Science.gov

Sample records for isotropic negative thermal

  1. Isotropic Negative Thermal Expansion Metamaterials.

    PubMed

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale. PMID:27333052

  2. Large isotropic negative thermal expansion above a structural quantum phase transition

    NASA Astrophysics Data System (ADS)

    Handunkanda, Sahan U.; Curry, Erin B.; Voronov, Vladimir; Said, Ayman H.; Guzmán-Verri, Gian G.; Brierley, Richard T.; Littlewood, Peter B.; Hancock, Jason N.

    2015-10-01

    Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom, which makes these systems interesting. Here, we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3, and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic x-ray scattering as well as x-ray diffraction reveal that soft mode, central peak, and thermal expansion phenomena are all strongly influenced by the transition.

  3. Large isotropic negative thermal expansion above a structural quantum phase transition

    SciTech Connect

    Handunkanda, Sahan Uddika; Curry, Erin B.; Voronov, Vladimir; Said, Ayman H.; Guzman-Verri, Gian G.; Brierley, Richard; Littlewood, Peter B.; Hancock, Jason N.

    2015-10-01

    Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperative and competing interactions is the lattice, whose physics may be obscured in complex perovskites by the many coupled degrees of freedom which makes these systems interesting. Here we report signatures of an approach to a quantum phase transition very near the ground state of the nonmagnetic, ionic insulating, simple cubic perovskite material ScF3 and show that its physical properties are strongly effected as much as 100 K above the putative transition. Spatial and temporal correlations in the high-symmetry cubic phase determined using energy- and momentum-resolved inelastic X-ray scattering as well as X-ray diffraction reveal that soft mode, central peak and thermal expansion phenomena are all strongly influenced by the transition.

  4. Negative Poisson's ratio materials via isotropic interactions.

    PubMed

    Rechtsman, Mikael C; Stillinger, Frank H; Torquato, Salvatore

    2008-08-22

    We show that under tension a classical many-body system with only isotropic pair interactions in a crystalline state can, counterintuitively, have a negative Poisson's ratio, or auxetic behavior. We derive the conditions under which the triangular lattice in two dimensions and lattices with cubic symmetry in three dimensions exhibit a negative Poisson's ratio. In the former case, the simple Lennard-Jones potential can give rise to auxetic behavior. In the latter case, a negative Poisson's ratio can be exhibited even when the material is constrained to be elastically isotropic. PMID:18764632

  5. Negative Poisson's Ratio Materials via Isotropic Interactions

    NASA Astrophysics Data System (ADS)

    Rechtsman, Mikael C.; Stillinger, Frank H.; Torquato, Salvatore

    2008-08-01

    We show that under tension a classical many-body system with only isotropic pair interactions in a crystalline state can, counterintuitively, have a negative Poisson’s ratio, or auxetic behavior. We derive the conditions under which the triangular lattice in two dimensions and lattices with cubic symmetry in three dimensions exhibit a negative Poisson’s ratio. In the former case, the simple Lennard-Jones potential can give rise to auxetic behavior. In the latter case, a negative Poisson’s ratio can be exhibited even when the material is constrained to be elastically isotropic.

  6. Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial

    SciTech Connect

    Guney, Durdu; Koschny, Thomas; Soukoulis, Costas

    2010-05-26

    Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we demonstrate with a proof-of-principle design that the requirement connectivity does not preclude fully isotropic left-handed behavior. This is an important step towards the realization of bulk 3D isotropic NIMs at optical wavelengths.

  7. Isotropic negative effective permeability in the visible range produced by clusters of plasmonic triangular nanoprisms

    NASA Astrophysics Data System (ADS)

    Morits, Dmitry; Simovski, Constantin

    2011-12-01

    In this paper we suggest and study a design solution of metamaterial made of raspberry-like clusters of silver triangular nanoprisms. We show that this design theoretically allows one to obtain isotropic negative effective permeability in the visible range even taking into account real dissipative losses in silver. To estimate the magnetic response of the structure two independent methods are used. The study is presented in view of prospective for isotropic doubly-negative metamaterials operating in the visible range.

  8. 2-D isotropic negative refractive index in a N-type four-level atomic system

    NASA Astrophysics Data System (ADS)

    Zhao, Shun-Cai; Wu, Qi-Xuan; Ma, Kun

    2015-11-01

    2-D(Two-dimensional) isotropic negative refractive index (NRI) is explicitly realized via the orthogonal signal and coupling standing-wave fields coupling the Ntype four-level atomic system. Under some key parameters of the dense vapour media, the atomic system exhibits isotropic NRI with simultaneous negative permittivity and permeability (i.e. left-handedness) in the 2-D x-y plane. Compared with other 2-D NRI schemes, the coherent atomic vapour media in our scheme may be an ideal 2-D isotropic NRI candidate and has some potential advantages, significance or applications in the further investigation.

  9. Thermoelastic Waves with Thermal Diffusion in an Isotropic Micropolar Plate

    NASA Astrophysics Data System (ADS)

    Shaw, S.; Mukhopadhyay, B.

    2015-09-01

    The generalized theory of thermodiffusion is applied to study the propagation of plane harmonic waves in an infinitely long isotropic micropolar plate. The present analysis also includes both the thermal and mass diffusive relaxation times, as well as the coupling of the thermal diffusion with microrotation of the material. To determine the effect of the presence of thermal as well as mass diffusion on the phase velocity of the wave propagation, two potential functions are used, and more general dispersive relations are obtained for symmetric and antisymmetric modes. The results for the cases of thermoelasticity, micropolar thermoelasticity, and thermodiffusive elasticity are derived. The changes in the phase velocity, attenuation coefficient, and the specific loss factor with the wave number are shown graphically.

  10. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite.

    PubMed

    Zhao, Qian; Kang, Lei; Du, B; Zhao, H; Xie, Q; Huang, X; Li, B; Zhou, J; Li, L

    2008-07-11

    Isotropic negative permeability resulting from Mie resonance is demonstrated in a three-dimensional (3D) dielectric composite consisting of an array of dielectric cubes. A strong subwavelength magnetic resonance, corresponding to the first Mie resonance, was excited in dielectric cubes by electromagnetic wave. Negative permeability is verified in the magnetic resonance area via microwave measurement and the dispersion properties. The resonance relies on the size and permittivity of the cubes. It is promising for construction of novel isotropic 3D left-handed materials with a simple structure. PMID:18764227

  11. Optical rogue waves associated with the negative coherent coupling in an isotropic medium.

    PubMed

    Sun, Wen-Rong; Tian, Bo; Jiang, Yan; Zhen, Hui-Ling

    2015-02-01

    Optical rogue waves of the coupled nonlinear Schrödinger equations with negative coherent coupling, which describe the propagation of orthogonally polarized optical waves in an isotropic medium, are reported. We construct and discuss a family of the vector rogue-wave solutions, including the bright rogue waves, four-petaled rogue waves, and dark rogue waves. A bright rogue wave without a valley can split up, giving birth to two bright rogue waves, and an eye-shaped rogue wave can split up, giving birth to two dark rogue waves. PMID:25768624

  12. Negative thermal expansion above a quantum phase transition

    NASA Astrophysics Data System (ADS)

    Handunkanda, Sahan; Curry, Erin; Hancock, Jason

    Strong, thermally persistent, isotropic negative thermal expansion (NTE) is unusual and has been observed in only a handful of materials. Scandium trifluoride (ScF3) features large isotropic thermal expansion persistent over a 1000K range of temperature. More interestingly, no structural phase transition has been reported above 0.4K and it retains the simple cubic structure up to its high melting point of 1800K, which is unusual compared with other transition metal trifluorides. Here, we present a combined inelastic x-ray scattering (IXS) and x-ray diffraction study of ScF3, which reveals some exciting features of this material. The low-energy (~1 meV) vibrational modes corresponding to M and R points of simple cubic Brillouin zone could explain NTE in ScF3, and we find that the low temperature IXS data show a central peak which is especially strong at these points. In addition, the whole M-R branch undergoes unusual softening at low temperature. We determine that this mode softens nearly to zero energy as the temperature approaches to 0K. These signature portend an approach to a quantum phase transition of this insulating, nonmagnetic simple cubic perovskite material ScF3. The central peak, soft mode and thermal expansion could all be consequences of this incipient transition. The connections we have established in the phenomenology of ScF3 may be present in other perovskites as well as other materials that display strong NTE

  13. Improvement of thermal shock resistance of isotropic graphite by Ti-doping

    NASA Astrophysics Data System (ADS)

    López-Galilea, I.; Ordás, N.; García-Rosales, C.; Lindig, S.

    2009-04-01

    Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.

  14. Isotropic Negative Area Compressibility over Large Pressure Range in Potassium Beryllium Fluoroborate and its Potential Applications in Deep Ultraviolet Region.

    PubMed

    Jiang, Xingxing; Luo, Siyang; Kang, Lei; Gong, Pifu; Yao, Wenjiao; Huang, Hongwei; Li, Wei; Huang, Rongjin; Wang, Wei; Li, Yanchun; Li, Xiaodong; Wu, Xiang; Lu, Peixiang; Li, Laifeng; Chen, Chuangtian; Lin, Zheshuai

    2015-09-01

    Isotropic negative area compressibility, which is very rare, is observed in KBBF and the related mechanism is investigated by combined high-pressure X-ray diffraction (XRD) experiments and first-principles calculations. The strong mechanical anisotropy leads to a large Poisson's ratio and high figure of merit for the acoustic-optics effect, giving KBBF potential applications as smart strain converters and deep-ultraviolet (DUV) acoustic-optic devices. PMID:26184364

  15. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    SciTech Connect

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  16. Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves

    PubMed Central

    Dodson, Jacob C.; Inman, Daniel J.

    2014-01-01

    Elastic wave velocities in metallic structures are affected by variations in environmental conditions such as changing temperature. This paper extends the theory of acoustoelasticity by allowing thermally induced strains in unconstrained isotropic media, and it experimentally examines the velocity variation of Lamb waves in aluminum plates (AL-6061) due to isothermal temperature deviations. This paper presents both thermally induced acoustoelastic constants and thermally varying effective Young's modulus and Poisson's ratio which include the third order elastic material constants. The experimental thermal sensitivity of the phase velocity (∂vP/∂θ) for both the symmetric and antisymmetric modes are bounded by two theories, the acoustoelastic Lamb wave theory with thermo-acoustoelastic tensors and the thermoelastic Lamb wave theory using an effective thermo-acoustoelastic moduli. This paper shows the theoretical thermally induced acoustoelastic Lamb wave thermal sensitivity (∂vP/∂θ) is an upper bound approximation of the experimental thermal changes, but the acoustoelastic Lamb wave theory is not valid for predicting the antisymmetric (A0) phase velocity at low frequency-thickness values, <1.55 MHz mm for various temperatures. PMID:25373955

  17. Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves.

    PubMed

    Dodson, Jacob C; Inman, Daniel J

    2014-11-01

    Elastic wave velocities in metallic structures are affected by variations in environmental conditions such as changing temperature. This paper extends the theory of acoustoelasticity by allowing thermally induced strains in unconstrained isotropic media, and it experimentally examines the velocity variation of Lamb waves in aluminum plates (AL-6061) due to isothermal temperature deviations. This paper presents both thermally induced acoustoelastic constants and thermally varying effective Young's modulus and Poisson's ratio which include the third order elastic material constants. The experimental thermal sensitivity of the phase velocity (∂v(P)/∂θ) for both the symmetric and antisymmetric modes are bounded by two theories, the acoustoelastic Lamb wave theory with thermo-acoustoelastic tensors and the thermoelastic Lamb wave theory using an effective thermo-acoustoelastic moduli. This paper shows the theoretical thermally induced acoustoelastic Lamb wave thermal sensitivity (∂v(P)/∂θ) is an upper bound approximation of the experimental thermal changes, but the acoustoelastic Lamb wave theory is not valid for predicting the antisymmetric (A0) phase velocity at low frequency-thickness values, <1.55 MHz mm for various temperatures. PMID:25373955

  18. Ultra low-loss, isotropic optical negative-index metamaterial based on hybrid metal-semiconductor nanowires

    PubMed Central

    Paniagua-Domínguez, R.; Abujetas, D. R.; Sánchez-Gil, J. A.

    2013-01-01

    Recently, many fascinating properties predicted for metamaterials (negative refraction, superlensing, electromagnetic cloaking,…) were experimentally demonstrated. Unfortunately, the best achievements have no direct translation to the optical domain, without being burdened by technological and conceptual difficulties. Of particular importance within the realm of optical negative-index metamaterials (NIM), is the issue of simultaneously achieving strong electric and magnetic responses and low associated losses. Here, hybrid metal-semiconductor nanowires are proposed as building blocks of optical NIMs. The metamaterial thus obtained, highly isotropic in the plane normal to the nanowires, presents a negative index of refraction in the near-infrared, with values of the real part well below −1, and extremely low losses (an order of magnitude better than present optical NIMs). Tunability of the system allows to select the operating range in the whole telecom spectrum. The design is proven in configurations such as prisms and slabs, directly observing negative refraction. PMID:23514968

  19. Negative obstacle detection by thermal signature

    NASA Technical Reports Server (NTRS)

    Matthies, Larry; Rankin, A.

    2003-01-01

    Detecting negative obstacles (ditches, potholes, and other depressions) is one of the most difficult problems in perception for autonomous, off-road navigation. Past work has largely relied on range imagery, because that is based on the geometry of the obstacle, is largely insensitive to illumination variables, and because there have not been other reliable alternatives. However, the visible aspect of negative obstacles shrinks rapidly with range, making them impossible to detect in time to avoid them at high speed. To relive this problem, we show that the interiors of negative obstacles generally remain warmer than the surrounding terrain throughout the night, making thermal signature a stable property for night-time negative obstacle detection. Experimental results to date have achieved detection distances 45% greater by using thermal signature than by using range data alone. Thermal signature is the first known observable with potential to reveal a deep negative obstacle without actually seeing far into it. Modeling solar illumination has potential to extend the usefulness of thermal signature through daylight hours.

  20. Thermal stresses in a spherical pressure vessel having temperature-dependent, transversely isotropic, elastic properties

    NASA Technical Reports Server (NTRS)

    Tauchert, T. R.

    1976-01-01

    Rayleigh-Ritz and modified Rayleigh-Ritz procedures are used to construct approximate solutions for the response of a thick-walled sphere to uniform pressure loads and an arbitrary radial temperature distribution. The thermoelastic properties of the sphere are assumed to be transversely isotropic and nonhomogeneous; variations in the elastic stiffness and thermal expansion coefficients are taken to be an arbitrary function of the radial coordinate and temperature. Numerical examples are presented which illustrate the effect of the temperature-dependence upon the thermal stress field. A comparison of the approximate solutions with a finite element analysis indicates that Ritz methods offer a simple, efficient, and relatively accurate approach to the problem.

  1. Landau Theory of Trifluoride Negative Thermal Expansion Materials

    NASA Astrophysics Data System (ADS)

    Guzman-Verri, Gian; Brierley, Richard; Littlewood, Peter

    Negative thermal expansion (NTE) is a desirable property in designing materials that are dimensionally stable and resistant to thermal shocks. Transition metal trifluorides (MF3, M=Al, Cr, Fe, Ga, In, Ti, V) are a class of materials with ReO3 structure that exhibit large, isotropic, and tunable NTE over a wide temperature range, which makes them attractive material candidates. They exhibit large coefficients of thermal expansion near their cubic-to-rhombohedral structural phase change, which can be thermally or pressure induced. Though they have recently been the subject of intense experimental research, little work has been done on the theory side and it has almost exclusively focused on zero temperature properties. In this talk, we construct a simple Landau theory of trifluorides and use it to calculate the temperature dependence of the elastic constants, soft phonon frequencies, and volume expansion near their structural transition. We compare our results to existing experimental data on trifluorides. Work at the U of Costa Rica is supported by the Vicerrectoria de Investigacion under Project No. B5220. Work at Argonne Natl Lab is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  2. Scattering reduction for an acoustic sensor using a multilayered shell comprising a pair of homogeneous isotropic single-negative media

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Zhu, Xue-Feng; Liang, Bin; Li, Yong; Zou, Xin-Ye; Cheng, Jian-Chun

    2012-07-01

    We have designed a cylindrical multilayered structure to reduce scattering for an acoustic sensor while allowing it to receive external information. The proposed structure consists of two alternately arranged complementary media with homogeneous isotropic single-negative parameters. Numerical results show that the acoustic scattering from the sensor is suppressed considerably when the number of bilayers is large enough and the thickness of each bilayer is much smaller than the incident wavelength. This may be particularly significant for practical applications where acoustic measurements would otherwise be disturbed by the insertion of sensors.

  3. Tightly coupled tripole conductor pairs as constituents for a planar 2D-isotropic negative refractive index metamaterial.

    PubMed

    Vallecchi, Andrea; Capolino, Filippo

    2009-08-17

    A metamaterial, arranged by stacking layers of planar constituents suitably shaped to be responsive to arbitrarily linearly polarized incident waves is here shown to exhibit 2D-isotropic effective negative refractive index (NRI). The general concept underlying this metamaterial design consists of closely pairing two metallic particles to accomplish, as a result of their tight coupling, both symmetric and antisymmetric resonance modes, whose proper superposition can lead to an effective negative refraction response. The proposed structure is composed by layers of periodically arranged pairs of face coupled loaded tripoles printed on the opposite sides of a single dielectric substrate. Through a comprehensive characterization of the transmission properties of such metamaterial, together with the analysis of its dispersion diagram, conclusive evidence that the medium exhibits effective NRI properties as well as good impedance matching to free space is provided. We also describe some guidelines to design the proposed metamaterial with a prescribed operational frequency bandwidth, dependently on the structure parameters. PMID:19688000

  4. The determination of the elastic constants of isotropic solids by means of transient thermal surface gratings

    NASA Astrophysics Data System (ADS)

    Fivez, J.

    2016-01-01

    Starting from the coupled thermoelastic equations, an analytic formula is obtained for the surface deformation of a semi-infinite homogeneous and isotropic solid in an impulsive stimulated scattering (ISS) experiment. The surface ripple consists of a transient diffusive grating and a standing Rayleigh wave. The time evolution of the diffusive part directly reveals the thermal diffusivity. The oscillatory part then reveals the elastic properties, and explicit formulae are presented for retrieving the elastic moduli as a function of the frequency and amplitude of the standing Rayleigh wave. The analytic formulae not only allow to avoid time-consuming and delicate numerical integration but they also demonstrate the uniqueness of the inversion from signal to material parameters and offer direct insight into the error propagation. The formulae are applied to real experimental data, illustrating the strength and the limitations of the ISS technique.

  5. Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal-organic framework.

    PubMed

    Cliffe, Matthew J; Hill, Joshua A; Murray, Claire A; Coudert, François-Xavier; Goodwin, Andrew L

    2015-05-01

    Thermally-densified hafnium terephthalate UiO-66(Hf) is shown to exhibit the strongest isotropic negative thermal expansion (NTE) effect yet reported for a metal-organic framework (MOF). Incorporation of correlated vacancy defects within the framework affects both the extent of thermal densification and the magnitude of NTE observed in the densified product. We thus demonstrate that defect inclusion can be used to tune systematically the physical behaviour of a MOF. PMID:25866163

  6. Instrumented thick-walled tube method for measuring thermal pressure in fluids and isotropic stresses in thermosetting resins

    NASA Astrophysics Data System (ADS)

    Merzlyakov, Mikhail; Simon, Sindee L.; McKenna, Gregory B.

    2005-06-01

    We have developed a method for measuring the thermal pressure coefficient and cure-induced and thermally induced stresses based on an instrumented thick-walled tube vessel. The device has been demonstrated at pressures up to 330 MPa and temperatures to 300 °C. The method uses a sealed stainless steel thick-walled tube to impose three-dimensional isotropic constraints. The tube is instrumented with strain gauges in hoop and in axial directions and can be used in open or closed configurations. By making measurements of the isotropic stresses as a function of temperature, the method allows determination of the thermal pressure coefficient in both the glassy and rubbery (or liquid) states. The method also can be used to measure isotropic stress development in thermosetting resins during cure and subsequent thermal cycling. Experimental results are presented for sucrose benzoate, di-2-ethylhexylsebacate, and an epoxy resin. The current report shows that the method provides reliable estimates for the thermal pressure coefficient. The thermal pressure coefficient is determined with resolution on the order of 10kPa/K. Among advantages of the method is that the tubes are reusable, even when measurements are made for cure response of thermosetting resins.

  7. Elucidating Negative Thermal Expansion in MOF-5

    SciTech Connect

    Lock, Nina; Wu, Yue; Christensen, Mogens; Cameron, Lisa J.; Peterson, Vanessa K.; Bridgeman, Adam J.; Kepert, Cameron J.; Iversen, Bo B.

    2010-12-07

    Multi-temperature X-ray diffraction studies show that twisting, rotation, and libration cause negative thermal expansion (NTE) of the nanoporous metal-organic framework MOF-5, Zn{sub 4}O(1,4-benzenedicarboxylate){sub 3}. The near-linear lattice contraction is quantified in the temperature range 80-500 K using synchrotron powder X-ray diffraction. Vibrational motions causing the abnormal expansion behavior are evidenced by shortening of certain interatomic distances with increasing temperature according to single-crystal X-ray diffraction on a guest-free crystal over a broad temperature range. Detailed analysis of the atomic positional and displacement parameters suggests two contributions to cause the effect: (1) local twisting and vibrational motion of the carboxylate groups and (2) concerted transverse vibration of the linear linkers. The vibrational mechanism is confirmed by calculations of the dynamics in a molecular fragment of the framework.

  8. Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design.

    PubMed

    Kwon, Do-Hoon; Werner, Douglas H; Kildishev, Alexander V; Shalaev, Vladimir M

    2008-08-01

    A chiral optical negative-index metamaterial design of doubly periodic construction for the near-infrared spectrum is presented. The chirality is realized by incorporating sub-wavelength planar silver-aluminasilver resonators and arranging them in a left-handed helical (i.e., stair-step) configuration as a wave propagates through the metamaterial. An effective material parameter retrieval procedure is developed for general bi-isotropic metamaterials. A numerical design example is presented and the retrieved effective material parameters exhibiting a negative index of refraction are provided. PMID:18679454

  9. Power semiconductor device with negative thermal feedback

    NASA Technical Reports Server (NTRS)

    Borky, J. M.; Thornton, R. D.

    1970-01-01

    Composite power semiconductor avoids second breakdown and provides stable operation. It consists of an array of parallel-connected integrated circuits fabricated in a single chip. The output power device and associated low-level amplifier are closely coupled thermally, so that they have a predetermined temperature relationship.

  10. Symmetry Switching of Negative Thermal Expansion by Chemical Control.

    PubMed

    Senn, Mark S; Murray, Claire A; Luo, Xuan; Wang, Lihai; Huang, Fei-Ting; Cheong, Sang-Wook; Bombardi, Alessandro; Ablitt, Chris; Mostofi, Arash A; Bristowe, Nicholas C

    2016-05-01

    The layered perovskite Ca3-xSrxMn2O7 is shown to exhibit a switching from a material exhibiting uniaxial negative to positive thermal expansion as a function of x. The switching is shown to be related to two closely competing phases with different symmetries. The negative thermal expansion (NTE) effect is maximized when the solid solution is tuned closest to this region of phase space but is switched off suddenly on passing though the transition. Our results show for the first time that, by understanding the symmetry of the competing phases alone, one may achieve unprecedented chemical control of this unusual property. PMID:26927232

  11. Quantum Phase Transition and Thermal Entanglement in the Isotropic XXX Model

    NASA Astrophysics Data System (ADS)

    Ma, Fu-Wu; Kong, Xiang-Mu

    2012-06-01

    We investigate the quantum phase transition (QPT) and the pairwise thermal entanglement in the three-qubit Heisenberg XXX chain with Dzyaloshinskii—Moriya (DM) interaction under a magnetic field. The ground states of the system exist crossing points, which shows that the system exhibits a QPT. At a given temperature, the entanglement undergoes two sudden changes (platform-like behavior) as the DM interaction or external magnetic field increases. This special property can be used as the entanglement switch, which is also influenced by the temperature. We can modulate the DM interaction or external magnetic field to control the entanglement switch.

  12. Classical model of negative thermal expansion in solids with expanding bonds

    NASA Astrophysics Data System (ADS)

    Schick, Joseph T.; Rappe, Andrew M.

    2016-06-01

    We study negative thermal expansion (NTE) in model lattices with multiple atoms per cell and first- and second-nearest neighbor interactions using the (anharmonic) Morse potential. By exploring the phase space of neighbor distances and thermal expansion rates of the bonds, we determine the conditions under which NTE emerges. By permitting all bond lengths to expand at different rates, we find that NTE is possible without appealing to fully rigid units. Nearly constant, large-amplitude, isotropic NTE is observed up to the melting temperature in a classical molecular dynamics model of a ReO3-like structure when the rigidity of octahedral units is almost completely eliminated. Only weak NTE, changing over to positive expansion, is observed when the corner-linked octahedra are rigid, with flexible second-neighbor bonds between neighboring octahedra permitting easy rotation. We observe similar changes to thermal expansion behavior for the diamond lattice: NTE when second-neighbor interactions are weak to positive thermal expansion when second-neighbor interactions are strong. From these observations, we suggest that the only essential local conditions for NTE are atoms with low coordination numbers along with very low energies for changing bond angles relative to bond-stretching energies.

  13. Thermal composition fluctuations near the isotropic Lifshitz critical point in a ternary mixture of a homopolymer blend and diblock copolymer

    NASA Astrophysics Data System (ADS)

    Schwahn, Dietmar; Mortensen, Kell; Frielinghaus, Henrich; Almdal, Kristoffer; Kielhorn, Lars

    2000-03-01

    We have studied thermal composition fluctuations of a ternary symmetric homopolymer/diblock copolymer system of PEE/PDMS/PEE-PDMS [PEE and PDMS being poly(ethyl ethylene) and poly(dimethyl siloxane), respectively] in its disordered state with small angle neutron scattering for concentration Φ of diblocks up to 15%. The phase diagram shows three characteristic regimes; (1) below the Lifshitz concentration ΦLL≅9%; (2) in the very near vicinity of the Lifshitz concentration; and (3) above ΦLL. In the regime (1) of low diblock content the maximum neutron intensity is obtained at Q=0 and phase separation into macroscopic large domains is observed at low temperatures. With increasing diblock content the thermal fluctuations indicate a crossover from 3d-Ising to isotropic Lifshitz critical behavior with critical exponents of the susceptibility γ=(1.62±0.01) and correlation length ν=(0.99±0.04) appreciably larger than in the 3d-Ising case. In the structure factor this crossover is accompanied by a strong reduction of the Q2 term leading to the dominance of the Q4 term; the restoring force of the thermal fluctuations is strongly reduced as the Q2 term is proportional to the surface energy. Near the Lifshitz critical temperature a further crossover was observed leading to the appreciably larger critical exponents γ=(2.44±0.08) and ν=(1.22±0.08) and a stabilization of the disordered regime visible through a decrease of the phase boundary by nearly 10 K. This crossover is interpreted by the formation of fluctuation induced inhomogeneous diblock distribution at the interface of the thermal fluctuations. (2) In the intermediate regime between 9% and 12% diblock content the Lifshitz line was crossed twice upon increasing the temperature from low to high temperatures; at low and high temperatures the structure factor S(Q) shows diblock character (maximum of S(Q) at Q≠0) while at intermediate temperature blendlike character (maximum of S(Q) at Q=0). At low

  14. Using Thermal Radiation in Detection of Negative Obstacles

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2009-01-01

    A method of automated detection of negative obstacles (potholes, ditches, and the like) ahead of ground vehicles at night involves processing of imagery from thermal-infrared cameras aimed at the terrain ahead of the vehicles. The method is being developed as part of an overall obstacle-avoidance scheme for autonomous and semi-autonomous offroad robotic vehicles. The method could also be applied to help human drivers of cars and trucks avoid negative obstacles -- a development that may entail only modest additional cost inasmuch as some commercially available passenger cars are already equipped with infrared cameras as aids for nighttime operation.

  15. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium

    NASA Technical Reports Server (NTRS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1991-01-01

    This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.

  16. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling

    NASA Astrophysics Data System (ADS)

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  17. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    NASA Astrophysics Data System (ADS)

    Hu, Jiuning; Chen, Yong P.

    2013-06-01

    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.

  18. Phonon anharmonicity and negative thermal expansion in SnSe

    DOE PAGESBeta

    Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier

    2016-08-09

    In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy,more » in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.« less

  19. Phonon anharmonicity and negative thermal expansion in SnSe

    NASA Astrophysics Data System (ADS)

    Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier

    2016-08-01

    The anharmonic phonon properties of SnSe in the P n m a phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.

  20. Negative thermal expansion in Y 2Mo 3O 12

    NASA Astrophysics Data System (ADS)

    Marinkovic, B. A.; Jardim, P. M.; de Avillez, R. R.; Rizzo, F.

    2005-11-01

    The crystal structure of Y 2Mo 3O 12 was refined by the Rietveld method for 130 °C as orthorhombic with space group Pbcn (No. 60). It is isostructural to Fe 2Mo 3O 12 and consists of vertex sharing YO 6 and MoO 4 building polyhedra. Y 2Mo 3O 12 has very high negative thermal expansion along all three crystallographic directions in the 130-900 °C temperature range. The overall linear coefficient of thermal expansion ( α=α/3) is -1.26×10 °C. Water molecules enter freely in Y 2Mo 3O 12 microchannels and seem to have a role in partial amorphization of this compound at room temperature.

  1. Thermal rectification and negative differential thermal resistance in a driven two segment classical Heisenberg chain.

    PubMed

    Bagchi, Debarshee

    2013-12-11

    Using computer simulation we investigate thermal transport in a two segment classical Heisenberg spin chain with nearest neighbor interaction and in the presence of an external magnetic field. The system is thermally driven by heat baths attached at the two ends and transport properties are studied using energy conserving dynamics. We demonstrate that by properly tuning the parameters thermal rectification can be achieved-the system behaves as a good conductor of heat along one direction but becomes a bad conductor when the thermal gradient is reversed, and crucially depends on nonlinearity and spatial asymmetry. Moreover, suitable tuning of the system parameters gives rise to the counterintuitive and technologically important feature known as negative differential thermal resistance (NDTR). We find that the crucial factor responsible for the emergence of NDTR is a suitable mechanism for impeding the current in the bulk of the system. PMID:24195913

  2. Negative differential thermal conductance and thermal rectification effects across a graphene-based superconducting junction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingfei; Zhang, Zhi

    2016-05-01

    We study the heat transport in a graphene-based normal-superconducting junction by solving the Bogoliubov-de Gennes (BdG) equation. There are two effects, the competitive and cooperative effects, which come from the interaction between the temperature-dependent energy-gap function in the superconducting region and the occupation difference of quasiparticles. It is found that the competitive effect can not only bring the negative differential thermal conductance effect but also the thermal rectification effect. By contrast, the cooperative effect just causes the thermal rectification effect. Furthermore, the thermal rectification ratio and the magnitude of heat current should be seen as two inseparable signs for characterizing the thermal rectification effect. These discoveries can add more application for the graphene-based superconducting junction, such as heat diode and heat transistor, at cryogenic temperatures.

  3. International Comparison on Thermal-Diffusivity Measurements for Iron and Isotropic Graphite Using the Laser Flash Method in CCT-WG9

    NASA Astrophysics Data System (ADS)

    Akoshima, M.; Hay, B.; Zhang, J.; Chapman, L.; Baba, T.

    2013-05-01

    The first international pilot study of thermal-diffusivity measurements using the laser flash (LF) method was organized by the working group 9 (WG9) of the Consultative Committee for Thermometry (CCT) of the Bureau International des Poids et Mesures (BIPM). Four National Metrology Institutes (NMIs) participated in this comparison. Thermal-diffusivity measurements on the Armco iron and the isotropic graphite IG-110 were carried out from room temperature to about 1200 K. The sample sets consist of five disk-shaped specimens of 10 mm in diameter and (1.0, 1.4, 2.0, 2.8, and 4.0) mm in thickness, each cut from the same block of material. These sample sets were specifically prepared for the comparison and sent to the participants. In the pilot comparison, the thermal diffusivity of each sample was estimated using the LF method with a specific extrapolating procedure. This procedure has the advantage of determining the inherent thermal diffusivity of the material. The extrapolated value in a plot of measured apparent thermal-diffusivity values versus the amplitude of the output signal corresponding to the temperature rise during each measurement is defined as the inherent thermal diffusivity. The overall results showed good agreement between independent laboratories, measurement equipment, and specimen thicknesses. The thermal diffusivities of the materials were determined using our measured results. A quantitative evaluation of the variability of the data obtained by the participants has been done, by evaluating the deviations from the reference value, the Z-value, and the En-number. Some data showed a large deviation from the reference value. It was concluded that these are caused by an insufficient time response of the measurement equipment and some difficulties with changing the pulsed heating energy. The effect of the thermal expansion on the thermal diffusivity was checked. It was found that the thermal-expansion effect was very small and negligible in this case.

  4. Negative thermal ion mass spectrometry of oxygen in phosphates

    NASA Astrophysics Data System (ADS)

    Holmden, C.; Papanastassiou, D. A.; Wasserburg, G. J.

    1997-06-01

    A novel technique for the precise measurement of oxygen isotopes by negative thermal ion mass spectrometry (NTIMS) is presented. The technique is ideally suited to the analysis of oxygen isotopes in phosphates which form intense P03 ion beams. Since P is monoisotopic, the mass spectrum for P0 3- at 79, 80, and 81 corresponds to 1660, 170, and 180. Natural and synthetic phosphates are converted and loaded on the mass spectrometer filament as Ag 3PO 4 precipitated directly from ammoniacal solution. To lower the work function of the filament, BaCl, is added in a 1:1 molar ratio of PO 4:Ba. Using these procedures, Br - mass interference (at 79 and 81 amu) is eliminated for typical analyses. Experiments with 180-enriched water show less than 1 % O-exchange between sample PO 4 and adsorbed water, and there is no O-exchange with trace OZ present in the mass spectrometer source chamber. The ionization efficiency of PO 4, as P0 3- is >10% compared to 0.01% for both conventional dual inlet Gas Isotope Ratio Mass Spectrometry (GIRMS) and secondary ion mass spectrometry (SIMS). Therefore, NTIMS offers exceptional sensitivity enabling routine and precise oxygen isotope analysis of sub-microgram samples of PO 4, (<21 nmoles equivalent CO 2 gas) without need for lengthy chemical pre-treatment reproducibility of the sample. Overall external precision is ±1%c (2σ) for 18O/16 O and 170/15O with of instrumental isotope fractionation (calculated from 18O/16O of ±0.5%c amu -1. Small phosphate samples including single mineral grains from meteorites, or apatite microfossils, can be analyzed by this technique.

  5. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    PubMed

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-01

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials. PMID:25864730

  6. Indentation of a Punch with Chemical or Heat Distribution at Its Base into Transversely Isotropic Half-Space: Application to Local Thermal and Electrochemical Probes

    SciTech Connect

    Karapetian, E.; Kalinin, Sergei V

    2013-01-01

    The exact solution to the coupled problem of indentation of the punch, subjected to either heat or chemical substance distribution at its base, into three-dimensional semi-infinite transversely isotropic material is presented. The entire set of field components are derived in terms of integrals of elementary functions using methods of the potential theory and recently obtained, by the authors, results for the general solution of the field equations in terms of four harmonic potential functions. The exact solution for the stiffness relations that relate applied force, total chemical diffusion/heat flux in the domain of the contact, with indenter displacement, temperature, or chemical substance distribution of diffusing species at the base, and materials' chemo/thermo-elastic properties are obtained in closed form and in terms of elementary functions. These results can be used to understand the image formation mechanisms in techniques such as thermal scanning probe microscopy and electrochemical strain microscopy

  7. Indentation of a punch with chemical or heat distribution at its base into transversely isotropic half-space: Application to local thermal and electrochemical probes

    NASA Astrophysics Data System (ADS)

    Karapetian, Edgar; Kalinin, Sergei V.

    2013-05-01

    The exact solution to the coupled problem of indentation of the punch, subjected to either heat or chemical substance distribution at its base, into three-dimensional semi-infinite transversely isotropic material is presented. The entire set of field components are derived in terms of integrals of elementary functions using methods of the potential theory and recently obtained, by the authors, results for the general solution of the field equations in terms of four harmonic potential functions. The exact solution for the stiffness relations that relate applied force, total chemical diffusion/heat flux in the domain of the contact, with indenter displacement, temperature, or chemical substance distribution of diffusing species at the base, and materials' chemo/thermo-elastic properties are obtained in closed form and in terms of elementary functions. These results can be used to understand the image formation mechanisms in techniques such as thermal scanning probe microscopy and electrochemical strain microscopy.

  8. Systematic and controllable negative, zero, and positive thermal expansion in cubic Zr(1-x)Sn(x)Mo2O8.

    PubMed

    Tallentire, Sarah E; Child, Felicity; Fall, Ian; Vella-Zarb, Liana; Evans, Ivana Radosavljević; Tucker, Matthew G; Keen, David A; Wilson, Claire; Evans, John S O

    2013-08-28

    We describe the synthesis and characterization of a family of materials, Zr1-xSnxMo2O8 (0 < x < 1), whose isotropic thermal expansion coefficient can be systematically varied from negative to zero to positive values. These materials allow tunable expansion in a single phase as opposed to using a composite system. Linear thermal expansion coefficients, αl, ranging from -7.9(2) × 10(-6) to +5.9(2) × 10(-6) K(-1) (12-500 K) can be achieved across the series; contraction and expansion limits are of the same order of magnitude as the expansion of typical ceramics. We also report the various structures and thermal expansion of "cubic" SnMo2O8, and we use time- and temperature-dependent diffraction studies to describe a series of phase transitions between different ordered and disordered states of this material. PMID:23895493

  9. Bistability and thermal coupling in elastic metamaterials with negative compressibility.

    PubMed

    Chen, M L; Karpov, E G

    2014-09-01

    When elastic metamaterials are subjected to tension they may respond by undergoing contraction instead of expansion as an ordinary material would (and vice versa). This negative compressibility behavior can only occur if the system moves from one stable state to a different stable state as the force is applied, i.e., displays bistability. With a simple model potential, we demonstrate that this negative behavior leading to a pinched hysteresis on the stress cycle diagram is a solid-to-solid condensation-type phase transformation. In addition, we show that the negative compressibility may disappear in realistic dynamical systems, unless coupling with an external heat sink is strong enough to stabilize the newly formed phase. Such a material is an open thermodynamical system where the condensation process is accompanied by a fast return of the released heat into the ambient. Molecular dynamics with Verlet integration is used to study the dynamics of this behavior. PMID:25314553

  10. Negative thermal conductivity of chains of rotors with mechanical forcing

    NASA Astrophysics Data System (ADS)

    Iacobucci, Alessandra; Legoll, Frédéric; Olla, Stefano; Stoltz, Gabriel

    2011-12-01

    We consider chains of rotors subjected to both thermal and mechanical forcings in a nonequilibrium steady state. Unusual nonlinear profiles of temperature and velocities are observed in the system. In particular, the temperature is maximal in the center, which is an indication of the nonlocal behavior of the system. Despite this uncommon behavior, local equilibrium holds for long enough chains. Our numerical results also show that when the mechanical forcing is strong enough, the energy current can be increased by an inverse temperature gradient. This counterintuitive result again reveals the complexity of nonequilibrium states.

  11. Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhu, Jian-Xin

    2013-06-01

    Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.

  12. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    PubMed

    Cai, Weizhao; Katrusiak, Andrzej

    2014-01-01

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices. PMID:24993679

  13. Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Takenaka, K.; Hamada, T.; Kasugai, D.; Sugimoto, N.

    2012-10-01

    We controlled thermal expansion of metal matrix composites (MMCs) that had been blended using antiperovskite manganese nitrides with giant negative thermal expansion (NTE). The NTE of the manganese nitrides, which is isotopic, is greater than -30 ppm K-1 in α (coefficient of linear thermal expansion), which is several or ten times as large as that of conventional NTE materials. These advantages of nitrides are desirable for practical application as a thermal-expansion compensator, which can suppress thermal expansion of various materials including metals and even plastics. Powder metallurgy using pulsed electric current sintering enables us to reduce temperatures and times for fabrication of MMCs. Consequently, chemical reactions between matrix (Al, Ti, Cu) and filler can be controlled and even high-melting-point metals can be used as a matrix. Thermal expansion of these MMCs is tunable across widely various α values, even negative ones, with high reproducibility. These composites retain a certain amount of voids. Formation of rich and stable interfacial bonding, overcoming large mismatch in thermal expansion, remains as a problem that is expected to hinder better composite performance.

  14. Negative stiffness in ZrW2O8 inclusions as a result of thermal stress

    NASA Astrophysics Data System (ADS)

    Romao, Carl P.; White, Mary Anne

    2016-07-01

    Materials with negative stiffness, although inherently unstable in isolation, can be stabilized by external constraints, for example, by inclusion within a material with positive stiffness. We have identified ZrW2O8, a material with negative thermal expansion, as a candidate negative-stiffness material arising from its negative bulk modulus during a ferroelastic cubic-orthorhombic pressure-induced phase transition (PIPT). A hyperelastic constituent equation for this transition was developed and implemented in a finite-element model of ZrW2O8 inclusions in positive stiffness, positive thermal expansion matrices. In these matrices, thermal stress during cooling, originating from thermal expansion mismatch, would be sufficient to initiate the PIPT after small temperature drops. The subsequent progress of the PIPT depends strongly on the thermoelastic properties of the matrix, with stiff, low thermal expansion matrices stabilizing the transition state over broad temperature ranges, indicating that ZrW2O8 or materials with similar properties could be used as versatile negative-stiffness inclusion materials. The models were used to understand previous experiments on composites that include ZrW2O8.

  15. Thermal, vibrational, and thermoelastic properties of Y2Mo3O12 and their relations to negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Romao, Carl P.; Miller, Kimberly J.; Johnson, Michel B.; Zwanziger, J. W.; Marinkovic, Bojan A.; White, Mary Anne

    2014-07-01

    Y2Mo3O12, a material that exhibits negative thermal expansion (NTE) from 10 to 1173 K, offers an excellent opportunity to examine relationships between NTE and other physical properties over a wide temperature range. We report experimental heat capacity, thermal conductivity, and elastic properties of Y2Mo3O12, as well as results of an ab initio study of the lattice dynamics, and show how the anomalously high heat capacity and low thermal conductivity are correlated with NTE. We also report the ab initio elastic tensor and experimental velocity of sound of Y2Mo3O12 and use it to calculate the thermal stresses in a simulated polycrystal using finite-element analysis, showing that elastic anisotropy and thermal expansion anisotropy couple to influence the properties of the bulk solid.

  16. Simulation study of negative thermal expansion in yttrium tungstate Y2W3O12.

    PubMed

    Rimmer, Leila H N; Dove, Martin T

    2015-05-13

    A simulation study of negative thermal expansion in Y2W3O12 was carried out using calculations of phonon dispersion curves through the application of density functional perturbation theory. The mode eigenvectors were mapped onto flexibility models and results compared with calculations of the mode Grüneisen parameters. It was found that many lower-frequency phonons contribute to negative thermal expansion in Y2W3O12, all of which can be described in terms of rotations of effectively rigid WO4 tetrahedra and Y-O rods. The results are strikingly different from previous phonon studies of higher-symmetry materials that show negative thermal expansion. PMID:25880236

  17. Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Lakes, R. S.

    2001-12-01

    Particulate composites with negative stiffness inclusions in a viscoelastic matrix are shown to have higher thermal expansion than that of either constituent and exceeding conventional bounds. It is also shown theoretically that other extreme linear coupled field properties including piezoelectricity and pyroelectricity occur in layer- and fiber-type piezoelectric composites, due to negative inclusion stiffness effects. The causal mechanism is a greater deformation in and near the inclusions than the composite as a whole. A block of negative stiffness material is unstable, but negative stiffness inclusions in a composite can be stabilized by the surrounding matrix and can give rise to extreme viscoelastic effects in lumped and distributed composites. In contrast to prior proposed composites with unbounded thermal expansion, neither the assumptions of void spaces nor slip interfaces are required in the present analysis.

  18. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration

    PubMed Central

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Chao; Liu, Shen; Yang, Kaiming; Wang, Ying; Yuan, Xiaocong; Wang, Guo Ping; Zhang, Wenjing

    2016-01-01

    We demonstrate a method for the preparation of negative-index fibre Bragg gratings (FBGs) using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free single-mode fibre using a femtosecond laser directed through a phase mask, and then a highly polarization dependant phase-shifted FBG (P-PSFBG) was fabricated from the type I-IR FBG by overexposure to the femtosecond laser. Subsequently, the P-PSFBG was thermally annealed at 800 °C for 12 hours. Grating regeneration was observed during thermal annealing, and a negative-index FBG was finally obtained with a high reflectivity of 99.22%, an ultra-low insertion loss of 0.08 dB, a blueshift of 0.83 nm in the Bragg wavelength, and an operating temperature of up to 1000 °C for more than 10 hours. Further annealing tests showed that the thermal stability of the negative-index FBG was lower than that of a type II-IR FBG, but much higher than that of a type I-IR FBG. Moreover, the formation of such a negative-index grating may result from thermally regenerated type IIA photosensitivity. PMID:26979090

  19. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    NASA Astrophysics Data System (ADS)

    Takezawa, Akihiro; Kobashi, Makoto; Kitamura, Mitsuru

    2015-07-01

    Additive manufacturing (AM) could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL) model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than -1 × 10-4 K-1 was observed for each test piece of the N = 3 experiment.

  20. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na3OBr and Na4OI2

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wen, Ting; Park, Changyong; Kenney-Benson, Curtis; Pravica, Michael; Yang, Wenge; Zhao, Yusheng

    2016-01-01

    The structure stability under high pressure and thermal expansion behavior of Na3OBr and Na4OI2, two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na3OBr and Na4OI2, respectively. The cubic Na3OBr structure and tetragonal Na4OI2 with intergrowth K2NiF4 structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na4OI2 exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20-80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications.

  1. The mechanism of the area negative thermal expansion in KBe2BO3F2 family crystals: A first-principles study

    NASA Astrophysics Data System (ADS)

    Jiang, Xingxing; Molokeev, Maxim S.; Li, Wei; Wu, Shaofan; Lin, Zheshuai; Wu, Yicheng; Chen, Chuangtian

    2016-02-01

    A very recent study demonstrated that the KBe2BO3F2 (KBBF) family of crystals, including KBBF, RbBe2BO3F2, and CsBe2BO3F2, are the only known borates exhibiting a rarely occurring isotropic area negative thermal expansion (NTE) behavior, over a very large temperature range. In the present work, the NTE mechanism in these crystals is comprehensively investigated using the first-principles calculations. It is revealed that the area NTE behavior mainly originates from the concerted distortion of [BeO3F] tetrahedra in the two-dimensional [Be2BO3F2]∞ framework with respect to temperature, while the [BO3] triangles remain almost rigid. Moreover, the different magnitude of NTE effect in the three crystals is attributed to the interaction difference between the alkali metal atoms (K, Rb, or Cs) and the [Be2BO3F2]∞ layer.

  2. First-principles study of negative thermal expansion in zinc oxide

    NASA Astrophysics Data System (ADS)

    Wang, Zhanyu; Wang, Fei; Wang, Lei; Jia, Yu; Sun, Qiang

    2013-08-01

    We present the first-principles calculations of vibrational and thermal properties for wurtzite and zinc-blende zinc oxide (ZnO) within DFT and quasi-harmonic approximation, especially for their negative thermal expansion (NTE) behavior. For the wurtzite and zinc-blende phases, negative thermal expansions are obtained at T < 95 K and T < 84 K, respectively. For the wurtzite structure, calculated phonon frequencies and mode Grüneisen parameters of low-energy modes are in good agreement with that determined experimentally. And the thermal expansion coefficient is found to be in good agreement with the experimental results. Like many other NTE semiconductors, detailed study of both phases shows that maximum contribution to NTE comes from low-frequency transverse acoustic modes, while for the wurtzite structure the contribution of longitudinal acoustic and lowest-energy optical modes is not ignorable. From the specific analysis of the vibration modes, we found that the negative thermal expansion in ZnO is dominated by the tension effect.

  3. Negative thermal expansibility change for dissociation of lysozyme variant amyloid protofibril.

    PubMed

    Ishiguro, Ryo; Matsuo, Hiroshi; Kameyama, Keiichi; Tachibana, Hideki; Fujisawa, Tetsuro

    2015-03-01

    A disulfide-deficient variant of hen lysozyme, 0SS, is known to form an amyloid protofibril spontaneously, and to dissociate into monomers at high hydrostatic pressure. We carried out native PAGE at various temperatures (20-35°C) and pressures (0.1-200 MPa), to characterize the dissociation equilibrium of disulfide-deficient variant of hen lysozyme amyloid protofibril. Based on the density profiles, the partial molar volume and thermal expansibility changes for dissociation, ΔvD and ΔeD , were obtained to be -74 cm(3) /mol at 25°C and -2.3 cm(3) mol(-1) K(-1) , respectively. The dissociation of amyloid fibril destroys the cross β-structure, and such conformational destruction in native protein fold rarely accompanies negative thermal expansibility change. We discussed the negative thermal expansibility change in terms of hydration and structural packing of the amyloid protofibril. PMID:25665167

  4. Magnetization reversal and negative volume thermal expansion in Fe doped Ca2RuO4

    NASA Astrophysics Data System (ADS)

    Qi, T. F.; Yuan, S. J.; Ye, F.; Chi, S.; Terzic, J.; Zhang, H.; Zhao, Z.; Liu, X.; Parkin, S.; Mao, W. L.; Cao, G.

    We report structural, magnetic, transport and thermal properties of single-crystal Ca2Ru1-xFexO4 (0 <= x <= 0.2) as functions of pressure, magnetic field and temperature. The central findings of this work are a pronounced magnetization reversal and a negative thermal expansion that are induced by Fe doping. Our results including neutron diffraction data suggest that the magnetization reversal is primarily a result of different temperature dependences of two antiparallel, competing Ru and Fe sublattices and that the negative thermal expansion is achieved via magnetic and metal-insulator transitions. We will present and discuss our results with comparison drawn with relevant systems. This work was supported by the NSF via Grant No. DMR-1265162.

  5. Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Blanchard, Romain; Zhang, Shuyan; Genevet, Patrice; Ko, Changhyun; Ramanathan, Shriram; Capasso, Federico

    2013-10-01

    We experimentally demonstrate that a thin (approximately 150-nm) film of vanadium dioxide (VO2) deposited on sapphire has an anomalous thermal emittance profile when heated, which arises because of the optical interaction between the film and the substrate when the VO2 is at an intermediate state of its insulator-metal transition (IMT). Within the IMT region, the VO2 film comprises nanoscale islands of the metal and dielectric phases and can thus be viewed as a natural, disordered metamaterial. This structure displays “perfect” blackbodylike thermal emissivity over a narrow wavelength range (approximately 40cm-1), surpassing the emissivity of our black-soot reference. We observe large broadband negative differential thermal emittance over a >10°C range: Upon heating, the VO2-sapphire structure emits less thermal radiation and appears colder on an infrared camera. Our experimental approach allows for a direct measurement and extraction of wavelength- and temperature-dependent thermal emittance. We anticipate that emissivity engineering with thin-film geometries comprising VO2 and other thermochromic materials will find applications in infrared camouflage, thermal regulation, and infrared tagging and labeling.

  6. Negative differential thermal conductance and heat amplification in superconducting hybrid devices

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Timossi, Giuliano; Bosisio, Riccardo; Solinas, Paolo; Giazotto, Francesco

    2016-04-01

    We investigate the thermal transport properties of a temperature-biased Josephson tunnel junction composed of two different superconductors. We show that this simple system can provide a large negative differential thermal conductance (NDTC) with a peak-to-valley ratio of ˜3 in the transmitted electronic heat current. The NDTC is then exploited to outline the caloritronic analog of the tunnel diode, which can exhibit a modulation of the output temperature as large as 80 mK at a bath temperature of 50 mK. Moreover, this device may work in a regime of thermal hysteresis that can be used to store information as a thermal memory. On the other hand, the NDTC effect offers the opportunity to conceive two different designs of a thermal transistor, which might operate as a thermal switch or as an amplifier/modulator. The latter shows a heat amplification factor >1 in a 500-mK-wide working region of the gate temperature. After the successful realization of heat interferometers and thermal diodes, this kind of structures would complete the conversion of the most important electronic devices in their thermal counterparts, breaking ground for coherent caloritronics nanocircuits where heat currents can be manipulated at will.

  7. Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks.

    PubMed

    Shang, Ran; Xu, Guan-Cheng; Wang, Zhe-Ming; Gao, Song

    2014-01-20

    We present three Mg-formate frameworks, incorporating three different ammoniums: [NH4][Mg(HCOO)3] (1), [CH3CH2NH3][Mg(HCOO)3] (2) and [NH3(CH2)4NH3][Mg2(HCOO)6] (3). They display structural phase transitions accompanied by prominent dielectric anomalies and anisotropic and negative thermal expansion. The temperature-dependent structures, covering the whole temperature region in which the phase transitions occur, reveal detailed structural changes, and structure-property relationships are established. Compound 1 is a chiral Mg-formate framework with the NH4(+) cations located in the channels. Above 255 K, the NH4(+) cation vibrates quickly between two positions of shallow energy minima. Below 255 K, the cations undergo two steps of freezing of their vibrations, caused by the different inner profiles of the channels, producing non-compensated antipolarization. These lead to significant negative thermal expansion and a relaxor-like dielectric response. In perovskite 2, the orthorhombic phase below 374 K possesses ordered CH3CH2NH3(+) cations in the cubic cavities of the Mg-formate framework. Above 374 K, the structure becomes trigonal, with trigonally disordered cations, and above 426 K, another phase transition occurs and the cation changes to a two-fold disordered state. The two transitions are accompanied by prominent dielectric anomalies and negative and positive thermal expansion, contributing to the large regulation of the framework coupled the order-disorder transition of CH3CH2NH3(+). For niccolite 3, the gradually enhanced flipping movement of the middle ethylene of [NH3(CH2)4NH3](2+) in the elongated framework cavity finally leads to the phase transition with a critical temperature of 412 K, and the trigonally disordered cations and relevant framework change, providing the basis for the very strong dielectric dispersion, high dielectric constant (comparable to inorganic oxides), and large negative thermal expansion. The spontaneous polarizations

  8. Effect of negative emotions evoked by light, noise and taste on trigeminal thermal sensitivity

    PubMed Central

    2014-01-01

    Background Patients with migraine often have impaired somatosensory function and experience headache attacks triggered by exogenous stimulus, such as light, sound or taste. This study aimed to assess the influence of three controlled conditioning stimuli (visual, auditory and gustatory stimuli and combined stimuli) on affective state and thermal sensitivity in healthy human participants. Methods All participants attended four experimental sessions with visual, auditory and gustatory conditioning stimuli and combination of all stimuli, in a randomized sequence. In each session, the somatosensory sensitivity was tested in the perioral region with use of thermal stimuli with and without the conditioning stimuli. Positive and Negative Affect States (PANAS) were assessed before and after the tests. Subject based ratings of the conditioning and test stimuli in addition to skin temperature and heart rate as indicators of arousal responses were collected in real time during the tests. Results The three conditioning stimuli all induced significant increases in negative PANAS scores (paired t-test, P ≤0.016). Compared with baseline, the increases were in a near dose-dependent manner during visual and auditory conditioning stimulation. No significant effects of any single conditioning stimuli were observed on trigeminal thermal sensitivity (P ≥0.051) or arousal parameters (P ≥0.057). The effects of combined conditioning stimuli on subjective ratings (P ≤0.038) and negative affect (P = 0.011) were stronger than those of single stimuli. Conclusions All three conditioning stimuli provided a simple way to evoke a negative affective state without physical arousal or influence on trigeminal thermal sensitivity. Multisensory conditioning had stronger effects but also failed to modulate thermal sensitivity, suggesting that so-called exogenous trigger stimuli e.g. bright light, noise, unpleasant taste in patients with migraine may require a predisposed or sensitized nervous

  9. Pronounced negative thermal expansion from a simple structure : Cubic ScF{sub 3}.

    SciTech Connect

    Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P.; X-Ray Science Division; Georgia Inst. of Tech.

    2010-10-19

    Scandium trifluoride maintains a cubic ReO{sub 3} type structure down to at least 10 K, although the pressure at which its cubic to rhombohedral phase transition occurs drops from >0.5 GPa at {approx}300 K to 0.1-0.2 GPa at 50 K. At low temperatures it shows strong negative thermal expansion (NTE) (60-110 K, {alpha}{sub l} {approx} -14 ppm K{sup -1}). On heating, its coefficient of thermal expansion (CTE) smoothly increases, leading to a room temperature CTE that is similar to that of ZrW{sub 2}O{sub 8} and positive thermal expansion above {approx}1100 K. While the cubic ReO{sub 3} structure type is often used as a simple illustration of how negative thermal expansion can arise from the thermally induced rocking of rigid structural units, ScF{sub 3} is the first material with this structure to provide a clear experimental illustration of this mechanism for NTE.

  10. Sound velocity of high-strength polymer with negative thermal expansion coefficient

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Ueno, M.; Okuda, Y.; Burmistrov, S.; Yamanaka, A.

    2003-05-01

    Sound velocities of fiber reinforced plastics (FRPs) were measured along the fiber axis at temperatures between 360 and 77 K. We used two kinds of the high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which have negative thermal expansion coefficients. They also have high thermal conductivities and high resistances for flash over voltage, and are expected as new materials for coil bobbins or spacers at cryogenic temperatures. They have very large sound velocities of about 9000 (m/s) at 77 K, which are 4.5 times larger than that of the ordinary polyethylene fiber.

  11. Mechanism of negative thermal expansion in LaC2 from first-principles prediction

    NASA Astrophysics Data System (ADS)

    Liu, Yaming; Jia, Yu; Sun, Qiang; Liang, Erjun

    2015-01-01

    Based on density functional theory and quasiharmonic approximation, the coefficients of thermal expansion (CTE) and negative thermal expansion (NTE) mechanism of tetragonal LaC2 are studied. Numerical results show that there is an obvious NTE parallel to c-axis, and the CTE is approximately αc = - 1.67 ×10-6K-1, which coincides with the experimental data - 1.0 ×10-6K-1. In particular, a tiny NTE phenomenon along a-axis below 10 K has been predicted. The vibrational modes Eu and Eg at Γ (0 , 0 , 0), and other three modes at M (0.5 , 0.5 , 0) and Z (0 , 0 , 0.5), give rise to negative Grüneisen parameters and therefore contribute to the NTE along a- and c-axis. Additionally, the bulk CTE was calculated to be positive, our CTE values and temperature intervals agree well with the presented experiments.

  12. Negative thermal expansion and anomalies of heat capacity of LuB50 at low temperatures

    DOE PAGESBeta

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.

    2015-07-20

    Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the summore » of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.« less

  13. First-principles study on negative thermal expansion of PbTiO3

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Xie, Ying; Chen, Jun; Fu, Honggang; Xing, Xianran

    2013-11-01

    It is well known that perovskite-type PbTiO3 behaves negative thermal expansion in a wide temperature range from room temperature to Curie temperature (763 K). The present study reports the first-principles study of the anisotropic thermal expansion of PbTiO3, in the framework of the density-functional theory and the density-functional perturbation theory. The curve of temperature dependence of the unit cell volume is presented from 20 to 520 K through the calculation of the minimum of total free energy at each temperature point. The negative thermal expansion of PbTiO3 is calculated without empirical parameters. Furthermore, the distinctive thermodynamic act of PbTiO3 from expanding to contracting at tetragonal phase is reproduced. The ab-initio calculations reveal that this unique appearance depends on the phonon vibration. The dynamical contributions of various atoms are also calculated to account for the disparate role of Pb-O and Ti-O bond.

  14. First-principles study on negative thermal expansion of PbTiO{sub 3}

    SciTech Connect

    Wang, Fangfang; Chen, Jun; Xing, Xianran; Xie, Ying; Fu, Honggang

    2013-11-25

    It is well known that perovskite-type PbTiO{sub 3} behaves negative thermal expansion in a wide temperature range from room temperature to Curie temperature (763 K). The present study reports the first-principles study of the anisotropic thermal expansion of PbTiO{sub 3}, in the framework of the density-functional theory and the density-functional perturbation theory. The curve of temperature dependence of the unit cell volume is presented from 20 to 520 K through the calculation of the minimum of total free energy at each temperature point. The negative thermal expansion of PbTiO{sub 3} is calculated without empirical parameters. Furthermore, the distinctive thermodynamic act of PbTiO{sub 3} from expanding to contracting at tetragonal phase is reproduced. The ab-initio calculations reveal that this unique appearance depends on the phonon vibration. The dynamical contributions of various atoms are also calculated to account for the disparate role of Pb-O and Ti-O bond.

  15. Negative thermal expansion in Th{sub 2}O(PO{sub 4}){sub 2}

    SciTech Connect

    Wallez, Gilles; Clavier, Nicolas; Dacheux, Nicolas

    2011-11-15

    Highlights: {yields} Dithorium oxide phosphate shows a continuous negative thermal expansion over a 600 {sup o}C range. {yields} Negative expansion arises from oxygen rocking and cations repulsions. {yields} Big and high-charge thorium IV appears ideal for generating negative expansion. -- Abstract: High temperature X ray diffraction performed on recently discovered orthorhombic Th{sub 2}O(PO{sub 4}){sub 2} shows a continuous linear thermal contraction (-1.6 x 10{sup -6} {sup o}C{sup -1}) in 20-600 {sup o}C range and a near-zero expansion at higher temperatures resulting from a dual structural deformation involving oxygen oscillations and inter-cations repulsions. Although similar mechanisms were observed in isotypic Zr{sub 2}O(PO{sub 4}){sub 2} (+1.5 x 10{sup -6} {sup o}C{sup -1}) and U{sub 2}O(PO{sub 4}){sub 2} (-1.4 x 10{sup -6} {sup o}C{sup -1}), those observed in Th{sub 2}O(PO{sub 4}){sub 2} are particularly intense because of the high ionic radius of tetravalent thorium.

  16. Ab initio lattice dynamical studies of silicon clathrate frameworks and their negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Härkönen, Ville J.; Karttunen, Antti J.

    2014-01-01

    The thermal and lattice dynamical properties of seven silicon clathrate framework structures are investigated with ab initio density functional methods (frameworks I, II, IV, V, VII, VIII, and H). The negative thermal expansion (NTE) phenomenon is investigated by means of quasiharmonic approximation and applying it to equal time displacement correlation functions. The thermal properties of the studied clathrate frameworks, excluding the VII framework, resemble those of the crystalline silicon diamond structure. The clathrate framework VII was found to have an anomalous NTE temperature range up to 300 K and it is suitable for further studies of the mechanisms of NTE. Investigation of the displacement correlation functions revealed that in NTE, the volume derivatives of the mean square displacements and mean square relative displacements of atoms behave similarly to the vibrational entropy volume derivatives and consequently to the coefficients of thermal expansion as a function of temperature. All studied clathrate frameworks, excluding the VII framework, possess a phonon band gap or even two in the case of framework V.

  17. Mechanical properties and negative thermal expansion of a dense rare earth formate framework

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanrui; Jiang, Xingxing; Feng, Guoqiang; Lin, Zheshuai; Hu, Bing; Li, Wei

    2016-01-01

    The fundamental mechanical properties of a dense metal-organic framework material, [NH2CHNH2][Er(HCOO)4] (1), have been studied using nanoindentation technique. The results demonstrate that the elastic moduli, hardnesses, and yield stresses on the (021)/(02-1) facets are 29.8/30.2, 1.80/1.83 and 0.93/1.01 GPa, respectively. Moreover, variable-temperature powder and single-crystal X-ray diffraction experiments reveal that framework 1 shows significant negative thermal expansion along its b axis, which can be explained by using a hinge-strut structural motif.

  18. Asymmetric and Negative Differential Thermal Spin Effect at Magnetic Interfaces: Towards Spin Seebeck Diodes and Transistors

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhu, Jian-Xin

    2014-03-01

    We study the nonequilibrium thermal-spin transport across metal-magnetic insulator interfaces. The transport is assisted by the exchange interaction between conduction electrons in the metal and localized spins in the magnetic insulator. We predict the rectification and negative differential spin Seebeck effect (SSE), that is, reversing the temperature bias is able to give asymmetric spin currents and increasing temperature bias could give an anomalously decreasing spin current. We resolve their microscopic mechanism as a consequence of the energy-dependent electronic DOS in the metal. The rectification of spin Peltier effect is also discussed. We then study the asymmetric and negative differential magnon tunneling driven by temperature bias. We show that the many-body magnon interaction that makes the magnonic spectrum temperature-dependent is the crucial factor for the emergence of rectification and negative differential SSEs in magnon tunneling junctions. We show that these asymmetric and negative differential SSEs are relevant for building magnon and spin Seebeck diodes and transistors, which could play important roles in controlling information and energy in functional devices. Supported by the National Nuclear Security Administration of the US DOE at LANL under Contract No. DE-AC52-06NA25396.

  19. Structural origin of the anisotropic and isotropic thermal expansion of K2NiF4-Type LaSrAlO4 and Sr2TiO4.

    PubMed

    Kawamura, Keishi; Yashima, Masatomo; Fujii, Kotaro; Omoto, Kazuki; Hibino, Keisuke; Yamada, Shuntaro; Hester, James R; Avdeev, Maxim; Miao, Ping; Torii, Shuki; Kamiyama, Takashi

    2015-04-20

    K2NiF4-type LaSrAlO4 and Sr2TiO4 exhibit anisotropic and isotropic thermal expansion, respectively; however, their structural origin is unknown. To address this unresolved issue, the crystal structure and thermal expansion of LaSrAlO4 and Sr2TiO4 have been investigated through high-temperature neutron and synchrotron X-ray powder diffraction experiments and ab initio electronic calculations. The thermal expansion coefficient (TEC) along the c-axis (αc) being higher than that along the a-axis (αa) of LaSrAlO4 [αc = 1.882(4)αa] is mainly ascribed to the TEC of the interatomic distance between Al and apical oxygen O2 α(Al-O2) being higher than that between Al and equatorial oxygen O1 α(Al-O1) [α(Al-O2) = 2.41(18)α(Al-O1)]. The higher α(Al-O2) is attributed to the Al-O2 bond being longer and weaker than the Al-O1 bond. Thus, the minimum electron density and bond valence of the Al-O2 bond are lower than those of the Al-O1 bond. For Sr2TiO4, the Ti-O2 interatomic distance, d(Ti-O2), is equal to that of Ti-O1, d(Ti-O1) [d(Ti-O2) = 1.0194(15)d(Ti-O1)], relative to LaSrAlO4 [d(Al-O2) = 1.0932(9)d(Al-O1)]. Therefore, the bond valence and minimum electron density of the Ti-O2 bond are nearly equal to those of the Ti-O1 bond, leading to isotropic thermal expansion of Sr2TiO4 than LaSrAlO4. These results indicate that the anisotropic thermal expansion of K2NiF4-type oxides, A2BO4, is strongly influenced by the anisotropy of B-O chemical bonds. The present study suggests that due to the higher ratio of interatomic distance d(B-O2)/d(B-O1) of A2(2.5+)B(3+)O4 compared with A2(2+)B(4+)O4, A2(2.5+)B(3+)O4 compounds have higher α(B-O2), and A2(2+)B(4+)O4 materials exhibit smaller α(B-O2), leading to the anisotropic thermal expansion of A2(2.5+)B(3+)O4 and isotropic thermal expansion of A2(2+)B(4+)O4. The "true" thermal expansion without the chemical expansion of A2BO4 is higher than that of ABO3 with a similar composition. PMID:25833295

  20. Electro-Thermal Tuning in a Negative Dielectric Cholesteric Liquid Crystal Material

    SciTech Connect

    Natarajan,L.; Wofford, J.; Tondiglia, V.; Sutherland, R.; Koerner, H.; Vaia, R.; Bunning, T.

    2008-01-01

    The thermal and electrical tunability of a cholesteric liquid crystal containing a negative dielectric anisotropy liquid crystal in a planar alignment was studied. The physical, optical, and electro-optical characteristics of mixtures containing different ratios of chiral dopant S811 and the negative dielectric anisotropy liquid crystal ZLI-2806 were examined. A smectic A phase was seen at room temperature for S811 loadings >20 wt%. Below 20%, a room temperature cholesteric phase was observed. Upon heating mixtures with composition S811 >20%, the selective reflection notch of the cholesteric phase appeared and blueshifted with temperature. Thermal tuning from 2300?to?500?nm was observed over the temperature range of 23-55? C. Polarized optical microscopy, differential scanning calorimetry, and x-ray studies were utilized to confirm the temperature-dependent phase behavior. Tuning of ? 50?nm by the application of a direct current electric field was also observed with no onset of electrohydrodynamic instabilities for voltages up to {approx} 300 V. Bandwidth broadening but not tuning was obtained with the application of alternating current fields. Electrical tuning is likely due to pitch contraction brought about through the annealing of defects.

  1. Linearly Forced Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    2003-01-01

    Stationary isotropic turbulence is often studied numerically by adding a forcing term to the Navier-Stokes equation. This is usually done for the purpose of achieving higher Reynolds number and longer statistics than is possible for isotropic decaying turbulence. It is generally accepted that forcing the Navier-Stokes equation at low wave number does not influence the small scale statistics of the flow provided that there is wide separation between the largest and smallest scales. It will be shown, however, that the spectral width of the forcing has a noticeable effect on inertial range statistics. A case will be made here for using a broader form of forcing in order to compare computed isotropic stationary turbulence with (decaying) grid turbulence. It is shown that using a forcing function which is directly proportional to the velocity has physical meaning and gives results which are closer to both homogeneous and non-homogeneous turbulence. Section 1 presents a four part series of motivations for linear forcing. Section 2 puts linear forcing to a numerical test with a pseudospectral computation.

  2. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range

    PubMed Central

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-01-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion. PMID:23949238

  3. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-08-01

    Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion.

  4. Parallel calculations of vibrational properties in complex materials: negative thermal expansion and elastic inhomogeneity

    NASA Astrophysics Data System (ADS)

    Vila, F. D.; Rehr, J. J.

    Effects of thermal vibrations are essential to obtain a more complete understanding of the properties of complex materials. For example, they are important in the analysis and simulation of x-ray absorption spectra (XAS). In previous work we introduced an ab initio approach for a variety of vibrational effects, such as crystallographic and XAS Debye-Waller factors, Debye and Einstein temperatures, and thermal expansion coefficients. This approach uses theoretical dynamical matrices from which the locally-projected vibrational densities of states are obtained using a Lanczos recursion algorithm. In this talk I present recent improvements to our implementation, which permit simulations of more complex materials with up to two orders of magnitude larger simulation cells. The method takes advantage of parallelization in calculations of the dynamical matrix with VASP. To illustrate these capabilities we discuss two problems of considerable interest: negative thermal expansion in ZrW2O8; and local inhomogeneities in the elastic properties of supported metal nanoparticles. Both cases highlight the importance of a local treatment of vibrational properties. Supported by DOE Grant DE-FG02-03ER15476, with computer support from DOE-NERSC.

  5. Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity.

    PubMed

    Wu, Hongchao; Rogalski, Mark; Kessler, Michael R

    2013-10-01

    The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry. PMID:24070222

  6. Activation energy of negative fixed charges in thermal ALD Al2O3

    NASA Astrophysics Data System (ADS)

    Kühnhold-Pospischil, S.; Saint-Cast, P.; Richter, A.; Hofmann, M.

    2016-08-01

    A study of the thermally activated negative fixed charges Qtot and the interface trap densities Dit at the interface between Si and thermal atomic-layer-deposited amorphous Al2O3 layers is presented. The thermal activation of Qtot and Dit was conducted at annealing temperatures between 220 °C and 500 °C for durations between 3 s and 38 h. The temperature-induced differences in Qtot and Dit were measured using the characterization method called corona oxide characterization of semiconductors. Their time dependency were fitted using stretched exponential functions, yielding activation energies of EA = (2.2 ± 0.2) eV and EA = (2.3 ± 0.7) eV for Qtot and Dit, respectively. For annealing temperatures from 350 °C to 500 °C, the changes in Qtot and Dit were similar for both p- and n-type doped Si samples. In contrast, at 220 °C the charging process was enhanced for p-type samples. Based on the observations described in this contribution, a charging model leading to Qtot based on an electron hopping process between the silicon and Al2O3 through defects is proposed.

  7. Novel negative resists using thermally stable crosslinkers based on phenolic compounds

    NASA Astrophysics Data System (ADS)

    Kajita, Toru; Kobayashi, Eiichi; Ota, Toshiyuki; Miura, Takao

    1993-09-01

    This is a preliminary report on a family of crosslinkers based on phenolic compounds for negative-working photoresists which are suitable for KrF excimer laser exposure using poly(hydroxystyrene) (PHS) as a base resin. The crosslinkers are benzylic derivatives having etherificated or esterificated phenolic hydroxyl group. Several effects upon the resist performances of chemically amplified (CA) resist systems comprising onium salt, PHS, and the crosslinkers are mainly discussed: i.e., sort of substituent, sort of mother molecular structure, sort of crosslinkable group, baking conditions, PHS's molecular weight, additives, and so on. The CA resist gives quarter-micron line and space pairs without swelling using a KrF excimer laser exposure. Moreover, in this report another effective method for inhibiting the swelling is proposed. Finally, a unique negative resist, which is not a CA resist, is also presented. It gives negative-tone images by thermal crosslinking reaction following photo- induced dissociation of the protective group of crosslinker.

  8. Isotropic sequence order learning.

    PubMed

    Porr, Bernd; Wörgötter, Florentin

    2003-04-01

    In this article, we present an isotropic unsupervised algorithm for temporal sequence learning. No special reward signal is used such that all inputs are completely isotropic. All input signals are bandpass filtered before converging onto a linear output neuron. All synaptic weights change according to the correlation of bandpass-filtered inputs with the derivative of the output. We investigate the algorithm in an open- and a closed-loop condition, the latter being defined by embedding the learning system into a behavioral feedback loop. In the open-loop condition, we find that the linear structure of the algorithm allows analytically calculating the shape of the weight change, which is strictly heterosynaptic and follows the shape of the weight change curves found in spike-time-dependent plasticity. Furthermore, we show that synaptic weights stabilize automatically when no more temporal differences exist between the inputs without additional normalizing measures. In the second part of this study, the algorithm is is placed in an environment that leads to closed sensor-motor loop. To this end, a robot is programmed with a prewired retraction reflex reaction in response to collisions. Through isotropic sequence order (ISO) learning, the robot achieves collision avoidance by learning the correlation between his early range-finder signals and the later occurring collision signal. Synaptic weights stabilize at the end of learning as theoretically predicted. Finally, we discuss the relation of ISO learning with other drive reinforcement models and with the commonly used temporal difference learning algorithm. This study is followed up by a mathematical analysis of the closed-loop situation in the companion article in this issue, "ISO Learning Approximates a Solution to the Inverse-Controller Problem in an Unsupervised Behavioral Paradigm" (pp. 865-884). PMID:12689389

  9. Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping.

    PubMed

    Senn, M S; Bombardi, A; Murray, C A; Vecchini, C; Scherillo, A; Luo, X; Cheong, S W

    2015-01-23

    We present new results on the microscopic nature of the ferroelectricity mechanisms in Ca3 Mn2O7 and Ca3Ti2O7. To the first approximation, we confirm the hybrid improper ferroelectric mechanism recently proposed by Benedek and Fennie for these Ruddlesden-Popper compounds. However, in Ca3Mn2O7 we find that there is a complex competition between lattice modes of different symmetry which leads to a phase coexistence over a large temperature range and the "symmetry trapping" of a soft mode. This trapping of the soft mode leads to a large uniaxial negative thermal expansion (NTE) reaching a maximum between 250 and 350 K (3.6×10^(-6)  K^{-1}) representing the only sizable NTE reported for these and related perovskite materials to date. Our results suggest a systematic strategy for designing and searching for ceramics with large NTE coefficients. PMID:25659007

  10. Dynamics of the negative thermal expansion in tellurium based liquid alloys.

    PubMed

    Otjacques, Céline; Raty, Jean-Yves; Coulet, Marie-Vanessa; Johnson, Mark; Schober, Helmut; Bichara, Christophe; Gaspard, Jean-Pierre

    2009-12-11

    Negative thermal expansion (NTE) in tellurium based liquid alloys (GeTe6 and GeTe12) is analyzed through the atomic vibrational properties. Using neutron inelastic scattering, we show that the structural evolution resulting in the NTE is due to a gain of vibrational entropy that cancels out the Peierls distortion. In the NTE temperature range, these competing effects give rise to noticeable changes in the vibrational density of states spectra. Additional first principles molecular dynamics simulations emphasize the role of the temperature dependance of the Ge atomic environment in this mechanism. For comparison, we extended our study to Ge2Sb2Te5 and Ge1Sb2Te4 phase-change materials. PMID:20366211

  11. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho

    2016-06-01

    In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ~1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K-1 for 16-nm-thick samples at 300 K.

  12. Framework flexibility and the negative thermal expansion mechanism of copper(I) oxide Cu2O

    NASA Astrophysics Data System (ADS)

    Rimmer, Leila H. N.; Dove, Martin T.; Winkler, Björn; Wilson, Dan J.; Refson, Keith; Goodwin, Andrew L.

    2014-06-01

    The negative thermal expansion (NTE) mechanism in Cu2O has been characterized via mapping of different Cu2O structural flexibility models onto phonons obtained using ab initio lattice dynamics. Low-frequency acoustic modes that are responsible for the NTE in this material correspond to vibrations of rigid O-Cu-O rods. There is also some small contribution from higher-frequency optic modes that correspond to rotations of rigid and near-rigid OCu4 tetrahedra as well as of near-rigid O-Cu-O rods. The primary NTE mode also drives a ferroelastic phase transition at high pressure; our calculations predict this to be an orthorhombic structure with space group Pnnn.

  13. Negative Thermal Expansion in Hybrid Improper Ferroelectric Ruddlesden-Popper Perovskites by Symmetry Trapping

    NASA Astrophysics Data System (ADS)

    Senn, M. S.; Bombardi, A.; Murray, C. A.; Vecchini, C.; Scherillo, A.; Luo, X.; Cheong, S. W.

    2015-01-01

    We present new results on the microscopic nature of the ferroelectricity mechanisms in Ca3Mn2O7 and Ca3Ti2O7 . To the first approximation, we confirm the hybrid improper ferroelectric mechanism recently proposed by Benedek and Fennie for these Ruddlesden-Popper compounds. However, in Ca3Mn2O7 we find that there is a complex competition between lattice modes of different symmetry which leads to a phase coexistence over a large temperature range and the "symmetry trapping" of a soft mode. This trapping of the soft mode leads to a large uniaxial negative thermal expansion (NTE) reaching a maximum between 250 and 350 K (3.6 ×10-6 K-1 ) representing the only sizable NTE reported for these and related perovskite materials to date. Our results suggest a systematic strategy for designing and searching for ceramics with large NTE coefficients.

  14. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.

  15. The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds.

    PubMed

    Chen, Jun; Nittala, Krishna; Forrester, Jennifer S; Jones, Jacob L; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2011-07-27

    PbTiO(3)-based compounds are well-known ferroelectrics that exhibit a negative thermal expansion more or less in the tetragonal phase. The mechanism of negative thermal expansion has been studied by high-temperature neutron powder diffraction performed on two representative compounds, 0.7PbTiO(3)-0.3BiFeO(3) and 0.7PbTiO(3)-0.3Bi(Zn(1/2)Ti(1/2))O(3), whose negative thermal expansion is contrarily enhanced and weakened, respectively. With increasing temperature up to the Curie temperature, the spontaneous polarization displacement of Pb/Bi (δz(Pb/Bi)) is weakened in 0.7PbTiO(3)-0.3BiFeO(3) but well-maintained in 0.7PbTiO(3)-0.3Bi(Zn(1/2)Ti(1/2))O(3). There is an apparent correlation between tetragonality (c/a) and spontaneous polarization. Direct experimental evidence indicates that the spontaneous polarization originating from Pb/Bi-O hybridization is strongly associated with the negative thermal expansion. This mechanism can be used as a guide for the future design of negative thermal expansion of phase-transforming oxides. PMID:21696173

  16. Alternative Filament Loading Solution for Accurate Analysis of Boron Isotopes by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2008-12-01

    The negative thermal ionization mass spectrometry technique has become the major tool for investigating boron isotopes in the environment. The high sensitivity of BO2- ionization enables measurements of ng levels of boron. However, B isotope measurement by this technique suffers from two fundamental problems (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; and (2) CNO- interference on mass 42 that is often present in some load solutions (such as B-free seawater processed through ion-exchange resin). Here we report a potentially improved methodology using an alternative filament loading solution with a recently-installed Thermo Scientific TRITON thermal ionization mass spectrometer. Our initial results suggest that this solution -- prepared by combining high-purity single- element standard solutions of Ca, Mg, Na, and K in proportions similar to those in seawater in a 5% HCl matrix -- may offer significant improvement over some other commonly used load solutions. Total loading blank is around 15pg as determined by isotope dilution (NIST952). Replicate analyses of NIST SRM951 and modern seawater thus far have yielded 11B/10B ratios of 4.0057 (±0.0008, n=14) and 4.1645 (±0.0017, n=7; δ11B=39.6 permil), respectively. Replicate analyses of samples and SRM951 yield an average standard deviation (1 σ) of approximately 0.001 (0.25 permil). Fractionation during analysis (60-90 minutes) has thus far typically been less than 0.002 (0.5 permil). The load solution delivers ionization efficiency similar to directly-loaded seawater and has negligible signal at mass 26 (CN-), a proxy for the common interfering molecular ion (CNO-) on mass 42. Standards and samples loaded with the solution behave fairly predictably during filament heating and analysis, thus allowing for the possibility of fully automated data collection.

  17. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity.

    PubMed

    Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho

    2016-01-01

    In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ∼1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K(-1) for 16-nm-thick samples at 300 K. PMID:27323662

  18. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity

    PubMed Central

    Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho

    2016-01-01

    In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ∼1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K−1 for 16-nm-thick samples at 300 K. PMID:27323662

  19. Hierarchical densification and negative thermal expansion in Ce-based metallic glass under high pressure.

    PubMed

    Luo, Qiang; Garbarino, Gaston; Sun, Baoan; Fan, Dawei; Zhang, Yue; Wang, Zhi; Sun, Yajuan; Jiao, Jin; Li, Xiaodong; Li, Pengshan; Mattern, Norbert; Eckert, Jürgen; Shen, Jun

    2015-01-01

    The polyamorphsim in amorphous materials is one of the most fascinating topics in condensed matter physics. In amorphous metals, the nature of polyamorphic transformation is poorly understood. Here we investigate the structural evolution of a Ce-based metallic glass (MG) with pressure at room temperature (RT) and near the glass transition temperature by synchrotron X-ray diffraction, uncovering novel behaviours. The MG shows hierarchical densification processes at both temperatures, arising from the hierarchy of interatomic interactions. In contrast with a continuous and smooth process for the low- to medium-density amorphous state transformation at RT, a relatively abrupt and discontinuous transformation around 5.5 GPa is observed at 390 K, suggesting a possible weak first-order nature. Furthermore, both positive and abnormal-negative thermal expansion behaviours on medium-range order are observed in different pressure windows, which could be related to the low-energy vibrational motions and relaxation of the weakly linked solute-centred clusters. PMID:25641091

  20. Size effects on negative thermal expansion in cubic ScF3

    NASA Astrophysics Data System (ADS)

    Yang, C.; Tong, P.; Lin, J. C.; Guo, X. G.; Zhang, K.; Wang, M.; Wu, Y.; Lin, S.; Huang, P. C.; Xu, W.; Song, W. H.; Sun, Y. P.

    2016-07-01

    Scandium trifluoride (ScF3), adopting a cubic ReO3-type structure at ambient pressure, undergoes a pronounced negative thermal expansion (NTE) over a wide range of temperatures (10 K-1100 K). Here, we report the size effects on the NTE properties of ScF3. The magnitude of NTE is reduced with diminishing the crystal size. As revealed by the specific heat measurement, the low-energy phonon vibrations which account for the NTE behavior are stiffened as the crystal size decreases. With decreasing the crystal size, the peaks in high-energy X-ray pair distribution function (PDF) become broad, which cannot be illuminated by local symmetry breaking. Instead, the broadened PDF peaks are strongly indicative of enhanced atomic displacements which are suggested to be responsible for the stiffening of NTE-related lattice vibrations. The present study suggests that the NTE properties of ReO3-type and other open-framework materials can be effectively adjusted by controlling the crystal size.

  1. Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations.

    PubMed

    Lock, Nina; Christensen, Mogens; Wu, Yue; Peterson, Vanessa K; Thomsen, Maja K; Piltz, Ross O; Ramirez-Cuesta, Anibal J; McIntyre, Garry J; Norén, Katarina; Kutteh, Ramzi; Kepert, Cameron J; Kearley, Gordon J; Iversen, Bo B

    2013-02-14

    Complementary experimental techniques and ab initio calculations were used to determine the origin and nature of negative thermal expansion (NTE) in the archetype metal-organic framework MOF-5 (Zn(4)O(1,4-benzenedicarboxylate)(3)). The organic linker was probed by inelastic neutron scattering under vacuum and at a gas pressure of 175 bar to distinguish between the pressure and temperature responses of the framework motions, and the local structure of the metal centers was studied by X-ray absorption spectroscopy. Multi-temperature powder- and single-crystal X-ray and neutron diffraction was used to characterize the polymeric nature of the sample and to quantify NTE over the large temperature range 4-400 K. Ab initio calculations complement the experimental data with detailed information on vibrational motions in the framework and their correlations. A uniform and comprehensive picture of NTE in MOF-5 has been drawn, and we provide direct evidence that the main contributor to NTE is translational transverse motion of the aromatic ring, which can be dampened by applying a gas pressure to the sample. The linker motion is highly correlated rather than local in nature. The relative energies of different framework vibrations populated in MOF-5 are suggested by analysis of neutron diffraction data. We note that the lowest-energy motion is a librational motion of the aromatic ring which does not contribute to NTE. The libration is followed by transverse motion of the linker and the carboxylate group. These motions result in unit-cell contraction with increasing temperature. PMID:23044752

  2. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation

    NASA Astrophysics Data System (ADS)

    Dove, Martin T.; Fang, Hong

    2016-06-01

    Negative thermal expansion (NTE) is the phenomenon in which materials shrink rather than expand on heating. Although NTE had been previously observed in a few simple materials at low temperature, it was the realisation in 1996 that some materials have NTE over very wide ranges of temperature that kick-started current interest in this phenomenon. Now, nearly two decades later, a number of families of ceramic NTE materials have been identified. Increasingly quantitative studies focus on the mechanism of NTE, through techniques such as high-pressure diffraction, local structure probes, inelastic neutron scattering and atomistic simulation. In this paper we review our understanding of vibrational mechanisms of NTE for a range of materials. We identify a number of different cases, some of which involve a small number of phonons that can be described as involving rotations of rigid polyhedral groups of atoms, others where there are large bands of phonons involved, and some where the transverse acoustic modes provide the main contribution to NTE. In a few cases the elasticity of NTE materials has been studied under pressure, identifying an elastic softening under pressure. We propose that this property, called pressure-induced softening, is closely linked to NTE, which we can demonstrate using a simple model to describe NTE materials. There has also been recent interest in the role of intrinsic anharmonic interactions on NTE, particularly guided by calculations of the potential energy wells for relevant phonons. We review these effects, and show how anhamonicity affects the response of the properties of NTE materials to pressure.

  3. Suppression of temperature hysteresis in negative thermal expansion compound BiNi1-xFexO3 and zero-thermal expansion composite

    NASA Astrophysics Data System (ADS)

    Nabetani, K.; Muramatsu, Y.; Oka, K.; Nakano, K.; Hojo, H.; Mizumaki, M.; Agui, A.; Higo, Y.; Hayashi, N.; Takano, M.; Azuma, M.

    2015-02-01

    Negative thermal expansion (NTE) of BiNi1-xFexO3 is investigated. All x = 0.05, 0.075, 0.10, and 0.15 samples shows large NTE with the coefficient of linear thermal expansion (CTE) αL exceeding -150 ppm K-1 induced by charge transfer between Bi5+ and Ni2+ in the controlled temperature range near room temperature. Compared with Bi1-xLnxNiO3 (Ln: rare-earth elements), the thermal hysteresis that causes a problem for practical application is suppressed because random distribution of Fe in the Ni site changes the first order transition to second order-like transition. The CTE of BiNi0.85Fe0.15O3 reaches -187 ppm K-1 and it is demonstrated that 18 vol. % addition of the present compound compensates for the thermal expansion of epoxy resin.

  4. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    NASA Astrophysics Data System (ADS)

    Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro

    2015-08-01

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix-filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  5. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    SciTech Connect

    Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro

    2015-08-28

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix–filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  6. Isotropic Monte Carlo Grain Growth

    Energy Science and Technology Software Center (ESTSC)

    2013-04-25

    IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.

  7. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton

    PubMed Central

    Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei

    2015-01-01

    Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology. PMID:26000658

  8. Soliton propagation in an inhomogeneous plasma at critical density of negative ions: Effects of gyratory and thermal motions of ions

    SciTech Connect

    Malik, Hitendra K.; Kawata, Shigeo

    2007-10-15

    The effects of gyratory and thermal motions of ions on soliton propagation in an inhomogeneous plasma that contains positive ions, negative ions, and electrons are studied at a critical density of negative ions. Since at this critical negative ion density the nonlinear term of the relevant Korteweg-deVries (KdV) equation vanishes, a higher order of nonlinearity is considered by retaining higher-order perturbation terms in the expansion of dependent quantities together with the appropriate set of stretched coordinates. Under this situation, time-dependent perturbation leads to the evolution of modified KdV solitons, which are governed by a modified form of the KdV equation that has an additional term due to the density gradient present in the plasma. On the basis of the solution of this equation and obliquely applied magnetic field, the effects of gyratory and thermal motions of ions are analyzed on the soliton propagation for three cases, n{sub n0}n{sub e0}, together with n{sub n0} (n{sub e0}) as the density of negative ions (electrons). The role of the negative ions in the evolution of the modes and the solitons is also discussed. Under the limiting cases, our calculations reduce to the ones obtained by other investigators in the past. This substantiates the generality of the present analysis.

  9. Role of acoustic phonons in the negative thermal expansion of layered structures and nanotubes based on them

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Sirenko, A. F.; Sirenko, V. A.; Dolbin, A. V.; Gospodarev, I. A.; Syrkin, E. S.; Feodosyev, S. B.; Bondar, I. S.; Minakova, K. A.

    2016-05-01

    Calculations on a microscopic level are used to explain the experimentally observed negative linear thermal expansion along some directions in a number of crystalline compounds with complicated lattices and anisotropic interactions between atoms. Anomalies in the temperature dependence of the coefficient of linear thermal expansion are analyzed in layered crystals made up of monatomic layers (graphite and graphene nanofilms) and multilayer "sandwiches" (transition metal dichalcogenides), in multilayered crystal structures such as high-temperature superconductors where the anisotropy of the interatomic interactions is not conserved in the long-range order, and in graphene nanotubes. The theoretical calculations are compared with data from x-ray, neutron diffraction, and dilatometric measurements.

  10. Improving the signal-to-noise ratio of thermal ghost imaging based on positive-negative intensity correlation

    NASA Astrophysics Data System (ADS)

    Song, Shu-Chun; Sun, Ming-Jie; Wu, Ling-An

    2016-05-01

    Ghost imaging with thermal light is a topic in optical imaging that has aroused great interest in recent years. However, the imaging quality must be greatly improved before the technology can be transferred from the lab to engineering applications. By means of correspondence ghost imaging (CGI) with a pseudo-thermal light source and appropriate sorting of the intensity fluctuations of the signal and reference beams, we obtain the positive and negative Hanbury Brown and Twiss intensity correlation characteristics of the optical field. Then, for ghost imaging of a transmissive binary object, we find that by subtracting the negative from the positive fluctuation frames of the presorted reference detector signals, the signal-to-noise ratio can be effectively increased, with almost all the background noise eliminated. Our results show that, compared with the generic CGI technique, the signal-to-noise ratio can be increased by nearly 60%.

  11. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14).

    PubMed

    Wu, Yue; Peterson, Vanessa K; Luks, Emily; Darwish, Tamim A; Kepert, Cameron J

    2014-05-12

    Metal-organic framework materials (MOFs) have recently been shown in some cases to exhibit strong negative thermal expansion (NTE) behavior, while framework interpenetration has been found to reduce NTE in many materials. Using powder and single-crystal diffraction methods we investigate the thermal expansion behavior of interpenetrated Cu3(btb)2 (MOF-14) and find that it exhibits an anomalously large NTE effect. Temperature-dependent structural analysis shows that, contrary to other interpenetrated materials, in MOF-14 the large positive thermal expansion of weak interactions that hold the interpenetrating networks together results in a low-energy contractive distortion of the overall framework structure, demonstrating a new mechanism for NTE. PMID:24692065

  12. Negative thermal expansion and anomalies of heat capacity of LuB50 at low temperatures

    SciTech Connect

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Kuznetsov, S. V.; Bud'ko, S. L.

    2015-07-20

    Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the sum of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.

  13. Transversely isotropic poroelasticity arising from thin isotropic layers

    SciTech Connect

    Berryman, J.G.

    1996-11-01

    Percolation phenomena play central roles in the field of poroelasticity, where two distinct sets of percolating continua intertwine. A connected solid frame forms the basis of the elastic behavior of a poroelastic medium in the presence of confining forces, while connected pores permit a percolating fluid (if present) to influence the mechanical response of the system from within. The present paper discusses isotropic and anisotropic poroelastic media and establishes general formulas for the behavior of transversely isotropic poroelasticity arising from laminations of isotropic components. The Backus averaging method is shown to provide elementary means of constructing general formulas. The results for confined fluids are then compared with the more general Gassmann formulas that must be satisfied by any anisotropic poroelastic medium and found to be in complete agreement.

  14. Rigid unit modes in s p -s p2 hybridized carbon systems: Origin of negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Woon; Kang, Seoung-Hun; Kwon, Young-Kyun

    2015-12-01

    Using density functional theory combined with quasiharmonic approximation, we investigate the thermal expansion behaviors of three different types (α ,β , and γ ) of graphyne, which is a two-dimensional carbon allotrope composed of s p and s p2 bonds. For each type of graphyne, we obtain the temperature dependent area variation by minimizing its free energy calculated by considering all the phonon modes in the whole Brillouin zone. We find that all three types of graphyne exhibit negative in-plane thermal expansion up to T ≲1000 K. The observed in-plane thermal contraction can be attributed partially to the ripple effect, similarly in graphene. The ripple effect itself, however, is not sufficient to explain the anomalously larger thermal contraction found in graphyne than in graphene. Our deliberate analysis on the phonon modes observed in graphyne enables us to reveal another source causing such thermal expansion anomaly. We find that there are particular phonon modes with frequencies of around a few hundreds of cm-1 existing exclusively in graphyne that may fill empty spaces resulting in area reduction. These modes are identified as "rigid unit modes" corresponding to the libration of each rigid unit composed of s p2 bonds.

  15. Structure and negative thermal expansion in the PbTiO3-BiFeO3 system

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xing, X. R.; Liu, G. R.; Li, J. H.; Liu, Y. T.

    2006-09-01

    The structures of (1-x)PbTiO3-xBiFeO3 (x =0.3 and 0.6) were investigated by means of the neutron powder diffraction. A splitting shift between Fe and Ti atoms was found along the c axis in 0.7PbTiO3-0.3BiFeO3; however, this splitting does not appear in 0.4PbTiO3-0.6BiFeO3. The tetragonal phase of PbTiO3-BiFeO3 exhibits a large spontaneous polarization. The negative thermal expansion of PbTiO3 is significantly enhanced in a wide temperature range by the BiFeO3 substitution. The average bulk thermal expansion coefficient of 0.4PbTiO3-0.6BiFeO3 is a¯v=-3.92×10-5°C-1, which is much strong in the known negative thermal expansion oxides.

  16. Optical torque on small bi-isotropic particles.

    PubMed

    Nieto-Vesperinas, Manuel

    2015-07-01

    We establish the equations for the time-averaged optical torque on dipolar bi-isotropic particles. Due to the interference of the scattered fields, it has a term additional to the one that is commonly employed in theory and experiments. Its consequences for conservation of energy, angular momentum, and effects like negative torques are discussed. PMID:26125357

  17. The evolution of magnetic transitions, negative thermal expansion and unusual electronic transport properties in Mn3AgxMnyN

    NASA Astrophysics Data System (ADS)

    Deng, Sihao; Sun, Ying; Yan, Jun; Shi, Zaixing; Shi, Kewen; Wang, Lei; Hu, Pengwei; Malik, Muhammad Imran; Wang, Cong

    2015-11-01

    The antiperovskite compounds Mn3AgxMnyN with Ag vacancies and Mn doping at Ag site were synthesized and investigated. The introduction of Ag vacancies has a very small influence on magnetic transitions. However, the magnetic transitions at TN (Néel temperature) and Tt (transition at lower temperature) gradually overlap with Mn doping accompanied by broadening of negative thermal expansion behavior. We also observed the nearly zero temperature coefficient of resistivity (NZ-TCR) behavior above magnetic order-disorder transition. The tunable TCR values from positive to negative could be achieved in Mn3AgxMnyN by reducing the contribution of (electron-phonon) e-p scattering in resistivity. Our results reveal the significance of e-p scattering for the evolution of TCR values, which could enrich the understanding of NZ-TCR behavior in antiperovskite manganese nitrides.

  18. Measurement-induced disturbance and thermal negativity in 1D optical lattice chain

    SciTech Connect

    Guo, Jin-Liang; Lin-Wang; Long, Gui-Lu

    2013-03-15

    We study the measurement-induced disturbance (MID) in a 1D optical lattice chain with nonlinear coupling. Special attention is paid to the difference between the thermal entanglement and MID when considering the influences of the linear coupling constant, nonlinear coupling constant and external magnetic field. It is shown that MID is more robust than thermal entanglement against temperature T and external magnetic field B, and MID may reveal more properties about quantum correlations of the system, which can be seen from the point of view that MID can be nonzero when there is no thermal entanglement and MID can detect the critical point of quantum phase transition at finite temperature. - Highlights: Black-Right-Pointing-Pointer The nonlinear coupling constant can strengthen the quantum correlation. Black-Right-Pointing-Pointer MID is more robust than entanglement against temperature and magnetic field. Black-Right-Pointing-Pointer MID exhibits more information about quantum correlation than entanglement. Black-Right-Pointing-Pointer MID can detect the critical point of quantum phase transition at finite temperature.

  19. Thermal-to-electrical energy conversion by diodes under negative illumination

    NASA Astrophysics Data System (ADS)

    Santhanam, Parthiban; Fan, Shanhui

    2016-04-01

    We consider an infrared photodiode under negative illumination, wherein the photodiode is maintained at a temperature T and radiatively exposed to an emissive body colder than itself. We experimentally demonstrate that a diode under such conditions can generate electrical power. We show theoretically that the efficiency of energy conversion can approach the Carnot limit. This work is applicable to waste heat recovery as well as emerging efforts to utilize the cold dark universe as a thermodynamic resource for renewable energy.

  20. Sub-100nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors.

    PubMed

    Ayala-Orozco, Ciceron; Urban, Cordula; Bishnoi, Sandra; Urban, Alexander; Charron, Heather; Mitchell, Tamika; Shea, Martin; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi; Joshi, Amit

    2014-10-10

    There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or necrotic regions. We report the performance advantages obtained by sub 100nm gold nanomatryushkas, comprising concentric gold-silica-gold layers compared to conventional ~150nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000mm(3)) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5× accumulation within large tumors results in superior therapy efficacy. PMID:25051221

  1. Sub-100 nm Gold Nanomatryoshkas Improve Photo-thermal Therapy Efficacy in Large and Highly Aggressive Triple Negative Breast Tumors

    PubMed Central

    Bishnoi, Sandra; Urban, Alexander; Charron, Heather; Mitchell, Tamika; Shea, Martin; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi; Joshi, Amit

    2014-01-01

    There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or nectrotic regions. We report the performance advantages obtained by sub 100 nm gold nanomatryushkas, comprising of concentric gold-silica-gold layers compared to conventional ~150 nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000 mm3) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5X accumulation within large tumors results in superior therapy efficacy. PMID:25051221

  2. Partially hydrogenated and fluorinated graphene: Structure, roughness, and negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Neek-Amal, M.; Peeters, F. M.

    2015-10-01

    The structural properties of partially hydrogenated and fluorinated graphene with different percentages of H/F atoms are investigated using molecular dynamics simulations based on reactive force field (ReaxFF) potentials. We found that the roughness of graphene varies with the percentage (p ) of H or F and in both cases is maximal around p =50 % . Similar results were obtained for partially oxidized graphene. The two-dimensional area size of partially fluorinated and hydrogenated graphene exhibits a local minimum around p =35 % coverage. The lattice thermal contraction in partially functionalized graphene is found to be one order of magnitude larger than that of fully covered graphene. We also show that the armchair structure for graphene oxide (similar to the structure of fully hydrogenated and fluorinated graphene) is unstable. Our results show that the structure of partially functionalized graphene changes nontrivially with the C : H and C : F ratio as well as with temperature.

  3. Subtraction threshold for an isotropic fluorescence emission difference microscope

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Kobayashi, Takayoshi

    2015-12-01

    Isotropic fluorescence emission difference microscopy proposed recently provides a simple method to enhance the spatial resolution in three-dimensions (3D) for fluorescence imaging. However, the subtraction threshold to achieve the condition for appropriately resolving the sample in 3D have not been studied. Then the subtraction factors used in this type of microscopes are still experientially chosen. Based on vector diffraction theory and a 3D numerical model developed here, the subtraction threshold is numerically investigated for the isotropic fluorescence subtraction microscopy. The subtraction factors and peak intensities at the threshold are obtained and comparied both in lateral and axial planes for achieving most appropriate subtraction and inspecting the isotropic characteristic. The effects of radius ratios of implemented 0-π annular phase plate for generating three dimensional donut spot on the subtracted resolution, peak intensity and negative sidebands are also discussed.

  4. Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite.

    PubMed

    Panda, Manas K; Runčevski, Tomče; Sahoo, Subash Chandra; Belik, Alexei A; Nath, Naba K; Dinnebier, Robert E; Naumov, Panče

    2014-01-01

    The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or by a ballistic event. Here we present direct evidence for the driving force behind this impressive crystal motility. Crystals of a prototypical thermosalient material, (phenylazophenyl)palladium hexafluoroacetylacetonate, can switch between five crystal structures (α-ε) that are related by four phase transitions including one thermosalient transition (α↔γ). The mechanical effect is driven by a uniaxial negative expansion that is compensated by unusually large positive axial expansion (260 × 10(-6)  K(-1)) with volumetric expansion coefficients (≈250 × 10(-6)  K(-1)) that are among the highest values reported in molecular solids thus far. The habit plane advances at ~10(4) times the rate observed with non-thermosalient transitions. This rapid expansion of the crystal following the phase switching is the driving force for occurrence of the thermosalient effect. PMID:25185949

  5. Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices

    NASA Astrophysics Data System (ADS)

    Chevillard, Laurent; Rhodes, Rémi; Vargas, Vincent

    2013-02-01

    Motivated by isotropic fully developed turbulence, we define a theory of symmetric matrix valued isotropic Gaussian multiplicative chaos. Our construction extends the scalar theory developed by J.P. Kahane in 1985.

  6. Early isotropization of the Glasma

    NASA Astrophysics Data System (ADS)

    Epelbaum, T.

    2014-11-01

    A first principle treatment of the early stages of a heavy ion collision within the Color Glass Condensate framework seems to indicate an early hydrodynamization of the initially out of equilibrium Quark Gluon Plasma. Contrasting with the leading order CGC result, the improved calculation presented here provides evidence for a fast isotropization of the pressure tensor, as well as an anomalously small shear viscosity over entropy ratio.

  7. Induced piezoelectricity in isotropic biomaterial.

    PubMed

    Zimmerman, R L

    1976-12-01

    Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers. Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389

  8. A Transversely Isotropic Thermoelastic Theory

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.

  9. Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTi O3

    NASA Astrophysics Data System (ADS)

    Fang, Huazhi; Wang, Yi; Shang, Shunli; Liu, Zi-Kui

    2015-01-01

    Ferroelectric-paraelectric (FE-PE) phase transitions have been primarily explained by the phenomenological Landau-Devonshire theory and a soft-zone-center mode of vibration in the literature. In this work, we study the atomic structure and polarization evolution of PbTi O3 as a function of temperature using ab initio molecular dynamics simulations. In contrast to conventional molecular dynamics analyses where results are averaged over time, we categorize the atomic configurations as a function of time in terms of Ti-O bond lengths in the nearest-neighboring shell. We show that an appreciable amount of cubic configuration exists at temperatures about 300 K below its FE-PE phase transition temperature of 763 K, even though the time-averaged overall atomic configuration is tetragonal. The quantitative results depict that as the temperature increases the population of the cubic configuration increases and that of the tetragonal configuration decreases, signifying that the FE-PE phase transition is intrinsically second order. It reveals that the thermal fluctuation of the cubic configurations in the tetragonal matrix makes a significant contribution to the negative thermal expansion in the FE phase region because the cubic configuration has smaller volume and higher entropy than the tetragonal matrix.

  10. Domain walls of linear polarization in isotropic Kerr media

    NASA Astrophysics Data System (ADS)

    Louis, Y.; Sheppard, A. P.; Haelterman, M.

    1997-09-01

    We present a new type of domain-wall vector solitary waves in isotropic self-defocusing Kerr media. These domain walls consist of localized structures separating uniform field domains of orthogonal linear polarizations. They result from the interplay between diffraction, self-phase modulation and cross-phase modulation in cases where the nonlinear birefringence coefficient B = {χxyyx(3)}/{χxxxx(3)} is negative. Numerical simulations show that these new vector solitary waves are stable.

  11. Spherical cloaking with homogeneous isotropic multilayered structures.

    PubMed

    Qiu, Cheng-Wei; Hu, Li; Xu, Xiaofei; Feng, Yijun

    2009-04-01

    We propose a practical realization of electromagnetic spherical cloaking by layered structure of homogeneous isotropic materials. By mimicking the classic anisotropic cloak by many alternating thin layers of isotropic dielectrics, the permittivity and permeability in each isotropic layer can be properly determined by effective medium theory in order to achieve invisibility. The model greatly facilitates modeling by Mie theory and realization by multilayer coating of dielectrics. Eigenmode analysis is also presented to provide insights of the discretization in multilayers. PMID:19518392

  12. Macroscopic simulation of isotropic permanent magnets

    NASA Astrophysics Data System (ADS)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-03-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  13. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12

    NASA Astrophysics Data System (ADS)

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-04-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices.

  14. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12.

    PubMed

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-01-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices. PMID:27098924

  15. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12

    PubMed Central

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-01-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices. PMID:27098924

  16. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds.

    PubMed

    Huang, Rongjin; Liu, Yanying; Fan, Wei; Tan, Jie; Xiao, Furen; Qian, Lihe; Li, Laifeng

    2013-08-01

    La(Fe, Si)13-based compounds are well-known magnetocaloric materials, which show a pronounced negative thermal expansion (NTE) around the Curie temperature but have not been considered as NTE materials for industrial applications. The NaZn13-type LaFe13-xSix and LaFe11.5-xCoxSi1.5 compounds were synthesized, and their linear NTE properties were investigated. By optimizing the chemical composition, the sharp volume change in La(Fe, Si)13-based compounds was successfully modified into continuous expansion. By increasing the amount of Co dopant in LaFe11.5-xCoxSi1.5, the NTE shifts toward a higher temperature region, and also the NTE operation-temperature window becomes broader. Typically, the linear NTE coefficient identified in the LaFe10.5Co1.0Si1.5 compound reaches as much as -26.1 × 10(-6) K(-1), with an operation-temperature window of 110 K from 240 to 350 K, which includes room temperature. Such control of the specific composition and the NTE properties of La(Fe, Si)13-based compounds suggests their potential application as NTE materials. PMID:23885928

  17. Raman and ab initio investigation of negative thermal expansion material TaVO5: Insights into phase stability and anharmonicity

    NASA Astrophysics Data System (ADS)

    Salke, Nilesh P.; Gupta, M. K.; Rao, Rekha; Mittal, R.; Deng, Jinxia; Xing, Xianran

    2015-06-01

    TaVO5 is a framework structured compound that exhibits negative thermal expansion (NTE) above room temperature, upto 1073 K. We report Raman spectroscopic investigation of TaVO5 as a function of temperature in the range 77-873 K, which confirms the reported reversible low temperature transition to monoclinic phase at 259 K. Structural stability of TaVO5 at high pressures investigated using in-situ Raman spectroscopy shows a reversible structural transition at around 0.2 GPa to a phase, which is probably the same monoclinic phase as the low temperature phase, indicating that this structural phase transition may be volume driven. From the pressure and temperature dependence of the Raman modes, some of the zone centre phonon modes, particularly, the librational modes, responsible for the NTE are identified and anharmonicity of the Raman modes is also estimated. We have found that explicit anharmonicity dominates over implicit anharmonicity and the low frequency modes have significant quartic anharmonicity. The vibrational properties in the ambient phase of TaVO5 are also investigated using ab initio calculations of phonon frequencies to understand the NTE behavior as well as to complement the Raman spectroscopic measurements. Further, the eigenvectors of specific phonon modes associated with phase transition and NTE behavior of the compound have been identified from these calculations.

  18. Numerical simulation of temperature field and thermal stress field in silicon-based positive-intrinsic-negative photodiode irradiated by multipulsed millisecond laser

    NASA Astrophysics Data System (ADS)

    Wei, Zhi; Jin, Guangyong; Tan, Yong; Zhao, Hongyu

    2015-10-01

    Laser induced morphological damage have been observed in silicon-based positive-intrinsic-negative photodiode. This paper adopted the methods of the theoretical calculation and finite element numerical simulation to model, then solved the temperature field and thermal stress field in silicon-based positive-intrinsic-negative photodiode irradiated by multipulsed millisecond laser, and researched the features and laws of the temperature field and thermal stress field. As for the thermal-mechanical problem of multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode, based on Fourier heat conduction and thermoelasticity theories, we established a two-dimensional axisymmetric mathematical model .Then adopted finite element method to simulate the transient temperature field and thermal stress field. The temperature dependences of the material parameters and the absorption coefficient were taken into account in the calculation. The results indicated that there was the heat accumulation effect when multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode. The morphological damage threshold were obtained numerically. The evolution of temperature at the central point of the top surface, the temperature distribution along the radial direction in the end of laser irradiation and the temperature distribution along the axial direction in the end of laser irradiation were considered. Meanwhile, the radial stress, hoop stress, axial stress on the top surface and the R=500μm axis were also considered. The results showed that the morphological damage threshold decreased with the increased of the pulse number. The results of this study have reference significance of researching the thermal and thermal stress effect evolution's features when multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode, then revealing the mechanism of interactions between millisecond laser and

  19. Ba(1-x)Sr(x)Zn2Si2O7--A new family of materials with negative and very high thermal expansion.

    PubMed

    Thieme, Christian; Görls, Helmar; Rüssel, Christian

    2015-01-01

    The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba(2+) is successively replaced by Sr(2+), a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than -10·10(-6) K(-1) were measured. PMID:26667989

  20. Ba1−xSrxZn2Si2O7 - A new family of materials with negative and very high thermal expansion

    PubMed Central

    Thieme, Christian; Görls, Helmar; Rüssel, Christian

    2015-01-01

    The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba2+ is successively replaced by Sr2+, a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than −10·10−6 K−1 were measured. PMID:26667989

  1. Isotropic thaw subsidence in undisturbed permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Shiklomanov, Nikolay I.; Streletskiy, Dmitry A.; Little, Jonathon D.; Nelson, Frederick E.

    2013-12-01

    in undisturbed terrain within some regions of the Arctic reveal limited correlation between increasing air temperature and the thickness of the seasonally thawed layer above ice-rich permafrost. Here we describe landscape-scale, thaw-induced subsidence lacking the topographic contrasts associated with thermokarst terrain. A high-resolution, 11 year record of temperature and vertical movement at the ground surface from contrasting physiographic regions of northern Alaska, obtained with differential global positioning systems technology, indicates that thaw of an ice-rich layer at the top of permafrost has produced decimeter-scale subsidence extending over the entire landscapes. Without specialized observation techniques the subsidence is not apparent to observers at the surface. This "isotropic thaw subsidence" explains the apparent stability of active layer thickness records from some landscapes of northern Alaska, despite warming near-surface air temperatures. Integrated over extensive regions, it may be responsible for thawing large volumes of carbon-rich substrate and could have negative impacts on infrastructure.

  2. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.; Chan, Kwai S.

    1986-01-01

    The objective of the program is to evaluate and develop existing constitutive models for use in finite-element structural analysis of turbine engine hot section components. The class of constitutive equation studied is considered unified in that all inelastic deformation including plasticity, creep, and stress relaxation are treated in a single term rather than a classical separation of plasticity (time independent) and creep (time dependent) behavior. The unified theories employed also do not utilize the classical yield surface or plastic potential concept. The models are constructed from an appropriate flow law, a scalar kinetic relation between strain rate, temperature and stress, and evolutionary equations for internal variables describing strain or work hardening, both isotropic and directional (kinematic). This and other studies have shown that the unified approach is particularly suited for determining the cyclic behavior of superalloy type blade and vane materials and is entirely compatible with three-dimensional inelastic finite-element formulations. The behavior was examined of a second nickel-base alloy, MAR-M247, and compared it with the Bodner-Partom model, further examined procedures for determining the material-specific constants in the models, and exercised the MARC code for a turbine blade under simulated flight spectrum loading. Results are summarized.

  3. Analysis of Thermal and Chemical Effets on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

    SciTech Connect

    Ekoto, Dr Isaac; Peterson, Dr. Brian; Szybist, James P; Northrop, Dr. William

    2015-01-01

    A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate. Gas sampling at the end of the NVO period was performed via a custom dump-valve apparatus, with detailed sample speciation by in-house gas chromatography. The balance of NVO-period input and output energy flows was calculated in terms of fuel energy, work, heat loss, and change in sensible energy. Experiment results were complemented by detailed chemistry single-zone reactor simulations performed at relevant mixing and thermodynamic conditions, with results used to evaluate ignition behavior and expected energy recovery yields. For the intermediate bulk-gas temperatures present during the NVO period (900-1100 K), weak negative temperature coefficient behavior with iso-octane fueling significantly lengthened ignition delays relative to similar ethanol fueled conditions. Faster ethanol ignition chemistry led to lower recovered fuel intermediate yields relative to similar iso-octane fueled conditions due to more complete fuel oxidation. From the energy analysis it was found that increased NVO-period global equivalence ratio, either from lower NVOperiod oxygen

  4. Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Dong; Lee, Bomi; Kang, Shin-Woong; Song, Jang-Kun

    2015-08-01

    In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic-isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation.

  5. Alternative Methodology for Boron Isotopic Analysis of CaCO3 by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2012-12-01

    Negative thermal ionization mass spectrometry (NTIMS) has been a common tool for investigating boron isotopes in CaCO3 and other environmental samples, the high sensitivity of BO2- ionization enabling measurements of ng levels of boron. However, B isotope measurement by this technique suffers from a number of problems, including: (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; (2) CNO- interference on mass 42 ([10BO2]-) that may be present in some filament load solutions (such as B-free seawater processed through ion-exchange resin), and (3) potential matrix effects due to widely differing chemistry of samples and standards. Here we examine a potentially improved NTIMS methodology that incudes removal of sample-related calcium (and other cations) by ion exchange and uses an alternative filament loading solution prepared from high-purity single-element solutions of Ca, Mg, Na, and K. Initial results suggest that this new method may offer significant improvement over the more traditional NTIMS approach in which digested CaCO3 samples are directly loaded onto filaments in B-free seawater. Replicate analyses of standards and samples yield a typical standard deviation of approximately 0.3‰ δ11B and boron isotopic compositions comparable to reported or consensus values. Fractionation during analysis has thus far typically been less than 0.5‰ δ11B. The method delivers boron ionization efficiency similar to directly-loaded seawater, and negligible signal at mass 26 (CN-), a proxy for the possible interfering molecular CNO- ion. Standards and samples behave similarly and predictably during filament heating and analysis, thus allowing for fully automated data acquisition, which in turn may increase sample throughput and reduce potential analytical inconsistencies associated with operator-controlled heating and analysis.

  6. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.

    1986-01-01

    The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined

  7. “True” negative thermal expansion in Mn-doped LaCu{sub 3}Fe{sub 4}O{sub 12} perovskite oxides

    SciTech Connect

    Yamada, Ikuya; Marukawa, Shohei; Murakami, Makoto; Mori, Shigeo

    2014-12-08

    Negative and zero thermal expansion near room temperature have been achieved in a cubic A-site ordered perovskite oxide LaCu{sub 3}Fe{sub 4−x}Mn{sub x}O{sub 12}. A discontinuous volume change in the parent material LaCu{sub 3}Fe{sub 4}O{sub 12}, owing to a first-order intermetallic charge transfer transition (3Cu{sup 2+ }+ 4Fe{sup 3.75+} ⇄ 3Cu{sup 3+ }+ 4Fe{sup 3+}), is efficiently relaxed to a second-order-type negative thermal expansion with a linear thermal expansion coefficient (α{sub L}) of −2.2(1) × 10{sup −5 }K{sup −1} between 300 and 340 K at x = 0.75, followed by an almost zero thermal expansion [α{sub L} of −1.1(2) × 10{sup −6 }K{sup −1}] at x = 1 in a wide temperature range (240–360 K) including room temperature. Magnetic susceptibility measurements display substantial broadenings of the antiferromagnetic transition when x increases, supporting the relaxation of first-order electronic phase transition of the parent material. These findings indicate that the significant adjustability of thermal expansion properties can be achieved in first-order intermetallic charge-transfer transition.

  8. Low-thermal expansion infrared glass ceramics

    NASA Astrophysics Data System (ADS)

    Lam, Philip

    2009-05-01

    L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (<0.5 ppm/°C) and high thermal-shock resistance to be used as windows and domes for high speed flight. The material is an inorganic, non-porous glass ceramic, characterized by crystalline phases of evenly distributed nano-crystals in a residual glass phase. The major crystalline phase is zirconium tungstate (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.

  9. The Isotropic Radio Background and Annihilating Dark Matter

    SciTech Connect

    Hooper, Dan; Belikov, Alexander V.; Jeltema, Tesla E.; Linden, Tim; Profumo, Stefano; Slatyer, Tracy R.

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  10. Isotropic behavior of an anisotropic material: single crystal silicon

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.; Paquin, Roger A.

    2013-09-01

    Zero defect single crystal silicon (Single-Crystal Si), with its diamond cubic crystal structure, is completely isotropic in most properties important for advanced aerospace systems. This paper will identify behavior of the three most dominant planes of the Single-Crystal Si cube (110), (100) and (111). For example, thermal and optical properties are completely isotropic for any given plane. The elastic and mechanical properties however are direction dependent. But we show through finite element analysis that in spite of this, near-isotropic behavior can be achieved with component designs that utilize the optimum elastic modulus in directions with the highest loads. Using glass frit bonding to assemble these planes is the only bonding agent that doesn't degrade the performance of Single-Crystal Si. The most significant anisotropic property of Single-Crystal Si is the Young's modulus of elasticity. Literature values vary substantially around a value of 145 GPa. The truth is that while the maximum modulus is 185 GPa, the most useful <110< crystallographic direction has a high 169 GPa, still higher than that of many materials such as aluminum and invar. And since Poisson's ratio in this direction is an extremely low 0.064, distortion in the plane normal to the load is insignificant. While the minimum modulus is 130 GPa, a calculated average value is close to the optimum at approximately 160 GPa. The minimum modulus is therefore almost irrelevant. The (111) plane, referred to as the natural cleave plane survives impact that would overload the (110) and/or (100) plane due to its superior density. While mechanical properties vary from plane to plane each plane is uniform and response is predictable. Understanding the Single-Crystal Si diamond cube provides a design and manufacture path for building lightweight Single-Crystal Si systems with near-isotropic response to loads. It is clear then that near-isotropic elastic behavior is achievable in Single-Crystal Si

  11. A combined stretching-tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd(II)-MOF.

    PubMed

    Lama, Prem; Das, Raj Kumar; Smith, Vincent J; Barbour, Leonard J

    2014-06-21

    A novel semi-flexible Cd(II)-MOF has been synthesized and characterized by variable temperature powder and single-crystal X-ray diffraction. The material displays an unusual combination of thermal expansion (TE) i.e. negative, zero and positive, which is an extremely rare finding, especially for metal-organic frameworks as a result of a combined stretching-tilting mechanism. PMID:24809630

  12. Collective Excitations of Bose-Einstein Condensates In Isotropic and Slightly Anisotropic Traps

    NASA Astrophysics Data System (ADS)

    Barentine, Andrew; Lobser, Dan; Lewandowski, Heather; Cornell, Eric

    2014-05-01

    Boltzmann proved that the monopole mode of a thermal gas in an isotropic, harmonic and 3D trap is undamped. Bose-Einstein Condensates (BECs) are not classical gases and their weakly interacting nature causes damping at finite temperature in a 3D monopole mode. The large parameter space of the TOP (Time-averaged Orbiting Potential) trap allows for precise control of the trap geometry. Exciting a monopole mode in a BEC as well as its canonical thermal cloud in the hydrodynamic regime will allow us to investigate damping effects in isotropic and slightly anisotropic traps. Funding : NSF,NIST,ONR

  13. Interpenetration as a Mechanism for Negative Thermal Expansion in the Metal-Organic Framework Cu3(btb)2 (MOF-14)

    SciTech Connect

    Wu, Yue; Peterson, Vanessa K.; Luks, Emily; Darwish, Tamim A.; Kepert, Cameron J.

    2014-07-11

    Metal–organic framework materials (MOFs) have recently been shown in some cases to exhibit strong negative thermal expansion (NTE) behavior, while framework interpenetration has been found to reduce NTE in many materials. Using powder and single-crystal diffraction methods we investigate the thermal expansion behavior of interpenetrated Cu3(btb)2 (MOF-14) and find that it exhibits an anomalously large NTE effect. Temperature-dependent structural analysis shows that, contrary to other interpenetrated materials, in MOF-14 the large positive thermal expansion of weak interactions that hold the interpenetrating networks together results in a low-energy contractive distortion of the overall framework structure, demonstrating a new mechanism for NTE.

  14. Isotropic Growth of Graphene toward Smoothing Stitching.

    PubMed

    Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei

    2016-07-26

    The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect. PMID:27403842

  15. Static spherically symmetric wormholes with isotropic pressure

    NASA Astrophysics Data System (ADS)

    Cataldo, Mauricio; Liempi, Luis; Rodríguez, Pablo

    2016-06-01

    In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there are no spherically symmetric traversable wormholes sustained by sources with a linear equation of state p = ωρ for the isotropic pressure, independently of the form of the redshift function ϕ (r). We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.

  16. Electromagnetic Effects on Wave Propagation in an Isotropic Micropolar Plate

    NASA Astrophysics Data System (ADS)

    Shaw, S.; Mukhopadhyay, B.

    2015-11-01

    The generalized theory of thermoelasticity is applied to study the propagation of plane harmonic waves in an infinitely long, isotropic, micropolar plate in the presence of a uniform magnetic field. The present analysis also includes the thermal relaxation time, electric displacement current, and the coupling of heat transfer and microrotation of the material. To determine the effect of the presence of thermal as well as magnetic fields on the phase velocity, two potential functions are used, and more general dispersive relations are obtained for symmetric and antisymmetric modes. The results for the cases of coupled thermoelasticity, magnetoelasticity, micropolar thermoelasticity, and classical micropolar elasticity as special cases are derived. The changes in the phase velocity and attenuation coefficient with the wave number are shown graphically.

  17. Sheared flow-driven vortices and solitary waves in a non-uniform plasma with negative ions and non-thermal distributed electrons

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Shah, Attaullah; Shah

    2013-10-01

    The coupled drift-ion acoustic (DIA) waves in an inhomogeneous magnetoplasma having negative and positive ions can be driven by the parallel sheared flows in the presence of Cairns distributed non-thermal electrons. The coupled DIA waves can become unstable due to shear flows. The conditions of modes instability are discussed with effects of non-thermal electrons. These are the excited modes and start interactions among themselves. The interaction is governed by the Hasegawa-Mima equations with analytical solutions in the form of a vortex chain and dipolar vortex. On the other hand, for scalar nonlinearity the Kortweg deVries-type equation is obtained with solitary wave solution. Possible application of the work to the space and laboratory plasmas are highlighted.

  18. Biomimetic Isotropic Nanostructures for Structural Coloration

    SciTech Connect

    Forster, Jason D.; Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Schreck, Carl F.; Yang, Lin; Park, Jin-Gyu; Prum, Richard O.; Mochrie, Simon G.J.; O'Hern, Corey S.; Cao, Hui; Dufresne, Eric R.

    2010-08-09

    The self-assembly of films that mimic color-producing nanostructures in bird feathers is described. These structures are isotropic and have a characteristic length-scale comparable to the wavelength of visible light. Structural colors are produced when wavelength-independent scattering is suppressed by limiting the optical path length through geometry or absorption.

  19. Transversely isotropic elasticity imaging of cancellous bone.

    PubMed

    Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F

    2011-06-01

    To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ₁₂ is necessary to reconstruct C₁₂₁₂), and the application of regularization is shown to improve accuracy. Finally

  20. The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum.

    PubMed

    Scharf, Inon; Wexler, Yonatan; MacMillan, Heath Andrew; Presman, Shira; Simson, Eddie; Rosenstein, Shai

    2016-04-01

    The thermal tolerance of a terrestrial insect species can vary as a result of differences in population origin, developmental stage, age, and sex, as well as via phenotypic plasticity induced in response to changes in the abiotic environment. Here, we studied the effects of both starvation and mild cold and heat shocks on the thermal tolerance of the red flour beetle, Tribolium castaneum. Starvation led to impaired cold tolerance, measured as chill coma recovery time, and this effect, which was stronger in males than females, persisted for longer than 2 days but less than 7 days. Heat tolerance, measured as heat knockdown time, was not affected by starvation. Our results highlight the difficulty faced by insects when encountering multiple stressors simultaneously and indicate physiological trade-offs. Both mild cold and heat shocks led to improved heat tolerance in both sexes. It could be that both mild shocks lead to the expression of heat shock proteins, enhancing heat tolerance in the short run. Cold tolerance was not affected by previous mild cold shock, suggesting that such a cold shock, as a single event, causes little stress and hence elicits only weak physiological reaction. However, previous mild heat stress led to improved cold tolerance but only in males. Our results point to both hardening and cross-tolerance between cold and heat shocks. PMID:26888763

  1. The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum

    NASA Astrophysics Data System (ADS)

    Scharf, Inon; Wexler, Yonatan; MacMillan, Heath Andrew; Presman, Shira; Simson, Eddie; Rosenstein, Shai

    2016-04-01

    The thermal tolerance of a terrestrial insect species can vary as a result of differences in population origin, developmental stage, age, and sex, as well as via phenotypic plasticity induced in response to changes in the abiotic environment. Here, we studied the effects of both starvation and mild cold and heat shocks on the thermal tolerance of the red flour beetle, Tribolium castaneum. Starvation led to impaired cold tolerance, measured as chill coma recovery time, and this effect, which was stronger in males than females, persisted for longer than 2 days but less than 7 days. Heat tolerance, measured as heat knockdown time, was not affected by starvation. Our results highlight the difficulty faced by insects when encountering multiple stressors simultaneously and indicate physiological trade-offs. Both mild cold and heat shocks led to improved heat tolerance in both sexes. It could be that both mild shocks lead to the expression of heat shock proteins, enhancing heat tolerance in the short run. Cold tolerance was not affected by previous mild cold shock, suggesting that such a cold shock, as a single event, causes little stress and hence elicits only weak physiological reaction. However, previous mild heat stress led to improved cold tolerance but only in males. Our results point to both hardening and cross-tolerance between cold and heat shocks.

  2. Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn{sub 3}Ni{sub 1−x}Cu{sub x}N compounds

    SciTech Connect

    Ding, Lei; Wang, Cong Sun, Ying; Colin, Claire V.; Chu, Lihua

    2015-06-07

    The Cu-doping effect on the lattice and magnetic properties in Mn{sub 3}Ni{sub 1−x}Cu{sub x}N (x = 0, 0.3, 0.5, 0.7, 1.0) was extensively investigated. We observed that the Cu-doping at the Ni site complicated the magnetic ground states, which induced the competition of antiferromagnetic and ferromagnetic interactions. Spin-glass-like behavior, arising from possible site-randomness and competing interactions of magnetism, was observed in compounds with x = 0.3, 0.5, and 0.7, and typically discussed by means of the measurement of ac magnetic susceptibility for x = 0.7. The negative thermal expansion (NTE) behavior, due to the magnetic ordering transition, was observed in Mn{sub 3}Ni{sub 1−x}Cu{sub x}N compounds using variable temperature x-ray diffraction. It reveals that the introduction of Cu effectively broadens the temperature range displaying negative thermal expansion. The relationship between the local lattice distortion and the competing magnetic ground states might play an important role in broadening the NTE temperature range in this antiperovskite compound.

  3. Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid.

    PubMed

    Kim, Soo-Dong; Lee, Bomi; Kang, Shin-Woong; Song, Jang-Kun

    2015-01-01

    In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic-isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation. PMID:26242251

  4. Penetrative phototactic bioconvection in an isotropic scattering suspension

    NASA Astrophysics Data System (ADS)

    Panda, M. K.; Ghorai, S.

    2013-07-01

    Phototaxis is a directed swimming response dependent upon the light intensity sensed by micro-organisms. Positive (negative) phototaxis denotes the motion directed towards (away from) the source of light. Using the phototaxis model of Ghorai, Panda, and Hill ["Bioconvection in a suspension of isotropically scattering phototactic algae," Phys. Fluids 22, 071901 (2010)], 10.1063/1.3457163, we investigate two-dimensional phototactic bioconvection in an absorbing and isotropic scattering suspension in the nonlinear regime. The suspension is confined by a rigid bottom boundary, and stress-free top and lateral boundaries. The governing equations for phototactic bioconvection consist of Navier-Stokes equations for an incompressible fluid coupled with a conservation equation for micro-organisms and the radiative transfer equation for light transport. The governing system is solved efficiently using a semi-implicit second-order accurate conservative finite-difference method. The radiative transfer equation is solved by the finite volume method using a suitable step scheme. The resulting bioconvective patterns differ qualitatively from those found by Ghorai and Hill ["Penetrative phototactic bioconvection," Phys. Fluids 17, 074101 (2005)], 10.1063/1.1947807 at a higher critical wavelength due to the effects of scattering. The solutions show transition from steady state to periodic oscillations as the governing parameters are varied. Also, we notice the accumulation of micro-organisms in two horizontal layers at two different depths via their mean swimming orientation profile for some governing parameters at a higher scattering albedo.

  5. Subfilter scalar-flux vector orientation in homogeneous isotropic turbulence.

    PubMed

    Verma, Siddhartha; Blanquart, G

    2014-06-01

    The geometric orientation of the subfilter-scale scalar-flux vector is examined in homogeneous isotropic turbulence. Vector orientation is determined using the eigenframe of the resolved strain-rate tensor. The Schmidt number is kept sufficiently large so as to leave the velocity field, and hence the strain-rate tensor, unaltered by filtering in the viscous-convective subrange. Strong preferential alignment is observed for the case of Gaussian and box filters, whereas the sharp-spectral filter leads to close to a random orientation. The orientation angle obtained with the Gaussian and box filters is largely independent of the filter width and the Schmidt number. It is shown that the alignment direction observed numerically using these two filters is predicted very well by the tensor-diffusivity model. Moreover, preferred alignment of the scalar gradient vector in the eigenframe is shown to mitigate any probable issues of negative diffusivity in the tensor-diffusivity model. Consequentially, the model might not suffer from solution instability when used for large eddy simulations of scalar transport in homogeneous isotropic turbulence. Further a priori tests indicate poor alignment of the Smagorinsky and stretched vortex model predictions with the exact subfilter flux. Finally, strong filter dependence of subfilter scalar-flux orientation suggests that explicit filtering may be preferable to implicit filtering in large eddy simulations. PMID:25019887

  6. Configurational temperature and local properties of the anisotropic Gay-Berne liquid crystal model: Applications to the isotropic liquid/vapor interface and isotropic/nematic transition

    NASA Astrophysics Data System (ADS)

    Ghoufi, Aziz; Morineau, Denis; Lefort, Ronan; Malfreyt, Patrice

    2011-01-01

    Molecular simulations in the isothermal statistical ensembles require that the macroscopic thermal and mechanical equilibriums are respected and that the local values of these properties are constant at every point in the system. The thermal equilibrium in Monte Carlo simulations can be checked through the calculation of the configurational temperature, {k_BT_{conf}={< |nabla _r U({r}^N)|2>}/{< nabla _r{^2} U({r}^N) >}}, where nabla _r is the nabla operator of position vector r. As far as we know, T_{conf} was never calculated with the anisotropic Gay-Berne potential, whereas the calculation of T_{conf} is much more widespread with more common potentials (Lennard Jones, electrostatic, …). We establish here an operational expression of the macroscopic and local configurational temperatures, and we investigate locally the isotropic liquid phase, the liquid / vapor interface, and the isotropic-nematic transition by Monte Carlo simulations.

  7. Configurational temperature and local properties of the anisotropic Gay-Berne liquid crystal model: applications to the isotropic liquid/vapor interface and isotropic/nematic transition.

    PubMed

    Ghoufi, Aziz; Morineau, Denis; Lefort, Ronan; Malfreyt, Patrice

    2011-01-21

    Molecular simulations in the isothermal statistical ensembles require that the macroscopic thermal and mechanical equilibriums are respected and that the local values of these properties are constant at every point in the system. The thermal equilibrium in Monte Carlo simulations can be checked through the calculation of the configurational temperature, k(B)T(conf)=<|∇(r)U(r(N))|(2)>/<∇(r) (2)U(r(N))>, where ∇(r) is the nabla operator of position vector r. As far as we know, T(conf) was never calculated with the anisotropic Gay-Berne potential, whereas the calculation of T(conf) is much more widespread with more common potentials (Lennard Jones, electrostatic, ...). We establish here an operational expression of the macroscopic and local configurational temperatures, and we investigate locally the isotropic liquid phase, the liquid / vapor interface, and the isotropic-nematic transition by Monte Carlo simulations. PMID:21261339

  8. Hexakis(urea-κO)zinc(II) dinitrate at 110 and 250 K: uniaxial negative thermal expansion.

    PubMed

    Smeets, Stef; Lutz, Martin

    2011-02-01

    The crystal structure of the title compound, [Zn{CO(NH(2))(2)}(6)](NO(3))(2), has been determined at 110 and 250 K. The structure is stabilized by 12 individual hydrogen bonds, both intra- and intermolecular. Analysis of the thermal expansion tensor, based on unit cells determined over a temperature range of 180 K, shows uniaxial compression in the direction of the b axis during warming. The hydrogen bonds form layers perpendicular to this axis and these layers are connected by coordinative bonds parallel to the axis. As expected, the intermolecular hydrogen bonds expand during warming. Surprisingly, the coordinative bonds contract, accompanied by changes in the O-Zn-O angles. Overall, this behaviour can be described as an accordion-like effect. PMID:21285496

  9. Effect of freestream isotropic turbulence on heat transfer from a sphere

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit; Kottam, Kirit

    2008-07-01

    We consider direct numerical simulation (DNS) based on pseudospectral methods to study the heat transfer around a stationary sphere held at a constant temperature and subject to an ambient turbulent velocity and temperature condition. The sphere Reynolds number is in the range of 63-400, and the sphere diameter (d) varies from one to eight times the Kolmogorov scale (η). The ambient turbulent field is isotropic, and the Taylor microscale Reynolds number Rλ varies from 38 to 240. Results from two sets of DNS are presented. In the first set, the ambient velocity field is turbulent, but the ambient temperature is held constant. In the second set of simulations, both the ambient velocity and the temperature fields are turbulent. These two sets of simulations allow us to isolate the role of freestream velocity fluctuations and temperature fluctuations in modifying the mean and time-dependent heat transfer from the sphere. The mean Nusselt number is observed to be independent of Rλ. It is shown that the freestream turbulence does not have any significant effect on the mean Nusselt number, and the available correlations for a steady and uniform ambient can predict the mean Nusselt number under the turbulent ambient condition. The instantaneous Nusselt number, however, can differ significantly from the mean, and can be negative in case of large temperature fluctuation in the far field. The instantaneous Nusselt number obtained from the DNS is analyzed and compared with the analytical expression for the unsteady thermal response of a sphere. It is shown that the thermal added-mass effect is small for d /η≈1 but introduces spurious oscillation at higher d. The thermal history effect is shown to be insignificant for all d /η. Properties of the thermal wake in the presence of the turbulent velocity and temperature fields are studied. The mean thermal wake is observed to be shorter in streamwise direction and wider in crossflow direction in a turbulent ambient than that

  10. Structural, negative thermal expansion and photocatalytic properties of ZrV{sub 2}O{sub 7}: a comparative study between fibers and powders

    SciTech Connect

    Liu, Qinqin; Yang, Juan; Rong, Xiaoqing; Sun, Xiujuan; Cheng, Xiaonong; Tang, Hua; Li, Haohua

    2014-10-15

    Novel ZrV{sub 2}O{sub 7} microfibers with diameters about 1–3 μm were synthesized using a sol–gel technique. For comparison, ZrV{sub 2}O{sub 7} powders were prepared by the same method. The resultant structures were studied by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The results indicated that both the pure ZrV{sub 2}O{sub 7} microfibers and powders could be synthesized by the sol–gel technique. The thermal expansion property of the as-prepared ZrV{sub 2}O{sub 7} microfibers and powders was characterized by a thermal mechanical analyzer, both the fibers with cylindrical morphology and irregular powders with average size between 100 and 200 nm showed negative thermal expansion between 150 °C and 600 °C. The photocatalytic activity of the microfibers was compared to that of powders under UV radiations. The band gap of ZrV{sub 2}O{sub 7} microfibers decreased and its absorption edge exhibited red shift. The microfibers also had a higher surface area compared with the powders, resulting in considerably higher photocatalytic characteristics. The large surface area and the enhanced photocatalytic activity of the ZrV{sub 2}O{sub 7} microfibers also offer potential applications in sensors and inorganic ion exchangers. - Graphical abstract: (a and c) SEM photos of ZrV{sub 2}O{sub 7} powders and fibers. (b and d) TEM images of ZrV{sub 2}O{sub 7} powders and fibers. (e) Thermal expansion curves of ZrV{sub 2}O{sub 7} powders and fibers. (f) Degradation curves of ZrV{sub 2}O{sub 7} powders and ZrV{sub 2}O{sub 7} fibers. - Highlights: • Novel ZrV{sub 2}O{sub 7} fibers could be synthesized using sol–gel technique. • ZrV{sub 2}O{sub 7} powders with irregular shape are also prepared for comparison. • Both ZrV{sub 2}O{sub 7} microfibers and powders exhibit negative thermal expansion property. • ZrV{sub 2}O{sub 7} microfibers show outstanding photocatalytic activity under UV irradiation. • This synthesis

  11. New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the "Guitar-String" Effect in Cubic ScF3.

    PubMed

    Hu, Lei; Chen, Jun; Sanson, Andrea; Wu, Hui; Guglieri Rodriguez, Clara; Olivi, Luca; Ren, Yang; Fan, Longlong; Deng, Jinxia; Xing, Xianran

    2016-07-13

    The understanding of the negative thermal expansion (NTE) mechanism remains challenging but critical for the development of NTE materials. This study sheds light on NTE of ScF3, one of the most outstanding materials with NTE. The local dynamics of ScF3 has been investigated by a combined analysis of synchrotron-based X-ray total scattering, extended X-ray absorption fine structure, and neutron powder diffraction. Very interestingly, we observe that (i) the Sc-F nearest-neighbor distance strongly expands with increasing temperature, while the Sc-Sc next-nearest-neighbor distance contracts, (ii) the thermal ellipsoids of relative vibrations between Sc-F nearest-neighbors are highly elongated in the direction perpendicular to the Sc-F bond, indicating that the Sc-F bond is much softer to bend than to stretch, and (iii) there is mainly dynamically transverse motion of fluorine atoms, rather than static shifts. These results are direct experimental evidence for the NTE mechanism, in which the rigid unit is not necessary for the occurrence of NTE, and the key role is played by the transverse thermal vibrations of fluorine atoms through the "guitar-string" effect. PMID:27336200

  12. Mechanical and transport properties of low-temperature negative thermal expansion material Mn 3CuN co-doped with Ge and Si

    NASA Astrophysics Data System (ADS)

    Huang, Rongjin; Wu, Zhixiong; Yang, Huihui; Chen, Zhen; Chu, Xinxin; Li, Laifeng

    2010-11-01

    Anti-perovskite manganese nitrides Mn 3CuN co-doped with Ge and Si show good negative thermal expansion properties at cryogenic temperatures and thus have great potential for cryogenic applications. In this work, Mn 3(Cu 0.6Si xGe 0.4-x)N ( x = 0.05, 0.1, 0.15) were prepared by reactive sintering under pressure. Their structures, densities, electrical resistivities, thermal conductivities and mechanical properties were studied at room and cryogenic temperatures. The results show that the values of electrical resistivities and thermal conductivities of Mn 3(Cu 0.6Si xGe 0.4-x)N ( x = 0.05, 0.1, 0.15) are in the range of 2.5-4.3 × 10 -6 Ω m and 1.9-3.6 W(m K) -1, respectively. Compression tests indicate the compressive strength and Young's modulus are about 700 MPa and 110 GPa, respectively.

  13. DNS of Shock / Isotropic Turbulence Interaction

    NASA Astrophysics Data System (ADS)

    Grube, Nathan; Taylor, Ellen; Martín, Pino

    2010-11-01

    We discuss DNS of Shock / Isotropic Turbulence Interactions (SITI). We vary the incoming turbulence Mach number up to 0.8 and the convective Mach number up to 5 in order to determine their effects on the interaction. These cases are challenging due to the presence of shocklets in the incoming turbulence as well as significant motion of the main shock. Shock-capturing must be used at all points while still maintaining low enough numerical dissipation to preserve the turbulent fluctuations. We use the linearly- and nonlinearly-optimized Weighted Essentially Non-Oscillatory (WENO) method[1,2]. Particular attention is paid to the inflow boundary condition, where we find the use of snapshots of "frozen" turbulence from decaying isotropic box simulations to be unsatisfactory. We instead use time-varying inflow data generated by a separate forced isotropic turbulence simulation with a specified convection speed. This allows us to access flow conditions where the assumptions of Taylor's Hypothesis are not met. 1.) Mart'in, M.P., Taylor, E.M., Wu, M., and Weirs, V.G., JCP 220(1) 270-89, 2006. 2.) Taylor, E.M., Wu, M., and Mart'in, M.P., JCP 223(1) 384-97, 2007.

  14. Giant negative thermal expansion covering room temperature in nanocrystalline GaN{sub x}Mn{sub 3}

    SciTech Connect

    Lin, J. C.; Tong, P. Chen, L.; Guo, X. G.; Yang, C.; Song, B.; Wu, Y.; Lin, S.; Song, W. H.; Zhou, X. J.; Lin, H.; Ding, Y. W.; Bai, Y. X.; Sun, Y. P.

    2015-09-28

    Nanocrystalline antiperovskite GaN{sub x}Mn{sub 3} powders were prepared by mechanically milling. The micrograin GaN{sub x}Mn{sub 3} exhibits an abrupt volume contraction at the antiferromagnetic (AFM) to paramagnetic (PM) (AFM-PM) transition. The temperature window of volume contraction (ΔT) is broadened to 50 K as the average grain size (〈D〉) is reduced to ∼30 nm. The corresponding coefficient of linear thermal expansion (α) reaches ∼ −70 ppm/K, which are comparable to those of giant NTE materials. Further reducing 〈D〉 to ∼10 nm, ΔT exceeds 100 K and α remains as large as −30 ppm/K (−21 ppm/K) for x = 1.0 (x = 0.9). Excess atomic displacements together with the reduced structural coherence, revealed by high-energy X-ray pair distribution functions, are suggested to delay the AFM-PM transition. By controlling 〈D〉, giant NTE may also be achievable in other materials with large lattice contraction due to electronic or magnetic phase transitions.

  15. Quartz: structural and thermodynamic analyses across the α ↔ β transition with origin of negative thermal expansion (NTE) in β quartz and calcite.

    PubMed

    Antao, Sytle M

    2016-04-01

    The temperature variation, T, of the crystal structure of quartz, SiO2, from 298 to 1235 K was obtained with synchrotron powder X-ray diffraction data and Rietveld structure refinements. The polymorphic transformation from P3221 (low-T, α quartz) to P6222 (high-T, β quartz) occurs at a transition temperature, Ttr = 847 K. The T variations of spontaneous strains and several structural parameters are fitted to an order parameter, Q, using Landau theory. The change in Si atom coordinate, Six, gives Ttr - Tc = 0.49 K, which indicates an α ↔ β transition that is weakly first order and nearly tricritical in character (Q(4) ∝ T). Strains give higher Ttr - Tc values (≃ 7 K). Other fitted parameters are the oxygen Oz coordinate, Si-Si distance, Si-O-Si and ϕ angles, and intensity of the (111) reflection, I111. In α quartz, the Si-Si distance increases with T because of cation repulsion, so the Si-O-Si angle increases (and ϕ decreases) and causes the thermal expansion of the framework structure that consists of corner-sharing distorted rigid SiO4 tetrahedra. The Si-Si distances contract with T and cause negative thermal expansion (NTE) in β quartz because of increasing thermal librations of the O atom in the Si-O-Si linkage that occur nearly perpendicular to the Si-Si contraction. In calcite, CaCO3, the short Ca-Ca distance expands with T, but the next-nearest Ca-Ca distance, which is of equal length to the a axis, contracts with T and causes NTE along the a axis. The thermal librations of the atoms in the rigid CO3 group increase with T along the c axis. PMID:27048727

  16. Isotropic loop quantum cosmology with matter. II. The Lorentzian constraint

    NASA Astrophysics Data System (ADS)

    Hinterleitner, Franz; Major, Seth

    2003-12-01

    The Lorentzian Hamiltonian constraint is solved for isotropic loop quantum cosmology coupled to a massless scalar field. As in the Euclidean case, the discreteness of quantum geometry removes the classical singularity from the quantum Friedmann models. In spite of the absence of the classical singularity, a modified DeWitt initial condition is incompatible with a late-time smooth behavior. Further, the smooth behavior is recovered only for positive or negatives times but not both. An important feature, which is shared with the Euclidean case, is a minimal initial energy of the order of the Planck energy required for the system to evolve dynamically. By forming wave packets of the matter field, an explicit evolution in terms of an internal time is obtained.

  17. Homogenization of quasi-isotropic metamaterials composed by dense arrays of magnetodielectric spheres

    NASA Astrophysics Data System (ADS)

    Liu, Xing-Xiang; Alù, Andrea

    2011-06-01

    In this work, we discuss the homogenization of a metamaterial geometry composed of periodic arrays of densely packed subwavelength magnetodielectric spheres, in order to study whether a local quasi-isotropic homogenization model may accurately describe its wave interaction in its negative-index or zero-index operation. We analyze and compare the electromagnetic response of these arrays with their retrieved metamaterial model, for frequency regimes in which positive or negative values of effective index of refraction are expected. We pay special attention to the effects of array truncation and complex forms of excitation, showing that it is possible to realize quasi-isotropic negative-index or zero-index metamaterials with negligible spatial dispersion effects in certain frequency bands. We then apply these concepts to specific configurations of interest for metamaterial devices, showing that, despite their finite size and complex operation, their response is consistent with the one associated with their homogenized local description.

  18. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination

    SciTech Connect

    Flewitt, A. J.; Powell, M. J.

    2014-04-07

    It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65–0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10{sup 6}−10{sup 7} s{sup −1}, which suggests a weak localization of carriers in band tail states over a 20–40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage

  19. Broad Negative Thermal Expansion Operation-Temperature Window Achieved by Adjusting Fe-Fe Magnetic Exchange Coupling in La(Fe,Si)13 Compounds.

    PubMed

    Li, Shaopeng; Huang, Rongjin; Zhao, Yuqiang; Li, Wen; Wang, Wei; Huang, Chuanjun; Gong, Pifu; Lin, Zheshuai; Li, Laifeng

    2015-08-17

    Cubic La(Fe,Si)13-based compounds have been recently developed as promising negative thermal expansion(NTE) materials, but the narrow NTE operation-temperature window(∼110 K) restricts their actual applications. In this work, we demonstrate that the NTE operation-temperature window of LaFe(13-x)Si(x) can be significantly broadened by adjusting Fe-Fe magnetic exchange coupling as x ranges from 2.8 to 3.1. In particular, the NTE operation-temperature window of LaFe10.1Si2.9 is extended to 220 K. More attractively, the coefficients of thermal expansion of LaFe10.0Si3.0 and LaFe9.9Si3.1 are homogeneous in the NTE operation-temperature range of about 200 K, which is much valuable for the stability of fabricating devices. The further experimental characterizations combined with first-principles studies reveal that the tetragonal phase is gradually introduced into the cubic phase as the Si content increases, hence modifies the Fe-Fe interatomic distance. The reduction of the overall Fe-Fe magnetic exchange interactions contributes to the broadness of NTE operation-temperature window for LaFe(13-x)Si(x). PMID:26196377

  20. Isotropic homogeneous universe with viscous fluid

    SciTech Connect

    Santos, N.O.; Dias, R.S.; Banerjee, A.

    1985-04-01

    Exact solutions are obtained for the isotropic homogeneous cosmological model with viscous fluid. The fluid has only bulk viscosity and the viscosity coefficient is taken to be a power function of the mass density. The equation of state assumed obeys a linear relation between mass density and pressure. The models satisfying Hawking's energy conditions are discussed. Murphy's model is only a special case of this general set of solutions and it is shown that Murphy's conclusion that the introduciton of bulk viscosity can avoid the occurrence of space-time singularity at finite past is not, in general, valid.

  1. The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3.

    PubMed

    Sanchez, Sergio I; Menard, Laurent D; Bram, Ariella; Kang, Joo H; Small, Matthew W; Nuzzo, Ralph G; Frenkel, Anatoly I

    2009-05-27

    The structural dynamics-cluster size and adsorbate-dependent thermal behaviors of the metal-metal (M-M) bond distances and interatomic order-of Pt nanoclusters supported on a gamma-Al(2)O(3) are described. Data from scanning transmission electron microscopy (STEM) and X-ray absorption spectroscopy (XAS) studies reveal that these materials possess a dramatically nonbulklike nature. Under an inert atmosphere small, subnanometer Pt/gamma-Al(2)O(3) clusters exhibit marked relaxations of the M-M bond distances, negative thermal expansion (NTE) with an average linear thermal expansion coefficient alpha = (-2.4 +/- 0.4) x 10(-5) K(-1), large static disorder and dynamical bond (interatomic) disorder that is poorly modeled within the constraints of classical theory. The data further demonstrate a significant temperature-dependence to the electronic structure of the Pt clusters, thereby suggesting the necessity of an active model to describe the cluster/support interactions mediating the cluster's dynamical structure. The quantitative dependences of these nonbulklike behaviors on cluster size (0.9 to 2.9 nm), ambient atmosphere (He, 4% H(2) in He or 20% O(2) in He) and support identity (gamma-Al(2)O(3) or carbon black) are systematically investigated. We show that the nonbulk structural, electronic and dynamical perturbations are most dramatically evidenced for the smallest clusters. The adsorption of hydrogen on the clusters leads to an increase of the Pt-Pt bondlengths (due to a lifting of the surface relaxation) and significant attenuation of the disorder present in the system. Oxidation of these same clusters has the opposite effect, leading to an increase in Pt-Pt bond strain and subsequent enhancement in nonbulklike thermal properties. The structural and electronic properties of Pt nanoclusters supported on carbon black contrast markedly with those of the Pt/gamma-Al(2)O(3) samples in that neither NTE nor comparable levels of atomic disorder are observed. The Pt

  2. Isotropization of nematic liquid crystals by TMDSC

    SciTech Connect

    Chen, Wei; Dadmun, M.; Zhang, Ge; Boller, A.; Wunderlich, B. |

    1997-12-01

    Temperature-modulated differential scanning calorimetry (TMDSC) and traditional DSC are used to study the transition between the nematic liquid crystalline state and the isotropic liquid for two small molecules [4,4{prime}-azoxyanisole and N,N`-bis(4-n-octyloxybenzal)-1,4-phenylenediamine] and one macromolecule (4,4{prime}-dihydroxy-{alpha}-methylstilbene copolymerized with a 1:1 molar mixture of 1,7-dibromoheptane and 1,9-dibromononane). The DSC measurements with 4,4{prime}-azoxyanisole were used for temperature calibration with varying heating and cooling rates. Quasi-isothermal TMDSC with small temperature amplitude and standard TMDSC with underlying heating and cooling rates were utilized to analyze the breadth of the transitions. It could be verified that the isotropization transition of a nematic liquid crystal is, indeed, reversible for all three molecules. The nature of the transition changes, however, from relatively sharp, for small, rigid molecules, to about three kelvins wide for the small molecule with flexible ends, to as broad as 20 K for the macromolecule. It was also demonstrated that quantitative heats of fusion of sharp transitions can be extracted from TMDSC, but only from the time-domain heat-flow signal.

  3. Collective Excitations of Bose­-Einstein Condensates In Isotropic and Slightly Anisotropic Traps

    NASA Astrophysics Data System (ADS)

    Barentine, Andrew; Lobser, Dan; Lewandowski, Heather; Cornell, Eric

    2014-03-01

    Boltzmann proved that the monopole mode of a thermal gas in an isotropic, harmonic and 3D trap is undamped. Bose-Einstein Condensates (BECs) are not classical gases and their weakly interacting nature causes damping in a 3D monopole mode. The large parameter space of the TOP (Time-averaged Orbiting Potential) trap allows for precise control of the trap geometry. Exciting a monopole mode in a BEC as well as its canonical thermal cloud allows us to investigate damping effects in isotropic and slightly anisotropic traps for both hydrodynamic and collisionless regimes. We also hope to achieve a greater understanding of the frequency shifts due to anharmonicity in the trap in order to apply this to our research on quasi-2D monopole modes. Funding: NSF, NIST, ONR

  4. Depletion induced isotropic-isotropic phase separation in suspensions of rod-like colloids.

    PubMed

    Jungblut, S; Tuinier, R; Binder, K; Schilling, T

    2007-12-28

    When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. We performed Monte Carlo simulations to study the phase diagram of such rod-polymer mixture. The colloidal rods were modeled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while the overlap of polymers and rods is forbidden. Large amounts of depletant cause phase separation of the mixture. We estimated the phase boundaries of isotropic-isotropic coexistence both in the bulk and in confinement. To determine the phase boundaries we applied the grand canonical ensemble using successive umbrella sampling [J. Chem. Phys. 120, 10925 (2004)], and we performed a finite size scaling analysis to estimate the location of the critical point. The results are compared with predictions of the free volume theory developed by Lekkerkerker and Stroobants [Nuovo Cimento D 16, 949 (1994)]. We also give estimates for the interfacial tension between the coexisting isotropic phases and analyze its power-law behavior on the approach of the critical point. PMID:18163708

  5. New bounds on isotropic Lorentz violation

    SciTech Connect

    Chris Carone; Marc Sher; Marc Vanderhaeghen

    2006-09-19

    Violations of Lorentz invariance that appear via operators of dimension four or less are completely parameterized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are nineteen dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10{sup -11} and 10{sup -32}; the remaining parameter, ktr, is isotropic and has a much weaker bound of order 10{sup -4}. In this Brief Report, we point out that ktr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10{sup -8}. With reasonable assumptions, we further show that this bound may be improved to 10{sup -14} by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz violating parameters in the pure gluonic sector of QCD.

  6. Recalculation of the Isotropic H Functions

    NASA Astrophysics Data System (ADS)

    Hiroi, Takahiro

    1994-06-01

    The isotropic H functions defined in radiative transfer theory by Chandrasekhar (Radiative Transfer, Dover, New York, 1960) have been numerically recalculated for a larger number of single scattering albedo (w) values. The obtained H functions should be accurate to five decimal places at least. The H function values become highly nonlinear as w approaches 1, where calculations were performed with many more points than in Chandrasekhar (1960). A simple linear interpolation of Chandrasekhar's H function table could result in as much as 8% error in the H function values and 16% in the H2 values that appear in multiple scattering terms such as in Hapke (J. Geophys. Res. 86, 3039-3054, 1981). On the other hand, Hapke's approximations (J. Geophys. Res. 86, 3039-3054, 1981; Theory of Reflectance and Emittance Spectroscopy, Cambridge Univ. Press, New York, 1993) give H values within 4.1% and 0.8% error, respectively.

  7. Quantization ambiguities in isotropic quantum geometry

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin

    2002-10-01

    Some typical quantization ambiguities of quantum geometry are studied within isotropic models. Since this allows explicit computations of operators and their spectra, one can investigate the effects of ambiguities in a quantitative manner. It is shown that these ambiguities do not affect the fate of the classical singularity, demonstrating that the absence of a singularity in loop quantum cosmology is a robust implication of the general quantization scheme. The calculations also allow conclusions about modified operators in the full theory. In particular, using holonomies in a non-fundamental representation of SU(2) to quantize connection components turns out to lead to significant corrections to classical behaviour at macroscopic volume for large values of the spin of the chosen representation.

  8. Elastic constants of layers in isotropic laminates.

    PubMed

    Heyliger, Paul R; Ledbetter, Hassel; Kim, Sudook; Reimanis, Ivar

    2003-11-01

    The individual laminae elastic constants in multilayer laminates composed of dissimilar isotropic layers were determined using ultrasonic-resonance spectroscopy and the linear theory of elasticity. Ultrasonic resonance allows one to measure the free-vibration response spectrum of a traction-free solid under periodic vibration. These frequencies depend on pointwise density, laminate dimensions, layer thickness, and layer elastic constants. Given a material with known mass but unknown constitution, this method allows one to extract the elastic constants and density of the constituent layers. This is accomplished by measuring the frequencies and then minimizing the differences between these and those calculated using the theory of elasticity for layered media to select the constants that best replicate the frequency-response spectrum. This approach is applied to a three-layer, unsymmetric laminate of WpCu, and very good agreement is found with the elastic constants of the two constituent materials. PMID:14649998

  9. Isotropic and anisotropic surface wave cloaking techniques

    NASA Astrophysics Data System (ADS)

    McManus, T. M.; La Spada, L.; Hao, Y.

    2016-04-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.

  10. Isotropic expansion of an inhomogeneous universe

    NASA Astrophysics Data System (ADS)

    Geng, Wei-Jian; Lü, H.

    2014-10-01

    We propose a cosmological model that describes isotropic expansion of an inhomogeneous universe. The energy-momentum tensor that creates the spatial inhomogeneity may not affect the uniform expansion scaling factor a(t) in the Friedmann-Lemaître-Robertson-Walker-like metrics. Such an energy-momentum tensor may not be exotic; in fact any linear or nonlinear σ model has this feature. We show that the classical spatial inhomogeneity can be embedded in both inflation models and the traditional cosmological expansion by perfect fluid. The spatial inhomogeneity resembles the primordial quantum perturbation that was frozen in the comoving frame. We obtain some exact inhomogeneous solutions with spherical or axial symmetries. We also show that some of our cosmological models can be viewed as the dynamical black hole formation.

  11. Isotropic MD simulations of dynamic brittle fracture

    SciTech Connect

    Espanol, P.; Rubio, M.A.; Zuniga, I.

    1996-12-01

    The authors present results obtained by molecular dynamics simulations on the propagation of fast cracks in triangular 2D lattices. Their aim is to simulate Mode 1 fracture of brittle isotropic materials. They propose a force law that respects the isotropy of the material. The code yields the correct imposed sound c{sub {parallel}}, shear c{sub {perpendicular}} and surface V{sub R} wave speeds. Different notch lengths are systematically studied. They observed that initially the cracks are linear and always branch at a particular critical velocity c* {approx} 0.8V{sub R} and that this occurs when the crack tip reaches the position of a front emitted from the initial crack tip and propagating at a speed c = 0.68V{sub R}.

  12. Negative thermal expansion in cubic ZrW2O8: Role of phonons in the entire Brillouin zone from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Mittal, R.; Chaplot, S. L.

    2013-07-01

    We report the ab initio density functional theory calculation of phonons in the cubic phase of ZrW2O8 in the entire Brillouin zone and identify specific anharmonic phonons that are responsible for large negative thermal expansion (NTE) in terms of the translation, rotation, and distortion of WO4 and ZrO6. We have used density functional calculations to interpret the experimental phonon spectra as a function of pressure and temperature as reported in literature. We discover that the phonons showing anharmonicity with temperature are not necessarily the same as those showing anharmonicity with pressure although both are of similar frequencies. Only the latter phonons are associated with NTE. Therefore, the cubic and/or quadratic anharmonicity of phonons is not relevant to NTE but just the volume dependence of frequencies. The calculations are able to reproduce the observed anomalous trends, namely, the softening of the low-frequency peak at about 4 meV in the phonon spectra with pressure and its hardening with temperature, whereas, both changes involve a compression of the lattice.

  13. Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf,Ta)Fe2

    NASA Astrophysics Data System (ADS)

    Li, B.; Luo, X. H.; Wang, H.; Ren, W. J.; Yano, S.; Wang, C.-W.; Gardner, J. S.; Liss, K.-D.; Miao, P.; Lee, S.-H.; Kamiyama, T.; Wu, R. Q.; Kawakita, Y.; Zhang, Z. D.

    2016-06-01

    Competition between ferromagnetic and antiferromagnetic phases on frustrated lattices in hexagonal Laves phase compound Hf0.86Ta0.14Fe2 is investigated by using neutron diffraction as a function of temperature and magnetic fields and density-functional-theory calculations. At 325 K, the compound orders into the 120° frustrated antiferromagnetic state with a well-reduced magnetic moment, and an in-plane lattice contraction simultaneously sets in. With further cooling down, however, the accumulated distortion in turn destabilizes this susceptible frustrated structure. The frustration is completely relieved at 255 K when the first-order transition to the ferromagnetic state takes place, where a colossal negative volumetric thermal expansion, -123 ×10-6 /K, is obtained. Meanwhile, the antiferromagnetic state can be suppressed by few-tesla magnetic fields, which results in a colossal positive magnetostriction. Such delicate competition is attributed to the giant magnetic fluctuation inherent in the frustrated antiferromagnetic state. Therefore, the magnetoelastic instability is approached even under a small perturbation.

  14. Neutron diffraction study and anomalous negative thermal expansion in non-superconducting PrFe1-xRuxAsO

    SciTech Connect

    Yiu, Yuen; Garlea, Vasile O; McGuire, Michael A; Huq, Ashfia; Mandrus, David; Nagler, Stephen E

    2012-01-01

    Neutron powder diraction has been used to investigate the structural and magnetic behavior of the isoelectronically doped Fe pnictide material PrFe1-xRuxAsO. Substitution of Ru for Fe sup- presses the structural and magnetic phase transitions that occur in the undoped compound PrFeAsO. Contrary to the behavior usually observed in 1111 pnictide materials, the suppression of both the structural and magnetic transitions does not result in the emergence of superconductivity or any other new ground state. Interestingly, PrFeAsO itself shows an unusual negative thermal expansion (NTE) along the c-axis, from 60K down to at least 4K; this does not occur in superconducting samples such as those formed by doping with fluorine on the oxygen site. We nd that NTE is present for all concentrations of PrFe1-xRuxAsO with x ranging from 0.05 to 0.75. These results suggest that the absence of superconductivity in these materials could be related to the presence of NTE.

  15. Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y{sub 2}Mo{sub 3}O{sub 12}

    SciTech Connect

    Wang, Lei; Wang, Fei; Yuan, Peng-Fei; Sun, Qiang; Liang, Er-Jun; Jia, Yu; Guo, Zheng-Xiao

    2013-07-15

    Graphical abstract: Our work confirms the negative thermal expansion (NTE) behavior of the orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} in this range 0–1000 K. The orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} has an open framework structure where MoO{sub 4} tetrahedra and YO{sub 6} octahedra are connected by oxygen atoms. The previous mechanisms for the NTE behavior of orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} are that the translational mode (see (b)) of the O bridge atoms in Y-O-Mo linkages will cause the linkages to be bent, reducing the space between polyhedra and making the volumetric shrinkage. Furthermore, the internal polyhedral distortions have been reported experimentally. It is necessary to reveal the relationship between NTE and polyhedral movements, distortions. From the vibrational properties, we get that the different vibrational eigenvectors of oxygen atoms relative to Y or Mo atoms can lead internal polyhedra to distort unevenly (see (c)). Herein, an extended 3D model of the connected unit YO{sub 6}-MoO{sub 4} based on the Y-O-Mo linkage is proposed (see (a)). It presents a simultaneous dynamic process, i.e. the YO{sub 6} octahedra and MoO{sub 4} tetrahedra distort unevenly, along with both polyhedra being closer which makes the volumetric contraction. This model is helpful to improve the mechanisms of NTE and may be applied in the whole A{sub 2}M{sub 3}O{sub 12} family. - Highlights: • The NTE properties of Y{sub 2}Mo{sub 3}O{sub 12} are confirmed using a first-principles calculation. • The optical branch with the lowest frequency is most responsible for the NTE. • The relationship between NTE and polyhedral movements, distortions is elucidated. • An extended 3D model of the connected unit YO{sub 6}-MoO{sub 4} is proposed. - Abstract: The internal polyhedral distortions have been reported experimentally in orthorhombic Y{sub 2}Mo{sub 3}O{sub 12} as a negative thermal expansion (NTE) material. To reveal the relationship between NTE and polyhedral

  16. Development of finely dispersed Ti- and Zr-doped isotropic graphites for the divertor of next step fusion devices

    NASA Astrophysics Data System (ADS)

    López-Galilea, I.; García-Rosales, C.; Pintsuk, G.; Linke, J.

    2007-03-01

    Finely dispersed Ti- and Zr-doped isotropic graphites have been manufactured using three different starting raw materials. The aim is to obtain doped fine grain isotropic graphites with reduced chemical erosion, high thermal shock resistance and low cost, which aim to be competitive with present carbon-based candidate materials for next step fusion devices. First ITER relevant thermal shock loads were applied on test specimens of these materials. The brittle destruction behaviour of graphite is greatly improved by doping with Ti or Zr, most probably due to a significant increase of thermal conductivity related to the catalytic effect of TiC and ZrC on the graphitization. Doped graphites manufactured with the synthetic mesophase pitch 'AR' as raw material showed the best performance from the three investigated raw materials due to its higher graphitability. The eroded surfaces of doped graphites exhibit a thin solidified carbide layer, probably caused by the segregation of liquid carbide during the thermal shot.

  17. Investigating source processes of isotropic events

    NASA Astrophysics Data System (ADS)

    Chiang, Andrea

    explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve

  18. Negative thermal expansion and magnetostriction in the frustrated spinel ZnCr2(Se1‑x S x )4 (0  ≤  x  ≤  0.1)

    NASA Astrophysics Data System (ADS)

    Gu, Chuanchuan; Yang, Zhaorong; Chen, Xuliang; Pi, LI; Zhang, Yuheng

    2016-05-01

    The bond-frustrated ZnCr2Se4 displays strong spin-lattice coupling characterized by large magnetostriction and negative thermal expansion. Here, we report on systematic investigations on the magnetization, heat capacity, thermal expansion and magnetostriction of single crystalline ZnCr2(Se1‑x S x )4 (0  ⩽  x  ⩽  0.1) to study the evolution of its spin-lattice coupling with sulfur substitution. We show that with increasing sulfur content, the antiferromagnetic ordering is gradually replaced by a spin-glass state, the temperature region of the negative thermal expansion expands, and the magnetostriction is gradually suppressed. These phenomena are explained qualitatively by taking into account the enhancement of the antiferromagnetic interactions and bond disorder introduced by sulfur substitution.

  19. Negative thermal expansion and magnetostriction in the frustrated spinel ZnCr2(Se1-x S x )4 (0  ≤  x  ≤  0.1).

    PubMed

    Gu, Chuanchuan; Yang, Zhaorong; Chen, Xuliang; Pi, L I; Zhang, Yuheng

    2016-05-11

    The bond-frustrated ZnCr2Se4 displays strong spin-lattice coupling characterized by large magnetostriction and negative thermal expansion. Here, we report on systematic investigations on the magnetization, heat capacity, thermal expansion and magnetostriction of single crystalline ZnCr2(Se1-x S x )4 (0  ⩽  x  ⩽  0.1) to study the evolution of its spin-lattice coupling with sulfur substitution. We show that with increasing sulfur content, the antiferromagnetic ordering is gradually replaced by a spin-glass state, the temperature region of the negative thermal expansion expands, and the magnetostriction is gradually suppressed. These phenomena are explained qualitatively by taking into account the enhancement of the antiferromagnetic interactions and bond disorder introduced by sulfur substitution. PMID:27049604

  20. Rotational surfaces in isotropic spaces satisfying weingarten conditions

    NASA Astrophysics Data System (ADS)

    Öğrenmiş, Alper Osman

    2016-07-01

    In this paper, we study the rotational surfaces in the isotropic 3-space 𝕀3 satisfying Weingarten conditions in terms of the relative curvature K (analogue of the Gaussian curvature) and the isotropic mean curvature H. In particular, we classify such surfaces of linear Weingarten type in 𝕀3.

  1. Rayleigh-Lamb Waves in Transversely Isotropic Thermoelastic Diffusive Layer

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Kansal, Tarun

    2009-04-01

    Propagation of plane harmonic thermoelastic diffusive waves in a homogeneous, transversely isotropic, thin elastic layer of finite width is studied, in the context of the theory of coupled thermoelastic diffusion. According to the characteristic equation, three quasi-longitudinal waves, namely, quasi-elastodiffusive (QED) mode, quasi-mass diffusion (QMD) mode, and quasi-thermodiffusive (QTD) mode can propagate in addition to quasi-transverse waves (QSV) mode and the purely quasi-transverse motion (QSH) mode, which is not affected by thermal and diffusion vibrations, gets decoupled from the rest of the motion of wave propagation. The secular equations corresponding to the symmetric and skew symmetric modes of the layer are derived. The amplitudes of displacements, temperature change, and concentration for symmetric and skew symmetric modes of vibration of the layer are computed numerically. Anisotropy and diffusion effects on the phase velocity, attenuation coefficient, and amplitudes of displacements, temperature change, and concentration are presented graphically in order to illustrate and compare the results analytically. Some special cases of the frequency equation are also deduced and compared with the existing results.

  2. Instability induced pressure isotropization in a longitudinally expanding system

    NASA Astrophysics Data System (ADS)

    Dusling, Kevin; Epelbaum, Thomas; Gelis, François; Venugopalan, Raju

    2012-10-01

    In two previous works [K. Dusling, T. Epelbaum, F. Gelis, and R. Venugopalan, Nucl. Phys. A850, 69 (2011); T. Epelbaum and F. Gelis, Nucl. Phys. A872, 210 (2011)], we studied the time evolution of a system of real scalar fields with quartic coupling that shares important features with the color glass condensate description of heavy-ion collisions. Our primary objective was to understand how such a system, when initialized with a nonperturbatively large classical field configuration, reaches thermal equilibrium. An essential goal of these works was to highlight the role played by the quantum fluctuations. However, these studies considered only a system confined within a box of fixed volume. In the present paper, we extend this work to a system that expands in the longitudinal direction, thereby, more closely mimicking a heavy-ion collision. We conclude that the microscopic processes that drive the system toward equilibrium are able to keep up with the expansion of the system; the pressure tensor becomes isotropic despite the anisotropic expansion.

  3. Crossover from isotropic to directed percolation

    NASA Astrophysics Data System (ADS)

    Zhou, Zongzheng; Yang, Ji; Ziff, Robert M.; Deng, Youjin

    2012-08-01

    We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as p↓=ppd and p↑=p(1-pd), with p representing the average occupation probability and pd controlling the anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP) and DP are the two limiting cases of the BDP model, corresponding to pd=1/2 and pd=0,1 respectively. In this work, besides IP and DP, we also consider the 1/2

  4. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  5. Limits to Poisson's ratio in isotropic materials

    NASA Astrophysics Data System (ADS)

    Mott, P. H.; Roland, C. M.

    2009-10-01

    A long-standing question is why Poisson’s ratio ν nearly always exceeds 0.2 for isotropic materials, whereas classical elasticity predicts ν to be between -1 to (1)/(2) . We show that the roots of quadratic relations from classical elasticity divide ν into three possible ranges: -1<ν≤0 , 0≤ν≤(1)/(5) , and (1)/(5)≤ν<(1)/(2) . Since elastic properties are unique there can be only one valid set of roots, which must be (1)/(5)≤ν<(1)/(2) for consistency with the behavior of real materials. Materials with Poisson’s ratio outside of this range are rare, and tend to be either very hard (e.g., diamond, beryllium etc.) or porous (e.g., auxetic foams); such substances have more complex behavior than can be described by classical elasticity. Thus, classical elasticity is inapplicable whenever ν<(1)/(5) , and the use of the equations from classical elasticity for such materials is inappropriate.

  6. Crossover from isotropic to directed percolation.

    PubMed

    Zhou, Zongzheng; Yang, Ji; Ziff, Robert M; Deng, Youjin

    2012-08-01

    We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as p(↓) = pp(d) and p(↑) = p(1-p(d)), with p representing the average occupation probability and p(d) controlling the anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP) and DP are the two limiting cases of the BDP model, corresponding to p(d) =1/2 and p(d) = 0,1 respectively. In this work, besides IP and DP, we also consider the 1/2 < p(d) <1 region. Extensive Monte Carlo simulations are carried out on the square and the simple-cubic lattices, and the numerical data are analyzed by finite-size scaling. We locate the percolation thresholds of the BDP model for p(d) = 0.6 and 0.8, and determine various critical exponents. These exponents are found to be consistent with those for standard DP. We also determine the renormalization exponent associated with the asymmetric perturbation due to p(d)-1/2 ≠ 0 near IP, and confirm that such an asymmetric scaling field is relevant at IP. PMID:23005718

  7. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.

    1985-01-01

    This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goals are: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are that of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integability of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model.

  8. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.

    1984-01-01

    The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.

  9. Flow of anisotropic and isotropic objects in quasi-twodimensional fluids

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; Eremin, Alexey; Dölle, Sarah; Harth, Kirsten; Klopp, Christoph

    We study the motion of microscopic objects in very thin freely suspended smectic liquid-crystal films. The aspect ratios of these films are of the order of 1:106. Hydrodynamic motion is restricted to the film plane. Thus such films represent quasi-twodimensional fluids. Not only do they provide the opportunity to test theoretical models on mobilities in thin membranes, they also allow access to viscosity parameters of in-plane isotropic (smectic A) and anisotropic (smectic C) fluids. Combinations of these environments with isotropic and anisotropic geometries of inclusions provide rich information about interactions of rotational and translational particle motions, the anchoring-induced and flow-induced alignments of the embedding fluid, and interactions of particles via flow and director fields. Thermal diffusion in horizontal films as well as controlled effective gravity in tilted films are explored. Funding by DLR with Grant 50WM1430 and by DFG with Grant STA 425/28 is acknowledged.

  10. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    NASA Astrophysics Data System (ADS)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  11. Taylor length-scale size particles in Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Lucci, Francesco

    The present study investigates the two-way coupling effects of finite-size solid spherical particles on decaying isotropic turbulence using an immersed boundary method. The conventional point particle assumption is valid only in the case of particles with a diameter, dp, much smaller than the Kolmogorov length scale, eta. In a simulation with particles of diameter dp > eta the flow around each particle needs to be resolved. In this study, we use a method similar to that of Uhlmann(2005) [55] that adapts the Immersed Boundary(IB) Method developed by Peskin [38] to simulate the flow around suspended spherical solid particles. The main idea of the method is to distribute a number of Lagrangian points uniformly over the surface of the particle. A force is applied at each Lagrangian point to represent the momentum exchange between the particle and the surrounding fluid. An analytic three-point delta function is used to distribute the force to the Eulerian grid points saddling the spherical surface to satisfy the no-slip condition at each Lagrangian point. Decaying turbulence is simulated in a periodic box with a uniform mesh of up to (512)3 grid points and an initial microscale Reynolds number of up to Relambda0 = 110. We compare the single phase flow (SPF) with particle-laden flows with particles of different diameters. The density of the particle varies from 2.56 to 10 times that of the fluid. The effects of the particles on the temporal development of turbulence kinetic energy E(t), its dissipation rate epsilon( t), its two-way coupling rate of change Ψp( t) and frequency spectra E(o) are discussed. In this study, in contrast to particles with dp < eta [15], particles with dp > eta always increase the dissipation rate of turbulence kinetic energy, epsilon( t). In addition, Ψp(t) is always positive, whereas it can be positive or negative for particles with dp < eta. The balance between these two effects caused E(t) to be smaller than that of the single-phase flow

  12. Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials.

    PubMed

    Han, Tiancheng; Qiu, Cheng-Wei; Tang, Xiaohong

    2011-01-15

    We propose a method for adaptive waveguide bends using homogeneous, nonmagnetic, and isotropic materials, which simplifies the parameters of the bends to the utmost extent. The proposed bend has an adaptive and compact shape because of all the flat boundaries. The nonmagnetic property is realized by selecting OB'/OC = 0.5. Only two nonmagnetic isotropic dielectrics are needed throughout, and the transmission is not sensitive to nonmagnetic isotropic dielectrics. Results validate and illustrate these functionalities, which make the bend much easier to fabricate and apply, owing to its simple parameters, compact shape, and versatility in connecting different waveguides. PMID:21263493

  13. Negative mass

    NASA Astrophysics Data System (ADS)

    Hammond, Richard T.

    2015-03-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given.

  14. Near infrared microcoupler with multilayer isotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Kun; Tian, Chao; Liu, Shengchun; Zhang, Jintao; Lv, Houjun; Zhu, Xuefeng

    2015-10-01

    This paper reports the design of a microcoupler in the near-infrared region. The proposed structure consists of two alternately arranged complementary media. The complementary media, which consist of double-positive material and double-negative material, also can be made of a pair of single-negative materials. Simulation results show that the proposed structure has an excellent coupling efficiency compared to direct coupling. It has a maximum coupling efficiency closing to 1 at 1550 nm. As the total size of the coupling structure decreases, the passband exhibits a property of gradual blue shift. Therefore, we can design couplers operating in different frequency bands with high coupling efficiency. The influence of the permittivity and the thickness of each material layer on the coupling efficiency are also studied in detail. The proposed microcoupler has potential guidance in the design and development of high-performance coupling structures.

  15. Streamlines in stationary homogeneous isotropic turbulence and fractal-generated turbulence

    NASA Astrophysics Data System (ADS)

    Boschung, J.; Peters, N.; Laizet, S.; Vassilicos, J. C.

    2016-04-01

    We compare streamline statistics in stationary homogeneous isotropic turbulence and in turbulence generated by a fractal square grid. We examine streamline segments characterised by the velocity difference {{Δ }}u and the distance l between extremum points. We find close agreement between the stationary homogeneous isotropic turbulence and the decay region of the fractal-generated turbulence as well as the production region of the fractal flow for small segments. The statistics of larger segments are very similar for the isotropic turbulence and the decay region, but differ for the production region. Specifically, we examine the first, second and third conditional mean < {[{{Δ }}u]}n| l> . Noticeably, non-vanishing < {[{{Δ }}u]}n| l> for n=1,3 are due to an asymmetry of positive and negative segments, i.e. those for which {{Δ }}u\\gt 0 and {{Δ }}u\\lt 0, respectively. This asymmetry is not only kinematic, but is also due to dissipative effects and therefore < {[{{Δ }}u]}n| l> contains cascade information.

  16. Cosmological simulations of isotropic conduction in galaxy clusters

    SciTech Connect

    Smith, Britton; O'Shea, Brian W.; Voit, G. Mark; Ventimiglia, David; Skillman, Samuel W.

    2013-12-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.

  17. Relativistic drag and emission radiation pressures in an isotropic photonic gas

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey S.; Cleaver, Gerald B.

    2016-06-01

    By invoking the relativistic spectral radiance, as derived by Lee and Cleaver,1 the drag radiation pressure of a relativistic planar surface moving through an isotropic radiation field, with which it is in thermal equilibrium, is determined in inertial and non-inertial frames. The forward- and backward-directed emission radiation pressures are also derived and compared. A fleeting (inertial frames) or ongoing (some non-inertial frames) Carnot cycle is shown to exist as a result of an intra-surfaces temperature gradient. The drag radiation pressure on an object with an arbitrary frontal geometry is also described.

  18. Stress reduction in an isotropic plate with a hole by applied induced strains

    NASA Technical Reports Server (NTRS)

    Sensharma, Pradeep K.; Palantera, Markku J.; Haftka, Raphael T.

    1992-01-01

    Recently there has been much interest in adaptive structures that can respond to a varying environment by changing their properties. Shape memory alloys and piezoelectric materials can be used as induced strain actuators to reduce stresses in the regions of stress concentration. The objective of the work was to find the maximum possible reduction in the stress concentration factor in an isotropic plate with a hole by applying induced strains in a small area near the hole. Induced strains were simulated by thermal expansion.

  19. A modified damped Richardson-Lucy algorithm to reduce isotropic background effects in spherical deconvolution.

    PubMed

    Dell'acqua, Flavio; Scifo, Paola; Rizzo, Giovanna; Catani, Marco; Simmons, Andrew; Scotti, Giuseppe; Fazio, Ferruccio

    2010-01-15

    Spherical deconvolution methods have been applied to diffusion MRI to improve diffusion tensor tractography results in brain regions with multiple fibre crossing. Recent developments, such as the introduction of non-negative constraints on the solution, allow a more accurate estimation of fibre orientations by reducing instability effects due to noise robustness. Standard convolution methods do not, however, adequately model the effects of partial volume from isotropic tissue, such as gray matter, or cerebrospinal fluid, which may degrade spherical deconvolution results. Here we use a newly developed spherical deconvolution algorithm based on an adaptive regularization (damped version of the Richardson-Lucy algorithm) to reduce isotropic partial volume effects. Results from both simulated and in vivo datasets show that, compared to a standard non-negative constrained algorithm, the damped Richardson-Lucy algorithm reduces spurious fibre orientations and preserves angular resolution of the main fibre orientations. These findings suggest that, in some brain regions, non-negative constraints alone may not be sufficient to reduce spurious fibre orientations. Considering both the speed of processing and the scan time required, this new method has the potential for better characterizing white matter anatomy and the integrity of pathological tissue. PMID:19781650

  20. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    NASA Astrophysics Data System (ADS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-05-01

    High pressure powder X-ray diffraction studies of several A2Mo3O12 materials (A2=Al2, Fe2, FeAl, and AlGa) were conducted up to 6-7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga2Mo3O12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations.

  1. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states

    NASA Astrophysics Data System (ADS)

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva

    2016-08-01

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been

  2. The energy decay in self-preserving isotropic turbulence revisited

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Bernard, Peter S.

    1991-01-01

    The assumption of self-preservation allows for an analytical determination of the energy decay in isotropic turbulence. Here, the self-preserving isotropic decay problem is analyzed, yielding a more complete picture of self-serving isotropic turbulence. It is proven rigorously that complete self-serving isotropic turbulence admits two general types of asymptotic solutions: one where the turbulent kinetic energy K approximately t (exp -1) and one where K approximately t (sup alpha) with an exponent alpha greater than 1 that is determined explicitly by the initial conditions. By a fixed point analysis and numerical integration of the exact one-point equations, it is demonstrated that the K approximately t (exp -1) and where K approximately t (sup -alpha) with an exponent alpha greater than 1 that is determined explicitly by the initial conditions. By a fixed point analysis and numerical integration of the exact one point equations, it is demonstrated that the K approximately t (exp -1) power law decay is the asymptotically consistent high Reynolds number solution; the K approximately 1 (sup - alpha) decay law is only achieved in the limit as t yields infinity and the turbulence Reynolds number vanishes. Arguments are provided which indicate that a K approximately t (exp -1) power law decay is the asymptotic state towards which a complete self-preseving isotropic turbulence is driven at high Reynolds numbers in order to resolve the imbalance between vortex stretching and viscous diffusion.

  3. The energy decay in self-preserving isotropic turbulence revisited

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Bernard, Peter S.

    1992-01-01

    The assumption of self-preservation allows for an analytical determination of the energy decay in isotropic turbulence. Here, the self-preserving isotropic decay problem is analyzed, yielding a more complete picture of self-serving isotropic turbulence. It is proven rigorously that complete self-serving isotropic turbulence admits two general types of asymptotic solutions: one where the turbulent kinetic energy K approximately t (exp -1) and one where K approximately t (sup alpha) with an exponent alpha greater than 1 that is determined explicitly by the initial conditions. By a fixed point analysis and numerical integration of the exact one-point equations, it is demonstrated that the K approximately t (exp -1) and where K approximately t (sup -alpha) with an exponent alpha greater than 1 that is determined explicitly by the initial conditions. By a fixed point analysis and numerical integration of the exact one-point equations, it is demonstrated that the K approximately t (exp -1) power law decay is the asymptotically consistent high Reynolds number solution; the K approximately 1 (sup -alpha) decay law is only achieved in the limit as t yields infinity and the turbulence Reynolds number vanishes. Arguments are provided which indicate that a K approximately t (exp -1) power law decay is the asymptotic state toward which a complete self-preserving isotropic turbulence is driven at high Reynolds numbers in order to resolve the imbalance between vortex stretching and viscous diffusion.

  4. Fluctuation-induced dielectric permittivity in the isotropic phase of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Mukherjee, Prabir K.; Das, Asok K.

    2016-03-01

    The temperature and pressure dependence of the static dielectric permittivity in the isotropic phase of the isotropic to cholesteric phase transition is calculated using Landau-de Gennes’s fluctuation theory, allowing spatial variation of the orientational order parameter. A comparison is made with experimental data available in the isotropic phase of the isotropic to cholesteric phase transition.

  5. New Family of Materials with Negative Coefficients of Thermal Expansion: The Effect of MgO, CoO, MnO, NiO, or CuO on the Phase Stability and Thermal Expansion of Solid Solution Phases Derived from BaZn2Si2O7.

    PubMed

    Thieme, Christian; Waurischk, Tina; Heitmann, Stephan; Rüssel, Christian

    2016-05-01

    Recently, a silicate with the composition SrxBa1-xZn2Si2O7 was reported, which exhibits a negative coefficient of thermal expansion. The compound BaZn2Si2O7 shows a highly positive coefficient of thermal expansion up to a temperature of 280 °C and then transfers to a high temperature phase, which exhibits a coefficient of thermal expansion near zero or negative over a limited temperature range up to around 500 °C. This high temperature modification can be stabilized to room temperature if Ba(2+) is replaced by Sr(2+). In the solid solution SrxBa1-xZn2Si2O7, also Zn(2+) can be replaced in a wide concentration range by other cations with the respective valency. In the present study, Zn was partially or completely replaced by Mg, Co, Mn, Ni, or Cu. If the high temperature phase is stable at room temperature, the thermal expansion is negative, and if the partial substitution exceeds a certain concentration threshold, the low temperature phase with the crystal structure of BaZn2Si2O7 and highly positive thermal expansion is formed. The lowest mean coefficients of thermal expansion were measured for the composition Ba0.5Sr0.5Zn1.4Co0.6Si2O7 with a value of -2.9 × 10(-6) K(-1). In general, a lower Zn-concentration leads to a higher anisotropy and a lower mean coefficient of thermal expansion. PMID:27062972

  6. Change in physical properties of high density isotropic graphites irradiated in the ?JOYO? fast reactor

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-08-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor "JOYO" to fluences from 2.11 to 2.86 × 10 26 n/m 2 ( E > 0.1 MeV) at temperatures from 549 to 597°C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens.

  7. Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical

    NASA Astrophysics Data System (ADS)

    Adam, Ahmad; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2014-06-01

    Electronic contributions to molecular properties are often considered as the major factor and usually reported in the literature without ro-vibrational corrections. However, there are many cases where the nuclear motion contributions are significant and even larger than the electronic contribution. In order to obtain accurate theoretical predictions, nuclear motion effects on molecular properties need to be taken into account. The computed isotropic hyperfine coupling constants for the nonvibrating methyl radical CH_3 are far from the experimental values. For CH_3, we have calculated the vibrational-state-dependence of the isotropic hyperfine coupling constant in the electronic ground state. The vibrational wavefunctions used in the averaging procedure were obtained variationally with the TROVE program. Analytical representations for the potential energy surfaces and the hyperfine coupling constant surfaces are obtained in least-squares fitting procedures. Thermal averaging has been carried out for molecules in thermal equilibrium, i.e., with Boltzmann-distributed populations. The calculation methods and the results will be discussed in detail.

  8. Sudden relaminarisation and lifetimes in forced isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Morozov, Alexander

    2015-11-01

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase super-exponentially with the Reynolds number, similar to results on relaminarisation of localised turbulence in pipe and plane Couette flow. Results from simulations subjecting the observed large-scale flow to random perturbations of variable amplitude demonstrate that it is a linearly stable simple exact solution that can be destabilised by a finite-amplitude perturbation, like the Hagen-Poiseuille profile in pipe flow. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.

  9. Isotropic and anisotropic bouncing cosmologies in Palatini gravity

    SciTech Connect

    Barragan, Carlos; Olmo, Gonzalo J.

    2010-10-15

    We study isotropic and anisotropic (Bianchi I) cosmologies in Palatini f(R) and f(R,R{sub {mu}{nu}R}{sup {mu}{nu}}) theories of gravity with a perfect fluid and consider the existence of nonsingular bouncing solutions in the early universe. We find that all f(R) models with isotropic bouncing solutions develop shear singularities in the anisotropic case. On the contrary, the simple quadratic model R+aR{sup 2}/R{sub P}+R{sub {mu}{nu}R}{sup {mu}{nu}/}R{sub P} exhibits regular bouncing solutions in both isotropic and anisotropic cases for a wide range of equations of state, including dust (for a<0) and radiation (for arbitrary a). It thus represents a purely gravitational solution to the big bang singularity and anisotropy problems of general relativity without the need for exotic (w>1) sources of matter/energy or extra degrees of freedom.

  10. Stress waves in transversely isotropic media: The homogeneous problem

    NASA Technical Reports Server (NTRS)

    Marques, E. R. C.; Williams, J. H., Jr.

    1986-01-01

    The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.

  11. Instabilities across the isotropic conductivity point in a nematic phenyl benzoate under AC driving.

    PubMed

    Kumar, Pramoda; Patil, Shivaram N; Hiremath, Uma S; Krishnamurthy, K S

    2007-08-01

    We characterize the sequence of bifurcations generated by ac fields in a nematic layer held between unidirectionally rubbed ITO electrodes. The material, which possesses a negative dielectric anisotropy epsilona and an inversion temperature for electrical conductivity anisotropy sigmaa, exhibits a monostable tilted alignment near TIN, the isotropic-nematic point. On cooling, an anchoring transition to the homeotropic configuration occurs close to the underlying smectic phase. The field experiments are performed for (i) negative sigmaa and homeotropic alignment, and (ii) weakly positive sigmaa and nearly homeotropic alignment. Under ac driving, the Freedericksz transition is followed by bifurcation into various patterned states. Among them are the striped states that seem to belong to the dielectric regime and localized hybrid instabilities. Very significantly, the patterned instabilities are not excited by dc fields, indicating their possible gradient flexoelectric origin. The Carr-Helfrich mechanism-based theories that take account of flexoelectric terms can explain the observed electroconvective effects only in part. PMID:17616118

  12. Equilibrium Shapes for Isotropic Elastic Tubes in the Planar Case

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Hua; Zhou, Xiao-Hua; Liu, Yuan-Sheng; Wu, Ke-Jian; Wen, Jun

    2013-05-01

    When making an isotropic elastic shell into a curving tube, the crimp energy and bending energy determine the equilibrium shapes of the tube. In this study, we established a model to explore the elastic behavior of a tube made of an elastic shell. Two typical shapes: torus shape and periodic shape are discussed by studying the equilibrium shape equations in the planar case. Our study reveals that the crimp energy for an isotropic elastic tube is innegligible and will induce abundant shapes. It also reveals that varicose vein is more likely to occur when the blood vessels become thicker, which is in accordance with the clinic experiments.

  13. Unexpected collapses during isotropic consolidation of model granular materials

    NASA Astrophysics Data System (ADS)

    Doanh, Thiep; Le Bot, Alain; Abdelmoula, Nouha; Gribaa, Lassad; Hans, Stéphane; Boutin, Claude

    2016-02-01

    This paper reports the unexpected instantaneous instabilities of idealized granular materials under simple isotropic drained compression. Specimens of monosized glass beads submitted to isotropic compression exhibit a series of local collapses under undetermined external stress with partial liquefaction, experience sudden volumetric compaction and axial contraction of various amplitude. Short-lived excess pore water pressure vibrates like an oscillating underdamped system in the first dynamic transient phase and rapidly disperses in the subsequent longer dissipation phase. However, very dense samples maintain a collapse-free behaviour below a threshold void ratio e30col at 30 kPa of stress. The potential mechanisms that could explain these spontaneous collapses are discussed.

  14. Concurrence-based entanglement measures for isotropic states

    SciTech Connect

    Rungta, Pranaw; Caves, Carlton M.

    2003-01-01

    We discuss properties of entanglement measures called I-concurrence and tangle. For a bipartite pure state, I-concurrence and tangle are simply related to the purity of the marginal density operators. The I-concurrence (tangle) of a bipartite mixed state is the minimum average I-concurrence (tangle) of ensemble decompositions of pure states of the joint density operator. Terhal and Vollbrecht [Phys. Rev. Lett. 85, 2625 (2000)] have given an explicit formula for the entanglement of formation of isotropic states in arbitrary dimensions. We use their formalism to derive comparable expressions for the I-concurrence and tangle of isotropic states.

  15. An analytical model for permeability of isotropic porous media

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Lu, Tian Jian; Kim, Tongbeum

    2014-06-01

    We demonstrate that permeability of isotropic porous media e.g., open-cell foams can be analytically presented as a function of two morphological parameters: porosity and pore size. Adopting a cubic unit cell model, an existing tortuosity model from the branching algorithm method is incorporated into a generalized permeability model. The present model shows that dimensionless permeability significantly increases as the porosity of isotropic porous media and unifies the previously reported data in a wide range of porosity (ɛ=0.55-0.98) and pore size (Dp=0.254 mm-5.08 mm).

  16. A note on antenna models in a warm isotropic plasma

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1980-01-01

    The electron-transparent and electron-reflecting models of antennas in a warm isotropic plasma are reexamined. It is shown that a purely electrical treatment of both the models without an explicit use of the boundary condition on electron velocity yields the same results as those previously obtained through an electromechanical treatment. The essential difference between the two models is that for the electron-reflecting model, fields are nonzero only in the exterior region, while for the electron-transparent model, they are nonzero both in the exterior and interior regions of the antenna. This distinction helps in clarifying some misconceptions about these models of antennas in warm isotropic plasma.

  17. Generalized thermoelastic wave propagation in circumferential direction of transversely isotropic cylindrical curved plates

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.; Pathania, Vijayata

    2005-03-01

    The propagation of thermoelastic waves along circumferential direction in homogeneous, transversely isotropic, cylindrical curved plates has been investigated in the context of theories of thermoelasticity. This type of study is important for ultrasonic non-destructive inspection of large-diameter pipes, which helps in the health monitoring of ailing infrastructure. Longitudinal stress-corrosion cracks are usually temperature dependent and can be detected more efficiently by inducing circumferential waves; hence the study of generalized thermoelastic wave propagation in the circumferential direction in a pipe wall is essential. Mathematical modeling of the problem of obtaining dispersion curves for curved transversely isotropic thermally conducting elastic plates leads to coupled differential equations. The model has been simplified by using the Helmholtz decomposition technique and the resulting equations have been solved by using separation of variable method to obtain the secular equations in isolated mathematical conditions for the plates with stress-free or rigidly fixed, thermally insulated and isothermal boundary surfaces. The closed form solutions are also obtained under different situations and conditions. The longitudinal shear motion and axially symmetric shear vibration modes get decoupled from the rest of the motion and are not affected by thermal variations, whereas for the non-axially symmetric case of plane strain vibrations, these modes remain coupled and are affected by temperature changes. Moreover, these vibration modes are found to be dispersive and dissipative in character. In order to illustrate theoretical development, numerical solutions are obtained and presented graphically for a zinc plate. The obtained results are also compared with those available in the literature in case of waves in cylindrical shell/circular annulus in the absence of thermomechanical coupling and thermal relaxation times.

  18. Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} (0 ≤ x ≤ 0.6)

    SciTech Connect

    Lin, J. C.; Tong, P. Lin, S.; Wang, B. S.; Song, W. H.; Tong, W.; Zou, Y. M.; Sun, Y. P.

    2015-02-23

    The thermal expansion and magnetic properties of antiperovskite manganese nitrides Ag{sub 1−x}NMn{sub 3+x} were reported. The substitution of Mn for Ag effectively broadens the temperature range of negative thermal expansion and drives it to cryogenic temperatures. As x increases, the paramagnetic (PM) to antiferromagnetic (AFM) phase transition temperature decreases. At x ∼ 0.2, the PM-AFM transition overlaps with the AFM to glass-like state transition. Above x = 0.2, two new distinct magnetic transitions were observed: One occurs above room temperature from PM to ferromagnetic (FM), and the other one evolves at a lower temperature (T{sup *}) below which both AFM and FM orderings are involved. Further, electron spin resonance measurement suggests that the broadened volume change near T{sup *} is closely related with the evolution of Γ{sup 5g} AFM ordering.

  19. Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Ag1-xNMn3+x (0 ≤ x ≤ 0.6)

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Tong, P.; Tong, W.; Lin, S.; Wang, B. S.; Song, W. H.; Zou, Y. M.; Sun, Y. P.

    2015-02-01

    The thermal expansion and magnetic properties of antiperovskite manganese nitrides Ag1-xNMn3+x were reported. The substitution of Mn for Ag effectively broadens the temperature range of negative thermal expansion and drives it to cryogenic temperatures. As x increases, the paramagnetic (PM) to antiferromagnetic (AFM) phase transition temperature decreases. At x ˜ 0.2, the PM-AFM transition overlaps with the AFM to glass-like state transition. Above x = 0.2, two new distinct magnetic transitions were observed: One occurs above room temperature from PM to ferromagnetic (FM), and the other one evolves at a lower temperature (T*) below which both AFM and FM orderings are involved. Further, electron spin resonance measurement suggests that the broadened volume change near T* is closely related with the evolution of Γ5g AFM ordering.

  20. Enhanced negative thermal expansion in La(1-x)Pr(x)Fe10.7Co0.8Si1.5 compounds by doping the magnetic rare-earth element praseodymium.

    PubMed

    Li, Wen; Huang, Rongjin; Wang, Wei; Tan, Jie; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Shen, Jun; Li, Laifeng

    2014-06-01

    Experiments have been performed to enhance negative thermal expansion (NTE) in the La(Fe,Co,Si)13-based compounds by optimizing the chemical composition, i.e., proper substitution of La by magnetic element Pr. It is found that increasing the absolute value of the average coefficient of thermal expansion (CTE) in the NTE temperature region (200-300 K) attributes to enhancement of the spontaneous magnetization and its growth rate with increasing Pr content. Typically, the average CTE of La(1-x)Pr(x)Fe10.7Co0.8Si1.5 with x = 0.5 reaches as large as -38.5 × 10(-6) K(-1) between 200 and 300 K (ΔT = 100 K), which is 18.5% larger than that of x = 0. The present results highlight the potential applications of La(Fe,Co,Si)13-based compounds with a larger NTE coefficient. PMID:24848739

  1. Isotropic Thaw Subsidence in Natural Landscapes of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Streletskiy, D. A.; Nelson, F. E.; Little, J.

    2013-12-01

    Arctic Coastal Plain and Arctic Foothills physiographic provinces of northern Alaska. Observations were conducted at the end of the thawing season with high-resolution differential GPS equipment, using a four-stage nested sampling design that provides full geographic representation of surface cover types and microtopographic elements within each sampling area. Both sampling areas experienced net subsidence of the ground surface over the period of observation. The record of temperature and vertical movement at the ground surface indicates that penetration of thaw into the transition layer has produced relatively uniform subsidence extending over entire landscapes. Without specialized observation techniques the subsidence is not apparent to observers at the surface. Integrated over extensive regions, this 'isotropic thaw subsidence' may be responsible for thawing large volumes of carbon-rich substrate, and could have negative impacts on infrastructure.

  2. Semiclassical States Associated with Isotropic Submanifolds of Phase Space

    NASA Astrophysics Data System (ADS)

    Guillemin, V.; Uribe, A.; Wang, Z.

    2016-05-01

    We define classes of quantum states associated with isotropic submanifolds of cotangent bundles. The classes are stable under the action of semiclassical pseudo-differential operators and covariant under the action of semiclassical Fourier integral operators. We develop a symbol calculus for them; the symbols are symplectic spinors. We outline various applications.

  3. Effects of prestresses on mechanical properties of isotropic graphite materials

    NASA Astrophysics Data System (ADS)

    Oku, T.; Kurumada, A.; Imamura, Y.; Kawamata, K.; Shiraishi, M.

    1998-10-01

    Graphite materials which are used for plasma facing components and other components are subjected to stresses due to the high heat flux from the fusion plasma. Some mechanical properties of graphite materials can change due to the prestresses. The property changes should be considered for the design of the plasma facing components. The purpose of this study is to examine the effects of prestresses on the mechanical properties of isotropic graphite materials. Compressive prestresses were applied to two kinds of isotropic fine-grained graphites (IG-430 and IG-11) at 298 K (both), 1873 K (IG-11), 2273 K (IG-11) and 2283 K (IG-430). As a result, the decrease in Young's modulus for IG-430 due to high-temperature prestressing was 56% which was much larger than the 6.4% that was due to prestressing at 298 K. The results for IG-11 were the same as those for IG-430 graphite. This finding was considered to be due primarily to a difference in degree of the preferred orientation of crystallites in the graphite on the basis of the Bacon anisotropy factor (BAF) obtained from X-ray diffraction measurement of the prestressed specimens. Furthermore, high-temperature compressive prestressing produced an increase in the strength of the isotropic graphite, although room temperature prestressing produced no such effect. The results obtained here suggest that the isotropic graphite which is subjected to high-temperature compressive stresses can become anisotropic in service.

  4. On the accuracy and fitting of transversely isotropic material models.

    PubMed

    Feng, Yuan; Okamoto, Ruth J; Genin, Guy M; Bayly, Philip V

    2016-08-01

    Fiber reinforced structures are central to the form and function of biological tissues. Hyperelastic, transversely isotropic material models are used widely in the modeling and simulation of such tissues. Many of the most widely used models involve strain energy functions that include one or both pseudo-invariants (I4 or I5) to incorporate energy stored in the fibers. In a previous study we showed that both of these invariants must be included in the strain energy function if the material model is to reduce correctly to the well-known framework of transversely isotropic linear elasticity in the limit of small deformations. Even with such a model, fitting of parameters is a challenge. Here, by evaluating the relative roles of I4 and I5 in the responses to simple loadings, we identify loading scenarios in which previous models accounting for only one of these invariants can be expected to provide accurate estimation of material response, and identify mechanical tests that have special utility for fitting of transversely isotropic constitutive models. Results provide guidance for fitting of transversely isotropic constitutive models and for interpretation of the predictions of these models. PMID:27136091

  5. A Simple Mechanical Model for the Isotropic Harmonic Oscillator

    ERIC Educational Resources Information Center

    Nita, Gelu M.

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)

  6. A Direct Comparison between the Negative and Positive Effects of Throughflow on the Thermal Convection in an Anisotropy and Symmetry Porous Medium

    NASA Astrophysics Data System (ADS)

    Harfash, Akil J.; Alshara, Ahmed K.

    2015-05-01

    The linear and nonlinear stability analysis of the motionless state (conduction solution) and of a vertical throughflow in an anisotropic porous medium are tested. In particular, the effect of a nonhomogeneous porosity and a constant anisotropic thermal diffusivity have been taken into account. Then, the accuracy of the linear instability thresholds are tested using a three dimensional simulation. It is shown that the strong stabilising effect of gravity field. Moreover, the results support the assertion that the linear theory, in general, is accurate in predicting the onset of convective motion, and thus, regions of stability.

  7. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states.

    PubMed

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W; Edmondson, Steve; Malmström, Eva

    2016-08-21

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors. PMID:27230294

  8. Commutative law for products of infinitely large isotropic random matrices.

    PubMed

    Burda, Zdzislaw; Livan, Giacomo; Swiech, Artur

    2013-08-01

    Ensembles of isotropic random matrices are defined by the invariance of the probability measure under the left (and right) multiplication by an arbitrary unitary matrix. We show that the multiplication of large isotropic random matrices is spectrally commutative and self-averaging in the limit of infinite matrix size N→∞. The notion of spectral commutativity means that the eigenvalue density of a product ABC... of such matrices is independent of the order of matrix multiplication, for example, the matrix ABCD has the same eigenvalue density as ADCB. In turn, the notion of self-averaging means that the product of n independent but identically distributed random matrices, which we symbolically denote by AAA..., has the same eigenvalue density as the corresponding power A(n) of a single matrix drawn from the underlying matrix ensemble. For example, the eigenvalue density of ABCCABC is the same as that of A(2)B(2)C(3). We also discuss the singular behavior of the eigenvalue and singular value densities of isotropic matrices and their products for small eigenvalues λ→0. We show that the singularities at the origin of the eigenvalue density and of the singular value density are in one-to-one correspondence in the limit N→∞: The eigenvalue density of an isotropic random matrix has a power-law singularity at the origin ~|λ|(-s) with a power sε(0,2) when and only when the density of its singular values has a power-law singularity ~λ(-σ) with a power σ=s/(4-s). These results are obtained analytically in the limit N→∞. We supplement these results with numerical simulations for large but finite N and discuss finite-size effects for the most common ensembles of isotropic random matrices. PMID:24032775

  9. Electrodynamics of moving media inducing positive and negative refraction

    SciTech Connect

    Grzegorczyk, Tomasz M.; Kong, Jin Au

    2006-07-15

    Negative refraction is a phenomenon that has been recently reported with left-handed media (either isotropic or not), photonic crystals, and rotated uniaxial media. In this Brief Report, we identify another origin of negative refraction, due to the motion of the transmitted medium parallel to the interface at which refraction occurs. Previous works in this domain have concentrated on media velocities that are above the Cerenkov limit, while we show here that negative refraction is in fact achievable at any velocities of the transmitted medium. A possible experimental implementation is proposed to verify this effect. Next, we consider an isotropic frequency-dispersive medium for which the index of refraction can take negative values, and we study the wave refraction phenomenon as a function of frequency and medium velocity. It is found that the motion of the medium induces a rotation of refraction, which can either enhance or attenuate the natural negative refraction of the medium.

  10. Origins of Negative Strain Rate Dependence of Stress Corrosion Cracking Initiation in Alloy 690, and Intergranular Crack Formation in Thermally Treated Alloy 690

    NASA Astrophysics Data System (ADS)

    Kim, Young Suk; Kim, Sung Soo

    2016-07-01

    We show that enhanced stress corrosion cracking (SCC) initiation in cold-rolled Alloy 690 with decreasing strain rate is related to the rate of short-range ordering (SRO) but not to the time-dependent corrosion process. Evidence for SRO is provided by aging tests on cold-rolled Alloy 690 at 623 K and 693 K (350 °C and 420 °C), respectively, which demonstrate its enhanced lattice contraction and hardness increase with aging temperature and time, respectively. Secondary intergranular cracks formed only in thermally treated and cold-rolled Alloy 690 during SCC tests, which are not SCC cracks, are caused by its lattice contraction by SRO before SCC tests but not by the orientation effect.