  13. Cross-Section Measurements with the Radioactive Isotope Accelerator (ria)

    NASA Astrophysics Data System (ADS)

    Stoyer, M. A.; Moody, K. J.; Wild, J. F.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, N. J.; Harris, L. J.

    2003-10-01

    RIA will produce beams of exotic nuclei of unprecedented luminosity. Preliminary studies of the feasibility of measuring cross-sections of interest to the science based stockpile stewardship (SBSS) program will be presented, and several experimental techniques will be discussed. Cross-section modeling attempts for the A = 95 mass region will be shown. In addition, several radioactive isotopes could be collected for target production or medical isotope purposes while the main in-beam experiments are running. The inclusion of a broad range mass analyzer (BRAMA) capability at RIA will enable more effective utilization of the facility, enabling the performance of multiple experiments at the same time. This option will be briefly discussed.

  14. Inhomogeneous light shift effects on atomic quantum state evolution in non-destructive measurements

    NASA Astrophysics Data System (ADS)

    Windpassinger, Patrick J.; Oblak, Daniel; Busk Hoff, Ulrich; Appel, Jürgen; Kjærgaard, Niels; Polzik, Eugene S.

    2008-05-01

    Various parameters of a trapped collection of cold and ultracold atoms can be determined non-destructively by measuring the phase shift of an off-resonant probe beam, caused by the state-dependent index of refraction of the atoms. The dispersive light-atom interaction, however, gives rise to a differential light shift (ac Stark shift) between the atomic states which, for a non-uniform probe intensity distribution, causes an inhomogeneous dephasing between the atoms. In this paper, we investigate the effects of this inhomogeneous light shift in non-destructive measurement schemes in cold caesium. We interpret our experimental data on dispersively probed Rabi oscillations and Ramsey fringes in terms of a simple light shift model which is shown to describe the observed behavior well. Furthermore, we show that by using spin echo techniques, the inhomogeneous phase shift distribution between the two clock levels can be reversed.

  15. Raman-shifted dye laser for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Singh, U. N.; Cotnoir, L. J.; Wilkerson, T. D.; Higdon, N. S.; Browell, E. V.

    1987-01-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, narrowband (about 0.03/cm) laser radiation at 720- and 940-nm wavelengths was generated by stimulated Raman scattering (SRS), using the narrow linewidth (about 0.02/cm) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion efficiencies to 940 nm were 20 percent and 35 percent, when using a conventional and waveguide Raman cell, respectively. The linewidth of the first Stokes line at high cell pressures, and the inferred collisional broadening coefficients, agree well with those previously measured in spontaneous Raman scattering.

  16. Shift and width measurements of the Stark-broadened ionized helium line at 1215 A

    NASA Technical Reports Server (NTRS)

    Van Zandt, J. R.; Adcock, J. C., Jr.; Griem, H. R.

    1976-01-01

    Time-resolved photoelectric measurements were made of the shifts of helium plasma lines at 1640 A and 1215 A and of the Stark profile of the 1215 A line, using an electromagnetic shock tube as a light source. These red shifts are consistent with a plasma polarization shift, where the interaction energy between the radiating ion and the perturbing plasma electrons corresponds to the Coulomb interaction near the excited state Bohr radius. No significant shifts were observed for the 1640 A line, while the 1215 A line underwent a red shift of about 0.5 A. The measured Stark width of the 1215 A line was 10-45% greater than the calculated width based on the measured width of the 4686 A line.

  17. Optimized weak measurement for spatial spin-dependent shifts at Brewster angle

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Li, Peng; Liu, Sheng; Han, Lei; Cheng, Huachao; Zhao, Jianlin

    2016-07-01

    As Brewster law goes, the polarization selectivity when a light beam reflected at Brewster angle is feasible. We find that this polarization selectivity is still effective incorporated with weak measurement. So we realize an optimized weak measurement technique without preselection polarizer. This scheme is exploited to observe the spatial spin-dependent shifts when a linearly polarized beam is reflected at Brewster angle. The theoretical and experimental results show that by changing the polarization orientation of incident beam, the in-plane spin-dependent shift direction can be reversed, while the out-of-plane spin-dependent shift direction keeps unchanged. Our results may enrich the application of weak measurement.

  18. Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy.

    PubMed

    Schmidt, Markus; Maseyk, Kadmiel; Lett, Céline; Biron, Philippe; Richard, Patricia; Bariac, Thierry; Seibt, Ulli

    2012-01-30

    Concern exists about the suitability of laser spectroscopic instruments for the measurement of the (18)O/(16)O and (2)H/(1)H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem-derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength-scanned cavity ring-down spectroscopy (CRDS) (18)O/(16)O and (2)H/(1)H measurements from a range of ecosystem-derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit S(r) calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ-values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3‰ (δ(18)O values) and 23‰ (δ(2)H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The S(r) statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ(2)H(CRDS) - δ(2)H(IRMS) linearly for the tested range of 0-20% charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ(2)H values but variable, resulting in positive, negative or no correlation with distillation temperature. S(r) and δ(CRDS) - δ(IRMS) were highly correlated, in particular for δ(2)H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ-values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ(18)O values and ≥10 °C for δ(2)H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such

  19. Associations between shift schedule characteristics with sleep, need for recovery, health and performance measures for regular (semi-)continuous 3-shift systems.

    PubMed

    van de Ven, Hardy A; Brouwer, Sandra; Koolhaas, Wendy; Goudswaard, Anneke; de Looze, Michiel P; Kecklund, Göran; Almansa, Josue; Bültmann, Ute; van der Klink, Jac J L

    2016-09-01

    In this cross-sectional study associations were examined between eight shift schedule characteristics with shift-specific sleep complaints and need for recovery and generic health and performance measures. It was hypothesized that shift schedule characteristics meeting ergonomic recommendations are associated with better sleep, need for recovery, health and performance. Questionnaire data were collected from 491 shift workers of 18 companies with 9 regular (semi)-continuous shift schedules. The shift schedule characteristics were analyzed separately and combined using multilevel linear regression models. The hypothesis was largely not confirmed. Relatively few associations were found, of which the majority was in the direction as expected. In particular early starts of morning shifts and many consecutive shifts seem to be avoided. The healthy worker effect, limited variation between included schedules and the cross-sectional design might explain the paucity of significant results. PMID:27184329

  20. Mobile measurement of methane: plumes, isotopes and inventory verification

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Zazzeri, G.; Fisher, R. E.; France, J.; Al-Shalaan, A.; Lanoisellé, M.; Nisbet, E. G.

    2015-12-01

    Since 2013 the RHUL group has been identifying methane plumes from major UK sources using a Picarro 2301 coupled to the A0941 mobile module. Once identified the plumes have been sampled by filling Tedlar or Flexfoil bags for later carbon isotopic analysis by high-precision IRMS. This method has ben successfully deployed to isotopically characterize the main anthropogenic methane emitters in the UK (natural gas, coal, landfill, wastewater treatment, cattle; Zazzeri et al., 2015) and during overseas campaigns in eastern Australia (coal, cattle, legacy gas wells) and Kuwait (landfill, wastewater treatment, oil refineries, cattle, camels). This has identified strong similarities of isotopic signature for some sources (landfill, cattle), but large variations for others (natural gas, coal), which must be isotopically resolved at regional scale. Both landfill and natural gas emissions in SE England have tightly-constrained δ13C signatures, averaging -58 ± 3‰ and -36 ± 2‰, respectively, the latter being characteristic of homogenised North Sea gas supply. In contrast, signatures for coal mines in England and Wales fall in a range of 51.2 ± 0.3‰ to 30.9 ± 1.4‰, but can be tightly constrained by region. On a local scale in west London, repeat surveys in the boroughs of Hounslow and Runnymede have been made for comparison with the latest 1x1 km grid UK inventories for 2009 and 2012, which are subdivided by UNECE categories. An excess methane map can be derived for comparison with inventory emissions maps by identifying daily background and binning the excess values from mobile measurements by grid-square. This shows that the spatial distribution of emissions in the UK 2012 inventory is a big improvement on that of 2009. It also suggests that there is an overestimation of emissions from old landfills (closed before 2000 and reliant on a topsoil cap for oxidation), and an underestimation on emissions from currently active landfill cells. Zazzeri, G. et al. (2015

  1. Dynamical and Microphysical Controls on Subtropical Water Vapor Isotope Ratios: Using New Spectroscopic Measurements to Link Isotopic and Climatic Variability

    NASA Astrophysics Data System (ADS)

    Raudzens Bailey, A.; Nusbaumer, J. M.; Sato, P.; Noone, D. C.

    2014-12-01

    Water vapor isotope ratios are critical in shaping the isotopic composition of paleo-proxies used to interpret past climate. Indeed, previous research suggests speleothems are sensitive to water vapor transport, and experiments currently underway are evaluating the role of Greenlandic vapor in setting the isotopic record of the ice sheet. The recent and rapid spread of commercial vapor isotopic analyzers—based on cavity-enhanced near-infrared laser absorption spectroscopy—is creating unparalleled opportunities to elucidate which climatic factors control the vapor isotopic composition globally. This presentation describes both an exciting application of this new technology and relevant limitations imposed by measurement uncertainties associated with long-term field deployments. Using three years of continuous water vapor isotope ratio observations from Hawaii's Mauna Loa Observatory—one of the longest records of its kind—we evaluate the influence of large-scale dynamics and cloud microphysical processes in establishing the isotopic composition of water vapor during strong convective activity. Despite the fact that vapor isotope ratios tend to decrease with latitude, greater enrichment in Mauna Loa vapor is associated with a westward retraction of the jet stream, which funnels Asiatic outflow southward, while greater depletion is associated with southwesterly low-level flow. Differences in precipitation efficiency—which are verified by differences in aerosol concentration and total scattering—cause this apparent discrepancy. These results suggest local cloud and precipitation processes are more influential than airmass origin in setting the isotope ratios observed during these strong convective events. The length of the Mauna Loa record, meanwhile, presents a unique opportunity to evaluate long-term stability of biases associated with laser-based isotopic analyzers and to discuss calibration strategies best suited for monitoring programs designed to

  2. Improving the Sensitivity of Uranium Isotope Ratio Measurements

    NASA Astrophysics Data System (ADS)

    Friedrich, J.; Snow, J.

    2003-12-01

    Accurate and precise measurements of natural and anthropogenic 235/238 U isotope ratios are important for a range of investigations where the amount of sample is extremely restricted and/or the analyte is only present in ultra-trace quantities. Examples include biological, cosmochemical, environmental, geological, and radiological studies. We have developed and validated a novel method using our Nu Instruments Nu Plasma Multi Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) and a 233U, 236U mixed double spike for the measurement of 235U/238U ratios. Our multi-dynamic technique employs the installed quadrupole zoom optics and fixed positioning of the ion counting detectors such that rather than the commonly used mass dispersion of 1 or 2, we utilize a mass dispersion of 1.5. Using this configuration, we can simultaneously monitor the 235U and 238U ion beams in the first cycle followed by a second cycle that simultaneously monitors the 233U and 236U beams. This innovative approach allows us to correct for the considerable, but consistent, instrumental mass fractionation and ion-counter amplification bias within each sequence. Since we were hesitant to use a U500 (235U, 238U equal atom) solution for spike calibration because of possible enriched U laboratory and instrumentation contamination, we used a U960 (terrestrial 235U/238U) solution for isotopic calibration of the spike. This standardization corrected for the small amounts of 235U and 238U in the spike solution by using a U960 standard solution. With a mean intraday 2-sigma precision of 1.5 permil and an overall 2-sigma precision of 2.25 permil using individual sample sizes of 350 pg (8.8 x10 E11 atoms), we are confident our technique will be useful for identifying U isotopic anomalies present in many sample types.

  3. Measurement of surface profile in vibrating environment with instantaneous phase shifting interferometry

    NASA Astrophysics Data System (ADS)

    Sivakumar, N. R.; Tan, B.; Venkatakrishnan, K.

    2006-01-01

    In-process measurement has been the requirement of the precision industries, but due to vibrations while manufacturing, in-process measurement has been difficult to achieve. There is little work on in-process measurement using phase shifting interferometry, as phase shifting is extremely sensitive to vibrations. In this work, the advantage of the developed non-mechanical and instantaneous phase shifting interferometry is felt while measuring surface profile of large flat surfaces under vibrating conditions which can be extended for in-process measurement of surface profile. A near common path optical configuration is achieved and the effect of the environment is reduced. Moreover, the measurement of phase is instantaneous which increases the versatility of this technique for measuring vibrating objects. Profile measurements were carried out on a smooth mirror surface excited with vibrations of different frequencies and the technique was found to be immune to vibrations of up to 1000 Hz.

  4. Frequency shift measurement in shock-compressed materials

    DOEpatents

    Moore, David S.; Schmidt, Stephen C.

    1985-01-01

    A method for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the shock front advancing through the sample, thereby minimizing adverse effects of refraction.

  5. Frequency shift measurement in shock-compressed materials

    DOEpatents

    Moore, D.S.; Schmidt, S.C.

    1984-02-21

    A method is disclosed for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the stock front advancing through the sample, thereby minimizing adverse effects of refraction.

  6. Measurement of the Microwave Lensing shift in NIST-F1 and NIST-F2

    NASA Astrophysics Data System (ADS)

    Jefferts, S. R.; Heavner, T. P.; Barlow, S. E.; Ashby, N.

    2016-06-01

    With several Primary Frequency Standards (PFS) across the world demonstrating systematic fractional frequency uncertainties on order of 1 x 10-16, it is crucial to accurately measure or model even small frequency shifts that could affect the ultimate PFS uncertainty, and thus ultimately impact the rate of Coordinated Universal Time (UTC) which relies on precision PFS measurements. Recently there has been controversy about the physical causes and size of PFS frequency shifts due to microwave lensing effects. We present here the first measurements of microwave lensing frequency shifts in the PFS NIST-F1 and NIST-F2. The measured frequency shifts agree well with the recent theory of Ashby et al [1].

  7. A Protein Concentration Measurement System Using a Flexural Plate-Wave Frequency-Shift Readout Technique

    PubMed Central

    Wang, Chua-Chin; Sung, Tzu-Chiao; Hsu, Chia-Hao; Tsai, Yue-Da; Chen, Yun-Chi; Lee, Ming-Chih; Huang, I-Yu

    2013-01-01

    A protein concentration measurement system with two-port flexural plate-wave (FPW) biosensors using a frequency-shift readout technique is presented in this paper. The proposed frequency-shift readout method employs a peak detecting scheme to measure the amount of resonant frequency shift. The proposed system is composed of a linear frequency generator, a pair of peak detectors, two registers, and a subtractor. The frequency sweep range of the linear frequency generator is limited to 2 MHz to 10 MHz according to the characteristics of the FPW biosensors. The proposed frequency-shift readout circuit is carried out on silicon using a standard 0.18 μm CMOS technology. The sensitivity of the peak detectors is measured to be 10 mV. The power consumption of the proposed protein concentration measurement system is 48 mW given a 0.1 MHz system clock. PMID:23344375

  8. Deuterium-induced isotope effects on the 13C chemical shifts of α-D-glucose pentaacetate.

    PubMed

    Pérez-Hernández, Nury; Álvarez-Cisneros, Celina; Cerda-García-Rojas, Carlos M; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2013-03-01

    1,2,3,4,6-Penta-O-acetyl-α-D-glucopyranose and the corresponding [1-(2)H], [2-(2)H], [3-(2)H], [4-(2)H], [5-(2)H], and [6,6-(2)H(2)]-labeled compounds were prepared for measuring deuterium/hydrogen-induced effects on (13)C chemical shift (n)Δ (DHIECS) values. A conformational analysis of the nondeuterated compound was achieved using density functional theory (DFT) molecular models that allowed calculation of several structural properties as well as Boltzmann-averaged (13)C NMR chemical shifts by using the gauge-including atomic orbital method. It was found that the DFT-calculated C-H bond lengths correlate with (1)Δ DHIECS. PMID:23315885

  9. Measurement scheme for the Lamb shift in a superconducting circuit with broadband environment

    SciTech Connect

    Gramich, V.; Ankerhold, J.; Solinas, P.; Moettoenen, M.; Pekola, J. P.

    2011-11-15

    Motivated by recent experiments on quantum mechanical charge pumping in a Cooper pair sluice, we present a measurement scheme for observing shifts of transition frequencies in two-level quantum systems induced by broadband environmental fluctuations. In contrast to quantum optical and related setups based on cavities, the impact of a thermal phase reservoir is considered. A thorough analysis of Lamb and Stark shifts within weak-coupling master equations is complemented by nonperturbative results for the model of an exactly solvable harmonic system. The experimental protocol to measure the Lamb shift in experimentally feasible superconducting circuits is analyzed in detail and supported by numerical simulations.

  10. Beta-decay measurements of neutron-deficient cesium isotopes

    SciTech Connect

    Parry, R.F.

    1983-03-01

    Beta decay endpoint energy measurements of the neutron deficient cesium isotopes were done using an energy spectrum shape fitting technique. This was a departure from the typical method of endpoint energy analysis, the Fermi-Kurie plot. A discussion of the shape fitting procedure and its improved features are discussed. These beta endpoint measurements have led to total decay energies (Q/sub EC/) of the neutron deficient /sup 119/ /sup 123/Cs isotopes. The total decay energies of /sup 122m/Cs (Q/sub EC/ = 6.95 +- 0.25 MeV) and /sup 119/Cs (Q/sub EC/ = 6.26 +- 0.29 MeV) were new measurements. The total decay energies of /sup 123/Cs (Q/sub EC/ = 4.05 +- 0.18 MeV), /sup 122g/Cs (Q/sub EC/ = 7.05 +- 0.18 MeV), /sup 121/Cs (Q/sub EC/ = 5.21 +- 0.22 MeV), and /sup 120/Cs (Q/sub EC/ = 7.38 +- 0.23 MeV) were measurements with significantly improved uncertainties as compared to the literature. Further, a combination of the energy levels derived from previous literature gamma-gamma coincident measurements and the experimental beta-coincident gamma decay energies has supported an improved level scheme for /sup 121/Xe and the proposal of three new energy levels in /sup 119/Xe. Comparison of the experimental cesium mass excesses (determined with our Q/sub EC/ values and known xenon mass excesses) with both the literature and theoretical predicted values showed general agreement except for /sup 120/Cs. Possible explanations for this deviation are discussed.

  11. Measurement of the quadratic Zeeman shift of 85Rb hyperfine sublevels using stimulated Raman transitions

    NASA Astrophysics Data System (ADS)

    Li, Run-Bing; Zhou, Lin; Wang, Jin; Zhan, Ming-Sheng

    2009-04-01

    We demonstrate a technique for directly measuring the quadratic Zeeman shift using stimulated Raman transitions. The quadratic Zeeman shift has been measured yielding Δν=1296.8±3.3 Hz/G 2 for magnetically insensitive sublevels ( 5S,F=2,mF=0→5S,F=3,mF=0) of 85Rb by compensating the magnetic field and cancelling the ac Stark shift. We also measured the cancellation ratio of the differential ac Stark shift due to the imbalanced Raman beams by using two pairs of Raman beams ( σ+, σ+) and it is 1:3.67 when the one-photon detuning is 1.5 GHz in the experiment.

  12. Combining chemical and isotopic measurements to estimate pesticide degradation rates in a fractured-rock aquifer

    NASA Astrophysics Data System (ADS)

    Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; El-Khabbaz, Hassanya; Schreglmann, Kathrin; Höche, Martina; Elsner, Martin

    2013-04-01

    Encouraged by new regulatory requirements for pesticide registration and authorization, the transport and environmental fate of these compounds in the different environmental compartments has been studied extensively. Degradation rates vary widely depending on hydraulic and chemical characteristics, with the strongest degradation usually occuring in the topsoil. Nonetheless, significant pesticide attenuation may still take place during transport in the aquifer, since residence times are generally much longer than in the soil. Ideally, pesticide transformation in the aquifer needs to be determined under real field conditions. Mass balance calculations however are complicated by the fact that the initial pesticide mass leached from the soil is often not known precisely enough. In this study, isotopic and classical pesticide concentration measurements were combined with groundwater dating techniques to assess the degradation rate of atrazine and its metabolite desethylatrazine in a fractured sandstone. The mass balance problem was solved by introducing the desethylatrazine to atrazine ratio, a relative measure which was used to quantify the advancement of atrazine degradation with increasing transport time in the subsurface. The extent of transformation of the parent compound was finally estimated from the shift in the isotopic signal between soil application and the outlet of the groundwater system.

  13. Design of the phase-shifting algorithm for flatness measurement of a mask blank glass

    NASA Astrophysics Data System (ADS)

    Kim, Yangjin; Hibino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2014-04-01

    Nonlinearity and non-uniformity of phase-shifts significantly contribute to the error of the evaluated phase in phase-shifting interferometry. However, state of the art error-compensating algorithms can counteract the linear mis-calibration and first-order nonlinearity associated with the phase-shift. We describe an error expansion method that is utilized to construct a phase-shifting algorithm that can compensate the second-order nonlinearity and non-uniformity of phase-shifts. The conditions for eliminating the effect of second-order nonlinearity and non-uniformity of phase-shifts are given as a set of linear equations for the sampling amplitudes. We developed a novel 11-sample phase-shifting algorithm that can compensate for the second-order nonlinearity and non-uniformity of phase-shifts and is robust up to a 4th harmonic. Experimental results show that the surface shape of a transparent plate could be measured with a precision of 1 nm, over the 120-mm-diameter aperture.

  14. Cadmium fixation in soils measured by isotopic dilution

    SciTech Connect

    Smolders, E.; Brans, K.; Foeldi, A.; Merckx, R.

    1999-01-01

    There is conflicting evidence on the effect of time of contact between soil and Cd on Cd availability to plants. If Cd can be fixed in soil by aging, higher soil contamination may be tolerated. Fixation of Cd by soil can be studied by adding small quantities of {sup 109}Cd to the indigenous soil Cd. The ratio of {sup 109}Cd to indigenous Cd in soil extracts or in plants gives information on the lability of Cd in soil. This isotope exchange technique was used to measure the labile and fixed Cd fractions in 10 Belgian agricultural soils (Soils A--I) with both background and elevated Cd content. The isotopically exchangeable Cd pool (E value) was measured after equilibrating {sup 109}Cd spiked soil suspensions in CaCl{sub 2} 0.01 M for 7 d. The %E values (the E value relative to aqua regia soluble Cd) ranged from 62 to 90% in the eight soils where %E values could be detected. The plant labile Cd pool, relative to aqua regia soluble Cd (%L value) was measured from the specific activities in wheat (Triticum aestivum L.) seedlings grown for 16 to 21 d on soils spiked with {sup 109}Cd. The Cd %L value varied from 55 to 109% (mean: 82%) with five soils having a significant (P < 0.05) fixed Cd fraction. Varying the soil incubation procedure after soil spiking and before plant growth marginally affected the specific activity of Cd in plants. The %L values always exceeded the respective %E value between 1.05- and 1.4-fold. It is concluded that Cd fixation, where found, is not very pronounced.

  15. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  16. Dynamic Phase Shifts in Nanoscale Distance Measurements by Double Electron Electron Resonance (DEER)†

    SciTech Connect

    Bowman, Michael K.; Maryasov, Alexander G.

    2007-04-01

    The off-resonant pump pulse used in double electron electron resonance (DEER) measurements produces dynamic phase shifts that are explained here by simple analytic and vector descriptions of the full range of signal behaviors observed during DEER measurements, including: large phase shifts in the signal; changes in the position and shape of the detected echo; and changes in the signal intensity. The dynamic phase shifts depend on the width, amplitude and offset frequency of the pump pulse. Isolated radicals as well as pairs or clusters of dipolar-coupled radicals have the same dynamic phase shift that is independent of pump pulse delay in a typical measurement. A method of calibrating both the pump pulse offset frequency and the pump pulse field strength is outlined. A vector model is presented that explains the dynamic phase shifts in terms of precessing magnetization that is either spin locked or precessing about the effective pump field during the pump pulse. Implications of the dynamic phase shifts are discussed as they relate to setting up, calibrating and interpreting the results of DEER measurements.

  17. Vibrational analysis of water adsorbed on Pd(100): sensitivity of the isotope shifts of bending modes to the bonding site. Technical report

    SciTech Connect

    Lloyd, K.G.; Banse, B.A.; Hemminger, J.C.

    1986-02-15

    A harmonic picture of the vibrations of water adsorbed on Pd(100) is presented. The shift of the water-bending mode (against the surface plane) upon deuteration is well described by this purely harmonic picture. Normal-mode calculations in which the Pd(100) substrate is described by a finite cluster of 66 atoms were used to study the sensitivity of the isotope shift of the bending-mode frequency to the bonding site. The on-top and two-fold bridge sites are consistent with experimental results whereas the four-fold hollow site is not.

  18. An efficient amplification pulse sequence for measuring chemical shift anisotropy under fast magic-angle spinning.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2011-12-01

    A two-dimensional experiment for measuring chemical shift anisotropy (CSA) under fast magic-angle spinning (MAS) is presented. The chemical shift anisotropy evolution is amplified by a sequence of π-pulses that repetitively interrupt MAS averaging. The amplification generates spinning sideband manifolds in the indirect dimension separated by the isotropic shift along the direct dimension. The basic unit of the pulse sequence is designed based on the magic-angle turning experiment and can be concatenated for larger amplification factors. PMID:21962909

  19. Phase-shift measurments for second-harmonic generation in glass

    NASA Astrophysics Data System (ADS)

    Dominic, Vincent G.; Feinberg, Jack

    1993-12-01

    Focusing intense laser light along with some of its second harmonic into a glass sample transforms the glass into a frequency doubler. We present a new method to measure the optical phase shift between the second-harmonic beam used to seed the glass and the second- harmonic beam subsequently produced by the glass sample. Determination of this phase shift is essential for understanding the growth dynamics of the effect, and its value can discriminate between proposed theoretical models.

  20. Time-resolved continuum-edge-shift measurements in laser-shocked solids

    SciTech Connect

    Bradley, D.K.; Kilkenny, J.; Rose, S.J.; Hares, J.D.

    1987-12-28

    The first measurement of the shift in position of the photoabsorption edge in a laser-heated and -shocked solid material are reported. A buried tracer layer is first radiatively heated to a few electron volts leading to the appearance of bound-bound transitions near to the K photoabsorption edge. Then as the shock runs through, the K edge shifts to lower energy ionizing the bound-bound transitions, in agreement with theory.

  1. Nitrogen deposition to lakes in national parks of the western Great Lakes region: Isotopic signatures, watershed retention, and algal shifts

    NASA Astrophysics Data System (ADS)

    Hobbs, William O.; Lafrancois, Brenda Moraska; Stottlemyer, Robert; Toczydlowski, David; Engstrom, Daniel R.; Edlund, Mark B.; Almendinger, James E.; Strock, Kristin E.; VanderMeulen, David; Elias, Joan E.; Saros, Jasmine E.

    2016-03-01

    Atmospheric deposition is a primary source of reactive nitrogen (Nr) to undisturbed watersheds of the Great Lakes region of the U.S., raising concerns over whether enhanced delivery over recent decades has affected lake ecosystems. The National Atmospheric Deposition Program (NADP) has been measuring Nr deposition in this region for over 35 years. Here we explore the relationships among NADP-measured Nr deposition, nitrogen stable isotopes (δ15N) in lake sediments, and the response of algal communities in 28 lakes situated in national parks of the western Great Lakes region of the U.S. We find that 36% of the lakes preserve a sediment δ15N record that is statistically correlated with some form of Nr deposition (total dissolved inorganic N, nitrate, or ammonium). Furthermore, measured long-term (since 1982) nitrogen biogeochemistry and inferred critical nitrogen loads suggest that watershed nitrogen retention and climate strongly affect whether sediment δ15N is related to Nr deposition in lake sediment records. Measurements of algal change over the last ~ 150 years suggest that Nr deposition, in-lake nutrient cycling, and watershed inputs are important factors affecting diatom community composition, in addition to direct climatic effects on lake physical limnology. The findings suggest that bulk sediment δ15N does reflect Nr deposition in some instances. In addition, this study highlights the interactive effects of Nr deposition and climate variability.

  2. Doppler shift and ambiguity velocity caused by relative motion in quantum-enhanced measurement.

    PubMed

    Shen, Yanghe; Xu, Luping; Zhang, Hua; Yang, Peng

    2015-07-13

    We study the effect of relative motion on a frequency-entangled-based ranging scheme. Two major puzzles arise, i.e., Doppler shift and ambiguity velocity. During condition of rapid relative motion, Doppler shift invalidates the measurement result of this scheme; while during condition of slow relative motion, the ambiguity velocity turns into a major limitation. If relative speed between targets and measurement platform exceeds the ambiguity velocity, an accumulated profile obtained by the coincidence measurement will be distorted, which causes a lower ranging accuracy. Theoretical analysis shows a time-varying delay can be introduced to solve the two major puzzles. PMID:26191903

  3. Mass measurements of neutron-rich Rb and Sr isotopes

    NASA Astrophysics Data System (ADS)

    Klawitter, R.; Bader, A.; Brodeur, M.; Chowdhury, U.; Chaudhuri, A.; Fallis, J.; Gallant, A. T.; Grossheim, A.; Kwiatkowski, A. A.; Lascar, D.; Leach, K. G.; Lennarz, A.; Macdonald, T. D.; Pearkes, J.; Seeraji, S.; Simon, M. C.; Simon, V. V.; Schultz, B. E.; Dilling, J.

    2016-04-01

    We report on the mass measurements of several neutron-rich Rb and Sr isotopes in the A ≈100 region with the TITAN Penning-trap mass spectrometer. By using highly charged ions in the charge state q =10 + , the masses of Rb,9998 and Sr-10098 have been determined with a precision of 6-12 keV, making their uncertainty negligible for r -process nucleosynthesis network calculations. The mass of 101Sr has been determined directly for the first time with a precision eight times higher than the previous indirect measurement and a deviation of 3 σ when compared to the Atomic Mass Evaluation. We also confirm the mass of 100Rb from a previous measurement. Furthermore, our data indicate the existence of a low-lying isomer with 80 keV excitation energy in 98Rb. We show that our updated mass values lead to minor changes in the r process by calculating fractional abundances in the A ≈100 region of the nuclear chart.

  4. Hydrogen-isotope motion in scandium studied by ultrasonic measurements

    SciTech Connect

    Leisure, R.G. ); Schwarz, R.B.; Migliori, A. ); Torgeson, D.R. ); Svare, I. )

    1993-07-01

    Resonant ultrasound spectroscopy has been used to investigate ultrasonic attenuation in single crystals of Sc, ScH[sub 0.25], and ScD[sub 0.18] over the temperature range of 10--300 K for frequencies near 1 MHz. Ultrasonic-attenuation peaks were observed in the samples containing H or D with the maximum attenuation occurring near 25 K for ScH[sub 0.25] and near 50 K for ScD[sub 0.18]. The general features of the data suggest that the motion reflected in the ultrasonic attenuation is closely related to the low-temperature motion seen in nulcear-magnetic-resonance spin-lattice-relaxation measurements. The ultrasonic results were fit with a two-level-system (TLS) model involving tunneling between highly asymmetric sites. The relaxation of the TLS was found to consist of two parts: a weakly temperature-dependent part, probably due to coupling to electrons; and a much more strongly temperature-dependent part, attributed to multiple-phonon processes. The strongly temperature-dependent part was almost two orders of magnitude faster in ScH[sub 0.25] than in ScD[sub 0.18], in accordance with the idea that tunneling is involved in the motion. Surprisingly, the weakly temperature-dependent part was found to be about the same for the two isotopes. The asymmetries primarily responsible for coupling the TLS to the ultrasound are attributed to interactions between hydrogen ions that lie on adjacent [ital c] axes. The results are consistent with an isotope-independent strength for the coupling of the TLS to the ultrasound.

  5. Light shift measurements in a Cesium Fountain without the use of mechanical shutters

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.; Enzer, D. G.; Klipstein, W. M.

    2005-01-01

    We present measurements confirming operation of a cesium fountain frequency standard with light shift below 10^-15 (and with evidence suggesting it is several orders of magnitude below this level) but without the use of mechanical shutters. Suppression of the light shift is realized using a master-slave laser configuration by reducing the overall optical power delivered to the physics package as well as spoiling the injection of the slave, causing it to lase far off resonance (1-2 nm) as proposed by the authors several years ago [l]. In the absence of any mitigation, this (AC Stark) shift, due to near-resonant laser light reaching the atoms during their microwave interrogation period, is the largest shift in such frequency standards (2x10^-11 for Our fountain). Mechanical shutters provided adequate light attenuation but have been prone to failure.

  6. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    NASA Astrophysics Data System (ADS)

    Walder, Brennan J.; Dey, Krishna K.; Davis, Michael C.; Baltisberger, Jay H.; Grandinetti, Philip J.

    2015-01-01

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of 2H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl2ṡ2D2O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the 2H quadrupolar coupling parameters are = 118.1 kHz and <ηq> = 0.88, and the 2H paramagnetic shift tensor anisotropy parameters are <ζP> = - 152.5 ppm and <ηP> = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by ( α , β , γ ) = ( /π 2 , /π 2 , 0 ) . Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  7. Lifetime measurement for the 21+ state in 140Sm and the onset of collectivity in neutron-deficient Sm isotopes

    NASA Astrophysics Data System (ADS)

    Bello Garrote, F. L.; Görgen, A.; Mierzejewski, J.; Mihai, C.; Delaroche, J. P.; Girod, M.; Libert, J.; Sahin, E.; Srebrny, J.; Abraham, T.; Eriksen, T. K.; Giacoppo, F.; Hagen, T. W.; Kisielinski, M.; Klintefjord, M.; Komorowska, M.; Kowalczyk, M.; Larsen, A. C.; Marchlewski, T.; Mitu, I. O.; Pascu, S.; Siem, S.; Stolarz, A.; Tornyi, T. G.

    2015-08-01

    Background: The chain of Sm isotopes exhibits a wide range of nuclear shapes and collective behavior. While the onset of deformation for N >82 has been well studied both experimentally and theoretically, fundamental data is lacking for some Sm isotopes with N <82 . Purpose: Electromagnetic transition rates represent a sensitive test of theoretical nuclear structure models. Lifetime measurements are furthermore complementary to Coulomb excitation experiments, and the two methods together can give access to spectroscopic quadrupole moments. Method: The lifetime of the 21+ state in 140Sm was measured with the recoil-distance Doppler shift technique using the reaction 124Te(20Ne,4 n )140Sm at 82 MeV. Theoretical calculations were performed based on a mapped collective Hamiltonian in five quadrupole coordinates (5DCH) and the Gogny D1S interaction. Results: The lifetime of the 21+ state in 140Sm was found to be 9.1(6) ps, corresponding to a B (E 2 ;21+→01+) value of 51(4) Weisskopf units. The theoretical calculations are in very good agreement with the experimental result. Conclusions: The B (E 2 ;21+→01+) value for 140Sm fits smoothly into the systematic trend for the chain of Sm isotopes. The new beyond-mean field calculations are able to correctly describe the onset of collectivity in the Sm isotopes below the N =82 shell closure for the first time.

  8. Deformation and 3D-shape measurement system based on phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Lai, Songcan; Kolenovic, Ervin; Osten, Wolfgang; Jueptner, Werner P. O.

    2002-05-01

    This paper presents an endoscopic digital holographic interferometry system which is based on phase-shifting in-line digital holography. The system is able to measure both the shape and deformation of an object with the advantages of digital holography, such as real-time processing of the hologram. Two theoretical problems are briefly described: phase-shifting in- line holography and hologram data re-sampling for 2-wavelength contouring. In addition, initial experimental results of the deformation of a metal piece and surface 3D-shape measurement of a bottle cap are given.

  9. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter

    SciTech Connect

    Engels, Ralf Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp; Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat; Schieck, Hans Paetz gen.

    2014-10-15

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H{sub 2}{sup +} (or D{sub 2}{sup +}) ions into the Lamb-shift polarimeter.

  10. Response shifts in mental health interventions: an illustration of longitudinal measurement invariance.

    PubMed

    Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Cuijpers, Pim

    2013-06-01

    The efficacy of treatments for depression is often measured by comparing observed total scores on self-report inventories, in both clinical practice and research. However, the occurrence of response shifts (changes in subjects' values, or their standards for measurement) may limit the validity of such comparisons. As most psychological treatments for depression are aimed at changing patients' values and frame of reference, response shifts are likely to occur over the course of such treatments. In this article, we tested whether response shifts occurred over the course of treatment in an influential randomized clinical trial. Using confirmatory factor analysis, measurement models underlying item scores on the Beck Depression Inventory (Beck & Beamesderfer, 1974) of the National Institute of Mental Health Treatment of Depression Collaborative Research Program (Elkin, Parloff, Hadley, & Autry, 1985) were analyzed. Compared with before treatment, after-treatment item scores appeared to overestimate depressive symptomatology, measurement errors were smaller, and correlations between constructs were stronger. These findings indicate a response shift, in the sense that participants seem to get better at assessing their level of depressive symptomatology. Comparing measurement models of patients receiving psychotherapy and medication suggested that the aforementioned effects were more apparent in the psychotherapy groups. Consequently, comparisons of observed total scores on self-report inventories may yield confounded measures of treatment efficacy. PMID:23339313

  11. Scale-dependent linkages between nitrate isotopes and denitrification in surface soils: implications for isotope measurements and models.

    PubMed

    Hall, Steven J; Weintraub, Samantha R; Bowling, David R

    2016-08-01

    Natural abundance nitrate (NO3 (-)) isotopes represent a powerful tool for assessing denitrification, yet the scale and context dependence of relationships between isotopes and denitrification have received little attention, especially in surface soils. We measured the NO3 (-) isotope compositions in soil extractions and lysimeter water from a semi-arid meadow and lawn during snowmelt, along with the denitrification potential, bulk O2, and a proxy for anaerobic microsites. Denitrification potential varied by three orders of magnitude and the slope of δ(18)O/δ(15)N in soil-extracted NO3 (-) from all samples measured 1.04 ± 0.12 (R (2) = 0.64, p < 0.0001), consistent with fractionation from denitrification. However, δ(15)N of extracted NO3 (-) was often lower than bulk soil δ(15)N (by up to 24 ‰), indicative of fractionation during nitrification that was partially overprinted by denitrification. Mean NO3 (-) isotopes in lysimeter water differed from soil extractions by up to 19 ‰ in δ(18)O and 12 ‰ in δ(15)N, indicating distinct biogeochemical processing in relatively mobile water versus soil microsites. This implies that NO3 (-) isotopes in streams, which are predominantly fed by mobile water, do not fully reflect terrestrial soil N cycling. Relationships between potential denitrification and δ(15)N of extracted NO3 (-) showed a strong threshold effect culminating in a null relationship at high denitrification rates. Our observations of (1) competing fractionation from nitrification and denitrification in redox-heterogeneous surface soils, (2) large NO3 (-) isotopic differences between relatively immobile and mobile water pools, (3) and the spatial dependence of δ(18)O/δ(15)N relationships suggest caution in using NO3 (-) isotopes to infer site or watershed-scale patterns in denitrification. PMID:27102809

  12. ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING

    SciTech Connect

    Nixon, C. A.; Achterberg, R. K.; Temelso, B.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G. J.; Jennings, D. E.; Romani, P. N.; Flasar, F. M.

    2012-04-20

    The existence of methane in Titan's atmosphere ({approx}6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of {approx}20 Myr. In this paper, we examine the clues available from isotopic ratios ({sup 12}C/{sup 13}C and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH{sub 4} collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: {sup 13}CH{sub 4}, {sup 12}CH{sub 3}D, and {sup 13}CH{sub 3}D. From these we compute estimates of {sup 12}C/{sup 13}C = 86.5 {+-} 8.2 and D/H = (1.59 {+-} 0.33) Multiplication-Sign 10{sup -4}, in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH{sub 4} + C{sub 2}H {yields} CH{sub 3} + C{sub 2}H{sub 2}. Using these new measurements and predictions we proceed to model the time evolution of {sup 12}C/{sup 13}C and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH{sub 4}), we find that the present-day {sup 12}C/{sup 13}C implies that the CH{sub 4} entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric

  13. Isotopic Ratios in Titan's Methane: Measurements and Modeling

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Temelso, B.; Vinatier, S.; Teanby, N. A.; Bezard, B.; Achterberg, R. K.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G.; Jennings, D. E.; Romani, P. N.; Coustenis, A.; Flasar, F. M.

    2012-01-01

    The existence of methane in Titan's atmosphere (approx. 6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of approx 20 Myr. In this paper, we examine the clues available from isotopic ratios (C-12/C-13 and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH4 collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: (13)CH4, (12)CH3D, and (13)CH3D. From these we compute estimates of C-12/C-13 = 86.5 +/- 8.2 and D/H = (1.59 +/- 0.33) x 10(exp -4) , in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH4 + C2H yields CH3 + C2H2. Using these new measurements and predictions we proceed to model the time evolution of C-12/C-13 and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH4), we find that the present-day C-12/C-13 implies that the CH4 entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing, We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.

  14. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    PubMed

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction. PMID:25537104

  15. Constraining the orbits of small solar system bodies using spectroscopic Doppler shift measurements - a preliminary study

    NASA Astrophysics Data System (ADS)

    Zucker, S.; Tzur, I.

    2015-09-01

    In this short paper we examine whether the measurement of Doppler shifts in the solar light reflected off an asteroid surface may improve the accuracy of the determined orbit. Our results suggest it will be worthwhile to use high-resolution spectrographs, of the exoplanet-hunting type, to measure those Doppler shifts. Spectroscopic Doppler shifts might improve the accuracy of Earth-impact predictions, help to recover ``lost'' near-Earth objects, and may also significantly enhance the knowledge about dynamics of the Kuiper belt. Future high-resolution spectrographs on the VLT and the E-ELT may thus have an important role in studies of Solar-System dynamics and kinematics.

  16. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Casado, Mathieu; Landais, Amaelle; Masson-Delmotte, Valérie; Genthon, Christophe; Kerstel, Erik; Kassi, Samir; Arnaud, Laurent; Picard, Ghislain; Prie, Frederic; Cattani, Olivier; Steen-Larsen, Hans-Christian; Vignon, Etienne; Cermak, Peter

    2016-07-01

    Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014-January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying a unique origin leading

  17. The time-shift technique for measurement size of non-transparent spherical particles

    NASA Astrophysics Data System (ADS)

    Schäfer, Walter; Tropea, Cameron

    2014-08-01

    In this study we introduce the time-shift technique, also known as the pulsed-displacement technique, as a means of measuring size and velocity of spherical particles. The measurement technique is not new, it has been introduced by Semidetnov[1] in 1985 and more generally discussed by Hess and Wood[2], Lin et al[3], Damaschke et al.[4] and Albrecht et al[5]. The novelty introduced in this study is the application of the technique to measure non-transparent particles, which are quite common for example in spray drying processes or in paint sprays. In this contribution the basic working principle of the time-shift technique will be reviewed and an optical configuration suitable for the measurement of non-transparent droplets will be presented. The signal generation and processing will be discussed. Example measurements in a milk spray are presented.

  18. Natural isotope correction of MS/MS measurements for metabolomics and (13) C fluxomics.

    PubMed

    Niedenführ, Sebastian; Ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13) C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full useof LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13) C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. Biotechnol. Bioeng. 2016;113: 1137-1147. © 2015 Wiley Periodicals, Inc. PMID:26479486

  19. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    NASA Astrophysics Data System (ADS)

    Borysiuk, Maciek; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: 16O, 17O and 18O. We procured samples highly enriched with all three isotopes. Isotopes 16O and 18O were easily detected in the enriched samples, but no significant signal from 17O was detected in the same samples. The measured yield was too low to detect 18O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with 16O was clearly visible.

  20. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    PubMed

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability. PMID:26332982

  1. ac Stark shift measurements of the clock transition in cold Cs atoms: Scalar and tensor light shifts of the D2 transition

    NASA Astrophysics Data System (ADS)

    Costanzo, G. A.; Micalizio, S.; Godone, A.; Camparo, J. C.; Levi, F.

    2016-06-01

    The ac Stark shift, or light shift, is a physical phenomenon that plays a fundamental role in many applications ranging from basic atomic physics to applied quantum electronics. Here, we discuss experiments testing light-shift theory in a cold-atom cesium fountain clock for the Cs D2 transition (i.e., 6 2S1 /2→6 2P3 /2 at 852 nm). Cold-atom fountains represent a nearly ideal system for the study of light shifts: (1) The atoms can be perturbed by a field of arbitrary character (e.g., coherent field or nonclassical field); (2) there are no trapping fields to complicate data interpretation; (3) the probed atoms are essentially motionless in their center-of-mass reference frame, T ˜ 1 μK; and (4) the atoms are in an essentially collisionless environment. Moreover, in the present work the resolution of the Cs excited-state hyperfine splittings implies that the D2 ac Stark shift contains a nonzero tensor polarizability contribution, which does not appear in vapor phase experiments due to Doppler broadening. Here, we test the linearity of the ac Stark shift with field intensity, and measure the light shift as a function of field frequency, generating a "light-shift curve." We have improved on the previous best test of theory by a factor of 2, and after subtracting the theoretical scalar light shift from the experimental light-shift curves, we have isolated and tested the tensor light shift for an alkali D2 transition.

  2. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater.

    PubMed

    Thompson, Claire M; Ellwood, Michael J; Wille, Martin

    2013-05-01

    Stable copper (Cu) isotope geochemistry provides a new perspective for investigating and understanding Cu speciation and biogeochemical Cu cycling in seawater. In this work, sample preparation for isotopic analysis employed solvent-extraction with amino pyrollidine dithiocarbamate/diethyl dithiocarbamate (APDC/DDC), coupled with a nitric acid back-extraction, to concentrate Cu from seawater. This was followed by Cu-purification using anion-exchange. This straightforward technique is high yielding and fractionation free for Cu and allows precise measurement of the seawater Cu isotopic composition using multi-collector inductively coupled plasma mass-spectrometry. A deep-sea profile measured in the oligotrophic north Tasman Sea shows fractionation in the Cu isotopic signature in the photic zone but is relatively homogenised at depth. A minima in the Cu isotopic profile correlates with the chlorophyll a maximum at the site. These results indicate that a range of processes are likely to fractionate stable Cu isotopes in seawater. PMID:23601981

  3. Heavy atom labeled nucleotides for measurement of kinetic isotope effects.

    PubMed

    Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A

    2015-11-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. PMID:25828952

  4. SERTS-95 Measurements of Wavelength Shifts in Coronal Emission Lines Across a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffery W.; Thomas, Roger; Davila, Joseph

    1999-01-01

    We used slit spectra from the 1995 flight of Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS-95) to measure wavelength shifts of coronal emission lines in the core of NOAA active region 7870 relative to its immediate surroundings (its "edge"). This method circumvents the unavailability of reliable laboratory rest wavelengths for the observed lines by using wavelengths from the edge spectrum as references. We derived the, SERTS-95 wavelength calibration from measurements of a post-flight laboratory spectrum containing 28 He II and Ne II EUV standard wavelengths known to high accuracy. Wavelength measurements for lines of He I, Ne III, and additional lines of Ne II in the laboratory calibration spectrum provide more accurate values than were previously available, enabling these lines also to serve as future calibration standards. Six solar lines were chosen for this study, namely, He II at 303.78 A, Fe XII at 193.51 A, Fe XIII at 202.05 A, Fe XIV at 211.33 A, Fe XV at 284.15 A, and Fe XVI at 335.41 A. Because these lines are free from known blends in the SERTS-95 spectra and are either intrinsically strong or near the SERTS-95 peak sensitivity, they are our most reliable lines for measuring relative wavelength shifts in the spatially resolved active region core spectra. The iron ions are the hottest ions ever used for this type of analysis. All six lines reveal statistically significant spatial variations in their measured relative wavelength shifts in the active region core, including mixtures of blueshifts and redshifts (each with maximum values corresponding to relative Doppler velocities approximately 15 km/s), indicating a dynamic, turbulent corona. For each of these lines we calculated weighted-average relative Doppler velocities from the wavelength shifts in the spatially resolved core spectra by weighting the shifts in the individual spatial pixels with their respective measurement uncertainties.

  5. 30 CFR 72.800 - Single, full-shift measurement of respirable coal mine dust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mine dust. 72.800 Section 72.800 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.800 Single, full-shift measurement of respirable coal mine dust. The Secretary will use a single,...

  6. Transient-Evoked Otoacoustic Emissions as a Measure of Noise-Induced Threshold Shift.

    ERIC Educational Resources Information Center

    Marshall, Lynne; Heller, Laurie M.

    1998-01-01

    Otoacoustic emissions and behavioral hearing thresholds were measured in 14 participants before and after exposure to a 10-minute 105-dB SPL, half-octave band of noise centered at 1.414kHz. Results showed that the maximum temporary emissions shifts were half to one octave above the exposed frequency. Other findings are discussed. (Author/CR)

  7. Ocular Measures of Sleepiness Are Increased in Night Shift Workers Undergoing a Simulated Night Shift Near the Peak Time of the 6-Sulfatoxymelatonin Rhythm

    PubMed Central

    Ftouni, Suzanne; Sletten, Tracey L.; Nicholas, Christian L.; Kennaway, David J.; Lockley, Steven W.; Rajaratnam, Shantha M.W.

    2015-01-01

    Study Objectives: The study examined the relationship between the circadian rhythm of 6-sulphatoxymelatonin (aMT6s) and ocular measures of sleepiness and neurobehavioral performance in shift workers undergoing a simulated night shift. Methods: Twenty-two shift workers (mean age 33.4, SD 11.8 years) were tested at approximately the beginning (20:00) and the end (05:55) of a simulated night shift in the laboratory. At the time point corresponding to the end of the simulated shift, 14 participants were classified as being within range of 6-sulphatoxymelatonin (aMT6s) acrophase— defined as 3 hours before or after aMT6s peak—and 8 were classified as outside aMT6s acrophase range. Participants completed the Karolinska Sleepiness Scale (KSS) and the auditory psychomotor vigilance task (aPVT). Waking electroencephalography (EEG) was recorded and infrared reflectance oculography was used to collect ocular measures of sleepiness: positive and negative amplitude/velocity ratio (PosAVR, NegAVR), mean blink total duration (BTD), the percentage of eye closure (%TEC), and a composite score of sleepiness levels (Johns Drowsiness Scale; JDS). Results: Participants who were tested within aMT6s acrophase range displayed higher levels of sleepiness on ocular measures (%TEC, BTD, PosAVR, JDS), objective sleepiness (EEG delta power frequency band), subjective ratings of sleepiness, and neurobehavioral performance, compared to those who were outside aMT6s acrophase range. Conclusions: The study demonstrated that objective ocular measures of sleepiness are sensitive to circadian rhythm misalignment in shift workers. Citation: Ftouni S, Sletten TL, Nicholas CL, Kennaway DJ, Lockley SW, Rajaratnam SM. Ocular measures of sleepiness are increased in night shift workers undergoing a simulated night shift near the peak time of the 6-sulfatoxymelatonin rhythm. J Clin Sleep Med 2015;11(10):1131–1141. PMID:26094925

  8. High Temporal Resolution Measurements and Modeling of the Isotopic Composition of Methane in Europe

    NASA Astrophysics Data System (ADS)

    Popa, E.; Röckmann, T.; Eyer, S.; van der Veen, C.; Tuzson, B.; Monteil, G.; Houweling, S.; Harris, E. J.; Brunner, D.; Fischer, H.; Fisher, R. E.; Lowry, D.; Nisbet, E. G.; Emmenegger, L.; Mohn, J.

    2015-12-01

    Isotope measurements can help constraining the atmospheric budget of methane because different sources emit methane with slightly different isotopic composition. In the past, high precision isotope measurements have primarily been carried out by isotope ratio mass spectrometry on flask samples that are usually collected at relatively low temporal resolution. During the EU project INGOS, we have deployed a fully automated gas chromatography - isotope ratio mass spectrometry system (GC-IRMS), together with two laser instruments, during a 4-months campaign in the field at the Cabauw Experimental Site for Atmospheric Research (CESAR). More than 1600 measurements for δ13C and δD were obtained with IRMS during this period. Measurements show clear isotope signals associated with methane elevations both on the diurnal as well as the synoptic scale. In order to assess the added value of such measurements for constraining the CH4 budget, we performed coupled simulations of CH4 and δ13C-CH4 using the chemistry transport model TM5. We specifically assessed the relative impact of uncertainties in i) CH4 emissions, ii) CH4 isotope source signatures and iii) methane transport and chemistry throughout the atmosphere. By randomly perturbing CH4 emissions and δ13C source signatures, we identified areas where simulated variations are dominated by uncertainties in the emission strength and areas where uncertainties in the isotope signatures dominate. At observation sites where the uncertainties in CH4 emissions dominate the other sources of uncertainty, isotope observations should provide useful additional constraints on CH4 emissions. At locations where uncertainties in the isotope signatures dominate, the isotope measurements will be useful to better constrain the source signatures themselves.

  9. Hydrological and Vegetation Shifts in the Equatorial Sulawesi since the Last Glacial Maximum: Perspectives from Hydrogen and Carbon Isotopes of Terrestrial Leaf Wax Compounds

    NASA Astrophysics Data System (ADS)

    Wicaksono, Satrio; Russell, James; Holbourn, Ann; Kuhnt, Wolfgang

    2014-05-01

    The Indo-Pacific Warm Pool (IPWP) is a major epicenter of the tropical convective activity that drives both the Walker and Hadley circulations. The island of Sulawesi is situated at the heart of the Maritime Continent within the IPWP, and despite the region's importance, published proxy records and numerical simulations of convection and precipitation patterns from Sulawesi and across the Maritime Continent since the Last Glacial Maximum (LGM) display some substantial disagreement. Today, precipitation over Sulawesi is strongly influenced by variations in topography and wind pattern, which include land-sea breezes, orographically-forced winds, and monsoonal winds related to the seasonal migration of the Intertropical Convergence Zone. To better understand the interplay between such variations and high latitude climate dynamics during the last deglaciation, we developed high resolution records of the deuterium isotopic composition of terrestrial leaf waxes (long-chain n-alkanoic acids; δDwax) from a marine core (3.63 ºS, 119.36 ºE, water depth: 688 m) retrieved 10 km west of Sulawesi in close proximity to a major river delta. At low latitudes, δDwax has been used to reconstruct the δD of catchment-integrated precipitation, often interpreted as an indicator of regional rainfall amounts and large-scale convective activity. Our record displays relatively depleted values during the height of LGM, followed by a gradual enrichment that reached its peak (up to 10o enrichment) during the Younger Dryas (YD). Following the YD, δDwax becomes more depleted into the Holocene, reaching values nearly identical to the LGM. The deglacial pattern observed in our δDwax, derived from a predominantly high-altitude catchment in the southwestern arm of Sulawesi, is similar to that of δDwax record from Lake Towuti (2.5 ºS, 121.5 ºE, surface elevation: 319 m) in the southeastern arm of Sulawesi. The synoptic deglacial shifts seen in both catchments demonstrate that the equatorial

  10. Carbon isotopic shift and its cause at the Wuchiapingian-Changhsingian boundary in the Upper Permian at the Zhaojiaba section, South China: Evidences from multiple geochemical proxies

    NASA Astrophysics Data System (ADS)

    Wei, Hengye; Yu, Hao; Wang, Jianguo; Qiu, Zhen; Xiang, Lei; Shi, Guo

    2015-06-01

    The Late Permian environmental change, connecting the Guadalupian-Lopingian (G-L) (Middle-Upper Permian) boundary mass extinction and the Permain-Triassic (P-Tr) boundary mass extinction, has attracted more and more attentions. A significant negative shift for carbon isotope had been found at the Wuchiapingian-Changhsingian (W-C) boundary in the Upper Permian recently. However, the cause(s) of this negative excursion is still unknown. To resolve this problem, we analyzed the bulk organic carbon isotope, total organic carbon (TOC) content, pyritic sulfur (Spy) content, major element concentrations, and molecular organic biomarkers in the Wujiaping and Dalong formations in the Upper Permian from the Zhaojiaba section in western Hubei province, South China. Our results show that (1) there was a significant negative excursion in organic carbon isotopes at the W-C boundary and again a negative excursion at the top of Changhsingian stage; (2) the significant negative excursion at the W-C boundary was probably a global signal and mainly caused by the low primary productivity; and (3) the negative carbon isotope excursion at the top of Changhsingian was probably caused by the Siberian Traps eruptions. A decline in oceanic primary productivity at the W-C boundary probably represents a disturbance of the marine food web, leading to a vulnerable ecosystem prior to the P-Tr boundary mass extinction.

  11. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  12. Measurement of focal length using phase shifted moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Trivedi, Satyaprakash; Dhanotia, Jitendra; Prakash, Shashi

    2013-06-01

    In present communication, a simple technique for determining the focal length using moiré deflectometry has been proposed. Necessary mathematical premise expressing the focal length of lens in terms of defocusing distance and the slope of wavefront phase has been deduced. Using a four-step phase shifting technique the testing procedure for determining the focal length has been demonstrated. Uncertainty in measurement has been estimated. Good co-relation between the measured value and the standard value has been obtained.

  13. Anomalous superconducting state in LiFeAs implied by the 75As Knight shift measurement

    NASA Astrophysics Data System (ADS)

    Baek, S.-H.; Harnagea, L.; Wurmehl, S.; Büchner, B.; Grafe, H.-J.

    2013-04-01

    75As NMR investigation of a single crystal of superconducting LiFeAs is presented. The Knight shift and the in situ ac susceptibility measurements as a function of temperature and external field are indicative of two superconducting (SC) transition temperatures, each of which is associated with its own upper critical field. Strikingly, the Knight shift maintains its normal state value over a temperature range in the SC state before it drops abruptly, being consistent with spin-singlet pairing. Together with our previous NMR study, the anomalous SC state featuring the constant Knight shift is attributed to the extremely sensitive SC properties of LiFeAs, probably stemming from its proximity to a critical instability.

  14. A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values

    NASA Astrophysics Data System (ADS)

    Alderman, D. W.

    1998-12-01

    A sensitive, high-resolution 'FIREMAT' two-dimensional (2D) magic-angle-turning experiment is described that measures chemical shift tensor principal values in powdered solids. The spectra display spinning-sideband patterns separated by their isotropic shifts. The new method's sensitivity and high resolution in the isotropic-shift dimension result from combining the 5pi magic-angle-turning pulse sequence, an extension of the pseudo-2D sideband-suppression data rearrangement, and the TIGER protocol for processing 2D data. TPPM decoupling is used to enhance resolution. The method requires precise synchronization of the pulses and sampling to the rotor position. It is shown that the technique obtains 35 natural-abundance 13C tensors from erythromycin in 19 hours, and high quality naturalabundance 15N tensors from eight sites in potassium penicillin V in three days on a 400MHz spectrometer.

  15. Derivative of the light frequency shift as a measure of spacetime curvature for gravitational wave detection

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2015-04-01

    The measurement of frequency shifts for light beams exchanged between two test masses nearly in free fall is at the heart of gravitational-wave detection. It is envisaged that the derivative of the frequency shift is in fact limited by differential forces acting on those test masses. We calculate the derivative of the frequency shift with a fully covariant, gauge-independent and coordinate-free method. This method is general and does not require a congruence of nearby beams' null geodesics as done in previous work. We show that the derivative of the parallel transport is the only means by which gravitational effects shows up in the frequency shift. This contribution is given as an integral of the Riemann tensor—the only physical observable of curvature—along the beam's geodesic. The remaining contributions are the difference of velocities, the difference of nongravitational forces, and finally fictitious forces, either locally at the test masses or nonlocally integrated along the beam's geodesic. As an application relevant to gravitational-wave detection, we work out the frequency shift in the local Lorentz frame of nearby geodesics.

  16. Measurement of a wavelength of light for which the energy shift for an atom vanishes.

    PubMed

    Holmgren, William F; Trubko, Raisa; Hromada, Ivan; Cronin, Alexander D

    2012-12-14

    Light at a magic-zero wavelength causes a zero energy shift for an atom. We measured the longest magic-zero wavelength for ground state potassium atoms to be λ(zero)=768.9712(15) nm, and we show how this measurement provides an improved experimental benchmark for atomic structure calculations. This λ(zero) measurement determines the ratio of the potassium atom D1 and D2 line strengths with record precision. It also demonstrates a new application for atom interferometry, and we discuss how decoherence will fundamentally limit future measurements of magic-zero wavelengths. PMID:23368315

  17. Direct Measurement of Biosphere-Atmosphere Isotopic Exchange Using the Eddy Covariance Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying isotopic CO2 exchange between the biosphere and atmosphere presents a significant measurement challenge, but has the potential to provide important constraints on local, regional, and global carbon cycling. Past approaches have indirectly estimated isotopic CO2 exchange using relaxed edd...

  18. Nitrogen isotopic evidence for a shift from nitrate- to diazotroph-fueled export production in VAHINE mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Knapp, A. N.; Fawcett, S. E.; Martínez-Garcia, A.; Leblond, N.; Moutin, T.; Bonnet, S.

    2015-12-01

    In a shallow, coastal lagoon off the southwest coast of New Caledonia, large-volume (~ 50 m3) mesocosm experiments were undertaken to track the fate of newly fixed nitrogen (N). The mesocosms were intentionally fertilized with 0.8 μM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. N isotopic evidence indicates that the dominant source of N fueling export production shifted from subsurface nitrate (NO3-) assimilated prior to the start of the 23 day experiments to N2 fixation by the end of the experiments. While the δ15N of the sinking particulate N (PNsink) flux changed during the experiments, the δ15N of the suspended PN (PNsusp) and dissolved organic N (DON) pools did not. This is consistent with previous observations that the δ15N of surface ocean N pools is less responsive than that of PNsink to changes in the dominant source of new N to surface waters. In spite of the absence of detectable NO3- in the mesocosms, the δ15N of PNsink indicated that NO3- continued to fuel a significant fraction of export production (20 to 60 %) throughout the 23 day experiments, with N2 fixation dominating export after about two weeks. The low rates of primary productivity and export production during the first 14 days were primarily supported by NO3-, and phytoplankton abundance data suggest that export was driven by large diatoms sinking out of surface waters. Concurrent molecular and taxonomic studies indicate that the diazotroph community was dominated by diatom-diazotroph assemblages (DDAs) at this time. However, these DDAs represented a minor fraction (< 5 %) of the total diatom community and contributed very little new N via N2 fixation; they were thus not important for driving export production, either directly or indirectly. The unicellular cyanobacterial diazotroph, a Cyanothece-like UCYN-C, proliferated during the last phase of the experiments when N2 fixation, primary production, and the flux of PNsink increased significantly, and δ15N budgets

  19. Measuring D(d,p)T fusion reactant energy spectra with Doppler shifted fusion products

    SciTech Connect

    Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Donovan, D. C.; Piefer, G. R.

    2010-06-15

    Deuterium fusion reactant energy spectra have been measured using a diagnostic that records the Doppler shift imparted to charged particle fusion products of the D(d,p)T reaction by the center-of-mass velocity of the deuterium reactants. This diagnostic, known as the fusion ion Doppler shift diagnostic (FIDO) measures fast deuterium energy spectra in the inertial electrostatic confinement (IEC) experiment at the University of Wisconsin-Madison {l_brace}Santarius et al. [Fusion Sci. Technol. 47, 1238 (2005)]{r_brace}, a device to confine high energy light ions in a spherically symmetric, electrostatic potential well. This article details the first measurements of the fusion reactant energy spectra in an IEC device as well as the design and principles of operation of the FIDO diagnostic. Scaling of reactant energy spectra with a variety of experimental parameters have been explored.

  20. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    SciTech Connect

    Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J.; Dey, Krishna K.; Baltisberger, Jay H.

    2015-01-07

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  1. Sheath Effects on Electron Density Measurements in Frequency Shift Probe and their Application to Electron Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Nakamura, Keiji; Zhang, Qi; Sugai, Hideo

    2009-10-01

    Technologies of plasma monitoring are important for accurate plasma control. We have developed a frequency shift probe, and the probe enables us to measure an electron density from variation of resonance frequency of the probe head similarly to the hairpin probe. A plane structure of the probe head make it possible to minimizes disturbance to the processing plasma, and the probe is applicable to a reactive polymer-deposition plasmas since the polymer has no significant effects on the resonance frequency. The electron density is usually obtained from a plasma-induced shift of the probe resonance frequency, however influences of a sheath around the probe should been considered for more precise density measurements. In this work, sheath effects on the frequency shift probe were investigated, and the frequency shift probe was applied to measure a electron temperature using the sheath effects. As the sheath thickness increased, the resonance frequency decreased, and the sheath effect is enhanced depending on probe structure. Since the sheath width is proportional to Debye length, the probe resonance frequency depends on electron density and electron temperature, suggesting that resonance frequencies obtained in two probes having different sheath dependence gives an unique solution of the density and temperature of electrons.

  2. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  3. High-accuracy time- and space-resolved Stark shift measurements

    SciTech Connect

    Bailey, J.E.; Adams, R.; Carlson, A.L.; Ching, C.H.; Filuk, A.B.; Lake, P.

    1996-07-01

    Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shift and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.

  4. Trustworthiness of measurement devices in round-robin differential-phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-02-01

    Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) has been proposed to raise the noise tolerability of the channel. However, in practice, the measurement device in RRDPS QKD may be imperfect. Here, we show that, with these imperfections, the security of RRDPS may be damaged by proposing two attacks for RRDPS systems with uncharacterized measurement devices. One is valid even for a system with unit total efficiency, while the other is valid even when a single-photon state is sent. To prevent these attacks, either security arguments need to be fundamentally revised or further practical assumptions on the measurement device should be put.

  5. Direct Measurement of Biosphere-Atmosphere Isotopic CO2 Exchange using the Eddy Covariance Technique

    NASA Astrophysics Data System (ADS)

    Griffis, T.; Sargent, S.; Tanner, B.; Greene, J.; Swiatek, E.; Baker, J.; Lee, X.

    2006-12-01

    Quantifying isotopic CO2 exchange between the biosphere and atmosphere presents a significant measurement challenge, but has the potential to provide important constraints on local, regional, and global carbon cycling. Such measurements are rare because of the difficulties quantifying CO2 isotope ratios or individual isotopomer mixing ratios at the precision and frequency required for continuous scalar flux estimation. This limitation has slowed the understanding of key isotope discrimination mechanisms and carbon cycle processes. Past approaches have indirectly estimated isotopic CO2 exchange using relaxed eddy accumulation, the flask-based isoflux method, and flux-gradient techniques. Eddy covariance is an attractive method because it has the fewest theoretical assumptions and the potential to give a direct measurement of isotopic CO2 exchange, but requires a highly sensitive and relatively fast-response instrument. To date, no such field measurements have been reported. Here, we describe the use of a closed- path tunable diode laser absorption spectroscopy system (Trace Gas Analyzer, TGA100A, Campbell Scientific Inc.) and a sampling manifold optimized for eddy covariance isotopic (C16O2, 13CO2, C18O16O) flux measurements. The sampling system was designed to preserve frequency response, to avoid excessive consumption of expensive calibration gases and, more importantly, to avoid bias between the air sample and three calibration gas measurements. Results are presented from an intensive field experiment conducted at the University of Minnesota from July 18 to September 18, 2006. The field experiment was designed to evaluate: 1) the feasibility of making continuous isotopic flux measurement over extended periods of time; 2) differences in isotopic composition of ecosystem respiration and net ecosystem CO2 exchange using the Keeling plot, flux-gradient, and eddy covariance methods, and 3) the potential for isotopic flux partitioning of net ecosystem CO2 exchange.

  6. High-speed measurement of an air transect's temperature shift heated by laser beam

    NASA Astrophysics Data System (ADS)

    Li, WenYu; Jiang, ZongFu; Xi, Fengjie; Li, Qiang; Xie, Wenke

    2005-02-01

    Laser beam heat the air on the optic path, Beam-deflection optical tomography is a non-intrusive method to measure the 2-dimension temperature distribution in the transect. By means of linear Hartmann Sensor at the rate of 27kHz, the optic path was heated by a 2.7μm HF laser, continuous and high time resolution gradients of optic phase were obtained. the result of analysing and calculation showed the temperament shift in the heated beam path was not higher than 50K when the HF laser power was 9W. The experiment showed that it is a practical non-intrusive temperature shift measurement method for a small area aero-optical medium.

  7. CD-SEM image-distortion measured by view-shift method

    NASA Astrophysics Data System (ADS)

    Inoue, Osamu; Kawasaki, Takahiro; Matsui, Miyako; Kawada, Hiroki

    2011-03-01

    As the design rule for semiconductor device shrinks, metrology for the critical dimension scanning electron microscope (CD-SEM) is not only for measuring the dimension but also the shape, such as 2D contour of hot-spot pattern and OPC calibration-pattern. Accuracy of the shape metrology is dependent on distortion of CD-SEM image. The distortion of magnification in horizontal direction (i.e. x-direction) can be measured by pitch-calibration method, that measures pitch of identical vertical line patterns while view-shifting the identical pitch in x-direction. However, the number of measurement point could not be sufficient because this method requires long measurement time. Not only the horizontal magnification but also vertical magnification (i.e. y-direction) and shear deformation (i.e. distortion of shape) are necessary to keep highly accurate measurement. In this paper we introduce the view-shift method for quick and accurate measurement of the image-distortion. From using this method, both local distortion of magnification and shape can be measured in horizontal and vertical directions at once. Firstly, two SEM-images of evaluation sample are taken. The sample should have a lot of unique features, e.g. Textured-Silicon. View-shift about one ninth of the image size should be done by two images, and There are a lot of unique features in overlapped region between two images. As distribution of the unique features, displacement between two images indicates the local image-distortion. The dislocation of sample contour from distortion is estimated from the local-distortion. The image-dislocation on a tool evaluated in this paper is less than 0.5 nm. It is a tolerated size for current device process. However, it could be increased under the noisy external environment.

  8. Is health, measured by work ability index, affected by 12-hour rotating shift schedules?

    PubMed

    Yong, Mei; Nasterlack, Michael; Pluto, Rolf-Peter; Elmerich, Kathrin; Karl, Dorothee; Knauth, Peter

    2010-07-01

    of these shift schedules compared to day work, to the extent that health can be measured by the WAI. PMID:20636221

  9. Historic Carbon Isotopic Shifts in Pinyon Pines and Woodland Junipers are Unprecedented During the Quaternary History of These Taxa

    NASA Astrophysics Data System (ADS)

    van de Water, P. K.; Leavitt, S. W.; Betancourt, J. L.

    2003-12-01

    Packrat (Neotoma) midden macrofossil records from arid and semiarid western North America provide evidence that pinyon pines and woodland junipers have grown together for at least the past 50,000 radiocarbon years. The midden records show that this association was sustained despite large-scale changes in climate and atmospheric CO2 concentrations over the past 50 millenia. Reconstruction of physiological parameters, using 13C analysis of a select sample of pinyon pine and juniper macrofossils from radiocarbon-dated ancient packrat middens, shows distinct physical responses to these changes despite a offset between the carbon isotopic values of the two genera, with pinyon pines having consistently lower 13C values than junipers. Remarkably, analysis of historic (from herbarium sheets) and present-day (from field collections) materials from northern Arizona and the Four-Corners region indicates that the long-term offset between the carbon isotopic values of pinyon pines and woodland junipers has inverted; with the junipers now providing isotopically lighter values than the pinyon pines. This reversal began in the late 1800's to early 1900's and has widened over the past century. The inverted isotopic offsets in the historic period may be due to the unprecedented levels of carbon dioxide and other trace gases in the atmosphere.

  10. Oxygen Isotope Measurements of a Rare Murchison Type A CAI and Its Rim

    NASA Technical Reports Server (NTRS)

    Matzel, J. E. P.; Simon, J. I.; Hutcheon, I. D.; Jacobsen, B.; Simon, S. B.; Grossman, L.

    2013-01-01

    Ca-, Al-rich inclusions (CAIs) from CV chondrites commonly show oxygen isotope heterogeneity among different mineral phases within individual inclusions reflecting the complex history of CAIs in both the solar nebula and/or parent bodies. The degree of isotopic exchange is typically mineral-specific, yielding O-16-rich spinel, hibonite and pyroxene and O-16-depleted melilite and anorthite. Recent work demonstrated large and systematic variations in oxygen isotope composition within the margin and Wark-Lovering rim of an Allende Type A CAI. These variations suggest that some CV CAIs formed from several oxygen reservoirs and may reflect transport between distinct regions of the solar nebula or varying gas composition near the proto-Sun. Oxygen isotope compositions of CAIs from other, less-altered chondrites show less intra-CAI variability and 16O-rich compositions. The record of intra-CAI oxygen isotope variability in CM chondrites, which commonly show evidence for low-temperature aqueous alteration, is less clear, in part because the most common CAIs found in CM chondrites are mineralogically simple (hibonite +/- spinel or spinel +/- pyroxene) and are composed of minerals less susceptible to O-isotopic exchange. No measurements of the oxygen isotope compositions of rims on CAIs in CM chondrites have been reported. Here, we present oxygen isotope data from a rare, Type A CAI from the Murchison meteorite, MUM-1. The data were collected from melilite, hibonite, perovskite and spinel in a traverse into the interior of the CAI and from pyroxene, melilite, anorthite, and spinel in the Wark-Lovering rim. Our objectives were to (1) document any evidence for intra-CAI oxygen isotope variability; (2) determine the isotopic composition of the rim minerals and compare their composition(s) to the CAI interior; and (3) compare the MUM-1 data to oxygen isotope zoning profiles measured from CAIs in other chondrites.

  11. A physiological measure of shifting connections in the Rana pipiens retinotectal system.

    PubMed

    Fraser, S E; Hunt, R K

    1986-06-01

    The retinotectal connections of developing Rana tadpoles and froglets have been studied using light-pipe techniques to directly assay the pattern of the projection from the retina to the tectum. The projection site of the retina surrounding the optic nerve head was determined at two different stages of development (late larval and metamorphic frog) on the same animal. Small electrolytic marker lesions were used to mark the tectal sites to which the optic nerve head projected at these two times. Comparison of the positions of the two lesions gives a direct measure of the shift in the projection during the interlesion time interval of one week. The results indicate a shift in the projection of 275 micron week-1 in late larval life. Previous work in Xenopus using the light-pipe techniques indicated a qualitatively similar shift during equivalent stages of development, but significantly smaller in magnitude. In the present study, topographic postsynaptic units could be recorded at all stages investigated, indicating functional synapses between the optic nerve fibres and the tectum. Thus, these studies offer evidence of a significant shift in the functional connection pattern of the amphibian retinotectal map during development, in agreement with the recent anatomical data from other laboratories on the Rana and goldfish visual system. PMID:3489803

  12. Multiple-step triangular-pattern phase shifting and the influence of number of steps and pitch on measurement accuracy

    SciTech Connect

    Jia Peirong; Kofman, Jonathan; English, Chad

    2007-06-01

    We present new extensions of the two-step, triangular-pattern phase-shifting method for different numbers of phase-shifting steps to increase measurement accuracy and to analyze the influence of the number of phase-shifting steps and pitch of the projected triangular intensity-profile pattern on the measurement accuracy. Phase-shifting algorithms to generate the intensity ratio, essential for surface reconstruction, were developed for each measurement method. Experiments determined that higher measurement accuracy can be obtained with a greater number of phase-shifting steps and a lower value of pitch, as long as the pitch is appropriately selected to be divisible by the number of phase-shifting steps and not below an optimal value, where intensity-ratio unwrapping failure would occur.

  13. A new serial pooling method of shifted tree ring blocks to construct millennia long tree ring isotope chronologies with annual resolution.

    PubMed

    Boettger, Tatjana; Friedrich, Michael

    2009-03-01

    The study presents a new serial pooling method of shifted tree ring blocks for the building of isotope chronologies. This method combines the advantages of traditional 'serial' and 'intertree' pooling, and can be recommended for the construction of sub-regional long isotope chronologies with sufficient replication, and on annual resolution, especially for the case of extremely narrow tree rings. For Scots pines (Pinus sylvestris L., Khibiny Low Mountains, NW Russia) and Silver firs (Abies alba Mill., Franconia, Southern Germany), serial pooling of five consecutive tree rings seems appropriate because the species- and site-specific particularities lead to blurs of climate linkages in their tree rings for the period up to ca. five years back. An equivalent to a five-year running means that curve gained on the base annual data sets of single trees can be derived from the analysis of yearly shifted five-year blocks of consecutive tree rings, and therefore, with approximately 20% of the expense. Good coherence of delta(13)C- and delta(18)O-values between calculated means of annual total rings or late wood data and means of five-year blocks of consecutive total tree rings analysed experimentally on most similar material confirms this assumption. PMID:19191128

  14. Ion Microprobe Measurements of Carbon Isotopes in Martian Phosphates: Insights into the Martian Mantle

    NASA Astrophysics Data System (ADS)

    Goreva, J. S.; Leshin, L. A.; Guan, Y.

    2003-03-01

    In-situ measurements of C in the phosphates from meteorites Los Angeles, Zagami, QUE94201 and ALH84001 predict isotopically light martian magmatic C, heavier than previous estimates yet significantly lighter than the terrestrial value.

  15. Chemical and isotopic measurements of micrometeoroids by secondary ion mass spectrometry (A0187-2)

    NASA Technical Reports Server (NTRS)

    Foote, J. H.; Swan, P. D.; Walker, R. M.; Zinner, E. K.; Bahr, D.; Fechtig, H.; Jessberger, E.; Igenbergs, E.; Kreitmayr, U.; Kuczera, H.

    1984-01-01

    The objective of this experiment is to measure the chemical and isotopic composition of interplanetary dust particles of mass greater than 10 to the minus 10 power G for most of thermator elements expected to be present.

  16. Mass measurements on radioactive isotopes with a Penning trap mass spectrometer

    SciTech Connect

    Bollen, G.; Ames, F.; Schark, E.; Audi, G.; Lunney, D.; Saint Simon, M. de; Beck, D.; Herfurth, F.; Kluge, H.-J.; Kohl, A.; Schwarz, S.; Moore, R. B.; Szerypo, J.

    1999-01-15

    Penning trap mass measurements on short-lived isotopes are performed with the ISOLTRAP mass spectrometer at the radioactive beam facility ISOLDE/CERN. In the last years the applicability of the spectrometer has been considerably extended by the installation of an RFQ trap ion beam buncher and a new cooler Penning trap, which is operated as an isobar separator. These improvements allowed for the first time measurements on isotopes of rare earth elements and on isotopes with Z=80-85. In all cases an accuracy of {delta}m/m{approx_equal}1{center_dot}10{sup -7} was achieved.

  17. A large area multi-element telescope for measuring the cosmic ray isotope composition

    NASA Technical Reports Server (NTRS)

    Fisher, A. J.; Ormes, J. F.; Hagen, F. A.

    1974-01-01

    To measure the isotopic composition of cosmic rays up to Fe an instrument is needed with good isotopic resolution and a large exposure. The large geometry needed for a balloon-borne detector has been obtained with large mapped detectors and a trajectory determining spark chamber. The instrument achieves isotopic resolution only for stopping particles. For low charge particles where there is no Cerenkov response the detector works as a multiple dE/dx-Range-Energy detector. For higher charges where scintillator saturation becomes important it becomes a Cerenkov-range measurement.

  18. Using cosmogenic isotopes to measure basin-scale rates of erosion

    SciTech Connect

    Bierman, P.R.; Steig, E. . Dept. of Geology)

    1992-01-01

    The authors present a new and different approach to interpreting the abundance of in situ-produced cosmogenic nuclides such as [sup 36]Cl, [sup 26]Al, and [sup 10]Be. Unlike most existing models, which are appropriate for evaluating isotope concentrations on bedrock surfaces, this model can be used to interpret isotope concentration in fluvial sediment. Because sediment is a mixture of material derived from the entire drainage basin, measured isotope abundances can be used to estimate spatially-averaged rates of erosion and sediment transport. Their approach has the potential to provide geomorphologists with a relatively simple but powerful means by which to constrain rates of landscape evolution. The model considers the flux of cosmogenic isotopes into and out of various reservoirs. Implicit in model development are the assumptions that a geomorphic steady-state has been reached and that sampled sediment is spatially and temporally representative of all sediment leaving the basin. Each year, the impinging cosmic-ray flux produces a certain quantity of cosmogenic isotopes in the rock and soil of a drainage basin. For a basin in steady state, the outgoing isotope flux is also constant. They solve for the rate of mass loss as a function of isotope abundance in the sediment, the cosmic ray attenuation length, the isotope half life, and the effective isotope production rate. There are only a few published measurements of cosmogenic isotope abundance in sediment. They calculated model denudation rates for sediment samples from Zaire and central Texas. The denudation rates they calculated appear reasonable and are similar to those they have measured directly on granite landforms in Georgia and southeastern California and those calculated for the Appalachian Piedmont.

  19. High Precision Ti stable Isotope Measurement of Terrestrial Rocks

    NASA Astrophysics Data System (ADS)

    Millet, M. A.; Dauphas, N.; Williams, H. M.; Burton, K. W.; Nowell, G. M.

    2014-12-01

    Advances in multi-collection plasma source mass spectrometry have allowed the determination of stable isotope composition of transition metals to address questions relevant to both high and low temperature geochemistry. However, titanium has received only very limited attention. Here we present a new technique allowing the determination of the stable isotope composition of titanium in geological samples (d49Ti or deviation of the 49Ti/47Ti ratio from the OL-Ti in-house standard of reference) using double-spike methodology and high-resolution MC-ICP-MS. We have carried out a range analytical tests for a wide spectrum of samples matrices to demonstrate a external reproducibility of ±0.02‰ on the d49Ti while using as little as 150ng of natural Ti for a single analysis. We have analysed a comprehensive selection of mantle-derived samples covering a range of geodynamic contexts (MORB, IAB, OIB, adakites, eclogites, serpentines) and geographical distribution (MORB: Mid-Atlantic Ridge, Southwest Indian Ridge and Eastern Pacific Ridge; IAB: New Britain reference suite and Marianas Arc). The samples show a very limited range from -0.06‰ to +0.04‰ with a main mode at +0.004‰ relative to the OL-Ti standard. Average values for MORB, IAB and eclogites are similar within uncertainty and thus argue for limited mobility of Ti during subduction zone processes and homogeneity of the Ti stable isotope composition of the upper mantle. However, preliminary data for more evolved igneous rocks suggest that they display heavier Ti stable isotope compositions, which may reflect the removal of isotopically light Ti as a function of Fe-Ti oxide crystallisation. This is in good agreement with Ti being present in 5-fold and 6-fold coordination in basaltic melts and preferential uptake of 6-folded Ti by Ti-bearing oxides [1]. This dataset will be complemented by analysis of abyssal peridotites to confirm the homogeneity of the mantle as well as data for a range of ferromanganese crusts

  20. High-speed deformation measurement using spatially phase-shifted speckle interferometry

    NASA Astrophysics Data System (ADS)

    Beckmann, Tobias; Fratz, Markus; Bertz, Alexander; Carl, Daniel

    2014-02-01

    Electronic speckle pattern interferometry (ESPI) is a powerful technique for differential shape measurement with submicron resolution. Using spatial phase-shifting (SPS), no moving parts are required, allowing frame acquisition rates limited by camera hardware. We present ESPI images of 1 megapixel resolution at 500 fps. Analysis of SPS data involves complex, time-consuming calculations. The graphics processing units found in state-of-the-art personal computers have exceptional parallel processing capabilities, allowing real-time SPS measurements at video frame rates. Deformation analysis at this frame rate can be used to analyze transient phenomena such as transient temperature effects in integrated circuit chips or during material processing.

  1. Dynamic measurement of bulk modulus of dielectric materials using a microwave phase shift technique

    NASA Technical Reports Server (NTRS)

    Barker, B. J.; Strand, L. D.

    1972-01-01

    A microwave Doppler shift technique was developed for measuring the dynamic bulk modulus of dielectric materials such as solid propellants. The system has a demonstrated time resolution on the order of milliseconds and a theoretical spatial resolution of a few microns. Accuracy of the technique is dependent on an accurate knowledge of the wavelength of the microwave in the sample being tested. Such measurement techniques are discussed. Preliminary tests with two solid propellants, one non-aluminized and one containing 16% aluminum, yielded reasonable, reproducible results. It was concluded that with refinements the technique holds promise as a practical means for obtaining accurate dynamic bulk modulus data over a variety of transient conditions.

  2. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation.

    PubMed

    Urricelqui, Javier; Zornoza, Ander; Sagues, Mikel; Loayssa, Alayn

    2012-11-19

    We demonstrate a novel dynamic BOTDA sensor based, for the first time to our knowledge, on the use of the Brillouin phase-shift in addition to the conventional Brillouin gain. This provides the advantage of measurements that are largely immune to variations in fiber attenuation or changes in pump pulse power. Furthermore, the optical detection deployed leads to an enhanced precision or measurement time and to the broadening of the measurement range. Proof-of-concept experiments demonstrate 1.66-kHz measurement rate with 1-m resolution over a 160 m sensing fiber length. Moreover, a measurement range of 2560 µε with a precision of 20 µε is successfully proved. PMID:23187549

  3. A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable hydrogen isotope methodology is used in nutrition studies to measure growth, breast milk intake, and energy requirement. Isotope ratio MS is the best instrumentation to measure the stable hydrogen isotope ratios in physiological fluids. Conventional methods to convert physiological fluids to ...

  4. NMR shift and relaxation measurements in pulsed high-field magnets up to 58T.

    PubMed

    Kohlrautz, J; Reichardt, S; Green, E L; Kühne, H; Wosnitza, J; Haase, J

    2016-02-01

    Nuclear magnetic resonance (NMR) experiments at fields up to 58T in pulsed magnets at the Dresden High Magnetic Field Laboratory are reported. The challenge to resolve NMR shifts in these time-dependent fields is addressed for the first time, and it is shown that this can indeed be accomplished with high precision with an internal reference. As a result, signal averaging is possible during a single magnetic field pulse, but also for multiple pulses. Thus, even very weak signals can in principle be recorded and their shifts can be determined. In a second set of experiments, the measurement of nuclear relaxation is investigated. Using adiabatic inversion with the inherent time dependence of the magnetic field and small-angle inspection, it is shown that relaxation measurements are possible, as well. The shift experiments were performed with (27)Al NMR on a mixture of aluminum metal and a Linde type A zeolite. For the relaxation studies, (27)Al NMR and (69)Ga NMR on the metals aluminum and gallium were preformed, respectively. PMID:26760950

  5. NMR shift and relaxation measurements in pulsed high-field magnets up to 58 T

    NASA Astrophysics Data System (ADS)

    Kohlrautz, J.; Reichardt, S.; Green, E. L.; Kühne, H.; Wosnitza, J.; Haase, J.

    2016-02-01

    Nuclear magnetic resonance (NMR) experiments at fields up to 58 T in pulsed magnets at the Dresden High Magnetic Field Laboratory are reported. The challenge to resolve NMR shifts in these time-dependent fields is addressed for the first time, and it is shown that this can indeed be accomplished with high precision with an internal reference. As a result, signal averaging is possible during a single magnetic field pulse, but also for multiple pulses. Thus, even very weak signals can in principle be recorded and their shifts can be determined. In a second set of experiments, the measurement of nuclear relaxation is investigated. Using adiabatic inversion with the inherent time dependence of the magnetic field and small-angle inspection, it is shown that relaxation measurements are possible, as well. The shift experiments were performed with 27Al NMR on a mixture of aluminum metal and a Linde type A zeolite. For the relaxation studies, 27Al NMR and 69Ga NMR on the metals aluminum and gallium were preformed, respectively.

  6. Evaluating the status of uranium isotope ratio measurements using an inter-laboratory comparison campaign

    NASA Astrophysics Data System (ADS)

    Richter, S.; Alonso, A.; Truyens, J.; Kühn, H.; Verbruggen, A.; Wellum, R.

    2007-07-01

    The REIMEP 18 (Regular European Inter-laboratory Measurement Evaluation Programme) campaign for the measurement isotopic ratios of uranium in nitric acid solution was completed in December 2006. The task for all participating laboratories was to measure the uranium isotopic composition of four uranium samples ranging from depleted to slightly enriched uranium. With 71 participating laboratories REIMEP 18 has become the largest nuclear isotopic measurement campaign organized by IRMM so far. Participation in this kind of measurement campaign is an integral part of the external quality control required for nuclear safeguards laboratories worldwide. For the first time also a significant number of academic laboratories, mainly from the geochemistry area was included. Certification measurements were carried out at IRMM using state-of-the-art mass spectrometric methodology. A MAT511 UF6-gas source mass spectrometer (GSMS) was used to determine the n(235U)/n(238U) ratios and a TRITON thermal-ionization mass-spectrometer (TIMS) for the minor isotope ratios n(234U)/n(238U) and n(236U)/n(238U). Verification measurements on ampouled samples were performed successfully prior to sample shipping and showed good agreement with the certified ratios. The results of the REIMEP 18 campaign confirm in general the excellent capability of nuclear safeguards and scientific laboratories in measuring isotopic abundances of uranium, although some problems were discovered for the measurements of the minor isotope ratios n(234U)/n(238U) and n(236U)/n(238U) and the calculation of measurement uncertainties for isotope ratios in general. This paper describes the outcome of the REIMEP 18 campaign. It includes a graphical evaluation and discussion of the results, an evaluation of the applied measurement and calibration techniques and a discussion of conclusions and actions to be taken.

  7. DANCEing with the Stars: Measuring Neutron Capture on Unstable Isotopes with DANCE

    SciTech Connect

    Couture, A.; Bond, E.; Bredeweg, T. A.; Fowler, M.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Agvaanluvsan, U.; Becker, J. A.; Baker, J. D.; Bayarbadrahk, B.; Chyzh, A.; Dashdorj, D.; Reifarth, R.

    2009-03-10

    Isotopes heavier than iron are known to be produced in stars through neutron capture processes. Two major processes, the slow (s) and rapid (r) processes are each responsible for 50% of the abundances of the heavy isotopes. The neutron capture cross sections of the isotopes on the s process path reveal information about the expected abundances of the elements as well as stellar conditions and dynamics. Until recently, measurements on unstable isotopes, which are most important for determining stellar temperatures and reaction flow, have not been experimentally feasible. The Detector for Advance Neutron Capture Experiments (DANCE) located at the Los Alamos Neutron Science Center (LANSCE) was designed to perform time-of-flight neutron capture measurements on unstable isotopes for nuclear astrophysics, stockpile stewardship, and reactor development. DANCE is a 4-{pi}BaF{sub 2} scintillator array which can perform measurements on sub-milligram samples of isotopes with half-lives as short as a few hundred days. These cross sections are critical for advancing our understanding of the production of the heavy isotopes.

  8. Measurements of pressure-induced shifts in the 1-0 and 2-0 bands of HF and in the 2-0 bands of HCl-35 and HCl-37. [for planetary atmosphere IR spectroscopy

    NASA Technical Reports Server (NTRS)

    Guelachvili, G.; Smith, M. A. H.

    1978-01-01

    Fourier absorption spectra of HCl and HF measured at room temperature and low pressures were found to indicate pressure-induced shifts of the spectral lines at gas pressures of only 10 torr. Self-induced shifts were determined for the HF 2-0 band and for the HCl-35 and HCl-37 2-0 bands, and shift oscillations in the 2-0 bands due to near-resonant dipole-dipole interactions between the two gases were also evaluated. Separate measurements of pressure-induced shifts in the HF 1-0 and 2-0 bands and in both isotopic HCl bands were obtained using argon, neon, nitrogen, and CO2 separately as the perturbing gases.

  9. 3D shape measurement with binary phase-shifted technique and digital filters

    NASA Astrophysics Data System (ADS)

    Silva, Adriana; Legarda-Saenz, Ricardo; García-Torales, G.; Balderas-Mata, Sandra; Flores, Jorge L.

    2014-09-01

    Shape measurements by sinusoidal phase-shifting methods require high-quality sinusoidal fringes. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations of the conventional digital fringe projection techniques, we proposed a method that involves the projection of digital binary patterns generated by the pulse-width modulation (PWM). We will demonstrate that applying digital filtering, in particular, low pass filters, one can obtain a high-quality sinusoidal pattern. Which in combination with phase-shifting methods, allows a reliable 3-D profiling surface reconstruction at large timerates. Validation experiments using a commercial video projector are presented.

  10. Measurement of the ac Stark shift with a guided matter-wave interferometer

    NASA Astrophysics Data System (ADS)

    Deissler, B.; Hughes, K. J.; Burke, J. H. T.; Sackett, C. A.

    2008-03-01

    The dynamic polarizability of Rb87 atoms was measured using a guided-wave Bose-Einstein condensate interferometer. Taking advantage of the large arm separations obtainable in our device, a well-calibrated laser beam is applied to one atomic packet and not the other, inducing a differential phase shift. The technique requires relatively low laser intensity and works for arbitrary optical frequencies. For off-resonant light, the ac polarizability is obtained with a statistical accuracy of 3% and a calibration uncertainty of 6%. On resonance, the dispersion-shaped behavior of the Stark shift is observed, but with a broadened linewidth that is attributed to collective light scattering effects. The resulting nonlinearity may prove useful for the production and control of squeezed quantum states.

  11. The Coefficient of the Voltage Induced Frequency Shift Measurement on a Quartz Tuning Fork

    PubMed Central

    Hou, Yubin; Lu, Qingyou

    2014-01-01

    We have measured the coefficient of the voltage induced frequency shift (VIFS) of a 32.768 KHz quartz tuning fork. Three vibration modes were studied: one prong oscillating, two prongs oscillating in the same direction, and two prongs oscillating in opposite directions. They all showed a parabolic dependence of the eigen-frequency shift on the bias voltage applied across the fork, due to the voltage-induced internal stress, which varies as the fork oscillates. The average coefficient of the VIFS effect is as low as several hundred nano-Hz per millivolt, implying that fast-response voltage-controlled oscillators and phase-locked loops with nano-Hz resolution can be built. PMID:25414971

  12. Automated surface profile measurement of diamond grid disk by phase-shifted shadow Moiré

    NASA Astrophysics Data System (ADS)

    Chen, Terry Yuan-Fang; Lin, Jie

    2014-06-01

    Diamond grid disk dresser is frequently employed to remove the accumulated debris lest the polishing surface glazes. The surface warpage of diamond grid disk must be small enough to assure the flatness of polished wafers during chemical mechanical planarization process. In this study, phase-shifted shadow moiré method was employed to measure the surface profile of diamond grid disk. To eliminate erroneous bright or black spots caused by the diamond grids, a new approach is proposed by automatically selecting a proper threshold value from the differentiated image resulting from the addition of four phase-shifted images. According to the largest size of erroneous spot, the size of a structuring element is determined for morphology filtering. Thereafter the phase can be calculated and unwrapped correctly. Test of the method on a diamond grid disk is demonstrated and discussed.

  13. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities.

    PubMed

    Yi, Xu; Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry

    2016-08-01

    Dissipative Kerr cavity solitons experience a so-called self-frequency shift (SFS) as a result of Raman interactions. The frequency shift has been observed in several microcavity systems. The Raman process has also been shown numerically to influence the soliton pumping efficiency. Here, a perturbed Lagrangian approach is used to derive simple analytical expressions for the SFS and the soliton efficiency. The predicted dependences of these quantities on soliton pulse width are compared with measurements in a high-Q silica microcavity. The Raman time constant in silica is also inferred. Analytical expressions for the Raman SFS and soliton efficiency greatly simplify the prediction of soliton behavior over a wide range of microcavity platforms. PMID:27472583

  14. Measuring the Fr Weak Nuclear Charge by Observing a Linear Stark Shift with Small Atomic Samples

    SciTech Connect

    Bouchiat, Marie-Anne

    2008-03-28

    We study the chirality of ground-state alkali atoms in E and B fields, dressed with a circularly-polarized beam near-detuned (< or approx. )1 GHz) from an E-field-assisted forbidden transition such as 7S-8S in Fr. We predict parity violating energy shifts of their sublevels, linear in E and the weak nuclear charge Q{sub W}. A dressing beam of 10 kW/cm{sup 2} at 506 nm produces a shift of {approx}100 {mu}Hz at E=100 V/cm, B > or approx. 50 mG which should be observable with {approx}10{sup 4} Fr atoms confined in an optical dipole trap. We discuss optimal conditions, parameter reversals, and a calibration procedure to measure Q{sub W}.

  15. Imaging quality automated measurement of image intensifier based on orthometric phase-shifting gratings.

    PubMed

    Sun, Song; Cao, Yiping

    2016-06-01

    A method for automatically measuring the imaging quality parameters of an image intensifier based on orthometric phase-shifting gratings (OPSG) is proposed. Two sets of phase-shifting gratings, one with a fringe direction at 45° and the other at 135°, are successively projected onto the input port of the image intensifier, and the corresponding deformed patterns modulated by the measured image intensifier on its output port are captured with a CCD camera. Two phases are retrieved from these two sets of deformed patterns by a phase-measuring algorithm. By building the relationship between these retrieved phases, the referential fringe period can be determined accurately. Meanwhile, the distorted phase distribution introduced by the image intensifier can also be efficiently separated wherein the subtle imaging quality information can be further decomposed. Subsequently, the magnification of the image intensifier is successfully measured by fringe period self-calibration. The experimental results have shown the feasibility of the proposed method, which can automatically measure the multiple imaging quality parameters of an image intensifier without human intervention. PMID:27411191

  16. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    NASA Astrophysics Data System (ADS)

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen D.; Strauss, Josiah; McCabe, Matthew F.; Evans, Jason P.; Griffiths, Alan D.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10 m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (∼1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  17. Regime shifts in the northern North Atlantic during the past 6,000 years: A record of seabird population size and precipitation isotopes on Bjørnøya, Svalbard

    NASA Astrophysics Data System (ADS)

    D'Andrea, W. J.; Hormes, A.; Bakke, J.; Nicolaisen, L.

    2015-12-01

    The northeastern North Atlantic Ocean, and the Norwegian and Greenland Seas are subject to large hydrographic changes. These variations can influence oceanic heat transport to the Arctic, meridional overturning circulation, and atmospheric circulation patterns and thereby impact global climate patterns. Marine records suggest that numerous large-scale changes in the hydrography of the northern North Atlantic took place during the middle to late Holocene. Here, we report a record of nitrogen and hydrogen isotope measurements from a lake sediment core from Bjørnøya, Svalbard (74.38°N, 19.02°E) that documents major regime shifts in the climate of the northern North Atlantic during the past 6,000 years. Bjørnøya is the nesting ground for one of the largest seabird populations in the North Atlantic. As top predators in the marine ecosystem, seabirds (and their guano) are enriched in 15N; during spring and summer months they deliver this isotopically enriched nitrogen to their nesting area. We developed a record of seabird population changes on Bjørnøya based on the bulk nitrogen isotope composition of sediments in a core collected from lake Ellasjøen. The record reveals multiple multicentennial scale changes in δ15N values (varying between ~8-12‰) that track past changes in the size of seabird populations. From the same sediment core, we also developed a record of δD of precipitation, by measuring δD values of sedimentary n-alkanes. Past intervals with the largest inferred bird populations correspond with the most enriched δD of precipitation, which we interpret to represent a more Atlantic climate. Periods with reduced seabird populations correspond with intervals having more negative δD of precipitation and representing a more Arctic climate. Together, the nitrogen and hydrogen isotope records signify regime shifts in the oceanography, marine ecosystem, and atmospheric circulation of the northern North Atlantic that are related to variations in the

  18. MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2013-02-15

    We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

  19. Measurement of displacement and distance with a polarization phase shifting folded Twyman Green interferometer.

    PubMed

    Chatterjee, Sanjib; Kumar, Y Pavan

    2015-11-20

    A Sagnac interferometer (SI), consisting of a polarization beam splitter (PBS), along with two equally spaced plane mirrors that are inclined at 45° to each other, is transformed into a folded Twyman Green interferometer (TGI) by placing a mirrored parallel plate (MPP) into the hypotenuse arm of the SI. The converging input beam produced by a telescope objective (TO) is split into reflected (s-polarized) and transmitted (p-polarized) components by the PBS. The p- and s-polarized focal spots are made to fall on the mirrored end surfaces of the parallel plate (PP). The retroreflected p- and s-polarized beams become collimated after passing through the TO. A linear shift of the PP in either (longitudinal) direction alters the positions of the p- and s-polarized focal spots and results in a set of converging and diverging spherical wavefronts that interfere to form concentric circular fringes. We applied polarization phase-shifting interferometry to obtain the optical path difference (OPD) variation of the interference field. The displacement is calculated from the OPD variation. A validation experiment has been carried out by introducing known shifts to the PP. The setup can be used for displacement as well as distance measurement. PMID:26836546

  20. Measurements of interaction cross sections for 22-35Na isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Takechi, M.; Ohtsubo, T.; Nishimura, D.; Fukuda, M.; Kuboki, T.; Nagashima, M.; Suzuki, T.; Yamaguchi, T.; Ozawa, A.; Ohishi, H.; Moriguchi, T.; Sumikama, T.; Geissel, H.; Aoi, N.; Chen, Rui-Jiu; Fang, De-Qing; Fukuda, N.; Fukuoka, S.; Furuki, H.; Inabe, N.; Ishibashi, Y.; Ito, T.; Izumikawa, T.; Kameda, D.; Kubo, T.; Lantz, M.; Lee, C. S.; Ma, Yu-Gang; Mihara, M.; Momota, S.; Nagae, D.; Nishikiori, R.; Niwa, T.; Ohnishi, T.; Okumura, K.; Ogura, T.; Sakurai, H.; Sato, K.; Shimbara, Y.; Suzuki, H.; Takeda, H.; Takeuchi, S.; Tanaka, K.; Uenishi, H.; Winkler, M.; Yanagisawa, Y.

    2014-03-01

    Interaction cross sections (σI) for 22-35Na isotopes from the stability line to the vicinity of the neutron drip line have been measured at around 240 MeV/nucleon. The σI for 33-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. From the known values of the nuclear-deformation parameters β2 of 22-31Na, these enhancement can be mainly ascribed to the nuclear deformation. Large enhancement in heavier isotopes suggest that these nuclei are strongly deformed. The root-mean-square (RMS) nuclear matter radii were deduced from the σI by using Glauber-type calculation. Furthermore, a monotonic growth of the neutron-skin thickness has been deduced with increasing neutron number for Na isotopes.

  1. An isotopic approach to measuring nitrogen balance in caribou

    USGS Publications Warehouse

    Gustine, D.D.; Barboza, P.S.; Adams, L.G.; Farnell, R.G.; Parker, K.L.

    2011-01-01

    Nutritional restrictions in winter may reduce the availability of protein for reproduction and survival in northern ungulates. We refined a technique that uses recently voided excreta on snow to assess protein status in wild caribou (Rangifer tarandus) in late winter. Our study was the first application of this non-invasive, isotopic approach to assess protein status of wild caribou by determining dietary and endogenous contributions of nitrogen (N) to urinary urea. We used isotopic ratios of N (??15N) in urine and fecal samples to estimate the proportion of urea N derived from body N (p-UN) in pregnant, adult females of the Chisana Herd, a small population that ranged across the Alaska-Yukon border. We took advantage of a predator-exclosure project to examine N status of penned caribou in April 2006. Lichens were the primary forage (>40%) consumed by caribou in the pen and ?? 15N of fiber tracked the major forages in their diets. The ??15N of urinary urea for females in the pen was depleted relative (-1.3 ?? 1.0 parts per thousand [??], x?? ?? SD) to the ??15N of body N (2.7 ?? 0.7??). A similar proportion of animals in the exclosure lost core body mass (excluding estimates of fetal and uterine tissues; 55%) and body protein (estimated by isotope ratios; 54%). This non-invasive technique could be applied at various spatial and temporal scales to assess trends in protein status of free-ranging populations of northern ungulates. Intra- and inter-annual estimates of protein status could help managers monitor effects of foraging conditions on nutritional constraints in ungulates, increase the efficiency and efficacy of management actions, and help prepare stakeholders for potential changes in population trends. ?? 2010 The Wildlife Society.

  2. Comparison of task-based estimates with full-shift measurements of noise exposure.

    PubMed

    Seixas, Noah S; Sheppard, Lianne; Neitzel, Rick

    2003-01-01

    Using a large data set of noise exposure measurements on construction workers, task-based (TB) and full-shift (FS) exposure levels were compared and analyzed for the sources and magnitudes of the error associated with this methodology. Data-logging dosimeters recorded A-weighted sound pressure levels in decibels using Occupational Safety and Health Administration criteria for every minute of monitoring and were combined with information from task cards completed by subjects. Task-related information included trade, construction site type, location, activity, and tool. A total of 502 FS measurements were made, including 248,677 min of exposure on five construction trades. Six TB models of varying degrees of specificity were fit to the minute-level data and the results used to obtain TB estimates of the daily FS exposure levels. The TB estimates were derived using the predictions alone and also including subject and shift-specific residual means and variances. The predictions alone, which ignore within-task variability, produced a significant negative bias that was corrected by incorporation of the residual variance. This bias is only an issue in this setting in which the exposure of interest is noise, which follows a nonlinear averaging relationship. These estimates explained 10 to 60% of the variability in FS measures; adding the residual mean produced estimates that explained about 90% of the variability. In summary, TB estimates are important for exposure estimation when task time varies substantially. However, TB estimates include a substantial degree of error when there is large interindividual or intershift variability in exposure levels for a given task. Methods to improve the prediction of task-associated exposure, or adjusting for individual and shift differences, are needed. PMID:14674795

  3. High-precision measurement of chlorine stable isotope ratios

    USGS Publications Warehouse

    Long, A.; Eastoe, C.J.; Kaufmann, R.S.; Martin, J.G.; Wirt, L.; Finley, J.B.

    1993-01-01

    We present an analysis procedure that allows stable isotopes of chlorine to be analyzed with precision sufficient for geological and hydrological studies. The total analytical precision is ?????0.09%., and the present known range of chloride in the surface and near-surface environment is 3.5???. As Cl- is essentially nonreactive in natural aquatic environments, it is a conservative tracer and its ??37Cl is also conservative. Thus, the ??37Cl parameter is valuable for quantitative evaluation of mixing of different sources of chloride in brines and aquifers. ?? 1993.

  4. Satellite measurements of the isotopic composition of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The individual isotopes of galactic cosmic ray Ne, Mg, and Si at 100 MeV/nucleon were clearly resolved with an rms mass resolution of 0.20 amu. The results suggest the cosmic ray source is enriched in Ne-22, Mg-25, and Mg-26 when compared to the solar system. The ratio of (Mg-25)+(Mg-26) to Mg-24, which is approximately 0.49 compared to the solar system value of 0.27, suggest that the cosmic ray source and solar system material were synthesized under different conditions.

  5. On the measurement of pressure induced shift by diode lasers and harmonic detection

    NASA Astrophysics Data System (ADS)

    De Rosa, M.; Ciucci, A.; Pelliccia, D.; Gabbanini, C.; Gozzini, S.; Lucchesini, A.

    1998-02-01

    We present an analysis of the line shape of ro-vibrational molecular absorptions, in case of frequency modulation spectroscopy with diode lasers, and in the presence of a residual amplitude modulation. Subtle effects, such as pressure induced shift, can be measured with sufficient accuracy also for the weak transition lines of the overtone and the combination bands of the molecules, under the proviso of considering the correct fit function in order to avoid possible systematic errors. Some results are given for acetylene overtone absorptions in the derivative spectroscopy limit (small amplitude of modulation) and in the case of large amplitude of modulation.

  6. Application of Coherent Tune Shift Measurements to the Characterization of Electron Cloud Growth

    SciTech Connect

    Kreinick, D.L.; Crittenden, J.A.; Dugan, G.; Holtzapple, R.L.; Randazzo, M.; Furman, M.A.; Venturini, M.; Palmer, M.A.; Ramirez, G.

    2011-03-28

    Measurements of coherent tune shifts at the Cornell Electron Storage Ring Test Accelerator (CesrTA) have been made for electron and positron beams under a wide variety of beam energies, bunch charge, and bunch train configurations. Comparing the observed tunes with the predictions of several electron cloud simulation programs allows the evaluation of important parameters in these models. These simulations will be used to predict the behavior of the electron cloud in damping rings for future linear colliders. We outline recent improvements to the analysis techniques that should improve the fidelity of the modeling.

  7. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    SciTech Connect

    Nigam, R.; Kosovichev, A. G. E-mail: sasha@quake.stanford.ed

    2010-01-10

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  8. Non-Doppler shift related experimental shock wave measurements using velocity interferometer systems for any reflector

    SciTech Connect

    Forsman, A. C.; Kyrala, G. A.

    2001-05-01

    Velocity interferometer system for any reflectors (VISARs), are becoming increasingly popular in the measurement of shock waves in solids and liquids. VISAR techniques are used in measurements of transit time, speed of shock waves in flight in transparent media [L. C. Chhabildas and J. L. Wise, in Proceedings of the 4th APS Topical Conference on Shock Waves in Condensed Matter, Spokane, Washington, 1985, edited by Y. M. Gupta (Plenum, New York, 1986); P. M. Celliers , Appl. Phys. Lett. 73, 1320 (1998)], and in measurements of particle velocity. However, in cases where shock compression or release may change the index of refraction n+ik of the material being studied, the VISAR technique must be applied with care. Changes in n and k introduce phase shifts into the VISAR results that are not associated with changes in velocity. This paper presents a derivation of the theoretical output of a line VISAR that includes the effects of changing n and k and an experimental observation of a non-Doppler shift related effect.

  9. Modulation measuring profilometry with auto-synchronous phase shifting and vertical scanning.

    PubMed

    Zhong, Min; Su, Xianyu; Chen, Wenjing; You, Zhisheng; Lu, Mingteng; Jing, Hailong

    2014-12-29

    To determine the shape of a complex object with vertical measurement mode and higher accuracy, a novel modulation measuring profilometry realizing auto-synchronous phase shifting and vertical scanning is proposed. Coaxial optical system for projection and observation instead of triangulation system is adopted to avoid shadow and occlusion. In the projecting system, sinusoidal grating is perpendicular to optical axis. For moving the grating along a direction at a certain angle to optical axis, 1D precision translation platform is applied to achieve purposes of both phase-shifting and vertical scanning. A series of fringe patterns with different modulation variations are captured by a CCD camera while scanning. The profile of the tested object can be reconstructed by the relationship between the height values and the modulation distributions. Unlike the previous method based on Fourier transform for 2D fringe pattern, the modulation maps are calculated from the intensity curve formed by the points with definite pixel coordinates in the captured fringe patterns. The paper gives the principle of the proposed method, the set-up of measurement system and the method for system calibration. Computer simulation and experiment results proved its feasibility. PMID:25607133

  10. Measurements of CFC Isotope Changes in Firn, Stratospheric and Tropospheric Air

    NASA Astrophysics Data System (ADS)

    Allin, S.; Laube, J.; Witrant, E.; Kaiser, J.; McKenna, E.; Dennis, P.; Mulvaney, R.; Capron, E.; Martinerie, P.; Blunier, T.; Schwander, J.; Fraser, P. J.; Sturges, W. T.

    2014-12-01

    The degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone. Recent studies of CFC-12 (CCl2F2) have reported strong chlorine and carbon isotope fractionations in stratospheric and tropospheric samples, respectively. The δ(37Cl) variations were attributed to isotope dependent sink reactions, similar to effects seen in nitrous oxide (N2O), whereas adjustments to manufacturing processes were used to explain the δ(13C) changes. Using air archives to measure chlorine and carbon isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant chlorine isotope fractionation in the stratosphere, in common with CFC-12. We then use a 2-box model to estimate the expected tropospheric isotope signature of these gases, based on their emissions and transport history, as well as their measured stratospheric isotope fractionation constants (ɛapp). We also present long-term δ(37Cl) and δ(13C) trends of all three CFCs, determined from background tropospheric samples from the Cape Grim air archive (1978 - 2010) and firn air samples from the Arctic (NEEM, Greenland) and Antarctica (Fletcher Promontory). These measurements are compared to our model trends, leading to an evaluation of long-term chlorine and carbon isotope changes. This study also extends the novel approach to measuring trace gas isotope ratios in small air volumes, using a single-detector gas chromatography-mass spectrometry system.

  11. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    oxygen isotope composition of ambient CO2. This non-destructive approach was tested through laboratory incubations of air-dried soils that were re-wetted with water of known isotopic composition. Performance was assessed by comparing estimates of the soil water oxygen isotope composition derived from open chamber flux measurements with those measured in the irrigation water and soil water extracted following incubations. The influence of soil pH and bovine carbonic anhydrase additions on these estimates was also investigated. Coherent values were found between the soil water composition estimates obtained from the dual steady state approach and those measured for irrigation waters. Estimates of carbonic anhydrase activity made using this approach also reflected well artificial increases to the concentration of carbonic anhydrase and indicated that this activity was sensitive to soil pH.

  12. Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Yang, Lianxiang; Chen, Xu; Xu, Nan; Wang, Yonghong

    2013-10-01

    High accuracy full field three dimensional (3D) deformation measurements have always been an essential problem for the manufacturing, instrument, and aerospace industry. 3D deformations, which can be translated further into 3D strain and stress, are the key parameter for design, manufacturing and quality control. Due to the fast development of the manufacturing industry, especially in the automobile and airspace industry, rapid design and optimization concepts have already widely accepted. These concepts all require the support of rapid, high sensitive and accuracy 3D deformation measurement. Advanced optical methods are gaining widely acceptance for deformation and stain measurement by industry due to the advantages of non-contact, full-field and high measurement sensitivity. Of these methods, Electronic Speckle Pattern Interferometry (ESPI) is the most sensitive and accurate method for 3D deformation measurement in micro and sub micro-level. ESPI measures deformation by evaluating the phase difference of two recorded speckle interferograms under different loading conditions. Combined with a phase shift technique, ESPI systems can measure the 3D deformation with dozens of nanometer level sensitivity. Cataloged by phase calculation methods, ESPI systems can be divided into temporal phase shift ESPI systems and spatial phase shift ESPI system. This article provides a review and a comparison of temporal and spatial phase shift speckle pattern interferometry for 3D deformation measurement. After an overview of the fundamentals of ESPI theory, temporal phase-shift and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI which is suited well for static measurement and by the spatial phase-shift ESPI which is particularly useful for dynamic measurement will be discussed in detail. Basic theory, brief derivation and different optical layouts for the two systems will be presented. The potentials and limitations of the both ESPI

  13. Reproducibility of contact lens power measurements using the phase shifting schlieren method

    NASA Astrophysics Data System (ADS)

    Joannes, Luc; Hough, Tony; Hutsebaut, Xavier; Dubois, Xavier; Ligot, Renaud; Saoul, Bruno; Van Donink, Philip; De Coninck, Kris

    2009-06-01

    PURPOSE. To assess a new method of power measurement of soft and rigid contact lenses. The method is the phase shifting schlieren method, as embodied in the Nimo TR1504 instrument. MATERIALS and METHODS. Three Nimo TR1504 instruments were used to measure the power related dimensions of: a) a range of custom toric rigid lenses; b) a range of commercially available spherical hydrogel lenses; and c) a commercially available range of toric silicone hydrogel lenses. The measurements were carried out using a standard ISO ring test protocol where independent tests were carried out under conditions of reproducibility. The analysis of the measurements was carried out using ISO methods which enabled the reproducibility standard deviation, SR, of the method to be calculated. RESULTS. The results show that this new method has a reproducibility standard deviation SR of 0.048D for spherical soft (hydrogel) lenses. This means the back vertex power of spherical soft lenses having a power in the range +/-20.0D can be determined to current ISO product tolerances with a single measurement. The method has SR of 0.059D for sphere power and 0.093D for cylinder power for toric soft lenses having powers in the range +/-10.0D and cylinder powers in the range +/-2.0D. A single measurement will determine sphere power to current ISO tolerance limits with 95% confidence while two measurements are required to determine the cylinder power to the same confidence level.

  14. Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate-reducing bacterial lipids in cocultures and methane seeps.

    PubMed

    Dawson, K S; Osburn, M R; Sessions, A L; Orphan, V J

    2015-09-01

    Correlation between hydrogen isotope fractionation in fatty acids and carbon metabolism in pure cultures of bacteria indicates the potential of biomarker D/H analysis as a tool for diagnosing carbon substrate usage in environmental samples. However, most environments, in particular anaerobic habitats, are built from metabolic networks of micro-organisms rather than a single organism. The effect of these networks on D/H of lipids has not been explored and may complicate the interpretation of these analyses. Syntrophy represents an extreme example of metabolic interdependence. Here, we analyzed the effect of metabolic interactions on the D/H biosignatures of sulfate-reducing bacteria (SRB) using both laboratory maintained cocultures of the methanogen Methanosarcina acetivorans and the SRB Desulfococcus multivorans in addition to environmental samples harboring uncultured syntrophic consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing Deltaproteobacteria (SRB) recovered from deep-sea methane seeps. Consistent with previously reported trends, we observed a ~80‰ range in hydrogen isotope fractionation (ε(lipid-water)) for D. multivorans grown under different carbon assimilation conditions, with more D-enriched values associated with heterotrophic growth. In contrast, for cocultures of D. multivorans with M. acetivorans, we observed a reduced range of ε(lipid-water) values (~36‰) across substrates with shifts of up to 61‰ compared to monocultures. Sediment cores from methane seep settings in Hydrate Ridge (offshore Oregon, USA) showed similar D-enrichment in diagnostic SRB fatty acids coinciding with peaks in ANME/SRB consortia concentration suggesting that metabolic associations are connected to the observed shifts in ε(lipid-water) values. PMID:25923659

  15. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    NASA Astrophysics Data System (ADS)

    Liu, X. H.; Luo, H.; Qu, T. L.; Yang, K. Y.; Ding, Z. C.

    2015-10-01

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  16. Modeling instruction: Positive attitudinal shifts in introductory physics measured with CLASS

    NASA Astrophysics Data System (ADS)

    Brewe, Eric; Kramer, Laird; O'Brien, George

    2009-06-01

    Among the most surprising findings in Physics Education Research is the lack of positive results on attitudinal measures, such as Colorado Learning Attitudes about Science Survey (CLASS) and Maryland Physics Expectations Survey (MPEX). The uniformity with which physics teaching manages to negatively shift attitudes toward physics learning is striking. Strategies which have been shown to improve conceptual learning, such as interactive engagement and studio-format classes, provide more authentic science experiences for students; yet do not seem to be sufficient to produce positive attitudinal results. Florida International University’s Physics Education Research Group has implemented Modeling Instruction in University Physics classes as part of an overall effort toward building a research and learning community. Modeling Instruction is explicitly designed to engage students in scientific practices that include model building, validation, and revision. Results from a preinstruction/postinstruction CLASS measurement show attitudinal improvements through both semesters of an introductory physics sequence, as well as over the entire two-course sequence. In this Brief Report, we report positive shifts from the CLASS in one section of a modeling-based introductory physics sequence, for both mechanics (N=22) and electricity and magnetism (N=23) . Using the CLASS results and follow up interviews, we examine how these results reflect on modeling instruction and the unique student community and population at FIU.

  17. High-precision Stark shift measurements in excited states of indium using an atomic beam

    NASA Astrophysics Data System (ADS)

    Majumder, P. K.; Carter, A. L.; Augenbraun, B. L.; Rupasinghe, P. M.; Vilas, N. B.

    2016-05-01

    A recent precision measurement in our group of the indium scalar polarizability within the 410 nm 5p1 / 2 --> 6s1 / 2 transition showed excellent agreement with ab initio atomic theory. We are now completing a measurement of the polarizability within the 6s1 / 2 --> 6p1 / 2 excited-state transition. In our experiment, two external cavity semiconductor diode lasers interact transversely with a collimated indium atomic beam. We tune the 410 nm laser to the 5p1 / 2 --> 6s1 / 2 transition, keeping the laser locked to the exact Stark-shifted resonance frequency. We overlap a 1343 nm infrared laser to reach the 6p1 / 2 state. The very small infrared absorption in our atomic beam is detected using two-tone FM spectroscopy. Monitoring the two-step excitation signal in a field-free supplemental vapor cell provides frequency reference and calibration. Precisely calibrated electric fields of 5 - 15 kV/cm produce Stark shifts of order 100 MHz for this excited state. Experimental details, latest results, and comparison to theory will be discussed. In the near future, The same infrared laser will be tuned to 1291 nm to study the scalar and tensor polarizability of the 6p3 / 2 excited state providing a distinct test of atomic theory. Work supported by NSF Grant # 1404206.

  18. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    PubMed

    Waite, Mashuri; Sack, Lawren

    2011-05-01

    The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale. PMID:21279387

  19. Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Wang, Xiangzhao; Ma, Mingying; Zhang, Dongqing; Shi, Weijie; Hu, Jianming

    2006-01-01

    As a critical dimension shrinks, the degradation in image quality caused by wavefront aberrations of projection optics in lithographic tools becomes a serious problem. It is necessary to establish a technique for a fast and accurate in situ aberration measurement. We introduce what we believe to be a novel technique for characterizing the aberrations of projection optics by using an alternating phase-shifting mask. The even aberrations, such as spherical aberration and astigmatism, and the odd aberrations, such as coma, are extracted from focus shifts and image displacements of the phase-shifted pattern, respectively. The focus shifts and the image displacements are measured by a transmission image sensor. The simulation results show that, compared with the accuracy of the previous straightforward measurement technique, the accuracy of the coma measurement increases by more than 30% and the accuracy of the spherical-aberration measurement increases by approximately 20%.

  20. Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.

  1. Up-and-down shift in residence depth of slickheads (Alepocephalidae) revealed by otolith stable oxygen isotopic composition.

    PubMed

    Shiao, J C; Liu, E Y; Sui, T D

    2016-03-01

    Otolith δ(18)O profiles for four slickhead species (Alepocephalidae) suggested that Alepocephalus umbriceps, Talismania okinawensis and Rouleina watasei migrated hundreds of metres to shallower depths during the juvenile to young stages before returning to their original depth or even deeper waters. Xenodermichthys nodulosus gradually shifted residence depth from shallow to deeper water during their life. These migratory patterns indicated that the slickheads examined had allopatric residence depths at different life stages, which might enhance the pelagic survival and growth rates of the juvenile and young fishes. PMID:26822590

  2. (Sample) Size Matters: Defining Error in Planktic Foraminiferal Isotope Measurement

    NASA Astrophysics Data System (ADS)

    Lowery, C.; Fraass, A. J.

    2015-12-01

    Planktic foraminifera have been used as carriers of stable isotopic signals since the pioneering work of Urey and Emiliani. In those heady days, instrumental limitations required hundreds of individual foraminiferal tests to return a usable value. This had the fortunate side-effect of smoothing any seasonal to decadal changes within the planktic foram population, which generally turns over monthly, removing that potential noise from each sample. With the advent of more sensitive mass spectrometers, smaller sample sizes have now become standard. This has been a tremendous advantage, allowing longer time series with the same investment of time and energy. Unfortunately, the use of smaller numbers of individuals to generate a data point has lessened the amount of time averaging in the isotopic analysis and decreased precision in paleoceanographic datasets. With fewer individuals per sample, the differences between individual specimens will result in larger variation, and therefore error, and less precise values for each sample. Unfortunately, most workers (the authors included) do not make a habit of reporting the error associated with their sample size. We have created an open-source model in R to quantify the effect of sample sizes under various realistic and highly modifiable parameters (calcification depth, diagenesis in a subset of the population, improper identification, vital effects, mass, etc.). For example, a sample in which only 1 in 10 specimens is diagenetically altered can be off by >0.3‰ δ18O VPDB or ~1°C. Additionally, and perhaps more importantly, we show that under unrealistically ideal conditions (perfect preservation, etc.) it takes ~5 individuals from the mixed-layer to achieve an error of less than 0.1‰. Including just the unavoidable vital effects inflates that number to ~10 individuals to achieve ~0.1‰. Combining these errors with the typical machine error inherent in mass spectrometers make this a vital consideration moving forward.

  3. Making an honest measurement scale out of the oxygen isotope delta-values.

    PubMed

    Gat, Joel R; DeBievre, Paul

    2002-01-01

    The differential measurement of the abundance of oxygen isotopes based on reference materials, such as VSMOW for the case of water, was used because the precision of the absolute mass-spectrometric determination of the abundance fell short of the differences to be measured. Since then these measurements have been much improved, so that a calibration scheme of the oxygen isotope abundance in water, carbonates, silica, phosphates, sulfates, nitrates and organic materials is suggested, based on an accredited primary standard of oxygen in air and using standard fluorination and O(2) to CO(2) conversion techniques. PMID:12442297

  4. Measurement and compensation of wavefront deformations and focal shifts in high-power laser optics

    NASA Astrophysics Data System (ADS)

    Mann, K.; Schäfer, B.; Stubenvoll, M.; Hentschel, K.; Zenz, M.

    2015-11-01

    We demonstrate the feasibility of passive compensation of the thermal lens effect in fused silica optics, placing suitable optical materials with negative dn/dT in the beam path of a high power near IR fiber laser. Following a brief overview of the involved mechanisms, photo-thermal absorption measurements with a Hartmann-Shack sensor are described, from which coefficients for surface/coating and bulk absorption in various materials are determined. Based on comprehensive knowledge of the 2D wavefront deformations resulting from absorption, passive compensation of thermally induced aberrations in complex optical systems is possible, as illustrated for an F-Theta objective. By means of caustic measurements during high-power operation we are able to demonstrate a 60% reduction of the focal shift in F-Theta lenses through passive compensation.

  5. Lifetime measurement of 2+- state in 74Zn by recoil-distance Doppler-shift method

    NASA Astrophysics Data System (ADS)

    Niikura, M.; Mouginot, B.; Azaiez, F.; Franchoo, S.; Matea, I.; Stefan, I.; Verney, D.; Assie, M.; Bednarczyk, P.; Borcea, C.; Burger, A.; Burgunder, G.; Buta, A.; Cáceres, L.; Cléement, E.; Coquard, L.; de Angelis, G.; de France, G.; de Oliveira Santos, F.; Dewald, A.; Dijon, A.; Dombradi, Z.; Fiori, E.; Fransen, C.; Friessner, G.; Gaudefroy, L.; Georgiev, G.; Grévy, S.; Hackstein, M.; Harakeh, M. N.; Ibrahim, F.; Kamalou, O.; Kmiecik, M.; Lozeva, R.; Maj, A.; Mihai, C.; Möller, O.; Myalski, S.; Negoita, F.; Pantelica, D.; Perrot, L.; Pissulla, Th.; Rotaru, F.; Rother, W.; Scarpaci, J. A.; Stodel, C.; Thomas, J. C.; Ujic, P.

    2013-09-01

    We have performed the first direct lifetime measurement of the 2+- state in 74Zn. The neutron-rich 74Zn beam was produced by in-flight fragmentation of 76Ge at the Grand Accélérateur National d'Ions Lourds and separated with the LISE spectrometer. The lifetime of the 2+- state was measured by the recoil-distance Doppler-shift method with the Cologne plunger device combined with the EXOGAM detectors. The lifetime of the 2+- state in 74Zn was determined to be 27.0(24) ps, which corresponds to a reduced transition probability B(E2; 2+- -> 0+) = 370(33) e2fm4.

  6. Measurement and compensation of laser-induced wavefront deformations and focal shifts in near IR optics.

    PubMed

    Stubenvoll, Martin; Schäfer, Bernd; Mann, Klaus

    2014-10-20

    We demonstrate the feasibility of passive compensation of the thermal lens effect in fused silica optics, placing suitable optical materials with negative dn/dT in the beam path of a high power near IR fiber laser. Following a brief overview of the involved mechanisms, photo-thermal absorption measurements with a Hartmann-Shack sensor are described, from which coefficients for surface/coating and bulk absorption in various materials are determined. Based on comprehensive knowledge of the 2D wavefront deformations resulting from absorption, passive compensation of thermally induced aberrations in complex optical systems is possible, as illustrated for an F-Theta objective. By means of caustic measurements during high-power operation we are able to demonstrate a 60% reduction of the focal shift in F-Theta lenses through passive compensation. PMID:25401572

  7. Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation

    USGS Publications Warehouse

    Taylor, B.E.; Wheeler, M.C.; Nordstrom, D.K.

    1984-01-01

    The formation of acid waters by oxidation of pyrite-bearing ore deposits, mine tailing piles, and coal measures is a complex biogeochemical process and is a serious environmental problem. We have studied the oxygen and sulphur isotope geochemistry of sulphides, sulphur, sulphate and water in the field and in experiments to identify sources of oxygen and reaction mechanisms of sulphate formation. Here we report that the oxygen isotope composition of sulphate in acid mine drainage shows a large variation due to differing proportions of atmospheric- and water-derived oxygen from both chemical and bacterially-mediated oxidation. 18O-enrichment of sulphate results from pyrite oxidation facilitated by Thiobacillus ferrooxidans in aerated environments. Oxygen isotope analysis may therefore be useful in monitoring the effectiveness of abatement programmes designed to inhibit bacterial oxidation. Sulphur isotopes show no significant fractionation between pyrite and sulphate, indicating the quantitative insignificance of intermediate oxidation states of sulphur under acid conditions. ?? 1984 Nature Publishing Group.

  8. Oxygen isotopic measurements by secondary ion mass spectrometry in uranium oxide microparticles: a nuclear forensic diagnostic.

    PubMed

    Tamborini, G; Phinney, D; Blidstein, O; Betti, M

    2002-12-01

    To exploit oxygen isotopic measurement by SIMS as a diagnostic tool in nuclear forensics, the magnitude and reproducibility of 0-isotope instrumental mass discrimination for O-isotope standards in the SIMS laboratory at the Institute for Transuranium Elements has been evaluated. Tests for matrix-dependent discrimination effects on three different O-isotope standards with substantially different matrix compositions have been performed. The results were checked by an interlaboratory comparison of O-isotope discrimination with those obtained in the SIMS laboratory at the Lawrence Livermore National Laboratory on two standards. The results from the two laboratories are in very good agreement, indicating statistically indistinguishable instrumental mass discrimination factors for 180/160 ratios on the Cameca 6f and 3f, when the analyses are performed under the experimental conditions described. The 2sigma(mean) uncertainties of these factors are in the range of 0.3-0.9%. In accordance with the tested methodology, 0-isotope compositions were measured in three particulate uranium oxide samples of nuclear forensics interest. PMID:12498207

  9. Interval shifts in basophil measures correlate with disease activity in chronic spontaneous urticaria.

    PubMed

    Oliver, E T; Sterba, P M; Saini, S S

    2015-05-01

    Chronic spontaneous urticaria (CSU) significantly impacts the quality of life of those affected through symptoms of pruritus and recurrent skin lesions. In active CSU disease, reduced IgE-mediated basophil histamine release (HR) and basopenia are observed. We sought to examine the relationship between interval changes in basophil measures and shifts in patient-reported disease impairment. Simultaneous symptom and basophil evaluations were completed at two sequential study visits, and interval changes in measures were compared between visits for each subject (n = 38). These measures included Skindex-29, current itch and hives scores, total leukocyte histamine content (an indirect measure of blood basophil presence), and basophil HR in response to anti-IgE and formyl-methionine-leucine-phenylalanine. Overall, interval improvements in disease measures in CSU subjects were associated with increased basophil numbers (total leukocyte histamine content) and IgE-mediated HR. This suggests these measures are potential biomarkers for CSU disease improvement and further implicates a role for basophils in CSU. PMID:25631394

  10. New Isotopic Water Analyzer for Hydrological Measurements of both Liquid Water and Water Vapor

    NASA Astrophysics Data System (ADS)

    Owano, T. G.; Gupta, M.; Dong, F.; Baer, D. S.

    2011-12-01

    Measurements of the stable isotope ratios of liquid water (δ2H and δ18O) allow determination of water flowpaths, residence times in catchments, and groundwater migration. In the past, discrete water samples have been collected and transported to an IRMS lab for isotope characterization. Due to the expense and labor associated with such sampling, isotope studies have thus been generally limited in scope and in temporal resolution. We report on the recent development of a new field-portable Isotopic Water Analyzer (IWA-35EP) that accurately quantifies δ2H and δ18O of different natural water sources (e.g., rain, snow, streams and groundwater) at the unprecedented rate of 1080 injections per day, which yields 180 total unknown and reference samples per day (150 unknown samples per day), or 1 measurement of an unknown sample in less than 10 minutes (with 6 injections per measurement). This fast time response provides isotope hydrologists with the capability to study dynamic changes in δ values quickly (minutes) and over long time scales (weeks, months), thus enabling studies of mixing dynamics in snowmelt, canopy throughfall, stream mixing, and allows for individual precipitation events to be independently studied. In addition, the same IWA can also record fast measurements of isotopic water vapor (δ18O and δ2H) in real time (2 Hz data rate or faster) over a range of mole fractions greater than 60000 ppm H2O in air. Changing between operational modes requires a software command, to enable the user to switch from measuring liquid water to measuring water vapor, or vice versa. The new IWA, which uses LGR's patented Off-axis ICOS technology, incorporates proprietary internal thermal control for stable measurements with essentially zero drift. Measurements from recent field studies using the IWA will be presented.

  11. New Isotopic Water Analyzer for Hydrological Measurements of Both Liquid Water and Water Vapor

    NASA Astrophysics Data System (ADS)

    Owano, T.; Gupta, M.; Berman, E.; Baer, D.

    2012-04-01

    Measurements of the stable isotope ratios of liquid water allow determination of water flowpaths, residence times in catchments, and groundwater migration. Previously, discrete water samples have been collected and transported to an IRMS lab for isotope characterization. Due to the expense and labor associated with such sampling, isotope studies have thus been generally limited in scope and in temporal resolution. We report on the recent development of the first Isotopic Water Analyzer that simultaneously quantifies δ2H, δ17O and δ18O in liquid water or in water vapor from different natural water sources (e.g., rain, snow, streams and groundwater). In High-Throughput mode, the IWA can report measurements at the unprecedented rate of over 800 injections per day, which yields more than 140 total unknown and reference samples per day (still with 6 injections per measurement). This fast time response provides isotope hydrologists with the capability to study dynamic changes in δ values quickly (minutes) and over long time scales (weeks, months), thus enabling studies of mixing dynamics in snowmelt, canopy throughfall, stream mixing, and allows for individual precipitation events to be independently studied. In addition, the same IWA can also record fast measurements of isotopic water vapor (δ2H, δ17O, δ18O) in real time (2 Hz data rate or faster) over a range of mole fractions greater than 60000 ppm H2O in air. Changing between operational modes requires a software command, to enable the user to switch from measuring liquid water to measuring water vapor, or vice versa. The new IWA, which uses LGR's patented Off-axis ICOS technology, incorporates proprietary internal thermal control for stable measurements with essentially zero drift despite changes in ambient temperature (over the entire range from 0-45 degrees C). Measurements from recent field studies using the IWA will be presented.

  12. Reporting and measurement of mass-dependent and mass-independent fractionation of mercury isotopes

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; Blum, J. D.

    2007-12-01

    Hg isotope analysis by MC-ICP-MS is an important new approach for fingerprinting Hg sources and monitoring Hg redox reactions and bioaccumulation, especially with the recent discovery of mass independent Hg isotope fractionation. Unfortunately research groups have adopted different standards, definitions of delta values, and methods of isotopic measurement. We suggest that a single standard, NIST SRM 3133, be adopted for reporting the isotopic variability of Hg isotopes. Isotope ratios should be determined by sample-standard bracketing (SSB) during analysis and reported as permil (‰) deviation from SRM 3133. For the highest precision and accuracy, a Tl internal standard along with SSB should be used to correct instrumental mass bias. Measurement routines should also include on-peak zero corrections and matching of concentration and matrix between the samples and bracketing standard. For samples that display mass-dependent fractionation (MDF), only one delta value needs to be reported (δ202/198Hg). Mass-independent fractionation (MIF) (Jackson et al., 2006; Bergquist et al., 2006; Bergquist and Blum, submitted) requires additional nomenclature, and we suggest reporting MIF as the deviation in isotope ratios from the theoretical mass dependent kinetic isotope fractionation (Δxxx/198Hg)¬. External reproducibility should be monitored by analysis of secondary standards. For studies of MDF, we use an in-house secondary standard solution made from metallic Hg mined from Almaden Spain and obtain a δ202Hg of -0.55 ±0.06‰ (2SD). For studies of MIF, we use NRCC CRM DORM-2 (dogfish muscle) and obtain a mean value of δ202Hg of +0.19 ±0.13‰ (2SD), Δ201Hg of +0.89 ±0.07‰ (2SD) , and Δ199Hg of +1.07 ±0.08‰ (2SD).

  13. Isotopic shift for defining habitat exploitation by the Antarctic limpet Nacella concinna from rocky coastal habitats (Marian Cove, King George Island)

    NASA Astrophysics Data System (ADS)

    Choy, Eun Jung; Park, Hyun; Kim, Jeong-Hoon; Ahn, In-Young; Kang, Chang-Keun

    2011-05-01

    δ 13C and δ 15N of the Antarctic limpet Nacella concinna tissues and their potential food sources were used to determine their dietary origins and their movements between diverse habitats of intertidal and subtidal rocky shores and tide pools of Marian Cove, King George Island, Antarctica in the austral summer. δ 13C and δ 15N of the organic matter sources of epilithic microalgae, macroalgae and suspended particulate organic matter (SPOM) were readily distinguishable to discern their relative contribution to the limpet diets, with the most depleted values being found in SPOM and the most enriched in macroalgae. The limpets exhibited a spatial trend in distribution due to their seasonal migration, with smaller individuals in the subtidal zone compared with larger ones on the intertidal sites. The limpet isotopes had relatively broad ranges of δ 13C and δ 15N (-26.6 to -12.8‰ and 2.6-7.1‰, respectively), suggesting a dietary shift between habitats as well as size classes. The stable isotope ratios for each habitat seem likely to reflect the differing availabilities of the three potential food sources. Isotope mixing model results indicate a spatial shift in dietary mixture between habitats as well as limpet size classes. Epilithic microalgae and phytoplankton made great contributions to the diet of the subtidal limpets. Together with epilithic microalgae, macroalgae were significant contributors to the intertidal limpets where macroalgae were abundant. A higher contribution of macroalgae to the limpet diets was found in the tide pools. In contrast, while phytoplankton was an important food source for the limpet spat, a great dietary dependence on epilithic microalgae was found in the small-size limpets from the lower intertidal zone. Our results suggest that limpet grazing can determine microalgal and/or macroalgal abundance and coverage on the Antarctic rocky-shore ecosystem, and trophic structure of benthic food web can change along environmental

  14. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.

    2007-01-01

    The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different

  15. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland

    NASA Astrophysics Data System (ADS)

    Wen, Xue-Fa

    2016-04-01

    The oxygen isotope compositions of ecosystem water pools and fluxes are useful tracers in the water cycle. As part of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) program, high-frequency and near-continuous in situ measurements of 18O composition of atmospheric vapor (δv) and of evapotranspiration (δET) were made with the flux-gradient method using a cavity ring-down spectroscopy water vapor isotope analyzer. At the sub-daily scale, we found, in conjunction with intensive isotopic measurements of other ecosystem water pools, that the differences between 18O composition of transpiration (δT) and of xylem water (δx) were negligible in early afternoon (13:00-15:00 Beijing time) when ET approached the daytime maximum, indicating isotopic steady state. At the daily scale, for the purpose of flux partitioning, δT was approximated by δx at early afternoon hours, and the 18O composition of soil evaporation (δE) was obtained from the Craig-Gordon model with a moisture-dependent soil resistance. The relative contribution of transpiration to evapotranspiration ranged from 0.71 to 0.96 with a mean of 0.87 ± 0.052 for the growing season according to the isotopic labeling, which was good agreement with soil lysimeter measurements showing a mean transpiration fraction of 0.86 ± 0.058. At the growing season scale, the predicted18O composition of runoff water was within the range of precipitation and irrigation water according to the isotopic mass conservation. The 18O mass conservation requires that the decreased δ18O of ET should be balanced by enhanced δ18O of runoff water. (Wen, XF*, Yang, B, Sun, XM, Lee, X. 2015. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agricultural and Forest Meteorology , doi:10.1016/j.agrformet.2015.12.003).

  16. Changes of charge radii and hyperfine interactions of the Dy isotopes

    NASA Astrophysics Data System (ADS)

    Clark, D. L.; Greenlees, G. W.

    1982-10-01

    A continuous wave dye laser and a thermal atomic beam were used to measure the optical isotope shifts and hyperfine splittings for the 5547 Å, 5639 Å, 5652 Å, 5974 Å, and the 5989 Å transition of the seven stable isotopes of dysprosium. The hyperfine splitting of the odd-A isotopes has been analyzed using the formalism of Sanders and Beck and the hyperfine anomaly has been extracted. Comparison with calculations using Nilsson wave functions is presented. The isotope shift measurements have been analyzed with published electronic and muonic x-ray isotope shifts to yield δ values and some estimates of the specific mass shift constant. NUCLEAR STRUCTURE 156-164Dy. Measured optical isotope shifts and hyperfine splittings. Deduced δ, A(4f126s 6p), B(4f126s 6p), and the hyperfine anomaly. Laser spectroscopy on atomic beams.

  17. Uranium isotopic ratio measurements of U3O8 reference materials by atom probe tomography.

    PubMed

    Fahey, Albert J; Perea, Daniel E; Bartrand, Jonah; Arey, Bruce W; Thevuthasan, Suntharampillai

    2016-03-01

    We report results of measurements of isotopic ratios obtained with atom probe tomography on U3O8 reference materials certified for their isotopic abundances of uranium. The results show good agreement with the certified values. High backgrounds due to tails from adjacent peaks complicate the measurement of the integrated peak areas as well as the fact that only oxides of uranium appear in the spectrum, the most intense of which is doubly charged. In addition, lack of knowledge of other instrumental parameters, such as the dead time, may bias the results. Isotopic ratio measurements can be performed at the nanometer-scale with the expectation of sensible results. The abundance sensitivity and mass resolving power of the mass spectrometer are not sufficient to compete with magnetic-sector instruments but are not far from measurements made by ToF-SIMS of other isotopic systems. The agreement of the major isotope ratios is more than sufficient to distinguish most anthropogenic compositions from natural. PMID:26774651

  18. Uranium Isotopic Ratio Measurements of U3O8 Reference Materials by Atom Probe Tomography

    SciTech Connect

    Fahey, Albert J.; Perea, Daniel E.; Bartrand, Jonah AG; Arey, Bruce W.; Thevuthasan, Suntharampillai

    2016-01-01

    We report results of measurements of isotopic ratios obtained with atom probe tomography on U3O8 reference materials certified for their isotopic abundances of uranium. The results show good agreement with the certified values. High backgrounds due to tails from adjacent peaks complicate the measurement of the integrated peak areas as well as the fact that only oxides of uranium appear in the spectrum, the most intense of which is doubly charged. In addition, lack of knowledge of other instrumental parameters, such as the dead time, may bias the results. Isotopic ratio measurements can be performed at the nanometer-scale with the expectation of sensible results. The abundance sensitivity and mass resolving power of the mass spectrometer are not sufficient to compete with magnetic-sector instruments but are not far from measurements made by ToF-SIMS of other isotopic systems. The agreement of the major isotope ratios is more than sufficient to distinguish most anthropogenic compositions from natural.

  19. The influence of hyperfine structure and isotope shift on the detection of Rb by 2 f-wavelength modulation diode laser absorption spectrometry—experimental verification of simulations

    NASA Astrophysics Data System (ADS)

    Gustafsson, Jörgen; Axner, Ove

    1998-12-01

    This work presents an experimental verification of a previously developed methodology for simulation of the 2 f-wavelength modulation diode laser absorption spectrometry technique (2 f-WM-DLAS) when the influence of hyperfine structure, isotope shift and collisional broadening and shift of an atomic transition is taken into account [J. Gustafsson, D. Rojas and O. Axner, Spectrochim. Acta, 52B, 1937-1953 (1997)]. The pilot element in the simulations was Rb, detected at the 780 nm 5s 2S 1/2-5p 2P 3/2 transition, in low-pressure cells and atmospheric-pressure reservoirs (e.g. graphite furnaces). This experimental investigation verifies that the simulations are able to predict, with good accuracy, experimental 2 f-WM signals from Rb atoms under both low-pressure, room-temperature conditions and atmospheric-pressure, high-temperature conditions. This implies that the previously published simulation methodology can be used for predicting and optimizing 2 f-WM signal strengths and shapes from Rb atoms (and thereby presumably also from other atoms) under a variety of pressure and temperature conditions.

  20. Measurement of stable carbon isotope ratios of non-methane hydrocarbons and halocarbons

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A. T.

    2012-09-01

    Within the realm of volatile organic compounds, hydrocarbons and halocarbons form a sizable proportion of carbon input to the atmosphere. Within these compound categories, the light non-methane hydrocarbons (NMHC, two to seven carbon atoms) and monocarbon halocarbons have a special place as these have strong, if not exclusive, anthropogenic (human-caused) sources. With common atmospheric molar mixing ratios in the parts-per-trillion (10-12 mole/mole) to parts-per-billion (10-9 mole/mole) range, these trace gases, though decidedly minor constituants of the atmosphere, have diverse consequences due to their atmospheric presence and their removal processes. Effects range from causing ground level air pollution and resulting hazards to health, to contributing to anthropogenic climate change and the destruction of the ozone layer in the stratosphere, among many others. The existance of stable isotopes (otherwise identical atoms with varying amounts of neutrons that do not spontaneously disintegrate) in several elements relevant to atmospheric chemistry and physics is a boon to research. Their presence in molecules is detectable by mass and cause small intra- and intermolecular property changes. These changes range from the physical (e.g. boiling point variation) to the chemical (reaction rate variation) and can influence external interactions as well. The measurement of the ratio of a minor stable isotope of an element to the major one (the stable isotope ratio) can be used to establish source fingerprints, trace the interaction dynamics, and refine the understanding of the relative contribution of sources and sinks to the atmosphere as a whole. The stable minor stable isotope of carbon, 13C, has a natural abundance of approximately 1.1 %. It has a sufficient fractional mass difference from its major isotope as to cause significant effects, making it ideal for measuring the ratios and properties of hydro- and halocarbons. In order to enable a better understanding of the

  1. Calibration of spatially phase-shifted DSPI for measurement of large structures.

    PubMed

    Saif, Babak; Eegholm, Bente Hoffmann; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Blake, Peter; Keski-Kuha, Ritva; North-Morris, Michael

    2007-08-10

    We present a method for the calibration of a spatially phase-shifted digital speckle pattern interferometer (SPS-DSPI), which was designed and built for the purpose of testing the James Webb space telescope (JWST) optical structures and related technology development structures. The need to measure dynamic deformations of large, diffuse structures to nanometer accuracy at cryogenic temperature is paramount in the characterization of a large diameter space and terrestrial based telescopes. The techniques described herein apply to any situation, in which high accuracy measurement of diffuse structures are required. The calibration of the instrument is done using a single-crystal silicon gauge. The gauge has four islands of different heights that change in a predictable manner as a function of temperature. The SPS-DSPI is used to measure the relative piston between the islands as the temperature of the gauge is changed. The measurement results are then compared with the theoretical changes in the height of the gauge islands. The maximum deviation of the measured rate of change of the relative piston in nm/K from the expected value is 3.3%. PMID:17694108

  2. Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer.

    PubMed

    Saif, Babak; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Eegholm, Bente Hoffmann; Blake, Peter; Keski-Kuha, Ritva; Feinberg, Lee; Arenberg, Jonathan W

    2008-02-20

    The James Webb Space Telescope (JWST) Backplane Stability Test Article (BSTA) was developed to demonstrate large precision cryogenic structures' technology readiness for use in the JWST. The thermal stability of the BSTA was measured at cryogenic temperatures at the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF) and included nearly continuous measurements over a six-week period in the summer of 2006 covering the temperature range from ambient down to 30 Kusing a spatially phase-shifted digital speckle pattern interferometer (SPS-DSPI). The BSTA is a full size, one-sixth section of the JWST primary mirror backplane assembly (PMBA). The BSTA, measuring almost 3 m across, contains most of the prominent structural elements of the backplane and is to our knowledge the largest structure ever measured with SPS-DSPI at cryogenic conditions. The SPS-DSPI measured rigid body motion and deformations of BSTA to nanometer-level accuracy. The SPS-DSPI was developed specifically for the purposes of this test and other tests of large cryogenic structures for JWST. PMID:18288221

  3. Plasma Cavity Ringdown Spectrometer for Elemental and Isotopic Measurements: Past, Present, and Future

    SciTech Connect

    Wang, Chuji; Winstead, Christopher B.; Duan, Yixiang; Scherrer, Susan T.; Koirala, Sudip P.; Jang, Ping-Rey; Miller, George P.; Mazzotti, Fabio J.

    2004-03-31

    Recent studies using Plasma Cavity Ringdown Spectroscopy (plasma-CRDS) show much promise of this newly developed technique for ultra-sensitive elemental/isotopic measurements. Plasma-CRDS, since its introduction in 1997, has experienced three major stages: (i) the early stage demonstration of the technical feasibility, (ii) the recent advancement on its technical improvements and extensive applications for elemental/isotopic measurements as well as plasma diagnostics and (iii) the most recent progress on the improvement of the instrument configurations based on a diode laser-compact microwave plasma-CRDS. Research and development in many aspects of this technique is vigorously under processing in our laboratories. This paper reports a brief review on the plasma-CRDS technique, its applications and the most recent advancement. Discussions on future developments toward a new generation of plasma- CRDS-based spectrometers for ultra-sensitive elemental/isotopic measurements are also presented.

  4. Light at Night and Measures of Alertness and Performance: Implications for Shift Workers.

    PubMed

    Figueiro, Mariana G; Sahin, Levent; Wood, Brittany; Plitnick, Barbara

    2016-01-01

    Rotating-shift workers, particularly those working at night, are likely to experience sleepiness, decreased productivity, and impaired safety while on the job. Light at night has been shown to have acute alerting effects, reduce sleepiness, and improve performance. However, light at night can also suppress melatonin and induce circadian disruption, both of which have been linked to increased health risks. Previous studies have shown that long-wavelength (red) light exposure increases objective and subjective measures of alertness at night, without suppressing nocturnal melatonin. This study investigated whether exposure to red light at night would not only increase measures of alertness but also improve performance. It was hypothesized that exposure to both red (630 nm) and white (2,568 K) lights would improve performance but that only white light would significantly affect melatonin levels. Seventeen individuals participated in a 3-week, within-subjects, nighttime laboratory study. Compared to remaining in dim light, participants had significantly faster reaction times in the GO/NOGO test after exposure to both red light and white light. Compared to dim light exposure, power in the alpha and alpha-theta regions was significantly decreased after exposure to red light. Melatonin levels were significantly suppressed by white light only. Results show that not only can red light improve measures of alertness, but it can also improve certain types of performance at night without affecting melatonin levels. These findings could have significant practical applications for nurses; red light could help nurses working rotating shifts maintain nighttime alertness, without suppressing melatonin or changing their circadian phase. PMID:25697165

  5. Hydrogen isotope measurements of organic acids and alcohols by Pyrolysis-GC-MS-TC-IRMS

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Fu, Q.; Niles, P. B.

    2011-12-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by us and others as intermediary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II° quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample. Samples of carboxylic acid (C1 through C4) and alcohols (C1 through C4) were pyrolyzed at 200°C on a CDS Analytical. Inc. Model 5200° pyroprobe and passed through a Thermo Electron GC-MS-TC-IRMS system operating in continuous flow mode. The High Temperature Conversion step

  6. Measurement of displacement using phase shifted wedge plate lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Disawal, Reena; Prakash, Shashi

    2016-03-01

    In present communication, a simple technique for measurement of displacement using phase shifted wedge plate lateral shearing interferometry is described. The light beam from laser is expanded and illuminates a wedge plate of relatively large angle. Light transmitted through the wedge plate is converged onto a reflecting specimen using a focusing lens. Back-reflected wavefront from the specimen is incident on the wedge plate. Because of the tilt and shear of the wavefront reflected from the wedge plate, typical straight line fringes appear. These fringes are superimposed onto a sinusoidal grating forming a moiré pattern. The orientation of the moiré fringes is a function of specimen displacement. Four step phase shifting test procedure has been incorporated by translating the grating in phase steps of π/2. Necessary mathematical formulation to establish correlation between the 'difference phase' and the displacement of the specimen surface is undertaken. The technique is automatic and provides resolution and expanded uncertainty of 1 μm and 0.246 μm, respectively. Detailed uncertainty analysis is also reported.

  7. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    SciTech Connect

    Kuhne, W.

    2012-12-03

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that

  8. Precipitation water stable isotope measurements and analyses in Middle and Polar Ural

    NASA Astrophysics Data System (ADS)

    Stukova, Olga; Gribanov, Konstantin; Zakharov, Vyacheslav; Cattani, Olivier; Jouzel, Jean

    2015-11-01

    In this paper, we present results of precipitation (rain, snow) water stable isotope measurements, which were collected on two places. Measuring was made on laser spectroscopy analyzer PICARRO L2130-i equipped with liquid auto sampler. We describe method of sample collecting, preparing, measuring and continuing analysis of experimental data. Stored data include results of 177 samples measuring from Kourovka collected from November 2012 to March 2014 and 73 samples from Labytnangi collected from March 2013 to December 2013.

  9. Measurement of natural carbon isotopic composition of acetone in human urine.

    PubMed

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease. Graphical abstract The natural carbon isotopic composition of acetone in urine can be determined using HS-SPME-GCC-IRMS and can provide information on changes in the availability of glucose in the liver. PMID:26718914

  10. Distinguishing phosphate from fertilizers and wastewater treatment plant effluents in Western Canada using oxygen isotope measurements

    NASA Astrophysics Data System (ADS)

    Fau, Veronique; Nightingale, Michael; Tamburini, Frederica; Mayer, Bernhard

    2014-05-01

    The successful application of oxygen isotope ratios as a tracer for phosphate in aquatic ecosystems requires that different sources of phosphate are isotopically distinct. The objective of this study was to determine whether the oxygen isotope ratios of phosphate from fertilizers and effluents from wastewater treatment plants in Western Canada are isotopically distinct. Therefore, we carried out oxygen isotope analyses on phosphate in effluent from five different wastewater treatment plants (WWTP) in the Bow River watershed of Alberta, Canada. Samples were collected directly from the final effluent (post-UV) in Banff and Canmore upstream of Calgary, and from effluents of Calgary's WWTPs at Bonnybrook, Fish Creek and Pine Creek. We also carried out oxygen isotope analyses on a variety of phosphate-containing fertilizers that are widely used in Western Canada. Historically, most of the phosphate contained in manufactured fertilizers sold in Alberta came from two distinct deposits: 1) a weathered Pliocene igneous carbonatite located in eastern Canada, and 2) the Permian Phosphoria Formation in the western USA. Phosphate (PO43-) contained in the water or the fertilizer was concentrated and quantitatively converted to pure silver phosphate (Ag3PO4). The silver phosphate was then reduced with carbon in an oxygen free environment using a TC/EA pyrolysis reactor linked to a mass spectrometer where 18O/16O ratios of CO were measured in continuous flow mode. Preparation of samples for δ18OPO4 analyses was conducted using the Magnesium Induced Coprecipitation (MAGIC) method. Expected oxygen isotope ratios for phosphate in equilibrium with water (δ18Oeq) were calculated using the Longinelli and Nuti equation: T (° C) = 111.4 - 4.3 (δ18Oeq - δ18Owater). Measured δ18O values of phosphate for fertilizer samples varied from 8 to 25 oÈ®n average, fertilizer samples of sedimentary origin had higher δ18O values (15.8) than those of igneous origin (11.5). Phosphate isotopic

  11. Fate of Selenium in Soils at a Seleniferous Site Recorded by High Precision Se Isotope Measurements.

    PubMed

    Schilling, Kathrin; Johnson, Thomas M; Dhillon, Karaj S; Mason, Paul R D

    2015-08-18

    Selenium poisoning is a significant health problem in parts of Punjab, India, which is an area of intense agricultural productivity. To determine the complex soil dynamics that control distribution of Se in this area, we measured concentrations and δ(82/76)Se of bulk Se and individual Se pools in four soil profiles. This was compared against δ(82/76)Se of crops and groundwater used for irrigation. The isotopic composition of bulk Se and component Se pools reveal spatial heterogeneity. The bulk δ(82/76)Se show progressively lower values with increasing soil depth indicating the preferential migration of isotopically lighter Se downward through the soil profile. The δ(82/76)Se of water-soluble Se is isotopically heavier than δ(82/76)Se of adsorbed Se, suggesting Se isotope fractionation by reduction prior to scavenging by reactive minerals in the soil. The organically bound Se is isotopically lighter than water-soluble Se and correlates with the C/N ratio at different soil depths. Thus, Se immobilization by redox cycling controls the biogeochemical Se cycle in the soil. Se isotope ratios help to trace biochemical processes of Se in agricultural seleniferous soils and provide an important assessment for better soil management mitigating Se concentrations of ecotoxicological levels. PMID:26177307

  12. Performance evaluation of quantitative adiabatic (13)C NMR pulse sequences for site-specific isotopic measurements.

    PubMed

    Thibaudeau, Christophe; Remaud, Gérald; Silvestre, Virginie; Akoka, Serge

    2010-07-01

    (2)H/(1)H and (13)C/(12)C site-specific isotope ratios determined by NMR spectroscopy may be used to discriminate pharmaceutically active ingredients based on the synthetic process used in production. Extending the Site-specific Natural Isotope Fractionation NMR (SNIF-NMR) method to (13)C is highly beneficial for complex organic molecules when measurements of (2)H/(1)H ratios lead to poorly defined molecular fingerprints. The current NMR methodology to determine (13)C/(12)C site-specific isotope ratios suffers from poor sensitivity and long experimental times. In this work, several NMR pulse sequences based on polarization transfer were evaluated and optimized to measure precise quantitative (13)C NMR spectra within a short time. Adiabatic 180 degrees (1)H and (13)C pulses were incorporated into distortionless enhancement by polarization transfer (DEPT) and refocused insensitive nuclei enhanced by polarization transfer (INEPT) to minimize the influence of 180 degrees pulse imperfections and of off-resonance effects on the precision of the measured (13)C peak areas. The adiabatic DEPT sequence was applied to draw up a precise site-specific (13)C isotope profile of ibuprofen. A modified heteronuclear cross-polarization (HCP) experiment featuring (1)H and (13)C spin-locks with adiabatic 180 degrees pulses is also introduced. This sequence enables efficient magnetization transfer across a wide (13)C frequency range although not enough for an application in quantitative (13)C isotopic analysis. PMID:20527737

  13. Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample.

  14. Mass measurements of short-lived isotopes in a penning trap

    SciTech Connect

    Kern, F.; Egelhof, P.; Hilberath, T.; Kalinowsky, H.; Kluge, H.h.; Kunz, K.; Schweikhard, L.; Stolzenberg, H.; Moore, R.B.; Audi, G.; and others

    1987-12-10

    A mass spectrometer has been set up at the on-line isotope separator ISOLDE at CERN/Geneva. Mass-separated radioactive ions are stored in a Penning trap. Their mass is determined by a measurement of the cyclotron frequency in the magnetic field of a superconducting magnet. A resolving power of up to 300.000 and a precision of some 10 keV were determined in case of mass measurements of neutron-deficient RB and Cs isotopes. The resonance of the isobars /sup 88/Sr and /sup 88/Rb were clearly resolved and evidence was obtained for an isomer in /sup 122/Cs.

  15. Improving precision in resonance ionization mass spectrometry : influence of laser bandwidth in uranium isotope ratio measurements.

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Knight, K. B.; Pellin, M. J.; Hutcheon, I. D.; Prussin, S. G.

    2011-03-01

    The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios by resonance ionization mass spectrometry (RIMS) to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a three-color, three-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from 10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation.

  16. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-05-12

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 {angstrom}. The optical components studied range in size from approximately 50 mm {times} 100 mm to 400 mm {times} 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ``micro roughness``, ``mid-spatial scale``, and ``optical figure/curvature.`` Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically {lambda}/100 to {lambda}/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program.

  17. Characteristic temperatures of the Mossbauer fraction and thermal-shift measurements in iron and iron salts.

    NASA Technical Reports Server (NTRS)

    Lafleur, L. D.; Goodman, C.

    1971-01-01

    Measurement of Mossbauer spectra in metallic iron, sodium nitroprusside, sodium ferrocyanide, and potassium ferrocyanide absorbers between 78 and 293 K. The temperature dependences of the Mossbauer fraction and the resonant velocity were fitted to Einstein and Debye lattice-vibration models. The characteristic temperatures of the models fitted to the Mossbauer fraction are consistently lower than those fitted to the resonant velocity showing the sensitivity of the Mossbauer fraction to low-frequency modes of vibration. The characteristic temperatures obtained from the resonant velocity are higher for the salts than for the metal, indicating the presence of higher-frequency modes in the salts. This interpretation is verified semiquantitatively by comparing the thermal-shift Debye temperatures of the salts to their infrared absorption frequencies. The Mossbauer fraction of potassium ferrocyanide shows a weaker temperature dependence than that expected for a harmonic solid, which suggests that potassium ferrocyanide is anharmonic in the temperature range studied.

  18. Raman shifting of KrF laser radiation for tropospheric ozone measurements

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Ismail, Syed

    1991-01-01

    The differential absorption lidar (DIAL) measurement of tropospheric ozone requires use of high average power UV lasers operating at two appropriate DIAL wavelengths. Laboratory experiments have demonstrated that a KrF excimer laser can be used to generate several wavelengths with good energy conversion efficiencies by stimulated Raman shifting using hydrogen (H2) and deuterium (D2). Computer simulations for an airborne lidar have shown that these laser emissions can be used for the less than 5 percent random error, high resolution measuremment of ozone across the troposphere using the DIAL technique. In the region of strong ozone absorption, laser wavelengths of 277.0 and 291.7 nm were generated using H2 and D2, respectively. In addition, a laser wavelength at 302.0 nm was generated using two cells in series, with the first containing D2 and the second containing H2. The energy conversion efficiency for each wavelength was between 14 and 27 percent.

  19. Al Knight-shift measurement in the superconducting state of UNi 2Al 3

    NASA Astrophysics Data System (ADS)

    Ishida, K.; Tou, H.; Tateiwa, N.; Kitaoka, Y.; Sato, K. N.; Aso, N.; Geibel, C.; Steglich, F.

    2003-05-01

    We report 27Al Knight-shift (27K) measurement on a single-crystal UNi2Al3 that reveals a coexistence of superconductivity and a spin-density-wave (SDW) type of magnetic ordering (TSDW=4.5 K). The spin part of 27K, 27Ks does not change down to 50 mK across the superconducting (SC) transition temperature Tc∼0.9 K. In contrast with the isostructural compound UPd2Al3 (Tc∼2 K), which was identified to be a spin-singlet d-wave superconductor, the behavior of 27K strongly supports that UNi2Al3 belongs to a class of spin-triplet SC pairing state superconductor.

  20. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  1. Correction of magnetotelluric static shift by analysis of 3D forward modelling and measured test data

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wei, Wenbo; Lu, Qingtian; Wang, Huafeng; Zhang, Yawei

    2016-06-01

    To solve the problem of correction of magnetotelluric (MT) static shift, we quantise factors that influence geological environments and observation conditions and study MT static shift according to 3D MT numerical forward modelling and field tests with real data collection. We find that static shift distortions affect both the apparent resistivity and the impedance phase. The distortion results are also related to the frequency. On the basis of synthetic and real data analysis, we propose the concept of generalised static shift resistivity (GSSR) and a new method for correcting MT static shift. The approach is verified by studying 2D inversion models using synthetic and real data.

  2. Interchange for Joint Research Entitled: Miniature Laser Spectrometer for Stable Isotope Measurements

    NASA Technical Reports Server (NTRS)

    Becker, J. F.; Kojiro, D. R.

    1999-01-01

    As a first step in successfully measuring carbon isotopes optically we have previously demonstrated the measurement of C-13/C-12 to a precision of 0.1% using a tunable diode laser and CO2 spectral lines in the 2300/cm spectral region. This precision of 0.1% (1 per mil) for carbon isotopes is a value sufficiently precise to provide important isotopic data of interest to astrobiologists. The precision presently attainable in gases is sufficient to permit our instrument to be used in the measurement of isotopic ratios of interest to astrobiologists as well as geologists and planetary scientists. A small stable isotope laser spectrometer with a 10 cm path gas cell was designed and constructed. The cell was integrated with a liquid nitrogen cooled tunable diode laser and indium antimonide detector for evaluation. Using the small gas cell, preliminary measurements of 13C/12C in CO2 were made employing single-beam sequential acquisitions of the required spectral data. The results indicate an accuracy of 0.1% which is sufficiently high to make meaningful measurements of martian samples. In addition, improvements in the spectrometer gas handling system have been made to markedly reduce C-13/C-12 isotopic fractionation during sample gas cell loading which we expect will lead to further improvements in precision and accuracy. An important part of making isotopic ratio measurements in solid samples using diode lasers is the conversion of the elements of interest to molecules that have absorption spectra in the mid-ir spectral range accessible by tunable diode lasers. In this project we have investigated the necessary sample preparation procedures to extract carbon, an element of astrobiological importance, from model soil compounds and to convert it to CO2, a molecule with appropriate optical absorption characteristics for reliable laser spectrometer isotopic ratio measurements of 13C/12C. We have considered calcium carbonate as a model for a component of the martian regolith

  3. Interchange for Joint Research Entitled: Measurement of Stable Nitrogen and Sulfur Isotopes

    NASA Technical Reports Server (NTRS)

    Becker, Joseph F.; Valentin, Jose

    1997-01-01

    Viking measurements of the Martian atmosphere indicate a value of N-15/N-14 which is markedly greater than that found in Earth's atmosphere. These isotopic measurements provide a powerful diagnostic tool which may be used to derive valuable information regarding the past history of Mars and they have been used to place important constraints on the evolution of Mars' atmosphere. Initial partial pressures of nitrogen, outgassing rates, and integrated deposition of nitrogen into minerals have been calculated from this important atmospheric data (McElroy et al., 1976 and 1977; Fox and Dalgarno, 1983). The greater precision obtained in laser spectrometer isotopic measurements compared to the Viking data will greatly improve these calculated values. It has also been proposed that the N-15/N-14 value in Mars' atmosphere has increased monotonically over time (McElroy et al., 1977; Fox and Dalgarno, 1983; Wallis, 1989) owing to preferential escape of atmospheric 14N to space. Nitrogen isotopic ratios might be used to identify relatively ancient crustal rocks (R. Mancinelli, personal communication), and perhaps determine relative aces of surface samples. As a first step in successfully measuring nitrogen isotopes optically we have demonstrated the measurement of 15NI14N to a precision of 0.1% (See Figures 1-4) using a tunable diode laser and an available gas (N-,O) with spectral lines in the 2188 cm-1 region. The sample and reference gas cells contained gases of identical isotopic composition so that the 15NI14N absorption ratio determined from the sample cell, when divided by the 15NI14N absorption ratio determined from the reference cell, should yield an ideal value of unity. The average measured value of this "ratio of ratios" was 0.9983 with a standard deviation (20 values) of 0.0010. This corresponds to a precision of 0.1% (1 per mil) for nitrogen isotopes, a value sufficiently precise to provide important isotopic data of interest to exobiologists. The precision

  4. Automated isotopic measurements of micron-sized dust: application to meteoritic presolar silicon carbide

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.; Alexander, Conel M. O'D.

    2003-12-01

    We report the development of a new analytical system allowing the fully automated measurement of isotopic ratios in micrometer-sized particles by secondary ion mass spectrometry (SIMS) in a Cameca ims-6f ion microprobe. Scanning ion images and image processing algorithms are used to locate individual particles dispersed on sample substrates. The primary ion beam is electrostatically deflected to and focused onto each particle in turn, followed by a peak-jumping isotopic measurement. Automatic measurements of terrestrial standards indicate similar analytical uncertainties to traditional manual particle analyses (e.g., ˜3‰/amu for Si isotopic ratios). We also present an initial application of the measurement system to obtain Si and C isotopic ratios for ˜3300 presolar SiC grains from the Murchison CM2 carbonaceous chondrite. Three rare presolar Si 3N 4 grains were also identified and analyzed. Most of the analyzed grains were extracted from the host meteorite using a new chemical dissolution procedure. The isotopic data are broadly consistent with previous observations of presolar SiC in the same size range (˜0.5-4 μm). Members of the previously identified SiC AB, X, Y, and Z subgroups were identified, as was a highly unusual grain with an extreme 30Si enrichment, a modest 29Si enrichment, and isotopically light C. The stellar source responsible for this grain is likely to have been a supernova. Minor differences in isotopic distributions between the present work and prior data can be partially explained by terrestrial contamination and grain aggregation on sample mounts, though some of the differences are probably intrinsic to the samples. We use the large new SiC database to explore the relationships between three previously identified isotopic subgroups—mainstream, Y, and Z grains—all believed to originate in asymptotic giant branch stars. The isotopic data for Z grains suggest that their parent stars experienced strong CNO-cycle nucleosynthesis during

  5. High resolution measurements of galactic cosmic-ray neon, magnesium, and silicon isotopes

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1980-01-01

    High-resolution measurements of the abundances of individual isotopes of neon, magnesium and silicon in galactic cosmic rays are reported. The Caltech Heavy Isotope Spectrometer Telescope on board the ISEE 3 spacecraft was used to obtain measurements in the range 30 to 180 MeV/n at an rms mass resolution of 0.20 amu. Results indicate excesses of Ne-22 as well as Mg-25 and Mg-26 in galactic cosmic rays with respect to their solar system abundances. Calculations of the effects of interstellar propagation and solar modulation on cosmic-ray isotope abundances also imply an Mg-25 + Mg-26 cosmic ray source fraction significantly greater than the solar system fraction, and it is suggested that the cosmic ray source material and solar system material were synthesized under different conditions.

  6. Isotopic Measurements of Sulphonates and Phosphonates and Investigations of Possible Formaldehyde Products from the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George

    1996-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope measurements have been made on a homologous series of organic sulfonates discovered in the Murchison meteorite. Mass independent sulfur isotope fractionations were observed along with D/H ratios clearly larger than terrestrial. The sulfur fractionations may be produced chemically and due to molecular symmetry factors. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low temperature astrophysical environment consistent with that of molecular clouds. The source of the sulfonate precursors may have been the reactive interstellar molecule, CS. Low temperature CS reactions also produce other sulfur containing compounds as well as a solid phase. Isotopic measurements on bulk phosphonates were also made.

  7. Measuring the 3-D wind vector with a weight-shift microlight aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Butterbach-Bahl, K.; Schmid, H. P.; Foken, T.

    2011-02-01

    This study investigates whether the 3-D wind vector can be measured reliably from a highly transportable and low-cost weight-shift microlight aircraft. Therefore we draw up a transferable procedure to accommodate flow distortion originating from the aircraft body and -wing. This procedure consists of the analysis of aircraft dynamics and seven successive calibration steps. For our aircraft the horizontal wind components receive their greatest single amendment (14%, relative to the initial uncertainty) from the correction of flow distortion magnitude in the dynamic pressure computation. Conversely the vertical wind component is most of all improved (31%) by subsequent steps considering the 3-D flow distortion distribution in the flow angle computations. Therein the influences of the aircraft's aeroelastic wing (53%), as well as sudden changes in wing loading (16%) are considered by using the measured lift coefficient as explanatory variable. Three independent lines of analysis are used to evaluate the quality of the wind measurement: (a) A wind tunnel study in combination with the propagation of sensor uncertainties defines the systems input uncertainty to ≈0.6 m s-1 at the extremes of a 95% confidence interval. (b) During severe vertical flight manoeuvres the deviation range of the vertical wind component does not exceed 0.3 m s-1. (c) The comparison with ground based wind measurements yields an overall operational uncertainty (root mean square deviation) of ≈0.4 m s-1 for the horizontal and ≍0.3 m s-1 for the vertical wind components. No conclusive dependence of the uncertainty on the wind magnitude (<8 m s-1) or true airspeed (ranging from 23-30 m s-1) is found. Hence our analysis provides the necessary basis to study the wind measurement precision and spectral quality, which is prerequisite for reliable eddy-covariance flux measurements.

  8. Measuring the 3-D wind vector with a weight-shift microlight aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Butterbach-Bahl, K.; Schmid, H. P.; Foken, T.

    2011-07-01

    This study investigates whether the 3-D wind vector can be measured reliably from a highly transportable and low-cost weight-shift microlight aircraft. Therefore we draw up a transferable procedure to accommodate flow distortion originating from the aircraft body and -wing. This procedure consists of the analysis of aircraft dynamics and seven successive calibration steps. For our aircraft the horizontal wind components receive their greatest single amendment (14 %, relative to the initial uncertainty) from the correction of flow distortion magnitude in the dynamic pressure computation. Conversely the vertical wind component is most of all improved (31 %) by subsequent steps considering the 3-D flow distortion distribution in the flow angle computations. Therein the influences of the aircraft's trim (53 %), as well as changes in the aircraft lift (16 %) are considered by using the measured lift coefficient as explanatory variable. Three independent lines of analysis are used to evaluate the quality of the wind measurement: (a) A wind tunnel study in combination with the propagation of sensor uncertainties defines the systems input uncertainty to ≈0.6 m s-1 at the extremes of a 95 % confidence interval. (b) During severe vertical flight manoeuvres the deviation range of the vertical wind component does not exceed 0.3 m s-1. (c) The comparison with ground based wind measurements yields an overall operational uncertainty (root mean square error) of ≈0.4 m s-1 for the horizontal and ≈0.3 m s-1 for the vertical wind components. No conclusive dependence of the uncertainty on the wind magnitude (<8 m s-1) or true airspeed (ranging from 23-30 m s-1) is found. Hence our analysis provides the necessary basis to study the wind measurement precision and spectral quality, which is prerequisite for reliable Eddy-Covariance flux measurements.

  9. Measurement of a fiber-end surface profile by use of phase-shifting laser interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Shihua; Quan, Chenggen; Tay, Cho Jui; Reading, Ivan; Fang, Zhongping

    2004-01-01

    We describe a laser interferometric system in which two objectives are used to measure surface profile on a connectorized fiber-end surface. By the use of the proposed illumination design a He-Ne laser as a point light source is transformed to an extended light source, which is beneficial to localize interference fringe pattern near the test surface. To obtain an optimal contrast of the interference fringe pattern, the flat mirror with an adjustable reflection ratio is used to suit different test surfaces. A piezoelectric transducer attached on the reference mirror can move precisely along the optical axis of the objective and permits implementation of four-step phase-shifting interferometry without changing the relative position between the CCD sensor and the test surface. Therefore, an absolutely constant optical magnification can be accurately kept to capture the interference fringe patterns resulting from a combination of light reflected from both the reference flat mirror and the test surface. The experimental result shows that surface profile on a fiber-end with surface features such as a small fiber diameter of 125 μm and a low reflection ratio of less than 4% are measurable. Measurements on a standard calibration ball show that the accuracy of the proposed setup is comparable with that of existing white-light interferometers and stylus profilometers.

  10. D/H Isotope Ratio Measurements of Atmospheric Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Meisehen, Thomas; Bühler, Fred; Koppmann, Ralf; Krebsbach, Marc

    2015-04-01

    Analysis of isotope ratios in atmospheric volatile organic compounds (VOC) is a reliable method to allocate their sources, to estimate atmospheric residence times and investigate physical and chemical processes on various temporal and spatial scales. Most investigations yet focus on carbon isotope ratios. Certainly more detailed information can be gained by the ratio of deuterium (D) to hydrogen (H) in VOC, especially due to the high mass ratio. Combining measurements of carbon and hydrogen isotopes could lead to considerable improvement in our understanding of atmospheric processes. For this purpose we set up and thoroughly characterised a gas chromatograph pyrolysis isotope ratio mass spectrometer to measure the D/H ratio in atmospheric VOC. From a custom-made gas standard mixture VOC were adsorbed on Tenax®TA which has the advantage that CO2 is not preconcentrated when measuring ambient air samples. Our results show that the pyrolysis method has significant impact on the D/H ratios. A pyrolysis temperature of at least 1723 K and conditioning of the ceramic tube on a regular basis is essential to obtain reproducible D/H isotope ratios. For an independent comparison D/H ratios of the pure VOC used in the gas standard were determined using elemental analysis by Agroisolab (Jülich, Germany). Comparisons of 10 VOC show perfect agreement within the standard deviations of our measurements and the errors given by Agroisolab, e.g. for n-pentane, toluene, 4-methyl-2-pentanone and n-octane. A slight mean difference of 5.1 o was obtained for n-heptane while significant mean differences of 15.5 o and 20.3 o arose for 1,2,4-trimethylbenzene and isoprene, respectively. We further demonstrate the stability of our system and show that the sample preparation does not affect the isotope ratios. Moreover the applicability of our system to ambient air samples is demonstrated.

  11. Stable isotope ratio measurements of royal jelly samples for controlling production procedures: impact of sugar feeding.

    PubMed

    Daniele, Gaëlle; Wytrychowski, Marine; Batteau, Magali; Guibert, Sylvie; Casabianca, Hervé

    2011-07-30

    The carbon and nitrogen stable ratios of royal jelly (RJ) samples from various origins are determined using an elemental analyser linked online to an isotope ratio mass spectrometer to evaluate authenticity and adulteration. The (13)C/(12)C and (15)N/(14)N stable isotope ratios are measured in more than 500 RJs (domestic, imported and derived from feeding experiments) in order to obtain isotopic measurements that take into account seasonal, botanical and geographical effects. Authenticity intervals are established for traditional beekeeping practices, without feeding, in the range -22.48 to -27.90‰ for δ(13)C. For these samples, the δ(15)N values range from -1.58 to 7.98‰, depending on the plant sources of pollen and nectar. The δ(13)C values of the commercial samples vary from -18.54 to -26.58‰. High δ(13)C values are typical of sugar cane or corn syrups which have distinctive isotopic (13)C signatures because both plants use the C4 photosynthetic cycle, in contrast to most RJs which are derived from C3 plants. These differences in the (13)C-isotopic composition allow the detection of the addition of such sugars. RJs from traditional sources and from industrial production by sugar feeding are thus successfully distinguished. PMID:21698675

  12. Tracing the dispersion of contaminated sediment with plutonium isotope measurements in coastal catchments of Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Pointurier, Fabien; Onda, Yuichi; Chartin, Caroline; Hubert, Amélie; Lepage, Hugo; Pottin, Anne-Claire; Lefèvre, Irène; Bonté, Philippe; Laceby, J. Patrick; Ayrault, Sophie

    2015-04-01

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident led to important releases of radionuclides into the environment, and trace levels of plutonium (Pu) were detected in northeastern Japan. However, measurement of Pu isotopic atom and activity ratios is required to differentiate between the contributions of global nuclear test fallout and FDNPP emissions. In this study, we measured Pu isotopic ratios in recently deposited sediments along rivers draining the most contaminated part of the inland radioactive plume. To this end, we carried out a thorough chemical purification and concentration of Pu from sediment samples (5 g dry material) and precise isotopic measurements using a double-focusing sector field ICP-MS. Results showed that the entire range of measured Pu isotopes (i.e., 239Pu, 240Pu, 241Pu, and 242Pu) were detected in all samples, although in extremely low concentrations. The 241Pu/239Pu atom ratios measured in sediment deposits (0.0017-0.0884) were significantly higher than the corresponding values attributed to the global fallout (0.00113±0.00008 on average in the Northern Hemisphere between 31°-71°N). The results indicated the presence of Pu from FDNPP, in slight excess compared to the Pu background from global fallout, representing up to ca. 60% of Pu in the analyzed samples. These results demonstrate that this radionuclide has been transported relatively long distances (45 km) from FDNPP and deposited in rivers representing a potential source of Pu to the ocean.

  13. First Measurements of Osmium Concentration and Isotopic Composition in a Summit, Greenland Ice Core

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Sharma, M.; Hawley, R. L.; Courville, Z.

    2010-12-01

    Osmium (Os) is one of the rarer elements in the environment and therefore one of the most difficult to accurately measure, but its isotopically distinctive crustal, mantle-derived, and extra-terrestrial sources make it a valuable geochemical tracer. Recent state-of-the-art analyses of precipitation, river water, and ocean water samples from around the world have revealed elevated concentrations of Os with a characteristically low (unradiogenic) Os isotopic signature (187Os/188Os). This unusual low Os isotopic signal has been interpreted as evidence for widespread Os pollution due to the smelting of Platinum Group Element (PGE) sulfide ores for use in automobile catalytic converters. However, an environmental time series of Os concentrations and isotopic composition spanning the pre-industrial to modern era has not previously been developed to evaluate changes in atmospheric Os sources through time. Here we present the first measurements of Os concentration and isotopic composition (to our knowledge) in a 100 m-long ice core collected from Summit, Greenland, spanning from ca. 1700 to 2010 AD. Due to the extremely low Os concentrations in snow (10-15 g/g), these analyses have only recently become possible with advances in Thermal Ionization Mass Spectrometry (TIMS) and ultra-clean analytical procedures. Initial results indicate that the 187Os/188Os of Greenland snow was unradiogenic (187Os/188Os = 0.13-0.15) for at least several periods over the past 300 years, including both pre-anthropogenic and modern times. Os concentrations in the Summit ice core are relatively high (11-52 pg/kg) compared to previously measured precipitation in North America, Europe, Asia and Antarctic sea ice (0.35-23 pg/kg). The low (unradiogenic) isotopic composition are consistent with extraterrestrial (cosmic dust and meteorites; 187Os/188Os = 0.13) and possibly volcanic (187Os/188Os = 0.15-0.6) Os sources, although the Os isotopic composition of volcanic emissions is poorly constrained

  14. The stability and calibration of water vapor isotope ratio measurements during long-term deployments

    NASA Astrophysics Data System (ADS)

    Bailey, A.; Noone, D.; Berkelhammer, M.; Steen-Larsen, H. C.; Sato, P.

    2015-10-01

    With the recent advent of commercial laser absorption spectrometers, field studies measuring stable isotope ratios of hydrogen and oxygen in water vapor have proliferated. These pioneering analyses have provided invaluable feedback about best strategies for optimizing instrumental accuracy, yet questions still remain about instrument performance and calibration approaches for multi-year field deployments. With clear scientific potential for using these instruments to carry out monitoring of the hydrological cycle, this study examines the long-term stability of the isotopic biases associated with three cavity-enhanced laser absorption spectrometers - calibrated with different systems and approaches - at two remote field sites: Mauna Loa Observatory, Hawaii, USA, and Greenland Environmental Observatory, Summit, Greenland. The analysis pays particular attention to the stability of measurement dependencies on water vapor concentration and also evaluates whether these so-called concentration dependences are sensitive to statistical curve-fitting choices or measurement hysteresis. The results suggest evidence of monthly-to-seasonal concentration-dependence variability - which likely stems from low signal-to-noise at the humidity-range extremes - but no long-term directional drift. At Mauna Loa, where the isotopic analyzer is calibrated by injection of liquid water standards into a vaporizer, the largest source of inaccuracy in characterizing the concentration dependence stems from an insufficient density of calibration points at low water vapor volume mixing ratios. In comparison, at Summit, the largest source of inaccuracy is measurement hysteresis associated with interactions between the reference vapor, generated by a custom dew point generator, and the sample tubing. Nevertheless, prediction errors associated with correcting the concentration dependence are small compared to total measurement uncertainty. At both sites, changes in measurement repeatability that are

  15. Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms

    SciTech Connect

    Zhang Yichi; Ma Jie; Li Yuqing; Wu Jizhou; Zhang Linjie; Chen Gang; Wang Lirong; Zhao Yanting; Xiao Liantuan; Jia Suotang

    2012-09-24

    We report on a quantitative experimental determination of the laser-induced frequency shift rate of the ultracold cesium molecules formed via photoassociation (PA) by means of the trap loss measurement of the losses of trapped atoms in a standard magneto-optical trap. The experiment was directly performed by varying the photoassociation laser intensity without any additional frequency monitor technologies. Our experimental method utilized dependences of the losses on the laser-induced frequency shift rate based on the conditions of the identified photoassociation spectral shape. We demonstrated that the method is sensitive enough to determine small frequency shifts of rovibrational levels of ultracold cesium molecules.

  16. Pilot Study: Measuring the Effects of Center of Gravity Shift on Postural Stability

    NASA Technical Reports Server (NTRS)

    Times-Marshall, Chelsea; Reschke, Millard

    2009-01-01

    It has been shown that astronauts returning from space often experience postural instability due to the stimulus rearrangement of the visual, vestibular, and proprioceptive systems. However, postural control may also be influenced by the head-ward shift in their center of gravity (CG) that occurs as a result of the expansion of their spinal column by as much as two inches during long duration space flight, as well as the CG shift that occurs from the Life Support Pack on the extra-vehicular activity (EVA) suit. This study investigated the effect on postural stability after (1) an immediate shift in the CG towards the head, (2) a 30 minute adaptation to the shifted CG, and (3) immediate shift of the CG back to normal, accomplished by donning and removing a modified backpack. We hypothesized that at each immediate shift in CG, postural performance will be compromised.

  17. Atmosphere-surface water exchanges from measurements of isotopic composition at a tall tower in Boulder

    NASA Astrophysics Data System (ADS)

    Noone, D. C.; Risi, C.; Raudzens Bailey, A.; Brown, D. P.; Buenning, N. H.; Gregory, S. A.; Nusbaumer, J.; Sykes, J.; Schneider, D. P.; Vanderwende, B. J.; Wong, J.; Wolfe, D. E.

    2010-12-01

    The exchange of water and carbon between the atmosphere and land remains poorly understood, particularly in regions of complex terrain and in the case of stable nighttime boundary layers. Profile measurements of the isotopic composition of water vapor were made at the 300 meter NOAA Boulder Atmospheric Observatory tall tower facility in Erie in February of 2010 to establish how well moisture budgets can be constrained with isotopic information. Measurements were made by placing instruments on the tower elevator and manually controlling the ascent and decent every 15 minutes for a total of 311 profiles. The four-day experiment followed a snow storm that produced 25-50 mm of snow. Temporal variations in the measured isotopic composition are dominated by the synoptic meteorology rather than local processes. Although both the “Keeling plot” approach applied to time series and the mixing lines applied to vertical profiles emerge algebraically from simple turbulence theory, only the latter is successful in estimating end members in good agreement with the known isotopic composition of the source water. However, mixing lines are only formed when conditions are stationary, and the approach generally fails during times of changes in the profile associated with regional advection. Rapid ventilation of the boundary layer during the day is found from the isotopic data because evaporation of the snow melt tags the gas transport. Weak transport at night is determined using CO2 profiles because respiration contrasts with the tropospheric baseline. We find that transport at night is characterized by slow mixing interrupted by fast mixing events. The intermittent exchange appears important for the net exchange and it is not clear that they are captured in turbulence schemes in climate models. Because the mixing line method is not uniformly successful, our results suggest a more complete framework based on boundary layer dynamics is needed for isotopic profiles to be meaningful.

  18. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen; Wang, Lixin; McCabe, Matthew

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  19. [The measurement of water vapor isotope based on mid-infrared difference frequency generation].

    PubMed

    Wang, Zhu-Qing; Wang, Huan P; Cao, Zhen-Song; Yuan, Yi-Qian; Zhang, Wei-Jun; Gong, Zhi-Ben; Gao, Xiao-Ming

    2009-12-01

    Stable-isotope ratio analysis of water is an important tool for geology, meteorology, and earth sciences. Measurements of water vapor isotopes are very helpful to explaining stratospheric aridity and related issues in atmospheric sciences. The absorption of water vapor near 2.7 microm is very strong so it is suitable for measuring high sensitivity spectra. Based on difference frequency generation and quasi-phase matching, by mixing an Nd : YAG laser with Ti : Sapphire tunable from 750 to 840 nm in a 50 mm long periodically poled lithium niobate (PPLN) crystal, a widely tunable CW laser source was generated for the mid-infrared spectral range from 2.5 to 4 microm. We chose lambda = 20 microm for PPLN crystal, the generated laser was around 2.7 microm. This laser is widely tunable and of inherent narrow linewidth based on difference-frequency generation. Using this idler laser and 100 m multi-pass cell, and direct absorption the water vapor isotopes were measured in the laboratory air. The authors measured isotopes ratios and delta17O, delta18O and deltaD. The values were found to be in excellent agreement with the standard value for three individual lines. PMID:20210148

  20. Achievements in testing of the MGA and FRAM isotopic software codes under the DOE/NNSA-IRSN cooperation of gamma-ray isotopic measurement systems

    SciTech Connect

    Vo, Duc; Wang, Tzu - Fang; Funk, Pierre; Weber, Anne - Laure; Pepin, Nicolas; Karcher, Anna

    2009-01-01

    DOE/NNSA and IRSN collaborated on a study of gamma-ray instruments and analysis methods used to perform isotopic measurements of special nuclear materials. The two agencies agreed to collaborate on the project in response to inconsistencies that were found in the various versions of software and hardware used to determine the isotopic abundances of uranium and plutonium. IRSN used software developed internally to test the MGA and FRAM isotopic analysis codes for criteria used to stop data acquisition. The stop-criterion test revealed several unusual behaviors in both the MGA and FRAM software codes.

  1. Reconciling the Differences between the Measurements of CO2 Isotopes by the Phoenix and MSL Landers

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Mahaffy, P. R.; Atreya, S.; Pavlov, A. A.; Trainer, M.; Webster, C. R.; Wong, M.

    2014-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. There have been several different measurements by landers and Earth based systems performed in recent years that have not been in agreement. In particular, measurements of the isotopic composition of martian atmospheric CO2 by the Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) are in stark disagreement. This work attempts to use measurements of mass 45 and mass 46 of martian atmospheric CO2 by the SAM and TEGA instruments to search for agreement as a first step towards reaching a consensus measurement that might be supported by data from both instruments.

  2. Shifted excitation Raman difference spectroscopy: a potential tool for outdoor measurements in precision agriculture

    NASA Astrophysics Data System (ADS)

    Maiwald, Martin; Müller, André; Selbeck, Jörn; Käthner, Jana; Zude, Manuela; Fleury, Dominique; Sumpf, Bernd; Erbert, Götz; Tränkle, Günther

    2015-06-01

    In this work we present Shifted Excitation Raman Difference Spectroscopy (SERDS) as a potential spectroscopic tool for outdoor measurements in precision agriculture. A dual-wavelength diode laser at 785 nm is used as an excitation light source which provides an optical power up to 100 mW in cw-operation. Both emission lines for SERDS show single mode operation with a spectral width of <= 11 pm and a spectral distance of about 10 cm-1 over the whole power range. Raman experiments on apples are carried out and show Raman signals from wax layer and β-carotene. Raman investigations under daylight conditions are performed to simulate outdoor measurements. Here, polystyrene (PS) is used as test sample. A broadband signal together with narrow absorption lines of water vapor and Fraunhofer lines of singly ionized calcium (Ca II) mask the Raman lines of PS. Only the strong Raman signal at 999 cm-1 is visible. SERDS efficiently separates the Raman signals of PS from the background signals and a 14-fold improvement of the signal-tobackground noise ratio is achieved.

  3. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Brass, M.; Borchers, R.; Engel, A.

    2011-04-01

    The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δisotope fractionation processes accordingly increase the isotopic composition up to δ13C=-14‰ and δD= +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs) derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. Temporal isotope trends can also be determined in the stratosphere and compare reasonably well with the tropospheric trends. The effects of chemical and dynamical processes on the isotopic composition of CH4 in the stratosphere are discussed in detail. Different ways to interpret the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D)) and Cl, respectively), and their limitations, are investigated. The classical approach of using global mean KIE values can be strongly biased when profiles with different minimum mixing ratios are compared. Approaches for more local KIE investigations are suggested. It is shown that any approach for a formal sink partitioning from the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the

  4. Towards high precision measurements of nuclear g-factors for the Be isotopes

    NASA Astrophysics Data System (ADS)

    Takamine, A.; Wada, M.; Okada, K.; Ito, Y.; Schury, P.; Arai, F.; Katayama, I.; Imamura, K.; Ichikawa, Y.; Ueno, H.; Wollnik, H.; Schuessler, H. A.

    2016-06-01

    We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of 11Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.

  5. High-accuracy mass measurements of neutron-rich Kr isotopes

    SciTech Connect

    Delahaye, P.; Kellerbauer, A.; Audi, G.; Lunney, D.; Blaum, K.; George, S.; Carrel, F.; Herfurth, F.; Yazidjian, C.; Herlert, A.; Schweikhard, L.; Kluge, H.-J.

    2006-09-15

    The atomic masses of the neutron-rich krypton isotopes {sup 84,86-95}Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes {sup 94}Kr and {sup 95}Kr were measured for the first time. The masses of the radioactive nuclides {sup 89}Kr and {sup 91}Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  6. Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).

  7. Progress in AMS measurement of U isotope ratios in nanogram U samples

    NASA Astrophysics Data System (ADS)

    Dong, Kejun; He, Ming; Wang, Chen; Zhao, Xinhong; Li, Lili; Zhao, Yonggang; Wang, Xianggao; Shen, Hongtao; Wang, Xiaoming; Pang, Fangfang; Xu, Yongning; Zhao, Qingzhang; Dou, Liang; Yang, Xuran; Wu, Shaoyong; Lin, Deyu; Li, Kangning; You, Qubo; Bao, Yiwen; Hu, Yueming; Xia, Qingliang; Yin, Xinyi; Jiang, Shan

    2015-10-01

    The determination of uranium isotopic composition in ultra-trace U samples is very important in different fields, especially for the nuclear forensics. A new Accelerator Mass Spectrometry (AMS) technique has been developed for the measurement of uranium isotopic ratios in ng level uranium samples at China Institute of Atomic Energy (CIAE). Recently, the method was further optimized and developed by using a series of blank and standard samples. The results show that the 236U at the femtogram level can be determined in nanogram U samples by the newly developed AMS technique at CIAE. The experimental setup, performances and results will be detailed in this contribution.

  8. Equation of State measurements of hydrogen isotopes on Nova

    SciTech Connect

    Collins, G. W., LLNL

    1997-11-01

    High intensity lasers can be used to perform measurements of materials at extremely high pressures if certain experimental issues can be overcome. We have addressed those issues and used the Nova laser to shock-compress liquid deuterium and obtain measurements of density and pressure on the principal Hugoniot at pressures from 300 kbar to more than 2 Mbar. The data are compared with a number of equation of state models. The data indicate that the effect of molecular dissociation of the deuterium into a monatomic phase may have a significant impact on the equation of state near 1 Mbar.

  9. Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric CO2 by the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Boynton, W. V.; Hoffman, J. H.; Ming, D. W.; Hamara, D.

    2010-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars [1]. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated Delta(sup 13)C values measured in carbonates in martian meteorites [2-4] it has been proposed that the martian atmosphere was enriched in 13C [8]. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated Delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in C-13 relative to CO2 in the terrestrial atmosphere[ 7, 9-11]. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander [12] included a magnetic-sector mass spectrometer (EGA) [13] which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils.

  10. [Research on the influence of LED temperature shifts on differential optical absorption spectroscopy for measuring NO2].

    PubMed

    Ling, Liu-Yi; Xie, Pin-Hua; Qin, Min; Zheng, Ni-Na; Ye, Cong-Lei; Li, Ang; Hu, Ren-Zhi

    2012-11-01

    Influences of LEDs (without etalon structure and center wavelengths are respectively 370 nm (near-UV), 452 nm (blue) and 660 nm(red)) temperature shifts on differential optical absorption spectroscopy(DOAS) for measuring NO2 were studied. NO2 absorption spectra were formed using LED emitting spectra at 10 degrees C. The measured LED spectra at other temperatures were used as reference spectra of DOAS. Thus, NO2 differential optical densities under different LED temperature shifts were acquired and then NO2 differential cross-sections were fitted to the acquired differential optical densities. From fitting results, the linear relations of 0.995, 0.945 and 0.989 correlation between delta of fitting residual and near-UV, blue and red LEDs temperature shifts were found and their slopes are respectively 1.12 x 10(-3), 5.25 x 10(-5) and 7.45 x 10(-4) degrees C(-1). The fitting results show that the influence of temperature shifts of blue LED on DOAS retrieval is negligible and the temperature shifts of near-UV and red LED are impressible to DOAS measurement resulting in degradation of detection sensitivity. The retrieval results of blue LED with and without etalon with similar temperature properties were compared and showed that etalon of LED will greatly increase the influence of temperature shifts of LED on DOAS retrieval. PMID:23387143

  11. Osmium isotopic ratio measurements by inductively coupled plasma source mass spectrometry

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.; Date, A.R.

    1987-04-01

    The isotopic composition of nanogram quantities of osmium was measured by using an inductively coupled plasma source mass spectrometer. Sensitivity was enhanced a factor of approx.100 by the use of an osmium tetraoxide vapor generator rather than nebulization of solution. For samples less than or equal to5 ng, the ratios /sup 190/Os//sup 192/Os, /sup 189/Os//sup 192/Os, and /sup 188/Os//sup 192/Os were determined to better than +/- 0.5% (1sigma/sub m/) precision. For the minor isotopes, the ratios /sup 187/Os//sup 192/Os and /sup 186/Os//sup 192/Os were determined to +/-1%, and /sup 184/Os//sup 192/Os (4 x 10/sup -4/) was determined to approx.10%. Isotope ratios for common osmium are reported.

  12. Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.

    2013-01-01

    The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.

  13. A stable isotope dilution method for measuring bioavailability of organic contaminants

    PubMed Central

    Delgado-Moreno, Laura; Gan, Jay

    2014-01-01

    Methods for determining bioavailability of organic contaminants suffer various operational limitations. We explored the use of stable isotope labeled references in developing an isotope dilution method (IDM) to measure the exchangeable pool (E) of pyrene and bifenthrin as an approximation of their bioavailability in sediments. The exchange of deuterated bifenthrin or pyrene with its native counterpart was completed within 48 h. The derived E was 38–82% for pyrene and 28–59% for bifenthrin. Regression between E and the sum of rapid and slow desorption fractions obtained from sequential desorption showed a slope close to 1.0. The ability of IDM to predict bioavailability was further shown from a strong relationship (r2 > 0.93) between E and bioaccumulation into Chironomus tentans. Given the abundance of stable isotope labeled references and their relatively easy analysis, the IDM has the potential to become a readily adoptable tool for estimating organic contaminants bioaccessibility in various matrices. PMID:23434573

  14. Tunable Diode Laser Measurements of Leaf-scale Carbon Isotope Discrimination and Ecosystem Respired Carbon and Oxygen Isotope Ratios in a Semi-arid Woodland

    NASA Astrophysics Data System (ADS)

    McDowell, N.; Chris, B.; Hanson, D.; Kern, S.; Meyer, C.; Pockman, W.; Powers, H.

    2005-12-01

    We present results and speculative interpretation of leaf-level carbon isotope discrimination and ecosystem respired carbon and oxygen isotope ratios from a semi-arid, C3/C4 woodland located in northern New Mexico, USA. Overstory leaf area index (LAI) is dominated by live juniper (Juniperus monosperma) trees with an LAI value of approximately 1.0 m2 per m2 ground area, and has a seasonally dynamic understory of mixed C3 forbs and C4 grasses and cacti, with a maximum LAI of 0.30 m2 per m2 ground area. Ecosystem respired carbon isotope ratios showed values characteristic of C3 dominated photosynthesis (Keeling plot intercepts of -35 to -22 per mil). Seasonal variation was typical of that found in wetter, C3 dominated forests, as was the dependence on climate (e.g. relationships with vapor pressure deficit, soil water content, and canopy conductance). Leaf-level carbon isotope discrimination of the junipers, measured by coupling a Li-Cor 6400 photosynthesis system to the TDL, provided discrimination-Ci and discrimination-vpd relationships consistent with measured ecosystem respired carbon isotope ratios. The oxygen isotope ratio of ecosystem respiration was dependent on rain water isotope composition, but was correlated with soil water content during rain-free periods. The cumulative effect of vapor pressure deficit after a rain event was tightly correlated with the oxygen isotope ratio of ecosystem respiration, suggesting the primary drivers are evaporative enrichment of soil water and perhaps nocturnal leaf enrichment. Instrument precision for carbon and oxygen isotope ratios of carbon dioxide is 0.06 to 0.18 per mil; however, overall precision is somewhat lower due to pressure and sampling effects.

  15. Single-frame digital phase-shifting 3D shape measurement using pixel-wise moiré-wavelength refinement

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemeh; Kofman, Jonathan

    2016-03-01

    A novel pixel-wise moiré-wavelength refinement technique was developed for system calibration in single-frame digital phase-shifting 3D shape measurement. The method requires projection of only a single binary grid and capture of a single image frame. Phase-shifted images are generated by digitally phase-shifting a synthetic grid superimposed on the captured frame. The grid patterns are removed from the generated images by wavelet-Fourier transform to extract moiré patterns, from which phase and surface height are computed. A wavelength-height function, computed during system calibration, accounts for moiré-wavelength variation over calibration depth in phase-to-height mapping. Novel pixel-wise wavelength and height (depth) refinement, using this function, improved measurement accuracy compared to measurement using a single global wavelength across all pixels. The method was demonstrated in measurement of a flat plate, hemispherical object, and manikin head.

  16. Measurement of the rotational Doppler frequency shift of a spinning object using a radio frequency orbital angular momentum beam.

    PubMed

    Zhao, Mingyang; Gao, Xinlu; Xie, Mutong; Zhai, Wensheng; Xu, Wenjing; Huang, Shanguo; Gu, Wanyi

    2016-06-01

    An indirect approach based on phase measurement is proposed to measure the rotational Doppler frequency shift, which takes full advantage of the phase structure of orbital angular momentum (OAM) beams in radio domain, using a vector network analyzer (VNA) as a phase discriminator. A proof-of-concept experiment is established by an optical-controlled system with the OAM state of 1. By analyzing the experiment's results, the rotational Doppler frequency shift is measured as 24.83 Hz (max error rate 0.67%) at 50π rad/s rotational velocity, deducing the rotational velocity as 50.18π (average error rate 0.36%). PMID:27244411

  17. Exposure Assessment for Carbon Dioxide Gas: Full Shift Average and Short-Term Measurement Approaches.

    PubMed

    Hill, R Jedd; Smith, Philip A

    2015-01-01

    Carbon dioxide (CO2) makes up a relatively small percentage of atmospheric gases, yet when used or produced in large quantities as a gas, a liquid, or a solid (dry ice), substantial airborne exposures may occur. Exposure to elevated CO2 concentrations may elicit toxicity, even with oxygen concentrations that are not considered dangerous per se. Full-shift sampling approaches to measure 8-hr time weighted average (TWA) CO2 exposures are used in many facilities where CO2 gas may be present. The need to assess rapidly fluctuating CO2 levels that may approach immediately dangerous to life or health (IDLH) conditions should also be a concern, and several methods for doing so using fast responding measurement tools are discussed in this paper. Colorimetric detector tubes, a non-dispersive infrared (NDIR) detector, and a portable Fourier transform infrared (FTIR) spectroscopy instrument were evaluated in a laboratory environment using a flow-through standard generation system and were found to provide suitable accuracy and precision for assessing rapid fluctuations in CO2 concentration, with a possible effect related to humidity noted only for the detector tubes. These tools were used in the field to select locations and times for grab sampling and personal full-shift sampling, which provided laboratory analysis data to confirm IDLH conditions and 8-hr TWA exposure information. Fluctuating CO2 exposures are exemplified through field work results from several workplaces. In a brewery, brief CO2 exposures above the IDLH value occurred when large volumes of CO2-containing liquid were released for disposal, but 8-hr TWA exposures were not found to exceed the permissible level. In a frozen food production facility nearly constant exposure to CO2 concentrations above the permissible 8-hr TWA value were seen, as well as brief exposures above the IDLH concentration which were associated with specific tasks where liquid CO2 was used. In a poultry processing facility the use of dry

  18. Unequal-period combination approach of gray code and phase-shifting for 3-D visual measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin

    2016-09-01

    Combination of Gray code and phase-shifting is the most practical and advanced approach for the structured light 3-D measurement so far, which is able to measure objects with complex and discontinuous surface. However, for the traditional combination of the Gray code and phase-shifting, the captured Gray code images are not always sharp cut-off in the black-white conversion boundaries, which may lead to wrong decoding analog code orders. Moreover, during the actual measurement, there also exists local decoding error for the wrapped analog code obtained with the phase-shifting approach. Therefore, for the traditional approach, the wrong analog code orders and the local decoding errors will consequently introduce the errors which are equivalent to a fringe period when the analog code is unwrapped. In order to avoid one-fringe period errors, we propose an approach which combines Gray code with phase-shifting according to unequal period. With theoretical analysis, we build the measurement model of the proposed approach, determine the applicable condition and optimize the Gray code encoding period and phase-shifting fringe period. The experimental results verify that the proposed approach can offer a reliable unwrapped analog code, which can be used in 3-D shape measurement.

  19. Precise Measurement of Stable Neodymium Isotopes of Geological Materials by Using MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Ma, J.; Wei, G.; Liu, Y.; Ren, Z.; Xu, Y.

    2013-12-01

    A method has developed to determine high-precision high precision stable Nd isotopes in geological materials by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) using sample-standard-bracketing (SSB) mode. Nd was pre-concentrated and purifed and through a two column ion-exchange chromatographic procedure, yeilding a recovery of >96% for Nd with the interferences such as Ce and Sm being removed to cause little influence on the stable Nd isotopic compositions. The internal precision for the stable Nd isotopic compositions, ɛ142Nd, ɛ145Nd, ɛ146Nd and ɛ148Nd were generally better than ×0.2 (2SEM: standard error of the mean), and the external precision were generally better than ×0.2 (1SD: standard deviation) for ɛ142Nd, ɛ145Nd and ɛ146Nd, and better than ×0.5 (1SD) for ɛ148Nd estimated by the long-term results of the Nd standard solutions, such as La Jolla, Nd-GIG and NIST 3135a. Such precision id comparable to those by double spike method. Our measured ɛ142Nd, ɛ145Nd, ɛ146Nd and ɛ148Nd results of La Jolla are indentical to those by double spike method winthin analytical error. Thus, our method can provide comparable results for stable Nd isotopes to those by double spike method, but free from the inconvenience of calibrationg double spikes. This provides a more convenient means for studying stabe Nd isotopes in geological processes. By using this method, the stable Nd isotopic compositions for a series of international rock standard references were measured.

  20. Irradiated Xenon Isotopic Ratio Measurement for Failed Fuel Detection and Location in Fast Reactor

    NASA Astrophysics Data System (ADS)

    Ito, Chikara; Iguchi, Tetsuo; Harano, Hideki

    2009-08-01

    The accuracy of xenon isotopic ratio burn-up calculations used for failed fuel identification was evaluated by an irradiation test of xenon tag gas samples in the Joyo test reactor. The experiment was carried out using pressurized steel capsules containing unique blend ratios of stable xenon tag gases in an on-line creep rupture experiment in Joyo. The tag gas samples were irradiated to total neutron fluences of 1.6 to 4.8 × 1026 n/m2. Laser resonance ionization mass spectrometry was used to analyze the cover gas containing released tag gas diluted to isotopic ratios of 100 to 102 ppb. The isotopic ratios of xenon tag gases after irradiation were calculated using the ORIGEN2 code. The neutron cross sections of xenon nuclides were based on the JENDL-3.3 library. These cross sections were collapsed into one group using the neutron spectra of Joyo. The comparison of measured and calculated xenon isotopic ratios provided C/E values that ranged from 0.92 to 1.10. The differences between calculation and measurement were considered to be mainly due to the measurement errors and the xenon nuclide cross section uncertainties.

  1. Evaluation of TASTEX task H: measurement of plutonium isotopic abundances by gamma-ray spectrometry

    SciTech Connect

    Gunnink, R.; Prindle, A.L.; Asakura, Y.; Masui, J.; Ishiguro, N.; Kawasaki, A.; Kataoka, S.

    1981-10-01

    This report describes a computer-based gamma spectrometer system that was developed for measuring isotopic and total plutonium concentrations in nitric acid solutions. The system was installed at the Tokai reprocessing plant where it is undergoing testing and evaluation as part of the Tokai Advanced Safeguards Exercise (TASTEX). Objectives of TASTEX Task H, High-Resolution Gamma Spectrometer for Plutonium Isotopic Analysis, the methods and equipment used, the installation and calibration of the system, and the measurements obtained from several reprocessing campaigns are discussed and described. In general, we find that measurements for gamma spectroscopy agree well with those of mass spectrometry and of other chemical analysis. The system measures both freshly processed plutonium from the product accountability tank and aged plutonium solutions from storage tanks. 14 figures, 15 tables.

  2. The jackknife as an approach for uncertainty assessment in gamma spectrometric measurements of uranium isotope ratios

    NASA Astrophysics Data System (ADS)

    Ramebäck, H.; Vesterlund, A.; Tovedal, A.; Nygren, U.; Wallberg, L.; Holm, E.; Ekberg, C.; Skarnemark, G.

    2010-08-01

    The jackknife as an approach for uncertainty estimation in gamma spectrometric uranium isotope ratio measurements was evaluated. Five different materials ranging from depleted uranium (DU) to high enriched uranium (HEU) were measured using gamma spectrometry. High resolution inductively coupled plasma mass spectrometry (ICP-SFMS) was used as a reference method for comparing the results obtained with the gamma spectrometric method. The relative combined uncertainty in the gamma spectrometric measurements of the 238U/ 235U isotope ratio using the jackknife was about 10-20% ( k = 2), which proved to be fit-for-purpose in order to distinguish between different uranium categories. Moreover, the enrichment of 235U in HEU could be measured with an uncertainty of 1-2%.

  3. High Frequency Measurements of Methane Concentrations and Carbon Isotopes at a Marsh and Landfill

    NASA Astrophysics Data System (ADS)

    Mortazavi, B.; Wilson, B.; Chanton, J.; Eller, K.; Dong, F.; Baer, D. S.; Gupta, M.; Dzwonkowski, B.

    2012-12-01

    High frequency measurements of methane concentrations and carbon isotopes can help constrain the source strengths of methane emitted to the atmosphere. We report here methane concentrations and 13C values measured at 0.5 Hz with cavity enhanced laser absorption spectrometers (Los Gatos Research) deployed at a saltmarsh in Alabama and a landfill in Florida. Methane concentrations and 13C at the saltmarsh were monitored over a 2.5 day time period at 2 m, 0.5 m above the ground as well as from the outflow of a flow-through (2 L) chamber placed on the Spartina alterniflora dominated marsh. A typical measurement cycle included regular samples from two tanks of known methane concentrations and isotopic values and from ambient air samples. Over the 2.5-day measurement period methane concentrations and isotopic ratios at 2 m averaged 1.85 ppm and -43.57‰ (±0.34, 1 SE), respectively. The concentration and isotopic values from the chamber outflow varied from 1.92 to 5.81 ppm and -38.5 to -59.3‰, respectively. Methane flux from the marsh ranged from undetectable to 3.6 mgC m-2hr-1, with high fluxes measured during low tide. The 13δCH4 of the emitted CH4 from the marsh, determined from a mass balance equation using the chamber inflow and outflow concentration and isotopic values ranged from -62.1 to -93.9‰ and averaged -77‰ (±1.25, 1SE). At the landfill ambient methane concentrations and 13C ratios measured over multiple days varied from 4.25 to 11.91 ppm and from -58.81 to -45.12‰, respectively. At higher methane concentrations the δ13C of CH4 was more depleted consistent with previously observed relationship at this site made by more traditional techniques. Over a 30-minute measurement period CH4 concentrations at the landfill could vary by as much as 15 ppm. The high frequency continuous optical measurements with field-deployed instruments provide us with an unprecedented temporal resolution of CH4 concentrations and isotopic ratios. These measurements will

  4. Standardisation and "Quick Languages": The Shape-Shifting of Standardised Measurement of Pupil Achievement in Sweden and Germany

    ERIC Educational Resources Information Center

    Lundahl, Christian; Waldow, Florian

    2009-01-01

    The article discusses the entry of standardised measurement into the educational systems of Sweden and Germany and the processes of shape-shifting associated with this process. In the first part of the article, we investigate how standardised measurement challenged existing ways of conceiving education in Sweden and Germany during the first half…

  5. Simultaneous measurement of CO2 concentration and isotopic ratios in gas samples using IRMS

    NASA Astrophysics Data System (ADS)

    Yu, Eun-Ji; Lee, Dongho; Bong, Yeon-Sik; Lee, Kwang-Sik

    2014-05-01

    Isotopic methods are indispensable tools for studies on atmosphere-biosphere exchanges of CO2 and environmental monitoring such as CO2 leakage detection from subsurface carbon storages. CO2 concentration is an important variable in interpreting isotopic composition of CO2 especially in atmospheric applications (e.g., 'Keeling plot'). Optical methods such as CRDS (Cavity Ring Down Spectroscopy) are gaining attention recently because of its capability to simultaneously measure CO2 concentration and isotopic ratios with a short measurement interval (up to 1 sec.). On the other hand, IRMS (Isotope Ratio Mass Spectrometer) has been used only for isotopic measurements. In this study, we propose a method to measure CO2 concentration from gas samples along with isotopic ratios using conventional IRMS system. The system consists of Delta V Plus IRMS interfaced with GasBench II (Thermo Scientific, Germany). 12-mL vials with open top screw cap and rubber septum were used for both gas sampling and analysis. For isotopic analysis, gases in the vials were transferred into GasBench II by He carrier flow and CO2 was trapped by a single cryotrap (-180 ºC) after passing a water trap (Mg(ClO4)2). Upon release of the cryotrap, liberated CO2 was separated from N2O using gas chromatography column inside the GasBench II and introduced online into the IRMS. Isotopic ratios were measured for the masses of 44, 45 and 46, and the peak intensity (mV of mass 44 and peak area) was recorded for the concentration calculation. For the determination of CO2 concentration, a calibration curve relating the peak intensity with molar concentration of CO2 was constructed. By dissolving NaHCO3 in de-ionized water, solutions containing 0.05, 0.1, 0.25 and 0.5 µmol of inorganic carbon were prepared in 12 mL vials. Phosphoric acid was injected through rubber septum of the vials to acidify the solution and released CO2 was analyzed for the isotopic ratios and the corresponding peak intensity was recorded

  6. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes.

    PubMed

    Brian Leen, J; Berman, Elena S F; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to δ(2)H and δ(18)O measurement errors (Δδ(2)H and Δδ(18)O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m(BB), and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m(NB). These metrics are used to correct for Δδ(2)H and Δδ(18)O. The method was tested on 14 instruments and Δδ(18)O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while Δδ(2)H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m(NB). Using the isotope error versus m(NB) and m(BB) curves, Δδ(2)H and Δδ(18)O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 [per thousand] and 0.25 [per thousand] respectively, while Δδ(2)H and Δδ(18)O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 [per thousand] and 0.22 [per thousand]. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant

  7. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    SciTech Connect

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish; Liebson, Lindsay

    2012-04-15

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the

  8. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    NASA Astrophysics Data System (ADS)

    Brian Leen, J.; Berman, Elena S. F.; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to δ2H and δ18O measurement errors (Δδ2H and Δδ18O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, mBB, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, mNB. These metrics are used to correct for Δδ2H and Δδ18O. The method was tested on 14 instruments and Δδ18O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while Δδ2H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with mNB. Using the isotope error versus mNB and mBB curves, Δδ2H and Δδ18O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 ‰ and 0.25 ‰ respectively, while Δδ2H and Δδ18O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 ‰ and 0.22 ‰. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique

  9. Recoil distance transmission method: Measurement of interaction cross sections of excited states with fast rare-isotope beams

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Whitmore, K.; Iwasaki, H.

    2016-09-01

    The possible appearance of nuclear halos in ground and excited states close to the particle-decay threshold is of great importance in the investigation of nuclear structure and few-body correlations at the limit of stability. In order to obtain direct evidence of the halo structure manifested in nuclear excited states, we have considered a new method to measure the interaction cross sections of excited states. The combination of the transmission method and the recoil distance Doppler-shift method with a plunger device enables us to measure the number of interactions of the excited states in a target. Formulae to determine the interaction cross section are derived, and key issues to realize measurements are discussed. Dominant sources of errors are uncertainties in the excited-state lifetimes and γ-ray yields. We examine prototype experiments and perform simulations to study the impact of each uncertainty on the final result. This method provides a novel opportunity to perform cross section measurements on the excited states of rare isotopes.

  10. Cd Isotopic Composition Measured by Plasma Source Mass Spectrometry on Natural and Anthropogenic Materials. A Preliminary Outline of Cd Isotope Systematics

    NASA Astrophysics Data System (ADS)

    Innocent, C.

    2004-05-01

    Cadmium is a trace metal that is used as a geochemical tracer of natural processes, like biological productivity and paleoproductivity, and also of anthropogenic pollution, as Cd is known to be a toxic heavy metal that has become a major environmental and health concern. For these purposes, an outstanding issue is to determine whether Cd, like a number of metallic elements (e.g. Fe, Cu, Zn, Mo, Tl), may display variable isotopic compositions in natural and/or industrial compounds. It is known that Cd may display variable isotopic composition. Indeed, isotopic fractionation processes have been documented in some meteorites and in lunar soils. Consequently, due to its relatively low boiling point (767\\deg C) and also to the large mass range covered by its isotopes (10 mass units), Cd might fractionate isotopically, for example during the outpouring of acidic volcanic magmas and/or the emplacement of granitoids. On another hand, isotopic fractionation could also occur during human activities like refuse incineration or industrial manufacturing, for instance. Finally, biologically-induced isotopic fractionation should not be ruled out, as it is clearly evidenced for other metals, like Fe. A high precision method has been developed for determining the isotopic composition of Cd by plasma source mass spectrometry (Neptune). This method holds on the standard-bracketing technique, owing to the availability of Cd solutions of known isotopic composition provided by the University of M\\H{u}nster. This allows to correct precisely for mass fractionation that occurs in the plasma source mass spectrometer. It is also critical for the analysis to be possible to work with Cd solutions of very high purity. Chemical isolation of Cd involves 3 steps, and may be also suitable for Cd isotopic measurements using solid source mass spectrometry. Preliminary results suggest that Cd is likely to fractionate during smelting activities, as indicated by measurements on mining waste. The

  11. Control of optical spin Hall shift in phase-discontinuity metasurface by weak value measurement post-selection.

    PubMed

    Lee, Y U; Wu, J W

    2015-01-01

    Spin Hall effect of light is a spin-dependent transverse shift of optical beam propagating along a curved trajectory, where the refractive index gradient plays a role of the electric field in spin Hall effect of solid-state systems. In order to observe optical spin Hall shift in a refraction taking place at air-glass interface, an amplification technique was necessary such as quantum weak measurement. In phase-discontinuity metasurface (PMS) a rapid phase-change along metasurface takes place over subwavelength distance, which leads to a large refractive index gradient for refraction beam enabling a direct detection of optical spin Hall shift without amplification. Here, we identify that the relative optical spin Hall shift depends on incidence angle at PMS, and demonstrate a control of optical spin Hall shift by constructing weak value measurement with a variable phase retardance in the post-selection. Capability of optical spin Hall shift control permits a tunable precision metrology applicable to nanoscale photonics such as angular momentum transfer and sensing. PMID:26354387

  12. Control of optical spin Hall shift in phase-discontinuity metasurface by weak value measurement post-selection

    PubMed Central

    Lee, Y.U.; Wu, J.W.

    2015-01-01

    Spin Hall effect of light is a spin-dependent transverse shift of optical beam propagating along a curved trajectory, where the refractive index gradient plays a role of the electric field in spin Hall effect of solid-state systems. In order to observe optical spin Hall shift in a refraction taking place at air-glass interface, an amplification technique was necessary such as quantum weak measurement. In phase-discontinuity metasurface (PMS) a rapid phase-change along metasurface takes place over subwavelength distance, which leads to a large refractive index gradient for refraction beam enabling a direct detection of optical spin Hall shift without amplification. Here, we identify that the relative optical spin Hall shift depends on incidence angle at PMS, and demonstrate a control of optical spin Hall shift by constructing weak value measurement with a variable phase retardance in the post-selection. Capability of optical spin Hall shift control permits a tunable precision metrology applicable to nanoscale photonics such as angular momentum transfer and sensing. PMID:26354387

  13. High Spatial Resolution Isotopic Abundance Measurements by Secondary Ion Mass Spectrometry: Status and Prospects

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.

    2007-12-01

    volcanology to biogeochemistry and cosmochemistry. Multiple collector (static magnetic field) measurements at high mass resolving power have enabled high precision (sub-permil) for several stable isotopes systems (e.g., C, O, Mg, S). Applied to geochronology, the multiple collector approach permits very rapid survey of zircon Pb-Pb ages to identify candidate Hadean grains for further detailed analysis. Ion imaging has been used to correlate isotope compositions with biochemistry (e.g., FISH-SIMS) or to search for especially rare samples among larger populations (e.g., supernova grains of Stardust). For favorable sample geometries with lateral homogeneity, SIMS isotope analyses may be conducted in depth-profiling mode which brings spatial resolution into the tens of nm range. Applications of this approach include experimental petrology, thermochronology, and isotopic analyses of shallowly-implanted solar wind ions. New approaches to removal of molecular ion interferences include reverse- geometry instrumentation and accelerator-based SIMS. There always exists trade-offs between microanalysis and trace analysis on the one hand, and high precision on the other. In this contribution, I will review current status for isotope precision and accuracy of SIMS for applications in stable and radiogenic isotopes as a function of spatial scale. A discussion of current limits and future prospects for improvement in understanding matrix effects will be given. Examples from ion imaging/ depth profiling/ geochronology and cosmochemistry will be provided.

  14. Indirect Measurements for (p,{alpha}) Reactions Involving Boron Isotopes

    SciTech Connect

    Lamia, L.; Spitaleri, C.; Romano, S.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Pizzone, R. G.; Puglia, S. M. R.; Sergi, M. L.; Tudisco, S.; Tumino, A.; Carlin, N.; Szanto, M. G. del; Liguori Neto, R.; Moura, M. M. de; Munhoz, M. G.; Souza, F. A.; Suaide, A. A. P.; Szanto, E.

    2008-04-06

    Light elements lithium, beryllium and boron (LiBeB) were used in the last years as 'possible probe' for a deeper understanding of some extra-mixing phenomena occurring in young Main-Sequence stars. They are mainly destroyed by (p,{alpha}) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent results about the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be and {sup 10}B(p,{alpha}){sup 7}Be reactions is shown.

  15. Advances in Radioactive-Isotope Science from Mass Measurements

    NASA Astrophysics Data System (ADS)

    Lunney, David

    Mass is a fundamental property that is indispensable for the study of nuclear structure, for applications in stellar nucleosynthesis and neutron-star composition, as well as studies of atomic and weak-interaction physics. We briefly review the mass-measurement programs at radioactive-beam facilities worldwide and examine the wealth of new mass data, compare the strengths of the different installations and reflect on the multitude of physics results. The series of ENAM meetings from 1995 to 2008 saw the rise and subsequent dominance of Penning traps in the field of mass spectrometry, which has continued through the new era of the ARIS meetings. As for the ARIS 2011 conference, we attempt a nomination for "Penning trap of the year."

  16. Shift measurements of the stark-broadened ionized helium lines at 1640 and 1215 angstrom. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vanzandt, J. R.

    1976-01-01

    Time-resolved measurements were made of the shifts of the ionized helium lines at 1,640 A (n = 3 approaches 2) and 1,215 A (n = 4 approaches 2), and of the Stark profile of the 1,215 A wavelength line. An electromagnetic shock tube was used as a light source. The plasma conditions corresponded to electron temperatures of approximately 3.5 eV and electron densities of 0.8 to 1.8 x 10 to the 17th power/cubic cm. The measured shifts fell between two previous estimates of plasma polarization shifts. The measured Stark width of the 1,215 A wavelength line was up to 30% greater than the theoretical width.

  17. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    SciTech Connect

    Liu, X. H.; Luo, H.; Qu, T. L. Yang, K. Y.; Ding, Z. C.

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  18. Visual measurement of the evaporation process of a sessile droplet by dual-channel simultaneous phase-shifting interferometry

    PubMed Central

    Sun, Peng; Zhong, Liyun; Luo, Chunshu; Niu, Wenhu; Lu, Xiaoxu

    2015-01-01

    To perform the visual measurement of the evaporation process of a sessile droplet, a dual-channel simultaneous phase-shifting interferometry (DCSPSI) method is proposed. Based on polarization components to simultaneously generate a pair of orthogonal interferograms with the phase shifts of π/2, the real-time phase of a dynamic process can be retrieved with two-step phase-shifting algorithm. Using this proposed DCSPSI system, the transient mass (TM) of the evaporation process of a sessile droplet with different initial mass were presented through measuring the real-time 3D shape of a droplet. Moreover, the mass flux density (MFD) of the evaporating droplet and its regional distribution were also calculated and analyzed. The experimental results show that the proposed DCSPSI will supply a visual, accurate, noncontact, nondestructive, global tool for the real-time multi-parameter measurement of the droplet evaporation. PMID:26178451

  19. Measuring the turbulent wind vector with a weight-shift Microlight Aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Neidl, F.; Butterbach-Bahl, K.; Schmid, H. P.; Beyrich, F.; Zheng, X. H.; Foken, T.

    2009-09-01

    The Small Environmental Research Aircraft (SERA) D-MIFUs initial fields of application are aerosol / cloud and radiation transfer research. Therefore a comparatively slow (True Airspeed, TAS ~25 ms-1) but highly mobile microlight aircraft was envisaged. To broaden the application area of D-MIFU we explore whether the microlight can also be used for Eddy Covariance (EC) flux measurement. To obtain useful data sets for airborne EC a reliable turbulent Wind Vector (WV) measurement is a key requirement. Here we present methodology and results to calibrate and express performance and uncertainty of microlight based WV measurement. Specific attention is given to the influence of the flexible-wing weight-shift geometry on the WV measurement. For the WV measurement we equipped D-MIFU with a 70 cm long noseboom supporting a classical 5 hole probe and a fast 50 μm diameter thermocouple. An Inertial Navigation System (INS) supplies high accuracy ground speeds (Ï?=0.05 ms-1) and attitude angles (Ï?=0.03° , 0.1° respectively for heading). Data are stored with 10 Hz yielding a horizontal resolution of 2.5 m. The INS also allows to analyze aircraft dynamics such as 3d rotation rates and acceleration of the nacelle body. Further estimates for 3d acceleration of airfoil and noseboom are obtained at 100 Hz. The noseboom calibration coefficients under laboratory conditions were obtained by wind tunnel- and thermal bath measurements. To transfer these characteristics for in-flight conditions we carried out a series of flights with D-MIFU above the Boundary Layer under calm conditions. On basis of level flights at different power settings we were able to determine dynamic pressure-, sideslip- and attack angle offsets. Additionally forced maneuvers, such as e.g. phugoids, have been performed. By means of multivariate analysis these data are used to assess and minimize the impact of microlight nacelle and airfoil rapidly varying motions (RVM) on the WV components. In the final

  20. Modified cavity attenuated phase shift (CAPS) method for airborne aerosol light extinction measurement

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Freedman, Andrew; Petzold, Andreas

    2015-04-01

    Monitoring the direct impact of aerosol particles on climate requires the consideration of at least two major factors: the aerosol single-scattering albedo, defined as the relation between the amount of energy scattered and extinguished by an ensemble of aerosol particles; and the aerosol optical depth, calculated from the integral of the particle extinction coefficient over the thickness of the measured aerosol layer. Remote sensing networks for measuring these aerosol parameters on a regular basis are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. In particular, the CAPS PMex particle optical extinction monitor has demonstrated sensitivity of less than 2 Mm-1 in 1 second sampling period; with a 60 s averaging time, a detection limit of less than 0.3 Mm-1 can be achieved. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. Here, we report on the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, and subsequent laboratory tests for evaluating the modified instrument prototype: (1) In a

  1. Isotopic abundance in the CN coma of comets: Ten years of measurements

    NASA Astrophysics Data System (ADS)

    Schulz, R.; Jehin, E.; Manfroid, J.; Hutsemékers, D.; Arpigny, C.; Cochran, A.; Zucconi, J.-M.; Stüwe, J. A.

    2008-11-01

    Over the past 10 years the isotopic ratios of carbon ( 12C/ 13C) and nitrogen ( 14N/ 15N) have been determined for a dozen comets, bright enough to allow obtaining the required measurements from the ground. The ratios were derived from high-resolution spectra of the CN coma measured in the B 2∑ +-X 2∑ + (0, 0) emission band around 387 nm. The observed comets belong to different dynamical classes, including dynamically new as well as long- and short-period comets from the Halley- and Jupiter-family. In some cases the comets could be observed at various heliocentric distances. All values determined for the carbon and nitrogen isotopic ratios were consistent within the error margin irrespective of the type of comet or the heliocentric distance at which it was observed. Our investigations resulted in average ratios of 12C/ 13C=91±21 and nitrogen 14N/ 15N=141±29. Whilst the value for the carbon isotopic ratio is in good agreement with the solar and terrestrial value of 89, the nitrogen isotopic ratio is very different from the telluric value of 272.

  2. Uranium isotope measurements by quadrupole ICP-MS for process monitoring of enrichment

    SciTech Connect

    Policke, T.A.; Bolin, R.N.; Harris, T.L.

    1998-12-31

    Historically, uranium isotopic ratio measurements in the nuclear industry have been performed using Thermal Ionization Mass Spectrometry (TIMS); primarily due to the high level of precision that can be achieved. TIMS analysis, however, requires sample purification and intricate sample loading. Quadrupole (low resolution, single detector) inductively coupled plasma--mass spectrometry, Q-ICP-MS, overcomes these disadvantages and is a cost-effective alternative, i.e., in terms of initial capital, maintenance, and operating costs. This paper presents a simple, single standard approach for measuring uranium isotope content in various solid and liquid nuclear materials along with some comparison data of Q-ICP-MS and TIMS. Intensity ratios of {sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U to total U intensity are produced, providing the enrichment level or percent {sup 235}U. A detailed description of the instrument and data collection parameters are also provided. Optimal precision and accuracy are achieved through the use of a single standard which is closely matched to the enrichment and concentration of the samples. Depending upon the standard chosen, enrichments between depleted and 97% can be quantified. Standard deviations for the major uranium isotopes are typically within 0.02 absolute and at least an order of magnitude lower for the minor U isotope abundances.

  3. Stable isotope and high precision concentration measurements confirm that all humans produce and exhale methane.

    PubMed

    Keppler, Frank; Schiller, Amanda; Ehehalt, Robert; Greule, Markus; Hartmann, Jan; Polag, Daniela

    2016-03-01

    Mammalian formation of methane (methanogenesis) is widely considered to occur exclusively by anaerobic microbial activity in the gastrointestinal tract. Approximately one third of humans, depending on colonization of the gut by methanogenic archaea, are considered methane producers based on the classification terminology of high and low emitters. In this study laser absorption spectroscopy was used to precisely measure concentrations and stable carbon isotope signatures of exhaled methane in breath samples from 112 volunteers with an age range from 1 to 80 years. Here we provide analytical evidence that volunteers exhaled methane levels were significantly above background (inhaled) air. Furthermore, stable carbon isotope values of the exhaled methane unambiguously confirmed that this gas was produced by all of the human subjects studied. Based on the emission and stable carbon isotope patterns of various age groups we hypothesize that next to microbial sources in the gastrointestinal tracts there might be other, as yet unidentified, processes involved in methane formation supporting the idea that humans might also produce methane endogenously in cells. Finally we suggest that stable isotope measurements of volatile organic compounds such as methane might become a useful tool in future medical research diagnostic programs. PMID:26824393

  4. Neutron unbound resonances cataloged by isotope and invariant mass measurements for nuclei Z = 1-12

    NASA Astrophysics Data System (ADS)

    Havens, Elizabeth; Finck, Joseph; Gueye, Paul; Thoennessen, Michael; MoNA Collaboration

    2015-10-01

    Prior to 2014, no comprehensive study had been undertaken to compile experimental results from neutron unbound spectroscopy using invariant mass measurements, gamma resolutions and half-lives. Through the collaborative efforts of Central Michigan University, Hampton University and the NSCL, a project was initiated to catalog all unbound resonances in light nuclei (Z = 1-12). Unbound resonances were characterized by having a confirmed neutron decay branch and/or an energy level greater than the neutron binding energy listed for that isotope, according to either the NNDC's ENSDF or XUNDL and the referred journals therein. This was initially compiled in July 2014 and presented in October of that year. Recent discoveries and updates to NNDC have added ten isotopes and their resonances. Additionally, various corrections to previously compiled resonances have been made and equivalent evaluated and unevaluated invariant mass measurements have been consolidated into single entries. The neutron separation energy is noted for each isotope. The isotopes in which unbound resonances occur have been identified and, if known, each unbound resonance's gamma resolution, half-life, method of production and journal reference were also determined.

  5. Measurements of isotope effects in the photoionization of N2 and implications for Titan's atmosphere

    SciTech Connect

    Croteau, Philip; Randazzo, John B.; Kostko, Oleg; Ahmed, Musahid; Liang, Mao-Chang; Yung, Yuk L.; Boering, Kristie A.

    2010-12-30

    Isotope effects in the non-dissociative photoionization of molecular nitrogen (N2 + h nu -> N2+ + e-) may play a role in determining the relative abundances of isotopic species containing nitrogen in interstellar clouds and planetary atmospheres but have not been previously measured. Measurements of the photoionization efficiency spectra of 14N2, 15N14N, and 15N2 from 15.5 to 18.9 eV (65.6-80.0 nm) using the Advanced Light Source at Lawrence Berkeley National Laboratory show large differences in peak energies and intensities, with the ratio of the energy-dependent photoionization cross-sections, sigma(14N2)/sigma(15N14N), ranging from 0.4 to 3.5. Convolving the cross-sections with the solar flux and integrating over the energies measured, the ratios of photoionization rate coefficients are J(15N14N)/J(14N2)=1.00+-0.02 and J(15N2)/J(14N2)=1.00+-0.02, suggesting that isotopic fractionation between N2 and N2+ should be small under such conditions. In contrast, in a one-dimensional model of Titan's atmosphere, isotopic self-shielding of 14N2 leads to values of J(15N14N)/J(14N2) as large as ~;;1.17, larger than under optically thin conditions but still much smaller than values as high as ~;;29 predicted for N2 photodissociation. Since modeled photodissociation isotope effects overpredict the HC15N/HC14N ratio in Titan's atmosphere, and since both N atoms and N2+ ions may ultimately lead to the formation of HCN, estimates of the potential of including N2 photoionization to contribute to a more quantitative explanation of 15N/14N for HCN in Titan's atmosphere are explored.

  6. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma. PMID:14611049

  7. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    USGS Publications Warehouse

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  8. Measuring and utilizing the hydrogen isotopic composition of deep-sea corals

    NASA Astrophysics Data System (ADS)

    Davin, Samuel; Hillaire-Marcel, Claude; Edinger, Evan; Gelinas, Yves

    2016-04-01

    Despite the widespread use of hydrogen isotopic analysis of bioarchives in paleoenvironmental reconstructions, no previously-published work has yet attempted to measure or utilize the hydrogen isotopic composition (δD) of deep-sea corals. Geographically ubiquitous and with lifespans on the scale of hundreds of years, δD measurements of deep-sea corals have the potential to elucidate physical paleoceanographic parameters at well-resolved spatial and temporal resolutions. We present a method for the determination of annually-resolved δD from deep-sea corals measured from gorgonin, a complex proteinaceous material making up the horny skeleton of gorgonian corals. We address the issue of exchangeable hydrogen in gorgonin by controlling the isotopic composition of exchangeable hydrogen using a heated batch dual-equilibration technique. Coupled with δ15N measurements, we attempt to identify the relationships between trophic feeding levels, physical oceanographic parameters, and the δD of gorgonin from corals collected from chemically distinct ocean basins. Preliminary results from 43 samples indicate reproducible measurements on coral species Primnoa pacifica, Primnoa resedaeformis, and Keratoisis grayii with bulk δD values ranging from -40‰ to -110‰ and bulk δ15N values ranging from +13‰ to +17‰. Final results will include a full suite of non-exchangeable δD values and δ15N of corals from the Labrador Sea and from the Gulf of Alaska.

  9. Ptolemy an Instrument to Measure Stable Isotopic Ratios of Key Volatiles on a Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Wright, I. P.; Barber, S. J.; Morgan, G. H.; Morse, A. D.; Sheridan, S.; Andrews, D. J.; Maynard, J.; Yau, D.; Evans, S. T.; Leese, M. R.; Zarnecki, J. C.; Kent, B. J.; Waltham, N. R.; Whalley, M. S.; Heys, S.; Drummond, D. L.; Edeson, R. L.; Sawyer, E. C.; Turner, R. F.; Pillinger, C. T.

    2007-02-01

    A fundamental goal of cometary studies is to determine the exact relationship between these bodies and the Solar System the question(s) can be summarised as follows: did comets originate during the same events that spawned the Sun and planets, are they more primitive bodies that record a pre-solar history, or are they interstellar materials collected in relatively more recent times? Now, whatever the origin of comets, it is entirely possible that they could, in part, contain interstellar or pre-solar components indeed, it seems rather likely in light of the fact that primitive meteorites contain such entities. These particular components are likely to be refractory (dust, macromolecular organic complexes, etc.). Of more relevance to the issues above are the volatile constituents, which make up the bulk of a comet's mass. Since these materials, by their very nature, volatilise during perihelion passage of a comet they can, in some instances, be detected and measured spectroscopically. Perhaps the most useful species for isotopic investigations are C2, HCN and CN. Unfortunately, spectroscopic measurements can only currently be made with accuracies of ±10 to ±20%. As such it is very often not practical to conclude anything further than the fact that isotopic measurements are compatible with ‘`solar’' values, which tends to imply an origin from the margins of the solar accretion disk. But there is another problem with the spectroscopic measurements since these are made on gaseous species in the coma (and relatively minor species at that) it is impossible to be certain that these represent the true nuclear values. In other words, if the processes of sublimation, active jetting, and photochemistry in the coma impart isotopic fractionation, the spectroscopic measurements could give a false impression of the true isotope ratios. What is required is an experiment capable of measuring isotopic ratios at the very surface of a comet. Herein we describe the Ptolemy

  10. High-sensitivity measurement of 3He-4He isotopic ratios for ultracold neutron experiments

    NASA Astrophysics Data System (ADS)

    Mumm, H. P.; Huber, M. G.; Bauder, W.; Abrams, N.; Deibel, C. M.; Huffer, C. R.; Huffman, P. R.; Schelhammer, K. W.; Janssens, R.; Jiang, C. L.; Scott, R. H.; Pardo, R. C.; Rehm, K. E.; Vondrasek, R.; Swank, C. M.; O'Shaughnessy, C. M.; Paul, M.; Yang, L.

    2016-06-01

    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of 3He to 4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10-14 level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of 3He/4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude.

  11. A Widely Tunable Infrared Laser Spectrometer for Measurements of Isotopic Ratios of Carbon Cycle Gases

    SciTech Connect

    Joanne H. Shorter; J. Barry McManus; David D. Nelson; Charles E. Kolb; Mark S. Zahniser; Ray Bambha; Uwe Lehmann; Tomas Kulp; Stanley C. Tyler

    2005-01-31

    The atmospheric abundances of carbon dioxide and methane have increased dramatically during the industrial era. Measurements of the isotopic composition of these gases can provide a powerful tool for quantifying their sources and sinks. This report describes the development of a portable instrument for isotopic analysis CO{sub 2} and CH{sub 4} using tunable infrared laser absorption spectroscopy. This instrument combines novel optical design and signal processing methods with a widely tunable mid-infrared laser source based on difference frequency generation (DFG) which will can access spectral regions for all the isotopes of CO{sub 2} and CH{sub 4} with a single instrument. The instrument design compensates for the large difference in concentration between major and minor isotopes by measuring them with path lengths which differ by a factor of 100 within the same multipass cell. During Phase I we demonstrated the basic optical design and signal processing by determining {sup 13}CO{sub 2} isotopic ratios with precisions as small as 0.2{per_thousand} using a conventional lead salt diode laser. During Phase II, the DFG laser source was coupled with the optical instrument and was demonstrated to detect {sup 13}CH{sub 4}/{sup 12}CH{sub 4} ratios with a precision of 0.5{per_thousand} and an averaging time of 20 s using concentrated methane in air with a mixing ratio of 2700 ppm. Methods for concentrating ambient air for isotopic analysis using this technique have been evaluated. Extensions of this instrument to other species such as {sup 13}CO{sub 2}, C{sup 18}OO, and CH{sub 3}D are possible by substituting lasers at other wavelengths in the DFG source module. The immediate commercial application of this instrument will be to compete with existing mass spectrometric isotope instruments which are expensive, large and relatively slow. The novel infrared source developed in this project can be applied to the measurement of many other gas species and will have wide

  12. Communication: Frequency shifts of an intramolecular hydrogen bond as a measure of intermolecular hydrogen bond strengths

    NASA Astrophysics Data System (ADS)

    Gu, Quanli; Trindle, Carl; Knee, J. L.

    2012-09-01

    Infrared-ultraviolet double resonance spectroscopy has been applied to study the infrared spectra of the supersonically cooled gas phase complexes of formic acid, acetic acid, propionic acid, formamide, and water with 9-hydroxy-9-fluorenecarboxylic acid (9HFCA), an analog of glycolic acid. In these complexes each binding partner to 9HFCA can function as both proton donor and acceptor. Relative to its frequency in free 9HFCA, the 9-hydroxy (9OH) stretch is blue shifted in complexes with formic, acetic, and propionic acids, but is red shifted in the complexes with formamide and water. Density functional calculations on complexes of 9HFCA to a variety of H bonding partners with differing proton donor and acceptor abilities reveal that the quantitative frequency shift of the 9OH can be attributed to the balance struck between two competing intermolecular H bonds. More extensive calculations on complexes of glycolic acid show excellent consistency with the experimental frequency shifts.

  13. Reformulated 17O correction of mass spectrometric stable isotope measurements in carbon dioxide and a critical appraisal of historic 'absolute' carbon and oxygen isotope ratios

    NASA Astrophysics Data System (ADS)

    Kaiser, Jan

    2008-03-01

    Mass-spectrometric stable isotope measurements of CO 2 use molecular ion currents at mass-to-charge ratios m/ z 44, 45 and 46 to derive the elemental isotope ratios n( 13C)/ n( 12C) and n( 18O)/ n( 16O), abbreviated 13C/ 12C and 18O/ 16O, relative to a reference. The ion currents have to be corrected for the contribution of 17O-bearing isotopologues, the so-called ' 17O correction'. The magnitude of this correction depends on the calibrated isotope ratios of the reference. Isotope ratio calibrations are difficult and are therefore a matter of debate. Here, I provide a comprehensive evaluation of the existing 13C/ 12C ( 13R), 17O/ 16O ( 17R) and 18O/ 16O ( 18R) calibrations of the reference material Vienna Standard Mean Ocean Water (VSMOW) and CO 2 generated from the reference material Vienna Pee Dee Belemnite (VPDB) by reaction with 100% H 3PO 4 at 25 °C (VPDB-CO 2). I find 17R/10-6=382.7-2.1+1.7, 18RVSMOW/10 -6 = 2005.20 ± 0.45, 13R/10-6= 11124 ± 45, 17R/10-6=391.1-2.1+1.7 and 18R/10-6=2088.37±0.90. I also rephrase the calculation scheme for the 17O correction completely in terms of relative isotope ratio differences ( δ values). This reveals that only ratios of isotope ratios (namely, 17R/ 13R and 13R17R/ 18R) are required for the 17O correction. These can be, and have been, measured on conventional stable isotope mass spectrometers. I then show that the remaining error for these ratios of isotope ratios can lead to significant uncertainty in the derived relative 13C/ 12C difference, but not for 18O/ 16O. Even though inter-laboratory differences can be corrected for by a common 'ratio assumption set' and/or normalisation, the ultimate accuracy of the 17O correction is hereby limited. Errors of similar magnitude can be introduced by the assumed mass-dependent relationship between 17O/ 16O and 18O/ 16O isotope ratios. For highest accuracy in the 13C/ 12C ratio, independent triple oxygen isotope measurements are required. Finally, I propose an experiment that

  14. Intra-specific diet shift in manila clams (Ruditapes philippinarum) as revealed by carbon and nitrogen stable isotopes and fatty acid biomarker

    NASA Astrophysics Data System (ADS)

    Suh, Y.; Shin, K.

    2011-12-01

    Manila clams sampled in Seonjae Island, Korea with shell lengths (SL) below 19.76 mm in average showed a significantly depleted carbon and nitrogen isotope values (P<0.05) by 0.80~1.41 %. This size related variation can be caused by either altered carbon and nutrient source or by affected isotopic incorporation rates and discrimination factors. In order to examine size-related diet shift in manila clams, R. philippinarum with different sizes that were constantly fed on known mixed microalgae for several months were sampled from Incheon Fisheries Hacheries Research Institute (IFRI). These manila clams have shown a high intra-species variation in growth rate with a maximum difference of more or less 2.30 cm. The smallest size groups (3.68±0.17 mm and 6.88±0.21 mm) obtained their nutrition from both P. tricornutum and aggregated organic matter that consists of dead or decomposed microalgae or other detritus. Bigger size groups (10.92±0.34 mm and 14.81±0.25 mm) obtained most of their energy from P.tricorutum and also from other phytoplankton unlike the biggest size group (21.15±1.02 mm) that feeds mainly on fresh microalgae of all diets fed. This variation in diet reveals that smaller clams mostly inhale dead or decomposed microalgae that sinks on the bottom while the bigger clams uptake more fresh ones that are still alive. This variation in feeding behavior could have been caused by morphological constraints such as limited siphon length. The results suggest that manila clams greater than and below 19.76 mm in average have different feeding behavior and P. tricornutum and I. galbana were the two most preferred diets for manila clams cultured in IFHRI. The result of fatty acid composition of manila clams in relation to size or growth rate suggests that fast growing clams would have rapid metabolism of fatty acids not required by the animals and an accumulation of the essential fatty acids (PUFA). In addition, their higher energy requirement and more active state

  15. Potassium stable isotopic compositions measured by high-resolution MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Lloyd, N. S.; Ellam, R. M.; Simon, J. I.

    2012-12-01

    Potassium isotopic (41K/39K) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the 40K/39K ratio can provide precise values but assume identical 40K/39K ratios (e.g. 0.05‰ (1σ) in [1]); this is appropriate in some cases (e.g. identifying excess 41K) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25‰ precisions (1σ) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as 38ArH+ and 40ArH+ and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2‰ (1σ, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make 41K/39K ratio measurements with 0.07‰ precisions (1σ). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for 41K). Although ICP-MS does not yield accurate 41K/39K values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative 41K/39K values can be precisely determined via sample-standard bracketing. As cold plasma

  16. Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS

    NASA Technical Reports Server (NTRS)

    Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.

    2012-01-01

    Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample

  17. Laboratory and Field Measurements of the Nitrogen Isotopic Composition of NOx

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; Miller, D. J.; Dahal, B. R.; Lew, A. F.; Peltier, R.; Hastings, M. G.

    2014-12-01

    The nitrogen isotopic composition of nitrogen oxides (NOx = NO + NO2) has been measured from several NOx emissions sources in prior studies. These measurements have utilized a variety of methods for collecting the NOx as nitrate or nitrite for isotopic analysis, but none of these methods have been verified for complete conversion of NOx. Less than 100% conversion can result in isotopic fractionations. We present a method for accurately measuring the nitrogen isotopic composition of NOx using a .25 M KMnO4 and 0.5 M NaOH solution. Based on laboratory tests, this technique has been found to collect all NOx passed through under a variety of conditions (e.g., air flow rate, NOx concentration, temperature, humidity), allowing for diagnosis of δ15N-NOx without correction for fractionation. The precision across the entire analytic technique is 1.5‰. This active collection method is advantageous for collecting NOx over short time scales in environments with highly variable NOx sources and concentrations. The major drawback of the NaOH/KMnO4 method is a significant nitrate background found in the KMnO4, but this background is consistent and can be easily accounted for. We aim to use this method to provide more robust constraints on the isotopic signatures of NOx emissions from different sources. Initial results will be presented from lab- and field-based collections of NOx emissions. Emissions from a diesel engine were measured in a laboratory smog chamber and yielded δ15N values with a mean of -18.0‰ (n = 5, 1σ = 0.97‰). Measurements of δ15N-NOx were also made on a rooftop between two highways in Providence, RI. The values ranged from -7.7 to -0.63‰ for different time periods sampled, with excellent reproducibility in side-by-side collections. Additionally, the NaOH/KMnO4 was deployed in a laboratory study of biomass burning (FLAME4) to analyze the nitrogen isotopic composition of NOx produced from the burning of variety of materials (e.g. trees, agricultural

  18. The stability and calibration of water vapor isotope ratio measurements during long-term deployments

    NASA Astrophysics Data System (ADS)

    Bailey, A.; Noone, D.; Berkelhammer, M.; Steen-Larsen, H. C.; Sato, P.

    2015-05-01

    With the recent advent of commercial laser absorption spectrometers, field studies measuring stable isotope ratios of hydrogen and oxygen in water vapor have proliferated. These pioneering analyses have provided invaluable feedback about best strategies for optimizing instrumental accuracy, yet questions still remain about instrument performance and calibration approaches for multi-year field deployments. With clear scientific potential for using these instruments to carry out long-term monitoring of the hydrological cycle, this study examines the long-term stability of the isotopic biases associated with three cavity-enhanced laser absorption spectrometers - calibrated with different systems and approaches - at two remote field sites: Mauna Loa Observatory, Hawaii, USA, and Greenland Environmental Observatory, Summit, Greenland. The analysis pays particular attention to the stability of measurement dependencies on water vapor concentration and also evaluates whether these so-called concentration-dependences are sensitive to statistical curve-fitting choices or measurement hysteresis. The results suggest evidence of monthly-to-seasonal concentration-dependence variability - which likely stems from low signal-to-noise at the humidity-range extremes - but no long-term directional drift. At Mauna Loa, where the isotopic analyzer is calibrated by injection of liquid water standards into a vaporizer, the largest source of inaccuracy in characterizing the concentration-dependence stems from an insufficient density of calibration points at low humidity. In comparison, at Greenland, the largest source of inaccuracy is measurement hysteresis associated with interactions between the reference vapor, generated by a custom dew point generator (DPG), and the sample tubing. Nevertheless, prediction errors associated with correcting the concentration-dependence are small compared to total measurement uncertainty. At both sites, a dominant source of uncertainty is instrumental

  19. Continental-Scale Stable Isotope Measurements at NEON to Address Ecological Processes Across Systems

    NASA Astrophysics Data System (ADS)

    Luo, H.; Goodman, K. J.; Hinckley, E. S.; West, J. B.; Williams, D. G.; Bowen, G. J.

    2013-12-01

    The National Ecological Observatory Network (NEON) is a national-scale research platform. The overarching goal of NEON is to enable understanding and forecasting of the impacts of climate change, land use change, and invasive species on aspects of continental-scale ecology (such as biodiversity, biogeochemistry, infectious diseases, ecohydrology, etc.). NEON focuses explicitly on questions that relate to grand challenges in environmental science, are relevant to large regions, and would otherwise be very difficult to address with traditional ecological approaches. The use of stable isotope approaches in ecological research has grown steadily during the last two decades. Stable isotopes at natural abundances in the environment trace and integrate the interaction between abiotic and biotic components across temporal and spatial scales. In this poster, we will present the NEON data products that incorporate stable isotope measurements in atmospheric, terrestrial, and aquatic ecosystems in North America. We further outline current questions in the natural sciences community and how these data products can be used to address continental-scale ecological questions, such as the ecological impacts of climate change, terrestrial-aquatic system linkages, land-atmosphere exchange, landscape ecohydrological processes, and linking biogeochemical cycles across systems. Specifically, we focus on the use of stable isotopes to evaluate water availability and residence times in terrestrial systems, as well as nutrient sources to terrestrial systems, and cycling across ecosystem boundaries.

  20. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  1. Internal Referencing for ¹³C Position-Specific Isotope Analysis Measured by NMR Spectrometry.

    PubMed

    Bayle, Kevin; Grand, Mathilde; Chaintreau, Alain; Robins, Richard J; Fieber, Wolfgang; Sommer, Horst; Akoka, Serge; Remaud, Gérald S

    2015-08-01

    The intramolecular (13)C composition of a molecule retains evidence relevant to its (bio)synthetic history and can provide valuable information in numerous fields ranging from biochemistry to environmental sciences. Isotope ratio monitoring by (13)C NMR spectrometry (irm-(13)C NMR) is a generic method that offers the potential to conduct (13)C position-specific isotope analysis with a precision better than 1‰. Until now, determining absolute values also required measurement of the global (or bulk) (13)C composition (δ(13)Cg) by mass spectrometry. In a radical new approach, it is shown that an internal isotopic chemical reference for irm-(13)C NMR can be used instead. The strategy uses (1)H NMR to quantify both the number of moles of the reference and of the studied compound present in the NMR tube. Thus, the sample preparation protocol is greatly simplified, bypassing the previous requirement for precise purity and mass determination. The key to accurate results is suppressing the effect of radiation damping in (1)H NMR which produces signal distortion and alters quantification. The methodology, applied to vanillin with dimethylsulfone as an internal standard, has an equivalent accuracy (<1‰) to that of the conventional approach. Hence, it was possible to clearly identify vanillin from different origins based on the (13)C isotopic profiles. PMID:26158226

  2. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    PubMed

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. PMID:21290447

  3. Advances in Methane Isotope Measurements via Direct Absorption Spectroscopy with Applications to Oil and Gas Source Characterization

    NASA Astrophysics Data System (ADS)

    Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Petron, G.; Shorter, J. H.; Jervis, D.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Kolb, C. E., Jr.

    2015-12-01

    Instrumental developments in the measurement of multiple isotopes of methane (12CH4, 13CH4 and 12CH3D) are presented. A first generation 8-micron instrument quantifies 12CH4 and 13CH4 at a 1-second rate via tunable infrared direct absorption spectroscopy (TILDAS). A second generation instrument uses two 3-micron intraband cascade lasers in an Aerodyne dual laser chassis for simultaneous measurement of 12CH4, 13CH4 and 12CH3D. Sensitivity and noise performance improvements are examined. The isotopic signature of methane provides valuable information for emission source identification of this greenhouse gas. A first generation spectrometer has been deployed in the field on a mobile laboratory along with a sophisticated 4-tank calibration system. Calibrations are done on an agressive schedule, allowing for the correction of measured isotope ratios to an absolute isotope scale. Distinct isotopic signatures are found for a number of emission sources in the Denver-Julesburg Basin: oil and gas gathering stations, compressor stations and processing plants; a municipal landfill, and dairy/cattle operations. The isotopic signatures are compared with measured ethane/methane ratios. These direct absorption measurements have larger uncertainties than samples measured via gas chromatography-mass spectrometry, but have several advantages over canister sampling methods: individual sources of short duration are easier to isolate; calibrated isotope ratio results are available immediately; replicate measurements on a single source are easily performed; and the number of sources sampled is not limited by canister availability and processing time.

  4. A review and interpretation of recent cosmic ray beryllium isotope measurements

    NASA Technical Reports Server (NTRS)

    Buffington, A.

    1978-01-01

    Beryllium-10 is of interest for cosmic ray propagation, because its radioactive decay half-life is well matched to the expected cosmic ray age. Recent beryllium isotope measurements from satellites and balloon covered an energy range from about 30 to 300 MeV/nucleon. At the lowest energies, most of the Be-10 is absent, indicating a cosmic ray lifetime of order 2 x 10 to the 7th power years and the rather low average density of 0.2 atoms/cc traversed by the cosmic rays. At higher energies, a greater propagation of Be-10 is observed, indicating a somewhat shorter lifetime. These experiments will be reviewed and then compared with a new experiment covering from 100 to 1000 MeV/nucleon. Although improved experiments will be necessary to realize the full potential of cosmic ray beryllium isotope measurements, these first results are already disclosing interesting and unexpected facts about cosmic ray acceleration and propagation.

  5. Rn-222 tracing and stable isotope measurements of biogenic gas fluxes from methane saturated sediments

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Green, C. D.; Blair, Neal; Chanton, J. P.

    1985-01-01

    Transport of reduced biogenic gases from anoxic sediments and soils to the atmosphere can be quantitatively studied through measurement of radon-222/radium-226 disequilibrium. In previous work, seasonal variations in biogenic gas transport mechanisms, net fluxes and overall composition were documented. Now presented are direct field measurements of radon-222 activity in gases exiting organic rich sediments which show their usefulness for tracing of the stripping of dissolved biogenic gases from within the sediment column and transport via bubble ebullition. Methane is depleted in deuterium during the summer as compared with winter months and is in general lighter than in most marine sediments signaling the probable importance of acetate as an important precursor molecule. The significant seasonal isotopic variations observed illustrate the importance of understanding mechanisms and rates of biogenic gas production in order to interpret observed tropospheric isotopic data.

  6. Measurement of Cerenkov Radiation Induced by the Gamma-Rays of Co-60 Therapy Units Using Wavelength Shifting Fiber

    PubMed Central

    Jang, Kyoung Won; Shin, Sang Hun; Kim, Seon Geun; Kim, Jae Seok; Yoo, Wook Jae; Ji, Young Hoon; Lee, Bongsoo

    2014-01-01

    In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%. PMID:24755521

  7. Measurement of Cerenkov radiation induced by the gamma-rays of Co-60 therapy units using wavelength shifting fiber.

    PubMed

    Jang, Kyoung Won; Shin, Sang Hun; Kim, Seon Geun; Kim, Jae Seok; Yoo, Wook Jae; Ji, Young Hoon; Lee, Bongsoo

    2014-01-01

    In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%. PMID:24755521

  8. Study for Nuclear Structures of 22-35Na Isotopes via Measurements of Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinji

    2014-09-01

    T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn., Kochi Univ. of Tech.) Reaction cross sections (σR) for 22-35Na isotopes have been measured at around 240 MeV/nucleon. The σR for 22-35Na were measured for the first time. Enhancement in cross sections is clearly observed from the systematics for stable nuclei, for isotopes with large mass numbers. These enhancement can be mainly ascribed to the nuclear deformation. We will discuss the nuclear structure (neutron skin, nuclear shell structure) for neutron-excess Na isotopes. T. Ohtsubo, M. Nagashima, T. Ogura, Y. Shimbara (Grad. Sch. of Sc., Niigata Univ.), M.Takechi, H. Geissel, M. Winkler (GSI), D. Nishimura, T. Sumikama (Dept. of Phys., Tokyo Univ. of Sc.), M. Fukuda, M. Mihara, H. Uenishi (Dept. of Phys., Osaka Univ.), T. Kuboki, T. Suzuki, T. Yamaguchi, H. Furuki, C. S. Lee, K. Sato (Dept. of Phys., Saitama Univ.), A. Ozawa, H. Ohnishi, T. Moriguchi, S. Fukuda, Y. Ishibashi, D. Nagae, R. Nishikiori, T. Niwa (Inst. of Phys., Univ. of Tsukuba), N. Aoi (RCNP), Rui-Jiu Chen, N. Inabe, D. Kameda, T. Kubo, M. Lantz, T. Ohnishi, K. Okumura, H. Sakurai, H. Suzuki, H. Takeda, S. Takeuchi, K. Tanaka, Y. Yanagisawa (RIKEN), De-Qing Fang, Yu-Gang Ma (SINAP), T. Izumikawa (RI Ctr., Niigata Univ.), and S. Momota (Fac. of Engn

  9. Quantitative microbial ecology through stable isotope probing.

    PubMed

    Hungate, Bruce A; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; McHugh, Theresa A; Marks, Jane C; Morrissey, Ember M; Price, Lance B

    2015-11-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing. PMID:26296731

  10. Global Measurement of Nitrous Oxide Stable Isotopes Using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Steiker, A. E.; Townsend, A. R.; White, J. W. C.

    2014-12-01

    Nitrous oxide continues to increase in the atmosphere mainly due to heightened microbial production from fertilized agricultural systems. Soil microorganism processes are spatiotemporally heterogeneous, limiting our ability to constrain the anthropogenic influence on N2O production at a global scale. The intramolecular position of 15N (β position 15N14N16O versus α position 14N15N16O) in addition to δ15Nbulk-N2O can aid in our understanding of both the biological controls and stratospheric influence of tropospheric N2O. A subset of 22 sites from the NOAA Global Monitoring Division Cooperative Sampling Network is being measured in order to describe the global distribution and seasonality of N2O isotopocules. Simultaneous and continuous measurement of N2O mole fraction, δ15Nbulk-N2O, δ15Nα-N2O, and δ15Nβ-N2O is conducted using the Picarro G5101-i wavelength-scanned cavity ring-down spectrometer coupled with a quantum cascade laser capable of the mid-infrared wavelength detection needed for N2O. While isotopic differences within and between sites are observed, long term measurement uncertainties of 0.7‰, 0.8‰, and 1.3‰ for δ15Nbulk, δ15Nα, and δ15Nβ respectively, limit our ability to detect tropospheric trends. Applying additional correction factors for environmental conditions and molecular interference may help to reduce these uncertainties. Due to the lack of isotopic reference material for N2O, we have developed an isotopic calibration technique using trace additions of δ15Nα and δ15Nβ to our reference gas at the ambient mole fraction needed for laser based isotopic measurement.

  11. Combining metal and nonmetal isotopic measurements in barite to identify mode of formation

    NASA Astrophysics Data System (ADS)

    Griffith, E. M.; Paytan, A.; Eisenhauer, A.; Scher, H. D.; Wortmann, U.

    2014-12-01

    Barite (BaSO4) is a highly stable and widely-distributed mineral found in magmatic, metamorphic, and sedimentary rocks (of all ages), as well as in soils, aerosol dust, and extraterrestrial material. Today, barite can form in a variety of settings in the oceans (hydrothermal, cold seeps, water column, sediments) and on the continents - where supersaturation and precipitation of barite typically occurs from the mixing of fluids - one containing Ba and another containing sulfate. Sulfur (δ34S) and oxygen (δ18O) isotopes together with 87Sr/86Sr and stable Sr-isotopic signatures (δ88/86Sr) of modern authigenic continental barite are compared to modern pelagic marine barite and marine hydrothermal and cold seep barite to investigate the potential for their combined use to indicate mode of barite formation. The 87Sr/86Sr in barite cleary identifies the source of fluid for any particular type of barite (as previously noted, see Paytan et al., 2002). The highest (most radiogenic) 87Sr/86Sr values are measured in continental barite samples. There is no unique δ88/86Sr signature for any particular type of barite, but coretop marine (pelagic) barite has a consistent value measured from samples collected in different ocean basins. The highest and lowest δ88/86Sr values were measured in continental barite samples. The combination of isotopic systems result in unique δ88/86Sr and δ18O relationships and distinct δ88/86Sr and δ34S relationships for different types of barites investigated. Data suggest that the combined use of these metal and nonmetal isotopic measurements in barite could be useful as a new geochemical proxy to identify mode of barite mineralization for use in earth science applications including understanding ancient barite deposits.

  12. Measuring of fissile isotope partial antineutrino spectra in direct experiment at nuclear reactor

    SciTech Connect

    Sinev, V. V.

    2009-11-15

    The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta-decay reaction positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

  13. Using Electrophoretic Mobility Shift Assays to Measure Equilibrium Dissociation Constants: GAL4-p53 Binding DNA as a Model System

    ERIC Educational Resources Information Center

    Heffler, Michael A.; Walters, Ryan D.; Kugel, Jennifer F.

    2012-01-01

    An undergraduate biochemistry laboratory experiment is described that will teach students the practical and theoretical considerations for measuring the equilibrium dissociation constant (K[subscript D]) for a protein/DNA interaction using electrophoretic mobility shift assays (EMSAs). An EMSA monitors the migration of DNA through a native gel;…

  14. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Follow-up corrective measures when a standard threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up...

  15. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Follow-up corrective measures when a standard threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up...

  16. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Follow-up corrective measures when a standard threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up...

  17. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Follow-up corrective measures when a standard threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up...

  18. Cosmic ray isotope measurements with a new Cerenkov X total energy telescope

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Kish, J. C.; Schrier, D. A.

    1985-01-01

    Measurements of the isotopic composition of cosmic nuclei with Z = 7-20 are reported. These measurements were made with a new version of a Cerenkov x total E telescope. Path length and uniformity corrections are made to all counters to a RMS level 1%. Since the Cerenkov counter is crucial to mass measurements using the C x E technique - special care was taken to optimize the resolution of the 2.4 cm thick Pilot 425 Cerenkov counter. This counter exhibited a beta = 1 muon equivalent LED resolution of 24%, corresponding to a total of 90 p.e. collected at the 1st dynodes of the photomultiplier tubes.

  19. Measurements of Hydrogen and Helium Isotopes with the BESS-Polar II Instrument

    NASA Astrophysics Data System (ADS)

    Picot-Clemente, Nicolas; BESS-Polar Collaboration

    2015-04-01

    The Balloon-Borne Experiment with a Superconducting Spectrometer (BESS-Polar II) flew successfully over Antarctica for 24.5 days in December 2007 through January 2008 during a period of minimum Solar activity. BESS-Polar II is configured with a solenoidal superconducting magnet and a suite of precision particle detectors. It can accurately identify hydrogen and helium isotopes among the incoming cosmic-ray nuclei with energies from 0.2 up to about 1.5 GeV/n. The long duration of the flight, and the good stability of the detectors increased the number of cosmic-ray events previously recorded with BESS-Polar I by a factor of 5, reaching about 4.7 billion collected particles. This allows to study and measure energy spectrum of hydrogen and helium isotope fluxes with unprecedented precision. The isotope flux and ratio measurements with BESS-Polar II will be presented and compared to previous measurements and theoretical predictions. They provide essential information to constrain cosmic-ray propagation models.

  20. Adsorption in gas mass spectrometry. I. Effects on the measurement of individual isotopic species

    NASA Astrophysics Data System (ADS)

    Gonfiantini, Roberto; Valkiers, Staf; Taylor, Philip D. P.; de Bièvre, Paul

    1997-05-01

    The adsorption-desorption process of gas molecules on the walls of the mass spectrometer inlet system was studied in order to assess quantitatively its influence on measurement results. The effects on individual isotopic species in SiF4 measurements required for the re-determination of the Avogadro constant are discussed in this paper, while the effects on isotope amount ratio determinations will be discussed in a companion paper. A model based on the Langmuir adsorption isotherm is developed, which fits well the experimental observations and provides the means to investigate adsorption and desorption kinetics in the inlet system. A parameter called the [`]apparent leak-rate coefficient' is introduced; this represents the relative variation with time of any isotopic species in the inlet system. All the adsorption parameters appearing in the balance equations are derived from the apparent leak-rate coefficient. Application of the model to long mass-spectrometric measurements of SiF4 yields a rate constant of 6.5 × 10-5 s-1 for SiF4 effusion through the molecular leak of the inlet system. Adsorption and desorption rate-constants are equal to 20-25% of the leak rate-constant, and the adsorption sites are about two orders of magnitude lower than the number of Ni and Cu atoms present on the inlet system walls.

  1. Preparation of the anapole moment measurement in a chain of isotopes

    NASA Astrophysics Data System (ADS)

    Sheng, Dong; Hood, Jonathan; Orozco, Luis

    2010-02-01

    We present the current status of the experimental effort towards the measurement of the anapole moment in different isotopes of francium. The anapole is a parity violating, time reversal conserving nuclear moment that arises from the weak interaction among nucleons, and should be sensitive to the changes in the nuclear structure configuration among the isotopes. The anapole is a unique probe of the weak interaction in the presence of the strong interaction. The system is currently being tested with rubidium and we have analyzed the sensitivity to measurements with a chain of Rb isotopes. Our experimental scheme involves a collection of cold atoms in a blue-detuned dipole trap located at the anti-node of a microwave cavity. The standing wave would drive a parity forbidden E1 transition between hyperfine ground states, interfering with an allowed transition. The rate of transitions depends on the positive or negative handedness of the apparatus and the measurement of their difference is proportional to the anapole moment. The experiment will use of the ISAC radioactive beam facility at TRIUMF. )

  2. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    NASA Astrophysics Data System (ADS)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  3. MEASUREMENT OF THE ISOTOPIC COMPOSITION OF HYDROGEN AND HELIUM NUCLEI IN COSMIC RAYS WITH THE PAMELA EXPERIMENT

    SciTech Connect

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Carbone, R.; Bogomolov, E. A.; Borisov, S.; Casolino, M.; De Pascale, M. P.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Castellini, G.; Danilchenko, I. A.; De Santis, C.; and others

    2013-06-10

    The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.

  4. Field shifts in hafnium II

    NASA Astrophysics Data System (ADS)

    Aufmuth, P.; Henneberg, I.; Siminski, A.; Steudel, A.

    1991-03-01

    By means of classical interference spectroscopy, using enriched isotope samples, the isotope shift between178Hf and180Hf has been measured for 33 transitions in the Hf II spectrum. For the pure Russell-Saunders terms 5 d 26 s 4 F and2 F the parametric analysis yields a field-shift difference of 17(2) mK produced by the second-order interaction of the electrostatic operator and the field-shift operator. Semi-empirical calculations based on the non-relativistic Hartree-Fock method reproduce this value as well as the experimental field shifts if a factor of 1.68(6) is used to scale the ab initio electron densities at the nucleus. The corresponding factor for the Hf atom is much smaller. This leads to a re-evaluation of screening ratios for Hf and to a more accurate value of the nuclear parameter λ178,180 (Hf)=0.072(4) fm2.

  5. Oxygen and hydrogen isotope measurements of water from fluid inclusions in stalagmites using cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Uemura, R.; Nakamoto, M.; Gibo, M.; Asami, R.

    2012-12-01

    The oxygen isotope composition of stalagmite calcite is useful to reconstruct past climate change. However, the interpretation of the isotope record is not straightforward because it is controlled by both precipitation amount and temperature. If the isotope composition of the parent dripwaters could be measured, differences between inclusion and calcite isotope composition will give temperature changes where stalagmite formed. Several methods for extracting and measuring the isotope composition of fluid inclusion of stalagmites have been proposed. A traditional isotope ratio mass spectrometer requires pre-treatment processes (e.g., high-temperature furnace or equilibration device) because H2O has to be converted to other measurable gases (H2, CO, or CO2). To simplify such processes, we have developed a method to measure isotope ratios of water from fluid inclusions using cavity ring-down spectroscopy (Picarro L-2120i WS-CRDS), which can measure H2O molecules directly. The water from stalagmite sample was extracted by heating (up to 500 degC). The extracted water was purified, and then sent to the WS-CRDS with dry N2 gas. Stalagmites samples, which appear to be still growing, were collected in a cave (Gyokusendo, Okinawa, Japan). The isotope composition of water from inclusion are δ18O = -6.0 ± 0.4 permil, and δ2H = -34.8 ± 3.9 permil (n=4). The values are close to modern isotope compositions of precipitation in Okinawa (precipitation-amount weighted values (2008 to 2011); δ18O = -5.7 permil and δ2H = -32.3 permil) and modern cave dripwaters in the cave (average δ18O = -5.6 permil, and average δ2H = -32.2 permil, in 2010). The results suggest that isotope compositions of the past dripwaters can be recovered.

  6. Real-time displacement measurement system using phase-shifted optical pulse interferometry: Application to a seismic observation system

    NASA Astrophysics Data System (ADS)

    Yoshida, Minoru; Hirayama, Yoshiharu; Takahara, Atsushi; Kashi, Motofumi; Takeuchi, Keiji; Ikeda, Toshiharu; Hirai, Fumio; Mizuno, Yosuke; Nakamura, Kentaro; Kimura, Hitoshi; Ino, Norio; Inoue, Wataru

    2016-02-01

    We developed a method of detecting incident light levels on the oscillator surfaces and light pulses that include two interfering pulses with a phase shift of π/2 (phase-shifted optical pulse interferometry). This system enables the measurement of displacements greatly exceeding the half wavelength of the laser. Moreover, it allows measurements at multiple locations with a single optical fiber for using optical pulses. In this study, we conducted an interference experiment using 30 ns optical pulses and transmitted them at 1 µs intervals. We confirmed that the above two measurements are possible. Furthermore, from the data of the oscillator used for verification, we showed that measurements on the order of nanometers are possible. Since this method does not require a power supply to the oscillator, its widespread applications in physical exploration can be expected.

  7. Determination of the tautomeric equilibria of pyridoyl benzoyl β-diketones in the liquid and solid state through the use of deuterium isotope effects on (1)H and (13)C NMR chemical shifts and spin coupling constants.

    PubMed

    Hansen, Poul Erik; Borisov, Eugeny V; Lindon, John C

    2015-02-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on (1)H and (13)C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in the solution state the 2-bond and 3-bond J((1)H-(13)C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl derivatives are in the A-form. In the solid state all three compounds are on the B-form. The 4-pyridoyl derivative shows unusual deuterium isotope effects in the solid, which are ascribed to a change of the crystal structure of the deuteriated compound. PMID:24070650

  8. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Gunga, H.; Johnston, S.; Westby, C.; Ribeiro, L.; Ploutz-Snyder, R.; Smith, S.

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  9. An high resolution FDIRC for the measurement of cosmic-ray isotopic abundances

    NASA Astrophysics Data System (ADS)

    Marrocchesi, P. S.; Bagliesi, M. G.; Batkov, K.; Bigongiari, G.; Kim, M. Y.; Maestro, P.

    2011-08-01

    Measurements of the relative abundance of cosmic isotopes and of the energy dependence of their fluxes may clarify our present understanding on the confinement time of charged cosmic rays in the Galaxy. Experimental studies of these propagation clocks have been carried out by balloon and space missions at energies of a few 100 MeV/amu by means of detection techniques based on multiple d E/d x sampling, coupled with a measurement of the energy released in a thick absorber. At larger energies, the isotopic separation of light nuclei (as, for instance, 9Be/ 10Be) can be achieved by combining a precise measurement of the particle's rigidity with an high resolution determination of its velocity, via the observation of the Cherenkov effect in a radiator. In this paper, we propose the introduction - for the first time in a space experiment - of the DIRC technique (Detection of Internal Reflected Cherenkov light) for the identification of cosmic-ray isotopes. This type of detector has been successfully used in electron-positron colliders for particle identification and in particular for π-K separation. While for particles with unit charge the light yield is a limiting factor, in the case of a nucleus of charge Z the larger photostatistics (due to the Z2 dependence of Cherenkov light emission) is the key to reach an adequate angular resolution to provide a mass discrimination for isotopes of astrophysical interest. We report on the early development phase of a DIRC prototype with a focussing scheme (FDIRC) to collect the Cherenkov light onto a detector plane instrumented with a Silicon PhotoMultiplier (SiPM) array.

  10. Carbon Reservoir History of Mars Constrained by Atmospheric Isotopic Measurements and Carbonate Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hu, R.; Kass, D. M.; Ehlmann, B. L.; Yung, Y. L.

    2015-12-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Mars's atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. We derive new quantitative constraints on the amount of carbonate deposition and the atmospheric pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Mars's atmosphere, recent orbiter, lander, and rover measurements of Mars's surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a fractionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Mars's atmosphere during the Amazonian. This enrichment is partially compensated by moderate carbonate precipitation during the late Noachian and/or Hesperian. The current atmospheric 13C/12C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure less than 1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bars. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time.

  11. Ultra-Sensitive Elemental and Isotope Measurements with Compact Plasma Source Cavity Ring-Down Spectroscopy

    SciTech Connect

    Wang, Chuji

    2004-12-01

    The proposed research is to develop a new class of instruments for actinide isotopes and hazardous element analysis through coupling highly sensitive cavity ring-down spectroscopy to a compact microwave plasma source. The research work will combine advantages of CRDS measurement with a low power, low flow rate, tubing-type microwave plasma source to reach breakthrough sensitivity for elemental analysis and unique capability of isotope measurement. The project has several primary goals: (1) Explore the feasibility of marrying CRDS with a new microwave plasma source; (2) Provide quantitative evaluation of CMP-CRDS for ultra-trace elemental and actinide isotope analysis; (3) Approach a breakthrough detection limit of ca. 10-13 g/ml or so, which are orders of magnitude better than currently available best values; (4) Demonstrate the capability of CMP-CRD S technology for isobaric measurements, such as 238U and 238Pu isotopes. (5) Design and assemble the first compact, field portable CMP-CRDS instrument with a high-resolution diode laser for DOE/EM on-site demonstration. With all these unique capabilities and sensitivities, we expect CMPCRDS will bring a revolutionary change in instrument design and development, and will have great impact and play critical roles in supporting DOE's missions in environmental remediation, environmental emission control, waste management and characterization, and decontamination and decommissioning. The ultimate goals of the proposed project are to contribute to environmental management activities that would decrease risk for the public and workers, increase worker productivity with on-site analysis, and tremendously reduce DOE/EM operating costs.

  12. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  13. Remotely Measured Boundary Layer Temperature and Carbon Dioxide Isotopes in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Kostiuk, Theodor; Smith, R.; Hewagama, T.; Livengood, T.; Annen, J.

    2013-10-01

    Retrieving accurate abundances for trace species and isotopic ratios from remote spectroscopic measurements requires knowledge of the temperature-pressure profile in the region measured. Temperature profiles on Mars have been measured from orbiting spacecraft such as MGS/TES, but not at the Mars local time or location of subsequent studies. We present results from fully resolved spectroscopic measurements near 10.6 micron of both the normal and singly substituted oxygen-18 CO2 lines, taken with the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds And Composition (HIPWAC) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. Measurements with spectral resolving power R=10,000,000 were obtained in October 2007 with an instantaneous field-of-view on the planet of 1 arcsec near mid-day on the planet. The normal isotope of CO2 is near uniformly mixed in the atmosphere and its strong absorption line is used to retrieve temperature information. Surface pressure is constrained by the altitude relief of the surface in regions probed. Surface temperature is constrained using the calibrated continuum radiance between the measured line profiles. Using these constraints and a MGS/TES profile for a comparable Mars location, a thermal profile at the time and location of the 18OCO2 line can be retrieved. The retrieved profile can be used in turn to extract a more accurate 18OC16O/16OC16O ratio at the time and location of the ground-based measurements or to accurately retrieve other trace constituents, such as ozone or water. A description of the analytic process and results of the temperature and isotopic ratio retrievals will be described.

  14. Highly accurate isotope measurements of surface material on planetary objects in situ

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Neuland, Maike; Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2013-04-01

    Studies of isotope variations in solar system objects are of particular interest and importance. Highly accurate isotope measurements provide insight into geochemical processes, constrain the time of formation of planetary material (crystallization ages) and can be robust tracers of pre-solar events and processes. A detailed understanding of the chronology of the early solar system and dating of planetary materials require precise and accurate measurements of isotope ratios, e.g. lead, and abundance of trace element. However, such measurements are extremely challenging and until now, they never have been attempted in space research. Our group designed a highly miniaturized and self-optimizing laser ablation time-of-flight mass spectrometer for space flight for sensitive and accurate measurements of the elemental and isotopic composition of extraterrestrial materials in situ. Current studies were performed by using UV radiation for ablation and ionization of sample material. High spatial resolution is achieved by focusing the laser beam to about Ø 20μm onto the sample surface. The instrument supports a dynamic range of at least 8 orders of magnitude and a mass resolution m/Δm of up to 800—900, measured at iron peak. We developed a measurement procedure, which will be discussed in detail, that allows for the first time to measure with the instrument the isotope distribution of elements, e.g. Ti, Pb, etc., with a measurement accuracy and precision in the per mill and sub per mill level, which is comparable to well-known and accepted measurement techniques, such as TIMS, SIMS and LA-ICP-MS. The present instrument performance offers together with the measurement procedure in situ measurements of 207Pb/206Pb ages with the accuracy for age in the range of tens of millions of years. Furthermore, and in contrast to other space instrumentation, our instrument can measure all elements present in the sample above 10 ppb concentration, which offers versatile applications

  15. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  16. Water stable isotope measurements of Antarctic samples by means of IRMS and WS-CRDS techniques

    NASA Astrophysics Data System (ADS)

    Michelini, Marzia; Bonazza, Mattia; Braida, Martina; Flora, Onelio; Dreossi, Giuliano; Stenni, Barbara

    2010-05-01

    In the last years in the scientific community there has been an increasing interest for the application of stable isotope techniques to several environmental problems such as drinking water safeguarding, groundwater management, climate change, soils and paleoclimate studies etc. For example, the water stable isotopes, being natural tracers of the hydrological cycle, have been extensively used as tools to characterize regional aquifers and to reconstruct past temperature changes from polar ice cores. Here the need for improvements in analytical techniques: the high request for information calls for technologies that can offer a great quantity of analyses in short times and with low costs. Furthermore, sometimes it is difficult to obtain big amount of samples (as is the case for Antarctic ice cores or interstitial water) preventing the possibility to replicate the analyses. Here, we present oxygen and hydrogen measurements performed on water samples covering a big range of isotopic values (from very negative antarctic precipitation to mid-latitude precipitation values) carried out with both the conventional Isotope Ratio Mass Spectrometry (IRMS) technique and with a new method based on laser absorption techniques, the Wavelenght Scanned Cavity Ringdown Spectroscopy (WS-CRDS). This study is focusing on improving the precision of the measurements carried out with WS-CRDS in order to extensively apply this method to Antarctic ice core paleoclimate studies. The WS-CRDS is a variation of the CRDS developed in 1988 by O'Keef and Deacon. In CRDS a pulse of light goes through a box with high reflective inner surfaces; when there is no sample in the box the light beam doesn't find any obstacle in its path, but the reflectivity of the walls is not perfect so eventually there will be an absorption of the light beam; when the sample is injected in the box there is absorption and the difference between the time of absorption without and with sample is proportional to the quantity

  17. Isotopic tracking of change in diet and habitat use in african elephants.

    PubMed

    Koch, P L; Heisinger, J; Moss, C; Carlson, R W; Fogel, M L; Behrensmeyer, A K

    1995-03-01

    The carbon, nitrogen, and strontium isotope compositions of elephants in Amboseli Park, Kenya, were measured to examine changes in diet and habitat use since the 1960s. Carbon isotope ratios, which reflect the photosynthetic pathway of food plants, record a shift in diet from trees and shrubs to grass. Strontium isotope ratios, which reflect the geologic age of bedrock, document the concentration of elephants within the park. The high isotopic variability produced by behavioral and ecological shifts, if it is representative of other East African elephant populations, may complicate the use of isotopes as indicators of the source region of ivory. PMID:17812610

  18. Metrology for laser spectroscopic concentration and isotope ratio measurements of atmospheric greenhouse gases

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis; Manninen, Albert; Mohn, Joachim; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2015-04-01

    Continuous, accurate and precise measurements of greenhouse gases (GHG) and their isotopic composition are required to understand the global cycle as well as source and sink processes of these environmentally harmful substances. Part of the EMRP project HIGHGAS (Metrology for high-impact greenhouse gases) [1] focuses on spectroscopic methods for GHG isotopic composition measurements and optical transfer standards. Harmonization of terminologies and concepts used in the GHG measurement communities and the metrology community are in focus, especially for isotope ratio measurements by laser spectroscopy, where gas metrology is still at an early stage. The focus of the HIGHGAS project here is on 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O and 13C/12C and 2H/1H ratios in CH4. As an alternative and complement of gas mixture standards, optical spectroscopic transfer standards for CO2 and CO shall be developed providing concentration results that are directly traceable to the international system of units (SI). Optical transfer standards offer an alternative in situ calibration route for other GHG measurement devices operating in the field. An optical transfer standard becomes particularly interesting when measuring sticky or reactive gases where cylinder-based reference gas mixtures may not be feasible. We present an approach to perform IR-spectrometry on gases with results directly traceable to the SI. This is crucial for the development of optical spectroscopic transfer standards providing SI-traceability to field measurements. Ideas for spectroscopic isotope ratio measurements aiming at SI-traceability will be discussed. Finally, we demonstrate the current performance and limitations of our measurement approaches and project possible solutions. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS (Metrology for high-impact greenhouse gases). The EMRP is jointly funded by the

  19. Stable isotope ratios of atmospheric CO_{2} and CH_{4} over Siberia measured at ZOTTO

    NASA Astrophysics Data System (ADS)

    Timokhina, Anastasiya; Prokushkin, Anatily; Lavric, Jost; Heimann, Martin

    2016-04-01

    The boreal and arctic zones of Siberia housing the large amounts of carbon stored in the living biomass of forests and wetlands, as well as in soils and specifically permafrost, play a crucial role in earth's global carbon cycle. The long-term studies of greenhouse gases (GHG) concentrations are important instruments to analyze the response of these systems to climate warming. In parallel to GHG observations, the measurements of their stable isotopic composition can provide useful information for distinguishing contribution of individual GHG source to their atmospheric variations, since each source has its own isotopic signature. In this study we report first results of laboratory analyses of the CO2 and CH4 concentrations, the stable isotope ratio of δ13C-CO2, δ18O-CO2, δ13C-CH4, δD-CH4 measured in one-liter glass flasks which were obtained from 301 height of ZOTTO (Zotino Tall Tower Observatory, near 60° N, 90° E, about 20 km west of the Yenisei River) during 2008 - 2013 and 2010 - 2013 for stable isotope composition of CO2 and CH4. The magnitudes of δ13C-CO2 and δ18O-CO2 in a seasonal cycle are -1.4±0.1‰ (-7.6 - -9.0‰) and -2.2±0.2‰ (-0.1 - -2.3‰), respectively. The δ13C-CO2 seasonal pattern opposes the CO2 concentrations, with a gradual enrichment in heavy isotope occurring during May - July, reflecting its discrimination in photosynthesis, and further depletion in August - September as photosynthetic activity decreases comparatively to ecosystem respiration. Relationship between the CO2 concentrations and respective δ13C-CO2 (Keeling plot) reveals isotopic source signature for growing season (May - September) -27.3±1.4‰ and -30.4±2.5‰ for winter (January - March). The behavior of δ18O-CO2 associated with both high photosynthetic rate in the June (enrichment of atmospheric CO2 by 18O as consequence of CO2 equilibrium with "heavy" leaf water) and respiratory activity of forest floor in June - October (depletion of respired CO2 by 18O

  20. Molecular and Higher Precision Isotopic Measurements of the Mars Atmosphere and Subsurface Volatiles

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Atreya, S. K.; Owen, T. C.; Niemann, H. B.; Jones, J.; Gorevan, S.

    2000-01-01

    In response to the question 'what to do next' at Mars we explore the value of a high precision in situ measurement of isotopic and trace gas constituents in the atmosphere combined with a similar analysis of gas extracted from near surface rocks and soils. The scientific goals are to advance our understanding of the evolution of the Martian atmosphere and to search for fossils of past geochemical conditions. One element of this program that ties directly to the goals of the Astrobiology Program will be a sensitive search for simple or complex organic molecules contained in the atmosphere and in the solid phase. The broad chemical and isotopic analysis planned insures that a highly successful program will be carried out even if no organics are detected. We will demonstrate that the technology to carry out this Program is presently in hand.

  1. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  2. First Measurement of Several β-Delayed Neutron Emitting Isotopes Beyond N=126.

    PubMed

    Caballero-Folch, R; Domingo-Pardo, C; Agramunt, J; Algora, A; Ameil, F; Arcones, A; Ayyad, Y; Benlliure, J; Borzov, I N; Bowry, M; Calviño, F; Cano-Ott, D; Cortés, G; Davinson, T; Dillmann, I; Estrade, A; Evdokimov, A; Faestermann, T; Farinon, F; Galaviz, D; García, A R; Geissel, H; Gelletly, W; Gernhäuser, R; Gómez-Hornillos, M B; Guerrero, C; Heil, M; Hinke, C; Knöbel, R; Kojouharov, I; Kurcewicz, J; Kurz, N; Litvinov, Yu A; Maier, L; Marganiec, J; Marketin, T; Marta, M; Martínez, T; Martínez-Pinedo, G; Montes, F; Mukha, I; Napoli, D R; Nociforo, C; Paradela, C; Pietri, S; Podolyák, Zs; Prochazka, A; Rice, S; Riego, A; Rubio, B; Schaffner, H; Scheidenberger, Ch; Smith, K; Sokol, E; Steiger, K; Sun, B; Taín, J L; Takechi, M; Testov, D; Weick, H; Wilson, E; Winfield, J S; Wood, R; Woods, P; Yeremin, A

    2016-07-01

    The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis. PMID:27419564

  3. First Measurement of Several β -Delayed Neutron Emitting Isotopes Beyond N =126

    NASA Astrophysics Data System (ADS)

    Caballero-Folch, R.; Domingo-Pardo, C.; Agramunt, J.; Algora, A.; Ameil, F.; Arcones, A.; Ayyad, Y.; Benlliure, J.; Borzov, I. N.; Bowry, M.; Calviño, F.; Cano-Ott, D.; Cortés, G.; Davinson, T.; Dillmann, I.; Estrade, A.; Evdokimov, A.; Faestermann, T.; Farinon, F.; Galaviz, D.; García, A. R.; Geissel, H.; Gelletly, W.; Gernhäuser, R.; Gómez-Hornillos, M. B.; Guerrero, C.; Heil, M.; Hinke, C.; Knöbel, R.; Kojouharov, I.; Kurcewicz, J.; Kurz, N.; Litvinov, Yu. A.; Maier, L.; Marganiec, J.; Marketin, T.; Marta, M.; Martínez, T.; Martínez-Pinedo, G.; Montes, F.; Mukha, I.; Napoli, D. R.; Nociforo, C.; Paradela, C.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Rice, S.; Riego, A.; Rubio, B.; Schaffner, H.; Scheidenberger, Ch.; Smith, K.; Sokol, E.; Steiger, K.; Sun, B.; Taín, J. L.; Takechi, M.; Testov, D.; Weick, H.; Wilson, E.; Winfield, J. S.; Wood, R.; Woods, P.; Yeremin, A.

    2016-07-01

    The β -delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β -decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N ≳126 . These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β -decay strength distribution. This provides important constraints on global theoretical models currently used in r -process nucleosynthesis.

  4. Triple Oxygen Isotope Measurement of Nitrate to Analyze Impact of Aircraft Emissions

    NASA Astrophysics Data System (ADS)

    Chan, Sharleen

    With 4.9% of total anthropogenic radiative forcing attributed to aircraft emissions, jet engines combust copious amounts of fuel producing gases including: NOx (NO + NO2), SOx, VOC's and fine particles [IPCC (1999), IPCC (2007), Lee et al., 2009]. The tropospheric non-linear relationships between NOx, OH and O3 contribute uncertainties in the ozone budget amplified by poor understanding of the NOx cycle. In a polluted urban environment, interaction of gases and particles produce various new compounds that are difficult to measure with analytical tools available today [Thiemens, 2006]. Using oxygen triple isotopic measurement of NO3 to investigate gas to particle formation and chemical transformation in the ambient atmosphere, this study presents data obtained from aerosols sampled at NASA's Dryden Aircraft Operations Facility (DAOF) in Palmdale, CA during January and February, 2009 and Los Angeles International Airport (LAX) during Fall 2009, Winter 2010, and Spring 2010. The aerosols collected from jet aircraft exhaust in Palmdale exhibit an oxygen isotope anomaly (Delta17O =delta 17O -0.52 delta18O) increase with photochemical age of particles (-0.22 to 26.41‰) while NO3 concentration decreases from 53.76 - 5.35ppm with a radial distance from the jet dependency. Bulk aerosol samples from LAX exhibit seasonal variation with Delta17 O and NO3 concentration peaking in winter suggesting multiple sources and increased fossil fuel burning. Using oxygen triple isotopes of NO3, we are able to distinguish primary and secondary nitrate by aircraft emissions allowing new insight into a portion of the global nitrogen cycle. This represents a new and potentially important means to uniquely identify aircraft emissions on the basis of the unique isotopic composition of jet aircraft emissions.

  5. Analysis of hydroclimate in the Great Basin during the LGM from clumped isotope measurements at paleolakes

    NASA Astrophysics Data System (ADS)

    Mering, J. A.; Petryshyn, V. A.; Oviatt, C. G.; Canet, J.; Mitsunaga, B. A.; Tripati, A.

    2014-12-01

    In the Great Basin, paleoshoreline reconstructions indicate that lacustrine highstands correspond with Pleistocene glacial maxima. However, uncertainties remain regarding the magnitude of temperature change between glacial and interglacial episodes, and it is difficult to estimate precipitation and evaporation trends from geomorphic records alone. Hence, geochemical and biologic proxies have been applied to better constrain temperature, precipitation, and primary productivity during both lacustrine highstands and lowstands. Carbonate clumped isotope analyses of lacustrine materials provide new constraints on summertime water and air temperatures. The work presented here is an update of ongoing investigations at Lake Bonneville, Lake Manix, and Surprise Valley. These systems were actively transgressing during, and slightly after, the Last Glacial Maximum. Multiple phases of carbonate have been evaluated, including aragonitic shells of lacustrine gastropods and bivalves, as well as marls, and calcite cements. Given what is known about the season of growth for these materials in mid-latitude lakes, clumped isotope measurements should record warm season hydrographic conditions. Biogenic aragonite in mollusk shells is largely precipitated during the April through October interval, when food is abundant and water temperatures are most conducive to organismal development. Accumulation of carbonate muds (i.e. marl) and cements is also typically restricted to warm months, when lake waters reach carbonate saturation. Clumped isotope results are also used to identify the 18O/16O composition of water at the time of mineral precipitation, a proxy which tracks evaporative enrichment and/or moisture source. Results in this work are being calibrated by comparison to clumped isotope measurements of modern lacustrine samples, from sites where water and air temperatures are known. Water paleotemperatures are applied to estimate summertime and mean annual air temperatures using lake

  6. Continuous-flow water sampler for real-time isotopic water measurements

    NASA Astrophysics Data System (ADS)

    Carter, J.; Dennis, K.

    2013-12-01

    Measuring the stable isotopes of liquid water (δ18O and δD) is a tool familiar to many Earth scientists, but most current techniques require discrete sampling. For example, isotope ratio mass spectrometry requires the collection of aliquots of water that are then converted to CO2, CO or H2 for analysis. Similarly, laser-based techniques, such as Cavity Ring-Down Spectroscopy (CRDS) convert discrete samples (typically < 2μL) of liquid water to water vapor using a flash vaporization process. By requiring the use of discrete samples fine-scale spatial and temporal studies of changes in δ18O and δD are limited. Here we present a continuous-flow water sampler that will enable scientists to probe isotopic changes in real-time, with applications including, but not limited to, quantification of the 'amount effect' (Dansgaard, 1964) during an individual precipitation event or storm track, real-time mixing of water in river systems, and shipboard continuous water measurements (Munksgaard et al., 2012). Due to the inherent ability of CRDS to measure a continuous flow of water vapor it is an ideal candidate for interfacing with a continuous water sampling system. Here we present results from the first commercially available continuous-flow water sampler, developed by engineers at Picarro. This peripheral device is compatible with Picarro CRDS isotopic water analyzers, allowing real-time, continuous isotopic measurements of liquid water. The new device, which expands upon the design of Munskgaard et al. (2011), utilizes expanded polytetrafluoroethylene (ePTFE) membrane technology to continuously generate gas-phase water, while liquid water is pumped through the system. The water vapor subsequently travels to the CRDS analyzer where the isotopic ratios are measured and recorded. The generation of water vapor using membrane technology is sensitive to environmental conditions, which if not actively control, lead to sustainable experimental noise and drift. Consequently, our

  7. Online Measurement of the Intramolecular Isotopic Composition of Acetate in Natural Porewater Samples

    NASA Astrophysics Data System (ADS)

    Thomas, R. B.; Arthur, M. A.; Freeman, K. H.

    2006-12-01

    Carbon dioxide and methane are traditionally considered to be the dominant end products of anaerobic metabolism while acetate is thought to be a rapidly consumed intermediate. However, in some settings, recent evidence has grown to suggest that, at least transiently, acetate can be a major metabolic end product. In natural systems, isotopic mass balances can be used to partition the flow of carbon to methane, CO2, and acetate. However, these isotopic estimates require intramolecular measurements of acetate in addition to isotopic measurements of the gaseous species, CO2 and CH4. In practice, the intramolecular isotopic composition of acetate is rarely measured because the analysis is technically challenging and traditionally requires prior separation and offline pyrolysis of purified acetate. As a result of these technical challenges, acetate methyl carbon is usually assumed to be a few permil depleted relative to the carbon isotopic composition of bulk organic matter. In environments where acetate may be produced by autotrophic acetogens this assumption can be devastatingly false. This work describes the use of an online method for the analysis of the intramolecular carbon isotopic composition of dissolved acetate from dilute surface water samples with a detection limit of injected sample down to 500uM. Preconcentration of samples via lyophilization has resulted in detection limits as low as 30uM. In 2002, at Penn State, Dias et al. (Organic Geochemistry Vol. 33, p161-168) reported a technique to examine the intramolecular isotopic composition of acetate from oil-prone source rocks using SPME extraction with an online GC-pyrolysis-IRMS. We have adapted the Dias method to be used with direct injection of dilute natural water samples. Briefly, this procedure protonates acetate with a .1M addition of oxalic acid and vaporizes the sample in the GC inlet at low temperatures. This prevents oxalic acid decomposition and provides sufficient separation of acetate from

  8. Quantifying biological and atmospheric processes with in-situ measurements of carbon dioxide and water vapor isotopes (Invited)

    NASA Astrophysics Data System (ADS)

    Lee, X.

    2010-12-01

    The ability to make real-time, high-frequency measurements of CO2 and H2O isotopes in the atmosphere opens a new channel of scientific pursuit. The objectives of this paper are (1) to examine practical issues on using these measurements in biospheric and atmospheric research, and (2) to compare two different perspectives on isotopic surface-air fluxes. From the user’s perspective, three issues should be resolved in order to further realize the power of these in-situ measurements. The first one is related to instrument calibration. By their nature, isotopologue measurements by optical methods are prone to biases from nonlinear concentration dependence. Overcoming the nonlinear effect via calibration is important for the measurement of the isotopic abundance of CO2 or H2O and even more so for the measurement of the isotopic signal of their fluxes. Further, a portable calibration system is essential for deployment in remote sites. The second challenge that researchers face is instrument cost. We envision the development of a new flux network with real-time observations of isotopic fluxes of CO2 and H2O to help diagnose changes in atmospheric and biospheric processes. This can become a realistic goal if the instrument cost is brought down to a level comparable to that of broadband infrared analyzers. Third, speed of detection also deserves attention. In-situ measurements of CO2 and H2O isotope ratios in ambient air, especially if made on a long-term basis and calibrated precisely, can aid atmospheric inverse analysis of land carbon sink and the tracking of water transport in the atmosphere. Ambient monitoring alone is however not very useful in ecological studies. To measure the source/sink signature properly, one should interface the isotopic analyzer with a plant or soil chamber, deploy it in the gradient-diffusion mode either over a plant canopy or over the soil surface inside the canopy, or combine it with a sonic anemometer for direct eddy covariance measurement

  9. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    NASA Astrophysics Data System (ADS)

    Weber, Peter K.; Bacon, Charles R.; Hutcheon, Ian D.; Ingram, B. Lynn; Wooden, Joseph L.

    2005-03-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/ 86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ˜2‰ external precision (2σ) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ˜25 μm laterally and 2 μm deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations.

  10. The core shift measurements for two-sided jets affected by Free-Free absorption using VLBA

    NASA Astrophysics Data System (ADS)

    Haga, Takafumi; Doi, Akihiro; Murata, Yasuhiro; Sudou, Hiroshi; Kameno, Seiji; Hada, Kazuhiro; Nagai, Hiroshi

    2013-12-01

    A radio core represents the peak of intensity in VLBI images and is located at the base of jets. It appears at different positions depending on frequencies. This is known as "core shift", caused by absorption of the core emission. The position of the central engine in an AGN can be estimated accurately by measuring the core shift with multifrequency and phase-referencing observations. We observed NGC 4261 using the VLBA at seven frequencies. This source is a nearby FR-I type radio galaxy at the distance of 30 Mpc and has prominent two-sided jets. We measured the core shifts in not only approaching side but also counter side of the jets. The positions of core at infinity of frequency in both side indicated to come close asymptotically to the same position, which was separated by 82±16 μas from 43 GHz core position, corresponding to 310±60 Rs (Schwarzschild radius). This source also has another feature that there is a region affected by free-free absorption (FFA) in the vicinity of the core and toward the counter jet. Moreover, we also found the same feature in other three sources, 3C 84, Cen A and Cyg A, which are also nearby galaxies with two-sided jets and with an indication of the FFA regions. We will measure the core shifts in these sources by using same technique as NGC 4261 in order to study the structure of circumnuclear plasma, to determine the position of the central engine and to test core shifts due to FFA.

  11. Measurement of Ecosystem-Atmosphere Exchange of Isotopic CO2 Using Fourier Transform Infrared (FTIR) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cambaliza, M. O.; Mount, G.; Lamb, B.; Westberg, H.; Gibson, R.

    2005-12-01

    Analysis of the isotopic content of atmospheric carbon dioxide provides a wealth of information about the complex interaction between the biosphere and the atmosphere. Traditionally, the isotopic content of atmospheric CO2 has been determined by taking grab samples from field sites followed by laboratory mass spectrometry analysis. This procedure severely limits the duration and frequency of measurements. In this work, we investigate the performance of a measurement method that is based on Fourier Transform Infrared (FTIR) spectroscopy. The FTIR separately measures the concentrations of the 12CO2 and 13CO2 isotopomers of carbon dioxide at approximately one minute intervals with very high signal-to-noise ratio using molecular absorption in a 1-meter cell in the 2100 to 2600 cm-1 region of the isotopic vibration-rotation bands. δ13C values are determined with a precision of approximately 0.7‰ every minute, with higher precision obtained by averaging the short integrations. The FTIR system also measures CO2 flux using the disjunct eddy covariance technique, so the net ecosystem exchange (NEE) and isoflux can also be measured, potentially allowing for the partitioning of the NEE into its photosynthetic and respiratory components. First scientific results from this new instrument are presented from two field campaigns conducted in summer 2005 in a poplar forest near Boardman, Oregon. A 25-m tower was used with air inlets at 0.3, 4.1, 7.5, 10.8, 14.0, and 20.6 meters above the ground. These were switched sequentially into the instrument to achieve height resolution in the canopy, or were kept at constant height. Canopy height was 13 meters. Carbon dioxide concentrations are measured to a precision of about 0.7 ppmv from a one-minute integration with higher precisions obtained from time averaging. CO2 isotopic concentrations were measured with a precision of about 2 ppmv/minute. In this work, we present results of temporal and vertical variations of CO2 concentrations

  12. Comparison of thermal ionization mass spectrometry and Multiple Collector Inductively Coupled Plasma Mass Spectrometry for cesium isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Isnard, H.; Granet, M.; Caussignac, C.; Ducarme, E.; Nonell, A.; Tran, B.; Chartier, F.

    2009-11-01

    In the nuclear domain, precise and accurate isotopic composition determination of elements in spent nuclear fuels is mandatory to validate neutron calculation codes and for nuclear waste disposal. The present study presents the results obtained on Cs isotope ratio by mass spectrometric measurements. Natural cesium is monoisotopic ( 133Cs) whereas cesium in spent fuels has 4 isotopes ( 133Cs, 134Cs, 135Cs, and 137Cs). As no standard reference material is available to evaluate the accuracy of Cs isotopic measurements, a comparison of cesium isotopic composition in spent nuclear fuels has been performed between Thermal Ionization Mass Spectrometry (TIMS) and a new method involving Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) measurements. For TIMS measurements, isotopic fractionation has been evaluated by studying the behavior of cesium isotope ratios ( 133Cs/ 137Cs and 135Cs/ 137Cs) during the analyses. For MC-ICPMS measurements, the mass bias effects have been corrected with an external mass bias correction using elements (Eu and Sb) close to cesium masses. The results obtained by the two techniques show good agreement: relative difference on 133Cs/ 137Cs and 135Cs/ 137Cs ratios for two nuclear samples, analyzed after chemical separation, ranges from 0.2% to 0.5% depending on the choice of reference value for mass bias correction by MC-ICPMS. Finally the quantification of the 135Cs/ 238U ratio by the isotope dilution technique is presented in the case of a MOx (mixed oxide) spent fuel sample. Evaluation of the global uncertainties shows that this ratio could be defined at an uncertainty of 0.5% ( k = 2). The intercomparison between two independent mass spectrometric techniques is fundamental for the evaluation of uncertainty when no isotopic standard is available.

  13. Differential Stark shift measurement of clock states of Yb+ using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Quraishi*, Qudsia; Hayes, David; Hucul, David; Matsukevich, Dzmitry; Debnath, Shantanu; Clark, Susan; Monroe, Chris

    2011-03-01

    Quantum information processing with trapped ions has traditionally involved state preparation, manipulation (eg. quantum gates) and detection using CW lasers. Quantum gates implemented with ions typically involve optical Raman transitions between two atomic levels. An optical frequency comb, emitted by a pulsed laser, is an excellent tool for bridging atomic frequency differences. Previously, we demonstrated quantum gates and separately, ultrafast spin manipulation, using pulsed lasers [1,2]. Unlike the CW case, employing pulsed lasers has the marked advantage of both low spontaneous emission and low AC Stark shifts, because the high powers available from pulsed lasers allow for larger detunings from optical resonance. Here, we show both experimentally and theoretically the scaling of the differential Stark shift with detuning (6 THz to 20 THz) of the Raman fields, achieving values of 10-3 of the Rabi frequency.

  14. Measurement of the Isotopic Signatures of Water on Mars: Implications for Studying Methane