Science.gov

Sample records for isotopically engineered silicon

  1. Phonon coherence in isotopic silicon superlattices

    SciTech Connect

    Frieling, R.; Radek, M.; Eon, S.; Bracht, H.; Wolf, D. E.

    2014-09-29

    Recent experimental and theoretical investigations have confirmed that a reduction in thermal conductivity of silicon is achieved by isotopic silicon superlattices. In the present study, non-equilibrium molecular dynamics simulations are performed to identify the isotope doping and isotope layer ordering with minimum thermal conductivity. Furthermore, the impact of isotopic intermixing at the superlattice interfaces on phonon transport is investigated. Our results reveal that the coherence of phonons in isotopic Si superlattices is prevented if interfacial mixing of isotopes is considered.

  2. Oxygen and silicon isotopes in ALHA 81005

    NASA Astrophysics Data System (ADS)

    Mayeda, T. K.; Clayton, R. N.; Molini-Velsko, C. A.

    1983-09-01

    The Antarctic meteorite ALHA81005 has oxygen and silicon isotopic compositions identical with lunar highland rocks. The oxygen is distinctly unlike that in calcium-rich achondrites. The isotopic data are entirely consistent with a lunar origin for the meteorite.

  3. Isotopically engineered semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1995-04-01

    Scientific interest, technological promise, and increased availability of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This review of mostly recent activities begins with an introduction to some past classical experiments which have been performed on isotopically controlled semiconductors. A review of the natural isotopic composition of the relevant elements follows. Some materials aspects resulting in part from the high costs of enriched isotopes are discussed next. Raman spectroscopy studies with a number of isotopically pure and deliberately mixed Ge bulk crystals show that the Brillouin-zone-center optical phonons are not localized. Their lifetime is almost independent of isotopic disorder, leading to homogeneous Raman line broadening. Studies with short period isotope superlattices consisting of alternating layers of n atomic planes of 70Ge and 74Ge reveal a host of zone-center phonons due to Brillouin-zone folding. At n≳40 one observes two phonon lines at frequencies corresponding to the bulk values of the two isotopes. In natural diamond, isotope scattering of the low-energy phonons, which are responsible for the thermal conductivity, is very strongly affected by small isotope disorder. Isotopically pure 12C diamond crystals exhibit thermal conductivities as high as 410 W cm-1 K-1 at 104 K, leading to projected values of over 2000 W cm-1 K-1 near 80 K. The changes in phonon properties with isotopic composition also weakly affect the electronic band structures and the lattice constants. The latter isotope dependence is most relevant for future standards of length based on crystal lattice constants. Capture of thermal neutrons by isotope nuclei followed by nuclear decay produces new elements, resulting in a very large number of possibilities for isotope selective doping of semiconductors. This neutron transmutation of isotope nuclei, already used

  4. Control mechanisms for the oceanic distribution of silicon isotopes

    NASA Astrophysics Data System (ADS)

    Wischmeyer, André G.; de La Rocha, Christina L.; Maier-Reimer, Ernst; Wolf-Gladrow, Dieter A.

    2003-09-01

    Marine diatoms take up silicic acid for the buildup of their opaline shells and discriminate against the heavier silicon isotope. For the first time, the overall oceanic distribution of silicon isotopes has been estimated by integration of the Hamburg Model of the Ocean Carbon Cycle, version 4 (HAMOCC4). It is shown that the relationship between the silicic acid concentration and its silicon isotope composition is not a simple Rayleigh distillation curve. Only the Southern Ocean and the equatorial Pacific show a clear functional dependency similar to the Rayleigh distillation curve. Model results can be used to predict opal silicon isotope compositions in the sediment and constrain the use of silicon isotopes as a proxy for silicic acid utilization. Owing to the structure of the Pacific current system, it might be valid to apply a relationship between surface silicic acid concentrations and the silicon isotope signal in the equatorial Pacific sediments.

  5. Diffusion in silicon isotope heterostructures

    SciTech Connect

    Silvestri, Hughes Howland

    2004-05-14

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P

  6. High-purity, isotopically enriched bulk silicon

    SciTech Connect

    Ager III, J.W.; Beeman, J.W.; Hansen, W.L.; Haller, E.E.; Sharp, I.D.; Liao, C.; Yang, A.; Thewalt, M.L.W.; Riemann, H.

    2004-11-17

    The synthesis and characterization of dislocation-free, undoped, single crystals of Si enriched in all 3 stable isotopes is reported: {sup 28}Si (99.92%), {sup 29}Si (91.37%), and {sup 30}Si (89.8%). A silane-based process compatible with the relatively small amounts of isotopically enriched precursors that are practically available was used. The silane is decomposed to silicon on a graphite starter rod heated to 700-750 C in a recirculating flow reactor. A typical run produces 35 gm of polycrystalline Si at a growth rates of 5 {micro}m/min and conversion efficiency >95%. Single crystals are grown by the floating zone method and characterized by electrical and optical measurements. Concentrations of shallow dopants (P and B) are as low as mid-10{sup 13} cm{sup -3}. Concentrations of C and O lie below 10{sup 16} and 10{sup 15} cm{sup -3}, respectively.

  7. Nebular fractionation of silicon isotopes and implications for silicon in Earth's core

    NASA Astrophysics Data System (ADS)

    Dauphas, N.; Poitrasson, F.; Burkhardt, C.

    2014-12-01

    The silicate Earth has a heavy silicon isotopic composition relative to all chondrite groups, which was taken as evidence for the presence of sufficient amounts of silicon in Earth's core to explain its density deficit. A difficulty remains, however, in that chondrites themselves show variable silicon isotopic composition. For example, enstatite chondrites, the only group of meteorites that matches the Earth's composition for 17O, 48Ca, 50Ti, 54Cr, and 92Mo, have very light silicon isotopic compositions that would require unrealistic amounts of silicon in Earth's core if they were its main constituents. We have measured the silicon isotopic composition of several achondrites that had not been measured before. In particular, we have found that angrites have a heavy silicon isotopic composition, similar to the Earth and the Moon. These meteorites formed under relatively oxidizing conditions (~IW+1) and core formation in their parent-body occurred at relatively low pressure (<0.1 GPa), so core-mantle silicon isotopic fractionation is excluded as a cause for their Earth-like silicon isotopic composition. Angrites are among the most volatile-depleted meteorites and their heavy silicon isotope signature most likely reflects isotopic fractionation by nebular processes. All chondrite groups and the bulk silicate Earth form a trend in silicon isotopic composition vs. Mg/Si ratio, which we will show quantitatively can be explained by a simple nebular process. This can also explain the similarity in silicon isotopic composition between lunar and terrestrial rocks. Therefore, silicon isotopes in terrestrial rocks provide no constraints on the amount of Si in the core and are consistent with the presence of other light elements such as oxygen.

  8. Silicon isotope fractionation during nutrient utilization in the North Pacific

    NASA Astrophysics Data System (ADS)

    Reynolds, Ben C.; Frank, M.; Halliday, A. N.

    2006-04-01

    The distribution of silicon in the North Pacific is controlled by the utilization of silicic acid by diatoms, a process that fractionates silicon (Si) isotopic compositions. Silicon isotope variations are presented for six water column profiles from the surface mixed layer down to the deep waters of the North Pacific Ocean. Although the observed Si isotopic variations display an apparently simple inverse relationship with dissolved nutrient concentrations, in fact they reflect mixing of surface waters undergoing active Si isotope fractionation and deep-waters with more uniform concentrations and isotope compositions. Samples from the surface of the subtropical gyre have the lowest dissolved Si concentrations and heaviest Si isotope compositions of marine waters measured thus far. Fractionation in the surface waters follows a typical Rayleigh-type distillation curve for a 'closed' surface water reservoir resulting from stratification of the surface layer in the subarctic region. In contrast, an 'open' system prevails within the subtropical gyre where there is significant recycling of silicic acid in the upper water column and lateral transport of silicon within surface currents. For deep waters, the Si isotope composition distinguishes between the northern North Pacific Deep Water (NPDW) and the southerly-derived bottom water. The relatively light Si isotope compositions measured from waters within the subarctic gyre provides evidence for isolation of the nutrient pool in the North Pacific.

  9. Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues

    SciTech Connect

    Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

    2009-06-18

    Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose

  10. Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon

    NASA Astrophysics Data System (ADS)

    Ding, T. P.; Zhou, J. X.; Wan, D. F.; Chen, Z. Y.; Wang, C. Y.; Zhang, F.

    2008-03-01

    A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from -2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ 30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ 30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO 2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo ( αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ 30Si value from roots to stem, including larger ratio of dissolved H 4SiO 4 to precipitated SiO 2 in roots than in stem. There is a positive correlation between the δ 30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved

  11. Silicon isotopes in sponge spicules: the story of a proxy

    NASA Astrophysics Data System (ADS)

    Hendry, K. R.; Maldonado, M.; Goodwin, C.; Berman, J.; De La Rocha, C. L.

    2014-12-01

    The silicon isotope composition of deep-sea sponges has been shown to reflect the concentration of dissolved silicon, silicic acid, in seawater. This discovery has lead to the development of a novel geochemical proxy for past deep water nutrient status, which has already been applied to a wide range of palaeoceanographic questions ranging from Southern Ocean silicic acid leakage on glacial-interglacial and millennial timescales, to the proliferation of diatoms at the Eocene-Oligocene boundary. The initial calibrations based on modern sponge samples showed some scatter in the relationship between sponge silicon isotopes and silicic acid concentration, but without any apparent systematic influence from other environmental factors (temperature, pH, or other nutrients), morphology or species. However, a silicon isotope calibration of core top spicules, based on measurements made on a large number of spicules extracted from sediments, shows a tighter relationship with silicic acid concentrations, indicating that there are variations between and within individuals that are "averaged out" during palaeoceanographic studies. As is the case for all novel geochemical proxies, there is a need to test the proxy rigorously to ensure robust interpretation of any downcore signal. Here, we will present new studies of modern sponge specimens that have been carried out to shed light on the processes that could result in differences in silicon isotopic fractionation between and within individual sponges. Our findings highlight where caution is required in order to produce robust downcore records of past ocean silicic acid concentrations.

  12. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    PubMed

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions. PMID:26440047

  13. INSTRUMENTS AND METHODS OF INVESTIGATION: Isotope engineering

    NASA Astrophysics Data System (ADS)

    Plekhanov, Vladimir G.

    2000-11-01

    Major applications of the novel and extremely promising technology of isotope engineering are reviewed which, along with basic research, also include — by no means exhaustively — optical fibers, optoelectronics, tunable solid-state lasers, neutron transmutation doping, and information storage.

  14. Silicon isotopes in angrites and volatile loss in planetesimals.

    PubMed

    Pringle, Emily A; Moynier, Frédéric; Savage, Paul S; Badro, James; Barrat, Jean-Alix

    2014-12-01

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium-aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50-100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal-silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309

  15. Silicon isotopes in angrites and volatile loss in planetesimals

    PubMed Central

    Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix

    2014-01-01

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium–aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50–100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal–silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309

  16. Isotopic Study of Silicon Carbide in Semarkona

    NASA Astrophysics Data System (ADS)

    Smith, J. B.; Huss, G. R.

    2002-03-01

    We have measured Si and C isotopes for individual SiC grains from Semarkona. Our results are compared with those of previous studies on SiC from Murchison and Orgueil. Metamorphism and grain-size distribution can affect these comparisons.

  17. Silicon and oxygen isotopic trends in Mesozoic radiolarites

    NASA Astrophysics Data System (ADS)

    Bôle, Maximlien; Baumgartner Peter, O.; Lukas, Baumgartner; Anne-Sophie, Bouvier; Rie, Hori; Masayuki, Ikeda

    2016-04-01

    Silicon and oxygen isotopes (δ30Si and δ18O) of siliceous tests (diatoms, sponges and radiolarians) preserve environmental signatures in unconsolidated sediments, but few studies show such signatures for ancient biosilicieous rocks. In Precambrian cherts from greenstone belts, small scaled isotopic variations were interpreted as a primary diagenetic feature. They were used, coupled to mean δ18O, to reconstruct seawater temperature at which cherts precipitated. Here, we examine stable isotopes in Mesozoic biogenic cherts that may also preserve an environmental signature. We measured δ30Si and δ18O in situ by SIMS, in the chalcedony of individual radiolarian tests preserved in Mesozoic radiolarites. Microanalysis of chalcedony, rather than the bulk rock isotopic composition, is likely to reveal a palaeoenvironmental signal, since it is derived from biogenic opal, the most mobile silica phase during earliest diagenesis. Our data reveal clear trends through several Mesozoic radiolarite sections from Panthalassa (Kiso River, Japan) and Western Tethys (Sogno, Italy). δ18O records measured in radiolarites show a relatively good correlation to δ18O-variations of Mesozoic low magnesium calcite shells, which are commonly used as a palaeotemperature proxy. Once these variations, attributed to seawater temperature, are removed, the residual δ18O trends are opposite to the δ30Si trends. δ30Si increases from Middle Triassic to Early Jurassic in the Kiso River sections and decrease during the Middle Jurassic in the Sogno section. The observed d30Si-trends are likely to represent a palaeoenvironmental signal, because they are not compatible with simple models of progressive diagenesis along P/T-paths (or depth below sea bottom in drill holes). Among the palaeoenvironmental factors that may have influenced these trends are the oceanic silica cycle changing though time, oceanic circulation and/or the palaeogeographic location of each studied site. Siliceous organisms are

  18. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1988-01-01

    This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.

  19. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1987-01-01

    This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).

  20. The silicon isotope record of early silica diagenesis

    NASA Astrophysics Data System (ADS)

    Tatzel, Michael; von Blanckenburg, Friedhelm; Oelze, Marcus; Schuessler, Jan A.; Bohrmann, Gerhard

    2015-10-01

    The heavy isotopes of silicon are strongly enriched in some of the youngest, early diagenetically formed porcellanite layers from the Southwest Indian Ridge (Pleistocene) and the Maud Rise (Pliocene). These porcellanite layers are composed of opal-CT and were formed by the conversion of amorphous silica (opal-A) from siliceous sediment via dissolution-reprecipitation. Their bulk δ30Si values range between 1.7 and 2.3‰. Detritus-poor siliceous sediment surrounding these layers is significantly lower at -0.3 to 1.5‰. Sequential chemical extractions of bulk siliceous sediment show (i) preferential dissolution of diatoms featuring higher δ30Si than radiolaria and Al-Si components. The detailed investigation of porcellanite layers by micro-scale Si isotope and Al/Si analyses using UV femtosecond laser ablation ICP mass spectrometry show that (ii) precipitation of authigenic aluminum silicates enriched in light Si isotopes drives pore waters to even higher δ30Si. We suggest that the same processes redistributed stable silicon isotopes in precursor siliceous sediments of ancient chert. We infer that past environmental conditions can be reconstructed with high fidelity from the stable Si isotope composition of chert when initial seawater Si concentrations were high (such as in the Precambrian). Exchange of Si between layers during phase transformation (from opal-A to opal-CT and from opal-CT to quartz) is impeded when variable amounts of detrital minerals are present, because they control rates of silica phase transformation and hence the timing of dissolution-reprecipitation during burial.

  1. A Paleogene Silicon Stable Isotope Record: Long-Term Carbon and Silicon Cycling Interaction Revealed By Sponges and Radiolarians

    NASA Astrophysics Data System (ADS)

    Fontorbe, G.; De La Rocha, C. L.; Hendry, K. R.; Frings, P.; Conley, D. J.

    2014-12-01

    Silicon and carbon cycling are related both on short time scales via the uptake of carbon dioxide and dissolved silica (DSi) by diatoms, and on geological time scales via weathering of silicate rocks consuming carbon dioxide. Long-term changes in oceanic silicon cycling and DSi concentration have been mostly attributed to the evolution of siliceous organisms, especially the colonization of the surface waters by diatoms and their diversification. Thus, impacts of geological mechanisms and changes in carbon cycling have been, in our opinion, overlooked. During the past decade, progress has been made in using silicon isotopes in marine archives to investigate the paleo-silicon cycle. Silicon isotope fractionation in siliceous sponges is closely related to ambient DSi concentration. It follows from this relationship that sponge spicules from marine sediment cores provide a good proxy for reconstructing the paleo-DSi concentration and isotopic composition. The Paleogene period (65.5 to 23Ma) is highly relevant for studying the long-term silicon and carbon cycling relationship due to radiance of diatoms, high variability in the carbon cycle and initiation of the Himalayan orogeny. Here, we will present a sponge spicules and radiolarian silicon isotopes record from ODP Leg 171B (Blake Nose, Western North Atlantic) spanning most of the Paleogene. Our data show similar patterns in both foraminiferal carbon and spicule silicon stable isotopes, providing information on the mechanisms coupling the long-term silicon and carbon cycle.

  2. The silicon isotopic composition of the Ganges and its tributaries

    NASA Astrophysics Data System (ADS)

    Fontorbe, Guillaume; De La Rocha, Christina L.; Chapman, Hazel J.; Bickle, Michael J.

    2013-11-01

    The silicon isotopic composition (δSi30) of the headwaters of the Ganges River, in the Himalaya, ranged from +0.49±0.01‰ to +2.17±0.04‰ at dissolved silicon (DSi) concentrations of 38 to 239 μM. Both the concentration and isotopic composition of DSi in the tributaries increased between the highest elevations to where the Ganges leaves the Himalayas at Rishikesh. The tributaries exhibit a linear correlation between δSi30 and DSi that may represent mixing between a low DSi, low δSi30 (e.g., 40 μM, +0.5‰) component potentially reflecting fractionation during adsorption of a small fraction of silicon onto iron oxides and a high DSi, high δSi30 component (e.g., 240 μM, +1.7‰) produced during higher intensity weathering with a greater proportional sequestration of weathered silicon into secondary minerals or biogenic silica. On the Ganges alluvial plain, in the Ganges and the Yamuna, Gomati, and their tributaries, DSi ranged from 122 to 218 μM while δSi30 ranged from +1.03±0.03‰ to +2.46±0.06‰. Highest values of δSi30 occurred in the Gomati and its tributaries. In general, the lower DSi and higher δSi30 of DSi in these rivers suggests control of both by removal of DSi by secondary mineral formation and/or biogenic silica production. A simple 1-dimensional model with flow through a porous medium is introduced and provides a useful framework for understanding these results.

  3. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.

    1986-01-01

    Silicon nitride is a high temperature material currently under consideration for heat engine and other applications. The objective is to improve the net shape fabrication technology of Si3N4 by injection molding. This is to be accomplished by optimizing the process through a series of statistically designed matrix experiments. To provide input to the matrix experiments, a wide range of alternate materials and processing parameters was investigated throughout the whole program. The improvement in the processing is to be demonstrated by a 20 percent increase in strength and a 100 percent increase in the Weibull modulus over that of the baseline material. A full characterization of the baseline process was completed. Material properties were found to be highly dependent on each step of the process. Several important parameters identified thus far are the starting raw materials, sinter/hot isostatic pressing cycle, powder bed, mixing methods, and sintering aid levels.

  4. Silicon Isotope Fractionation During Acid Water-Igneous Rock Interaction

    NASA Astrophysics Data System (ADS)

    van den Boorn, S. H.; van Bergen, M. J.; Vroon, P. Z.

    2007-12-01

    Silica enrichment by metasomatic/hydrothermal alteration is a widespread phenomenon in crustal environments where acid fluids interact with silicate rocks. High-sulfidation epithermal ore deposits and acid-leached residues at hot-spring settings are among the best known examples. Acid alteration acting on basalts has also been invoked to explain the relatively high silica contents of the surface of Mars. We have analyzed basaltic-andesitic lavas from the Kawah Ijen volcanic complex (East Java, Indonesia) that were altered by interaction with highly acid (pH~1) sulfate-chloride water of its crater lake and seepage stream. Quantitative removal of major elements during this interaction has led to relative increase in SiO2 contents. Our silicon isotope data, obtained by HR-MC-ICPMS and reported relative to the NIST RM8546 (=NBS28) standard, show a systematic increase in &δ&&30Si from -0.2‰ (±0.3, 2sd) for unaltered andesites and basalts to +1.5‰ (±0.3, 2sd) for the most altered/silicified rocks. These results demonstrate that silicification induced by pervasive acid alteration is accompanied by significant Si isotope fractionation, so that alterered products become isotopically heavier than the precursor rocks. Despite the observed enrichment in SiO2, the rocks have experienced an overall net loss of silicon upon alteration, if Nb is considered as perfectly immobile. The observed &δ&&30Si values of the alteration products appeared to correlate well with the inferred amounts of silicon loss. These findings would suggest that &28Si is preferentially leached during water-rock interaction, implying that dissolved silica in the ambient lake and stream water is isotopically light. However, layered opaline lake sediments, that are believed to represent precipitates from the silica-saturated water show a conspicuous &30Si-enrichment (+1.2 ± 0.2‰). Because anorganic precipitation is known to discriminate against the heavy isotope (e.g. Basile- Doelsch et al., 2006

  5. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  6. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Hun C.; Fang, Ho T.

    1987-01-01

    The technology base required to fabricate silicon nitride components with the strength, reliability, and reproducibility necessary for actual heat engine applications is presented. Task 2 was set up to develop test bars with high Weibull slope and greater high temperature strength, and to conduct an initial net shape component fabrication evaluation. Screening experiments were performed in Task 7 on advanced materials and processing for input to Task 2. The technical efforts performed in the second year of a 5-yr program are covered. The first iteration of Task 2 was completed as planned. Two half-replicated, fractional factorial (2 sup 5), statistically designed matrix experiments were conducted. These experiments have identified Denka 9FW Si3N4 as an alternate raw material to GTE SN502 Si3N4 for subsequent process evaluation. A detailed statistical analysis was conducted to correlate processing conditions with as-processed test bar properties. One processing condition produced a material with a 97 ksi average room temperature MOR (100 percent of goal) with 13.2 Weibull slope (83 percent of goal); another condition produced 86 ksi (6 percent over baseline) room temperature strength with a Weibull slope of 20 (125 percent of goal).

  7. Species-dependent silicon isotope fractionation by marine diatoms

    NASA Astrophysics Data System (ADS)

    Sutton, Jill N.; Varela, Diana E.; Brzezinski, Mark A.; Beucher, Charlotte P.

    2013-03-01

    Fractionation of silicon (Si) isotopes was measured in seven species (nine strains) of polar and sub-polar marine diatoms grown in semi-continuous unialgal cultures under optimal irradiance and temperature for each diatom strain. Results from this work provide the first evidence that Si isotope fractionation by diatoms is species-dependent. The greatest difference in the Si isotope fractionation factor (ɛ) was observed between two Southern Ocean diatoms, Fragilariopsis kerguelensis (-0.54‰, average for two strains) and Chaetoceros brevis (-2.09‰). The ɛ for the other species, both polar and sub-polar, ranged from -0.72‰ to -1.21‰. The two remaining polar diatoms had ɛ values of -0.74 ± 0.05‰ for Thalassiosira antarctica, and -1.21 ± 0.04‰ for Thalassiosira nordenskioeldii, while the sub-polar species had ɛ values of -0.72 ± 0.04‰ for Thalassiosira weissflogii, -0.88 ± 0.06‰ for Thalassiosira pseudonana (CCCM58), -0.97 ± 0.14‰ for Thalassiosira pseudonana (CCMP1014), and -1.15 ± 0.03‰ for Porosira glacialis. The range in ɛ for the diatoms evaluated in this study may be large enough to significantly impact the Si isotope composition measured in diatom opal (δ30Si-bSiO2) from marine sediments and its subsequent interpretation. To test the influence of diatom taxonomic composition on δ30Si-bSiO2, we developed a model that considered the relative abundance of diatom species and the ɛ values (from this study) for each species present within the sediment core (i.e. weighted-average ɛ). The model was applied to records from a Southern Ocean sediment core (TN057-13) where both diatom abundance and δ30Si-bSiO2 data were available. The analysis indicated that 67% of the variation in δ30Si-bSiO2 could be explained by species-dependent Si isotope fractionation. We suggest that future work should assess phytoplankton taxonomic composition when using δ30Si-bSiO2 as a proxy for Si utilization.

  8. Silicon Isotopic Fractionation in a Tropical Soil-Plant System

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Delstanche, S.; Cardinal, D.; Andre, L.; Delvaux, B.

    2006-12-01

    -0.33 (Ovs) and -0.56 permil (Yvs), close to the fractionation factor previously measured in hydroponics (-0.40 permil). The average delta29Si of phytoliths in banana plants was +0.17 permil. In the topsoil, the isotopic composition of Yvs ( 0.21 permil) was close to that of unweathered pumice (-0.20 permil). The Ovs were significantly lighter (-0.73 permil), confirming published data pointing to lighter isotopic composition with increased weathering. Heavier bulk plants at Ovs might be related to a heavier residual soil solution due to: (i) the formation of lighter clay minerals at Ovs (clay fraction: -0.94 permil) than at Yvs (-0.60 permil), and (ii) the quantitative adsorption of silica onto iron oxides (see Delstanche et al., 2006, AGU), more abundant in weathered Ovs. Our data support the view that plants can induce a strong imprint on the continental cycle of silicon, just as clay formation and possibly Si adsorption onto iron oxides can do. The quantification of Si-isotopic fractionation in the soil-plant system requires, however, further studies involving all the Si pools to achieve a comprehensive understanding of this cycle.

  9. Energetic Beam Processing of Silicon to Engineer Optoelectronically Active Defects

    NASA Astrophysics Data System (ADS)

    Recht, Daniel

    This thesis explores ways to use ion implantation and nanosecond pulsed laser melting, both energetic beam techniques, to engineer defects in silicon. These defects are chosen to facilitate the use of silicon in optoelectronic applications for which its indirect bandgap is not ideal. Chapter 2 develops a kinetic model for the use of point defects as luminescence centers for light-emitting diodes and demonstrates an experimental procedure capable of high-throughput screening of the electroluminescent properties of such defects. Chapter 3 discusses the dramatic change in optical absorption observed in silicon highly supersaturated (i.e., hyperdoped) with the chalcogens sulfur, selenium, and tellurium and reports the first measurements of the optical absorption of such materials for photon energies greater than the bandgap of silicon. Chapter 3 examines the use of silicon hyperdoped with chalcogens in light detectors and concludes that while these devices display strong internal gain that is coupled to a particular type of surface defect, hyperdoping with chalcogens does not lead directly to measurable sub-bandgap photoconductivity. Chapter 4 considers the potential for Silicon to serve as the active material in an intermediate-band solar cell and reports experimental progress on two proposed approaches for hyperdoping silicon for this application. The main results of this chapter are the use of native-oxide etching to control the surface evaporation rate of sulfur from silicon and the first synthesis of monocrystalline silicon hyperdoped with gold.

  10. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Simin, D.; Soltamov, V. A.; Poshakinskiy, A. V.; Anisimov, A. N.; Babunts, R. A.; Tolmachev, D. O.; Mokhov, E. N.; Trupke, M.; Tarasenko, S. A.; Sperlich, A.; Baranov, P. G.; Dyakonov, V.; Astakhov, G. V.

    2016-07-01

    We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-28SiC) and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3 /2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100 nT /√{Hz } within a volume of 3 ×10-7m m3 at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm3 , the projection noise limit is below 100 fT /√{Hz } .

  11. Silicon Isotopes in Achondrites and Planetary Accretion and Differentiation

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Savage, P. S.; Badro, J.; Barrat, J.-A.; Moynier, F.

    2015-07-01

    We present new high-precision Si isotope data for an extended suite of achondrites to assess the processes affecting the Si isotope system during the accretion and early geochemical modification of planetesimals.

  12. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, T. J.; Winterbottom, W. L.

    1986-01-01

    Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.

  13. Isotopic homojunction band engineering from diamond.

    PubMed

    Watanabe, H; Nebel, C E; Shikata, S

    2009-06-12

    Confinement of charge carriers in semiconductors by quantum wells is usually accomplished with layers that vary in elemental composition, such as aluminum gallium arsenide and gallium arsenide. We fabricated diamond superlattices by creating multilayer structures of isotopically pure carbon isotopes carbon-12 (12C) and carbon-13 (13C), which confine electrons by a difference in band-gap energy of 17 millielectron volts. Cathodoluminescence experiments performed at 80 kelvin showed that excitonic recombination in the higher-energy band of 13C vanishes in favor of increased recombination in the lower-energy 12C material. Carrier confinement was achieved in diamond superlattices made up of both thinner (30 nanometers) and thicker (up to 350 nanometers) layers. PMID:19520955

  14. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.; Mangels, J. A.

    1986-01-01

    The development of silicon carbide materials of high strength was initiated and components of complex shape and high reliability were formed. The approach was to adapt a beta-SiC powder and binder system to the injection molding process and to develop procedures and process parameters capable of providing a sintered silicon carbide material with improved properties. The initial effort was to characterize the baseline precursor materials, develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures were performed in order to distinguish process routes for improving material properties. A total of 276 modulus-of-rupture (MOR) bars of the baseline material was molded, and 122 bars were fully processed to a sinter density of approximately 95 percent. Fluid mixing techniques were developed which significantly reduced flaw size and improved the strength of the material. Initial MOR tests indicated that strength of the fluid-mixed material exceeds the baseline property by more than 33 percent. the baseline property by more than 33 percent.

  15. Silicon isotopes in granulite xenoliths: Insights into isotopic fractionation during igneous processes and the composition of the deep continental crust

    NASA Astrophysics Data System (ADS)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Halliday, Alex N.

    2013-03-01

    The silicon (Si) cycle is of great current interest but the isotopic composition of the continental crust has not been determined. Magmatic differentiation generates liquids with heavier Si and the lower crust, thought to be dominated by cumulates and restites, is predicted to have a light isotopic composition. This is borne out by the composition of many types of granite, which appear to have relative light Si for their silica content. Here we report the Si isotopic compositions of two granulite facies xenolith suites, from the Chudleigh and McBride volcanic provinces, Australia, providing new constraints on deep crustal processes and the average composition of the deep continental crust. The xenoliths display a range of isotopic compositions (δ30Si=-0.43‰ to -0.15‰) comparable to that measured previously for igneous rocks. The isotopic compositions of the McBride xenoliths reflect assimilation and fractional crystallisation (AFC) and/or partial melting processes. Silicon and O isotopes are correlated in the McBride suite and can be explained by AFC of various evolved parent melts. In contrast, the Chudleigh xenoliths have Si isotope compositions predominantly controlled by the specific mineralogy of individual cumulates. Using the xenolith data and a number of weighting methods, the Si isotope compositions of the lower and middle crust are calculated to be δ30Si=-0.29±0.04‰ (95% s.e.) and -0.23±0.04‰ (95% s.e.) respectively. These values are almost identical to the composition of the Bulk Silicate Earth, implying minimal isotope fractionation associated with continent formation and no light lower crustal reservoir.

  16. Nanoscale engineering of radiation tolerant silicon carbide.

    PubMed

    Zhang, Yanwen; Ishimaru, Manabu; Varga, Tamas; Oda, Takuji; Hardiman, Chris; Xue, Haizhou; Katoh, Yutai; Shannon, Steven; Weber, William J

    2012-10-14

    Radiation tolerance is determined by how effectively the microstructure can remove point defects produced by irradiation. Engineered nanocrystalline SiC with a high-density of stacking faults (SFs) has significantly enhanced recombination of interstitials and vacancies, leading to self-healing of irradiation-induced defects. While single crystal SiC readily undergoes an irradiation-induced crystalline to amorphous transformation at room temperature, the nano-engineered SiC with a high-density of SFs exhibits more than an order of magnitude increase in radiation resistance. Molecular dynamics simulations of collision cascades show that the nano-layered SFs lead to enhanced mobility of interstitial Si atoms. The remarkable radiation resistance in the nano-engineered SiC is attributed to the high-density of SFs within nano-sized grain structures that significantly enhance point defect annihilation. PMID:22948711

  17. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Harry C.; Fang, Ho T.

    1991-01-01

    The results of a four year program to improve the strength and reliability of injection-molded silicon nitride are summarized. Statistically designed processing experiments were performed to identify and optimize critical processing parameters and compositions. Process improvements were monitored by strength testing at room and elevated temperatures, and microstructural characterization by optical, scanning electron microscopes, and scanning transmission electron microscope. Processing modifications resulted in a 20 percent strength and 72 percent Weibull slope improvement of the baseline material. Additional sintering aids screening and optimization experiments succeeded in developing a new composition (GN-10) capable of 581.2 MPa at 1399 C. A SiC whisker toughened composite using this material as a matrix achieved a room temperature toughness of 6.9 MPa m(exp .5) by the Chevron notched bar technique. Exploratory experiments were conducted on injection molding of turbocharger rotors.

  18. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect

    Katoh, Yutai; Koyanagi, Takaaki; Kiggans, Jim; Cetiner, Nesrin; McDuffee, Joel

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  19. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.; Huang, H. H.; Rorabaugh, M. E.; Schienle, J.; Styhr, K. H.

    1985-01-01

    The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters.

  20. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    PubMed Central

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  1. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-10-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.

  2. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors.

    PubMed

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W; Chatterjee, Shahana; Erwin, William R; Bardhan, Rizia; Weiss, Sharon M; Pint, Cary L

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  3. Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle

    NASA Astrophysics Data System (ADS)

    Ding, T. P.; Tian, S. H.; Sun, L.; Wu, L. H.; Zhou, J. X.; Chen, Z. Y.

    2008-12-01

    The silicon isotope fractionation between rice plant and nutrient solution was studied experimentally. Rice plants were grown to maturity with the hydroponic culture in a naturally lit glasshouse. The nutrient solution was sampled for 14 times during the whole rice growth period. The rice plants were collected at various growth stages and different parts of the plants were sampled separately. The silica contents of the samples were determined by the gravimetric method and the silicon isotope compositions were measured using the SiF 4 method. In the growth process, the silicon content in the nutrient solution decreased gradually from 16 mM at starting stage to 0.1-0.2 mM at harvest and the amount of silica in single rice plant increased gradually from 0.00013 g at start to 4.329 g at harvest. Within rice plant the SiO 2 fraction in roots reduced continuously from 0.23 at the seedling stage, through 0.12 at the tiller stage, 0.05 at the jointing stage, 0.023 at the heading stage, to 0.009 at the maturity stage. Accordingly, the fraction of SiO 2 in aerial parts increased from 0.77, through 0.88, 0.95, 0.977, to 0.991 for the same stages. The silicon content in roots decreased from the jointing stage, through the heading stage, to the maturity stage, parallel to the decrease of silicon content in the nutrient solution. At the maturity stage, the silicon content increased from roots, through stem and leaves, to husks, but decreased drastically from husks to grains. These observations show that transpiration and evaporation may play an important role in silica transportation and precipitation within rice plants. It was observed that the δ30Si of the nutrient solution increased gradually from -0.1‰ at start to 1.5‰ at harvest, and the δ30Si of silicon absorbed by bulk rice plant increased gradually from -1.72‰ at start to -0.08‰ at harvest, reflecting the effect of the kinetic silicon isotope fractionation during silicon absorption by rice plants from nutrient

  4. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    NASA Astrophysics Data System (ADS)

    Tabrizian, R.; Ayazi, F.

    2015-06-01

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  5. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    SciTech Connect

    Tabrizian, R.; Ayazi, F.

    2015-06-29

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  6. Isotopic Composition of Barium in Single Presolar Silicon Carbide Grains

    NASA Technical Reports Server (NTRS)

    Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2002-01-01

    We have measured Ba isotope distributions in individual presolar SiC grains. We find that the Ba isotopic composition in mainstream SiC grains is consistent with models of nucleosynthesis in low to intermediate mass asymptotic giant branch (AGB) stars. Additional information is contained in the original extended abstract.

  7. Isotopic Composition of Presolar Silicon Carbide Grains Analyzed with CHILI

    NASA Astrophysics Data System (ADS)

    Stephan, T.; Trappitsch, R.; Davis, A. M.; Pellin, M. J.; Rost, D.; Savina, M. R.; Jadhav, M.; Kelly, C. H.

    2015-07-01

    Twenty-two presolar SiC grains were analyzed for Sr, Zr, and Ba isotopes with the Chicago Instrument for Laser Ionization. Most grains showed isotope patterns consistent with formation in AGB star like observed previously. One grain is a supernova grain.

  8. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications, phase 2

    NASA Astrophysics Data System (ADS)

    Sundberg, G. J.; Vartabedian, A. M.; Wade, J. A.; White, C. S.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP'ed Si3N4 with 4wt% Y2O3 (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  9. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    SciTech Connect

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  10. Silicon isotope fractionation during abiotic silica precipitation at low temperatures: Inferences from flow-through experiments

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Vroon, Pieter Z.; Roerdink, Desiree L.; Van Cappellen, Philippe; van Bergen, Manfred J.

    2014-10-01

    Silicon isotopes have considerable potential as proxy for (near-) surface processes and environmental conditions. However, unambiguous interpretations of isotope signatures in natural silica deposits are often hampered by a lack of independent quantitative information on isotopic fractionations operating under the environmental conditions of interest. We performed seeded silica precipitation experiments using flow-through reactors in the 10-60 °C temperature range to alleviate this problem. The principal objective was to quantify the silicon isotope fractionations during controlled precipitation of amorphous silica from a flowing aqueous solution. The experiments were designed to simulate silica deposition induced by a temperature drop, with particular relevance for (near-) surface hydrothermal systems associated with steep temperature gradients. Monitored differences in silicon isotope ratios (30Si/28Si and 29Si/28Si) between input and output solutions demonstrated a systematic sequence in behavior. During an initial time interval, that is, before the reaction system reached steady state, the observed isotope shifts were influenced by dissolution of the seed material, the saturation state of the solution and the specific surface area of the seeds. After reaching steady state, the selective incorporation of silicon isotopes by the solid phase exhibited an explicit temperature dependency: the lighter isotopes were preferentially incorporated, and apparent fractionation magnitudes increased with decreasing temperature. Calculated magnitudes of silicon isotope fractionations between precipitated and dissolved silica (Δ30Si = δ30Siprecipitate (calculated) - δ30Siinput solution) were -2.1‰ at 10 °C, -1.2‰ at 20 °C, -1.0‰ at 30 °C, -0.5‰ at 40 °C, 0.1‰ at 50 °C, and 0.2‰ at 60 °C (s.d. ⩽ 0.6‰, based on replicate experiments). Hence, fractionation was nearly insignificant at temperatures ⩾50 °C. Apart from this relationship with temperature

  11. An Earth-Moon silicon isotope model to track silicic magma origins

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Zambardi, Thomas

    2015-10-01

    A comparison between terrestrial and lunar igneous rocks reveals that Si isotope compositions become slightly, though significantly enriched in heavy isotopes from basalts to granites and anorthosites as a function of the rock SiO2 concentration and/or tectosilicate content. This is interpreted as the result of a global igneous differentiation process that leads to an increased amount of tectosilicates in the rocks. This relationship of increasing degree of melt polymerization with increasingly heavy silicon isotope composition is particularly apparent in lunar rocks. The terrestrial trend, however, is more scattered. Given the sensitivity of Si isotopes to water-rock interactions, it is likely that the more erratic terrestrial trend reveals the involvement of water that does not occur on the Moon. Hence, Si isotopes appear to reflect the occurrence of low temperature water-rock interaction products, like clay minerals, in the source of peraluminous leucogranites. Conversely, the heavy silicon isotope composition of some andesites possibly trace the input of fluids involved in subduction zones and/or interaction of the oceanic crust with isotopically heavy seawater before subduction.

  12. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts.

    PubMed

    Robert, François; Chaussidon, Marc

    2006-10-26

    The terrestrial sediment record indicates that the Earth's climate varied drastically in the Precambrian era (before 550 million years ago), ranging from surface temperatures similar to or higher than today's to global glaciation events. The most continuous record of sea surface temperatures of that time has been derived from variations in oxygen isotope ratios of cherts (siliceous sediments), but the long-term cooling of the oceans inferred from those data has been questioned because the oxygen isotope signature could have been reset through the exchange with hydrothermal fluids after deposition of the sediments. Here we show that the silicon isotopic composition of cherts more than 550 million years old shows systematic variations with age that support the earlier conclusion of long-term ocean cooling and exclude post-depositional exchange as the main source of the isotopic variations. In agreement with other lines of evidence, a model of the silicon cycle in the Precambrian era shows that the observed silicon isotope variations imply seawater temperature changes from about 70 degrees C 3,500 million years ago to about 20 degrees C 800 million years ago. PMID:17066030

  13. Valley-engineered ultra-thin silicon for high-performance junctionless transistors.

    PubMed

    Kim, Seung-Yoon; Choi, Sung-Yool; Hwang, Wan Sik; Cho, Byung Jin

    2016-01-01

    Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from ultra-thin-body silicon are the two main mechanisms for valley engineering. These were obtained from the extremely well-controlled silicon surface roughness and high tensile strain in silicon, thereupon demonstrating a device mobility increase of ~500% in a 2.5 nm thick silicon channel device. PMID:27389874

  14. Valley-engineered ultra-thin silicon for high-performance junctionless transistors

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yoon; Choi, Sung-Yool; Hwang, Wan Sik; Cho, Byung Jin

    2016-07-01

    Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from ultra-thin-body silicon are the two main mechanisms for valley engineering. These were obtained from the extremely well-controlled silicon surface roughness and high tensile strain in silicon, thereupon demonstrating a device mobility increase of ~500% in a 2.5 nm thick silicon channel device.

  15. Valley-engineered ultra-thin silicon for high-performance junctionless transistors

    PubMed Central

    Kim, Seung-Yoon; Choi, Sung-Yool; Hwang, Wan Sik; Cho, Byung Jin

    2016-01-01

    Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from ultra-thin-body silicon are the two main mechanisms for valley engineering. These were obtained from the extremely well-controlled silicon surface roughness and high tensile strain in silicon, thereupon demonstrating a device mobility increase of ~500% in a 2.5 nm thick silicon channel device. PMID:27389874

  16. Can silicon isotopes be used to assess anthropogenic impacts and nutrient utilisation in Lake Baikal, Siberia?

    NASA Astrophysics Data System (ADS)

    Swann, G. E. A.; Panizzo, V. N.; Mackay, A. W.; Roberts, S.; Vologina, E.; Horstwood, M. S.

    2014-12-01

    Silicon isotope geochemistry (28Si, 29Si, 30Si) represents a growing field in Earth Sciences providing information to constrain and understand biogeochemical cycling on land and in oceans. Here we present records of δ30Si (30Si/28Si) from the Lake Baikal drainage basin in central Siberia to understand silicon cycling through the dominant river tributaries and into Lake Baikal itself, the world's deepest and most voluminous lake containing one fifth of all freshwater not stored in glaciers and ice caps.Waters were collected along an upstream transect for the five dominant Lake Baikal inflows as well as from the Selenga Delta which account for >50% of the annual riverine flow to the lake. Samples for dissolved silicon (DSi) concentrations and silicon isotopic signatures (δ30SiDSi) were filtered and acidified in the field with isotopic analyses conducted on a Neptune + Multi-Collector ICP-MS using wet plasma mode with Mg doping of samples and standard-sample-standard bracketing. Analytical reproducibility is 0.11‰ (2σ) and blanks are <1% of signal intensity. The DSi concentration of all river inflow samples varies from c. 2.5-6.3 ppm, which contrasts with concentrations of < 1ppm from the Angara River, the lake's only outflow. Combined with river δ30SiDSi values of c. + 0.94 to +1.52‰ and lake water and outflow values of c. +2.50‰, the results show significant (up to 60%) biological utilisation of silicon entering the lake.With the Lake Baikal having been designated a World Heritage Site since 1996, due to its high level of biological endemicity, the work in combination with sediment cores from the lake provides an insight into the transportation and fate of silicon in the basin and an assessment of how climate change and expanding anthropogenic activities in the region including urbanisation, deforestation, agriculture and mining have impacted biogeochemical cycling.

  17. Silicon Isotope Fractionation by Banana Under Continuous Nutrient and Silica Flux

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Cardinal, D.; Henriet, C.; Delvaux, B.; André, L.

    2004-12-01

    Silicon is absorbed by plants as aqueous H4SiO4 with other essential nutrients, and precipitates in aerial parts of the plant as phytolith, a biogenic opal. Phytoliths are restored to the soil by decomposition of organic debris from plant material. The role of higher plants in the biogeochemical cycle of silicon is therefore major although it is still poorly studied. Biomineralization processes are known to fractionate the three stable silicon isotopes with a preferential uptake of light isotopes. Therefore, following some preliminary results from Douthitt (1982), and studies presented in recent conferences (Ziegler et al., 2002; Ding et al., 2003), we suspect that phytolith production by plants could also fractionate the silicon isotopes. Inversely, intensity of phytolith-related isotopic fractionations might contribute to a better understanding of the soil-plant silicon cycle. Our study focused on banana, a silicon accumulating plant (>1% Si, dry weight).Musa acuminata cv Grande Naine has been grown in hydroponics under controlled conditions (light, temperature, humidity, nutrients) during six weeks. The nutrient supply was kept constant: three batches of five plants were grown with a continuous nutrient solution flow of 5, 50 and 100 ppm SiO2 respectively. Si isotopic compositions were measured in the source solution, and in silica extracted from the various parts of banana (roots, pseudostems, midribs and petioles, leaves), using a Nu Plasma multicollector mass spectrometer (MC-ICP-MS) operating in dry plasma mode. The results are expressed as δ 29Si relatively to the NBS28 standard, with an average precision of ± 0.03‰ . Silicon contents and morphological studies of phytoliths were also achieved. Banana δ 29Si varied between -0.18 and -0.76‰ with a source solution at -0.02‰ . Values of δ 29Si were less fractionated, relatively to the nutrient solution, in roots, where no phytoliths have been observed until now, than in upper parts of banana where

  18. Joining and Integration of Silicon Carbide for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv

    2010-01-01

    The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.

  19. Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Pringle, Emily A.; Moynier, Frédéric; Savage, Paul S.; Jackson, Matthew G.; Moreira, Manuel; Day, James M. D.

    2016-09-01

    The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (∼several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (∼tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen. Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. On average, δ30Si values for OIB (-0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (-0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (δ30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.

  20. Evaluation of the silicon isotopes for ENDF/B-VI

    SciTech Connect

    Hetrick, D.M.; Larson, D.C.; Larson, N.M.; Fu, C.Y.; Epperson, S.J.

    1991-01-01

    Isotopic evaluations for {sup 28,29,30}Si performed for ENDF/B-VI are briefly reviewed. The evaluations are based on analysis of experimental data and results of model calculations. Evaluated data are given for neutron induced reaction cross sections, angular and energy distributions, and gamma-ray production cross sections. All necessary data are given to allow KERMA (Kinetic Energy Released in MAterials) and displacement cross sections to be calculated directly from information available in the evaluations. These quantities are fundamental to studies of neutron heating and radiation damage. 20 refs., 4 figs.

  1. Si isotopic structure of the infrared absorption of the fully hydrogenated vacancy in silicon.

    PubMed

    Clerjaud, B; Pajot, B

    2013-05-14

    An infrared absorption spectrum consisting in three lines observed around 2223 cm(-1) at liquid helium temperature characterizes a defect common in silicon crystals containing hydrogen. Several investigations of this spectrum have converged towards its assignment to a fully hydrogenated lattice vacancy defect V(Si-H)4. However, the fact that the ratios of the intensities of the three lines have been reported to be proportional to the natural abundances of the three silicon isotopes suggests that only one Si atom is involved in the defect, apparently contradicting the above assignment. In this paper, the spectroscopic investigation of this defect is revisited and the Si-related isotopic structures of V(Si-H)4 and V(Si-D)4 defects are modeled. It is shown that the near proportionalities observed between the intensities of these lines and the abundances of the Si isotopes are fortuitous. Our analysis of the isotope dependence of the 2223 cm(-1) line finds the V(Si-H)4 model to be correct and that the model of a single interstitial Si atom complexed with H can be rejected. The investigation is extended to the analysis of tetra-hydrogenated vacancy trapped by a carbon atom. PMID:23676054

  2. Si isotopic structure of the infrared absorption of the fully hydrogenated vacancy in silicon

    NASA Astrophysics Data System (ADS)

    Clerjaud, B.; Pajot, B.

    2013-05-01

    An infrared absorption spectrum consisting in three lines observed around 2223 cm-1 at liquid helium temperature characterizes a defect common in silicon crystals containing hydrogen. Several investigations of this spectrum have converged towards its assignment to a fully hydrogenated lattice vacancy defect V(Si-H)4. However, the fact that the ratios of the intensities of the three lines have been reported to be proportional to the natural abundances of the three silicon isotopes suggests that only one Si atom is involved in the defect, apparently contradicting the above assignment. In this paper, the spectroscopic investigation of this defect is revisited and the Si-related isotopic structures of V(Si-H)4 and V(Si-D)4 defects are modeled. It is shown that the near proportionalities observed between the intensities of these lines and the abundances of the Si isotopes are fortuitous. Our analysis of the isotope dependence of the 2223 cm-1 line finds the V(Si-H)4 model to be correct and that the model of a single interstitial Si atom complexed with H can be rejected. The investigation is extended to the analysis of tetra-hydrogenated vacancy trapped by a carbon atom.

  3. High resolution measurements of galactic cosmic-ray neon, magnesium, and silicon isotopes

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1980-01-01

    High-resolution measurements of the abundances of individual isotopes of neon, magnesium and silicon in galactic cosmic rays are reported. The Caltech Heavy Isotope Spectrometer Telescope on board the ISEE 3 spacecraft was used to obtain measurements in the range 30 to 180 MeV/n at an rms mass resolution of 0.20 amu. Results indicate excesses of Ne-22 as well as Mg-25 and Mg-26 in galactic cosmic rays with respect to their solar system abundances. Calculations of the effects of interstellar propagation and solar modulation on cosmic-ray isotope abundances also imply an Mg-25 + Mg-26 cosmic ray source fraction significantly greater than the solar system fraction, and it is suggested that the cosmic ray source material and solar system material were synthesized under different conditions.

  4. Adsorption Behavior of Metasilicate on N-Methyl d-Glucamine Functional Groups and Associated Silicon Isotope Fractionation.

    PubMed

    Wang, Wei; Wei, Hai-Zhen; Jiang, Shao-Yong; Eastoe, Christopher J; Guo, Qi; Lin, Yi-Bo

    2016-09-01

    Significant isotope fractionation of silicon provides a powerful geochemical tracer for biological and physicochemical processes in terrestrial and marine environments. The exact mechanism involved in silicon uptake as part of the biological process is not well known. The silicon uptake in biological processes is investigated using silicate adsorption onto the N-methylglucamine functional group (sugarlike structure, abbreviated as L) of Amberlite IRA-743 resin as an analogue of the formation of silicate-sugar complexes in plants. This study provides new evidence that certain sugars can react readily with basic silicic acid to form sugar-silicate chelating complexes, and the equilibrium adsorption behavior of silicate can be well described by the Langmuir isotherm with a Gibbs free energy (ΔG) of -11.94 ± 0.21 kJ·mol(-1) at 293 K. The adsorption kinetics corresponds well to a first-order kinetic model in which the adsorption rate constant ka of 1.25 × 10(-4) s(-1) and the desorption rate constant kd of 4.00 × 10(-6) s(-1) are obtained at 293 K. Both ka and kd increase with increasing temperature. The bonding configurations of silicate-sugar complexes imply the principal coordination complex of hexacoordinated silicon (silicon/L = 1:3) in the liquid phase and the dominant tetracoordinated silicon in the solid phase. Similar to those of many natural processes, the biological uptake via the sugar-silicate chelating complexes favors the preferential enrichment of light Si isotopes into solids, and the Rayleigh model controls the dynamic isotope fractionation with an estimated silicon isotope fractionation factor (i.e., αsolid-solution = [Formula: see text]) of 0.9971. This study advanced the fundamental understanding of the dynamic isotope fractionation of silicon during silicon cycling from the lithosphere to the biosphere and hydrosphere in surficial processes. PMID:27499230

  5. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation

    NASA Astrophysics Data System (ADS)

    de la Rocha, Christina L.; Brzezinski, Mark A.; DeNiro, Michael J.

    1997-12-01

    The fractionation of silicon isotopes by three species of marine diatoms, Skeletonema costatum, Thalassiosira weissflogii, and Thalassiosira sp., grown in batch culture, is reported. Fractionation was observed for all species. The δ 30Si value of the diatom silica and that of the initial silicic acid in the culture medium were used to compute a fractionation factor (α). The values of a for the three species were nearly identical, averaging 0.9989 ± 0.0004 (s.d., n = 13), which corresponds to the production of diatom silica with a δ 30Si value that is 1.1‰ more negative than that of the dissolved silicon utilized for growth. The fractionation factor did not vary with temperature and the consequent change in growth rate (ANOVA, p =0.61; tested at 12°, 15°, and 22°C with Thalassiosira sp.). The observation of fractionation of silicon isotopes by diatoms is an essential step in establishing δ 30Si variations in biogenic silica as a potential oceanographic tracer.

  6. Silicon isotope systematics of acidic weathering of fresh basalts, Kilauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Chemtob, Steven M.; Rossman, George R.; Young, Edward D.; Ziegler, Karen; Moynier, Fréderic; Eiler, John M.; Hurowitz, Joel A.

    2015-11-01

    Silicon stable isotopes are fractionated by a host of low-temperature aqueous processes, making them potentially useful as a weathering proxy. Here we characterize the silicon isotope signature of surficial chemical weathering of glassy basaltic lava flows at Kilauea Volcano, Hawaii. Fresh basalt flow surfaces (<40 years old) frequently feature opaque amorphous silica surface coatings up to 80 μm thick. These silica coatings and associated silica cements are enriched in the heavier isotopes of Si (δ30SiNBS-28 = +0.92‰ to +1.36‰) relative to their basaltic substrate (δ30SiNBS-28 = -0.3‰ to -0.2‰). Secondary clays and opals are typically depleted in 30Si relative to the dissolved reservoirs from which they precipitated, so this sense of isotopic fractionation is unusual. Mechanisms capable of producing isotopically heavy secondary minerals were explored by conducting batch alteration experiments on fresh basaltic glass. Batch acidic alteration of basalt glass in HCl, H2SO4, and HF produced silica-rich surface layers resembling the Hawaiian surface coatings. Differences in fluid chemical composition affected the direction and magnitude of Si isotope fractionation. Basalt leaching in HCl or H2SO4 produced 30Si-enriched fluids (1000 ln αprecip-Si(aq) ≅ -0.8‰) and 30Si-depleted secondary silica layers. In contrast, HF-bearing experiments produced highly 30Si-depleted fluid compositions (1000 ln αprecip-Si(aq) up to +8‰). Larger isotopic fractionations were observed in experiments with lower fluid-rock ratios. In Hawaii, where altering fluids contain H2SO4 and HCl but minimal HF, high δ30Si values for the silica coatings were likely achieved by Rayleigh fractionation. Aqueous 30Si-enriched silica was released during incongruent basalt dissolution then subsequently transported and deposited from an evaporating solution at the flow surface. Our results indicate that (1) altering fluid chemistry and fluid-rock ratio impact the Si isotope signature of

  7. Substitution of ceramics for high temperature alloys. [advantages of using silicon carbides and silicon nitrides in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1978-01-01

    The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.

  8. In-Situ Silicon Isotope Analysis of Archean Cherts by Laser Ablation MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Vroon, P. Z.; van den Boorn, S. H.; van der Wagt, B. J.; van Bergen, M. J.

    2007-12-01

    We present in-situ stable silicon isotope results for Archean Cherts from the Pilbara region, Western Australia. Analyses were performed using a Geolas Laser Ablation (LA) system equipped with a 193nm Excimer laser and a ThermoFinnigan Neptune MC-ICPMS. The MC-ICPMS was used in medium resolution mode (RP=4000) to resolve molecular isobaric interferences (e.g., 12C16O+, 14N2+, 14N16O+). We used an ablation pit size of 49 by 300μm with a 7Hz repetition rate and 5 J.cm-2. Tuning conditions and cup settings were similar as those described by Van den Boorn et al. (2006; 2007) for solution work. To assess precision and accuracy of the LA technique, chert samples were analyzed that were previously characterized for silicon isotopes by micro-drilling and subsequent liquid chromatographic purification. A chemically homogenous chert sample that is well characterized for silicon isotopes was used as a standard. This in-house standard has a δ30Si of 0.50 ± 20 (2sd, n=4) relative to NIST RM8546 (=NBS28). Our precision with the LA technique of 0.2° (2sd, n=11), based on repeated measurements of the standard, is slightly better than the long-term precision of 0.3‰ for solution work (Van den Boorn et al. 2006). Micro-drill and laser data are in excellent agreement (less than 0.4‰), which is well within the variations recorded in individual mm-cm sized chert laminae. By producing 3cm scans across chert bands, inhomogeneities of up to 0.5‰ can be resolved within a single band. Matrix effects might be significant in LA work. For example, borate silicate glass was up to 2.15‰ heavier than values obtained by solution work. This suggests that ablation induces isotopic fractionation and/or that matrix elements cause a shift in mass bias for silicon in the plasma. Because Archean cherts generally contain more than 95% SiO2, offsets due to matrix effects will be small. However, the use of a standard with a composition close to samples is recommended. References: Van den Boorn

  9. The silicon isotope composition of enstatite meteorites and their importance as proto-Earth components

    NASA Astrophysics Data System (ADS)

    Savage, P. S.; Moynier, F.

    2012-12-01

    Of the major primitive meteorite groups, the enstatite chondrites (EC) are the most chemically dissimilar to terrestrial composition [1]. This might preclude them as major components of the proto-Earth; however, for many isotope systems (most notably oxygen, ref. 2), enstatite chondrites and the Earth are compositionally alike. This has led some authors to infer that a significant proportion of Earth accreted from such meteorites [3]. In contrast to many isotope systems, silicon (Si) apparently exhibits significant mass-dependent variations between EC and Bulk Silicate Earth (BSE), which has been used as further evidence against the EC Earth model [4]. However, these conclusions are based on scant data, only 8 analyses of 6 separate meteorites. Here we present a comprehensive investigation into the Si isotope composition of enstatite chondrites and their differentiated counterparts, the aubrites. Our results confirm that enstatite meteorites have Si isotope compositions that are significantly lighter than both ordinary and carbonaceous chondrites and BSE; as such, the EC are the lightest macroscale objects, relative to Si isotopes, so far analysed from the solar system. The data also show that EH (high iron) chondrites have significantly lighter Si isotope compositions than EL (low iron) chondrites, supporting the assertion that these meteorite groups formed on separate bodies. Silicon isotope analyses of the metal-free components of EH and EL chondrites are identical, within error, to each other and with carbonaceous/ordinary chondrite bulk composition [5]. From this we infer that elemental fractionation in the nebular gas is not the cause of the light Si isotope enrichment in enstatite chondrites. A good negative correlation between bulk δ30Si and Si content in kamacite (Fe-Ni metal) in enstatite chondrites indicates that the presence of isotopically light Si in the metal phase (as the result of formation under reducing conditions) is the principle cause of the

  10. Tracing silicon cycling in the Okavango Delta, a sub-tropical flood-pulse wetland using silicon isotopes

    NASA Astrophysics Data System (ADS)

    Frings, Patrick J.; De La Rocha, Christina; Struyf, Eric; van Pelt, Dimitri; Schoelynck, Jonas; Hudson, Mike Murray; Gondwe, Mangaliso J.; Wolski, Piotr; Mosimane, Keotsheple; Gray, William; Schaller, Jörg; Conley, Daniel J.

    2014-10-01

    Chemical weathering of silicate minerals releases elements into solution whereas the neoformation of secondary minerals works in the opposite direction, potentially confounding estimates of silicate weathering rates. Silicon isotopes (δ30Si) may be a useful tool to investigate these processes. Here, we present 82 δ30Si measurements from surface waters, pore waters, biogenic silica (BSi), clays, sand and vegetation from the Okavango Delta, Botswana, a freshwater sub-tropical, flood-pulse wetland. Hydrologically, the Okavango is dominated by evapotranspiration water losses to the atmosphere. It receives an annual pulse of water that inundates seasonal floodplains, while river baseflow is sufficient to maintain a permanent floodplain. δ30Si in dissolved silica (DSi) in surface waters along a 300 km transect at near-peak flood show a limited range (0.36-1.19‰), implying the Delta is well buffered by a balance of processes adding and removing DSi from the surface water. A key control on DSi concentrations is the uptake, production of BSi and recycling of Si by aquatic vegetation, although the net isotopic effect is necessarily small since all BSi re-dissolves on short timescales. In the sediments, BSi δ30Si (n = 30) ranges from -1.49‰ to +0.31‰ and during dissolution, residual BSi tends towards higher δ30Si. The data permit a field-based estimate of the fractionation associated with BSi dissolution, ε30BSi-DSi = -0.26‰, though it is unclear if this is an artefact of the process of dissolution. Clay δ30Si ranges from -0.97‰ to +0.10‰, (n = 15, mean = -0.31‰) and include the highest values yet published, which we speculate may be due to an equilibrium isotope effect during diagenetic transformation of BSi. Two key trends in surface water DSi δ30Si merit further examination: declining δ30Si in an area roughly corresponding to the permanent floodplains despite net DSi removal, and increasing δ30Si in the area corresponding to the seasonal floodplains

  11. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    PubMed

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra. PMID:26651177

  12. Shape-Engineered multifunctional porous silicon nanoparticles by direct imprinting

    NASA Astrophysics Data System (ADS)

    Mares, Jeremy W.; Fain, Joshua S.; Beavers, Kelsey R.; Duvall, Craig L.; Weiss, Sharon M.

    2015-07-01

    A versatile and scalable method for fabricating shape-engineered nano- and micrometer scale particles from mesoporous silicon (PSi) thin films is presented. This approach, based on the direct imprinting of porous substrates (DIPS) technique, facilitates the generation of particles with arbitrary shape, ranging in minimum dimension from approximately 100 nm to several micrometers, by carrying out high-pressure (>200 MPa) direct imprintation, followed by electrochemical etching of a sub-surface perforation layer and ultrasonication. PSi particles (PSPs) with a variety of geometries have been produced in quantities sufficient for biomedical applications (≫10 μg). Because the stamps can be reused over 150 times, this process is substantially more economical and efficient than the use of electron beam lithography and reactive ion etching for the fabrication of nanometer-scale PSPs directly. The versatility of this fabrication method is demonstrated by loading the DIPS-imprinted PSPs with a therapeutic peptide nucleic acid drug molecule, and by vapor deposition of an Au coating to facilitate the use of PSPs as a photothermal contrast agent.

  13. Shape-engineered multifunctional porous silicon nanoparticles by direct imprinting.

    PubMed

    Mares, Jeremy W; Fain, Joshua S; Beavers, Kelsey R; Duvall, Craig L; Weiss, Sharon M

    2015-07-10

    A versatile and scalable method for fabricating shape-engineered nano- and micrometer scale particles from mesoporous silicon (PSi) thin films is presented. This approach, based on the direct imprinting of porous substrates (DIPS) technique, facilitates the generation of particles with arbitrary shape, ranging in minimum dimension from approximately 100 nm to several micrometers, by carrying out high-pressure (>200 MPa) direct imprintation, followed by electrochemical etching of a sub-surface perforation layer and ultrasonication. PSi particles (PSPs) with a variety of geometries have been produced in quantities sufficient for biomedical applications (≫10 μg). Because the stamps can be reused over 150 times, this process is substantially more economical and efficient than the use of electron beam lithography and reactive ion etching for the fabrication of nanometer-scale PSPs directly. The versatility of this fabrication method is demonstrated by loading the DIPS-imprinted PSPs with a therapeutic peptide nucleic acid drug molecule, and by vapor deposition of an Au coating to facilitate the use of PSPs as a photothermal contrast agent. PMID:26081802

  14. Silicon isotope fractionation in silicate minerals: Insights from first-principles models of phyllosilicates, albite and pyrope

    NASA Astrophysics Data System (ADS)

    Méheut, Merlin; Schauble, Edwin A.

    2014-06-01

    Isotopic fractionation factors for oxygen and silicon in phyllosilicates (pyrophyllite, talc), albite and pyrope have been calculated using first-principles methods based on density functional theory. Based on exhaustive analysis of numerical convergence, we also update our previous calculations on enstatite and forsterite silicon fractionation properties. Calculated oxygen isotope fractionations agree well with existing estimates for talc and albite. In the case of silicon, qualitative agreement is found with natural data. For phyllosilicates (kaolinite, lizardite, pyrophyllite, talc), Si isotope fractionation properties appear to be correlated with stoichiometry: 1000 ln α30Si={aMg(T)·Mg+aAl(T)·Al}/{Si}, where Sieq. =#Si, Al={3}/{4}#Al and Mg={1}/{2}#Mg (cation equivalents) are the charge-weighed stoichiometric coefficients of each cation, normalized to the charge of the silicon atom, and aX(T) are proportionality coefficients depending on temperature. It is suggested that the effect of cation X on Si isotope fractionation (i.e. aX(T)) will increase with decreasing electronegativity of X. Si isotope fractionation is further correlated with Si-O distances, suggesting a crystal chemical explanation for relation (1) in terms of electron donation effects. This relationship appears valid for quartz, pyrope and enstatite (R2=0.99, n=7), but forsterite is strongly anomalous (error of 0.7‰ at 600 °C). These models indicate that attention should be given to chemical compositions in Si isotope studies. Relation (1) would explain the enrichment in heavy silicon isotopes accompanying magmatic differentiation.

  15. Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite

    NASA Astrophysics Data System (ADS)

    Zinner, E.; Ming, T.; Anders, E.

    1987-12-01

    Primitive meteorites contain several noble gas components with anomalous isotopic compositions which imply that they - and their solid 'carrier' phases - are of exotic, pre-solar origin. The authors found that minor fractions of the Murray meteorite contain two minerals not previously seen in meteorites: silicon carbide and an amorphous Si-O phase. They report ion microprobe analyses of these phases which reveal very large isotopic anomalies in silicon, nitrogen and carbon, exceeding the highest anomalies previously measured by factors of up to ≡50. It is concluded that these phases are circumstellar grains from carbon-rich stars, whose chemical inertness allowed them to survive in exceptionally well-preserved form.

  16. Dopant and self-diffusion in extrinsic n-type silicon isotopically controlled heterostructures

    SciTech Connect

    Silvestri, Hughes H.; Sharp, Ian D.; Bracht, Hartmut A.; Nicols, Sam P.; Beeman, Jeff W.; Hansen, John; Nylandsted-Larsen, Arme; Haller, Eugene E.

    2002-04-01

    We present experimental results of dopant- and self-diffusion in extrinsic silicon doped with As. Multilayers of isotopically controlled {sup 28}Si and natural silicon enable simultaneous analysis of {sup 30}Si diffusion into the {sup 28}Si enriched layers and dopant diffusion throughout the multilayer structure. In order to suppress transient enhanced self- and dopant diffusion caused by ion implantation, we adopted a special approach to dopant introduction. First, an amorphous 250-nm thick Si layer was deposited on top of the Si isotope heterostructure. Then the dopant ions were implanted to a depth such that all the radiation damage resided inside this amorphous cap layer. These samples were annealed for various times and temperatures to study the impact of As diffusion and doping on Si self-diffusion. The Si self-diffusion coefficient and the dopant diffusivity for various extrinsic n-type conditions were determined over a wide temperature range. We observed increased diffusivities that we attribute to the increase in the concentration of the native defect promoting the diffusion.

  17. Plasmonic engineering of spontaneous emission from silicon nanocrystals

    PubMed Central

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells. PMID:24037020

  18. Silicon isotope fractionation during silica precipitation from hot-spring waters

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Vroon, Pieter; Keller, Nicole; Gudbrnadsson, Snorri; Stefánsson, Andri; van Bergen, Manfred

    2014-05-01

    Hot-spring systems in the Geysir geothermal area, Iceland, have been studied to explore silicon isotope fractionation in a natural setting where sinter deposits are actively formed over a temperature interval between 20° and 100° C. The SiO2(aq)concentrations in spring and stream waters range between 290 and 560ppm and stay relatively constant along downstream trajectories, irrespective of significant cooling gradients. The waters are predominantly oversaturated in amorphous silica at the temperatures measured in the field. Correlations between the saturation indices, temperature and amounts of evaporative water loss suggest that cooling and evaporation are the main causes of subaqueous silica precipitation. The δ30Si values of dissolved silica in spring water and outflowing streams average around +1o probably due to the small quantities of instantaneously precipitating silica relative to the dissolved amount. Siliceous sinters, in contrast, range between -0.1o to -4.0o consistent with a preferred incorporation of the light silicon isotope and with values for precipitated silica becoming more negative with downstream decreasing temperatures. Larger fractionation magnitudes are inversely correlated with the precipitation rate, which itself is dependent on temperature, saturation state and the extent of a system. The resulting magnitudes of solid-fluid isotopic fractionation generally decline from -3.5o at 10° C to -2.0o at 90° C. These values confirm a similar relationship between fractionation magnitude and temperature that we found in laboratory-controlled silica-precipitation experiments. However, a relatively constant offset of ca. -2.9o between field and experimental fractionation values indicates that temperature alone cannot be responsible for the observed shifts. We infer that precipitation kinetics are a prominent control of silicon isotope fractionation in aqueous environments, whereby the influence of the extent of the system on the precipitation

  19. Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures

    SciTech Connect

    Sharp, Ian D.; Bracht, Hartmut A.; Silvestri, Hughes H.; Nicols, Samuel P.; Beeman, Jeffrey W.; Hansen, John L.; Nylandsted Larsen, Arne; Haller, Eugene E.

    2002-04-01

    Isotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. {sup 30}Si was used as a tracer through a multilayer structure of alternating natural Si and enriched {sup 28}Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850 C and 1100 C. A specially designed ion- implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.

  20. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    NASA Astrophysics Data System (ADS)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  1. Transformation of Silicon in a Coastal Sandy Beach Ecosystem: Insights from Stable Silicon Isotopes in Ground- and Porewaters

    NASA Astrophysics Data System (ADS)

    Ehlert, C.; Paffrath, R.; Reckhardt, A.; Pahnke, K.

    2014-12-01

    Wave and tide dominated sandy beach ecosystems have a major effect on coastal carbon, nutrient, and trace element cycling. The coarse-grained sediments are characterized by a high permeability, which permits advective porewater transport. Due to the fast porewater flow in the sandy sediment, organic matter remineralization products (i.e. nutrients and trace metals) are only slightly enriched in the porewater and rapidly discharged to the coastal zone where they can potentially stimulate primary production. Here we present stable silicon isotope (δ30Si) data from groundwaters and porewaters from Spiekeroog Island, a barrier island in the southern North Sea, Germany. Groundwater was sampled in the freshwater lens down to 70 m depth in the center of the island. The beach porewaters were taken along a transect from the dune belt to the low water line at depths between 0.5 and 5.2 m. This transect represents the mixing zone of fresh and saline groundwater with seawater, whereby the terrestrial driven groundwater flow provides a potential source of terrestrially derived Si isotope compositions resulting in a modification of the marine-dominated porewater composition. The groundwater is characterized by high Si concentrations of up to 750 µM and rather low δ30Si signatures between +0.6‰ and +1.2‰, which decrease with depth (and age) within the freshwater lens. The porewaters have much lower Si concentrations around 50-60 µM and higher and more variable δ30Si between +1.0‰ and +2.5‰. The lower δ30Si values are found closer to the dunes and at greater depths in the beach sediments. These signatures possibly reflect the outflow of the fresh groundwater to the coastal zone. The higher values represent the influence of seawater, which delivers water with a high δ30Si signature previously enriched by phytoplankton growth.

  2. Dual role of seawater and hydrothermal fluids in Early Archean chert formation: Evidence from silicon isotopes

    NASA Astrophysics Data System (ADS)

    van den Boorn, Sander H. J. M.; van Bergen, Manfred J.; Nijman, Wouter; Vroon, Pieter Z.

    2007-10-01

    The great variety and abundance of chert deposits in Archean terrains constitute one of the most unusual features that mark Earth's early geological history. Proposed explanations for their origin largely relying on field observations, trace element patterns, or oxygen isotope signatures have not yielded an encompassing model. Here we document silicon isotope systematics in cherts from 3.5-3.0 Ga units in the Pilbara Craton (Western Australia) as evidence of their formation by several distinct processes in Early Archean near-surface environments. Our δ30Si results, in combination with geochemical and mineralogical signatures and field relations, point to three end-member sources of silica derivation. One chert type is inferred to have originated through massive transformation of precursor material by silica added from sea water. At least 2‰ differences in δ30Si between the two other types, produced by direct chemical precipitation on the seafloor or in conduits, discriminate seawater from hydrothermal fluid as a source of silica. A virtually continuous Si isotope trend in cherts from this group is consistent with interaction between silica-carrying fluids at submarine vent systems.

  3. Silicon Isotopic Composition in Large Meteoritic SiC Particles and 22Na Origin of 22Ne.

    PubMed

    Brown, L E; Clayton, D D

    1992-11-01

    Large silicon carbide (SiC) particles extracted from acid-insoluble residues of carbonaceous chondrites are isotopically anomalous in both silicon and carbon and contain isotopically extreme noble gases. These particles are thought to have originated in mass outflows from red giant stars and to have existed in the interstellar medium at the time the solar system formed from an interstellar cloud. Calculations show that the silicon isotope correlations in those large SiC particles can be generated only in the most massive carbon stars. Consequently, the almost pure neon-22 ((22)Ne) in those particles must be interpreted as the condensation of radioactive sodium-22 ((22)Na) in the particles as they flowed away from the stars. The (22)Na is produced through proton capture by (21)Ne at the base of the surface convection zone. Neon-22 does not exist abundantly in helium shells hot enough to burn magnesium, which is necessary to establish the measured silicon isotopic composition. PMID:17794592

  4. Nanoscale contact engineering for Silicon/Silicide nanowire devices

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chen

    attributed to the high compressive stress built-in in the core/shell NW structure that retards the diffusion of the nickel atom as well as limits the volume expansion of the metal-rich phases. As a result, the high stress at this finite scale hinders the continuous growth of Ni31Si 12 into the core/shell NWs and totally eliminates the formation of Ni 2Si in core/shell NWs with thick oxide shells (˜ 50 nm). Through these studies, we have demonstrated first time the phase formation sequences of nickel silicides in Si and Si/SiOx NW structures, which is of great importance for reliable contact engineering for Si NW devices. Furthermore, we have provided a clear picture of the hindered nickel silicide growth in confined nanoscale environment and showed the deviated behavior of silicides growth under stress. The information rendered here will be useful for Si NW device applications as well as for the silicon device engineering at nanoscale in general. To further investigate the oxide shell effect, Mn5Si 3 and Fe5Ge3 NW were grown within various oxide thickness to explore the nucleation and growth in the nanowire structure. A oxide shell exerted a compressive stress on the silicide or germanide materials will make those materials with single-crystal properties. Interestingly, single-crystal growth of contact materials can be also implemented for germanide materials. The iron-rich germanide, Fe5Ge3, was successfully grown with single-crystal properties. It shows ferromagnetic properties with a Curie temperature above the room temperature verified by magnetic force microscope (MFM). Two different epitaxial relations found at germanide/germanium interface due to the different sizes of the germanium NW templates. These two different crystal structures exhibited magnetic anisotropy in magnetic force microscope (MFM) measurement, showing differently preferred domain orientations. In-plane and out-of-plane magnetization in the Fe5Ge3 NWs are observed in our experiment. The crystal

  5. Fingerprints of carbon, nitrogen, and silicon isotopes in small interstellar SiC grains from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Geiss, Johannes; Buehler, Fritz; Neuenschwander, Juerg; Amari, Sachiko; Lewis, Roy S.

    1993-01-01

    We report ion microprobe determinations of the carbon, nitrogen, and silicon isotopic compositions of small SiC grains from the Murchison CM2 chondrite. Analyses were made on samples containing variable numbers of grains and on 14 individual grains. In some cases the multiple-grain sample compositions were probably dominated by only one or two grains. Total ranges observed are given. Only a few grains show values near the range limits. Both the total ranges of carbon and nitrogen isotopic compositions, and even the narrower ranges typical for the majority of the grains, are similar to those observed for larger SiC grains. Two rare components appear to be present in the smaller-size fraction, one characterized by C-12/C-13 about 12-16 and the other by very heavy nitrogen. The carbon and nitrogen isotopic compositions qualitatively may reflect hydrostatic H-burning via the CNO cycle and He-burning in red giants, as well as explosive H-burning in novae. The silicon isotopic compositions of most grains qualitatively show what is the signature of He-burning. The silicon isotopic composition of one grain, however, suggests a different process.

  6. Magnesium and Silicon Isotopes in HASP Glasses from Apollo 16 Lunar Soil 61241

    NASA Technical Reports Server (NTRS)

    Herzog, G. F.; Delaney, J. S.; Lindsay, F.; Alexander, C. M. O'D; Chakrabarti, R.; Jacobsen, S. B.; Whattam, S.; Korotev, R.; Zeigler, R. A.

    2012-01-01

    The high-Al (>28 wt %), silica-poor (<45 wt %) (HASP) feldspathic glasses of Apollo 16 are widely regarded as the evaporative residues of impacts in the lunar regolith [1-3]. By virtue of their small size, apparent homogeneity, and high inferred formation temperatures, the HASP glasses appear to be good samples in which to study fractionation processes that may accompany open system evaporation. Calculations suggest that HASP glasses with present-day Al2O3 concentrations of up to 40 wt% may have lost 19 wt% of their original masses, calculated as the oxides of iron and silicon, via evaporation [4]. We report Mg and Si isotope abundances in 10 HASP glasses and 2 impact-glass spherules from a 64-105 m grain-size fraction taken from Apollo 16 soil sample 61241.

  7. Nuclear magnetic resonance linewidth and spin diffusion in {sup 29}Si isotopically controlled silicon

    SciTech Connect

    Hayashi, Hiroshi; Itoh, Kohei M.; Vlasenko, Leonid S.

    2008-10-15

    A nuclear magnetic resonance (NMR) study was performed with n-type silicon single crystals containing {sup 29}Si isotope abundance f ranges from 1.2% to 99.2%. The nuclear spin diffusion coefficient D has been determined from the linewidth of significantly enhanced {sup 29}Si NMR signals utilizing a developed dynamic nuclear polarization (DNP) method. The {sup 29}Si NMR linewidth depends linearly on f, at least when f<10%, and approaches {proportional_to}f{sup 1/2} dependence when f>50%. The estimated {sup 29}Si nuclear spin diffusion time T{sub sd} between phosphorus atoms used for DNP is more than ten times shorter than the nuclear polarization time T{sub 1}{sup p} of {sup 29}Si nuclei around phosphorus. Therefore, the regime of 'rapid spin diffusion' is realized in the DNP experiments.

  8. Correlated Strontium and Barium Isotopic Compositions of Acid-cleaned Single Mainstream Silicon Carbides from Murchison

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Savina, Michael R.; Gallino, Roberto; Davis, Andrew M.; Bisterzo, Sara; Gyngard, Frank; Käppeler, Franz; Cristallo, Sergio; Dauphas, Nicolas; Pellin, Michael J.; Dillmann, Iris

    2015-04-01

    We present strontium, barium, carbon, and silicon isotopic compositions of 61 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing both strontium and barium contamination. For the first time, by using correlated 88Sr/86Sr and 138Ba/136Ba ratios in mainstream SiC grains, we are able to resolve the effect of 13C concentration from that of 13C-pocket mass on s-process nucleosynthesis, which points toward the existence of large 13C pockets with low 13C concentrations in asymptotic giant branch stars. The presence of such large 13C pockets with a variety of relatively low 13C concentrations seems to require multiple mixing processes in parent asymptotic giant branch stars of mainstream SiC grains.

  9. Inductive Measurement of Optically Hyperpolarized Phosphorous Donor Nuclei in an Isotopically Enriched Silicon-28 Crystal

    NASA Astrophysics Data System (ADS)

    Gumann, P.; Patange, O.; Ramanathan, C.; Haas, H.; Moussa, O.; Thewalt, M. L. W.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Itoh, K. M.; Cory, D. G.

    2014-12-01

    We experimentally demonstrate the first inductive readout of optically hyperpolarized phosphorus-31 donor nuclear spins in an isotopically enriched silicon-28 crystal. The concentration of phosphorus donors in the crystal was 1.5 ×1 015 cm-3 , 3 orders of magnitude lower than has previously been detected via direct inductive detection. The signal-to-noise ratio measured in a single free induction decay from a 1 cm3 sample (≈1015 spins) was 113. By transferring the sample to an X -band ESR spectrometer, we were able to obtain a lower bound for the nuclear spin polarization at 1.7 K of ˜64 % . The 31P -T2 measured with a Hahn echo sequence was 420 ms at 1.7 K, which was extended to 1.2 s with a Carr Purcell cycle. The T1 of the 31P nuclear spins at 1.7 K is extremely long and could not be determined, as no decay was observed even on a time scale of 4.5 h. Optical excitation was performed with a 1047 nm laser, which provided above-band-gap excitation of the silicon. The buildup of the hyperpolarization at 4.2 K followed a single exponential with a characteristic time of 577 s, while the buildup at 1.7 K showed biexponential behavior with characteristic time constants of 578 and 5670 s.

  10. Dynamic nuclear polarization of {sup 29}Si nuclei in isotopically controlled phosphorus doped silicon

    SciTech Connect

    Hayashi, Hiroshi; Itahashi, Tatsumasa; Itoh, Kohei M.; Vlasenko, Leonid S.; Vlasenko, Marina P.

    2009-07-15

    Dynamic nuclear polarization (DNP) of {sup 29}Si nuclei in isotopically controlled silicon single crystals with the {sup 29}Si isotope abundance f{sub 29Si} varied from 1.2% to 99.2% is reported. It was found that both the DNP enhancement and {sup 29}Si nuclear spin-lattice relaxation time under saturation of the electron paramagnetic resonance transitions of phosphorus donors increase with the decrease in the {sup 29}Si abundance. A remarkably large steady-state DNP enhancement, E{sup ss}=2680 which is comparable to the theoretical upper limit of 3310, has been achieved through the ''resolved'' solid effect that has been identified clearly in the f{sub 29Si}=1.2% sample. The DNP enhancement depends not only on the {sup 29}Si abundance but also on the electron spin-lattice relaxation time that can be controlled by temperature and/or illumination. The linewidth of {sup 29}Si NMR spectra after DNP shows a linear dependence on f{sub 29Si} for f{sub 29Si}{<=}10% and changes to a square-root dependence for f{sub 29Si}{>=}50%. Comparison of experimentally determined nuclear polarization time with nuclear spin diffusion coefficients indicates that the rate of DNP is limited by the polarization transfer rather than by spin diffusion.

  11. Dispersion engineering of high-Q silicon microresonators via thermal oxidation

    SciTech Connect

    Jiang, Wei C.; Zhang, Jidong; Usechak, Nicholas G.; Lin, Qiang

    2014-07-21

    We propose and demonstrate a convenient and sensitive technique for precise engineering of group-velocity dispersion in high-Q silicon microresonators. By accurately controlling the surface-oxidation thickness of silicon microdisk resonators, we are able to precisely manage the zero-dispersion wavelength, while simultaneously further improving the high optical quality of our devices, with the optical Q close to a million. The demonstrated dispersion management allows us to achieve parametric generation with precisely engineerable emission wavelengths, which shows great potential for application in integrated silicon nonlinear and quantum photonics.

  12. Factors controlling the silicon isotope distribution in waters and surface sediments of the Peruvian coastal upwelling

    NASA Astrophysics Data System (ADS)

    Ehlert, Claudia; Grasse, Patricia; Mollier-Vogel, Elfi; Böschen, Tebke; Franz, Jasmin; de Souza, Gregory F.; Reynolds, Ben C.; Stramma, Lothar; Frank, Martin

    2012-12-01

    We present the first systematic study of the silicon isotope composition in the water column (δ30Si) and in diatoms (δ30Sidiatom) from the underlying surface sediments in a coastal upwelling region. The surface waters upwelling on the shelf off Peru are mainly fed by southward flowing subsurface waters along the coast, which show a mean δ30Si of +1.5‰. The concentration of dissolved silicic acid (Si(OH)4) increases towards the south in these waters and with increasing water depth, suggesting lateral mixing with water masses from the south and intense remineralisation of particulate biogenic silica (bSiO2) in the water column and in the surface sediments. Surface waters in the realm of the most intense upwelling between 5°S and 15°S have only marginally elevated δ30Si values (δ30Si = +1.7‰) with respect to the source Si isotope composition, whereas further north and south, where upwelling is less pronounced, surface waters are more strongly fractionated (δ30Si up to +2.8‰) due to the stronger utilisation of the smaller amounts of available Si(OH)4. The degree of Si(OH)4 utilisation in the surface waters along the shelf estimated from the Si(OH)4 concentration data ranges from 51% to 93%. The δ30Sidiatom values of hand-picked diatoms in the underlying surface sediments vary from +0.6‰ to +2.0‰, which is within the range of the expected fractionation between surface waters and diatoms. The fractionation signal in the surface waters produced during formation of the diatoms is reflected by the δ30Sidiatom values in the underlying sediments, with the lowest δ30Sidiatom values in the main upwelling region. The silicon isotope compositions of bSiO2 (δ30Si) from the same surface sediment samples are generally much lower than the δ30Sidiatom signatures indicating a significant contamination of the bSiO2 with biogenic siliceous material other than diatoms, such as sponge spicules. This shift towards lighter δ30Si values by up to -1.3‰ compared to

  13. Grain boundary engineering for improved thin silicon photovoltaics.

    PubMed

    Raghunathan, Rajamani; Johlin, Eric; Grossman, Jeffrey C

    2014-09-10

    In photovoltaic devices, the bulk disorder introduced by grain boundaries (GBs) in polycrystalline silicon is generally considered to be detrimental to the physical stability and electronic transport of the bulk material. However, at the extremum of disorder, amorphous silicon is known to have a beneficially increased band gap and enhanced optical absorption. This study is focused on understanding and utilizing the nature of the most commonly encountered Σ3 GBs, in an attempt to balance incorporation of the advantageous properties of amorphous silicon while avoiding the degraded electronic transport of a fully amorphous system. A combination of theoretical methods is employed to understand the impact of ordered Σ3 GBs on the material properties and full-device photovoltaic performance. PMID:24963798

  14. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    SciTech Connect

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  15. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

    PubMed Central

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  16. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals.

    PubMed

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15-300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  17. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-06-01

    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system.

  18. Processing study of injection molding of silicon nitride for engine applications

    NASA Technical Reports Server (NTRS)

    Rorabaugh, M. E.; Yeh, H. C.

    1985-01-01

    The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.

  19. Analysing the isotopic evolution of Silicon in the weathering zone by numerical modelling

    NASA Astrophysics Data System (ADS)

    Georg, B.; Opfergelt, S.

    2010-12-01

    The role of plant biological activity for the continental silicon cycle has been extensively discussed, and the overall consensus is that biological processes in terrestrial ecosystems play an important role in global Si mass balances. Biologically recycled Si fluxes are supposed to rival or in some cases exceed Si fluxes that stem from the dissolution of primary silicates (ALEXANDRE et al., 1997; DERRY et al., 2005). Discrepancies between Si weathering rates and denudation are mostly ascribed to the lock-up of Si in biogenic silica. However, for most settings it can be found that biological turnover is rather fast, and only a small proportion of biogenic Si is stored in long-term sinks, such as ‘old’ phytolith assemblages in soils (ALEXANDRE et al., 1997). The gross of the annually produced biogenic silica is returned to the topsoil as litter fall and subsequently re-dissolved during organic matter degradation. Previous models balanced the mass-fluxes between different Si pools. However, by only using Si fluxes, it is not possible to actually trace the material flux through various pools. In recent years a growing number of Si isotope data for weathering systems became available, and thus a new level of information is available to trace the reaction pathways of Si in the soil-biosphere-river system. Numerical models can be used to simulate matter exchange between pools and to simulate the isotopic fractionation and distribution in such an interlinked system in a temporal context. Preliminary results show that the formation of secondary minerals is the main process driving positive isotope composition in rivers. Although more Si is recycled through the biosphere, a fast turnover means that any significant isotope fractionation is counterbalanced when biogenic silica is returned to the soil system. The clay-pool is isotopically the lightest pool, followed by biosphere and finally dissolved Si in rivers. Once the biological cycle is in steady-state, it is mostly

  20. Coupling of the distribution of silicon isotopes to the meridional overturning circulation of the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Brzezinski, Mark A.; Jones, Janice L.

    2015-06-01

    The distribution of silicon isotopes within silicic acid, δ30Si(OH)4, was examined along a section in the North Atlantic from the Cape Verde Islands off Africa to Cape Cod, Massachusetts in North America. Surface water displayed elevated δ30Si(OH)4 associated with biological fractionation of Si during silica production. Below 300 m variations in δ30Si(OH)4 were closely tied to the distribution of water masses as diagnosed through optimum multiparameter analysis, confirming a tight relationship between δ30Si(OH)4 and the meridional overturning circulation in the Atlantic. A linear relationship between δ30Si(OH)4 and the inverse of silicic acid concentration supported control of Si isotope distribution by conservative mixing of end member water masses of different isotopic composition in the Atlantic. There was a suggestion of a weak local minimum in δ30Si(OH)4 in deep waters above the Trans-Atlantic Geotraverse hydrothermal zone on the mid-Atlantic Ridge consistent with the light δ30Si(OH)4 of hydrothermal waters. The lightest δ30Si(OH)4 values were observed in the deep western and deep eastern basins where Antarctic Bottom Water (AABW) dominated. The heaviest values in subsurface waters occurred in North Atlantic Deep Water due to strong ventilation and the contribution of heavy northern source waters that are influenced by the Arctic Ocean. The concept of a silicon isotope bipole is introduced to explain how the isotopic differences between the northern and southern end-member water masses arise, and how they influence Si isotope distributions. Northern end-member water masses are heavy due to the influence of the Arctic Ocean. Bottom topography prevents light deep waters from entering the Arctic and the further removal of light isotopes through local biological productivity results in extremely heavy δ30Si(OH)4 within the Arctic. Light AABW dominates the southern end member. The Southern Ocean silicic acid trap distills heavier isotopes of Si out of the

  1. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications

    SciTech Connect

    Kang, S.; Selverian, J.H.; Kim, H.; O'Niel, D.; Kim, K. )

    1990-04-01

    This report summarizes the results of Phase I of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650 and 950{degree}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA), using ABAQUS code, were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing and service. Finally, the FEA results were compared with experiments using an idealized strength relationship. The results showed that the measured strength of the joint reached 30--90% of the strength by predicted by FEA. Overall results demonstrated that FEA is an effective tool for designing the geometries of ceramic-metal joints and that joining by brazing is a relevant method for advanced heat engine applications. 33 refs., 54 figs., 36 tabs.

  2. Astrophysics of CAI formation as revealed by silicon isotope LA-MC-ICPMS of an igneous CAI

    NASA Astrophysics Data System (ADS)

    Shahar, Anat; Young, Edward D.

    2007-05-01

    Silicon isotope ratios of a typical CAI from the Leoville carbonaceous chondrite, obtained in situ by laser ablation MC-ICPMS, together with existing 25Mg/ 24Mg data, reveal a detailed picture of the astrophysical setting of CAI melting and subsequent heating. Models for the chemical and isotopic effects of evaporation of the molten CAI are used to produce a univariant relationship between PH 2 and time during melting. The result shows that this CAI was molten for a cumulative time of no more than 70 days and probably less than 15 days depending on temperature. The object could have been molten for an integrated time of just a few hours if isotope ratio zoning was eliminated after melting by high subsolidus temperatures (e.g., > 1300 K) for ˜ 500 yr. In all cases subsolidus heating sufficient to produce diffusion-limited isotope fractionation at the margin of the solidified CAI is required. These stable isotope data point to a two-stage history for this igneous CAI involving melting for a cumulative timescale of hours to months followed by subsolidus heating for years to hundreds of years. The thermobarometric history deduced from combining Si and Mg isotope ratio data implicates thermal processing in the disk, perhaps by passage through shockwaves, following melting. This study underscores the direct link between the meaning of stable isotope ratio zoning, or lack thereof, and the inferred astrophysical setting of melting and subsequent processing of CAIs.

  3. Quantum engineering at the silicon surface using dangling bonds

    PubMed Central

    Schofield, S. R.; Studer, P.; Hirjibehedin, C. F.; Curson, N. J.; Aeppli, G.; Bowler, D. R.

    2013-01-01

    Individual atoms and ions are now routinely manipulated using scanning tunnelling microscopes or electromagnetic traps for the creation and control of artificial quantum states. For applications such as quantum information processing, the ability to introduce multiple atomic-scale defects deterministically in a semiconductor is highly desirable. Here we use a scanning tunnelling microscope to fabricate interacting chains of dangling bond defects on the hydrogen-passivated silicon (001) surface. We image both the ground-state and the excited-state probability distributions of the resulting artificial molecular orbitals, using the scanning tunnelling microscope tip bias and tip-sample separation as gates to control which states contribute to the image. Our results demonstrate that atomically precise quantum states can be fabricated on silicon, and suggest a general model of quantum-state fabrication using other chemically passivated semiconductor surfaces where single-atom depassivation can be achieved using scanning tunnelling microscopy. PMID:23552064

  4. Silicon isotope fractionation during silica precipitation from hot-spring waters: Evidence from the Geysir geothermal field, Iceland

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Vroon, Pieter Z.; Keller, Nicole S.; Gudbrandsson, Snorri; Stefánsson, Andri; van Bergen, Manfred J.

    2015-09-01

    This study aims to explore the extent and controls of silicon isotope fractionation in hot spring systems of the Geysir geothermal area (Iceland), a setting where sinter deposits are actively formed. The δ30Si values of dissolved silica measured in the spring water and sampling sites along outflowing streams, covering a temperature range between 20 and 100 °C, were relatively constant around +0.2‰, whereas the δ30Si signatures of associated opaline sinters from the streambeds were between -0.1‰ and -4.0‰, becoming progressively more negative in the downstream parts of the aprons. Here, the deposited sinters represent some of the most 30Si depleted abiotically produced terrestrial materials documented to date. Compared to the data reported for Icelandic basalts, considered to be the source of the silicon, the δ30Si values of the fluids and sinter deposits are higher and lower, respectively. The resulting values for apparent solid-water isotope fractionation (Δ30Sisolid-water) decreased with decreasing temperature from ca. -0.7‰ at ∼80 °C to -3.7‰ at ∼20 °C, locally down to -4.4‰. This temperature relationship was reproducible in each of the investigated hot spring systems and is qualitatively consistent with recent findings in laboratory experiments on kinetic fractionation for a flowing fluid. However, the apparent fractionation magnitudes observed in the field are ca. -2‰ more negative and thus significantly larger. We infer that solid-water silicon isotope fractionation during deposition of amorphous silica from a flowing fluid correlates inversely with temperature, but is essentially a function of the precipitation rate, such that the fractionation factor decreases with increasing rate. As an important corollary, the effective fractionation behavior during precipitation of silica from saturated solutions is a system-dependent feature, which should be taken into account when using silicon isotopes for paleo-environmental reconstructions.

  5. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide.

    PubMed

    Fuchs, F; Stender, B; Trupke, M; Simin, D; Pflaum, J; Dyakonov, V; Astakhov, G V

    2015-01-01

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins. PMID:26151881

  6. Silicon Isotope Geochemistry of Ocean Island Basalts: Search for Deep Mantle Heterogeneities and Evidence for Recycled Altered Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.; Moynier, F.

    2014-12-01

    Analyses of Ocean Island Basalts (OIB) have shown that the Earth's mantle contains isotopically distinct components, but debate about the degree and cause of variability persists. The study of silicon (Si) isotopes in OIBs has the potential to elucidate mantle heterogeneities. Relatively large (~several per mil) Si isotopic fractionation occurs in low-temperature environments during precipitation from dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes [1], but only a limited range (~tenths of a per mil) of Si isotope fractionation has been observed due to high-temperature igneous processes [2]. Therefore, Si isotopes may be useful as tracers for the presence of crustal material in OIB source regions in a manner similar to more conventional stable isotope systems, such as oxygen. Here we present the first comprehensive suite of high-precision Si isotopic data obtained by MC-ICP-MS for a diverse set of OIBs representing the EM-1, EM-2, and HIMU mantle components. In general, the Si isotopic compositions of OIBs analyzed here are agreement with previous estimates for Bulk Silicate Earth (BSE). However, small systematic variations are present; the HIMU end-member Mangaia and HIMU-type Cape Verde island São Nicolau are enriched in the light isotopes of Si (δ30Si = -0.37 ± 0.06‰ and δ30Si = -0.39 ± 0.04‰, respectively; errors are 2sd), with compositions intermediary between Mid Ocean Ridge Basalts and chondritic values. Additionally, Iceland samples from volcanic complexes in the Northern Rift Zone show similar Si isotope compositions (on average, δ30Si = -0.40 ± 0.06‰). In contrast, the δ30Si averages of the EM-1 end-member Pitcairn (-0.28 ± 0.07‰), the EM-2 end-member Samoa (-0.31 ± 0.07‰) and other OIB localities do not show any significant difference from previous estimates for the δ30Si value of BSE [3]. The Si isotopic variability in some HIMU-type and Icelandic OIBs most likely reflects the incorporation of

  7. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    SciTech Connect

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  8. SILICON CARBIDE GRAINS OF TYPE C PROVIDE EVIDENCE FOR THE PRODUCTION OF THE UNSTABLE ISOTOPE {sup 32}Si IN SUPERNOVAE

    SciTech Connect

    Pignatari, M.; Rauscher, T.; Thielemann, F.-K.; Zinner, E.; Bertolli, M. G.; Trappitsch, R.; Hoppe, P.; Fryer, C.; Herwig, F.; Hirschi, R.; Timmes, F. X.

    2013-07-01

    Carbon-rich grains are observed to condense in the ejecta of recent core-collapse supernovae (SNe) within a year after the explosion. Silicon carbide grains of type X are C-rich grains with isotopic signatures of explosive SN nucleosynthesis have been found in primitive meteorites. Much rarer silicon carbide grains of type C are a special sub-group of SiC grains from SNe. They show peculiar abundance signatures for Si and S, isotopically heavy Si, and isotopically light S, which appear to be in disagreement with model predictions. We propose that C grains are formed mostly from C-rich stellar material exposed to lower SN shock temperatures than the more common type X grains. In this scenario, extreme {sup 32}S enrichments observed in C grains may be explained by the presence of short-lived {sup 32}Si ({tau}{sub 1/2} = 153 yr) in the ejecta, produced by neutron capture processes starting from the stable Si isotopes. No mixing from deeper Si-rich material and/or fractionation of Si from S due to molecular chemistry is needed to explain the {sup 32}S enrichments. The abundance of {sup 32}Si in the grains can provide constraints on the neutron density reached during the SN explosion in the C-rich He shell material. The impact of the large uncertainty of the neutron capture cross sections in the {sup 32}Si region is discussed.

  9. Tritium trapping in silicon carbide in contact with solid breeder under high flux isotope reactor irradiation

    SciTech Connect

    H. Katsui; Y. Katoh; A. Hasegawa; M. Shimada; Y. Hatano; T. Hinoki; S. Nogami; T. Tanaka; S. Nagata; T. Shikama

    2013-11-01

    The trapping of tritium in silicon carbide (SiC) injected from ceramic breeding materials was examined via tritium measurements using imaging plate (IP) techniques. Monolithic SiC in contact with ternary lithium oxide (lithium titanate and lithium aluminate) as a ceramic breeder was irradiated in the High Flux Isotope Reactor (HFIR) in Oak Ridge, Tennessee, USA. The distribution of photo-stimulated luminescence (PSL) of tritium in SiC was successfully obtained, which separated the contribution of 14C ß-rays to the PSL. The tritium incident from ceramic breeders was retained in the vicinity of the SiC surface even after irradiation at 1073 K over the duration of ~3000 h, while trapping of tritium was not observed in the bulk region. The PSL intensity near the SiC surface in contact with lithium titanate was higher than that obtained with lithium aluminate. The amount of the incident tritium and/or the formation of a Li2SiO3 phase on SiC due to the reaction with lithium aluminate under irradiation likely were responsible for this observation.

  10. Silicon Isotope Geochemistry of Ocean Island Basalts: Mantle Heterogeneities and Contribution of Recycled Oceanic Crust and Lithosphere

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.

    2015-12-01

    The study of Silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to elucidate between possible heterogeneities in the mantle. Relatively large (~several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes [1]. In contrast, only a limited range (~tenths of a per mil) of Si isotope fractionation has been observed in high-temperature igneous processes [2]. Therefore, Si isotopes may be useful as tracers for the presence of crustal material (derived from low-temperature surface processes) in OIB source regions in a manner similar to more conventional stable isotope systems, such as O. Here we present the first comprehensive set of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIBs, including new data for the Canary Islands. Samples represent the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. Average δ30Si values for OIBs representing the EM-1 (-0.32 ± 0.06‰, 2 sd), EM-2 (-0.30 ± 0.01‰, 2 sd), and HIMU (-0.34 ± 0.09‰, 2 sd) mantle components are all in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth [3]. However, small systematic variations are present; HIMU (Mangaia, Cape Verde, La Palma) and Iceland OIBs are enriched in the lighter isotopes of Si (δ30Si values lower than MORB). Further, the difference in Si isotope composition between La Palma and El Heirro (Canary Islands) has previously been observed for O isotopes [4], suggesting a relationship between the Si and O isotope mantle systematics. The Si isotope variations among OIBs may be explained by the sampling of a primitive mantle reservoir enriched in the light isotopes of Si, as suggested by [5], but most likely reflects the incorporation of recycled

  11. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    SciTech Connect

    Voldrich, W.

    1992-04-01

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  12. Interface Engineering of High Efficiency Organic-Silicon Heterojunction Solar Cells.

    PubMed

    Yang, Lixia; Liu, Yaoping; Chen, Wei; Wang, Yan; Liang, Huili; Mei, Zengxia; Kuznetsov, Andrej; Du, Xiaolong

    2016-01-13

    Insufficient interface conformity is a challenge faced in hybrid organic-silicon heterojunction solar cells because of using conventional pyramid antireflection texturing provoking the porosity of interface. In this study, we tested alternative textures, in particular rounded pyramids and inverted pyramids to compare the performance. It was remarkably improved delivering 7.61%, 8.91% and 10.04% efficiency employing conventional, rounded, and inverted pyramids, respectively. The result was interpreted in terms of gradually improving conformity of the Ag/organic/silicon interface, together with the gradually decreasing serial resistance. Altogether, the present data may guide further efforts arising the interface engineering for mastering high efficient heterojunction solar cells. PMID:26701061

  13. Strain engineering of diamond silicon vacancy centers in MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Meesala, Srujan; Sohn, Young-Ik; Atikian, Haig; Holzgrafe, Jeffrey; Zhang, Mian; Burek, Michael; Loncar, Marko

    2016-05-01

    The silicon vacancy (SiV) center in diamond has recently attracted attention as a solid state quantum emitter due to its attractive optical properties. We fabricate diamond MEMS cantilevers, and use electrostatic actuation to apply controlled strain fields to single SiV centers implanted in these devices. The strain response of the four electronic transitions of the SiV at 737 nm is measured via cryogenic (4 K) photoluminescence excitation. We demonstrate over 300 GHz of tuning for the mean transition frequency between the ground and excited states, and over 100 GHz of tuning for the orbital splittings within the ground and excited states. The interaction Hamiltonian for strain fields is inferred, and large strain susceptibilities of the order 1 PHz/strain are measured. We discuss prospects to utilize our device to reduce phonon-induced decoherence in SiV spin qubits, and to exploit the large strain susceptibilities for hybrid quantum systems based on nanomechanical resonators.

  14. Selective modulation of cell response on engineered fractal silicon substrates

    PubMed Central

    Gentile, Francesco; Medda, Rebecca; Cheng, Ling; Battista, Edmondo; Scopelliti, Pasquale E.; Milani, Paolo; Cavalcanti-Adam, Elisabetta A.; Decuzzi, Paolo

    2013-01-01

    A plethora of work has been dedicated to the analysis of cell behavior on substrates with ordered topographical features. However, the natural cell microenvironment is characterized by biomechanical cues organized over multiple scales. Here, randomly rough, self-affinefractal surfaces are generated out of silicon,where roughness Ra and fractal dimension Df are independently controlled. The proliferation rates, the formation of adhesion structures, and the morphology of 3T3 murine fibroblasts are monitored over six different substrates. The proliferation rate is maximized on surfaces with moderate roughness (Ra ~ 40 nm) and large fractal dimension (Df ~ 2.4); whereas adhesion structures are wider and more stable on substrates with higher roughness (Ra ~ 50 nm) and lower fractal dimension (Df ~ 2.2). Higher proliferation occurson substrates exhibiting densely packed and sharp peaks, whereas more regular ridges favor adhesion. These results suggest that randomly roughtopographies can selectively modulate cell behavior. PMID:23492898

  15. Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Amari, Sachiko; Zinner, Ernst; Ireland, Trevor; Lewis, Roy S.

    1994-01-01

    Seven hundred and twenty SiC grains from the Murchison CM2 chondrite, ranging in size from 1 to 10 micrometers, were analyzed by ion microprobe mass spectrometry for their C-isotopic compositions. Subsets of the grains were also analyzed for N (450 grains), Si (183 grains), Mg (179 grains), and Ti (28 grains) isotopes. These results are compared with previous measurements on 41 larger SiC grains (up to 15 x 26 micrometers) from a different sample of Murchison analyzed by Virag et al. (1992) and Ireland, Zinner, & Amari (1991a). All grains of the present study are isotopically anomalous with C-12/C-13 ratios ranging from 0.022 to 28.4 x solar, N-14/N-15 ratios from 0.046 to 30 x solar, Si-29/Si-28 from 0.54 to 1.20 x solar, Si-30/Si-28 from 0.42 to 1.14 x solar, Ti-49/Ti-48 from 0.96 to 1.95 x solar, and Ti-50/Ti-48 from 0.94 to 1.39 x solar. Many grains have large Mg-26 excesses from the decay of Al-26 with inferred Al-26/Al-27 ratios ranging up to 0.61, or 12,200 x the ratio of 5 x 10(exp -5) inferred for the early solar system. Several groups can be distinguished among the SiC grains. Most of the grains have C-13 and N-14 excesses, and their Si isotopic compositions (mostly excesses in Si-29 and Si-30) plot close to a slope 1.34 line on a Delta Si-29/Si-28 versus Delta Si-30/Si-28 three-isotope plot. Grains with small C-12/C-13 ratios (less than 10) tend to have smaller or no N-14 excesses and high Al-26/Al-27 ratios (up to 0.01). Grains with C-12/C-13 greater than 150 fall into two groups: grains X have N-15 excesses and Si-29 and Si-30 deficits and the highest (0.1 to 0.6) Al-26/Al-27 ratios; grains Y have N-14 excesses and plot on a slope 0.35 line on a Si three-isotope plot. In addition, large SiC grains of the Virag et al. (1992) study fall into three-distinct clusters according to their C-, Si-, and Ti-isotopic compositions. The isotopic diversity of the grains and the clustering of their isotopic compositions imply distinct and multiple stellar sources

  16. SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations

    NASA Astrophysics Data System (ADS)

    Heck, Philipp R.; Huberty, Jason M.; Kita, Noriko T.; Ushikubo, Takayuki; Kozdon, Reinhard; Valley, John W.

    2011-10-01

    Banded iron formations (BIFs) are chemical marine sediments dominantly composed of alternating iron-rich (oxide, carbonate, sulfide) and silicon-rich (chert, jasper) layers. Isotope ratios of iron, carbon, and sulfur in BIF iron-bearing minerals are biosignatures that reflect microbial cycling for these elements in BIFs. While much attention has focused on iron, banded iron formations are equally banded silica formations. Thus, silicon isotope ratios for quartz can provide insight on the sources and cycling of silicon in BIFs. BIFs are banded by definition, and microlaminae, or sub-mm banding, are characteristic of many BIFs. In situ microanalysis including secondary ion mass spectrometry is well-suited for analyzing such small features. In this study we used a CAMECA IMS-1280 ion microprobe to obtain highly accurate (±0.3‰) and spatially resolved (˜10 μm spot size) analyses of silicon and oxygen isotope ratios for quartz from several well known BIFs: Isua, southwest Greenland (˜3.8 Ga); Hamersley Group, Western Australia (˜2.5 Ga); Transvaal Group, South Africa (˜2.5 Ga); and Biwabik Iron Formation, Minnesota, USA (˜1.9 Ga). Values of δ 18O range from +7.9‰ to +27.5‰ and include the highest reported δ 18O values for BIF quartz. Values of δ 30Si have a range of ˜5‰ from -3.7‰ to +1.2‰ and extend to the lowest δ 30Si values for Precambrian cherts. Isua BIF samples are homogeneous in δ 18O to ±0.3‰ at mm- to cm-scale, but are heterogeneous in δ 30Si up to 3‰, similar to the range in δ 30Si found in BIFs that have not experienced high temperature metamorphism (up to 300 °C). Values of δ 30Si for quartz are homogeneous to ±0.3‰ in individual sub-mm laminae, but vary by up to 3‰ between multiple laminae over mm-to-cm of vertical banding. The scale of exchange for Si in quartz in BIFs is thus limited to the size of microlaminae, or less than ˜1 mm. We interpret differences in δ 30Si between microlaminae as preserved from primary

  17. Engineering Interfacial Silicon Dioxide for Improved Metal-Insulator-Semiconductor Silicon Photoanode Water Splitting Performance.

    PubMed

    Satterthwaite, Peter F; Scheuermann, Andrew G; Hurley, Paul K; Chidsey, Christopher E D; McIntyre, Paul C

    2016-05-25

    Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (<1.3 nm) SiO2 layers, allowing fabrication of water splitting photoanodes with hole conductances near the maximum achievable with the given catalyst and Si substrate. Three methods for controlling the SiO2 interlayer thickness on the Si(100) surface for ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes. PMID:27096845

  18. Light emission from rare-earths in dislocation engineered silicon substrates

    NASA Astrophysics Data System (ADS)

    Lourenço, Manon A.; Ludurczak, Willy; Prins, Andrew D.; Milosavljević, Momir; Gwilliam, Russell M.; Homewood, Kevin P.

    2015-07-01

    We report and compare the luminescence, both photo- and electroluminescence, in the near-infrared of a wide range of rare earths (Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm) doped dislocation engineered silicon light emitting devices. The rare earths are introduced using ion implantation into standard Czochralski (CZ) n-type silicon wafers pre-implanted with boron to form both the p-n junction and an engineered dislocation loop array. Rare earth internal transitions are observed in samples co-doped with Dy, Ho, Er, and Tm. We show that for each rare earth optimizing the optical activity depends critically on the rare earth implant parameters and post-implant process conditions. Room temperature operation in the 1.5 and 2.0 µm spectral regions is observed from the internal rare earth transitions in Er and Tm.

  19. Nanoscale contact engineering for Silicon/Silicide nanowire devices

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chen

    Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at nanoscale have indicated possible deviations from the bulk and the thin film system. Here we studied growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction. We have grown single crystal PtSi nanowires and PtSi/Si/PtSi nanowire heterostructures through solid state reaction. TEM studies show that the heterostructures have atomically sharp interfaces free of defects. Electrical measurement of PtSi nanowires shows a low resistivity of ˜28.6 μΩ·cm and a high breakdown current density beyond 108 A/cm2. Furthermore, using single-crystal PtSi/Si/PtSi nanowire heterostructures with atomically clean interfaces, we have fabricated p-channel enhancement mode transistors with the best reported performance for intrinsic silicon nanowires to date. In our results, silicide can provide a clean and no Fermi level pinning interface and then silicide can form Ohmic-contact behavior by replacing the source/drain metal with PtSi. It has been proven by our experiment by contacting PtSi with intrinsic Si nanowires (no extrinsic doping) to achieve high performance p-channel device. By utilizing the same approach, single crystal MnSi nanowires and MnSi/Si/MnSi nanowire heterojunction with atomically sharp interfaces can also been grown. Electrical transport studies on Mn

  20. Silicon subsystem mechanical engineering closeout report for the Solenoidal Detector Collaboration

    SciTech Connect

    Hanlon, J.; Christensen, R.W.; Hayman, G.; Jones, D.C.; Ross, R.; Wilds, W.; Yeamans, S.; Ziock, H.J.

    1995-02-01

    The authors group at Los Alamos National Laboratory was responsible for the mechanical engineering of the silicon tracking system of the Solenoidal Detector Collaboration (SDC) experiment of the Superconducting Super Collider (SSC) project. The responsibility included the overall design of the system from the mechanical point of view, development and integration of the cooling system, which was required to remove the heat generated by the front-end electronics, assembly of the system to extremely tight tolerances, and verification that the construction and operational stability and alignment tolerances would be met. A detailed description of the concepts they developed and the work they performed can be found in a report titled ``Silicon Subsystem Mechanical Engineering Work for the Solenoidal Detector Collaboration`` which they submitted to the SSC Laboratory. In addition to the mechanical engineering work, they also performed activation, background, and shielding studies for the SSC program. Much of the work they performed was potentially useful for other future high energy physics (HEP) projects. This report describes the closeout work that was performed for the Los Alamos SDC project. Four major tasks were identified for completion: (1) integration of the semi-automated assembly station being developed and construction of a precision part to demonstrate solutions to important general assembly problems (the station was designed to build precision silicon tracker subassemblies); (2) build a state-of-the-art TV holography (TVH) system to use for detector assembly stability tests; (3) design, build, and test a water based cooling system for a full silicon shell prototype; and (4) complete and document the activation, background, and shielding studies, which is covered in a separate report.

  1. NanoSIMS studies of Ba isotopic compositions in single presolar silicon carbide grains from AGB stars and supernovae

    NASA Astrophysics Data System (ADS)

    Marhas, K. K.; Hoppe, P.; Ott, U.

    2007-08-01

    We have studied 74 single presolar silicon carbide grains with sizes between 0.2 and 2.6 μm from the Murchison and Murray meteorites for Ba isotopic compositions using NanoSIMS. We also analyzed 7 SiC particles either consisting of sub-micron-size SiC grains or representing a morphologically and isotopically distinct subgroup. Of the 55 (likely) mainstream grains, originating from asymptotic giant branch (AGB) stars, 32 had high enough Ba contents for isotopic analysis. For 26 of them, CsHx interferences were either negligible or could be corrected with confidence. They exhibit typical s-process Ba isotopic patterns with slightly higher than solar 134Ba/136Ba and lower than solar 135,137,138Ba/136Ba ratios. Results are generally well explained in the context of neutron capture nucleosynthesis in low mass (1-3 M⊙) AGB stars and provide constraints on AGB models, by reducing the needed 13C spread from factor of ˜20 down to 2. Out of the 19 supernova X grains, three had sufficient concentrations for isotopic analysis. They tend to exhibit higher than solar 134Ba/136Ba and 138Ba/136Ba ratios, close to solar 137Ba/136Ba, and 135Ba/136Ba lower than solar but higher than in mainstream grains. This signature could indicate a mixture of n-burst type Ba with either "normal Ba" more s-process-rich than solar, or normal Ba plus weak s-process Ba. In the n-burst component Cs may have to be separated from Ba at ˜10 years after the SN explosion. Depending on predictions for its composition, another possibility is early separation (at ˜1 year) coupled with addition of some unfractionated n-burst matter. Abundances of trace elements (Sr, Zr, Cs, La, and Ce) analyzed along with Ba signify that implantation may have been an important process for their introduction.

  2. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-01-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics. PMID:26957146

  3. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-03-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics.

  4. Silicon-slurry/aluminide coating. [protecting gas turbine engine vanes and blades

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1983-01-01

    A low cost coating protects metallic base system substrates from high temperatures, high gas velocity ovidation, thermal fatigue and hot corrosion and is particularly useful fo protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrates from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue and increased the resistance of certain superalloys to hot corrosion.

  5. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon.

    PubMed

    Averyanov, Dmitry V; Karateeva, Christina G; Karateev, Igor A; Tokmachev, Andrey M; Vasiliev, Alexander L; Zolotarev, Sergey I; Likhachev, Igor A; Storchak, Vyacheslav G

    2016-01-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics. PMID:26957146

  6. Barium isotopes in individual presolar silicon carbide grains from the Murchison meteorite.

    SciTech Connect

    Savina, M. R.; Davis, A. M.; Tripa, C. E.; Pellin, M. J.; Clayton, R. N.; Lewis, R. S.; Amari, S.; Gallino, R.; Lugaro, M.; Univ. of Chicago; Washington Univ.; Univ. di Torino; Cambridge Univ.

    2003-09-01

    Barium isotopic compositions of single 2.3-5.3 {mu}m presolar SiC grains from the Murchison meteorite were measured by resonant ionization mass spectrometry. Mainstream SiC grains are enriched in s-process barium and show a spread in isotopic composition from solar to dominantly s-process. In the relatively coarse grain size fraction analyzed, there are large grain-to-grain variations of barium isotopic composition. Comparison of single grain data with models of nucleosynthesis in asymptotic giant branch (AGB) stars indicates that the grains most likely come from low mass carbon-rich AGB stars (1.5 to 3 solar masses) of about solar metallicity and with approximately solar initial proportions of r- and s-process isotopes. Measurements of single grains imply a wide variety of neutron-to-seed ratios, in agreement with previous measurements of strontium, zirconium and molybdenum isotopic compositions of single presolar SiC grains.

  7. Guided cell patterning on gold-silicon dioxide substrates by surface molecular engineering.

    PubMed

    Veiseh, Mandana; Wickes, Bronwyn T; Castner, David G; Zhang, Miqin

    2004-07-01

    We report an effective approach to patterning cells on gold-silicon dioxide substrates with high precision, selectivity, stability, and reproducibility. This technique is based on photolithography and surface molecular engineering and requires no cell positioning or delivery devices, thus significantly reducing the potential damage to cells. The cell patterning was achieved by activating the gold regions of the substrate with functionalized thiols that covalently bind proteins onto the gold regions to guide subsequent cell adhesion while passivating the silicon dioxide background with polyethylene glycol to resist cell adhesion. Fourier transform infrared reflectance spectroscopy verified the successful immobilization of proteins on gold surfaces. Protein patterns were visualized by tagging proteins with Rhodamine fluorescent probes. Time-of-flight secondary ion mass spectrometry was used to characterize the chemistry of both the cell-adhesive and cell-resistant regions of surfaces after each key chemical reaction occurring during the molecular surface engineering. The ability of the engineered surfaces to guide cell adhesion was illustrated by differential interference contrast (DIC) reflectance microscopy. The cell patterning technique introduced in this study is compatible with micro- and photo-electronics, and may have many medical, environmental, and defense applications. PMID:14980426

  8. Combination of Silicon and Neodymium Isotopes for a better understanding of past changes in bioproductivity and water mass mixing in the upwelling area off Peru

    NASA Astrophysics Data System (ADS)

    Grasse, P.; Ehlert, C.; Frank, M.; Stramma, L.

    2010-12-01

    The Peru coastal upwelling area is characterized by one of the most pronounced Oxygen Minimum Zones (OMZ). Oxygen concentrations are controlled by consumption through decomposition of organic matter versus ventilation via ocean circulation. Surface productivity is a function of both nutrient supply and upwelling intensity. The isotopic composition of Neodymium (Nd) is a powerful proxy for the reconstruction of past ocean circulation due to its intermediate oceanic residence time and the fact that it is independent of biological fractionation. This is in contrast to Silicon (Si) isotopes, which are fractionated during utilization in a way that the lighter Si isotopes are preferentially incorporated into the diatom frustules. The upwelling area off Peru is mainly influenced by water masses from the Central Pacific, which show more radiogenic values (ɛNd = -2), than water masses from the Northern Pacific (ɛNd = -5 to -3) or water masses from the south, which carry an unradiogenic Nd isotope signature originating from the Southern Ocean (ɛNd = -8 to -9). Upwelled Waters on the shelf are mainly supplied from the Equatorial Under Current (EUC) a strong southward flowing water mass originating in the western pacific. Therefore the δ30Si signal of diatoms is mainly influenced by the isotopic signal of the EUC. Past changes in the hydrography therefore would also influence the Si isotopic signal of this productivity proxy independent of silicic acid utilization. For a better understanding of the influence of water mass mixing on the isotopic signatures in the coastal upwelling area and the OMZ, we directly compare the Nd isotope signatures with dissolved stable Silicon isotope data. The information obtained from the unique combination of the biologically influenced Si isotopes and the Nd isotopes will lead to a better understanding of reconstruction of past ocean circulation and productivity.

  9. The elemental and isotopic composition of cosmic rays - Silicon to nickel

    NASA Technical Reports Server (NTRS)

    Young, J. S.; Freier, P. S.; Waddington, C. J.; Brewster, N. R.; Fickle, R. K.

    1981-01-01

    The reported observations were made with the aid of the Cosmic Ray Isotope Instrument System (CRISIS) which had been designed to detect and resolve the isotopes of cosmic ray nuclei with atomic numbers equal to or greater than 10. The CRISIS detector was flown on a balloon launched from Aberdeen, South Dakota on 1977 May 20. The period 1977 May 19-22 has been classified by Mason et al. (1979) as one of 'superquiet' solar activity, characterized by the lowest fluxes of low-energy solar particles ever observed. The obtained results are presented in a number of graphs and tables. It was found that the elemental and isotopic abundances of Si are solar-like. Elemental S is underabundant in the cosmic rays by a factor of approximately 3 relative to the solar system, but its isotopic composition resembles the solar composition with S-32 being the dominant isotope. Elemental Ar is virtually absent in the source, and the observed isotopic composition is consistent with a secondary origin. Elemental Ni has a solar-like abundance.

  10. Microwave Nitridation of Sintered Reaction Bonded Silicon Parts for Natural Gas Fueled Diesel Engines

    SciTech Connect

    Edler, J.; Kiggans, J.O.; Suman, A.W.; Tiegs, T.N.

    1999-01-01

    This cooperative project was a joint development program between Eaton Corporation and Lockheed Martin Energy Research (LMER). Cooperative work was of benefit to both parties. ORNL was able to assess up-scale of the microwave nitridation process using a more intricate-shaped part designed for application in advanced diesel engines. Eaton Corporation mined access to microwave facilities and expertise for the nitridation of SRBSN materials. The broad objective of the CRADA established with Eaton Corporation and ORNL was to develop cost-effective silicon nitride ceramics compared to the current materials available. The following conclusions can be made from the work performed under the CRADA: (1) Demonstrated that the binder burnout step can be incorporated into the SRBSN processing in the microwave furnace. (2) Scale-up of the microwave nitridation process using Eaton Corporation parts showed that the nitridation weight gains were essentially identical to those obtained by conventional heating. (3) Combined nitridation and sintering processes using silicon nitride beads as packing powders results in degradation of the mechanical properties. (4) Gelcasting of silicon nitride materials using Eaton Si mixtures was demonstrated.

  11. Interface Engineering to Create a Strong Spin Filter Contact to Silicon.

    PubMed

    Caspers, C; Gloskovskii, A; Gorgoi, M; Besson, C; Luysberg, M; Rushchanskii, K Z; Ležaić, M; Fadley, C S; Drube, W; Müller, M

    2016-01-01

    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers-without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime-and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon. PMID:26975515

  12. Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    NASA Astrophysics Data System (ADS)

    Caspers, C.; Gloskovskii, A.; Gorgoi, M.; Besson, C.; Luysberg, M.; Rushchanskii, K. Z.; Ležaić, M.; Fadley, C. S.; Drube, W.; Müller, M.

    2016-03-01

    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers–without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime–and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon.

  13. Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    PubMed Central

    Caspers, C.; Gloskovskii, A.; Gorgoi, M.; Besson, C.; Luysberg, M.; Rushchanskii, K. Z.; Ležaić, M.; Fadley, C. S.; Drube, W.; Müller, M.

    2016-01-01

    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers–without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime–and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon. PMID:26975515

  14. Molecular isotopic engineering (MIE): industrial manufacture of naproxen of predetermined stable carbon-isotopic compositions for authenticity and security protection and intellectual property considerations

    NASA Astrophysics Data System (ADS)

    Jasper, J. P.; Farina, P.; Pearson, A.; Mezes, P. S.; Sabatelli, A. D.

    2016-05-01

    Molecular Isotopic Engineering (MIE) is the directed stable-isotopic synthesis of chemical products for reasons of product identification and of product security, and also for intellectual property considerations. We report here a generally excellent correspondence between the observed and predicted stable carbon-isotopic (δ13C) results for a successful directed synthesis of racemic mixture from its immediate precursors. The observed results are readily explained by the laws of mass balance and isotope mass balance. Oxygen- and hydrogen isotopic results which require an additional assessment of the effects of O and H exchange, presumably due to interaction with water in the reaction solution, are addressed elsewhere. A previous, cooperative study with the US FDA-DPA showed that individual manufacturers of naproxen could readily be differentiated by their stable-isotopic provenance (δ13C, δ18O, and δD ref. 1). We suggest that MIE can be readily employed in the bio/pharmaceutical industry without alteration of present manufacturing processes other than isotopically selecting and/or monitoring reactants and products.

  15. The silicon isotope composition of Ethmodiscus rex laminated diatom mats from the tropical West Pacific: Implications for silicate cycling during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Xiong, Zhifang; Li, Tiegang; Algeo, Thomas; Doering, Kristin; Frank, Martin; Brzezinski, Mark A.; Chang, Fengming; Opfergelt, Sophie; Crosta, Xavier; Jiang, Fuqing; Wan, Shiming; Zhai, Bin

    2015-07-01

    The cause of massive blooms of Ethmodiscus rex laminated diatom mats (LDMs) in the eastern Philippine Sea (EPS) during the Last Glacial Maximum (LGM) remains uncertain. In order to better understand the mechanism of formation of E. rex LDMs from the perspective of dissolved silicon (DSi) utilization, we determined the silicon isotopic composition of single E. rex diatom frustules (δ30SiE. rex) from two sediment cores in the Parece Vela Basin of the EPS. In the study cores, δ30SiE. rex varies from -1.23‰ to -0.83‰ (average -1.04‰), a range that is atypical of marine diatom δ30Si and that corresponds to the lower limit of reported diatom δ30Si values of any age. A binary mixing model (upwelled silicon versus eolian silicon) accounting for silicon isotopic fractionation during DSi uptake by diatoms was constructed. The binary mixing model demonstrates that E. rex dominantly utilized DSi from eolian sources (i.e., Asian dust) with only minor contributions from upwelled seawater sources (i.e., advected from Subantarctic Mode Water, Antarctic Intermediate Water, or North Pacific Intermediate Water). E. rex utilized only ~24% of available DSi, indicating that surface waters of the EPS were eutrophic with respect to silicon during the LGM. Our results suggest that giant diatoms did not always use a buoyancy strategy to obtain nutrients from the deep nutrient pool, thus revising previously proposed models for the formation of E. rex LDMs.

  16. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer

    PubMed Central

    Premnath, P.; Tan, B.; Venkatakrishnan, K.

    2015-01-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy. PMID:26190009

  17. Automated isotopic measurements of micron-sized dust: application to meteoritic presolar silicon carbide

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.; Alexander, Conel M. O'D.

    2003-12-01

    We report the development of a new analytical system allowing the fully automated measurement of isotopic ratios in micrometer-sized particles by secondary ion mass spectrometry (SIMS) in a Cameca ims-6f ion microprobe. Scanning ion images and image processing algorithms are used to locate individual particles dispersed on sample substrates. The primary ion beam is electrostatically deflected to and focused onto each particle in turn, followed by a peak-jumping isotopic measurement. Automatic measurements of terrestrial standards indicate similar analytical uncertainties to traditional manual particle analyses (e.g., ˜3‰/amu for Si isotopic ratios). We also present an initial application of the measurement system to obtain Si and C isotopic ratios for ˜3300 presolar SiC grains from the Murchison CM2 carbonaceous chondrite. Three rare presolar Si 3N 4 grains were also identified and analyzed. Most of the analyzed grains were extracted from the host meteorite using a new chemical dissolution procedure. The isotopic data are broadly consistent with previous observations of presolar SiC in the same size range (˜0.5-4 μm). Members of the previously identified SiC AB, X, Y, and Z subgroups were identified, as was a highly unusual grain with an extreme 30Si enrichment, a modest 29Si enrichment, and isotopically light C. The stellar source responsible for this grain is likely to have been a supernova. Minor differences in isotopic distributions between the present work and prior data can be partially explained by terrestrial contamination and grain aggregation on sample mounts, though some of the differences are probably intrinsic to the samples. We use the large new SiC database to explore the relationships between three previously identified isotopic subgroups—mainstream, Y, and Z grains—all believed to originate in asymptotic giant branch stars. The isotopic data for Z grains suggest that their parent stars experienced strong CNO-cycle nucleosynthesis during

  18. Isotopic composition of trace elements in presolar silicon carbide A+B grains

    NASA Astrophysics Data System (ADS)

    Savina, M.; Tripa, C.; Pellin, M.; Davis, A.; Clayton, R.; Lewis, R.; Amari, S.

    2003-04-01

    Presolar SiC are classified into several types based on C, N, and Si isotopic compositions. Most are mainstream, which are generally believed to derive from low-mass asymptotic giant branch (AGB) stars. Among the less common grains, A+B grains, which comprise ˜3-4% of presolar SiC, are perhaps the least well understood. Recent measurements of trace element concentration patterns in individual grains suggest that A+B grains can be divided into at least 4 groups, and thus have multiple astrophysical sites of origin^1. We report here our Resonant Ionization Mass Spectrometry (RIMS) measurements of Zr, Mo, Ba, and Fe isotopic compositions in individual mainstream and type A+B presolar SiC. While the mainstream grains show isotopic compositions compatible with condensation around low-mass AGB stars, most A+B grains have near-solar isotopic compositions, though some show Zr, Mo, and Fe isotope patterns that have not been observed in other types of presolar SiC grains. We discuss these results in terms of possible astrophysical sites for the production of these unusual grains. This work was supported in part by the Department of Energy, BES-Materials Sciences through Contract No. W-31-109-ENG-38. ^1 Amari S., Nittler L. R., Zinner E., Lodders K., and Lewis R. S. (2001) Astrophys. J. 559, 463-483.

  19. Differences between mono-generic and mixed diatom silicon isotope compositions trace present and past nutrient utilisation off Peru

    NASA Astrophysics Data System (ADS)

    Doering, Kristin; Ehlert, Claudia; Grasse, Patricia; Crosta, Xavier; Fleury, Sophie; Frank, Martin; Schneider, Ralph

    2016-03-01

    In this study we combine for the first time silicon (Si) isotope compositions of small mixed diatom species (δ30SibSiO2) and of large handpicked mono-generic (i.e. genus = Coscinodiscus) diatom samples (δ30SiCoscino) with diatom assemblages extracted from marine sediments in the Peruvian upwelling region in order to constrain present and past silicate utilisation. The extension of a previous core-top data set from the Peruvian shelf demonstrates that δ30SiCoscino values record near-complete Si utilisation, as these are similar to the isotopic composition of the subsurface source waters feeding the upwelling. In contrast, the δ30SibSiO2 of small mixed diatom species increase southward along the shelf as well as towards the shore. We attribute highest δ30SibSiO2 values partly to transient iron limitation but primarily to the gradual increase of Si isotope fractionation within the seasonal diatom succession, which are mainly recorded by small diatom species during intense bloom events. In contrast, lower δ30SibSiO2 values are related to initial Si isotope utilisation during periods of weak upwelling, when low Si(OH)4 concentrations do not permit intense blooms and small diatom species record substantially lower δ30Si signatures. As such, we propose that the intensity of the upwelling can be deduced from the offset between δ30SibSiO2 and δ30SiCoscino (Δ30Sicoscino-bSiO2), which is low for strong upwelling conditions and high for prevailing weak upwelling. We apply the information extracted from surface sediments to generate a record of the present-day main upwelling region covering the past 17,700 years and find that this location has also been characterized by a persistent offset (Δ30Sicoscino-bSiO2). By comparison with the diatom assemblages we show that the coastal upwelling system changed markedly between weak and strong upwelling conditions. In addition, our model calculations to quantify species-specific Si isotope fractionation effects based on the

  20. Barium Isotopic Composition of Mainstream Silicon Carbides from Murchison: Constraints for s-process Nucleosynthesis in Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Savina, Michael R.; Davis, Andrew M.; Gallino, Roberto; Straniero, Oscar; Gyngard, Frank; Pellin, Michael J.; Willingham, David G.; Dauphas, Nicolas; Pignatari, Marco; Bisterzo, Sara; Cristallo, Sergio; Herwig, Falk

    2014-05-01

    We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ(138Ba/136Ba) values are found, down to -400‰, which can only be modeled with a flatter 13C profile within the 13C pocket than is normally used. The dependence of δ(138Ba/136Ba) predictions on the distribution of 13C within the pocket in asymptotic giant branch (AGB) models allows us to probe the 13C profile within the 13C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the 22Ne(α, n)25Mg rate in the stellar temperature regime relevant to AGB stars, based on δ(134Ba/136Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ(134Ba/136Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, 130Ba and 132Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of 135Ba, we conclude that there is no measurable decay of 135Cs (t 1/2 = 2.3 Ma) to 135Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before 135Cs decayed.

  1. Chromium and Iron Isotopic Composition of Presolar Silicon Carbide Stardust Grains

    NASA Astrophysics Data System (ADS)

    Savina, M.; Levine, J.; Dauphas, N.; Pellin, M.; Willingham, D.; Stephan, T.; Trappitsch, R.; Davis, A. M.

    2011-12-01

    Most presolar SiC stardust grains derive from Asymptotic Giant Branch (AGB) stars, which are the main source of s-process nuclides in the galaxy. s-Process nucleosynthesis is not a major contributor to iron peak nuclides. The most interesting of these isotopes from an AGB nucleosynthetic standpoint are the trace isotopes 54Cr and 58Fe, which are predicted to have deviations from average Solar System ratios of ~100% and >200%, respectively. The other isotopes of Cr and Fe are essentially unchanged by AGB stars, and are representative of the isotopic composition of the protostellar cloud from which the SiC grains formed. They are thus tracers of Galactic Chemical Evolution, and provide a benchmark for the isotopic composition of the galaxy some five to seven billion years ago. SiC grains were isolated from the Murchison meteorite using high purity reagents and techniques specifically designed to prevent contamination with terrestrial Cr and Fe. Grains from the 2-4 μm size fraction were pressed into a high purity gold foil. Chromium and iron isotopic compositions were measured by Resonance Ionization Mass Spectrometry (RIMS) using new techniques specifically developed for high precision isotopic analysis of iron-peak elements. The Cr isotopic compositions of 19 grains form a distinct group. Several grains had resolvable (>2σ) 50Cr and 53Cr deficits ranging as low as -178%. The 54Cr/ 52Cr δ-values were all within 2σ of the Solar System value, though most were slightly higher. The average δ-values for the grains were -45±31% for 50Cr, -37±21% for 53Cr, and +25±26% for 54Cr. Iron results are pending. Given that AGB stars change most Fe and Cr isotope ratios very little, and that these grains' progenitor stars formed from a few hundred million to about three billion years before the Solar System formed (assuming their initial masses were 1.5 - 3 solar masses), and that grain interstellar residence times are likely less than ~100 - 200 million years, the Fe and Cr

  2. Design, analysis, and characterization of stress-engineered 3D microstructures comprised of PECVD silicon oxide and nitride

    NASA Astrophysics Data System (ADS)

    Pi, Chia-Hsing; Turner, Kevin T.

    2016-06-01

    Microelectromechanical systems (MEMS) are typically 2D or quasi-3D structures fabricated using surface and bulk micromachining processes. In this work, an approach for 3D structure fabrication based on stress engineering is demonstrated. Specifically, sub-mm 3D spherical cage-like structures are realized through the deformation of bilayers of residually-stressed silicon oxide and silicon nitride with micrometer-scale thicknesses. Analytical and finite models to predict the shape of stress-engineered structures based on geometry and residual stress are described and used for structure design. A systematic experimental study was performed to quantify residual stresses in silicon nitride films made by plasma-enhanced chemical vapor deposition (PECVD). The measurements show that the residual stress of PECVD silicon nitride can be tuned over a wide range of tensile stresses through the control of deposition parameters, such as flow rate and power. Stress engineered 3D cage-like structures comprised of PECVD silicon nitride and oxide films were fabricated. 3D structures with a range of curvatures were demonstrated. The measured geometry of the fabricated structures are in good agreement with predictions from analytical and finite element models.

  3. Turbine engine lubricant foaming due to silicone basestock used in non-specification spline lubricant

    SciTech Connect

    Centers, P.W.

    1995-05-01

    Dependent upon molecular weight and distribution, concentration, temperature, air flow, and test details or field application, polydimethylsiloxane (PDMS) may be neutral, profoamant or antifoamant in polyolesters. This understanding was critical in the solution of a turbine engine lubrication system foaming problem occurring at several military locations. Suspect turbine engine-accessory gearbox assembly materials gathered from several sites were evaluated. One non-specification PDMS-based spline lubricant caused copious foaming of the lubricant at less than ten parts-per-million concentration, while a specification polymethyl-phenylsiloxane (PMPS)-based lubricant required a concentration nearly 2000 times greater to generate equivalent foam. Use of the profoamant PDMS spline lubricant was then prohibited. Since prohibition, foaming of turbine engine lubricants used in the particular application has not been reported. PMPS impact on foaming of ester lubricants is similar to a much more viscous PDMS attributed to the reduced interaction of PMPS in esters due to pendant phenyl structure of PMPS absent in PDMS. These data provide significant additional insight and methodology to investigate foaming tendencies of partially miscible silicone-ester and other fluid systems. 7 refs., 2 figs., 1 tab.

  4. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies.

    PubMed

    Zhou, Min; Li, Xianglong; Wang, Bin; Zhang, Yunbo; Ning, Jing; Xiao, Zhichang; Zhang, Xinghao; Chang, Yanhong; Zhi, Linjie

    2015-09-01

    We propose a novel material/electrode design formula and develop an engineered self-supporting electrode configuration, namely, silicon nanoparticle impregnated assemblies of templated carbon-bridged oriented graphene. We have demonstrated their use as binder-free lithium-ion battery anodes with exceptional lithium storage performances, simultaneously attaining high gravimetric capacity (1390 mAh g(-1) at 2 A g(-1) with respect to the total electrode weight), high volumetric capacity (1807 mAh cm(-3) that is more than three times that of graphite anodes), remarkable rate capability (900 mAh g(-1) at 8 A g(-1)), excellent cyclic stability (0.025% decay per cycle over 200 cycles), and competing areal capacity (as high as 4 and 6 mAh cm(-2) at 15 and 3 mA cm(-2), respectively). Such combined level of performance is attributed to the templated carbon bridged oriented graphene assemblies involved. This engineered graphene bulk assemblies not only create a robust bicontinuous network for rapid transport of both electrons and lithium ions throughout the electrode even at high material mass loading but also allow achieving a substantially high material tap density (1.3 g cm(-3)). Coupled with a simple and flexible fabrication protocol as well as practically scalable raw materials (e.g., silicon nanoparticles and graphene oxide), the material/electrode design developed would propagate new and viable battery material/electrode design principles and opportunities for energy storage systems with high-energy and high-power characteristics. PMID:26308100

  5. Isotopic compositions of s-process elements in acid-cleaned mainstream presolar silicon carbide

    NASA Astrophysics Data System (ADS)

    Liu, Nan

    Pristine meteorites contain ancient stellar relicts that survived destructions in the early solar system. Isotopic studies of these presolar grains have proven to be a unique method to understand various known and unknown nucleosynthetic processes occurred in their parent stars. Previous studies of isotopic compositions of heavy elements in mainstream SiC grains from low-mass asymptotic giant branch (AGB) stars reported contamination from solar system materials with normal isotopic compositions on grain surfaces and prevented the authors from obtaining the pure nucleosynthetic isotopic signature from stars. In addition, in these previous studies uncertainties in the major neutron source 13C within the 13C-pocket were underestimated because only the 13C mass fraction was considered as a parameter with the 13C-pocket mass and the 13C profile fixed in model calculations. The oversimplified treatment of the 13C-pocket mainly resulted from the fact that it was unclear if there exists any tracer to distinguish different effects of the 13C concentration, the 13C-pocket mass, and the 13C profile within the 13C-pocket. To address these issues, we acid-cleaned all the presolar SiC grains used in this study after their separation from the bulk Murchison meteorite. In addition, we chose to measure strontium and barium isotopic compositions in these acid-cleaned SiC grains, because both elements sit at the first and second s-process peaks along the s-process path, and are sensitive to varying parameters for the s-process in model calculations. By comparing our new acid-cleaned grain data with single grain data from previous studies for barium isotopes, we conclude that the acid-cleaning procedure is quite effective in removing surface barium contamination. For the first time, we find that model predictions for 138Ba/ 136Ba are sensitive to all three variables of the 13C-pocket adopted in AGB model calculations. In order to match the low 138Ba/ 136Ba values in a minor group of

  6. Si transfers during Archean weathering processes traced by silicon isotopes and Ge/Si ratios

    NASA Astrophysics Data System (ADS)

    Delvigne, Camille; Opfergelt, Sophie; Hofmann, Axel; Cardinal, Damien; André, Luc

    2015-04-01

    Weathering conditions in the Mesoarchean are poorly constrained. Recent advances in analytical capabilities have added Si isotopes and Ge/Si ratios to the repertoire of tracers used in the study of soil formation processes: neoformation of secondary clay minerals is associated with large Si isotope and Ge/Si fractionation in response to desilication processes and the weathering degree [1, 2, 3, 4]. Here we combine Si isotopes and Ge/Si ratios of a Mesoarchean paleosol (~2.95 Ga) and of nearly coeval but younger shales as proxies of weathering processes and Si mass transfer at the early Earth's surface. The paleosol is developed on andesite and shows a well defined mineralogical and chemical differentiation. In a first step, similar to modern soils, neoformation of secondary clay minerals in the paleosol was associated with fractionation of Si isotopes and Ge/Si ratios in response to chemical weathering degree and soil desilication. In a second step, the loss of Fe(II)-rich minerals, likely Fe-rich smectites, due to low pO2 conditions produced additional control on Si and Ge mobilities. Opposite fractionation behaviors are observed: products of desilication acted as 28Si and Ge sink while the leaching of Fe(II)-rich minerals released 28Si and Ge to soil solutions. Furthermore, the shales deposited immediately after the paleosol display δ30Si and Ge/Si compositions which may be explained as mixtures of the recognized Archean paleosols components. Their recording within the sedimentary pile suggests that the observed weathering-induced desilication might have been widely effective during the Mesoarchean as well as Fe(II)-rich minerals leaching in a lesser extent and pointing out these processes as determinant in the Si transfers from continents to hydrosphere. [1] Kurtz et al., (2002) Geochim. Cosmochim. Acta 66, 1525-1537 [2] Ziegler et al., (2005) Geochim. Cosmochim. Acta 69, 4597-4610. [3] Opfergelt et al., (2010) Geochim. Cosmochim. Acta 74, 225-240. [4

  7. Silicon Isotope Variations in Giant Spicules of the Deep-sea Sponge Monorhaphis chuni

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Schuessler, J. A.; Wang, X.; Müller, W. E.; Andreae, M. O.

    2012-12-01

    The astonishing longevity of the deep-sea sponge Monorhaphis chuni and the stability of their spicules (Wang et al. 2009) provide the potential that single giant basal spicules can be used as paleoenvironmental archives spanning the entire Holocene (Jochum et al. 2012). According to Wille et al. (2010), the Si isotope fractionation is influenced by seawater Si concentration with lower values associated with sponges collected from waters high in Si. In order to track possible secular variations during the last 10000 years in the deep sea, we have therefore determined Si isotope ratios and trace element ratios along center-to-surface sections at a high resolution by femtosecond LA-(MC)-ICP-MS. Samples came from different locations of the East and South China Sea as well as the South Pacific Ocean (near New Caledonia) and were collected at depths between 1100 m and 2100 m. The external reproducibility of the fs LA-(MC)-ICP-MS method was found to be 0.14 ‰ and 0.27 ‰ (2 SD) for δ29Si and δ30Si, respectively. The relative uncertainty on trace element abundance ratios, such as Mg/Ca, is about 5 % (RSD). Significant variations in Si isotope ratios were observed in the giant spicules Q-B and SCS-4 from the East and South China Sea, respectively. The δ30Si values for the largest spicule collected so far (SCS-4, 2.5 m long) from a depth of 2100 m in the South China Sea, span a large range from -1.9 to -3.7 ‰. No obvious trend in Si isotope variability outside external reproducibility could be identified in smaller and presumably younger spicules; average δ30Si values of 4 different segments of the spicule MC from the South China Sea are about -1.3 ‰. Low δ30Si values of about -0.88 ‰ are found in the giant spicule V from the South Pacific. Mg/Ca ratios of most spicules show small, but significant trends from higher values at the rim to lower values in the core, which can be interpreted as an increase in seawater temperature of several degrees Celsius during

  8. Barium isotopic composition of mainstream silicon carbides from Murchison: Constraints for s-process nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Dauphas, Nicolas; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Straniero, Oscar; Cristallo, Sergio; Gyngard, Frank; Willingham, David G.; Pignatari, Marco; Herwig, Falk

    2014-05-01

    We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ({sup 138}Ba/{sup 136}Ba) values are found, down to –400‰, which can only be modeled with a flatter {sup 13}C profile within the {sup 13}C pocket than is normally used. The dependence of δ({sup 138}Ba/{sup 136}Ba) predictions on the distribution of {sup 13}C within the pocket in asymptotic giant branch (AGB) models allows us to probe the {sup 13}C profile within the {sup 13}C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the {sup 22}Ne(α, n){sup 25}Mg rate in the stellar temperature regime relevant to AGB stars, based on δ({sup 134}Ba/{sup 136}Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ({sup 134}Ba/{sup 136}Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, {sup 130}Ba and {sup 132}Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of {sup 135}Ba, we conclude that there is no measurable decay of {sup 135}Cs (t {sub 1/2} = 2.3 Ma) to {sup 135}Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before {sup 135}Cs decayed.

  9. The isotopic abundances of neon, magnesium and silicon nuclei accelerated in solar flares

    NASA Technical Reports Server (NTRS)

    Dietrich, W. F.; Simpson, J. A.

    1980-01-01

    Direct measurements of the relative abundance of the isotopes Ne-20 and Ne-22 are reported along with a preliminary value for the Mg-26/Mg-24 ratio and an upper limit to the abundance of Si-30 in solar flare accelerated nuclei. A Ne-20/Ne-22 ratio of 7.7 plus 2.3 or minus 1.7 is in agreement with the ratio for the component Neon-A found in carbonaceous chondrites, while a preliminary value of 0.22 plus or minus 0.07 for Mg-26/Mg-24 is larger by approximately one standard deviation than the expected ratio of 0.14 given by Cameron (1973).

  10. Vibrational lifetimes and isotope effects of interstitial oxygen in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Sun, Baozhou; Yang, Qiguang; Newman, Ron; Pajot, Bernard; Marie, Tolk, Norman; Feldman, Len; Luepke, Gunter

    2004-03-01

    The lifetimes of the asymmetric stretch mode of interstitial ^16O and ^17O isotopes in Si are measured directly by time-resolved, transient bleaching spectroscopy to be 11.5 and 4.5 ps, respectively. We calculated the three-phonon density of states and found that the ^17O mode lies in the highest phonon density resulting from 2TO + 1TA phonon combinations. The lifetime of the ^16O mode in Ge is measured to be 125 ps, i.e., ˜ 10 times longer than in Si. The interaction between the local modes and the lattice vibrations is discussed according to the activity of phonon combinations. This work was supported in part by DOE through grant DE-FG02-99ER45781 (C.W.M. and V.U.), ONR (C.W.M. and V.U.), NSF through grants DMR-00-76027, DMR-02-42316 (C.W.M.), and the Thomas F. and Kate Miller Jeffress Memorial Trust through grant J-545 (C.W.M.).

  11. NOx and ammonium isotopic fingerprints of anammox in natural and engineered systems: Implications for N isotope budgets and the use of NOx isotopes to diagnose process stability in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Lehmann, M. F.; Stöcklin, N.; Brunner, B.; Frame, C. H.; Joss, A.; Kipf, M.; Kuhn, T.; Wunderlin, P.

    2014-12-01

    The anaerobic oxidation of ammonium with nitrite (anammox) has been identified as a very important fixed nitrogen (N) sink, accounting for a large fraction of global fixed N loss in marine, freshwater, and semi-terrestrial environments. In engineered systems, combined nitritation-anammox is an efficient process to remove N from ammonium-rich wastewater, with nitrite as the central intermediate. During the anammox process, nitrate is being produced, providing reducing equivalents for carbon fixation. Measuring the N isotope ratios in fixed N species (i.e., ammonium, nitrite, nitrate) has proven to be a valuable tool to track N cycling in freshwater and marine ecosystems, yet its application in wastewater treatment as a tool to diagnose nitrate production pathways is novel. In this presentation we will elucidate, and compare, the N isotope effects associated with anammox 1) in vitro, 2) in a lacustrine setting, and 3) in a small-scale batch reactor for wastewater treatment. We demonstrate that the anammox nitrite/nitrate isotopic signatures are modulated by the superposition of strong kinetic (normal and inverse) and equilibrium (nitrite-nitrate) N isotope fractionation. The ammonium N isotope effect is driven by kinetic N isotope fractionation, and is similar to that of nitrification. We will discuss the possible controls on the expression of the anammox N isotope effects in the natural environment. We will also evaluate the use of nitrate/nitrite N (and O) isotope signatures to distinguish between nitrate production by anammox versus nitrite oxidation, which is important for optimizing process efficiency during wastewater treatment.

  12. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering.

    PubMed

    Le, Thi Duy Hanh; Bonani, Walter; Speranza, Giorgio; Sglavo, Vincenzo; Ceccato, Riccardo; Maniglio, Devid; Motta, Antonella; Migliaresi, Claudio

    2016-02-01

    Silicon plays an important role in bone formation and maintenance, improving osteoblast cell function and inducing mineralization. Often, bone deformation and long bone abnormalities have been associated with silica/silicon deficiency. Diatomite, a natural deposit of diatom skeleton, is a cheap and abundant source of biogenic silica. The aim of the present study is to validate the potential of diatom particles derived from diatom skeletons as silicon-donor materials for bone tissue engineering applications. Raw diatomite (RD) and calcined diatomite (CD) powders were purified by acid treatments, and diatom microparticles (MPs) and nanoparticles (NPs) were produced by fragmentation of purified diatoms under alkaline conditions. The influence of processing on the surface chemical composition of purified diatomites was evaluated by X-ray photoelectron spectroscopy (XPS). Diatoms NPs were also characterized in terms of morphology and size distribution by transmission electron microscopy (TEM) and Dynamic light scattering (DLS), while diatom MPs morphology was analyzed by scanning electron microscopy (SEM). Surface area and microporosity of the diatom particles were evaluated by nitrogen physisorption methods. Release of silicon ions from diatom-derived particles was demonstrated using inductively coupled plasma optical emission spectrometry (ICP/OES); furthermore, silicon release kinetic was found to be influenced by diatomite purification method and particle size. Diatom-derived microparticles (MPs) and nanoparticles (NPs) showed limited or no cytotoxic effect in vitro depending on the administration conditions. PMID:26652398

  13. Distal and proximal controls on the silicon stable isotope signature of North Atlantic Deep Water

    NASA Astrophysics Data System (ADS)

    de Souza, Gregory F.; Slater, Richard D.; Hain, Mathis P.; Brzezinski, Mark A.; Sarmiento, Jorge L.

    2015-12-01

    It has been suggested that the uniquely high δ30Si signature of North Atlantic Deep Water (NADW) results from the contribution of isotopically fractionated silicic acid by mode and intermediate waters that are formed in the Southern Ocean and transported to the North Atlantic within the upper limb of the meridional overturning circulation (MOC). Here, we test this hypothesis in a suite of ocean general circulation models (OGCMs) with widely varying MOCs and related pathways of nutrient supply to the upper ocean. Despite their differing MOC pathways, all models reproduce the observation of a high δ30Si signature in NADW, as well showing a major or dominant (46-62%) contribution from Southern Ocean mode/intermediate waters to its Si inventory. These models thus confirm that the δ30Si signature of NADW does indeed owe its existence primarily to the large-scale transport of a distal fractionation signal created in the surface Southern Ocean. However, we also find that more proximal fractionation of Si upwelled to the surface within the Atlantic Ocean must also play some role, contributing 20-46% of the deep Atlantic δ30Si gradient. Finally, the model suite reveals compensatory effects in the mechanisms contributing to the high δ30Si signature of NADW, whereby less export of high-δ30Si mode/intermediate waters to the North Atlantic is compensated by production of a high-δ30Si signal during transport to the NADW formation region. This trade-off decouples the δ30Si signature of NADW from the pathways of deep water upwelling associated with the MOC. Thus, whilst our study affirms the importance of cross-equatorial transport of Southern Ocean-sourced Si in producing the unique δ30Si signature of NADW, it also shows that the presence of a deep Atlantic δ30Si gradient does not uniquely constrain the pathways by which deep waters are returned to the upper ocean.

  14. Electrostatic actuated strain engineering in monolithically integrated VLS grown silicon nanowires

    NASA Astrophysics Data System (ADS)

    Wagesreither, Stefan; Bertagnolli, Emmerich; Kawase, Shinya; Isono, Yoshitada; Lugstein, Alois

    2014-11-01

    In this paper we demonstrate the fabrication and application of an electrostatic actuated tensile straining test (EATEST) device enabling strain engineering in individual suspended nanowires (NWs). Contrary to previously reported approaches, this special setup guarantees the application of pure uniaxial tensile strain with no shear component of the stress while e.g. simultaneously measuring the resistance change of the NW. To demonstrate the potential of this approach we investigated the piezoresistivity of about 3 μm long and 100 nm thick SiNWs but in the same way one can think about the application of such a device on other geometries, other materials beyond Si as well as the use of other characterization techniques beyond electrical measurements. Therefore single-crystal SiNWs were monolithically integrated in a comb drive actuated MEMS device based on a silicon-on-insulator (SOI) wafer using the vapor-liquid-solid (VLS) growth technique. Strain values were verified by a precise measurement of the NW elongation with scanning electron microscopy (SEM). Further we employed confocal μ-Raman microscopy for in situ, high spatial resolution measurements of the strain in individual SiNWs during electrical characterization. A giant piezoresistive effect was observed, resulting in a fivefold increase in conductivity for 3% uniaxially strained SiNWs. As the EATEST approach can be easily integrated into an existing Si technology platform this architecture may pave the way toward a new generation of nonconventional devices by leveraging the strain degree of freedom.

  15. Contact effects and quantum interference in engineered dangling bond loops on silicon surfaces.

    PubMed

    Kleshchonok, Andrii; Gutierrez, Rafael; Cuniberti, Gianaurelio

    2015-09-01

    Dangling bond structures created on H-passivated silicon surfaces offer a novel platform for engineering planar nanoscale circuits, compatible with conventional semiconductor technologies. In this investigation we focus on the electronic structure and quantum transport signatures of dangling bond loops built on H-passivated Si(100) surfaces contacted by carbon nanoribbons, thus leading to a two-terminal planar, nanoscale setup. The computational studies were carried out to rationalize the influence of the local atomic-scale contacts of the dangling bond system to the mesoscopic electrodes as well as the possibility of revealing quantum interference effects in the dangling bond loops. Our results reveal a strong sensitivity of the low-energy quantum transmission to the loop topology and to the atomistic details of the electrode-loop contact. Varying the length of the loop or the spatial position of at least one of the electrodes has a drastic impact on the quantum interference pattern; depending on whether constructive or destructive interference within the loop takes place, the conductance of the system can be tuned over several orders of magnitude, thus suggesting the possibility of exploiting such quantum mechanical effects in the design of two-dimensional, atomic-scale electronic devices such as logic gates. PMID:26228007

  16. Electrostatic actuated strain engineering in monolithically integrated VLS grown silicon nanowires.

    PubMed

    Wagesreither, Stefan; Bertagnolli, Emmerich; Kawase, Shinya; Isono, Yoshitada; Lugstein, Alois

    2014-11-14

    In this paper we demonstrate the fabrication and application of an electrostatic actuated tensile straining test (EATEST) device enabling strain engineering in individual suspended nanowires (NWs). Contrary to previously reported approaches, this special setup guarantees the application of pure uniaxial tensile strain with no shear component of the stress while e.g. simultaneously measuring the resistance change of the NW. To demonstrate the potential of this approach we investigated the piezoresistivity of about 3 μm long and 100 nm thick SiNWs but in the same way one can think about the application of such a device on other geometries, other materials beyond Si as well as the use of other characterization techniques beyond electrical measurements. Therefore single-crystal SiNWs were monolithically integrated in a comb drive actuated MEMS device based on a silicon-on-insulator (SOI) wafer using the vapor-liquid-solid (VLS) growth technique. Strain values were verified by a precise measurement of the NW elongation with scanning electron microscopy (SEM). Further we employed confocal μ-Raman microscopy for in situ, high spatial resolution measurements of the strain in individual SiNWs during electrical characterization. A giant piezoresistive effect was observed, resulting in a fivefold increase in conductivity for 3% uniaxially strained SiNWs. As the EATEST approach can be easily integrated into an existing Si technology platform this architecture may pave the way toward a new generation of nonconventional devices by leveraging the strain degree of freedom. PMID:25337772

  17. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  18. Silicon isotopic abundance toward evolved stars and its application for presolar grains

    NASA Astrophysics Data System (ADS)

    Peng, T.-C.; Humphreys, E. M. L.; Testi, L.; Baudry, A.; Wittkowski, M.; Rawlings, M. G.; de Gregorio-Monsalvo, I.; Vlemmings, W.; Nyman, L.-A.; Gray, M. D.; de Breuck, C.

    2013-11-01

    Aims: Galactic chemical evolution (GCE) is important for understanding the composition of the present-day interstellar medium (ISM) and of our solar system. In this paper, we aim to track the GCE by using the 29Si/30Si ratios in evolved stars and tentatively relate this to presolar grain composition. Methods: We used the APEX telescope to detect thermal SiO isotopologue emission toward four oxygen-rich M-type stars. Together with the data retrieved from the Herschel science archive and from the literature, we were able to obtain the 29Si/30Si ratios for a total of 15 evolved stars inferred from their optically thin 29SiO and 30SiO emission. These stars cover a range of masses and ages, and because they do not significantly alter 29Si/30Si during their lifetimes, they provide excellent probes of the ISM metallicity (or 29Si/30Si ratio) as a function of time. Results: The 29Si/30Si ratios inferred from the thermal SiO emission tend to be lower toward low-mass oxygen-rich stars (e.g., down to about unity for W Hya), and close to an interstellar or solar value of 1.5 for the higher-mass carbon star IRC+10216 and two red supergiants. There is a tentative correlation between the 29Si/30Si ratios and the mass-loss rates of evolved stars, where we take the mass-loss rate as a proxy for the initial stellar mass or current stellar age. This is consistent with the different abundance ratios found in presolar grains. Before the formation of the Sun, the presolar grains indicate that the bulk of presolar grains already had 29Si/30Si ratios of about 1.5, which is also the ratio we found for the objects younger than the Sun, such as VY CMa and IRC+10216. However, we found that older objects (up to possibly 10 Gyr old) in our sample trace a previous, lower 29Si/30Si value of about 1. Material with this isotopic ratio is present in two subclasses of presolar grains, providing independent evidence of the lower ratio. Therefore, the 29Si/30Si ratio derived from the SiO emission of

  19. Insights into the transfer of silicon isotopes into the sediment record

    NASA Astrophysics Data System (ADS)

    Panizzo, V. N.; Swann, G. E. A.; Mackay, A. W.; Vologina, E.; Sturm, M.; Pashley, V.; Horstwood, M. S. A.

    2016-01-01

    The first δ30Sidiatom data from lacustrine sediment traps are presented from Lake Baikal, Siberia. Data are compared with March surface water (upper 180 m) δ30SiDSi compositions for which a mean value of +2.28 ± 0.09 (95 % confidence) is derived. This value acts as the pre-diatom bloom baseline silicic acid isotopic composition of waters (δ30SiDSi initial). Open traps were deployed along the depth of the Lake Baikal south basin water column between 2012 and 2013. Diatom assemblages display a dominance ( > 85 %) of the spring/summer bloom species Synedra acus var radians, so that δ30Sidiatom compositions reflect predominantly spring/summer bloom utilisation. Diatoms were isolated from open traps and, in addition, from 3-monthly (sequencing) traps (May, July and August 2012) for δ30Sidiatom analyses. Mean δ30Sidiatom values for open traps are +1.23 ± 0.06 (at 95 % confidence and MSWD of 2.9, n = 10). Total dry mass sediment fluxes are highest in June 2012, which we attribute to the initial export of the dominant spring diatom bloom. We therefore argue that May δ30Sidiatom signatures (+0.67 ± 0.06, 2σ) when compared with mean upper water δ30SiDSi initial (e.g. pre-bloom) signatures can be used to provide a snapshot estimation of diatom uptake fractionation factors (ɛuptake) in Lake Baikal. A ɛuptake estimation of -1.61 ‰ is therefore derived, although we emphasise that synchronous monthly δ30SiDSi and δ30Sidiatom data would be needed to provide more robust estimations and therefore more rigorously test this, particularly when taking into consideration any progressive enrichment of the DSi pool as blooms persist. The near-constant δ30Sidiatom composition in open traps

  20. Silicon isotope and trace element constraints on the origin of ˜3.5 Ga cherts: Implications for Early Archaean marine environments

    NASA Astrophysics Data System (ADS)

    van den Boorn, S. H. J. M.; van Bergen, M. J.; Vroon, P. Z.; de Vries, S. T.; Nijman, W.

    2010-02-01

    Silicon (Si) isotope variability in Precambrian chert deposits is significant, but proposed explanations for the observed heterogeneity are incomplete in terms of silica provenance and fractionation mechanisms involved. To address these issues we investigated Si isotope systematics, in conjunction with geochemical and mineralogical data, in three well-characterised and approximately contemporaneous, ˜3.5 Ga chert units from the Pilbara greenstone terrane (Western Australia). We show that Si isotope variation in these cherts is large (-2.4‰ to +1.3‰) and was induced by near-surface processes that were controlled by ambient conditions. Cherts that formed by chemical precipitation of silica show the largest spread in δ 30Si (-2.4‰ to +0.6‰) and are characterised by positive Eu, La and Y anomalies and overall depletions in lithophile trace elements. Silicon isotope systematics in these orthochemical deposits are explained by (1) mixing between hydrothermal fluids and seawater, and/or (2) fractionation of hydrothermal fluids by subsurface losses of silica due to conductive cooling. Rayleigh-type fractionation of hydrothermal fluids was largely controlled by temperature differences between these fluids and seawater. Lamina-scale Si isotope heterogeneity within individual chemical chert samples up to 2.2‰ is considered to reflect the dynamic nature of hydrothermal activity. Silicified volcanogenic sediments lack diagnostic REE+Y anomalies, are enriched in lithophile elements, and exhibit a much more restricted range of positive δ 30Si (+0.1‰ to +1.1‰), which points to seawater as the dominant source of silica. The proposed model for Si isotope variability in the Early Archaean implies that chemical cherts with the most negative δ 30Si formed from pristine hydrothermal fluids, whereas silicified or chemical sediments with positive δ 30Si are closest to pure seawater deposits. Taking the most positive value found in this study (+1.3‰), and assuming that

  1. Contact effects and quantum interference in engineered dangling bond loops on silicon surfaces

    NASA Astrophysics Data System (ADS)

    Kleshchonok, Andrii; Gutierrez, Rafael; Cuniberti, Gianaurelio

    2015-08-01

    Dangling bond structures created on H-passivated silicon surfaces offer a novel platform for engineering planar nanoscale circuits, compatible with conventional semiconductor technologies. In this investigation we focus on the electronic structure and quantum transport signatures of dangling bond loops built on H-passivated Si(100) surfaces contacted by carbon nanoribbons, thus leading to a two-terminal planar, nanoscale setup. The computational studies were carried out to rationalize the influence of the local atomic-scale contacts of the dangling bond system to the mesoscopic electrodes as well as the possibility of revealing quantum interference effects in the dangling bond loops. Our results reveal a strong sensitivity of the low-energy quantum transmission to the loop topology and to the atomistic details of the electrode-loop contact. Varying the length of the loop or the spatial position of at least one of the electrodes has a drastic impact on the quantum interference pattern; depending on whether constructive or destructive interference within the loop takes place, the conductance of the system can be tuned over several orders of magnitude, thus suggesting the possibility of exploiting such quantum mechanical effects in the design of two-dimensional, atomic-scale electronic devices such as logic gates.Dangling bond structures created on H-passivated silicon surfaces offer a novel platform for engineering planar nanoscale circuits, compatible with conventional semiconductor technologies. In this investigation we focus on the electronic structure and quantum transport signatures of dangling bond loops built on H-passivated Si(100) surfaces contacted by carbon nanoribbons, thus leading to a two-terminal planar, nanoscale setup. The computational studies were carried out to rationalize the influence of the local atomic-scale contacts of the dangling bond system to the mesoscopic electrodes as well as the possibility of revealing quantum interference effects in

  2. Atom probe microscopy of three-dimensional distribution of silicon isotopes in {sup 28}Si/{sup 30}Si isotope superlattices with sub-nanometer spatial resolution

    SciTech Connect

    Shimizu, Yasuo; Kawamura, Yoko; Uematsu, Masashi; Itoh, Kohei M.; Tomita, Mitsuhiro; Sasaki, Mikio; Uchida, Hiroshi; Takahashi, Mamoru

    2009-10-01

    Laser-assisted atom probe microscopy of 2 nm period {sup 28}Si/{sup 30}Si isotope superlattices (SLs) is reported. Three-dimensional distributions of {sup 28}Si and {sup 30}Si stable isotopes are obtained with sub-nanometer spatial resolution. The depth resolution of the present atom probe analysis is much higher than that of secondary ion mass spectrometry (SIMS) even when SIMS is performed with a great care to reduce the artifact due to atomic mixing. Outlook of Si isotope SLs as ideal depth scales for SIMS and three-dimensional position standards for atom probe microscopy is discussed.

  3. The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Fan, Dongmei; Akkaraju, Giridhar R.; Couch, Ernest F.; CanhamCurrent Address, Intrinsiq Materials Ltd, Geraldine Road, Malvern Wr14 3SZ Uk, Leigh T.; Coffer, Jeffery L.

    2011-02-01

    The impact of mesoporous silicon (PSi) particles-embedded either on the surface, or totally encapsulated within electrospun poly (ε-caprolactone) (PCL) fibers-on its properties as a tissue engineering scaffold is assessed. Our findings suggest that the resorbable porous silicon component can sensitively accelerate the necessary calcification process in such composites. Calcium phosphate deposition on the scaffolds was measured via in vitro calcification assays both at acellular and cellular levels. Extensive attachment of fibroblasts, human adult mesenchymal stem cells, and mouse stromal cells to the scaffold were observed. Complementary cell differentiation assays and ultrastructural measurements were also carried out; the levels of alkaline phosphatase expression, a specific biomarker for mesenchymal stem cell differentiation, show that the scaffolds have the ability to mediate such processes, and that the location of the Si plays a key role in levels of expression.

  4. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications. Final report

    SciTech Connect

    Kang, S.; Selverian, J.H.; O`Neil, D.; Kim, H.; Kim, K.

    1993-05-01

    This report summarizes the results of Phase 2 of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650{degrees}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA) were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing, and service. The FEA results were compared with experiments using two methods: (1) an idealized strength relationship of the ceramic, and (2) a probabilistic analysis of the ceramic strength (NASA CARES). The results showed that the measured strength of the joint reached 30--80% of the strength predicted by FEA. Also, potential high-temperature braze alloys were developed and evaluated for the high-temperature application of ceramic-metal joints. 38 tabs, 29 figs, 20 refs.

  5. Insights on formation mechanism of colorful silica coatings on Kilauean basalts from field observations and silicon isotopes

    NASA Astrophysics Data System (ADS)

    Chemtob, S. M.; Stebbins, J. F.; Guan, Y.; Ziegler, K. G.; Hurowitz, J. A.; Eiler, J. M.; Rossman, G. R.

    2011-12-01

    Many young basalts from Kilauea, on the big island of Hawai'i, feature visually striking white, yellow, orange and blue coatings. These coatings represent an opportunity to study the early onset of acid-sulfate weathering in volcanic environments. The coatings, first investigated on 1974 flows in the Ka'u Desert, consist of a 10-50 μm thick layer of amorphous silica, capped, in some cases, by a ~1 μm layer of Fe-Ti oxide. Both layers contain %-level enrichments of S, and jarosite is present as a minor phase. The coatings often display residual morphologies consistent with formation by leaching, but occasionally demonstrate depositional or accumulative morphology. Coated basalts of various ages (1969-2010) were collected from several sites along the SW and E rift zones of Kilauea to characterize variability in coating properties and the timing of coating formation. As early as one month after emplacement, some lava surfaces feature translucent, discontinuous 2-3 μm silica glazes, and lavas emplaced as recently as 2007 feature mature coating morphologies. Coatings tend to occur most prominently on smooth, low-vesicularity lavas, such as spatter and volcanic bombs. Rougher surfaces tend not to preserve coatings due to enhanced erosion. Older but recently exposed or broken surfaces away from active eruptions appear to regrow bright glazes with similar qualities, suggesting the importance of regional vog or acid rain in coating formation. Field observations illustrate the timing and complexity of silica coating growth, but do not address the coating formation mechanism and degree of Si mobility. Recent work, including in situ silicon isotope analysis via SIMS and detailed structural analysis via 29Si NMR and Raman spectroscopy, strongly suggests that the coatings are depositional and that Si was mobile during coating formation. 29Si NMR spectra indicate that the coating is structurally identical to amorphous silica gel and contains unusually high structural water

  6. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.

    2016-08-01

    Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ∼70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ∼10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2

  7. Silicon isotopic chemistry in the Changjiang Estuary and coastal regions: Impacts of physical and biogeochemical processes on the transport of riverine dissolved silica

    NASA Astrophysics Data System (ADS)

    Zhang, A. Y.; Zhang, J.; Hu, J.; Zhang, R. F.; Zhang, G. S.

    2015-10-01

    The dissolved silica (DSi) concentration and silicon isotopic composition (δ30Si) of surface water samples from the Changjiang Estuary was measured in summer and winter to study the behavior of DSi fluvial inputs into the estuary. The DSi concentration decreased away from the estuary and had a linear relationship with salinity, suggesting that mixing between river water and seawater is the dominant effect on DSi levels in the study area. Measured δ30Si in the Changjiang Estuary ranged from +1.48‰ to +2.35‰ in summer, and from +1.54‰ to +1.95‰ in winter. As a result of low light levels and abundant DSi riverine inputs, DSi remains relatively unaffected by biological utilization and fractionation in the near-shore region, and the isotopic imprint of water from the Changjiang can still be detected up to a salinity level of 20 in summer. An obvious increase in δ30Si was observed beyond this salinity level, indicating a significant increase in biological utilization and fractionation of DSi in high salinity waters. Lower water temperatures and light levels that prevail over the winter lead to the reduced fractionation of DSi compared with that in summer. The fractionation factor (30ɛ) was estimated using a steady state model to the high salinity waters, yielding a value of -0.95‰, which is in agreement with previous results obtained for Skeletonema costatum in cultivation experiments. The results of this study suggest that silicon isotopes can be used to identify the impact of biological utilization on the behavior of DSi in highly dynamic estuarine environments.

  8. Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems.

    PubMed

    Frank, Otakar; Dresselhaus, Mildred S; Kalbac, Martin

    2015-01-20

    CONSPECTUS: The special properties of graphene offer immense opportunities for applications to many scientific fields, as well as societal needs, beyond our present imagination. One of the important features of graphene is the relatively simple tunability of its electronic structure, an asset that extends the usability of graphene even further beyond present experience. A direct injection of charge carriers into the conduction or valence bands, that is, doping, represents a viable way of shifting the Fermi level. In particular, electrochemical doping should be the method of choice, when higher doping levels are desired and when a firm control of experimental conditions is needed. In this Account, we focus on the electrochemistry of graphene in combination with in situ Raman spectroscopy, that is, in situ Raman spectroelectrochemistry. Such a combination of methods is indeed very powerful, since Raman spectroscopy not only can readily monitor the changes in the doping level but also can give information on eventual stress or disorder in the material. However, when Raman spectroscopy is employed, one of its main strengths lies in the utilization of isotope engineering during the chemical vapor deposition (CVD) growth of the graphene samples. The in situ Raman spectroelectrochemical study of multilayered systems with smartly designed isotope compositions in individual layers can provide a plethora of knowledge about the mutual interactions (i) between the graphene layers themselves, (ii) between graphene layers and their directly adjacent environment (e.g., substrate or electrolyte), and (iii) between graphene layers and their extended environment, which is separated from the layer by a certain number of additional graphene layers. In this Account, we show a few examples of such studies, from monolayer to two-layer and three-layer specimens and considering both turbostratic and AB interlayer ordering. Furthermore, the concept and the method can be extended further

  9. Subwavelength engineered fiber-to-chip silicon-on-sapphire interconnects for mid-infrared applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alonso-Ramos, Carlos; Han, Zhaohong; Le Roux, Xavier; Lin, Hongtao; Singh, Vivek; Lin, Pao Tai; Tan, Dawn; Cassan, Eric; Marris-Morini, Delphine; Vivien, Laurent; Wada, Kazumi; Hu, Juejun; Agarwal, Anuradha; Kimerling, Lionel C.

    2016-05-01

    The mid-Infrared wavelength range (2-20 µm), so-called fingerprint region, contains the very sharp vibrational and rotational resonances of many chemical and biological substances. Thereby, on-chip absorption-spectrometry-based sensors operating in the mid-Infrared (mid-IR) have the potential to perform high-precision, label-free, real-time detection of multiple target molecules within a single sensor, which makes them an ideal technology for the implementation of lab-on-a-chip devices. Benefiting from the great development realized in the telecom field, silicon photonics is poised to deliver ultra-compact efficient and cost-effective devices fabricated at mass scale. In addition, Si is transparent up to 8 µm wavelength, making it an ideal material for the implementation of high-performance mid-IR photonic circuits. The silicon-on-insulator (SOI) technology, typically used in telecom applications, relies on silicon dioxide as bottom insulator. Unfortunately, silicon dioxide absorbs light beyond 3.6 µm, limiting the usability range of the SOI platform for the mid-IR. Silicon-on-sapphire (SOS) has been proposed as an alternative solution that extends the operability region up to 6 µm (sapphire absorption), while providing a high-index contrast. In this context, surface grating couplers have been proved as an efficient means of injecting and extracting light from mid-IR SOS circuits that obviate the need of cleaving sapphire. However, grating couplers typically have a reduced bandwidth, compared with facet coupling solutions such as inverse or sub-wavelength tapers. This feature limits their feasibility for absorption spectroscopy applications that may require monitoring wide wavelength ranges. Interestingly, sub-wavelength engineering can be used to substantially improve grating coupler bandwidth, as demonstrated in devices operating at telecom wavelengths. Here, we report on the development of fiber-to-chip interconnects to ZrF4 optical fibers and integrated SOS

  10. Probing degradation in complex engineering silicones by 1H multiple quantum NMR

    SciTech Connect

    Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L

    2007-09-05

    Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.

  11. Engineering of silicon/HfO2 interface by variable energy proton irradiation

    NASA Astrophysics Data System (ADS)

    Maurya, Savita; Tribedi, L. C.; Maringanti, Radhakrishna

    2014-08-01

    Surfaces and interfaces between materials are of paramount importance for various phenomena, such as painting a house, catalyst driven chemical reactions, intricate life processes, corrosion of materials, and fabrication of various semiconductor devices. Interface of silicon or other such substrates with any of the oxides has profound effect on the performance of metal oxide field effect transistors and other similar devices. Since a surface is an abrupt termination of a periodic crystal, surface atoms will have some unsaturated valence electrons and these unsaturated bonds at the semiconductor surface make it chemically highly reactive. Other than annealing, there is not much that can be done to manage these unsaturated bonds. This study was initiated to explore the possibility of repairing these unsaturated dangling bonds that are formed at the silicon and oxide interface during the deposition of oxide layer above silicon, by the use of proton irradiation. In order to improve the interface characteristics, we present a method to modify the interface of silicon and hafnium dioxide after its fabrication, through proton irradiation. Results of the study are promising and probably this method might be used along with other methods such as annealing to modify the interface, after its fabrication.

  12. Engineering of silicon/HfO{sub 2} interface by variable energy proton irradiation

    SciTech Connect

    Maurya, Savita Maringanti, Radhakrishna; Tribedi, L. C.

    2014-08-18

    Surfaces and interfaces between materials are of paramount importance for various phenomena, such as painting a house, catalyst driven chemical reactions, intricate life processes, corrosion of materials, and fabrication of various semiconductor devices. Interface of silicon or other such substrates with any of the oxides has profound effect on the performance of metal oxide field effect transistors and other similar devices. Since a surface is an abrupt termination of a periodic crystal, surface atoms will have some unsaturated valence electrons and these unsaturated bonds at the semiconductor surface make it chemically highly reactive. Other than annealing, there is not much that can be done to manage these unsaturated bonds. This study was initiated to explore the possibility of repairing these unsaturated dangling bonds that are formed at the silicon and oxide interface during the deposition of oxide layer above silicon, by the use of proton irradiation. In order to improve the interface characteristics, we present a method to modify the interface of silicon and hafnium dioxide after its fabrication, through proton irradiation. Results of the study are promising and probably this method might be used along with other methods such as annealing to modify the interface, after its fabrication.

  13. Surface Engineering of Silicon and Carbon by Pulsed-Laser Ablation

    SciTech Connect

    Fowlkes, J.D.; Geohegan, D.B.; Jellison, G.E., Jr.; Lowndes, D.H.; Merkulov, V.I.; Pedraza, A.J.; Puretzky, A.A.

    1999-02-28

    Experiments are described in which a focused pulsed-excimer laser beam is used either to ablate a graphite target and deposit hydrogen-free amorphous carbon films, or to directly texture a silicon surface and produce arrays of high-aspect-ratio silicon microcolumns. In the first case, diamond-like carbon (or tetrahedral amorphous carbon, ta-C) films were deposited with the experimental conditions selected so that the masses and kinetic energies of incident carbon species were reasonably well controlled. Striking systematic changes in ta-C film properties were found. The sp{sup 3}-bonded carbon fraction, the valence electron density, and the optical (Tauc) energy gap ail reach their maximum values in films deposited at a carbon ion kinetic energy of {approximately}90 eV. Tapping-mode atomic force microscope measurements also reveal that films deposited at 90 eV are extremely smooth (rms roughness {approximately}1 {angstrom} over several hundred nm) and relatively free of particulate, while the surface roughness increases in films deposited at significantly lower energies. In the second set of experiments, dense arrays of high-aspect-ratio silicon microcolumns {approximately}20-40 {micro}m tall and {approximately}2 {micro}m in diameter were formed by cumulative nanosecond pulsed excimer laser irradiation of silicon wafers in air and other oxygen-containing atmospheres. It is proposed that microcolumn growth occurs through a combination of pulsed-laser melting of the tips of the columns and preferential redeposition of silicon on the molten tips from the ablated flux of silicon-rich vapor. The common theme in this research is that a focused pulsed-laser beam can be used quite generally to create an energetic flux, either the energetic carbon ions needed to form sp{sup 3} (diamond-like) bonds or the overpressure of silicon-rich species needed for microcolumn growth. Thus, new materials synthesis opportunities result from the access to nonequilibrium growth conditions

  14. Identification of volatile and semivolatile compounds in chemical ionization GC-MS using a mass-to-structure (MTS) Search Engine with integral isotope pattern ranking.

    PubMed

    Liao, Wenta; Draper, William M

    2013-02-21

    The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of <4% and <6%, respectively, for A + 1 and A + 2 peaks. Deconvolution of interfering isotope clusters (e.g., M(+) and [M - H](+)) was required for accurate determination of the A + 1 isotope in halogenated compounds. Integrating the isotope data greatly improved the speed and accuracy of the database identifications. The database accurately identified unknowns from isobutane CI spectra in 100% of cases where as many as 40 candidates satisfied the mass tolerance. The paper describes the development and basic operation of the new MTS Search Engine and details performance testing with over 50 model compounds. PMID:23248816

  15. Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon

    PubMed Central

    Chakravarty, Swapnajit; Zou, Yi; Lai, Wei-Cheng; Chen, Ray T.

    2012-01-01

    Current trends in photonic crystal microcavity biosensors in silicon-on-insulator (SOI), that focus on small and smaller sensors have faced a bottleneck trying to balance two contradictory requirements of resonance quality factor and sensitivity. By simultaneous control of the radiation loss and optical mode volumes, we show that both requirements can be satisfied simultaneously. Microcavity sensors are designed in which resonances show highest Q ~9,300 in the bio-ambient phosphate buffered saline (PBS) as well as highest sensitivity among photonic crystal biosensors. We experimentally demonstrated mass sensitivity 8.8 atto-grams with sensitivity per unit area of 0.8 picograms/mm2 Highest sensitivity, irrespective of the dissociation constant Kd, is demonstrated among all existing label-free optical biosensors in silicon at the concentration of 0.1μg/ml. PMID:22748964

  16. Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics

    SciTech Connect

    Buonassisi, Tonio

    2013-02-26

    The objective of this project is to close the efficiency gap between industrial multicrystalline silicon (mc-Si) and monocrystalline silicon solar cells, while preserving the economic advantage of low-cost, high-volume substrates inherent to mc-Si. Over the course of this project, we made significant progress toward this goal, as evidenced by the evolution in solar-cell efficiencies. While most of the benefits of university projects are diffuse in nature, several unique contributions can be traced to this project, including the development of novel characterization methods, defect-simulation tools, and novel solar-cell processing approaches mitigate the effects of iron impurities ("Impurities to Efficiency" simulator) and dislocations. In collaboration with our industrial partners, this project contributed to the development of cell processing recipes, specialty materials, and equipment that increased cell efficiencies overall (not just multicrystalline silicon). Additionally, several students and postdocs who were either partially or fully engaged in this project (as evidenced by the publication record) are currently in the PV industry, with others to follow.

  17. Follow the Money: Engineering at Stanford and UC Berkeley during the Rise of Silicon Valley

    ERIC Educational Resources Information Center

    Adams, Stephen B.

    2009-01-01

    A comparison of the engineering schools at UC Berkeley and Stanford during the 1940s and 1950s shows that having an excellent academic program is necessary but not sufficient to make a university entrepreneurial (an engine of economic development). Key factors that made Stanford more entrepreneurial than Cal during this period were superior…

  18. Method of protecting a surface with a silicon-slurry/aluminide coating. [coatings for gas turbine engine blades and vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1982-01-01

    A low cost coating for protecting metallic base system substrates from high temperatures, high gas velocity oxidation, thermal fatigue and hot corrosion is described. The coating is particularly useful for protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrate from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue. Also, the Si-Al coating increased the resistance of certain superalloys to hot corrosion.

  19. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties.

    PubMed

    Li, Xiang; Li, Peng; Saravanan, Rathi; Basu, Anindya; Mishra, Biswajit; Lim, Suo Hon; Su, Xiaodi; Tambyah, Paul Anantharajah; Leong, Susanna Su Jan

    2014-01-01

    Catheter-associated urinary tract infections (CAUTIs) are often preceded by pathogen colonization on catheter surfaces and are a major health threat facing hospitals worldwide. Antimicrobial peptides (AMPs) are a class of new antibiotics that hold promise in curbing CAUTIs caused by antibiotic-resistant pathogens. This study aims to systematically evaluate the feasibility of immobilizing two newly engineered arginine/lysine/tryptophan-rich AMPs with broad antimicrobial spectra and salt-tolerant properties on silicone surfaces to address CAUTIs. The peptides were successfully immobilized on polydimethylsiloxane and urinary catheter surfaces via an allyl glycidyl ether (AGE) polymer brush interlayer, as confirmed by X-ray photoelectron spectroscopy and water contact angle analyses. The peptide-coated silicone surfaces exhibited excellent microbial killing activity towards bacteria and fungi in urine and in phosphate-buffered saline. Although both the soluble and immobilized peptides demonstrated membrane disruption capabilities, the latter showed a slower rate of kill, presumably due to reduced diffusivity and flexibility resulting from conjugation to the polymer brush. The synergistic effects of the AGE polymer brush and AMPs prevented biofilm formation by repelling cell adhesion. The peptide-coated surface showed no toxicity towards smooth muscle cells. The findings of this study clearly indicate the potential for the development of AMP-based coating platforms to prevent CAUTIs. PMID:24056098

  20. Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides.

    PubMed

    Benedikovic, Daniel; Cheben, Pavel; Schmid, Jens H; Xu, Dan-Xia; Lamontagne, Boris; Wang, Shurui; Lapointe, Jean; Halir, Robert; Ortega-Moñux, Alejandro; Janz, Siegfried; Dado, Milan

    2015-08-24

    Surface grating couplers are fundamental components in chip-based photonic devices to couple light between photonic integrated circuits and optical fibers. In this work, we report on a grating coupler with sub-decibel experimental coupling efficiency using a single etch process in a standard 220-nm silicon-on-insulator (SOI) platform. We specifically demonstrate a subwavelength metamaterial refractive index engineered nanostructure with backside metal reflector, with the measured peak fiber-chip coupling efficiency of -0.69 dB (85.3%) and 3 dB bandwidth of 60 nm. This is the highest coupling efficiency hitherto experimentally achieved for a surface grating coupler implemented in 220-nm SOI platform. PMID:26368230

  1. Band-Structure Engineering of Gold Atomic Wires on Silicon by Controlled Doping

    NASA Astrophysics Data System (ADS)

    Choi, Won Hoon; Kang, Pil Gyu; Ryang, Kyung Deuk; Yeom, Han Woong

    2008-03-01

    We report on the systematic tuning of the electronic band structure of atomic wires by controlling the density of impurity atoms. The atomic wires are self-assembled on Si(111) by substitutional gold adsorbates and extra silicon atoms are deposited as the impurity dopants. The one-dimensional electronic band of gold atomic wires, measured by angle-resolved photoemission, changes from a fully metallic to semiconducting one with its band gap increasing above 0.3 eV along with an energy shift as a linear function of the Si dopant density. The gap opening mechanism is suggested to be related to the ordering of the impurities.

  2. Silicon-based elementary particle tracking system: Materials science and mechanical engineering design

    SciTech Connect

    Miller, W.O.; Gamble, M.T.; Thompson, T.C.; Hanlon, J.A.

    1993-01-01

    Research and development of the mechanical, cooling, and structural design aspects of a silicon detector-based elementary particle tracking system has been performed. Achieving stringent system precision, stability, and mass requirements necessitated the use of graphite fiber-reinforced cyanate-ester (C-E) resins. Mechanical test results of the effects of butane, ionizing radiation, and a combination of both on the mechanical properties of these materials are presented, as well as progress on developing compression molding of an ultralightweight graphite composite ring structure and TV holography-based noninvasive evaluation.

  3. Silicon-based elementary particle tracking system: Materials science and mechanical engineering design

    SciTech Connect

    Miller, W.O.; Gamble, M.T.; Thompson, T.C.; Hanlon, J.A.

    1993-05-01

    Research and development of the mechanical, cooling, and structural design aspects of a silicon detector-based elementary particle tracking system has been performed. Achieving stringent system precision, stability, and mass requirements necessitated the use of graphite fiber-reinforced cyanate-ester (C-E) resins. Mechanical test results of the effects of butane, ionizing radiation, and a combination of both on the mechanical properties of these materials are presented, as well as progress on developing compression molding of an ultralightweight graphite composite ring structure and TV holography-based noninvasive evaluation.

  4. Rear interface engineering of hybrid organic-silicon nanowire solar cells via blade coating.

    PubMed

    Lai, Yi-Chun; Chang, Yu-Fan; Tsai, Pei-Ting; Chang, Jan-kai; Tseng, Wei-Hsuan; Lin, Yi-Cheng; Hsiao, Chu-Yen; Zan, Hsiao-Wen; Wu, Chih-I; Chi, Gou-Chung; Meng, Hsin-Fei; Yu, Peichen

    2016-01-25

    In this work, we investigate blade-coated organic interlayers at the rear surface of hybrid organic-silicon photovoltaics based on two small molecules: Tris(8-hydroxyquinolinato) aluminium (Alq(3)) and 1,3-bis(2-(4-tert-butylphenyl)-1,3,4-oxadiazol-5-yl) benzene (OXD-7). In particular, soluble Alq(3) resulting in a uniform thin film with a root-mean-square roughness < 0.2nm is demonstrated for the first time. Both devices with the Alq(3) and OXD-7 interlayers show notable enhancement in the open-circuit voltage and fill-factor, leading to a net efficiency increase by over 2% from the reference, up to 11.8% and 12.5% respectively. The capacitance-voltage characteristics confirm the role of the small-molecule interlayers resembling a thin interfacial oxide layer for the Al-Si Schottky barrier to enhance the built-in potential and facilitate charge transport. Moreover, the Alq(3) interlayer in optimized devices exhibits isolated phases with a large surface roughness, in contrast to the OXD-7 which forms a continuous uniform thin film. The distinct morphological differences between the two interlayers further suggest different enhancement mechanisms and hence offer versatile functionalities to the advent of hybrid organic-silicon photovoltaics. PMID:26832593

  5. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    SciTech Connect

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M.

    2015-09-21

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results based on this model have well reproduced the experimental {sup 30}Si profiles.

  6. Effect of plastic deformation on the magnetic properties and dislocation luminescence of isotopically enriched silicon {sup 29}Si:B

    SciTech Connect

    Koplak, O. V.; Shteynman, E. A.; Tereschenko, A. N.; Morgunov, R. B.

    2015-09-15

    A correlation between the temperature dependences of the D1-line intensity of dislocation luminescence and the magnetic moment of plastically deformed isotopically enriched crystals {sup 29}Si:B is found. It is established that the magnetic susceptibility of the deformed crystals obtained by integration of the spectra of electron spin resonance and the D1-line intensity undergo similar nonmonotonic variations with temperature varying in the range of 20–32 K.

  7. Isotopic Composition of Molybdenum and Barium in Single Presolar Silicon Carbide Grains of Type A+B

    NASA Technical Reports Server (NTRS)

    Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2003-01-01

    Presolar SiC grains fall into several groups based on C, N, and Si isotopic compositions. Approximately 93% are defined as mainstream, having 10 less than C-12/C-13 less than 100 and N-14/N-15 ranging from 50 to 20,000. A number of studies have shown that the most likely sources of mainstream grains are low mass asymptotic giant branch stars. Models of nucleosynthesis in AGB stars reproduce the s-process enhancements seen in the heavy elements in mainstream SiC grains. Among the less common grains, A+B grains, which comprise approximately 3-4% of presolar SiC, are perhaps the least well understood. Recent studies by Amari et al. show that A+B grains can be divided into at least 4 groups based on their trace element concentration patterns. Of 20 grains studied, 7 showed trace element patterns consistent with condensation from a gas of solar system composition, while the rest had varying degrees of process enhancements. Our previous measurements on 3 A+B grains showed Mo of solar isotopic composition, but Zr with a strong enhancement in 96Zr, which is an r-process isotope but can be made in an sprocess if the neutron density is high enough to bridge the unstable Zr-95 (T(sub 1/2)= 64 d). The observation of Mo with solar system isotopic composition in the same grains is puzzling however. Meyer et al. have recently shown that a neutron burst mechanism can produce a high Zr-96/Zr-94 without enhancing Mo-100, however this model leads to enhancements in Mo-95 and Mo-97 not observed in A+B grains. We report here results of Mo measurements on 7 additional A+B grains, and Ba measurements on 2 A+B grains, and compare these to the previous studies.

  8. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    SciTech Connect

    Johnsen, Amanda M.; Heidrich, Brenden; Durrant, Chad; Bascom, Andrew; Unlu, Kenan

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  9. Silicon isotopes in ˜3.8 Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle

    NASA Astrophysics Data System (ADS)

    André, Luc; Cardinal, Damien; Alleman, Laurent Y.; Moorbath, Stephen

    2006-05-01

    We report MC-ICP-MS Si-isotopic measurements ( δ29Si recalculated as δ30Si) on micro-subsamples (at 500 μm scale) from several major rock types of the ˜3.8-Ga-old Isua Greenstone Belt (IGB, southern West Greenland) and surrounding Eoarchaean terrains. With a large overall range of variations (- 2.80‰ < δ30Si < + 0.68‰), they demonstrate strong involvement of surface fluids enriched with dissolved Si. The resistance of Si-isotopes to metamorphic resettings and metasomatic overprints is also established. Metabasaltic pillows and metasediments display similar 30Si-enriched signatures, suggesting that emergent surfaces of the Eoarchaean protocrust were composed of slightly weathered, hydrothermally altered, mafic-ultramafic bodies. Isua magnetite-quartz Banded Iron Formation (BIF) is strongly depleted in 30Si relative to all coeval rocks. This depletion supports Rayleigh-controlled precipitation from seafloor-vented hydrothermal fluids. In contrast, banded quartz-pyroxene rocks (from Akilia Island, some 150 km southwest of the IGB), which some authors have identified as BIF-related, yield quartz with Si-isotopic composition ( δ30Si = - 0.36‰) similar to metamorphic-derived quartz ( δ30Si = - 0.50‰). This supports their derivation from tectonic reworking of ultramafic protoliths penetrated by metamorphic silica and is at variance with their proposed role as harboring earliest biogenic tracers.

  10. Heavy silicon isotopic composition of silicic acid and biogenic silica in Arctic waters over the Beaufort shelf and the Canada Basin

    NASA Astrophysics Data System (ADS)

    Varela, D. E.; Brzezinski, M. A.; Beucher, C. P.; Jones, J. L.; Giesbrecht, K. E.; Lansard, B.; Mucci, A.

    2016-06-01

    The silicon isotopic composition of silicic acid (δ30Si(OH)4) and biogenic silica (δ30Si-bSiO2) were measured for the first time in marine Arctic waters from the Mackenzie River delta to the deep Canada Basin in the late summer of 2009. In the upper 100 m of the water column, δ30Si(OH)4 signals (+1.82‰ to +3.08‰) were negatively correlated with the relative contribution of Mackenzie River water. The biogenic Si isotope fractionation factor estimated using an open system model, 30ɛ = -0.97 ± 0.17‰, agrees well with laboratory and global-ocean estimates. Nevertheless, the δ30Si dynamics of this region may be better represented by closed system isotope models that yield lower values of 30ɛ, between -0.33‰ and -0.41‰, depending on how the contribution of sea-ice diatoms is incorporated. In the upper 400 m, δ30Si-bSiO2 values were among the heaviest ever measured in marine suspended bSiO2 (+2.03‰ to +3.51‰). A positive correlation between δ30Si-bSiO2 and sea-ice cover implies that heavy signals can result from isotopically heavy sea-ice diatoms introduced to pelagic assemblages. Below the surface bSiO2 production zone, the δ30Si(OH)4 distribution followed that of major water masses. Vertical δ30Si(OH)4 profiles showed a minimum (average of +1.84 ± 0.10‰) in the upper halocline (125-200 m) composed of modified Pacific water and heavier average values (+2.04 ± 0.11‰) in Atlantic water (300-500 m deep). In the Canada Basin Deep Water (below 2000 m), δ30Si(OH)4 averaged +1.88 ± 0.12‰, which represents the most positive value ever measured anywhere in the deep ocean. Since most Si(OH)4 enters the Arctic from shallow depths in the Atlantic Ocean, heavy deep Arctic δ30Si(OH)4 signals likely reflect the influx of relatively heavy intermediate Atlantic waters. A box model simulation of the global marine δ30Si(OH)4 distribution successfully reproduced the observed patterns, with the δ30Si(OH)4 of the simulated deep Arctic Ocean being the

  11. Strain engineering on silicon/germanium nanoscale heterostructures using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Park, Yumi

    Nanoscale architectures provide additional variables to engineer electronic/mechanical properties of material systems due to their high surface volume ratio and physics that arise from their extremely small size. To date, the device performance of microelectronics has been improved largely by miniaturization. However, with feature sizes below 100 nm, the fundamental challenges demand development of new architectures, new materials, and strain engineering. Strain engineering has been one of the most widely used techniques to achieve desired electronic properties of materials. For example, uniaxial compression and tension are desirable for high speed p-and n-MOSFET, respectively. However, accurate experimental characterization of strain in nanomaterials remains challenges such as resolving strain components and quantifying strain gradient which can affect electronic properties. Molecular dynamics (MD) describe materials with atomic resolution and it can provide invaluable information and insight into nanoscale strain engineering. MD simulations are used to study strain relaxation in Si/Ge heteroepitaxial structures of interest to nanoelectonic applications. Nanopatterning is considered as an avenue for strain engineering to achieve uniaxial strain state from epitaxially integrated Si/Ge heterostructures. Using MD, it is studied how size affect strain relaxation on strained Si/Ge/Si nanobars representing the structures obtained by patterning the films in nanoscale. The MD results demonstrate that Ge with a roughly square cross section has a uniaxial strain state desirable for hole mobility enhancement. Also, process-induced strain relaxation on Si/Ge heterostructures is discussed. The simulations suggest that, by engineering the aspect ratio of Si/Ge nanolaminates, local amorphization followed by recrystallization can be used for either preserving the engineered strain or achieving the desired strain state in crystalline region, showing a possibility as a new avenue

  12. Controllable surface-plasmon resonance in engineered nanometer epitaxial silicide particles embedded in silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Ksendzov, A.; Iannelli, J. M.; George, T.

    1991-01-01

    Epitaxial CoSi2 particles in a single-crystal silicon matrix are grown by molecular-beam epitaxy using a technique that allows nanometer control over particle size in three dimensions. These composite layers exhibit resonant absorption predicted by effective-medium theory. Selection of the height and diameter of disklike particles through a choice of growth conditions allows tailoring of the depolarization factor and hence of the surface-plasmon resonance energy. Resonant absorption from 0.49 to 1.04 eV (2.5 to 1.2 micron) is demonstrated and shown to agree well with values predicted by the Garnett (1904, 1906) theory using the bulk dielectric constants for CoSi2 and Si.

  13. A nickel-gold bilayer catalyst engineering technique for self-assembled growth of highly ordered silicon nanotubes (SiNT).

    PubMed

    Taghinejad, M; Taghinejad, H; Abdolahad, M; Mohajerzadeh, S

    2013-03-13

    We report the growth of vertically aligned high-crystallinity silicon nanotube (SiNT) arrays on silicon substrate by means of a Ni-Au bilayer catalyst engineering technique. Nanotubes were synthesized through solid-liquid-solid method as well as vapor-liquid-solid. A precise evaluation utilizing atomic force microscopy and lateral force microscopy describes that the gold profile in Ni regions leads to the construction of multiwall SiNTs. The agreement of the structural geometry and stiffness of the obtained SiNTs with previous theoretical predictions suggest sp(3) hybridization as the mechanism of tube formation. Apart from scanning electron and transmission electron microscopy techniques, photoluminescence spectroscopy (PL) has been conducted to investigate the formation of nanostructures. PL spectroscopy confirms the evolution of ultrafine walls of the silicon nanotubes, responsible for the observed photoemission properties. PMID:23394626

  14. Consolidation of silicon nitride without additives. [for gas turbine engine efficiency increase

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Yeh, H. C.

    1976-01-01

    The use of ceramics for gas turbine engine construction might make it possible to increase engine efficiency by raising operational temperatures to values beyond those which can be tolerated by metallic alloys. The most promising ceramics being investigated in this connection are Si3N4 and SiC. A description is presented of a study which had the objective to produce dense Si3N4. The two most common methods of consolidating Si3N4 currently being used include hot pressing and reaction sintering. The feasibility was explored of producing a sound, dense Si3N4 body without additives by means of conventional gas hot isostatic pressing techniques and an uncommon hydraulic hot isostatic pressing technique. It was found that Si3N4 can be densified without additions to a density which exceeds 95% of the theoretical value

  15. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues.

    PubMed

    Hughes, Mark A; Brennan, Paul M; Bunting, Andrew S; Cameron, Katherine; Murray, Alan F; Shipston, Mike J

    2014-05-01

    Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning. PMID:23733444

  16. Silicon-Based Ceramic-Matrix Composites for Advanced Turbine Engines: Some Degradation Issues

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U. J.

    2000-01-01

    SiC/BN/SiC composites are designed to take advantage of the high specific strengths and moduli of non-oxide ceramics, and their excellent resistance to creep, chemical attack, and oxidation, while circumventing the brittleness inherent in ceramics. Hence, these composites have the potential to take turbine engines of the future to higher operating temperatures than is achievable with metal alloys. However, these composites remain developmental and more work needs to be done to optimize processing techniques. This paper highlights the lingering issue of pest degradation in these materials and shows that it results from vestiges of processing steps and can thus be minimized or eliminated.

  17. Effect of carbon situating at end-of-range defects on silicon self-diffusion investigated using pre-amorphized isotope multilayers

    NASA Astrophysics Data System (ADS)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M.

    2016-03-01

    The effect of implanted carbon (C) on silicon (Si) self-diffusion has been investigated using pre-amorphized 28Si/natSi multilayers. The isotope multilayers were pre-amorphized by Ge implantation followed by C implantation, and annealed at 950 °C. Because of the presence of C, the Si self-diffusion was slower in 30 min annealing than the self-diffusion without C. This was attributed to the trapping of Si self-interstitials by C. On the other hand, the Si self-diffusion with C was faster in 2 h annealing than the self-diffusion without C, except in the end-of-range (EOR) defect region. The cause of this enhanced diffusion was understood as the retardation of Ostwald ripening of EOR defects by C trapped at the defects. In the EOR defect region, however, Si self-diffusion was slower than the self-diffusion without C in both 30 min and 2 h annealing owing to the presence of C. Relaxation of the tensile strain associated with the EOR defects by the trapped C was proposed to be the main cause of the retarded diffusion in the EOR region.

  18. Lattice thermal conductivity of crystalline and amorphous silicon with and without isotopic effects from the ballistic to diffusive thermal transport regime

    SciTech Connect

    Park, Minkyu; Lee, In-Ho; Kim, Yong-Sung

    2014-07-28

    Thermal conductivity of a material is an important physical parameter in electronic and thermal devices, and as the device size shrinks down, its length-dependence becomes unable to be neglected. Even in micrometer scale devices, materials having a long mean free path of phonons, such as crystalline silicon (Si), exhibit a strong length dependence of the thermal conductivities that spans from the ballistic to diffusive thermal transport regime. In this work, through non-equilibrium molecular-dynamics (NEMD) simulations up to 17 μm in length, the lattice thermal conductivities are explicitly calculated for crystalline Si and up to 2 μm for amorphous Si. The Boltzmann transport equation (BTE) is solved within a frequency-dependent relaxation time approximation, and the calculated lattice thermal conductivities in the BTE are found to be in good agreement with the values obtained in the NEMD. The isotopic effects on the length-dependent lattice thermal conductivities are also investigated both in the crystalline and amorphous Si.

  19. Probing Structure Property Relationships in Complex Engineering Silicones by 1H NMR

    SciTech Connect

    Chinn, S C; Gjersing, E L; Maxwell, R S; Eastwood, E; Bowen, D; Stephens, T

    2006-07-14

    It is generally accepted that the properties of polymeric materials are controlled by the network structure and the reactions by which they have been constructed. These properties include the bulk moduli at creation, but also the properties as a function of age during use. In order to interpret mechanical properties and predict the time dependent changes in these properties, detailed knowledge of the effect of structural changes must be obtained. The degree and type of crosslinking, the molecular weight between crosslinks, the number of elastically ineffective chains (loops, dangling chain ends, sol-fraction) must be characterized. A number of theoretical and experimental efforts have been reported in the last few years on model networks prepared by endlinking reactions and the relationships of those structures with the ultimate mechanical properties. A range of experimental methods have been used to investigate structure including rheometric, scattering, infrared, {sup 29}Si MAS and CPMAS, {sup 1}H relaxation measurements, and recently {sup 1}H multiple quantum methods. Characterization of the growth of multiple quantum coherences have recently been shown to provide detailed insight into silicone network structure by the ability to selective probe the individual components of the polymer network, such as the polymer-filler interface or network chains. We have employed recently developed MQ methods to investigate the structure-property relationships in a series of complex, endlinked filled-PDMS blends. Here, a systematic study of the relationship between the molecular formulation, as dictated by the amount and type of crosslinks present and by the remaining network chains, and the segmental dynamics as observed by MQ NMR was performed.

  20. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues

    PubMed Central

    Hughes, Mark A; Brennan, Paul M; Bunting, Andrew S; Cameron, Katherine; Murray, Alan F; Shipston, Mike J

    2014-01-01

    Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning. © 2013 The Authors. Journal ofBiomedicalMaterials Research Part APublished byWiley Periodicals, Inc.Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 1350–1360, 2014. PMID:23733444

  1. An engineer at AeroVironment's Design Development Center inspects a set of silicon solar cells for p

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An engineer at AeroVironment's Design Development Center in Simi Valley, California, closely inspects a set of silicon solar cells for potential defects. The cells, fabricated by SunPower, Inc., of Sunnyvale, California, are among 64,000 solar cells which have been installed on the Helios Prototype solar-powered aircraft to provide power to its 14 electric motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights in 2003 with the aid of a regenerative fuel cell-based energy storage system now in development.

  2. Intravitreal Controlled Release of Dexamethasone from Engineered Microparticles of Porous Silicon Dioxide

    PubMed Central

    Wang, Chengyun; Hou, Huiyuan; Nan, Kaihui; Sailor, Michael J; Freeman, William R.; Cheng, Lingyun

    2014-01-01

    Dexamethasone is a glucocorticoid that is widely used in the ophthalmic arena. The recent FDA approved dexamethasone implant can provide a three month efficacy but with high rate of drug related cataract and high intraocular pressure (IOP). It seems that higher steroid in aqueous humor and around lens may be associated with these complications based on clinical fact that higher IOP was observed with intravitreal triamcinolone acetonide (TA) than with subtenon TA. We hypothesize that placing a sustained dexamethasone release system near back of the eye through a fine needle can maximize efficacy while mitigate higher rate of IOP rise and cataract. To develop a sustained intravitreal dexamethasone delivery system, porous silicon dioxide (pSiO2) microparticles were fabricated and functionalized with amines as well as carboxyl groups. Dexamethasone was conjugated to pSiO2 through the Steglich Esterificaion Reaction between hydroxyl of dexamethasone and carboxyl groups on the pSiO2. The drug loading was confirmed by Fourier transform infrared spectroscopy (FTIR) and loading efficiency was quantitated using thermogravimetric analysis (TGA). In vitro release was conducted for three months and dexamethasone was confirmed in the released samples using liquid chromatography-tandem mass spectrometry (LC/MS/MS). A pilot ocular safety and determination of vitreous drug level was performed in rabbit eyes. The drug loading study demonstrated that loading efficiency was from 5.96% to 10.77% depending on the loading reaction time, being higher with longer loading reaction time before reaching saturation around 7 days. In vitro drug release study revealed that dexamethasone release from pSiO2 particles was sustainable for over 90 days and was 80 days longer than free dexamethasone or infiltration-loaded pSiO2 particle formulation in the same setting. Pilot in vivo study demonstrated no sign of ocular adverse reaction in rabbit eyes following a single 3 mg intravitreal injection and

  3. Intravitreal controlled release of dexamethasone from engineered microparticles of porous silicon dioxide.

    PubMed

    Wang, Chengyun; Hou, Huiyuan; Nan, Kaihui; Sailor, Michael J; Freeman, William R; Cheng, Lingyun

    2014-12-01

    Dexamethasone is a glucocorticoid that is widely used in the ophthalmic arena. The recent FDA approved dexamethasone implant can provide a three month efficacy but with high rate of drug related cataract and high intraocular pressure (IOP). It seems that higher steroid in aqueous humor and around lens may be associated with these complications based on clinical fact that higher IOP was observed with intravitreal triamcinolone acetonide (TA) than with subtenon TA. We hypothesize that placing a sustained dexamethasone release system near back of the eye through a fine needle can maximize efficacy while mitigate higher rate of IOP rise and cataract. To develop a sustained intravitreal dexamethasone delivery system, porous silicon dioxide (pSiO2) microparticles were fabricated and functionalized with amines as well as carboxyl groups. Dexamethasone was conjugated to pSiO2 through the Steglich Esterification Reaction between hydroxyl of dexamethasone and carboxyl groups on the pSiO2. The drug loading was confirmed by Fourier transform infrared spectroscopy (FTIR) and loading efficiency was quantitated using thermogravimetric analysis (TGA). In vitro release was conducted for three months and dexamethasone was confirmed in the released samples using liquid chromatography-tandem mass spectrometry (LC/MS/MS). A pilot ocular safety and determination of vitreous drug level was performed in rabbit eyes. The drug loading study demonstrated that loading efficiency was from 5.96% to 10.77% depending on the loading reaction time, being higher with longer loading reaction time before reaching saturation around 7 days. In vitro drug release study revealed that dexamethasone release from pSiO2 particles was sustainable for over 90 days and was 80 days longer than free dexamethasone or infiltration-loaded pSiO2 particle formulation in the same setting. Pilot in vivo study demonstrated no sign of ocular adverse reaction in rabbit eyes following a single 3 mg intravitreal injection and

  4. Surface Engineering of Porous Silicon Microparticles for Intravitreal Sustained Delivery of Rapamycin

    PubMed Central

    Nieto, Alejandra; Hou, Huiyuan; Moon, Sang Woong; Sailor, Michael J.; Freeman, William R.; Cheng, Lingyun

    2015-01-01

    Purpose. To understand the relationship between rapamycin loading/release and surface chemistries of porous silicon (pSi) to optimize pSi-based intravitreal delivery system. Methods. Three types of surface chemical modifications were studied: (1) pSi-COOH, containing 10-carbon aliphatic chains with terminal carboxyl groups grafted via hydrosilylation of undecylenic acid; (2) pSi-C12, containing 12-carbon aliphatic chains grafted via hydrosilylation of 1-dodecene; and (3) pSiO2-C8, prepared by mild oxidation of the pSi particles followed by grafting of 8-hydrocarbon chains to the resulting porous silica surface via a silanization. Results. The efficiency of rapamycin loading follows the order (micrograms of drug/milligrams of carrier): pSiO2-C8 (105 ± 18) > pSi-COOH (68 ± 8) > pSi-C12 (36 ± 6). Powder X-ray diffraction data showed that loaded rapamycin was amorphous and dynamic drug-release study showed that the availability of the free drug was increased by 6-fold (compared with crystalline rapamycin) by using pSiO2-C8 formulation (P = 0.0039). Of the three formulations in this study, pSiO2-C8-RAP showed optimal performance in terms of simultaneous release of the active drug and carrier degradation, and drug-loading capacity. Released rapamycin was confirmed with the fingerprints of the mass spectrometry and biologically functional as the control of commercial crystalline rapamycin. Single intravitreal injections of 2.9 ± 0.37 mg pSiO2-C8-RAP into rabbit eyes resulted in more than 8 weeks of residence in the vitreous while maintaining clear optical media and normal histology of the retina in comparison to the controls. Conclusions. Porous silicon–based rapamycin delivery system using the pSiO2-C8 formulation demonstrated good ocular compatibility and may provide sustained drug release for retina. PMID:25613937

  5. Dissolved silicon and its isotopes in the water column of the Bay of Bengal: Internal cycling versus lateral transport

    NASA Astrophysics Data System (ADS)

    Singh, Satinder Pal; Singh, Sunil Kumar; Bhushan, Ravi; Rai, Vinai Kumar

    2015-02-01

    The concentration of dissolved Si and its isotope composition are measured in the Bay of Bengal (BoB) region of the northern Indian Ocean; the isotope data are the first data set from the northern Indian Ocean. The measurements are made in eight depth profiles closely along the 87°E transect (GIO1 section of the international GEOTRACES program) and in a few samples from the northern shelf of the bay. Dissolved Si in the water column varies from ∼0.6 to ∼152.5 μmol/kg, whereas the δ30Si data cover a range +1.2‰ to +3.6‰. The depth profiles of dissolved Si show generally lower values in the surface increasing with depth, whereas the pattern reverses in the case of δ30Si. These vertical distribution patterns of Si and δ30Si are similar to those reported in other oceanic regions and suggestive of the significant role of biological processes in governing Si biogeochemistry in the upper layers (top ∼1500 m). In contrast, dissolved Si in near surface waters of the northern shelf and the southernmost station is exceptionally high. These results indicate a continental supply of dissolved Si from the Ganga-Brahmaputra river system (G-B) and submarine groundwater discharge (SGD) to the shelf region, and an intrusion of high salinity waters from the Arabian Sea in the southern bay. The δ30Si values of ∼1.34 ± 0.10‰ for deep/bottom waters of the BoB (depth >1500 m) are similar to those reported for the deep Southern Ocean and indicate the dominant control of water mass mixing. The dissolved Si concentrations in the bottom waters of the BoB are generally higher than those of the water mass endmembers, which suggest the need for an additional source of Si; in situ particle dissolution and/or benthic release in the central bay seem to be the potential candidate. The annual Si budget in the top ∼100 m of the BoB seems to suggest that meso-scale eddies frequently occurring during non-monsoon periods can supply at the most ∼2.6 g Si/m2/year, which is about 33

  6. Germanium-on-Silicon Strain Engineered Materials for Improved Device Performance Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Bharathan, Jayesh Moorkoth

    The primary goal of this research is to develop a chemical vapor deposition process for growing epitaxial films of germanium on silicon (001) substrates with two-dimensional (2-D) morphology, and a low density of threading dislocations. Growth was carried out in a reduced-pressure chemical vapor deposition (RPCVD) system by a two-step growth technique. An accurate knowledge of elastic constants of thin films is important in understanding the effect of strain on material properties. Residual thermal strain was used to measure the Poisson ratio of Ge films grown on Si(001) substrates, by the sin2Psi method and highresolution x-ray diffraction. The Poisson ratio of the Ge films was measured to be 0.25, compared to the bulk value of 0.27. The result was found to be independent of film thickness and defect density, which confirmed that the strain is associated with the elastic response of the film. The study showed that the use of Poisson ratio instead of bulk compliance values yields a more accurate description of the state of in-plane strain present in the film. The experimentally measured in-plane strain in Ge films was found to be lower than the theoretical calculations based on the differential thermal expansion coefficients of Si and Ge. The mechanism of thermal misfit strain relaxation in epitaxial Ge films grown on Si(001) substrates was investigated by x-ray diffraction, and transmission electron microscopy. Lattice misfit strain associated with Ge/(001)Si mismatched epitaxy is relieved by a network of Lomer edge misfit dislocations during the first step of the growth technique. However, thermal misfit strain energy during growth is relieved by interdiffusion mechanism at the heterointerface. Two SiGe compositions containing 0.5 and 6.0 atomic percent Si were detected that relieve the thermal mismatch strain associated with the two steps of the growth process. This study discusses the importance of interdiffusion mechanism in relieving small misfit strains

  7. Experimental calibration of silicon and oxygen isotope fractionations between quartz and water at 250°C by in situ microanalysis of experimental products and application to zoned low δ30Si quartz overgrowths

    DOE PAGESBeta

    Pollington, Anthony D.; Kozdon, Reinhard; Anovitz, Lawrence M.; Georg, R. Bastian; Spicuzza, Michael J.; Valley, John W.

    2015-12-01

    The interpretation of silicon isotope data for quartz is hampered by the lack of experimentally determined fractionation factors between quartz and fluid. Further, there is a large spread in published oxygen isotope fractionation factors at low temperatures, primarily due to extrapolation from experimental calibrations at high temperature. We report the first measurements of silicon isotope ratios from experimentally precipitated quartz and estimate the equilibrium fractionation vs. dissolved silica using a novel in situ analysis technique applying secondary ion mass spectrometry to directly analyze experimental products. These experiments also yield a new value for oxygen isotope fractionation. Quartz overgrowths up tomore » 235 μm thick were precipitated in silica–H2O–NaOH–NaCl fluids, at pH 12–13 and 250 °C. At this temperature, 1000lnα30Si(Qtz–fluid) = 0.55 ± 0.10‰ and 1000lnα18O(Qtz–fluid) = 10.62 ± 0.13‰, yielding the relations 1000lnα30Si(Qtz–fluid) = (0.15 ± 0.03) * 106/T2 and 1000lnα18O(Qtz–fluid) = (2.91 ± 0.04) * 106/T2 when extended to zero fractionation at infinite temperature. Values of δ30Si(Qtz) from diagenetic cement in sandstones from the basal Cambrian Mt. Simon Formation in central North America range from 0 to ₋5.4‰. Paired δ18O and δ30Si values from individual overgrowths preserve a record of Precambrian weathering and fluid transport. In conclusion, the application of the experimental quartz growth results to observations from natural sandstone samples suggests that precipitation of quartz at low temperatures in nature is dominated by kinetic, rather than equilibrium, processes.« less

  8. Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions from a DI Diesel Engine

    SciTech Connect

    Buchholz, B A; Mueller, C J; Upatnieks, A; Martin, G C; Pitz, W J; Westbrook, C K

    2004-01-07

    The effect of oxygenate molecular structure on soot emissions from a DI diesel engine was examined using carbon-14 ({sup 14}C) isotope tracing. Carbon atoms in three distinct chemical structures within the diesel oxygenate dibutyl maleate (DBM) were labeled with {sup 14}C. The {sup 14}C from the labeled DBM was then detected in engine-out particulate matter (PM), in-cylinder deposits, and CO{sub 2} emissions using accelerator mass spectrometry (AMS). The results indicate that molecular structure plays an important role in determining whether a specific carbon atom either does or does not form soot. Chemical-kinetic modeling results indicate that structures that produce CO{sub 2} directly from the fuel are less effective at reducing soot than structures that produce CO before producing CO{sub 2}. Because they can follow individual carbon atoms through a real combustion process, {sup 14}C isotope tracing studies help strengthen the connection between actual engine emissions and chemical-kinetic models of combustion and soot formation/oxidation processes.

  9. Evidence of low temperature fractionation of silicon in Archean cherts: SIMS Si and O isotope measurements of 3.42-3.26 Ga banded carbonaceous cherts from the Onverwacht Group, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Stefurak, E. J.; Fischer, W. W.; Lowe, D. R.

    2012-12-01

    The striking abundance of chert in Early Archean sedimentary successions highlights a major difference between younger Archean and Proterozoic successions, engendering a number of questions regarding the behavior of the Earth's early silica cycle. Though previously applied largely for the purpose of paleothermometry, Si isotopes are emerging as a new tool for understanding mass flux and mechanisms of silica concentration, precipitation, diagenesis, and metamorphism. In addition, most previous studies lack a detailed petrographic context, laboring under the assumption that the cherts are isotopically homogeneous on a centimeter scale. We present a new suite of high resolution SIMS Si and O isotope ratio data from banded carbonaceous chert from the Onverwacht Group of the Barberton Greenstone Belt, South Africa - collected from the 3.42 Ga Buck Reef Chert and 3.33-3.26 Ga Mendon Formation. These materials contain several distinct silica phases, including carbonaceous bands (with or without well-defined grains), pure chert bands, early cavity filling cements, and later quartz-filled veins, which provide for isotopic comparisons between different textures. δ30Si values from all samples span a range of almost 7‰, from -3.38 to +3.42, with an overall mean of 0.36, median of 0.46, and standard deviation of 0.87. Within individual samples, isotope ratio data displays systematic texture-specific δ30Si variations both between phases and within phases. The observed variations occur on a ~100μm scale and likely reflect isotopically distinct fluids from which different silica phases originated, in addition to fractionation during precipitation. To constrain the causes of the silicon isotope trends, we made 18O/16O measurements on spots placed just adjacent to measured Si spots. SIMS δ18O values are generally 18O-depleted and fall in a range consistent with previously published data from bulk gas source mass spectrometry. Measurements from all samples span a range of ~6

  10. Orbital forcing of glacial/interglacial variations in chemical weathering and silicon cycling within the upper White Nile basin, East Africa: Stable-isotope and biomarker evidence from Lakes Victoria and Edward

    NASA Astrophysics Data System (ADS)

    Cockerton, Helen E.; Street-Perrott, F. Alayne; Barker, Philip A.; Leng, Melanie J.; Sloane, Hilary J.; Ficken, Katherine J.

    2015-12-01

    On Quaternary time scales, the global biogeochemical cycle of silicon is interlocked with the carbon cycle through biotic enhancement of silicate weathering and uptake of dissolved silica by vascular plants and aquatic microalgae (notably diatoms, for which Si is an essential nutrient). Large tropical river systems dominate the export of Si from the continents to the oceans. Here, we investigate variations in Si cycling in the upper White Nile basin over the last 15 ka, using sediment cores from Lakes Victoria and Edward. Coupled measurements of stable O and Si isotopes on diatom separates were used to reconstruct past changes in lake hydrology and Si cycling, while the abundances of lipid biomarkers characteristic of terrestrial/emergent higher plants, submerged/floating aquatic macrophytes and freshwater algae document past ecosystem changes. During the late-glacial to mid-Holocene, 15-5.5 ka BP, orbital forcing greatly enhanced monsoon rainfall, forest cover and chemical weathering. Riverine inputs of dissolved silica from the lake catchments exceeded aquatic demand and may also have had lower Si-isotope values. Since 5.5 ka BP, increasingly dry climates and more open vegetation, reinforced by the spread of agricultural cropland over the last 3-4 ka, have reduced dissolved silica inputs into the lakes. Centennial-to millennial-scale dry episodes are also evident in the isotopic records and merit further investigation.

  11. Using Environmental Isotopes, Geochemistry, and Aquifer Temperature to Address Flow Regimes Within the Eastern Snake River Plain Aquifer at the Idaho National Engineering and Environmental Laboratory.

    NASA Astrophysics Data System (ADS)

    McLing, T. L.; Smith, R. P.; Roback, R. C.; Elizabeth, J. G.; Blackwell, D. D.

    2002-12-01

    Beginning in 1997 a series of studies utilizing uranium and strontium isotopes were undertaken to characterize the Eastern Snake River Plain (ESRP) aquifer at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies identified fast flow and slow flow zones within the ESRP aquifer at the INEEL. The work presented here is the result of continued study to characterize the physical properties of the aquifer. Especially the implications and origins of large-scale (10's of kilometers) slow flow zones located beneath the 2300 km2 site. Coupling strontium and uranium isotope data from water samples with regional temperature, geophysical, and geologic data has proven to be a robust way to investigate large-scale flow characteristics in the aquifer. Depth-temperature profiles show that effective aquifer thickness varies dramatically across the INEEL from less than 100-m to over 350-m. Isotopic ratios support the conclusion that the thinner portions of the aquifer are "slow flow" zones in which the residence time of groundwater in the rock matrix is sufficient to allow significant water rock interactions to take place. The "slow flow" zones may be zones of increased diagenesis and pore filling mineralization caused by large volumes of upwelling geothermal waters penetrating into the upper, conductive portion of the aquifer. Our current compilation of the large database of isotope, chemical, temperature, hydrologic, and geophysical data in a GIS format enables us to use 50 years of data collected from observation wells and regional surveys to increase our understanding of a complex fractured-rock aquifer

  12. Experimental calibration of silicon and oxygen isotope fractionations between quartz and water at 250°C by in situ microanalysis of experimental products and application to zoned low δ30Si quartz overgrowths

    SciTech Connect

    Pollington, Anthony D.; Kozdon, Reinhard; Anovitz, Lawrence M.; Georg, R. Bastian; Spicuzza, Michael J.; Valley, John W.

    2015-12-01

    The interpretation of silicon isotope data for quartz is hampered by the lack of experimentally determined fractionation factors between quartz and fluid. Further, there is a large spread in published oxygen isotope fractionation factors at low temperatures, primarily due to extrapolation from experimental calibrations at high temperature. We report the first measurements of silicon isotope ratios from experimentally precipitated quartz and estimate the equilibrium fractionation vs. dissolved silica using a novel in situ analysis technique applying secondary ion mass spectrometry to directly analyze experimental products. These experiments also yield a new value for oxygen isotope fractionation. Quartz overgrowths up to 235 μm thick were precipitated in silica–H2O–NaOH–NaCl fluids, at pH 12–13 and 250 °C. At this temperature, 1000lnα30Si(Qtz–fluid) = 0.55 ± 0.10‰ and 1000lnα18O(Qtz–fluid) = 10.62 ± 0.13‰, yielding the relations 1000lnα30Si(Qtz–fluid) = (0.15 ± 0.03) * 106/T2 and 1000lnα18O(Qtz–fluid) = (2.91 ± 0.04) * 106/T2 when extended to zero fractionation at infinite temperature. Values of δ30Si(Qtz) from diagenetic cement in sandstones from the basal Cambrian Mt. Simon Formation in central North America range from 0 to ₋5.4‰. Paired δ18O and δ30Si values from individual overgrowths preserve a record of Precambrian weathering and fluid transport. In conclusion, the application of the experimental quartz growth results to observations from natural sandstone samples suggests that precipitation of quartz at low temperatures in nature is dominated by kinetic, rather than equilibrium, processes.

  13. Material and device engineering in fully depleted silicon-on-insulator transistors to realize a steep subthreshold swing using negative capacitance

    NASA Astrophysics Data System (ADS)

    Ota, Hiroyuki; Migita, Shinji; Hattori, Junichi; Fukuda, Koichi; Toriumi, Akira

    2016-08-01

    This paper discusses material and device engineering in field-effect transistors (FETs) with HfO2-based ferroelectric gate insulators to attain a precipitous subthreshold swing (SS) by exploiting negative capacitance. Our physical analysis based on a new concept of a negative dielectric constant reveals that fully depleted silicon-on-insulator (FD-SOI) channels with a modest remnant polarization P r (3 µC/cm2 at most) are more suitable for realizing SS < 60 mV/decade than a higher P r of 10 µC/cm2, which is commonly reported for HfO2-based ferroelectric materials. We also confirm SS < 60 mV/decade in more than 5 orders of the subthreshold current in FD-SOI FETs with ferroelectric HfO2 gate insulators by device simulation.

  14. Silicon isotope fractionation during the precipitation of quartz and the adsorption of H4SiO4(aq) on Fe(Ⅲ)-oxyhydroxide surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Y.; He, H.; Zhang, S.

    2015-12-01

    Equilibrium Si isotope fractionation factors among orthosilicic acid (i.e.,H4SiO4(aq)), quartz and the adsorption complexes of H4SiO4(aq) on Fe (Ⅲ)-oxyhydroxide surface were calculated using the full-electron wave-function quantum chemistry methods (i.e., B3LYP/6-311G(2df,p)) with a new cluster-model-based treatment. Solvation effects were carefully included in our calculations via water-droplet method combined with implicit solvent models (e.g., PCM). The results revealed that, if it is under equilibrium conditions, heavy Si isotopes would be significantly enriched in quartz in comparison to H4SiO4(aq). However, most of the field observations suggested that quartz would have identical or even depleted d30Si values compared to that of H4SiO4(aq). To explain this discrepancy between the equilibrium calculation results and the field observations, the kinetic isotope effect (KIE) associated with the formation of amorphous silica, which usually is the precursor of crystalline quartz, was investigated using quantum chemistry methods. The KIE results showed that amorphous silica would be significantly enriched in light Si isotopes during its formation. Our equilibrium fractionation results, however, matched a special type of quartz (i.e., Herkimer "diamond") very well, due to its nearly equilibrated precipitation condition. Opposite to the case of precipitated quartz, a large equilibrium Si isotope fractionation (i.e., -3.0‰) was found between the absorbed bidentate Si surface complexes (i.e., 2C>Fe2O2Si(OH)2) and H4SiO4(aq). This calculated equilibrium Si isotope fractionation factor largely differed from a previous experimental result (ca. -1.08‰). We found that the formation of transient or temporary surface complexes (e.g., 1V>Fe2OSi(OH)3) may have accounted for the smaller net fractionation observed. With the equilibrium and kinetic Si isotope fractionation factors provided here, the distributions and changes of Si isotope compositions in the Earth's surface

  15. Influence of gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Chaujar, Rishu

    2016-08-01

    In this paper, we have investigated the small-signal behaviour and RF noise performance of gate electrode workfunction engineered (GEWE) silicon nanowire (SiNW) MOSFET, and the results so obtained are simultaneously compared with SiNW and conventional MOSFET at THz frequency range. This work examines reflection and transmission coefficients, noise conductance, minimum noise figure and cross-correlation factor. Results reveal significant reduction in input/output reflection coefficient and an increase in forward/reverse transmission coefficient owing to improved transconductance in GEWE-SiNW in comparison with conventional counterparts. It is also observed that minimum noise figure and noise conductance of GEWE-SiNW is reduced by 17.4 and 31.2 %, respectively, in comparison with SiNW, thus fortifying its potential application for low-noise amplifiers (LNAs) at radio frequencies. Moreover, the efficacy of gate metal workfunction engineering is also studied and the results validate that tuning of workfunction difference results further improvement in device small-signal behaviour and noise performance.

  16. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  17. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  18. Toward Complete Isotopic Analysis of Individual Presolar Silicon Carbide Grains: C, N, Si, Sr, Zr, Mo, and Ba in Single Grains of Type X

    NASA Technical Reports Server (NTRS)

    Pellin, M. J.; Calaway, W. F.; Davis, A. M.; Lewis, R. S.; Amari, S.; Clayton, R. N.

    2000-01-01

    The isotopic compositions of Sr, Ba, Zr and Mo in single presolar SiC grains from supernovae are different from those expected from either of the dominant heavy element neutron capture nucleosynthesis mechanisms, the s-process and the r-process.

  19. In(x)Ga(₁-x)As nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics.

    PubMed

    Shin, Jae Cheol; Kim, Kyou Hyun; Yu, Ki Jun; Hu, Hefei; Yin, Leijun; Ning, Cun-Zheng; Rogers, John A; Zuo, Jian-Min; Li, Xiuling

    2011-11-01

    We report on the one-dimensional (1D) heteroepitaxial growth of In(x)Ga(1-x)As (x = 0.2-1) nanowires (NWs) on silicon (Si) substrates over almost the entire composition range using metalorganic chemical vapor deposition (MOCVD) without catalysts or masks. The epitaxial growth takes place spontaneously producing uniform, nontapered, high aspect ratio NW arrays with a density exceeding 1 × 10(8)/cm(2). NW diameter (∼30-250 nm) is inversely proportional to the lattice mismatch between In(x)Ga(1-x)As and Si (∼4-11%), and can be further tuned by MOCVD growth condition. Remarkably, no dislocations have been found in all composition In(x)Ga(1-x)As NWs, even though massive stacking faults and twin planes are present. Indium rich NWs show more zinc-blende and Ga-rich NWs exhibit dominantly wurtzite polytype, as confirmed by scanning transmission electron microscopy (STEM) and photoluminescence spectra. Solar cells fabricated using an n-type In(0.3)Ga(0.7)As NW array on a p-type Si(111) substrate with a ∼ 2.2% area coverage, operates at an open circuit voltage, V(oc), and a short circuit current density, J(sc), of 0.37 V and 12.9 mA/cm(2), respectively. This work represents the first systematic report on direct 1D heteroepitaxy of ternary In(x)Ga(1-x)As NWs on silicon substrate in a wide composition/bandgap range that can be used for wafer-scale monolithic heterogeneous integration for high performance photovoltaics. PMID:21967406

  20. Transmutation doping of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  1. Theory-guided nano-engineering of organic electro-optic materials for hybrid silicon photonic, plasmonic, and metamaterial devices

    NASA Astrophysics Data System (ADS)

    Dalton, Larry R.

    2013-03-01

    Coarse-grained Monte Carlo/molecular dynamic calculations are employed to explore the effect of various of intermolecular electrostatic interactions upon chromophore order, lattice dimensionality, and viscoelasticity in electrically-poled organic second order nonlinear optical materials. The following classes of organic macromolecular materials are considered: (1) Chromophore-polymer composites, (2) chromophores covalently incorporated into polymers and dendrimers, (3) chromophores incorporating additional dipolar or quadrupolar interactions that enhance poling efficiency, and (4) binary chromophore materials. For chromophore-polymer composites, the competition of chromophore-chromophore dipolar interactions and nuclear repulsive (steric) interactions define poling-induced acentric order. For covalently incorporated chromophores, covalent bond potentials also influence poling-induced order. These first two classes of materials basically behave as Langevin (3-D) lattice materials. Dipolar (e.g., coumarin) and quadrupolar (arene-perfluoroarene) interactions act to influence lattice dimensionality and thus enhance poling efficiency (the ratio of electro-optic activity to electric poling field strength). The long-range molecular cooperativity associated with these interactions influences viscoelastic properties critical to material processing and integration into silicon photonic, plasmonic, and metamaterial devices. The interaction between different chromophore species in binary chromophore materials also enhances poling efficiency. Polarized laser radiation applied to certain binary chromophore materials can also be used to enhance poling efficiency through control of lattice dimensionality. Poling efficiency approaching 5 (nm/V)2 has been achieved for these latter two classes of materials. Improvement in poling efficiency and control of material viscosity is particular important for integration of organic materials into complex device structures.

  2. Silicon Micromachining

    NASA Astrophysics Data System (ADS)

    Elwenspoek, Miko; Jansen, Henri V.

    2004-08-01

    This comprehensive book provides an overview of the key techniques used in the fabrication of micron-scale structures in silicon. Recent advances in these techniques have made it possible to create a new generation of microsystem devices, such as microsensors, accelerometers, micropumps, and miniature robots. The authors underpin the discussion of each technique with a brief review of the fundamental physical and chemical principles involved. They pay particular attention to methods such as isotropic and anisotropic wet chemical etching, wafer bonding, reactive ion etching, and surface micromachining. There is a special section on bulk micromachining, and the authors also discuss release mechanisms for movable microstructures. The book is a blend of detailed experimental and theoretical material, and will be of great interest to graduate students and researchers in electrical engineering and materials science whose work involves the study of micro-electromechanical systems (MEMS).

  3. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  4. Seasonal variations, origin, and fate of settling diatoms in the Southern Ocean tracked by silicon isotope records in deep sediment traps

    NASA Astrophysics Data System (ADS)

    Closset, Ivia; Cardinal, Damien; Bray, Stephen G.; Thil, François; Djouraev, Irina; Rigual-Hernández, Andrés. S.; Trull, Thomas W.

    2015-09-01

    The Southern Ocean plays a pivotal role in the control of atmospheric CO2 levels, via both physical and biological sequestration processes. The biological carbon transfer to the ocean interior is tightly coupled to the availability of other elements, especially iron as a trace-limiting nutrient and dissolved silicon as the mineral substrate that allows diatoms to dominate primary production. Importantly, variations in the silicon cycling are large but not well understood. Here we use δ30Si measurements to track seasonal flows of silica to the deep sea, as captured by sediment trap time series, for the three major zones (Antarctic, AZ; Polar Frontal, PFZ; and Sub-Antarctic, SAZ) of the open Southern Ocean. Variations in the exported flux of biogenic silica (BSi) and its δ30Si composition reveal a range of insights, including that (i) the sinking rate of BSi exceeds 200 m d-1 in summer in the AZ yet decreases to very low values in winter that allow particles to remain in the water column through to the following spring, (ii) occasional vertical mixing events affect the δ30Si composition of exported BSi in both the SAZ and AZ, and (iii) the δ30Si signature of diatoms is well conserved through the water column despite strong BSi and particulate organic carbon (POC) attenuation at depth and is closely linked to the Si consumption in surface waters. With the strong coupling observed between BSi and POC fluxes in PFZ and AZ, these data provide new constraints for application to biogeochemical models of seasonal controls on production and export.

  5. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  6. Isotopic tracing study of the growth of silicon carbide nanocrystals at the SiO{sub 2}/Si interface by CO annealing

    SciTech Connect

    Pongracz, A.; Hoshino, Y.; D'Angelo, M.; Ganem, J.-J.; Trimaille, I.; Vickridge, I.; Cavellin, C. Deville; Battistig, G.; Josepovits, K. V.

    2009-07-15

    The epitaxial growth of beta-Sic nanocrystals at the Si{sup 16}O{sub 2}/Si(100) interface under CO annealing has been studied using {sup 13}C{sup 18}O and isotopically sensitive nuclear reaction analysis and secondary ion mass spectrometry analysis. The results show that the amount of SiC increases linearly with the CO pressure and the annealing time. We demonstrate that the CO diffuses as a molecule in the silica and that for each C atom reacting to form SiC, an oxygen atom is incorporated in the vicinity of the interface. The linear and the parabolic rate constants corresponding to an adapted Deal and Grove model are also determined.

  7. Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

    SciTech Connect

    Buchholz, B A; Cheng, A S; Dibble, R W

    2003-03-03

    Experimental tests were conducted on a Cummins 85.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for the higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NO{sub x}, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMs). These measurements revealed that carbon from the biodiesel portion of the blended fuel was marginally less likely to contribute to PM, compared to the carbon from the diesel portion of the fuel. The results are different than those obtained in previous tests with the oxygenate ethanol, which was observed to be far less likely contribute to PM than the diesel component of the blended fuel. The data suggests that chemical structure of the oxygen- carbon bonds in an oxygenate affects the PM formation process.

  8. Sr, C and O isotopes as markers of alkaline disturbances in the Toarcian argillites of the Tournemire experimental platform (France). Case of a 15-years old engineered analogue.

    NASA Astrophysics Data System (ADS)

    Techer, I.; Boulvais, P.; Bartier, D.; Tinseau, E.

    2009-04-01

    In France, the concept of a geological disposal of high-activity and long-period nuclear wastes requires the use of concrete and cement-bearing materials as building structures or as waste containment packages, in conjunction with clayey barriers (e.g., compacted bentonite as an engineered barrier and/or argillite-type rocks as a geological barrier). Hydrolysis of cementitious phases is however known to produce hyper-alkaline pore fluids with pH ranging from 10 to 13.5 that will be in disequilibrium with the geological setting environment (argillite pore-water pH around 8). The disturbance of clayey rocks in contact with such materials is thus an important task in safety assessment studies of deep geological storage. This concerns the knowledge of mineral / solution paths but also the spatial extent of the alkaline plume into the clayey material. Experimental and modelling approaches were performed this last decade to answer these questions. In addition to these approaches, natural or engineered contexts in which a clayey formation has been in contact with cementitious materials can be considered as analogues of a deep geological storage for the study of argillite /cement interaction. Such contexts can be found in the IRSN Tournemire experimental platform in Aveyron (France). This platform is based on a tunnel, excavated between 1882 and 1886 through Domerian marls and Toarcian argillites, which is dedicated since 1990 to multidisciplinary research programs. In the frameworks of these programs, exploration boreholes were realized from the basement of the tunnel in the 1990 years. The boreholes were then filled with concrete and cement that are presently in contact with the Toarcian argillites for 15-20 years. One of this borehole - DM borehole - was overcored in 2005 in order to collect the Toarcian argillites in contact with the cement and the concrete. Mineralogical, petrographic and microstructural analyses have argued for a clear disturbance of the Toarcian

  9. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  10. Low-lying spectroscopy of a few even-even silicon isotopes investigated with the multiparticle-multihole Gogny energy density functional

    NASA Astrophysics Data System (ADS)

    Pillet, N.; Zelevinsky, V. G.; Dupuis, M.; Berger, J.-F.; Daugas, J. M.

    2012-04-01

    A multiconfiguration microscopic method has been applied with the Gogny effective interaction to the calculation of low-lying positive-parity states in even-even 26-32Si isotopes. The aim of the study is to compare the results of this approach with those of a standard method of generator coordinate method (GCM) type and to get insight into the predictive power of multiconfiguration methods employed with effective nucleon-nucleon force tailored to mean-field calculations. It is found that the multiconfiguration approach leads to an excellent description of the low-lying spectroscopy of 26Si, 28Si, and 32Si, but gives a systematic energy shift in 30Si. A careful analysis of this phenomenon shows that this discrepancy originates from too large proton-neutron matrix elements supplied by the Gogny interaction at the level of the approximate resolution of the multiparticle-multihole configuration mixing method done in the present study. These proton-neutron matrix elements enter in the definition of both single-particle orbital energies and coupling matrix elements. Finally, a statistical analysis of highly excited configurations in 28Si is performed, revealing exponential convergence in agreement with previous work in the context of the shell model approach. This latter result provides strong arguments toward an implicit treatment of highly excited configurations.

  11. Sr, C and O isotopes as markers of alkaline disturbances in the Toarcian argillites of the Tournemire experimental platform (France). Case of a 15-years old engineered analogue.

    NASA Astrophysics Data System (ADS)

    Techer, I.; Boulvais, P.; Bartier, D.; Tinseau, E.

    2009-04-01

    In France, the concept of a geological disposal of high-activity and long-period nuclear wastes requires the use of concrete and cement-bearing materials as building structures or as waste containment packages, in conjunction with clayey barriers (e.g., compacted bentonite as an engineered barrier and/or argillite-type rocks as a geological barrier). Hydrolysis of cementitious phases is however known to produce hyper-alkaline pore fluids with pH ranging from 10 to 13.5 that will be in disequilibrium with the geological setting environment (argillite pore-water pH around 8). The disturbance of clayey rocks in contact with such materials is thus an important task in safety assessment studies of deep geological storage. This concerns the knowledge of mineral / solution paths but also the spatial extent of the alkaline plume into the clayey material. Experimental and modelling approaches were performed this last decade to answer these questions. In addition to these approaches, natural or engineered contexts in which a clayey formation has been in contact with cementitious materials can be considered as analogues of a deep geological storage for the study of argillite /cement interaction. Such contexts can be found in the IRSN Tournemire experimental platform in Aveyron (France). This platform is based on a tunnel, excavated between 1882 and 1886 through Domerian marls and Toarcian argillites, which is dedicated since 1990 to multidisciplinary research programs. In the frameworks of these programs, exploration boreholes were realized from the basement of the tunnel in the 1990 years. The boreholes were then filled with concrete and cement that are presently in contact with the Toarcian argillites for 15-20 years. One of this borehole - DM borehole - was overcored in 2005 in order to collect the Toarcian argillites in contact with the cement and the concrete. Mineralogical, petrographic and microstructural analyses have argued for a clear disturbance of the Toarcian

  12. The GEM Silicon Tracking System

    SciTech Connect

    Mills, G.B.

    1993-09-01

    The GEM Collaboration has produced a baseline design for the GEM detector. The baseline design of the GEM Silicon Tracking System (STS) is discussed in this article. Mechanical and electrical engineering progress on the GEM STS is described. Results from simulations of detector performance and the implications on engineering issues are described.

  13. Isotopic anomalies in extraterrestrial grains.

    PubMed

    Ireland, T R

    1996-03-01

    Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars. PMID

  14. Low cost silicon solar array project silicon materials task

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost.

  15. Making a Silicon-Nitride/Silicon-Carbide Composite

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1987-01-01

    Hot pressing and nitriding produce strong fiber/matrix material. Fabrication method developed for processing strong and tough silicon-based ceramic composite material, SiC/RBSN, which consists of reaction-bonded Si3N4 (RBSN) reinforced by continuous-length, high-modulus, high strength silicon carbide (SiC) fibers prepared by chemical-vapor deposition method. Increased toughness and ultimate strength of SiC/RBSN composite makes it potential structural material for advanced heat engines.

  16. Determination of Silicon in Hydrazine

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Mast, Dion; Greene, Ben; Maes, Miguel J.

    2006-01-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a highly sensitive technique sometimes used for the trace determination of silicon at a mass-to-charge (m/z) ratio of 28, the most abundant natural isotope of silicon. Unfortunately, ICP-MS is unable to differentiate between other sources of m/z 28 and false positive results for silicon will result when other sources of m/z 28 are present. Nitrogen was a major source of m/z 28 and contributes to the m/z 28 signal when hydrazine sample or nitric acid preservative is introduced into the plasma. Accordingly, this work was performed to develop a sample preparation step coupled with an ICP-MS analysis that minimized non-silicon sources of m/z 28. In the preparatory step of this method, the hydrazine sample was first decomposed predominately to nitrogen gas and water with copper-catalyzed hydrogen peroxide. In the analysis step, ICP-MS was used without nitric acid preservative in samples or standards. Glass, a potential source of silicon contamination, was also avoided where possible. The method was sensitive, accurate, and reliable for the determination of silicon in monopropellant grade hydrazine (MPH) in AF-E-332 elastomer leaching tests. Results for silicon in MPH were comparable to those reported in the literature for other studies.

  17. Silicon polymer encapsulation of high level calcine waste for transportation or disposal

    SciTech Connect

    G. G. Loomis

    2000-02-27

    Engineers at the Idaho National Engineering and Environmental Laboratory (INEEL) are investigating the use of a proprietary silicon-polymer to encapsulate high-level calcine waste stored at the INEEL's Idaho Nuclear Technology and Engineering Center (INTEC). The silicon-polymer-encapsulated waste may be suitable for direct disposal at a radioactive waste disposal facility or for transport to an offsite melter for further processing. In connection with silicon-polymer encapsulation, the University of Akron, under special arrangement with Orbit Technologies, the originator of the Polymer Encapsulation Technology (PET), has studied a simulated waste material from INTEC called pilot-scale calcine that contains hazardous materials but no radioactive isotopes. In this study, Toxicity Characteristic Leaching Procedure (TCLP) and Materials Characterization Center Test 1P were performed to test the waste form for disposal. In addition, a maximum waste loading was established for transporting the calcine waste at INTEC to an offsite melter. For this maximum waste loading, compressive strength testing, 10-m drop testing, melt testing, and a Department of Transportation (DOT) oxidizer test were performed.

  18. Silicon Polymer Encapsulation of High Level Calcine Waste for Transportation or Disposal

    SciTech Connect

    Loomis, Guy George; Miller, Carla Jean; Kimmel, Richard John

    2000-03-01

    Engineers at the Idaho National Engineering and Environmental Laboratory (INEEL) are investigating the use of a proprietary silicon-polymer to encapsulate high-level calcine waste stored at the INEEL's Idaho Nuclear Technology and Engineering Center (INTEC). The silicon-polymer-encapsulated waste may be suitable for direct disposal at a radioactive waste disposal facility or for transport to an offsite melter for further processing. In connection with silicon-polymer encapsulation, the University of Akron, under special arrangement with Orbit Technologies, the originator of the Polymer Encapsulation Technology (PET), has studied a simulated waste material from INTEC called pilot-scale calcine that contains hazardous materials but no radioactive isotopes. In this study, Toxicity Characteristic Leaching Procedure (TCLP) and Materials Characterization Center Test 1P were performed to test the waste form for disposal. In addition, a maximum waste loading was established for transporting the calcine waste at INTEC to an offsite melter. For this maximum waste loading, compressive strength testing, 10-m drop testing, melt testing, and a Department of Transportation (DOT) oxidizer test were performed.

  19. Mass-independent isotope effects.

    PubMed

    Buchachenko, Anatoly L

    2013-02-28

    Three fundamental properties of atomic nuclei-mass, spin (and related magnetic moment), and volume-are the source of isotope effects. The mostly deserved and popular, with almost hundred-year history, is the mass-dependent isotope effect. The first mass-independent isotope effect which chemically discriminates isotopes by their nuclear spins and nuclear magnetic moments rather than by their masses was detected in 1976. It was named as the magnetic isotope effect because it is controlled by magnetic interaction, i.e., electron-nuclear hyperfine coupling in the paramagnetic species, the reaction intermediates. The effect follows from the universal physical property of chemical reactions to conserve angular momentum (spin) of electrons and nuclei. It is now detected for oxygen, silicon, sulfur, germanium, tin, mercury, magnesium, calcium, zinc, and uranium in a great variety of chemical and biochemical reactions including those of medical and ecological importance. Another mass-independent isotope effect was detected in 1983 as a deviation of isotopic distribution in reaction products from that which would be expected from the mass-dependent isotope effect. On the physical basis, it is in fact a mass-dependent effect, but it surprisingly results in isotope fractionation which is incompatible with that predicted by traditional mass-dependent effects. It is supposed to be a function of dynamic parameters of reaction and energy relaxation in excited states of products. The third, nuclear volume mass-independent isotope effect is detected in the high-resolution atomic and molecular spectra and in the extraction processes, but there are no unambiguous indications of its importance as an isotope fractionation factor in chemical reactions. PMID:23301791

  20. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  1. Silicon production process evaluations

    NASA Astrophysics Data System (ADS)

    1982-07-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  2. Another continental pool in the terrestrial silicon cycle.

    PubMed

    Basile-Doelsch, Isabelle; Meunier, Jean Dominique; Parron, Claude

    2005-01-27

    Silicon is the second most abundant element on Earth. It is an important nutrient for phytoplankton and is readily absorbed by terrestrial vegetation; it also assists the removal of carbon dioxide from the atmosphere through the weathering of silicates. But the continental cycle of silicon is not well known, and only a few studies have attempted to use silicon stable isotopes (28Si, 29Si and 30Si) to quantify the continental silicon reservoirs. Dissolved silicon in sea and river waters forms a reservoir of mean isotopic value +1.1 per thousand (refs 7, 10). It is enriched in 30Si with respect to the igneous rocks reservoir, which has a mean isotopic value of -0.3 per thousand (refs 4, 9). This enrichment can only be produced by a major fractionation during weathering, and should result in the formation of a continental 30Si-depleted reservoir. Such a reservoir, however, has not been identified to date. Here we analyse silicon isotopes of in situ quartz from a sandstone series in France, using a new-generation secondary ion mass spectrometry apparatus. We show that quartz that precipitates as siliceous cements forms a strongly 30Si-depleted reservoir with isotopic values down to -5.7 per thousand, a more negative value than any previously published for terrestrial samples. Our findings suggest that quartz re-precipitation plays an important role in the biogeochemical cycle of silicon. PMID:15674287

  3. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  4. Silicon Self-Diffusion in Isotope Heterostructures

    SciTech Connect

    Bracht, H.; Haller, E.E.; Clark-Phelps, R.

    1998-02-06

    Structural and electronic properties as well as thestability of MoS2 nanotubes are studied using thedensity-functional-based tight-binding method. It is found that MoS2zigzag (n,0) nanotubes exhibit a narrow direct band gap and MoS2 armchair(n,n) possess a nonzero moderate direct gap. Interestingly, the (n,n)tubes show a small indirect gap similar to the direct gap of (n,0)nanotubes. Simulated electron diffraction patterns confirm the existenceof armchair and zigzag disulphide nanotubes. The structure of the MoS2nanotube tips is explained by introducing topological defects whichproduce positive and negative curvature.

  5. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  6. Technical Note: Silica stable isotopes and silicification in a carnivorous sponge Asbestopluma sp.

    NASA Astrophysics Data System (ADS)

    Hendry, K. R.; Swann, G. E. A.; Leng, M. J.; Sloane, H. J.; Goodwin, C.; Berman, J.; Maldonado, M.

    2015-06-01

    The stable isotope composition of benthic sponge spicule silica is a potential source of palaeoceanographic information about past deep seawater chemistry. The silicon isotope composition of spicules has been shown to relate to the silicic acid concentration of ambient water, although existing calibrations do exhibit a degree of scatter in the relationship. Less is known about how the oxygen isotope composition of sponge spicule silica relates to environmental conditions during growth. Here, we investigate the vital effects on silica, silicon and oxygen isotope composition in a carnivorous sponge, Asbestopluma sp., from the Southern Ocean. We find significant variations in silicon and oxygen isotopic composition within the specimen that are related to unusual spicule silicification. The largest variation in both isotope systems was associated with the differential distribution of an unconventional, hypersilicified spicule type (desma) along the sponge body. The absence an internal canal in the desmas suggests an unconventional silicification pattern leading to an unusually heavy isotope signature. Additional internal variability derives from a systematic offset between the peripheral skeleton of the body having systematically a higher isotopic composition than the internal skeleton. A simplified silicon isotope fractionation model, in which desmas were excluded, suggests that the lack of a system for seawater pumping in carnivorous sponges favours a low replenishment of dissolved silicon within the internal tissues, causing kinetic fractionation during silicification that impacts the isotope signature of the internal skeleton. Analysis of multiple spicules should be carried out to "average out" any artefacts in order to produce more robust downcore measurements.

  7. Technical Note: Silica stable isotopes and silicification in a carnivorous sponge Asbestopluma sp.

    NASA Astrophysics Data System (ADS)

    Hendry, K. R.; Swann, G. E. A.; Leng, M. J.; Sloane, H. J.; Goodwin, C.; Berman, J.; Maldonado, M.

    2014-12-01

    The stable isotope composition of benthic sponge spicule silica is a potential source of palaeoceanographic information about past deep seawater chemistry. The silicon isotopic composition of spicules has been shown to relate to the silicic acid concentration of ambient water, although existing calibrations do exhibit a degree of scatter in the relationship. Less is known about how the oxygen isotope composition of sponge spicule silica relates to environmental conditions during growth. Here, we investigate the biological vital effects on silica silicon and oxygen isotope composition in a carnivorous sponge, Asbestopluma sp., from the Southern Ocean. We find significant variations in silicon and oxygen isotopic composition within the specimen that appear related to unusual spicule silicification. The largest variation in both isotope systems was associated to the differential distribution of an unconventional, hypersilicified spicule type (desma) along the sponge body. The absence of an internal canal in the desmas suggests an unconventional silicification pattern leading to an unusually heavy isotopic signature. Additional internal variability derives from a systematic offset between the peripheral skeleton of the body having systematically a higher isotopic composition than the internal skeleton. A simplified silicon isotope fractionation model, in which desmas were excluded, suggests that the lack of a system for seawater pumping in carnivorous sponges favours a low replenishment of dissolved silicon within the internal tissues, causing kinetic fractionation during silicification that impacts the isotopic signature of the internal skeleton. Analysis of multiple spicules should be carried out to "average out" any artefacts in order to produce more robust downcore measurements.

  8. Chemical and Isotopic Composition and Gas Concentrations of Ground Water and Surface Water from Selected Sites At and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994-97

    SciTech Connect

    E. Busenberg; L. N. Plummer; M. W. Doughten; P. K. Widman; R. C. Bartholomay

    2000-05-30

    >From May 1994 through May 1997, the US Geological Survey, in cooperation with the US Department of Energy, collected water samples from 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory. The samples were analyzed for a variety of chemical constituents including all major elements and 22 trace elements. Concentrations of scandium, yttrium, and the lanthanide series were measured in samples from 11 wells and 1 hot spring. The data will be used to determine the fraction of young water in the ground water. The fraction of young water must be known to calculate the ages of ground water using chlorofluorocarbons. The concentrations of the isotopes deuterium, oxygen-18, carbon-13, carbon-14, and tritium were measured in many ground water, surface-water and spring samples. The isotopic composition will provide clues to the origin and sources of water in the Snake River Plain aquifer. Concentrations ! of helium-3 , helium-4, total helium, and neon were measured in most groundwater samples, and the results will be used to determine the recharge temperature, and to date the ground waters.

  9. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1994

    SciTech Connect

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1995-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, samples 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, seven domestic wells, two springs, one stock well, and one observation well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that exceeded their minimum reporting levels.

  10. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    SciTech Connect

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level.

  11. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  12. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  13. Development of a statistically proven injection molding method for reaction bonded silicon nitride, sintering reaction bonded silicon nitride, and sintered silicon nitride

    NASA Astrophysics Data System (ADS)

    Steiner, Matthias

    A statistically proven, series injection molding technique for ceramic components was developed for the construction of engines and gas turbines. The flow behavior of silicon injection-molding materials was characterized and improved. Hot-isostatic-pressing reaction bonded silicon nitride (HIPRBSN) was developed. A nondestructive component evaluation method was developed. An injection molding line for HIPRBSN engine components precombustion chamber, flame spreader, and valve guide was developed. This line allows the production of small series for engine tests.

  14. A single-atom electron spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2012-09-27

    A single atom is the prototypical quantum system, and a natural candidate for a quantum bit, or qubit--the elementary unit of a quantum computer. Atoms have been successfully used to store and process quantum information in electromagnetic traps, as well as in diamond through the use of the nitrogen-vacancy-centre point defect. Solid-state electrical devices possess great potential to scale up such demonstrations from few-qubit control to larger-scale quantum processors. Coherent control of spin qubits has been achieved in lithographically defined double quantum dots in both GaAs (refs 3-5) and Si (ref. 6). However, it is a formidable challenge to combine the electrical measurement capabilities of engineered nanostructures with the benefits inherent in atomic spin qubits. Here we demonstrate the coherent manipulation of an individual electron spin qubit bound to a phosphorus donor atom in natural silicon, measured electrically via single-shot read-out. We use electron spin resonance to drive Rabi oscillations, and a Hahn echo pulse sequence reveals a spin coherence time exceeding 200 µs. This time should be even longer in isotopically enriched (28)Si samples. Combined with a device architecture that is compatible with modern integrated circuit technology, the electron spin of a single phosphorus atom in silicon should be an excellent platform on which to build a scalable quantum computer. PMID:22992519

  15. Advanced diffusion studies with isotopically controlled materials

    SciTech Connect

    Bracht, Hartmut A.; Silvestri, Hughes H.; Haller, Eugene E.

    2004-11-14

    The use of enriched stable isotopes combined with modern epitaxial deposition and depth profiling techniques enables the preparation of material heterostructures, highly appropriate for self- and foreign-atom diffusion experiments. Over the past decade we have performed diffusion studies with isotopically enriched elemental and compound semiconductors. In the present paper we highlight our recent results and demonstrate that the use of isotopically enriched materials ushered in a new era in the study of diffusion in solids which yields greater insight into the properties of native defects and their roles in diffusion. Our approach of studying atomic diffusion is not limited to semiconductors and can be applied also to other material systems. Current areas of our research concern the diffusion in the silicon-germanium alloys and glassy materials such as silicon dioxide and ion conducting silicate glasses.

  16. Silicon microdosimetry.

    PubMed

    Agosteo, Stefano; Pola, Andrea

    2011-02-01

    Silicon detectors are being studied as microdosemeters since they can provide sensitive volumes of micrometric dimensions. They can be applied for assessing single-event effects in electronic instrumentation exposed to complex fields around high-energy accelerators or in space missions. When coupled to tissue-equivalent converters, they can be used for measuring the quality of radiation therapy beams or for dosimetry. The use of micrometric volumes avoids the contribution of wall effects to the measured spectra. Further advantages of such detectors are their compactness, cheapness, transportability and a low sensitivity to vibrations. The following problems need to be solved when silicon devices are used for microdosimetry: (i) the sensitive volume has to be confined in a region of well-known dimensions; (ii) the electric noise limits the minimum detectable energy; (iii) corrections for tissue-equivalency should be made; (iv) corrections for shape equivalency should be made when referring to a spherical simulated site of tissue; (v) the angular response should be evaluated carefully; (vi) the efficiency of a single detector of micrometric dimensions is very poor and detector arrays should be considered. Several devices have been proposed as silicon microdosemeters, based on different technologies (telescope detectors, silicon on insulator detectors and arrays of cylindrical p-n junctions with internal amplification), in order to satisfy the issues mentioned above. PMID:21112892

  17. Silicon surface passivation by silicon nitride deposition

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1984-01-01

    Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.

  18. Compelling Research Opportunities using Isotopes

    SciTech Connect

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine

  19. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NASA Astrophysics Data System (ADS)

    Vollmer, M. K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S. W.; Röckmann, T.; Reimann, S.

    2012-03-01

    Molecular hydrogen (H2), its stable isotope signature (δD), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally depleted compared to ambient intake air, while CO was significantly elevated. These findings contradict the often assumed co-occurring net H2 and CO emissions in combustion processes and suggest that previous H2 emissions from combustion may have been overestimated when scaled to CO emissions. For the heater exhausts, H2 and δD generally decrease with increasing fuel-to-air ratio, from ambient values of ∼0.5 ppm and +130‰ to 0.2 ppm and -206‰, respectively. These results are interpreted as a combination of an isotopically light H2 source from fossil fuel combustion and a D/H kinetic isotope fractionation of hydrogen in the advected ambient air during its partial removal during combustion. Diesel exhaust measurements from dynamometer test stand driving cycles show elevated H2 and CO emissions during cold-start and some acceleration phases. Their molar H2/CO ratios are <0.25, significantly smaller than those for gasoline combustion. Using H2/CO emission ratios, along with CO global emission inventories, we estimate global H2 emissions for 2000, 2005, and 2010. For road transportation (gasoline and diesel), we calculate 8.6 ± 2.1 Tg, 6.3 ± 1.5 Tg, and 4.1 ± 1.0 Tg, respectively, whereas the contribution from diesel vehicles has increased from 5% to 8% over this time. Other fossil fuel emissions are believed to be negligible but H2 emissions from coal combustion are unknown. For residential (domestic) emissions, which are likely dominated by biofuel combustion, emissions for the same years are estimated at 2.7 ± 0.7 Tg, 2.8 ± 0.7 Tg, and 3.0 ± 0.8 Tg, respectively. Our wood combustion measurements are combined with results from the literature to calculate

  20. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    SciTech Connect

    G. G. Loomis; C. M. Miller; J. A. Giansiracusa; R. Kimmel; S. V. Prewett

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test.

  1. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  2. Ultrafast laser functionalized rare phased gold-silicon/silicon oxide nanostructured hybrid biomaterials.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-12-01

    We introduce a hybrid nanostructured biomaterial that is a combination of rare phases of immiscible gold and silicon oxide, functionalized via ultrafast laser synthesis. For the first time, we show cancer controlling properties of rare phases of gold silicides, which include Au7Si, Au5Si, Au0.7Si2.3 and Au8Si2. Conventionally, pure forms of gold and silicon/silicon oxide are extensively employed in targeted therapy and drug delivery systems due to their unique properties. While silicon and silicon oxide nanoparticles have shown biocompatibility, gold nanoparticles show conflicting results based on their size and material properties. Several studies have shown that gold and silicon combinations produce cell controlling properties, however, these studies were not able to produce a homogenous combination of gold and silicon, owing to its immiscibility. A homogenous combination of gold and silicon may potentially enable properties that have not previously been reported. We describe rare phased gold-silicon oxide nanostructured hybrid biomaterials and its unique cancer controlling properties, owing to material properties, concentration, size and density. The gold-silicon oxide nanostructured hybrid is composed of individual gold-silicon oxide nanoparticles in various concentrations of gold and silicon, some nanoparticles possess a gold-core and silicon-shell like structure. The individual nanoparticles are bonded together forming a three dimensional nanostructured hybrid. The interaction of the nanostructured hybrids with cervical cancer cells showed a 96% reduction in 24h. This engineered nanostructured hybrid biomaterial presents significant potential due to the combination of immiscible gold and silicon oxide in varying phases and can potentially satiate the current vacuum in cancer therapy. PMID:26539809

  3. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NASA Astrophysics Data System (ADS)

    Vollmer, M. K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S. W.; Röckmann, T.; Reimann, S.

    2012-07-01

    Molecular hydrogen (H2), its stable isotope signature (δD), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally depleted compared to ambient intake air, while CO was significantly elevated. These findings contradict the often assumed co-occurring net H2 and CO emissions in combustion processes and suggest that previous H2 emissions from combustion may have been overestimated when scaled to CO emissions. For the gas and oil-fired heater exhausts, H2 and δD generally decrease with increasing CO2, from ambient values of ~0.5 ppm and +130‰ to 0.2 ppm and -206‰, respectively. These results are interpreted as a combination of an isotopically light H2 source from fossil fuel combustion and a D/H kinetic isotope fractionation of hydrogen in the advected ambient air during its partial removal during combustion. Diesel exhaust measurements from dynamometer test stand driving cycles show elevated H2 and CO emissions during cold-start and some acceleration phases. While H2 and CO emissions from diesel vehicles are known to be significantly less than those from gasoline vehicles (on a fuel-energy base), we find that their molar H2/CO ratios (median 0.026, interpercentile range 0.12) are also significantly less compared to gasoline vehicle exhaust. Using H2/CO emission ratios, along with CO global emission inventories, we estimate global H2 emissions for 2000, 2005, and 2010. For road transportation (gasoline and diesel), we calculate 8.3 ± 2.2 Tg, 6.0 ± 1.5 Tg, and 3.8 ± 0.94 Tg, respectively, whereas the contribution from diesel vehicles is low (0.9-1.4%). Other fossil fuel emissions are believed to be negligible but H2 emissions from coal combustion are unknown. For residential (domestic) emissions, which are likely dominated by biofuel combustion, emissions for the same years are

  4. Modular Isotopic Thermoelectric Generator (MITG) Design and Development, Part A-E. Original was presented at 1983 Intersociety Energy Conversion Engineering Conference (IECEC)

    SciTech Connect

    Schock, A.

    1983-04-29

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing 24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Detailed analysis indicates that the present generation of RTGs, using the same heat source modules. There is a duplicate copy of this document. OSTI has a copy of this paper.

  5. Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method

    NASA Astrophysics Data System (ADS)

    Banerjee, Debika; Trudeau, Charles; Gerlein, Luis Felipe; Cloutier, Sylvain G.

    2016-03-01

    The nanoscale engineering of silicon can significantly change its bulk optoelectronic properties to make it more favorable for device integration. Phonon process engineering is one way to enhance inter-band transitions in silicon's indirect band structure alignment. This paper demonstrates phonon localization at the tip of silicon nanowires fabricated by galvanic displacement using wet electroless chemical etching of a bulk silicon wafer. High-resolution Raman micro-spectroscopy reveals that such arrayed structures of silicon nanowires display phonon localization behaviors, which could help their integration into the future generations of nano-engineered silicon nanowire-based devices such as photodetectors and solar cells.

  6. Ultrasonic characterization of microwave joined silicon carbide/silicon carbide

    SciTech Connect

    House, M.B.; Day, P.S.

    1997-05-01

    High frequency (50--150 MHz), ultrasonic immersion testing has been used to characterize the surface and interfacial joint conditions of microwave bonded, monolithic silicon carbide (SiC) materials. The high resolution ultrasonic C-scan images point to damage accumulation after thermal cycling. Image processing was used to study the effects of the thermal cycling on waveform shape, amplitude and distribution. Such information is useful for concurrently engineering material fabrication processes and suitable nondestructive test procedures.

  7. Methods of Si based ceramic components volatilization control in a gas turbine engine

    DOEpatents

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  8. Thermodynamics of Volatile Silicon Hydroxides Studied

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2001-01-01

    Silicon-based ceramics are promising candidate structural materials for heat engines. The long-term stability of these materials to environmental degradation is dependent on the formation and retention of a protective SiO2 layer. It is well known that SiO2 forms stable volatile hydroxides in the presence of water vapor at elevated temperatures. Combustion conditions, which characteristically are at high velocities, contain significant water vapor pressures, and high temperatures tend to promote continuous formation of these hydroxides with resulting material degradation. For the degradation of silicon-based ceramics to be predicted, accurate thermodynamic data on the formation of silicon hydroxides are needed.

  9. Interface engineering and reliability characteristics of hafnium dioxide with poly silicon gate and dual metal (ruthenium-tantalum alloy, ruthenium) gate electrode for beyond 65 nm technology

    NASA Astrophysics Data System (ADS)

    Kim, Young-Hee

    Chip density and performance improvements have been driven by aggressive scaling of semiconductor devices. In both logic and memory applications, SiO 2 gate dielectrics has reached its physical limit, direct tunneling resulting from scaling down of dielectrics thickness. Therefore high-k dielectrics have attracted a great deal of attention from industries as the replacement of conventional SiO2 gate dielectrics. So far, lots of candidate materials have been evaluated and Hf-based high-k dielectrics were chosen to the promising materials for gate dielectrics. However, lots of issues were identified and more thorough researches were carried out on Hf-based high-k dielectrics. For instances, mobility degradation, charge trapping, crystallization, Fermi level pinning, interface engineering, and reliability studies. In this research, reliability study of HfO2 were explored with poly gate and dual metal (Ru-Ta alloy, Ru) gate electrode as well as interface engineering. Hard breakdown and soft breakdown were compared and Weibull slope of soft breakdown was smaller than that of hard breakdown, which led to a potential high-k scaling issue. Dynamic reliability has been studied and the combination of trapping and detrapping contributed the enhancement of lifetime projection. Polarity dependence was shown that substrate injection might reduce lifetime projection as well as it increased soft breakdown behavior. Interface tunneling mechanism was suggested with dual metal gate technology. Soft breakdown (l st breakdown) was mainly due to one layer breakdown of bi-layer structure. Low weibull slope was in part attributed to low barrier height of HfO 2 compared to interface layer. Interface layer engineering was thoroughly studied in terms of mobility, swing, and short channel effect using deep sub-micron MOSFET devices. In fact, Hf-based high-k dielectrics could be scaled down to below EOT of ˜10A and it successfully achieved the competitive performance goals. However, it is

  10. Crystalline Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2015-10-01

    The following sections are included: * Overview * Silicon cell development * Substrate production * Cell processing * Cell costs * Opportunities for improvement * Silicon-supported thin films * Summary * Acknowledgement * References

  11. New engine and advanced component design

    SciTech Connect

    Not Available

    1990-01-01

    This book contains the proceedings on new engine and advance component design. Topics covered include: development of low emission high performance four valve engines, the effect of engine build options on powerplant inertias, silicon nitride turbocharger rotor for high performance automotive engines and development of Toyota reflex Burn (TRB) system in DI diesel.

  12. Silicon production in a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1986-01-01

    Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.

  13. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the

  14. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel.

    PubMed

    Sapcariu, Sean C; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the

  15. Process feasibility study in support of silicon material task 1

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Li, K. Y.; Hopper, J. R.; Fang, C. S.; Hansen, K. C.

    1981-01-01

    Results for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells are presented. Analyses of process system properties are important for chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major physical, thermodynamic and transport property data are reported for silicon source and processing chemical materials.

  16. Retrograde Melting and Internal Liquid Gettering in Silicon

    SciTech Connect

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  17. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1993

    SciTech Connect

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that equaled or exceeded their reporting levels. The ethylbenzene concentration in one water sample exceeded the reporting level.

  18. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1993

    USGS Publications Warehouse

    Bartholomay, Roy C.; Edwards, Daniel D.; Campbell, Linford J.

    1994-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concen- trations exceeded their respective laboratory reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Ethylbenzene concentrations exceeded the reporting level in one water sample.

  19. Solar energy innovation and Silicon Valley

    NASA Astrophysics Data System (ADS)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  20. All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond

    NASA Astrophysics Data System (ADS)

    Rogers, Lachlan J.; Jahnke, Kay D.; Metsch, Mathias H.; Sipahigil, Alp; Binder, Jan M.; Teraji, Tokuyuki; Sumiya, Hitoshi; Isoya, Junichi; Lukin, Mikhail D.; Hemmer, Philip; Jelezko, Fedor

    2014-12-01

    The silicon-vacancy (SiV- ) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV- center with a spin relaxation time of T1=2.4 ±0.2 ms . Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T2⋆=35 ±3 ns . This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the Si 29 isotope which allows access to nuclear spin. These results establish the SiV- center as a solid-state spin-photon interface.

  1. Isotopically enhanced triple-quantum-dot qubit

    PubMed Central

    Eng, Kevin; Ladd, Thaddeus D.; Smith, Aaron; Borselli, Matthew G.; Kiselev, Andrey A.; Fong, Bryan H.; Holabird, Kevin S.; Hazard, Thomas M.; Huang, Biqin; Deelman, Peter W.; Milosavljevic, Ivan; Schmitz, Adele E.; Ross, Richard S.; Gyure, Mark F.; Hunter, Andrew T.

    2015-01-01

    Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking. PMID:26601186

  2. Isotopically enhanced triple-quantum-dot qubit.

    PubMed

    Eng, Kevin; Ladd, Thaddeus D; Smith, Aaron; Borselli, Matthew G; Kiselev, Andrey A; Fong, Bryan H; Holabird, Kevin S; Hazard, Thomas M; Huang, Biqin; Deelman, Peter W; Milosavljevic, Ivan; Schmitz, Adele E; Ross, Richard S; Gyure, Mark F; Hunter, Andrew T

    2015-05-01

    Like modern microprocessors today, future processors of quantum information may be implemented using all-electrical control of silicon-based devices. A semiconductor spin qubit may be controlled without the use of magnetic fields by using three electrons in three tunnel-coupled quantum dots. Triple dots have previously been implemented in GaAs, but this material suffers from intrinsic nuclear magnetic noise. Reduction of this noise is possible by fabricating devices using isotopically purified silicon. We demonstrate universal coherent control of a triple-quantum-dot qubit implemented in an isotopically enhanced Si/SiGe heterostructure. Composite pulses are used to implement spin-echo type sequences, and differential charge sensing enables single-shot state readout. These experiments demonstrate sufficient control with sufficiently low noise to enable the long pulse sequences required for exchange-only two-qubit logic and randomized benchmarking. PMID:26601186

  3. Development of high temperature, high radiation resistant silicon semiconductors

    NASA Technical Reports Server (NTRS)

    Whorl, C. A.; Evans, A. W.

    1972-01-01

    The development of a hardened silicon power transistor for operation in severe nuclear radiation environments at high temperature was studied. Device hardness and diffusion techniques are discussed along with the geometries of hardened power transistor chips. Engineering drawings of 100 amp and 5 amp silicon devices are included.

  4. Upgrading Metallurgical-Grade Silicon

    NASA Technical Reports Server (NTRS)

    Woerner, L. M.; Moore, E. B.

    1985-01-01

    Closed-loop process produces semiconductor-grade silicon. Metallurgical-grade silicon converted to ultrapure silicon by reacting with hydrogen and silicon tetrahalide to form trihalosilane, purifying this intermediate and again decomposing to high purity silicon in third stage. Heterogeneously and homogeneously nucleated polycrystalline silicon used in semiconductor device applications and in silicon photovoltaic solar cell fabrication.

  5. Meteoritic silicon carbide and its stellar sources - Implications for galactic chemical evolution

    NASA Technical Reports Server (NTRS)

    Ming, Tang; Anders, Edward; Hoppe, Peter; Zinner, Ernst

    1989-01-01

    Interstellar silicon carbide grains in meteorites provide a novel means for studying the carbon-star population of about 5 x 10 to the 9th years ago. Their C-12/C-13 ratios differ greatly from the solar value but resemble those of present-day csrbon stars, implying little change in the galactic C-13 inventory. Isotope data on nitrogen and silicon suggest that the silicon carbide grains come mainly from red giants, with small contributions from novae.

  6. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  7. Effect of iron on nitriding rate of silicon

    SciTech Connect

    Kijima, Kazunori

    1996-12-31

    The present paper investigates reasons why iron doping promotes the nitriding reaction rate of silicon. Kinetic studies on silicon nitridation indicated that the nitriding rate was increased by one order of magnitude with iron addition and that a diffusion controlling process existed at the initial stage. Since nitrogen self-diffusion in silicon nitride may play an important role in silicon nitridation, it was measured by a gas-solid isotope exchange method using {sup 15}N isotope. Diffusion results showed that the self-diffusion coefficient increased by one order of magnitude with iron addition, and that the apparent activation energy did not change with or without additive. In order to understand why iron increases diffusion, the Moessbaur effect of iron doped silicon nitride was investigated. The isomer shift indicated that iron atoms were in the Fe{sup 3+} state. The quadrupole splitting could be explained by the presence of nitrogen vacancies in silicon nitride and the solubility limit of iron into silicon nitride lies around 0.6 at.% at 1430{degrees}C.

  8. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  9. Light harvesting by a spherical silicon microcavity

    NASA Astrophysics Data System (ADS)

    Garín, M.; Fenollosa, R.; Ortega, P.; Meseguer, F.

    2016-01-01

    Silicon colloids are presented as efficient absorbers in the VIS-NIR region. The theory of resonant absorption by Mie modes in a single high-index sphere is reviewed and engineering rules established. The presented model predicts enhanced absorption in the crystalline silicon band-to-band absorption region, with absorption efficiencies exceeding one in the VIS and excellent NIR response. A maximum resonant absorption efficiency close to 4 can be obtained at the violet region (425 nm), and values above 0.25 are possible in the bandgap edge at wavelengths up to 1400 nm. Silicon colloids are proposed as a promising cost-effective, silicon saving, sunlight harvesters with improved VIS and NIR response.

  10. Silicon Micro- and Nanofabrication for Medicine

    PubMed Central

    Fine, Daniel; Goodall, Randy; Bansal, Shyam S.; Chiappini, Ciro; Hosali, Sharath; van de Ven, Anne L.; Srinivasan, Srimeenkashi; Liu, Xuewu; Godin, Biana; Brousseau, Louis; Yazdi, Iman K.; Fernandez-Moure, Joseph; Tasciotti, Ennio; Wu, Hung-Jen; Hu, Ye; Klemm, Steve; Ferrari, Mauro

    2013-01-01

    This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation. PMID:23584841

  11. Silicon-film{trademark} on ceramic solar cells. Final report

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Lampo, S.M.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1993-02-01

    The Silicon-Film{trademark} design achieves high performance through the use of a thin silicon layer. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The enhancement in performance requires the incorporation of back-surface passivation and light trapping. The high-performance Silicon-Film{trademark} design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. The properties of the metallurgical barrier must be engineered to implement specific device requirements, such as high back-surface reflectivity. Recent advances in process development are described here.

  12. Silicon carbide, an emerging high temperature semiconductor

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Powell, J. Anthony

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  13. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  14. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  15. Friction And Wear Of Silicon Ceramics

    NASA Technical Reports Server (NTRS)

    Deadmore, Daniel L.; Sliney, Harold E.

    1990-01-01

    Report presents results of experimental study of friction and wear in unlubricated sliding of silicon-based ceramics on Inconel(R) 718 nickel-based alloy. Both monolithic and fiber-reinforced ceramics tested at temperatures from 25 to 800 degrees C. Evaluates ceramic materials for potential use as cylinder liners, piston caps, and other engine parts subjected to sliding or rubbing.

  16. Ceramic Fabric Coated With Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Smith, M.; Goldstein, H.; Zimmerman, N.

    1988-01-01

    Material used as high-temperature shell. Ceramic fabric coated with silicon carbide (SiC) serves as tough, heat-resistant covering for other refractory materials. Developed to protect reusable insulating tiles on advanced space transportation systems. New covering makes protective glaze unnecessary. Used on furnace bricks or on insulation for engines.

  17. The silicon monoxide radical and the atmosphere of alpha Orionis

    NASA Technical Reports Server (NTRS)

    Beer, R.; Lambert, D. L.; Sneden, C.

    1974-01-01

    We present new molecular constants, line positions, and transition probabilities for the first-overtone vibration-rotation bands in the X 1 Sigma+ electronic ground state of SiO, together with an estimate of the SiO abundance and silicon isotope ratios in the atmosphere of alpha Ori.

  18. Xenon Isotope Releases from Buried Transuranic Waste

    NASA Astrophysics Data System (ADS)

    Dresel, P. E.; Waichler, S. R.; Kennedy, B. M.; Hayes, J. C.; McIntyre, J. I.; Giles, J. R.; Sondrup, A. J.

    2004-12-01

    Xenon is an inert rare gas produced as a fission product in nuclear reactors and through spontaneous fission of some transuranic isotopes. Thus, xenon will be released from buried transuranic waste. Two complementary methods are used to measure xenon isotopes: radiometric analysis for short-lived radioxenon isotopes and mass spectrometry for detection of stable xenon isotopes. Initial measurements near disposal facilities at the U.S. Department of Energy's Hanford Site show radioxenon and stable xenon isotopic signatures that are indicative of transuranic waste. Radioxenon analysis has greater sensitivity due to the lower background concentrations and indicates spontaneous fission due to the short half life of the isotopes. Stable isotope ratios may be used to distinguish irradiated fuel sources from pure spontaneous fission sources and are not as dependent on rapid release from the waste form. The release rate is dependent on the type of waste and container integrity and is the greatest unknown in application of this technique. Numerical multi-phase transport modeling of burial grounds at the Idaho National Engineering and Environmental Laboratory indicates that, under generalized conditions, the radioxenon isotopes will diffuse away from the waste and be found in the soil cap and adjacent to the burial ground at levels many orders of magnitude above the detection limit.

  19. Catastrophic Impact of Silicon on Silicon: Unraveling the Genesis Impact Using Sample 61881

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Kim, H.; Jurewicz, A. J. G.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind and brought it back to Earth in order to provide precise knowledge of solar isotopic and elemental compositions. The ions in the solar wind were stopped in the collectors at depths on the order of 10 to a few hundred nanometers. This shallow implantation layer is critical for scientific analysis of the composition of the solar wind and must be preserved throughout sample handling, cleaning, processing, distribution, preparation and analysis. The current work is motivated by the need to understand the interaction of the Genesis payload with contamination during the crash in the Utah desert. Silicon contamination has been found to be notoriously difficult to remove from silicon samples despite multiple cleanings with multiple techniques. However, the question has been posed, "Does the silicon really need to be removed for large area analyses?." If the recalcitrant silicon contamination is all pure silicon from fractured collectors, only a very tiny fraction of that bulk material will contain solar wind, which could skew the analyses. This could be complicated if the silicon trapped other materials and/or gases as it impacted the surface.

  20. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  1. Stable isotope studies

    SciTech Connect

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  2. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  3. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  4. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  5. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  6. Electrodeposition of molten silicon

    DOEpatents

    De Mattei, Robert C.; Elwell, Dennis; Feigelson, Robert S.

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  7. Pauli spin blockade in a highly tunable silicon double quantum dot.

    PubMed

    Lai, N S; Lim, W H; Yang, C H; Zwanenburg, F A; Coish, W A; Qassemi, F; Morello, A; Dzurak, A S

    2011-01-01

    Double quantum dots are convenient solid-state platforms to encode quantum information. Two-electron spin states can be detected and manipulated using quantum selection rules based on the Pauli exclusion principle, leading to Pauli spin blockade of electron transport for triplet states. Coherent spin states would be optimally preserved in an environment free of nuclear spins, which is achievable in silicon by isotopic purification. Here we report on a deliberately engineered, gate-defined silicon metal-oxide-semiconductor double quantum dot system. The electron occupancy of each dot and the inter-dot tunnel coupling are independently tunable by electrostatic gates. At weak inter-dot coupling we clearly observe Pauli spin blockade and measure a large intra-dot singlet-triplet splitting > 1 meV. The leakage current in spin blockade has a peculiar magnetic field dependence, unrelated to electron-nuclear effects and consistent with the effect of spin-flip cotunneling processes. The results obtained here provide excellent prospects for realising singlet-triplet qubits. PMID:22355627

  8. Sampling Artifacts from Conductive Silicone Tubing

    SciTech Connect

    Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse; Jayne, John T.; Worsnop, Douglas R.; Miake-Lye, Richard C.; Onasch, Timothy B.; Liscinsky, David; Kirchstetter, Thomas W.; Destaillats, Hugo; Holder, Amara L.; Smith, Jared D.; Wilson, Kevin R.

    2009-05-15

    We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.

  9. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    SciTech Connect

    Petrie, Christian M.; McDuffee, Joel Lee; Katoh, Yutai; Terrani, Kurt A.

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  10. Isotope dilution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Heumann, Klaus G.

    1992-09-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g. of heavy metals in Antarctic ice and in aerosols in remote areas down to the sub-pg g-1 and sub-pg m-3 levels respectively, in the analysis of uranium and thorium at concentrations of a few pg g-1 in sputter targets for the production of micro- electronic devices or in the determination of sub-picogram amounts of230Th in corals for geochemical age determinations and of226Ra in rock samples. During the last few years negative thermal ionization IDMS has become a frequently used method. The determination of very small amounts of selenium and technetium as well as of other transition metals such as vanadium, chromium, molybdenum and tungsten are important examples in this field. Also the measurement of silicon in connection with a re-determination of Avogadro's number and osmium analyses for geological age determinations by the Re/Os method are of special interest. Inductively-coupled plasma mass spectrometry is increasingly being used for multi-element analyses by the isotope dilution technique. Determinations of heavy metals in samples of marine origin are representative examples for this type of multi-element analysis by IDMS. Gas chromatography-mass spectrometry systems have also been successfully applied after chelation of metals (for example Pt determination in clinical samples) or for the determination of volatile element species in the environment, e.g. dimethyl sulfide. However, IDMS--specially at low concentration levels in the environment--seems likely to be one of the most powerful analytical methods for speciation in the future. This has been shown, up to now, for species of

  11. A review of the various approaches to a silicon laser

    NASA Astrophysics Data System (ADS)

    Pavesi, Lorenzo

    2003-06-01

    Silicon is the leading material concerning high-density electronic functionality. Integration and economy of scale are the two keys ingredients for the silicon technological success. The present interconnection degree is sufficient to cause interconnect propagation delays, overheating and information latency between single devices. The overcome of this Interconnection bottleneck is together the main motivation and opportunity for the present-day silicon microphotonics, where attempts to combine photonic and electronic components on a single Si chip or wafer are strongly pursued. The main limitation of this technology when is implemented in silicon is the lack of any practical silicon light sources: either an efficient LEDs or a Si lasers. Despite of all, during these last 10 years many different strategies have been employed to overcome these materials limitations and silicon light emitting diodes (LED) are now only a factor of ten out of the severe market requirements. The main future challenge for silicon microphotonics is the demonstration of a silicon-based laser action to engineer a silicon laser. During the nineties many research efforts have been focused to this goal. A steady improvement in silicon LED performances has been achieved. However it was only at the end of 2000 and during 2001 that many breakthroughs have been demonstrated showing that this field is very active and still promising. The up to now principal approaches can be subdivided into the following categories: 1. Bulk silicon with extremely high non-radiative lifetime 2. Silicon nanocrystals 3. Doping of silicon with rare earths ions 4. Direct band-gap group IV alloys and quantum confined Si or Ge or group IV alloy structures 5. Quantum cascade Si/Ge structures During the presentation a critical review of all these approaches will be performed and the most suitable candidate will be underlined.

  12. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  13. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M.

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  14. Silicon Brains

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Beyond the digital neural networks of Chap. 16, the more radical mapping of brain-like structures and processes into VLSI substrates has been pioneered by Carver Mead more than 30 years ago [1]. The basic idea was to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Neuromorphic engineering has recently seen a revival with the availability of deep-submicron CMOS technology, which allows for the construction of very-large-scale mixed-signal systems combining local analog processing in neuronal cells with binary signalling via action potentials. Modern implementations are able to reach the complexity-scale of large functional units of the human brain, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. The chapter introduces basic properties of biological brains with up to 200 Billion neurons and their 1014 synapses, where action on a synapse takes ˜10 ms and involves an energy of ˜10 fJ. We outline 10x programs on neuromorphic electronic systems in Europe and the USA, which are intended to integrate 108 neurons and 1012 synapses, the level of a cat's brain, in a volume of 1 L and with a power dissipation <1 kW. For a balanced view on intelligence, we references Hawkins' view to first perceive the task and then design an intelligent technical response.

  15. Silicon Carbide Growth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Andrew Trunek has focused on supporting the Sic team through the growth of Sic crystals, making observations and conducting research that meets the collective needs and requirements of the team while fulfilling program commitments. Cancellation of the Ultra Efficient Engine Technology (UEET) program has had a significant negative impact on resources and research goals. This report highlights advancements and achievements made with this cooperative agreement over the past year. NASA Glenn Research Center (GRC) continues to make advances in silicon carbide (SiC) research during the past year. Step free surfaces were used as substrates for the deposition of GaN epilayers that yielded very low dislocation densities. Defect free 3C- SiC was successfully nucleated on step free mesas and test diodes were fabricated. Web growth techniques were used to increase the usable surface area of dislocation free SiC by approximately equal to 40%. The greatest advancement has been attained on stepped surfaces of SiC. A metrology standard was developed using high temperature etching techniques titled "Nanometer Step Height Standard". This development culminated in being recognized for a 2004 R&D100 award and the process to produce the steps received a NASA Space Act award.

  16. Reliable Breakdown Obtained in Silicon Carbide Rectifiers

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1997-01-01

    The High Temperature Integrated Electronics and Sensor (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high-power, and/or high-radiation conditions will enable significant improvements to a far-ranging variety of applications and systems. These range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensor and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

  17. NanoSIMS Isotopic Analysis of Small Presolar SiC Grains from the Murchisonand Indarch Meteorites

    NASA Astrophysics Data System (ADS)

    Amari, S.; Jennings, C.; Nguyen, A.; Stadermann, F. J.; Zinner, E.; Lewis, R. S.

    2002-03-01

    Carbon and N isotopic measurements were made with the NanoSIMS ion microprobe on small (0.25-0.6 µm) presolar SiC grains from the Murchison and Indarch meteorites. Indarch also contains silicon nitride grains with the isotopic signature of mainstream SiC.

  18. Research Opportunities in Crystalline Silicon Photovoltaics for the 21st Century

    SciTech Connect

    Atwater, Harry A.; Ciszek, Ted; Feldman, Leonard C.; Gee, James; Rohatgi, Ajeet; Sopori, Bhushan

    1999-07-28

    Crystalline silicon continues to be the dominant semiconductor material used for terrestrial photovoltaics. This paper discusses the scientific issues associated with silicon photovoltaics processing, and cell design that may yield cell and module performance improvements that are both evolutionary and revolutionary in nature. We first survey critical issues in ''thick'' crystalline silicon photovoltaics, including novel separations processes for impurity removal, impurity and defect fundamentals, interface passivation, the role of hydrogen. Second, we outline emerging opportunities for creation of a very different ''thin-layer'' silicon cell structure, including the scientific issues and engineering challenges associated with thin-layer silicon processing and cell design.

  19. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  20. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support research and development for an Experimental Process System Development Unit for producing semiconductor-grade silicon using the slane-to-silicon process are reported. The design activity was completed. About 95% of purchased equipment was received. The draft of the operations manual was about 50% complete and the design of the free-space system continued. The system using silicon power transfer, melting, and shotting on a psuedocontinuous basis was demonstrated.

  1. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  2. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  3. Zirconium isotope separation

    SciTech Connect

    Siddall, M.B.

    1984-12-11

    A method of separating zirconium isotopes by converting the zirconium to its iodide salt prior to separation by usual isotope methods is disclosed. After separation the desired isotopes are converted from the salt to the metal by the van Arkel-de Boer iodide process.

  4. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  5. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  6. [Silicone breast implants].

    PubMed

    Nielsen, M; Brandt, B; Breiting, V B; Christensen, L H; Thomsen, J L

    1989-12-18

    A brief review of the use of silicone breast implants, their structure, methods of implantation and complications is presented. Acute complications are rare, being mainly infection and hematoma. Long-term complications, on the contrary, are common, consisting mainly of capsular contracture around the prosthesis with subsequent pain and deformation of the breast. More rarely silicone granulomas form, and prosthesis rupture or herniation occurs. The importance of silicone leakage for these complications is discussed separately as well as the treatment of and prevention of capsular contracture and demonstration of silicone in tissue. A critical attitude towards the use of silicone breast implants, when these are used for purely cosmetic purposes, is recommended at present. New improved types of silicone breast implants are currently being tested clinically. PMID:2692262

  7. Growth of silicon bump induced by swift heavy ion at the silicon oxide-silicon interface

    SciTech Connect

    Carlotti, J.-F.; Touboul, A.D.; Ramonda, M.; Caussanel, M.; Guasch, C.; Bonnet, J.; Gasiot, J.

    2006-01-23

    Thin silicon oxide layers on silicon substrates are investigated by scanning probe microscopy before and after irradiation with 210 MeV Au+ ions. After irradiation and complete chemical etching of the silicon oxide layer, silicon bumps grown on the silicon surface are observed. It is shown that each impinging ion induces one silicon bump at the interface. This observation is consistent with the thermal spike theory. Ion energy loss is transferred to the oxide and induces local melting. Silicon-bump formation is favored when the oxide and oxide-silicon interface are silicon rich.

  8. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications

    NASA Astrophysics Data System (ADS)

    Lehmann, Volker

    2002-04-01

    Silicon has been and will most probably continue to be the dominant material in semiconductor technology. Although the defect-free silicon single crystal is one of the best understood systems in materails science, its electrochemistry to many people is still a kind of "alchemy". This view is partly due to the interdisciplinary aspects of the topic: Physics meets chemistry at the silicon-electrolyte interface. This book gives a comprehensive overview of this important aspect of silicon technology as well as examples of applications ranging from photonic crystals to biochips. It will serve materials scientists as well as engineers involved in silicon technology as a quick reference with its more than 150 technical tables and diagrams and ca. 1000 references cited for easy access of the original literature.

  9. Process Feasibility Study in Support of Silicon Material Task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    Analysis of process system properties was continued for silicon source materials under consideration for producing silicon. The following property data are reported for dichlorosilane which is involved in processing operations for silicon: critical constants, vapor pressure, heat of vaporization, heat capacity, density, surface tension, thermal conductivity, heat of formation and Gibb's free energy of formation. The properties are reported as a function of temperature to permit rapid engineering usage. The preliminary economic analysis of the process is described. Cost analysis results for the process (case A-two deposition reactors and six electrolysis cells) are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon. Fixed capital investment estimate for the plant is $12.47 million (1975 dollars) ($17.47 million, 1980 dollars). Product cost without profit is 8.63 $/kg of silicon (1975 dollars)(12.1 $/kg, 1980 dollars).

  10. Mist Ejection of Silicon Microparticle Using a Silicon Nozzle

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshinori; Murakami, Takaaki; Yoshida, Yukihisa; Itoh, Toshihiro

    The novel mist-jet technology using a silicon nozzle and a silicon reflector has been developed. Ejection of water mist containing the silicon microparticles is demonstrated. Impurities of the silicon microparticles ejected on the substrate are analyzed. It has been verified for the first time that the contamination is reduced by the silicon head. The silicon pattern drawn by the head is successfully formed.

  11. Micromachined Silicon Waveguides

    NASA Technical Reports Server (NTRS)

    Mcgrath, William R.; Tai, Yu-Chong; Yap, Markus; Walker, Christopher K.

    1994-01-01

    Components that handle millimeter and submillimeter wavelengths fabricated conveniently. Micromachining rectangular waveguide involves standard steps of masking, etching, and deposition of metal on silicon. Parts made assembled into half-waveguide and finally into full waveguide. Silicon-micromachining approach enables simultaneous fabrication of several versions of waveguide, with variations in critical parameter, on single wafer of silicon. Performances of versions compared and optimized more quickly and at lower cost than is possible if different versions are fabricated sequentially, by conventional machining techniques.

  12. Highly porous silicon membranes fabricated from silicon nitride/silicon stacks.

    PubMed

    Qi, Chengzhu; Striemer, Christopher C; Gaborski, Thomas R; McGrath, James L; Fauchet, Philippe M

    2014-07-23

    Nanopore formation in silicon films has previously been demonstrated using rapid thermal crystallization of ultrathin (15 nm) amorphous Si films sandwiched between nm-thick SiO2 layers. In this work, the silicon dioxide barrier layers are replaced with silicon nitride, resulting in nanoporous silicon films with unprecedented pore density and novel morphology. Four different thin film stack systems including silicon nitride/silicon/silicon nitride (NSN), silicon dioxide/silicon/silicon nitride (OSN), silicon nitride/silicon/silicon dioxide (NSO), and silicon dioxide/silicon/silicon dioxide (OSO) are tested under different annealing temperatures. Generally the pore size, pore density, and porosity positively correlate with the annealing temperature for all four systems. The NSN system yields substantially higher porosity and pore density than the OSO system, with the OSN and NSO stack characteristics fallings between these extremes. The higher porosity of the Si membrane in the NSN stack is primarily due to the pore formation enhancement in the Si film. It is hypothesized that this could result from the interfacial energy difference between the silicon/silicon nitride and silicon/silicon dioxide, which influences the Si crystallization process. PMID:24623562

  13. Further Investigations of Hypersonic Engine Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2004-01-01

    Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA's Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two silicon nitride compression spring designs were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. (50.8 m) of scrubbing at 2000 F against a silicon carbide rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were up to 32 times lower than those recorded for the best braided rope seal flow blockers. Silicon nitride compression springs showed promise conceptually as potential seal preload devices to help maintain seal resiliency.

  14. HELIX: The High Energy Light Isotope Experiment

    NASA Astrophysics Data System (ADS)

    Tarle, Gregory

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  15. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia E.; Van Buuren, Anthony; Terminello, Louis; Hart, Bradley R.

    2006-12-26

    Disclosed herein is a porous silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and calculate the concentration of bound target.

  16. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia; Van Buuren, Anthony; Terminello, Louis

    2004-08-31

    Disclosed herein is a photonic silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls selectively bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and determine the concentration of bound target.

  17. Compounding with Silicones.

    PubMed

    Allen, Loyd V

    2015-01-01

    Since the 1940s, methylchlorosilanes have been used to treat glassware to prevent blood from clotting. The use of silicones in pharmaceutical and medical applications has grown to where today they are used in many life-saving devices (pacemakers, hydrocephalic shunts) and pharmaceutical applications from tubing, to excipients in topical formulations, to adhesives to affix transdermal drug delivery systems, and are also being used in products as active pharmaceutical ingredients, such as antiflatulents. About 60% of today's skin-care products now contain some type of silicone where they are considered safe and are known to provide a pleasant "silky-touch," non-greasy, and non-staining feel. Silicones exhibit many useful characteristics, and the safety of these agents supports their numerous applications; their biocompatibility is partially due to their low-chemical reactivity displayed by silicones, low-surface energy, and their hydrophobicity. Silicones are used both as active ingredients and as excipients. In addition is their use for "siliconization," or surface treatment, of many parenteral packaging components. Dimethicone and silicone oil are used as lubricants on stoppers to aid machineability, in syringes to aid piston movement, or on syringe needles to reduce pain upon injection. Silicones are also useful in pharmaceutical compounding as is discussed in this artiele included with this article are in developing formulations with silicones. PMID:26714363

  18. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  19. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  20. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  1. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  2. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  3. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2001-12-21

    Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

  4. Method and apparatus for stable silicon dioxide layers on silicon grown in silicon nitride ambient

    NASA Technical Reports Server (NTRS)

    Cohen, R. A.; Wheeler, R. K. (Inventor)

    1974-01-01

    A method and apparatus for thermally growing stable silicon dioxide layers on silicon is disclosed. A previously etched and baked silicon nitride tube placed in a furnace is used to grow the silicon dioxide. First, pure oxygen is allowed to flow through the tube to initially coat the inside surface of the tube with a thin layer of silicon dioxide. After the tube is coated with the thin layer of silicon dioxide, the silicon is oxidized thermally in a normal fashion. If the tube becomes contaminated, the silicon dioxide is etched off thereby exposing clean silicon nitride and then the inside of the tube is recoated with silicon dioxide. As is disclosed, the silicon nitride tube can also be used as the ambient for the pyrolytic decomposition of silane and ammonia to form thin layers of clean silicon nitride.

  5. Silicon research and technology

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.

    1982-01-01

    The development of solar cells suitable for space applications are discussed, along with the advantages and disadvantages of silicon and gallium arsenide solar cells. The goal of a silicon solar cell with 18% efficiency has not been reached and does not appear promising in the near future.

  6. Producing silicon continuously

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Rosler, R. S.; Thompson, S.

    1981-01-01

    Fluid-bed vaporization followed by chemical vapor deposition generates large, semiconductor-grade silicon particles. Method is economical, high-volume alternative to conventional batch-processing methods. Harvested chunks, extracted in cyclone separator, are about 0.5 to 1.3 centimeters in diameter. Process is not limited to polymer feedstock; it utilizes any halosilane intermediate used in silicon production.

  7. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  8. Cervical silicone lymphadenopathy.

    PubMed

    Gilbert, Latoni Kaysha; Thiruchelvam, Janavikulam

    2016-07-01

    A patient presented to the department of oral and maxillofacial surgery with a rare case of cervical silicone lymphadenopathy. She had a painless ovoid mass in the left side of her neck and had had cosmetic breast augmentation 10 years before. Radiological imaging and core biopsy examination were consistent with silicone lymphadenopathy. PMID:26830068

  9. Silicon nitride sintered body

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    The sintering of silicon carbide and it production are described. The method of production is by calcination in which molding is followed by sintering without compression. The invention improves the composition of the silicon carbide ceramic. Six examples of the invention are illustrated and discussed.

  10. Silicon carbide ceramic production

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.

  11. EDITORIAL: Special issue on silicon photonics

    NASA Astrophysics Data System (ADS)

    Reed, Graham; Paniccia, Mario; Wada, Kazumi; Mashanovich, Goran

    2008-06-01

    The technology now known as silicon photonics can be traced back to the pioneering work of Soref in the mid-1980s (see, for example, Soref R A and Lorenzo J P 1985 Electron. Lett. 21 953). However, the nature of the research conducted today, whilst it builds upon that early work, is unrecognizable in terms of technology metrics such as device efficiency, device data rate and device dimensions, and even in targeted applications areas. Today silicon photonics is still evolving, and is enjoying a period of unprecedented attention in terms of research focus. This has resulted in orders-of-magnitude improvement in device performance over the last few years to levels many thought were impossible. However, despite the existence of the research field for more than two decades, silicon is still regarded as a 'new' optical material, one that is being manipulated and modified to satisfy the requirements of a range of applications. This is somewhat ironic since silicon is one of the best known and most thoroughly studied materials, thanks to the electronics industry that has made silicon its material of choice. The principal reasons for the lack of study of this 'late developer' are that (i) silicon is an indirect bandgap material and (ii) it does not exhibit a linear electro-optic (Pockels) effect. The former condition means that it is difficult to make a laser in silicon based on the intrinsic performance of the material, and consequently, in recent years, researchers have attempted to modify the material to artificially engineer the conditions for lasing to be viable (see, for example, the review text, Jalali B et al 2008 Silicon Lasers in Silicon Photonics: The State of the Art ed G T Reed (New York: Wiley)). The latter condition means that optical modulators are intrinsically less efficient in silicon than in some other materials, particularly when targeting the popular telecommunications wavelengths around 1.55 μm. Therefore researchers have sought alternative

  12. Reversible Cycling of Silicon and Silicon Alloys

    NASA Astrophysics Data System (ADS)

    Obrovac, Mark

    2012-02-01

    Lithium ion batteries typically use a graphite negative electrode. Silicon can store more lithium than any other element and has long been considered as an attractive replacement for graphite. The theoretical lithium storage capacity of silicon is nearly ten times higher than graphite volumetrically and three times higher gravimetrically. The equilibrium Si-Li binary system is well known. Completely new phase behaviors are observed at room temperature. This includes the formation of a new phase, Li15Si4, which is the highest lithium containing phase at room temperature [1]. The formation of Li15Si4 is accompanied by a 280 percent volume expansion of silicon. During de-alloying this phase contracts, forming amorphous silicon. The volume expansion of alloys can cause intra-particle fracture and inter-particle disconnection; leading to loss of cycle life. To overcome issues with volume expansion requires a detailed knowledge of Li-Si phase behavior, careful design of the composition and nanostructure of the alloy and the microstructure of the negative electrode [2]. In this presentation the phase behavior of the Li-Si system will be described. Using this knowledge alone, strategies can be developed so that silicon can be reversibly cycled in a battery hundreds of times. Further increases in energy density and efficiency can be gained by alloying silicon with other elements, while controlling microstructure [2]. Coupled with negative electrode design strategies, practical negative electrodes for lithium ion cells can be developed based on bulk materials, with significant energy density improvement over conventional electrodes. [4pt] [1] M.N. Obrovac and L.J. Krause, J. Electrochem. Soc., 154 (2007) A103. [0pt] [2] M.N. Obrovac, Leif Christensen, Dinh Ba Le, and J.R. Dahn, J. Electrochem. Soc., 154 (2007) A849

  13. Spin Transport in Silicon

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian

    2008-03-01

    Silicon has been broadly viewed as the ideal material for spintronics due to its low atomic weight, lattice inversion symmetry, and near lack of nuclear spin, resulting in exceptionally long spin lifetime. Despite this appeal, however, the experimental difficulties of achieving coherent spin transport in silicon were overcome for the first time only recently, by using unique spin-polarized hot-electron injection and detection techniques. [1] Our subsequent observations of very long spin lifetimes and transit lengths [2] have impact on prospects for Silicon spintronics as the basis for a new paradigm of information processing. [1] Ian Appelbaum, Biqin Huang, and Douwe J. Monsma, ``Electronic measurement and control of spin transport in silicon,'' Nature 447, 295 (2007). [2] Biqin Huang, Douwe J. Monsma, and Ian Appelbaum, ``Coherent spin transport through a 350-micron-thick silicon wafer,'' Phys. Rev. Lett. 99, 177209 (2007).

  14. Intraventricular Silicone Oil

    PubMed Central

    Mathis, Stéphane; Boissonnot, Michèle; Tasu, Jean-Pierre; Simonet, Charles; Ciron, Jonathan; Neau, Jean-Philippe

    2016-01-01

    Abstract Intracranial silicone oil is a rare complication of intraocular endotamponade with silicone oil. We describe a case of intraventricular silicone oil fortuitously observed 38 months after an intraocular tamponade for a complicated retinal detachment in an 82 year-old woman admitted in the Department of Neurology for a stroke. We confirm the migration of silicone oil along the optic nerve. We discuss this rare entity with a review of the few other cases reported in the medical literature. Intraventricular migration of silicone oil after intraocular endotamponade is usually asymptomatic but have to be known of the neurologists and the radiologists because of its differential diagnosis that are intraventricular hemorrhage and tumor. PMID:26735537

  15. Silicone-containing composition

    DOEpatents

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  16. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    NASA Technical Reports Server (NTRS)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  17. DECODING THE MESSAGE FROM METEORITIC STARDUST SILICON CARBIDE GRAINS

    SciTech Connect

    Lewis, Karen M.; Lugaro, Maria; Gibson, Brad K.; Pilkington, Kate E-mail: karen.michelle.lewis@gmail.com E-mail: kpilkington@uclan.ac.uk

    2013-05-01

    Micron-sized stardust grains that originated in ancient stars are recovered from meteorites and analyzed using high-resolution mass spectrometry. The most widely studied type of stardust is silicon carbide (SiC). Thousands of these grains have been analyzed with high precision for their Si isotopic composition. Here we show that the distribution of the Si isotopic composition of the vast majority of stardust SiC grains carries the imprints of a spread in the age-metallicity distribution of their parent stars and of a power-law increase of the relative formation efficiency of SiC dust with the metallicity. This result offers a solution for the long-standing problem of silicon in stardust SiC grains, confirms the necessity of coupling chemistry and dynamics in simulations of the chemical evolution of our Galaxy, and constrains the modeling of dust condensation in stellar winds as a function of the metallicity.

  18. Decoding the Message from Meteoritic Stardust Silicon Carbide Grains

    NASA Astrophysics Data System (ADS)

    Lewis, Karen M.; Lugaro, Maria; Gibson, Brad K.; Pilkington, Kate

    2013-05-01

    Micron-sized stardust grains that originated in ancient stars are recovered from meteorites and analyzed using high-resolution mass spectrometry. The most widely studied type of stardust is silicon carbide (SiC). Thousands of these grains have been analyzed with high precision for their Si isotopic composition. Here we show that the distribution of the Si isotopic composition of the vast majority of stardust SiC grains carries the imprints of a spread in the age-metallicity distribution of their parent stars and of a power-law increase of the relative formation efficiency of SiC dust with the metallicity. This result offers a solution for the long-standing problem of silicon in stardust SiC grains, confirms the necessity of coupling chemistry and dynamics in simulations of the chemical evolution of our Galaxy, and constrains the modeling of dust condensation in stellar winds as a function of the metallicity.

  19. Process Feasibility Study in Support of Silicon Material, Task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    During this reporting period, major activies were devoted to process system properties, chemical engineering and economic analyses. Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of varporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design.

  20. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-03-28

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.

  1. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    NASA Astrophysics Data System (ADS)

    Akhter, Perveen; Huang, Mengbing; Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-03-01

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ˜50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3-10% lower or higher than that of silicon for wavelengths below or beyond ˜815-900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10-100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.

  2. Method for producing silicon nitride/silicon carbide composite

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  3. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect

    Kovačević, Goran Pivac, Branko

    2014-01-28

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  4. A fault-tolerant addressable spin qubit in a natural silicon quantum dot

    PubMed Central

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-01-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot–based qubits. This result can inspire contributions to quantum computing from industrial communities. PMID:27536725

  5. A fault-tolerant addressable spin qubit in a natural silicon quantum dot.

    PubMed

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-08-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot-based qubits. This result can inspire contributions to quantum computing from industrial communities. PMID:27536725

  6. Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth's core formation

    NASA Astrophysics Data System (ADS)

    Shahar, Anat; Ziegler, Karen; Young, Edward D.; Ricolleau, Angele; Schauble, Edwin A.; Fei, Yingwei

    2009-10-01

    Stable isotope fractionation amongst phases comprising terrestrial planets and asteroids can be used to elucidate planet-forming processes. To date, the composition of the Earth's core remains largely unknown though cosmochemical and geophysical evidence indicates that elements lighter than iron and nickel must reside there. Silicon is often cited as a light element that could explain the seismic properties of the core. The amount of silicon in the core, if any, can be deduced from the difference in 30Si/ 28Si between meteorites and terrestrial rocks if the Si isotope fractionation between silicate and Fe-rich metal is known. Recent studies (e.g., [Georg R.B., Halliday A.N., Schauble E.A., Reynolds B.C., 2007. Silicon in the Earth's core. Nature 447 (31), 1102-1106.]; [Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., Reynolds, B. C., 2009. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. Earth Planet. Sci. Lett. 287, 77-85.]) showing (sometimes subtle) differences between 30Si/ 28Si in meteorites and terrestrial rocks suggest that Si missing from terrestrial rocks might be in the core. However, any conclusion based on Earth-meteorite comparisons depends on the veracity of the 30Si/ 28Si fractionation factor between silicates and metals at appropriate conditions. Here we present the first direct experimental evidence that silicon isotopes are not distributed uniformly between iron metal and rock when equilibrated at high temperatures. High-precision measurements of the silicon isotope ratios in iron-silicon alloy and silicate equilibrated at 1 GPa and 1800 °C show that Si in silicate has higher 30Si/ 28Si than Si in metal, by at least 2.0‰. These findings provide an experimental foundation for using isotope ratios of silicon as indicators of terrestrial planet formation processes. They imply that if Si isotope equilibrium existed during segregation of Earth

  7. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  8. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  9. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  10. The DOE Isotopes Program

    NASA Astrophysics Data System (ADS)

    Gillo, Jehannes

    2015-10-01

    The DOE Isotope Program is a small federal program with a great deal of impact and is managed by the DOE Office of Nuclear Physics. The Isotope Program has been managed by the Office of Nuclear Physics since 2009, and since that time, has been re-defined in terms of mission, scope and operations. The program produces critical isotopes that are in short supply or simply unavailable from elsewhere to facilitate research and applications. Research is also supported to develop or improve production techniques that will increase availability of isotopes in high demand, such as alpha emitters for cancer therapy.

  11. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  12. Transformational silicon electronics.

    PubMed

    Rojas, Jhonathan Prieto; Torres Sevilla, Galo Andres; Ghoneim, Mohamed Tarek; Inayat, Salman Bin; Ahmed, Sally M; Hussain, Aftab Mustansir; Hussain, Muhammad Mustafa

    2014-02-25

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. PMID:24476361

  13. Process for making silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  14. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  15. Silicon applications in photonics

    NASA Astrophysics Data System (ADS)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  16. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O’Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  17. Isotopic abundances of silicon in four red giants

    NASA Astrophysics Data System (ADS)

    Lambert, David L.; McWilliam, Andrew; Smith, Verne V.

    1987-05-01

    High-resolution spectra of Beta Peg, Omicron1 Ori, 10 Dra, and HR 1105 are analyzed in order to estimate Si-28/Si-29 and Si-28/Si-30 abundance ratios. The elimination of the Fourier Transform Spectrometer ripple, telluric N2O absorption, and the detector noise from the observations is discussed. The various methods used to derive the Si-28 and Si-29 abundance ratios are described. The equivalent and half widths of a number of strong and weak Si-28O lines, and the microturbulent and macroturbulent velocities of the Si-28O line are measured. The nucleosynthesis of Si-29 and Si-30 is examined. It is observed that the Si-28/Si-29 ratio is within 20 to 25 percent of the terrestrial ratio of 20 in Beta Peg and HR 1105, but that Si-29 is underabundant in 10 Dra and Omicron1 Ori; and Si-30 is underabundant in all four stars with respect to the terrestrial ratio of 30.

  18. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  19. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  20. Advanced silicon on insulator technology

    NASA Technical Reports Server (NTRS)

    Godbey, D.; Hughes, H.; Kub, F.

    1991-01-01

    Undoped, thin-layer silicon-on-insulator was fabricated using wafer bonding and selective etching techniques employing a molecular beam epitaxy (MBE) grown Si0.7Ge0.3 layer as an etch stop. Defect free, undoped 200-350 nm silicon layers over silicon dioxide are routinely fabricated using this procedure. A new selective silicon-germanium etch was developed that significantly improves the ease of fabrication of the bond and etch back silicon insulator (BESOI) material.

  1. Discovery of the krypton isotopes

    SciTech Connect

    Heim, M.; Fritsch, A.; Schuh, A.; Shore, A.; Thoennessen, M.

    2010-07-15

    Thirty-two krypton isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  3. Detecting isotopic ratio outliers

    SciTech Connect

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs.

  4. Development of a molecular beam technique to study early solar system silicon reactions

    NASA Technical Reports Server (NTRS)

    Dong, Q. W.; Thiemens, M. H.

    1993-01-01

    Silicon monoxide is one of the major gas phase silicon bearing components observed in astronomical environments. Silicon oxide serves as the major rock forming material for terrestrial and meteoritic bodies. It is known that several gas phase reactions produce mass independent isotopic fractionations which possess the same delta(O-17)/delta(O-18) ratio observed in Allende inclusions. The general symmetry dependence of the chemically produced mass independent isotopic fractionation process suggests that there are several plausible reactions which could occur in the early solar system which may lead to production of the observed meteoritic oxygen isotopic anomalies. An important component in exploring the role of such processes is the need to experimentally determine the isotopic fractionations for specific reactions of relevance to the early solar system. It has already been demonstrated that atomic oxygen reaction with CO, a major nebular oxygen bearing species, produces a large (approximately 90 percent), mass independent isotopic fractionation. The next hurdle regarding assessing the involvement of symmetry dependent isotopic fractionation processes in the pre-solar nebula is to determine isotopic fractionation factors associated with gas phase reactions of metallic oxides. In particular, a reaction such as O + SiO yields SiO2 is a plausible nebular reaction which could produce a delta(O-17) is approximately delta(O-18) fractionation based upon molecular symmetry considerations. While the isotopic fractionations during silicate evaporation and condensation have been determined, there are no isotopic studies of controlled, gas phase nucleation processes. In order to carefully control the reaction kinetics, a molecular beam apparatus has been constructed. This system produces a supersonic, collimated beam of SiO molecules which is reacted with a second beam of oxygen atoms. An important feature of molecular beams is that they operate at sufficiently low pressures

  5. High gas velocity burner tests on silicon carbide and silicon nitride at 1200 C

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Probst, H. B.

    1973-01-01

    Specimens of silicon carbide and silicon nitride were exposed to a Mach one gas velocity burner simulating a turbine engine environment. Cyclic tests up to 100 hour duration were conducted at specimen temperatures of 1200 C. A specimen geometry was used that develops thermal stresses during thermal cycling in a manner similar to blades and vanes of a gas turbine engine. Materials were compared on a basis of weight change, dimensional reductions, metallography, fluorescent penetrant inspection, X-ray diffraction analyses, failure mode, and general appearance. One hot pressed SiC, one reaction sintered SiC, and three hot pressed Si3N4 specimens survived the program goal of 100 one-hour cycle exposures. Of the materials that failed to meet the program goal, thermal fatigue was identified as the exclusive failure mode.

  6. Silicone azide fireproof material

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Finely powdered titanium oxide was added to silicone azide as the sintering agent to produce a nonflammable material. Mixing proportions, physical properties, and chemical composition of the fireproofing material are included.

  7. Silicon microfabricated beam expander

    NASA Astrophysics Data System (ADS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  8. Silicon microfabricated beam expander

    SciTech Connect

    Othman, A. Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  9. Total synthesis of isotopically enriched Si-29 silica NPs as potential spikes for isotope dilution quantification of natural silica NPs.

    PubMed

    Pálmai, Marcell; Szalay, Roland; Bartczak, Dorota; Varga, Zoltán; Nagy, Lívia Naszályi; Gollwitzer, Christian; Krumrey, Michael; Goenaga-Infante, Heidi

    2015-05-01

    A new method was developed for the preparation of highly monodisperse isotopically enriched Si-29 silica nanoparticles ((29)Si-silica NPs) with the purpose of using them as spikes for isotope dilution mass spectrometry (IDMS) quantification of silica NPs with natural isotopic distribution. Si-29 tetraethyl orthosilicate ((29)Si-TEOS), the silica precursor was prepared in two steps starting from elementary silicon-29 pellets. In the first step Si-29 silicon tetrachloride ((29)SiCl4) was prepared by heating elementary silicon-29 in chlorine gas stream. By using a multistep cooling system and the dilution of the volatile and moisture-sensitive (29)SiCl4 in carbon tetrachloride as inert medium we managed to reduce product loss caused by evaporation. (29)Si-TEOS was obtained by treating (29)SiCl4 with absolute ethanol. Structural characterisation of (29)Si-TEOS was performed by using (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. For the NP preparation, a basic amino acid catalysis route was used and the resulting NPs were analysed using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. Finally, the feasibility of using enriched NPs for on-line field-flow fractionation coupled with multi-angle light scattering and inductively coupled plasma mass spectrometry (FFF/MALS/ICP-MS) has been demonstrated. PMID:25617615

  10. Thin-film reliability and engineering overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  11. Silicon sheet surface studies

    NASA Astrophysics Data System (ADS)

    Danyluk, S.

    1985-06-01

    Results of the program are presented on developing an understanding of the basic mechanisms of abrasion and wear of silicon and on the nondestructive measurement of residual stresses in sheet silicon. Experiments were conducted at various temperatures and in the presence of various fluids. In abrasive wear, it was shown that dislocations, microtwins, and cracks are generated beneath the contact surface. Residual stresses in ribbon by the edge defined film growth process were measured by use of a shadow moire interferometry technique.

  12. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  13. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  14. Discovery of Isotopes

    NASA Astrophysics Data System (ADS)

    May, Erin; Thoennessen, Michael

    2011-10-01

    To date, no comprehensive study has been undertaken regarding the initial detection and identification of isotopes. At NSCL, a project has been initiated to catalog and report the initial observation of every isotope. The conditions characterizing the successful discovery of an isotope include a clear and unambiguous mass and element identification through decay curves, mass spectroscopy, gamma-ray spectra, and/or relationships to other isotopes, as well as the publication of such findings in a refereed journal. I will present the documentation for eight elements: cesium, lanthanum, praseodymium, promethium, samarium, europium, gadolinium, and terbium. The year and author of each initial publication along with the location and methods of production and identification will be shown. A summary and overview of all ~3000 isotopes documented so far as a function of discovery year, method and place will also be presented.

  15. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  16. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  17. Second-harmonic generation in substoichiometric silicon nitride layers

    NASA Astrophysics Data System (ADS)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  18. Equilibrium and kinetic Si isotope fractionation factors and their implications on Si isotope distributions in the Earth's surface environments

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhang, S.; Liu, Y.

    2015-12-01

    Several important equilibrium Si isotope fractionation factors among minerals, organic molecules and the H4SiO4 solution are complemented to facilitate explanation of distributions of Si isotope in the Earth's surface environments. The results reveal that heavy Si isotopes will be significantly enriched in the secondary silicate minerals in comparison to aqueous H4SiO4. On the contrary, quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution. The extent of 28Si-enrichment in hyper-coordinated organosilicon complexes is found the largest. In addition, the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer is calculated and the result supports previous statement that highly 28Si-enrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations. With equilibrium Si isotope fractionation factors provided here, Si isotope distributions in many surface systems of the Earth can be explained. For example, the change of bulk soil δ30Si can be predicted as a concave pattern with respect to weathering degree, with the minimum value where allophane completely dissolves and the total amount of sesqui-oxides and poorly crystalline minerals reaches its maximum. When well-crystallized clays start to precipitate from pore solutions under equilibrium conditions, the bulk soil δ30Si will increase again and reach a constant value. Similarly, the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain δ30Si variations in the ground water profile. Equilibrium Si isotope fractionations among quadra-coordinated organosilicon complexes and the H4SiO4 solution may also shed the light on the Si isotope distributions in Si-accumulating plants.

  19. Oxygen defect processes in silicon and silicon germanium

    NASA Astrophysics Data System (ADS)

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  20. Material properties of silicon and silicon carbide foams

    NASA Astrophysics Data System (ADS)

    Jacoby, Marc T.; Goodman, William A.

    2005-08-01

    Silicon and silicon carbide foams provide the lightweighting element for Schafer Corporation's silicon and silicon carbide lightweight mirror systems (SLMSTM and SiC-SLMSTM). SLMSTM and SiC-SLMSTM provide the enabling technology for manufacturing lightweight, athermal optical sub-assemblies and instruments. Silicon and silicon carbide foam samples were manufactured and tested under a Schafer-funded Internal Research and Development program in various configurations to obtain mechanical and thermal property data. The results of the mechanical tests that are reported in this paper include Young's modulus, compression strength, tensile strength, Poisson's ratio and vibrational damping. The results of the thermal tests include thermal conductivity and coefficient of thermal expansion.

  1. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  2. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  3. Uranium isotopes fingerprint biotic reduction

    SciTech Connect

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  4. Uranium isotopes fingerprint biotic reduction

    DOE PAGESBeta

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  5. Uranium isotopes fingerprint biotic reduction.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-05-01

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  6. Uranium isotopes fingerprint biotic reduction

    PubMed Central

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  7. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  8. The Satellite Telescope Nina for Nuclear and Isotopic Investigations in Space

    NASA Astrophysics Data System (ADS)

    Circella, M.; Bidoli, V.; Casolino, M.; de Pascale, M. P.; Morselli, A.; Furano, G.; Picozza, P.; Scoscini, A.; Sparvoli, R.; Barbiellini, G.; Bonvicini, W.; Cirami, R.; Schiavon, P.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; de Marzo, C.; Bartalucci, S.; Giuntoli, S.; Ricci, M.; Papini, P.; Piccardi, S.; Spillantini, P.; Bakaldin, A.; Batishev, A.; Galper, A. M.; Koldashov, S.; Mikhailov, V.; Murashov, A.; Voronov, S.; Boezio, M.

    2000-09-01

    NINA is a satellite silicon detector designed to perform measurements of the nuclear and isotopic composition of the galactic and anomalous components of cosmic rays, as well as of the energetic particles associated with solar flares. It has been orbiting the Earth onboard the Russian satellite Resource 01 n. 4 since July 1998. It can perform nuclear discrimination from hydrogen to iron as well as isotopic analyses at least up to the beryllium isotopes in a large energy range. NINA is the first step of the wide scientific program WiZard-RIM, which includes the design and deployment of the PAMELA magnet spectrometer.

  9. Coated silicon comprising material for protection against environmental corrosion

    NASA Technical Reports Server (NTRS)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  10. Silicon and silicone: theoretical and clinical implications of breast implants.

    PubMed

    Yoshida, S H; Chang, C C; Teuber, S S; Gershwin, M E

    1993-02-01

    In the past 10 years, there have been multiple published reports associating silicone breast implants with scleroderma, morphea, SLE, rheumatoid arthritis, CREST syndrome and "human adjuvant disease." The alleged offending material, silicone, is a synthetic polymer containing a silicon-oxygen backbone. Beginning with the heating of SiO2 in the presence of carbon, elemental silicon is produced. Methylchloride is added and the resulting product is hydrolyzed to form low molecular weight prepolymers which are linked to form linear silicone polymers and cross-linked to yield silicone rubbers or elastomers. The polymeric and hydrophobic characteristics of silicone and the presence of electrostatic charges and organic sidegroups make silicone a potentially ideal immunogen, leading to cross-reactivity with autoantigens. Silicon is an essential constituent of proteoglycans which theoretically could result in immunological cross-reactions between silicone and connective tissues. Although the literature contains numerous examples of silicone-associated autoimmune disease, there is no consistent pattern of immunological abnormalities observed. There are, however, some intriguing and interesting observations. Further large-scale studies are needed to determine if a link between silicone exposure and autoimmunity exists. Also, since the inducing events of autoimmune diseases are unknown, studies on silicone could provide a model for autoimmune diseases associated with toxicological factors. PMID:8441826

  11. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  12. Bioactive Interlinked Extracellular Matrix–Like Silicon Nano-Network Fabricated by Femtosecond Laser Synthesis

    PubMed Central

    Premnath, Priyatha; Venkatakrishnan, Krishnan

    2012-01-01

    Abstract Nanostructured silicon has proven to be a promising candidate in tissue engineering. However, recent research on fabrication of silicon scaffolds has been limited to expensive, complex, and time-consuming lithographic techniques that require the addition of caustic chemicals. Moreover, these techniques generate structures that do not truly mimic the extracellular matrix (ECM). Therefore, we introduce a novel, interlinked, silicon nano-network fabricated by MHz ultrafast laser synthesis. We demonstrate that ultrafast laser synthesis is simple, rapid, free of any chemical additions, and can be carried out under ambient conditions. Variation in laser parameters resulted in an alteration in the pore size and density of the silicon fibrous network. Microscopic analysis revealed a highly charged silicon network with elevated adhesion forces. In vitro bioactivity tests indicate the precipitation of bone-like apatite in just 3 days. Cell proliferation studies on the silicon nano-network present a 300% increase in comparison to its bulk counterpart. Scanning electron microscopy analysis shows healthy migration and attachment of cells on the silicon nano-network. This study points to a correlation between elevated cell proliferation and the ECM-like structure of the silicon nano-network. This ECM-like silicon nano-network suggests significant potential not only in tissue engineering and regeneration but also in other biomedical applications such as biosensor detection. PMID:23514982

  13. Hybrid III-V Silicon Lasers

    NASA Astrophysics Data System (ADS)

    Bowers, John

    2014-03-01

    Abstract: A number of important breakthroughs in the past decade have focused attention on Si as a photonic platform. We review here recent progress in this field, focusing on efforts to make lasers, amplifiers, modulators and photodetectors on or in silicon. We also describe optimum quantum well design and distributed feedback cavity design to reduce the threshold and increase the efficiency and power output. The impact active silicon photonic integrated circuits could have on interconnects, telecommunications and on silicon electronics is reviewed. Biography: John Bowers holds the Fred Kavli Chair in Nanotechnology, and is the Director of the Institute for Energy Efficiency and a Professor in the Departments of Electrical and Computer Engineering and Materials at UCSB. He is a cofounder of Aurrion, Aerius Photonics and Calient Networks. Dr. Bowers received his M.S. and Ph.D. degrees from Stanford University and worked for AT&T Bell Laboratories and Honeywell before joining UC Santa Barbara. Dr. Bowers is a member of the National Academy of Engineering and a fellow of the IEEE, OSA and the American Physical Society. He is a recipient of the OSA/IEEE Tyndall Award, the OSA Holonyak Prize, the IEEE LEOS William Streifer Award and the South Coast Business and Technology Entrepreneur of the Year Award. He and coworkers received the EE Times Annual Creativity in Electronics (ACE) Award for Most Promising Technology for the hybrid silicon laser in 2007. Bowers' research is primarily in optoelectronics and photonic integrated circuits. He has published ten book chapters, 600 journal papers, 900 conference papers and has received 54 patents. He has published 180 invited papers and conference papers, and given 16 plenary talks at conferences. As well as Chong Zhang.

  14. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  15. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  16. Very high temperature silicon on silicon pressure transducers

    NASA Technical Reports Server (NTRS)

    Kurtz, Anthony D.; Nunn, Timothy A.; Briggs, Stephen A.; Ned, Alexander

    1992-01-01

    A silicon on silicon pressure sensor has been developed for use at very high temperatures (1000 F). The design principles used to fabricate the pressure sensor are outlined and results are presented of its high temperature performance.

  17. Helium isotope study of geothermal features in Chile with field and laboratory data

    DOE Data Explorer

    Dobson, Patrick

    2013-02-11

    Helium isotope and stable isotope data from the El Tatio, Tinginguirica, Chillan, and Tolhuaca geothermal systems, Chile. Data from this submission are discussed in: Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

  18. Silicone breast implant materials.

    PubMed

    Daniels, A U

    2012-01-01

    This opinion article has been written on request because of the recent public controversy over silicone breast implants produced by a now-defunct company, Poly Implant Prosthese (PIP) in France. More than 300,000 PIP devices have been implanted. The purposes of my article are to (1.) provide a general overview of silicone breast implant materials, (2.) to describe the general safety of these materials as reported to date, and (3.) to summarise current publicly available information about these aspects of the PIP prostheses. The materials covered are the silicone rubber from which the implant shells are made and the silicone gel used to fill the shell. The materials safety issues are biocompatibility (especially of the gel) and biodurability of the shell. The literature reviewed indicates that biocompatibility is not an issue with other current generation implants. However, biodurability is. A rough estimate of implant shell rupture rate is ~10+% at 10 years. Information is still emerging about the PIP implants. Initial regulatory disclosures suggest the PIP implants may have both biocompatibility and biodurability problems. They also suggest that PIP implants may have been produced using silicone materials not certified as medical grade. Governmental health and regulatory agencies are just now in the process of deciding what actions should be taken to protect patients. PMID:22826101

  19. Isotope-abundance variations of selected elements (IUPAC technical report)

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D., Jr.; Xiao, Y.K.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.

  20. Gas turbine engine and composite parts

    SciTech Connect

    Prewo, K.M.; Brennan, J.J.

    1988-04-19

    A gas turbine engine core engine component blade, vane, disk, side plate, seal, combustor liner, flap, burner case structure, or turbine case structure, is described comprising a silicon carbide fiber reinforced glass composite consisting essentially of about 30% to about 70% by volume silicon carbide fibers in a glass matrix selected from the group consisting of borosilicate glass, high silica content glass, aluminosilicate glass and mixtures thereof, the composite having a fracture toughness exemplified by a critical stress intensity factor above about 15,000 psi (inch)/sup 1/2/, high temperature strength, high temperature oxidation stability and insulating properties.

  1. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  2. Perchlorate isotope forensics

    USGS Publications Warehouse

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  3. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  4. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  5. Oxygen isotope cosmothermometer.

    NASA Technical Reports Server (NTRS)

    Onuma, N.; Clayton, R. N.; Mayeda, T. K.

    1972-01-01

    Variations in oxygen isotopic abundances of meteoritic minerals, chondrules, whole meteorites, and planets are discussed in terms of a model involving isotopic exchange between primordial dust and a cooling solar nebular gas. From the temperature-dependence of the isotopic fractionation factors, temperatures have been assigned to the processes of initial condensation, chondrule formation, and planetary accretion. Separated phases from carbonaceous chondrites fall into three isotopic groups representing widely differing conditions of formation: (1) low-iron olivine and pyroxene, and calcium-aluminum silicates condensed at temperatures above 1000 K; (2) high-iron olivine and pyroxene melted to form chondrules after prior cooling and exchange to temperatures of 530-620 K; and (3) hydrous silicates condensed at temperatures below 400 K.

  6. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond.

    PubMed

    Rogers, Lachlan J; Jahnke, Kay D; Metsch, Mathias H; Sipahigil, Alp; Binder, Jan M; Teraji, Tokuyuki; Sumiya, Hitoshi; Isoya, Junichi; Lukin, Mikhail D; Hemmer, Philip; Jelezko, Fedor

    2014-12-31

    The silicon-vacancy (SiV-) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV- center with a spin relaxation time of T1=2.4±0.2  ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T2⋆=35±3  ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the 29Si isotope which allows access to nuclear spin. These results establish the SiV- center as a solid-state spin-photon interface. PMID:25615330

  7. Improved toughness of silicon carbide

    NASA Technical Reports Server (NTRS)

    Palm, J. A.

    1976-01-01

    Impact energy absorbing layers (EALs) comprised of partially densified silicon carbide were formed in situ on fully sinterable silicon carbide substrates. After final sintering, duplex silicon carbide structures resulted which were comprised of a fully sintered, high density silicon carbide substrate or core, overlayed with an EAL of partially sintered silicon carbide integrally bonded to its core member. Thermal cycling tests proved such structures to be moderately resistant to oxidation and highly resistant to thermal shock stresses. The strength of the developed structures in some cases exceeded but essentially it remained the same as the fully sintered silicon carbide without the EAL. Ballistic impact tests indicated that substantial improvements in the toughness of sintered silicon carbide were achieved by the use of the partially densified silicon carbide EALs.

  8. Liquidus of Silicon Binary Systems

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Kolbeinsen, Leiv; Tangstad, Merete

    2011-08-01

    Thermodynamic knowledge about liquid silicon is crucial for the production of solar-grade silicon feedstock from molten silicon. In the current study, liquidus for silicon binary alloys is formulated using a previously developed method in which the liquidus curve is calculated using two constants. The liquidus measurements for the silicon portion of the silicon alloys with Al, Ca, Mg, Fe, Ti, Zn, Cu, Ag, Au, Pt, Sn, Pb, Bi, Sb, Ga, In, Ni, Pd, Mn, and Rh are reviewed, and the consistent data were used to determine the liquidus constants. The liquidus curves for silicon binary systems are calculated and plotted. It is indicated that the calculated liquidus curves fit well with the experimental data. A correlation between the determined liquidus constants is also observed, which can be used to gain a better understanding of the thermodynamics of the silicon binary melts.

  9. Bond Sensitivity to Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Caldwell, G. A.; Hudson, W. D.; Hudson, W. D.; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Currently during fabrication of the Space Shuttle booster rocket motors, the use of silicone and silicone-containing products is prohibited in most applications. Many shop aids and other materials containing silicone have the potential, if they make contact with a bond surface, to transfer some of the silicone to the substrates being bonded. Such transfer could result in a reduction of the bond strength or even failure of the subsequent bonds. This concern is driving the need to understand the effect of silicones and the concentration needed to affect a given bond-line strength. Additionally, as silicone detection methods used for materials acceptance improve what may have gone unnoticed earlier is now being detected. Thus, realistic silicone limits for process materials (below which bond performance is satisfactory) are needed rather than having an absolute no silicone permitted policy.

  10. Bondability of RTV silicon rubber

    NASA Technical Reports Server (NTRS)

    Delollis, N. J.; Montoya, O.

    1972-01-01

    Glow discharge method for producing a bondable Room Temperature Vulcanizing (RTV) silicone is described. Mechanical and chemical properties of silicone specimens are described. Theory concerning the relationship between surface characteristics and bondability is examined with respect to the polymer specimen.

  11. Quantum Optomechanics with Silicon Nanostructures

    NASA Astrophysics Data System (ADS)

    Safavi-Naeini, Amir H.

    Mechanical resonators are the most basic and ubiquitous physical systems known. In on-chip form, they are used to process high frequency signals in every cell phone, television, and laptop. They have also been in the last few decades in different shapes and forms, a critical part of progress in quantum information sciences with kilogram scale mirrors for gravitational wave detection measuring motion at its quantum limits, and the motion of single ions being used to link qubits for quantum computation. Optomechanics is a field primarily concerned with coupling light to the motion of mechanical structures. This thesis contains descriptions of recent work with mechanical systems in the megahertz to gigahertz frequency range, formed by nanofabricating novel photonic/phononic structures on a silicon chip. These structures are designed to have both optical and mechanical resonances, and laser light is used to address and manipulate their motional degrees of freedom through radiation pressure forces. We laser cool these mechanical resonators to their ground states, and observe for the first time the quantum zero-point motion of a nanomechanical resonator. Conversely, we show that engineered mechanical resonances drastically modify the optical response of our structures, creating large effective optical nonlinearities not present in bulk silicon. We experimentally demonstrate aspects of these nonlinearities by proposing and observing ``electromagnetically induced transparency'' and light slowed down to 6 m/s, as well as wavelength conversion, and generation of nonclassical optical radiation. Finally, the application of optomechanics to longstanding problems in quantum and classical communications are proposed and investigated.

  12. Silicon Carbide Solar Cells Investigated

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  13. Solar-thermal engine testing

    NASA Astrophysics Data System (ADS)

    Tucker, Stephen; Salvail, Pat

    2002-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle, collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 °F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (Isp). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemically vapor deposited (CVD) rhenium. The engine ``module'' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine Isp. In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects

  14. Neuromorphic silicon neuron circuits.

    PubMed

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  15. Emissivity of microstructured silicon.

    PubMed

    Maloney, Patrick G; Smith, Peter; King, Vernon; Billman, Curtis; Winkler, Mark; Mazur, Eric

    2010-03-01

    Infrared transmittance and hemispherical-directional reflectance data from 2.5 to 25 microm on microstructured silicon surfaces have been measured, and spectral emissivity has been calculated for this wavelength range. Hemispherical-total emissivity is calculated for the samples and found to be 0.84 before a measurement-induced annealing and 0.65 after the measurement for the sulfur-doped sample. Secondary samples lack a measurement-induced anneal, and reasons for this discrepancy are presented. Emissivity numbers are plotted and compared with a silicon substrate, and Aeroglaze Z306 black paint. Use of microstructured silicon as a blackbody or microbolometer surface is modeled and presented, respectively. PMID:20197803

  16. The electrophotonic silicon biosensor.

    PubMed

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E; Scullion, Mark G; Krauss, Thomas F; Johnson, Steven D

    2016-01-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale. PMID:27624590

  17. Thick silicon growth techniques

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Mlavsky, A. I.; Jewett, D. N.

    1973-01-01

    Hall mobility measurements on a number of single crystal silicon ribbons grown from graphite dies have shown some ribbons to have mobilities consistent with their resistivities. The behavior of other ribbons appears to be explained by the introduction of impurities of the opposite sign. Growth of a small single crystal silicon ribbon has been achieved from a beryllia dia. Residual internal stresses of the order of 7 to 18,000 psi have been determined to exist in some silicon ribbon, particularly those grown at rates in excess of 1 in./min. Growth experiments have continued toward definition of a configuration and parameters to provide a reasonable yield of single crystal ribbons. High vacuum outgassing of graphite dies and evacuation and backfilling of growth chambers have provided significant improvements in surface quality of ribbons grown from graphite dies.

  18. Scriber for silicon wafers

    NASA Technical Reports Server (NTRS)

    Yamakawa, K. A.; Fortier, E. P. (Inventor)

    1981-01-01

    A device for dividing silicon wafers into rectangular chips is characterized by a base including a horizontally oriented bed with a planar support surface, a vacuum chuck adapted to capture a silicon wafer seated on the support for translation in mutually perpendicular directions. A stylus support mounted on the bed includes a shaft disposed above and extended across the bed and a truck mounted on the shaft and supported thereby for linear translation along a path extended across the bed a vertically oriented scribe has a diamond tip supported by the truck also adapted as to engage a silicon wafer captured by the chuck and positioned beneath it in order to form score lines in the surface of the wafer as linear translation is imparted to the truck. A chuck positioning means is mounted on the base and is connected to the chuck for positioning the chuck relative to the stylus.

  19. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1985-01-01

    The flow instabilities in floating zones of silicon were investigated and methods for investigation of these instabilities in microgravity were defined. Three principal tasks were involved: (1) characterization of the float zone in small diameter rods; (2) investigation of melt flow instabilities in circular melts in silicon disks; and (3) the development of a prototype of an apparatus that could be used in near term space experiments to investigate flow instabilities in a molten zone. It is shown that in a resistance heated zoner with 4 to 7 mm diameter silicon rods that the critical Marangoni number is about 1480 compared to a predicted value of 14 indicative that viable space experiments might be performed. The prototype float zone apparatus is built and specifications are prepared for a flight zoner should a decision be reached to proceed with a space flight experimental investigation.

  20. Silicon carbide thyristor

    NASA Technical Reports Server (NTRS)

    Edmond, John A. (Inventor); Palmour, John W. (Inventor)

    1996-01-01

    The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.

  1. Floating Silicon Method

    SciTech Connect

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  2. Neuromorphic Silicon Neuron Circuits

    PubMed Central

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  3. Palladium contamination in silicon

    NASA Astrophysics Data System (ADS)

    Polignano, M. L.; Mica, I.; Ceresoli, M.; Codegoni, D.; Somaini, F.; Bianchi, I.; Volonghi, D.

    2015-04-01

    In this work palladium is characterized as a silicon contaminant by recombination lifetime, DLTS, C-V and C-t measurements of palladium-implanted wafers. Palladium introduced by ion implantation is found to remain in the solid solution in silicon after rapid thermal treatments, and to be a very effective recombination center. For this reason recombination lifetime measurements are the most sensitive method to detect palladium in silicon. Two palladium-related levels were found by DLTS in p-type material. One of these levels corresponds to a level reported in the literature as the single donor level of substitutional palladium. For what concerns MOS capacitors, palladium is responsible for negative oxide charge and for degradation of the generation lifetime. In addition, palladium is confirmed to be a very fast diffuser, which segregates at the wafer surface even with low temperature treatments (250 °C). Microscopy inspections showed that palladium precipitates and surface defects were formed upon segregation.

  4. Study of the mechanism of diatom cell division by means of 29Si isotope tracing

    NASA Astrophysics Data System (ADS)

    Audinot, J.-N.; Guignard, C.; Migeon, H.-N.; Hoffmann, L.

    2006-07-01

    Diatoms are delicate unicellular organisms enclosed in a silica frustule, that is made up of two valves. Multiplication of the diatoms occurs by ordinary mitotic cell division. During cell division each cell produces two daughter cells, each of them keeping one of the two valves of the mother cell and producing a new valve by absorbing the silicon present in the environment. The NanoSIMS 50 allows ion imaging to be performed on diatoms in order to determine the site of fixation of silicon. The aim of this study was to observe and compare the mechanism of the construction of the new valve after cell division. To this end, different types of diatoms have been transferred in a culture medium enriched with 29Si and after several days, the distribution of the different isotopes of silicon has been determined by NanoSIMS50 imaging. The construction of new valves has been observed and the isotopic ratio has been determined.

  5. Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian

    USGS Publications Warehouse

    Leung, I.; Guo, W.; Friedman, I.; Gleason, J.

    1990-01-01

    Considerable debate surrounds the existence of silicon carbide in nature, mostly owing to the problem of possible contamination by man-made SiC. Recently, Gurney1 reviewed reports of rare SiC inclusions in diamonds, and noted that SiC can only be regarded as a probable rather than proven cogenetic mineral. Here we report our observation of clusters of SiC coexisting with diamond in a kimberlite from Fuxian, China. Macrocrysts of ??-SiC are overgrown epitaxially by ??-SiC, and both polymorphs are structurally well ordered. We have also measured the carbon isotope compositions of SiC and diamonds from Fuxian. We find that SiC is more enriched in 12C than diamond by 20% relative to the PDB standard. Isotope fractionation might have occurred through an isotope exchange reaction in a common carbon reservoir. Silicon carbide may thus ultimately provide information on carbon cycling in the Earth's mantle.

  6. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (<8 solar masses), and 18O coming primarily from high-mass stars (Prantzos et al., 1996). These differences in type of stellar source result in large observable variations in stellar isotopic abundances as functions of age, size, metallicity, and galactic location ( Prantzos

  7. Micromachined silicon electrostatic chuck

    SciTech Connect

    Anderson, R.A.; Seager, C.H.

    1994-12-31

    In the field of microelectronics, and in particular the fabrication of microelectronics during plasma etching processes, electrostatic chucks have been used to hold silicon wafers during the plasma etching process. Current electrostatic chucks that operate by the {open_quotes}Johnson-Rahbek Effect{close_quotes} consist of a metallic base plate that is typically coated with a thick layer of slightly conductive dielectric material. A silicon wafer of approximately the same size as the chuck is placed on top of the chuck and a potential difference of several hundred volts is applied between the silicon and the base plate of the electrostatic chuck. This causes an electrostatic attraction proportional to the square of the electric field in the gap between the silicon wafer and the chuck face. When the chuck is used in a plasma filled chamber the electric potential of the wafer tends to be fixed by the effective potential of the plasma. The purpose of the dielectric layer on the chuck is to prevent the silicon wafer from coming into direct electrical contact with the metallic part of the chuck and shorting out the potential difference. On the other hand, a small amount of conductivity appears to be desirable in the dielectric coating so that much of its free surface between points of contact with the silicon wafer is maintained near the potential of the metallic base plate; otherwise, a much larger potential difference would be needed to produce a sufficiently large electric field in the vacuum gap between the wafer and chuck. Typically, the face of the chuck has a pattern of grooves in which about 10 torr pressure of helium gas is maintained. This gas provides cooling (thermal contact) between the wafer and the chuck. A pressure of 10 torr is equivalent to about 0.2 psi.

  8. Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack

    NASA Technical Reports Server (NTRS)

    Strangmen, Thomas E.; Fox, Dennis S.

    1994-01-01

    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine

  9. Surface engineering of aluminum alloys for automotive engine applications

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Dahotre, Narendra B.; Dahotre, Narendra B.

    2004-01-01

    The modification and refinement of surface and subsurface microstructure in Al-Si-based cast alloys via laser-induced rapid solidification can create a natural topography suitable for engine applications. The differential wear of the soft aluminum phase, hard silicon, and CuAl in the cell, along with the divorced eutectic nanostructure in the intercellular region, is expected to produce and replenish microfluidic channels and pits for efficient oil retention, spreading, and lubrication.

  10. The isotopic distribution conundrum.

    PubMed

    Valkenborg, Dirk; Mertens, Inge; Lemière, Filip; Witters, Erwin; Burzykowski, Tomasz

    2012-01-01

    Although access to high-resolution mass spectrometry (MS), especially in the field of biomolecular MS, is becoming readily available due to recent advances in MS technology, the accompanied information on isotopic distribution in high-resolution spectra is not used at its full potential, mainly because of lack of knowledge and/or awareness. In this review, we give an insight into the practical problems related to calculating the isotopic distribution for large biomolecules, and present an overview of methods for the calculation of the isotopic distribution. We discuss the key events that triggered the development of various algorithms and explain the rationale of how and why the various isotopic-distribution calculations were performed. The review is focused around the developmental stages as briefly outlined below, starting with the first observation of an isotopic distribution. The observations of Beynon in the field of organic MS that chlorine appeared in a mass spectrum as two variants with odds 3:1 lie at the basis of the first wave of algorithms for the calculation of the isotopic distribution, based on the atomic composition of a molecule. From here on, we explain why more complex biomolecules such as peptides exhibit a highly complex isotope pattern when assayed by MS, and we discuss how combinatorial difficulties complicate the calculation of the isotopic distribution on computers. For this purpose, we highlight three methods, which were introduced in the 1980s. These are the stepwise procedure introduced by Kubinyi, the polynomial expansion from Brownawell and Fillippo, and the multinomial expansion from Yergey. The next development was instigated by Rockwood, who suggested to decompose the isotopic distribution in terms of their nucleon count instead of the exact mass. In this respect, we could claim that the term "aggregated" isotopic distribution is more appropriate. Due to the simplification of the isotopic distribution to its aggregated counterpart

  11. Silicon sheet technologies

    SciTech Connect

    Ciszek, T.F.

    1982-09-01

    A classification of silicon sheet growth methods by meniscus geometry permits them to be discussed in three groups: short meniscus techniques, high meniscus techniques, and extended meniscus or large solid/liquid interface area techniques. A second parameter, meniscus shaper interaction with the liquid silicon, is also instrumental in determining the characteristics of the various sheet processes. The current status of each process is discussed in the context of meniscus geometry and shaper/melt interaction. One aspect of sheet growth, surface area generation rate, is quantitatively compared with combined ingot growth and wafering surface area generation rates.

  12. Electrochemical thinning of silicon

    SciTech Connect

    Medernach, J.W.

    1994-01-11

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  13. Electrochemical thinning of silicon

    DOEpatents

    Medernach, John W.

    1994-01-01

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  14. Short range atomic migration in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Strauß, F.; Jerliu, B.; Geue, T.; Stahn, J.; Schmidt, H.

    2016-05-01

    Experiments on self-diffusion in amorphous silicon between 400 and 500 °C are presented, which were carried out by neutron reflectometry in combination with 29Si/natSi isotope multilayers. Short range diffusion is detected on a length scale of about 2 nm, while long range diffusion is absent. Diffusivities are in the order of 10-19-10-20 m2/s and decrease with increasing annealing time, reaching an undetectable low value for long annealing times. This behavior is strongly correlated to structural relaxation and can be explained as a result of point defect annihilation. Diffusivities for short annealing times of 60 s follow the Arrhenius law with an activation enthalpy of (0.74 ± 0.21) eV, which is interpreted as the activation enthalpy of Si migration.

  15. Device fabrication and transport measurements of FinFETs built with 28Si SOI wafers towards donor qubits in silicon

    SciTech Connect

    Lo, Cheuk Chi; Persaud, Arun; Dhuey, Scott; Olynick, Deirdre; Borondics, Ferenc; Martin, Michael C.; Bechtel, Hans A.; Bokor, Jeffrey; Schenkel, Thomas

    2009-06-10

    We report fabrication of transistors in a FinFET geometry using isotopically purified silicon-28 -on-insulator (28-SOI) substrates. Donor electron spin coherence in natural silicon is limited by spectral diffusion due to the residual 29Si nuclear spin bath, making isotopically enriched nuclear spin-free 28Si substrates a promising candidate for forming spin quantum bit devices. The FinFET architecture is fully compatible with single-ion implant detection for donor-based qubits, and the donor spin-state readout through electrical detection of spin resonance. We describe device processing steps and discuss results on electrical transport measurements at 0.3 K.

  16. [Biological function of some elements and their compounds. IV. Silicon, silicon acids, silicones].

    PubMed

    Puzanowska-Tarasiewicz, Helena; Kuźmicka, Ludmiła; Tarasiewicz, Mirosław

    2009-11-01

    The review is devoted for the occurance, meaning of silicon and their compounds, especially silicon acids and silicones. Silicon participates in biosynthesis of collagen, the basic component of connective tissue. It strengthens and makes the walls of blood vessels more flexible, diminishes capillaries permeability, accelerates healing processes, has a sebostatic activity, strengthens hair and nails. This element has a beneficial effect on phosphorylation of proteins saccharides, and nucleotides. It is also essential for the formation of cytoskeleton and other cellular structures of mechanical or supportive function. Silicon is an initial substrate for obtaining silicones. These are synthetic polymers, in which silicon atoms are bound by oxygen bridges. They are used in almost all kinds of products due to their most convenient physical and chemical properties: moistening and film-forming, giving liquid form increasing solubility. Silicon acids form colloid gel, silica gel, with absorptive abilities, like active carbon. PMID:19999810

  17. Light emission from porous silicon

    NASA Astrophysics Data System (ADS)

    Penczek, John

    The continuous evolution of silicon microelectronics has produced significant gains in electronic information processing. However, greater improvements in performance are expected by utilizing optoelectronic techniques. But these techniques have been severely limited in silicon- based optoelectronics due to the lack of an efficient silicon light emitter. The recent observation of efficient light emission from porous silicon offer a promising opportunity to develop a suitable silicon light source that is compatible with silicon microelectronics. This dissertation examined the porous silicon emission mechanism via photoluminescence, and by a novel device structure for porous silicon emitters. The investigation first examined the correlation between porous silicon formation conditions (and subsequent morphology) with the resulting photoluminescence properties. The quantum confinement theory for porous silicon light emission contends that the morphology changes induced by the different formation conditions determine the optical properties of porous silicon. The photoluminescence spectral shifts measured in this study, in conjunction with TEM analysis and published morphological data, lend support to this theory. However, the photoluminescence spectral broadening was attributed to electronic wavefunction coupling between adjacent silicon nanocrystals. An novel device structure was also investigated in an effort to improve current injection into the porous silicon layer. The selective etching properties of porous silicon were used to create a p-i-n structure with crystalline silicon contacts to the porous silicon layer. The resulting device was found to have unique characteristics, with a negative differential resistance region and current-induced emission that spanned from 400 nm to 5500 nm. The negative differential resistance was correlated to resistive heating effects in the device. A numerical analysis of thermal emission spectra from silicon films, in addition to

  18. Engineering and Software Engineering

    NASA Astrophysics Data System (ADS)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  19. Silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  20. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Morelli, D. T.; Heremans, J. P.; Slack, G. A.

    2002-11-01

    The isotope effect on the lattice thermal conductivity for group IV and group III-V semiconductors is calculated using the Debye-Callaway model modified to include both transverse and longitudinal phonon modes explicitly. The frequency and temperature dependences of the normal and umklapp phonon-scattering rates are kept the same for all compounds. The model requires as adjustable parameters only the longitudinal and transverse phonon Grüneisen constants and the effective sample diameter. The model can quantitatively account for the observed isotope effect in diamond and germanium but not in silicon. The magnitude of the isotope effect is predicted for silicon carbide, boron nitride, and gallium nitride. In the case of boron nitride the predicted increase in the room-temperature thermal conductivity with isotopic enrichment is in excess of 100%. Finally, a more general method of estimating normal phonon-scattering rate coefficients for other types of solids is presented.

  1. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  2. Reactor production of sup 252 Cf and transcurium isotopes

    SciTech Connect

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, {sup 252}Cf, {sup 253}Es, and {sup 255}Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of {sup 254g}Es from {sup 252}Cf will be discussed. 14 refs., 5 tabs.

  3. Plasma Deposition of Amorphous Silicon

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1982-01-01

    Strongly adhering films of silicon are deposited directly on such materials as Pyrex and Vycor (or equivalent materials) and aluminum by a non-equilibrium plasma jet. Amorphous silicon films are formed by decomposition of silicon tetrachloride or trichlorosilane in the plasma. Plasma-jet technique can also be used to deposit an adherent silicon film on aluminum from silane and to dope such films with phosphorus. Ability to deposit silicon films on such readily available, inexpensive substrates could eventually lead to lower cost photovoltaic cells.

  4. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  5. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Jones (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  6. Silicon cladding for mirror substrates

    NASA Astrophysics Data System (ADS)

    Duston, Christopher J.; Gunda, Nilesh; Schwartz, Jay R.; Robichaud, Joseph L.

    2009-08-01

    To reduce the finishing costs of silicon carbide mirror substrates, silicon claddings are applied allowing the surfaces to be more easily diamond turned and polished than the bare chemical vapor deposited (CVD) silicon carbide or bimodal reaction bonded SiC (RB-SiC). The benefits of using silicon as the optical face will be reviewed as will the process for applying plasma enhanced chemical vapor (PE-CVD) deposited amorphous silicon cladding on substrates. Using one mirror as an example, the successful finishing results will be shared.

  7. The LHCb Silicon Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2013-12-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and search for new physics using the enormous flux of beauty and charm hadrons produced at the LHC. The LHCb detector is a single-arm spectrometer with excellent tracking and particle identification capabilities. The Silicon Tracker is part of the tracking system and measures very precisely the particle trajectories coming from the interaction point in the region of high occupancies around the beam axis. The LHCb Silicon Tracker covers a total sensitive area of about 12 m2 using silicon micro-strip detectors with long readout strips. It consists of one four-layer tracking station before the LHCb dipole magnet and three stations after. The detector has performed extremely well since the start of the LHC operation despite the fact that the experiment is collecting data at instantaneous luminosities well above the design value. This paper reports on the operation and performance of the Silicon Tracker during the Physics data taking at the LHC during the last two years.

  8. Sintering silicon nitride

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Levine, Stanley R. (Inventor); Sanders, William A. (Inventor)

    1993-01-01

    Oxides having a composition of (Ba(1-x)Sr(x))O-Al2O3-2SiO2 are used as sintering aids for producing an improved silicon nitride ceramic material. The x must be greater than 0 to insure the formation of the stable monoclinic celsian glass phase.

  9. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  10. Silicone containing solid propellant

    NASA Technical Reports Server (NTRS)

    Ramohalli, K. N. R. (Inventor)

    1980-01-01

    The addition of a small amount, for example 1% by weight, of a liquid silicone oil to a metal containing solid rocket propellant provides a significant reduction in heat transfer to the inert nozzle walls. Metal oxide slag collection and blockage of the nozzle are eliminated and the burning rate is increased by about 5% to 10% thus improving ballistic performance.

  11. Amorphous silicon photovoltaic devices

    SciTech Connect

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  12. Composition Comprising Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  13. Electroluminescence from silicon nanowires

    NASA Astrophysics Data System (ADS)

    Huo, J.; Solanki, R.; Freeouf, J. L.; Carruthers, J. R.

    2004-12-01

    Room temperature electroluminescence has been demonstrated from undoped silicon nanowires that were grown from disilane. Ensembles of nanowires were excited by capacitively coupling them to an ac electric field. The emission peak occurred at about 600 nm from wires of average diameter of about 4 nm. The emission appears to result from band-to-band electron-hole recombination.

  14. Genesis Silicon Carbide Concentrator Target 60003 Preliminary Ellipsometry Mapping Results

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Rodriquez, M. C.; Stansbery, E. K.

    2007-01-01

    The Genesis concentrator was custom designed to focus solar wind ions primarily for terrestrial isotopic analysis of O-17/O-16 and O-18/O-16 to +/-1%, N-15/N-14 to +/-1%, and secondarily to conduct elemental and isotopic analysis of Li, Be, and B. The circular 6.2 cm diameter concentrator target holder was comprised of four quadrants of highly pure semiconductor materials that included one amorphous diamond-like carbon, one C-13 diamond, and two silicon carbide (SiC). The amorphous diamond-like carbon quadrant was fractured upon impact at Utah Test and Training Range (UTTR), but the remaining three quadrants survived fully intact and all four quadrants hold an important collection of solar wind. The quadrants were removed from the target holder at NASA Johnso n Space Center Genesis Curation Laboratory in April 2005, and have been housed in stainless steel containers under continual nitrogen purge since time of disintegration. In preparation for allocation of a silicon carbide target for oxygen isotope analyses at UCLA, the two SiC targets were photographed for preliminary inspection of macro particle contamination from the hard non-nominal landing as well as characterized by spectroscopic ellipsometry to evaluate thin film contamination. This report is focused on Genesis SiC target sample number 60003.

  15. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The process technology for the manufacture of semiconductor-grade silicon in a large commercial plant by 1986, at a price less than $14 per kilogram of silicon based on 1975 dollars is discussed. The engineering design, installation, checkout, and operation of an Experimental Process System Development unit was discussed. Quality control of scaling-up the process and an economic analysis of product and production costs are discussed.

  16. Development of silicon carbide composites for fusion

    SciTech Connect

    Snead, L.L. )

    1993-08-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these [open quotes]reduced activity[close quotes] materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs.

  17. A surface code quantum computer in silicon.

    PubMed

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  18. A surface code quantum computer in silicon

    PubMed Central

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  19. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    SciTech Connect

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-06

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  20. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    NASA Astrophysics Data System (ADS)

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-01

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  1. Silicon Modulators, Switches and Sub-systems for Optical Interconnect

    NASA Astrophysics Data System (ADS)

    Li, Qi

    Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.

  2. Channeling of aluminum in silicon

    SciTech Connect

    Wilson, R.G.; Hopkins, C.G.

    1985-05-15

    A systematic study of channeling of aluminum in the silicon crystal is reported. Depth distributions measured by secondary ion mass spectrometry are reported for 40-, 75-, and 150-keV aluminum channeled in the <100> and <110> directions of silicon. The profile dependence on alignment angle is shown for 150-keV aluminum in the <110> of silicon. Aluminum has low electronic stopping in silicon and corresponding deep channeled profiles are observed for aligned implants and deep channeling tails are observed on random implants. The maximum channeling range for 150-keV Al in <100> silicon is about 2.8 ..mu..m and is about 6.4 ..mu..m in <110> silicon. Some ions will reach the maximum channeling range even for 2/sup 0/ misalignment. Many of the deep channeling tails and ''supertails'' reported in earlier literature can be explained by the normal channeling of aluminum in silicon.

  3. Silicon oxidation in fluoride solutions

    NASA Technical Reports Server (NTRS)

    Sancier, K. M.; Kapur, V.

    1980-01-01

    Silicon is produced in a NaF, Na2SiF6, and Na matrix when SiF4 is reduced by metallic sodium. Hydrogen is evolved during acid leaching to separate the silicon from the accompanying reaction products, NaF and Na2SiF6. The hydrogen evolution reaction was studied under conditions simulating leaching conditions by making suspensions of the dry silicon powder in aqueous fluoride solutions. The mechanism for the hydrogen evolution is discussed in terms of spontaneous oxidation of silicon resulting from the cooperative effects of (1) elemental sodium in the silicon that reacts with water to remove a protective silica layer, leaving clean reactive silicon, and (2) fluoride in solution that complexes with the oxidized silicon in solution and retards formation of a protective hydrous oxide gel.

  4. Improved toughness of silicon carbide

    NASA Technical Reports Server (NTRS)

    Palm, J. A.

    1975-01-01

    Several techniques were employed to apply or otherwise form porous layers of various materials on the surface of hot-pressed silicon carbide ceramic. From mechanical properties measurements and studies, it was concluded that although porous layers could be applied to the silicon carbide ceramic, sufficient damage was done to the silicon carbide surface by the processing required so as to drastically reduce its mechanical strength. It was further concluded that there was little promise of success in forming an effective energy absorbing layer on the surface of already densified silicon carbide ceramic that would have the mechanical strength of the untreated or unsurfaced material. Using a process for the pressureless sintering of silicon carbide powders it was discovered that porous layers of silicon carbide could be formed on a dense, strong silicon carbide substrate in a single consolidation process.

  5. Isotopic geochemistry and cosmochemistry

    NASA Astrophysics Data System (ADS)

    Shchukoliukov, Iu. A.

    The book includes recent information on isotope geology, geochemistry, and cosmochemistry, discussed at a recent Soviet-Japanese symposium (at Irkutsk, USSR). Attention is given to numerical modeling of geochronometric systems, a classification of noble-gas components in the earth's interior, the feasibility of using ion microprobe for local isotope analysis of zircons for the purpose of deriving the early history of the earth (on the example of the Novopavlovsk complex from the Ukranian shield), a geological and geochronological study of the Ganalski complex of Kamchatka, and strontium isotopes as a criterion of the nature of acid melts (i.e., mantle- or crust-related). Other papers are on the geochronology and geology of Siberian kimberlites, the nature of sulfur from effusive rocks of the Kamchatka-Kuril-Japan island arc, mass-spectrometric studies of volatile components in exocontact rocks of alkaline-basic intrusions, and an analytical method for stable-isotope analysis in ultrasmall amounts of CO2 and its application to studies of the microscale isotopic zoning in calcite and graphite crystals in marble.

  6. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  7. Transportation of medical isotopes

    SciTech Connect

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  8. Silicon Nanowire Devices

    NASA Astrophysics Data System (ADS)

    Kamins, Theodore

    2006-03-01

    Metal-catalyzed, self-assembled, one-dimensional semiconductor nanowires are being considered as possible device elements to augment and supplant conventional electronics and to extend the use of CMOS beyond the physical and economic limits of conventional technology. Such nanowires can create nanostructures without the complexity and cost of extremely fine scale lithography. The well-known and controllable properties of silicon make silicon nanowires especially attractive. Easy integration with conventional electronics will aid their acceptance and incorporation. For example, connections can be formed to both ends of a nanowire by growing it laterally from a vertical surface formed by etching the top silicon layer of a silicon-on-insulator structure into isolated electrodes. Field-effect structures are one class of devices that can be readily built in silicon nanowires. Because the ratio of surface to volume in a thin nanowire is high, conduction through the nanowire is very sensitive to surface conditions, making it effective as the channel of a field-effect transistor or as the transducing element of a gas or chemical sensor. As the nanowire diameter decreases, a greater fraction of the mobile charge can be modulated by a given external charge, increasing the sensitivity. Having the gate of a nanowire transistor completely surround the nanowire also enhances the sensitivity. For a field-effect sensor to be effective, the charge must be physically close to the nanowire so that the majority of the compensating charge is induced in the nanowire and so that ions in solution do not screen the charge. Because only induced charge is being sensed, a coating that selectively binds the target species should be added to the nanowire surface to distinguish between different species in the analyte. The nanowire work at Hewlett-Packard Laboratories was supported in part by the Defense Advanced Research Projects Agency.

  9. Tunable plasticity in amorphous silicon carbide films.

    PubMed

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold. PMID:23876200

  10. Constraining the oceanic barium cycle with stable barium isotopes

    NASA Astrophysics Data System (ADS)

    Cao, Zhimian; Siebert, Christopher; Hathorne, Ed C.; Dai, Minhan; Frank, Martin

    2016-01-01

    The distribution of barium (Ba) concentrations in seawater resembles that of nutrients and Ba has been widely used as a proxy of paleoproductivity. However, the exact mechanisms controlling the nutrient-like behavior, and thus the fundamentals of Ba chemistry in the ocean, have not been fully resolved. Here we present a set of full water column dissolved Ba (DBa) isotope (δ137BaDBa) profiles from the South China Sea and the East China Sea that receives large freshwater inputs from the Changjiang (Yangtze River). We find pronounced and systematic horizontal and depth dependent δ137BaDBa gradients. Beyond the river influence characterized by generally light signatures (0.0 to + 0.3 ‰), the δ137BaDBa values in the upper water column are significantly higher (+ 0.9 ‰) than those in the deep waters (+ 0.5 ‰). Moreover, δ137BaDBa signatures are essentially constant in the entire upper 100 m, in which dissolved silicon isotopes are fractionated during diatom growth resulting in the heaviest isotopic compositions in the very surface waters. Combined with the decoupling of DBa concentrations and δ137BaDBa from the concentrations of nitrate and phosphate this implies that the apparent nutrient-like fractionation of Ba isotopes in seawater is primarily induced by preferential adsorption of the lighter isotopes onto biogenic particles rather than by biological utilization. The subsurface δ137BaDBa distribution is dominated by water mass mixing. The application of stable Ba isotopes as a proxy for nutrient cycling should therefore be considered with caution and both biological and physical processes need to be considered. Clearly, however, Ba isotopes show great potential as a new tracer for land-sea interactions and ocean mixing processes.

  11. High temperature mechanical performance of a hot isostatically pressed silicon nitride

    SciTech Connect

    Wereszczak, A.A.; Ferber, M.K.; Jenkins, M.G.; Lin, C.K.J.

    1996-01-01

    Silicon nitride ceramics are an attractive material of choice for designers and manufacturers of advanced gas turbine engine components for many reasons. These materials typically have potentially high temperatures of usefulness (up to 1400{degrees}C), are chemically inert, have a relatively low specific gravity (important for inertial effects), and are good thermal conductors (i.e., resistant to thermal shock). In order for manufacturers to take advantage of these inherent properties of silicon nitride, the high-temperature mechanical performance of the material must first be characterized. The mechanical response of silicon nitride to static, dynamic, and cyclic conditions at elevated temperatures, along with reliable and representative data, is critical information that gas turbine engine designers and manufacturers require for the confident insertion of silicon nitride components into gas turbine engines. This final report describes the high-temperature mechanical characterization and analyses that were conducted on a candidate structural silicon nitride ceramic. The high-temperature strength, static fatigue (creep rupture), and dynamic and cyclic fatigue performance were characterized. The efforts put forth were part of Work Breakdown Structure Subelement 3.2.1, {open_quotes}Rotor Data Base Generation.{close_quotes} PY6 is comparable to other hot isostatically pressed (HIPed) silicon nitrides currently being considered for advanced gas turbine engine applications.

  12. Stirling engines

    SciTech Connect

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  13. Neural Engineering

    NASA Astrophysics Data System (ADS)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  14. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  15. Modular isotopic thermoelectric generator

    SciTech Connect

    Schock, A.

    1981-01-01

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development. 14 refs.

  16. Sintered silicon nitrode recuperator fabrication

    NASA Technical Reports Server (NTRS)

    Gatti, A.; Chiu, W. S.; Mccreight, L. R.

    1980-01-01

    The preliminary design and a demonstration of the feasibility of fabricating submodules of an automotive Stirling engine recuperator for waste heat recovery at 370 C are described. Sinterable silicon nitride (Sialon) tubing and plates were fabricated by extrusion and hydrostatic pressing, respectively, suitable for demonstrating a potential method of constructing ceramic recuperator-type heat exchangers. These components were fired in nitrogen atmosphere to 1800 C without significant scale formation so that they can be used in the as-fired condition. A refractory glass composition (Al2O3 x 4.5 CaO.MgO x 11SiO2) was used to join and seal component parts by a brazing technique which formed strong recuperator submodules capable of withstanding repeated thermal cycling to 1370 C. The corrosion resistance of these materials to Na2SO4 + NaCl carbon mixtures was also assessed in atmospheres of air, hydrogen and CO2-N2-H2O mixtures at both 870 C and 1370 C for times to 1000 hours. No significant reaction was observed under any of these test conditions.

  17. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  18. Quantum Computing in Silicon with Donor Electron Spins

    NASA Astrophysics Data System (ADS)

    Simmons, Michelle

    2014-03-01

    Extremely long electron and nuclear spin coherence times have recently been demonstrated in isotopically pure Si-28 making silicon one of the most promising semiconductor materials for spin based quantum information. The two level spin state of single electrons bound to shallow phosphorus donors in silicon in particular provide well defined, reproducible qubits and represent a promising system for a scalable quantum computer in silicon. An important challenge in these systems is the realisation of an architecture, where we can position donors within a crystalline environment with approx. 20-50nm separation, individually address each donor, manipulate the electron spins using ESR techniques and read-out their spin states. We have developed a unique fabrication strategy for a scalable quantum computer in silicon using scanning tunneling microscope hydrogen lithography to precisely position individual P donors in a Si crystal aligned with nanoscale precision to local control gates necessary to initialize, manipulate, and read-out the spin states. During this talk I will focus on demonstrating electronic transport characteristics and single-shot spin read-out of precisely-positioned P donors in Si. Additionally I will report on our recent progress in performing single spin rotations by locally applying oscillating magnetic fields and initial characterization of transport devices with two and three single donors. The challenges of scaling up to practical 2D architectures will also be discussed.

  19. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.

  20. Nonbiological fractionation of iron isotopes

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Roe, J. E.; Barling, J.; Nealson, K. H.

    2000-01-01

    Laboratory experiments demonstrate that iron isotopes can be chemically fractionated in the absence of biology. Isotopic variations comparable to those seen during microbially mediated reduction of ferrihydrite are observed. Fractionation may occur in aqueous solution during equilibration between inorganic iron complexes. These findings provide insight into the mechanisms of iron isotope fractionation and suggest that nonbiological processes may contribute to iron isotope variations observed in sediments.