Science.gov

Sample records for israel atomic energy commission

  1. Aerial Measuring System (AMS)/Israel Atomic Energy Commission (IAEC) Joint Comparison Study Report

    SciTech Connect

    Wasiolek, P.; Halevy, I.

    2013-12-23

    Under the 13th Bilateral Meeting to Combat Nuclear Terrorism conducted on January 8–9, 2013, the committee approved the development of a cost-effective proposal to conduct a Comparison Study of the Aerial Measuring System (AMS) of the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and Israel Atomic Energy Commission (IAEC). The study was to be held at the Remote Sensing Laboratory (RSL), Nellis Air Force Base, Las Vegas, Nevada, with measurements at the Nevada National Security Site (NNSS). The goal of the AMS and the IAEC joint survey was to compare the responses of the two agencies’ aerial radiation detection systems to varied radioactive surface contamination levels and isotopic composition experienced at the NNSS, and the differing data processing techniques utilized by the respective teams. Considering that for the comparison both teams were using custom designed and built systems, the main focus of the short campaign was to investigate the impact of the detector size and data analysis techniques used by both teams. The AMS system, SPectral Advanced Radiological Computer System, Model A (SPARCS-A), designed and built by RSL, incorporates four different size sodium iodide (NaI) crystals: 1" × 1", 2" × 4" × 4", 2" × 4" ×16", and an “up-looking” 2" × 4" × 4". The Israel AMS System, Air RAM 2000, was designed by the IAEC Nuclear Research Center – Negev (NRCN) and built commercially by ROTEM Industries (Israel) and incorporates two 2" diameter × 2" long NaI crystals. The operational comparison was conducted at RSL-Nellis in Las Vegas, Nevada, during week of June 24–27, 2013. The Israeli system, Air RAM 2000, was shipped to RSL-Nellis and mounted together with the DOE SPARCS on a DOE Bell-412 helicopter for a series of aerial comparison measurements at local test ranges, including the Desert Rock Airport and Area 3 at the NNSS. A 4-person Israeli team from the IAEC NRCN supported the activity together with 11

  2. A History of the Atomic Energy Commission

    DOE R&D Accomplishments Database

    Buck, Alice L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  3. Combined Film Catalog, 1972, United States Atomic Energy Commission.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    A comprehensive listing of all current United States Atomic Energy Commission (USAEC) films, this catalog describes 232 films in two major film collections. Part One: Education-Information contains 17 subject categories and two series and describes 134 films with indicated understanding levels on each film for use by schools. The categories…

  4. 11. Architectural ELevations & Sections, 233S, U.S. Atomic Energy Commission, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Architectural ELevations & Sections, 233-S, U.S. Atomic Energy Commission, Hanford Atomic Products Operations, General Electric Company, Dwg. No. H-2-30465, 1956. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA

  5. 12. Architectural Floor Plans, 233S, U.S. Atomic Energy Commission, Hanford ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Architectural Floor Plans, 233-S, U.S. Atomic Energy Commission, Hanford Atomic Products Operations, General Electric Company, Dwg. H-2-30464, 1956. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA

  6. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    SciTech Connect

    Guiberteau, Ph.; Nokhamzon, J.G.

    2012-07-01

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling operations at the CEA

  7. 13. Elevations, 233S, U.S. Atomic Energy Commission, Hanford Works, General ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Elevations, 233-S, U.S. Atomic Energy Commission, Hanford Works, General Electric Company, Dwg. No. H-2-7203, 1956. - Reduction-Oxidation Complex, Plutonium Concentration Facility, 200 West Area, Richland, Benton County, WA

  8. 11. Building Layout, 185189 D, U.S. Atomic Energy Commission, Richland ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Building Layout, 185-189 D, U.S. Atomic Energy Commission, Richland Operations Office, Dwg. No. H-1-14844, 1957. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA

  9. 12. General Arrangement Plan, Building 189D, U.S. Atomic Energy Commission, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. General Arrangement Plan, Building 189-D, U.S. Atomic Energy Commission, General Electric Company, Dwg. No. H-1-11068, 1958. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA

  10. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 8 which covers March thru June 1964.

  11. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 23 which covers September thru December 1970.

  12. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 4 which covers July 1962 thru December 1962.

  13. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 11 which covers July thru December 1965.

  14. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 9 which covers July thru December 1964.

  15. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include an historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Vol. 3 which covers the first 6 months of 1962.

  16. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 6 which covers July--November 1963.

  17. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    In include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 18 which covers January thru April 1969.

  18. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of selected number of subject areas over the ten-year period. This is Volume 13 which covers July thru December 1966.

  19. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 16 which covers January thru June 1968.

  20. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 14 which covers January thru June 1967.

  1. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include an historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subjects areas over the ten-year period. This is Volume 5 which covers the first 6 months of 1965.

  2. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of selected number of subject areas over the ten-year period. This is Volume 7 which covers November 1963 thru February 1964.

  3. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 15 which covers July thru December 1967.

  4. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 22 which covers May thru August 1970.

  5. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 12 which covers January thru June 1966.

  6. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 17 which covers July 1968 thru January 1969.

  7. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 20 which covers September thru December 1969.

  8. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 25 which covers May thru November 1971.

  9. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 19 which covers May thru August 1969.

  10. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 24 which covers January thru April 1971.

  11. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 10 which covers January thru June 1965.

  12. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    I include a historical summary of the major accomplishments of the Atomic Energy Commission during the period of my chairmanship. This is done in a topical manner, i.e., by describing in summary form the accomplishments in each of a selected number of subject areas over the ten-year period. This is Volume 21 which covers January thru April 1970.

  13. Geothermal research and development program of the US Atomic Energy Commission

    NASA Technical Reports Server (NTRS)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  14. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1989-12-01

    This book contains a very limited sampling of press clippings from my tenure as Chaiman of the Atomic Energy Commission (1961--1971). A more complete collection of these has been deposited with the Manuscript Division of the Library of Congress. This serves as an appendix to the Journal of Glenn T. Seaborg, Chairman of the Atomic Energy Commission, 1961--1971, which has been printed by the Lawrence Berkeley Laboratory in 25 volumes. Copies of this 25-volume daily journal have been deposited at the Lawrence Berkeley Laboratory, the Bancroft Library of the University of California at Berkeley, the University of California at Los Angeles Main Library, the University of California at Santa Barbara, the National Archives, the Library of Congress, and the presidential libraries of Kennedy, Johnson and Nixon.

  15. U.S. Radioecology Research Programs of the Atomic Energy Commission in the 1950s

    SciTech Connect

    Reichle, D.E.

    2004-01-12

    This report contains two companion papers about radiological and environmental research that developed out of efforts of the Atomic Energy Commission in the late 1940s and the 1950s. Both papers were written for the Joint U.S.-Russian International Symposium entitled ''History of Atomic Energy Projects in the 1950s--Sociopolitical, Environmental, and Engineering Lessons Learned,'' which was hosted by the International Institute for Applied Systems Analysis in Laxemberg, Austria, in October 1999. Because the proceedings of this symposium were not published, these valuable historic reviews and their references are being documented as a single ORNL report. The first paper, ''U.S. Radioecology Research Programs Initiated in the 1950s,'' written by David Reichle and Stanley Auerbach, deals with the formation of the early radioecological research programs at the U.S. Atomic Energy Commission's nuclear production facilities at the Clinton Engineering Works in Oak Ridge, Tennessee; at the Hanford Plant in Richland, Washington; and at the Savannah River Plant in Georgia. These early radioecology programs were outgrowths of the environmental monitoring programs at each site and eventually developed into the world renowned National Laboratory environmental program sponsored by the Office of Biological and Environmental Research of the U.S. Department of Energy. The original version of the first paper was presented by David Reichle at the symposium. The second paper, ''U.S. Atomic Energy Commission's Environmental Research Programs Established in the 1950s,'' summarizes all the environmental research programs supported by the U.S. Atomic Energy Commission in the 1950s and discusses their present-day legacies. This paper is a modified, expanded version of a paper that was published in September 1997 in a volume commemorating the 50th anniversary symposium of the U.S. Department of Energy's Office of Biological and Environmental Research (DOE/BER). Contributors to the original

  16. U.S. Atomic Energy Commission's Environmental Research Programs Established in the 1950s

    SciTech Connect

    Reichle, D.E.

    1999-09-22

    In 1946 the United States (U.S.) Congress passed the Atomic Energy Act and with it created the Atomic Energy Commission. For the ensuing half-century the AEC and its successors have pursued biological and environmental research with an unwavering mandate to exploit the use of fissionable and radioactive material for medical purposes and, at the same time, to ensure the health of it's workers, the public, and the environment during energy technology development and use (AEC. 1961; DOE 1983; DOE, 1997). The following pages are testimony to the success of this undeviating vision (Figure 1). From the early days of the AEC, cooperation has also linked researchers from the national laboratories, the academic community, and the private sector. The AEC-sponsored research both at national laboratories and universities, and also supported graduate students to develop a cadre of health physicists, radiation biologists, and nuclear engineers. Coordinating these diverse performers has been crucial to the unique teaming that has made many of the successes possible. The success of the biological and environmental research program has often been shared with other federal agencies. The future will demand even stronger and more substantive intraagency, interagency, and international collaborations.

  17. From films to thermoluminescence dosemeters: the Greek Atomic Energy Commission experience.

    PubMed

    Carinou, E; Drikos, G; Hourdakis, C; Hyvönen, H; Kamenopoulou, V

    2001-01-01

    The personnel dosimetry department of the Greek Atomic Energy Commission (GAEC) assures the individual monitoring of almost 8000 occupationally exposed workers. Thermoluminescence dosimetry systems will replace the existing photographic dosimetry system for the individual monitoring with the joint support of IAEA and GAEC. The thermoluminescence dosimetry system consists of two automated readers, one automated irradiator and about 20,000 dosemeters purchased from the Rados Co. The properties of two thermoluminescent materials have been compared: LiF has been chosen for the whole-body dosemeter configuration and Li2B4O7 for the extremities. The technical evaluation of the system has been performed according to the European and IEC standards. The overall uncertainty has been calculated. The existing database system, and the accounting and dispatching procedures have been adapted to the new demands. The system became operational on March 2000, and the official distribution of thermoluminescence dosemeters has begun. PMID:11586730

  18. Background report for the formerly utilized Manhattan Engineer District/Atomic Energy Commission sites program

    SciTech Connect

    1980-09-01

    The Department of Energy is conducting a program to determine radiological conditions at sites formerly used by the Army Corps of Engineers' Manhattan Engineer District and the Atomic Energy Commission in the early years of nuclear energy development. Also included in the program are sites used in the Los Alamos plutonium development program and the Trinity atomic bomb test site. Materials, equipment, buildings, and land became contaminated, primarily with naturally occurring radioactive nuclides. They were later decontaminated in accordance with the standards and survey methods in use at that time. Since then, however, radiological criteria, and proposed guidelines for release of such sites for unrestricted use have become more stringent as research on the effects of low-level radiation has progressed. In addition, records documenting some of these decontamination efforts cannot be found, and the final radiological conditions of the sites could not be adequately determined from the records. As a result, the Formerly Utilized Sites Program was initiated in 1974 to identify these formerly used sites and to reevaluate their radiological status. This report covers efforts through June 1980 to determine the radiological status of sites for which the existing conditions could not be clearly defined. Principal contractor facilities and associated properties have already been identified and activities are continuing to identify additional sites. Any new sites located will probably be subcontractor facilities and areas used for disposal of contractor waste or equipment; however, only limited information regarding this equipment and material has been collected to date. As additional information becomes available, supplemental reports will be published.

  19. The Cold War legacy of regulatory risk analysis: The Atomic Energy Commission and radiation safety

    NASA Astrophysics Data System (ADS)

    Boland, Joseph B.

    From its inception in 1946 the Atomic Energy Commission pioneered the use of risk analysis as a mode of regulatory rationality and political rhetoric, yet historical treatments of risk analysis nearly always overlook the important role it played in the administration of atomic energy during the early Cold War. How this absence from history has been achieved and why it characterizes most historical accounts are the subjects of Chapter II. From there, this study goes on to develop the thesis that the advent of the atomic bomb was a world-shattering event that forced the Truman administration to choose between two novel alternatives: (1) movement towards global governance based initially on cooperative control of atomic energy or (2) unsparing pursuit of nuclear superiority. I refer to these as nuclear internationalism and nuclear nationalism, respectively. Each defined a social risk hierarchy. With the triumph of nuclear nationalism, nuclear annihilation was designated the greatest risk and a strong nuclear defense the primary means of prevention. The AEC's mission in the 1950s consisted of the rapid development of a nuclear arsenal, continual improvements in weapons technologies, and the promotion of nuclear power. The agency developed a risk-based regulatory framework through its dominant position within the National Committee on Radiation Protection. It embraced a technocratic model of risk analysis whose articulation and application it controlled, largely in secret. It used this to undergird a public rhetoric of reassurance and risk minimization. In practice, safety officials adjusted exposure levels within often wide parameters and with considerable fluidity in order to prevent safety concerns from interfering with operations. Secrecy, the political climate of the time, and a lack of accountability enabled the agency to meld technical assessments with social value judgments in a manner reflective of nuclear nationalism's risk hierarchy. In the late fifties

  20. Implementation of dose management system at radiation protection board of Ghana Atomic Energy Commission.

    PubMed

    Hasford, F; Amoako, J K; Darko, E O; Emi-Reynolds, G; Sosu, E K; Otoo, F; Asiedu, G O

    2012-01-01

    The dose management system (DMS) is a computer software developed by the International Atomic Energy Agency for managing data on occupational exposure to radiation sources and intake of radionuclides. It is an integrated system for the user-friendly storage, processing and control of all existing internal and external dosimetry data. The Radiation Protection Board (RPB) of the Ghana Atomic Energy Commission has installed, customised, tested and using the DMS as a comprehensive DMS to improve personnel and area monitoring in the country. Personnel dose records from the RPBs database from 2000 to 2009 are grouped into medical, industrial and education/research sectors. The medical sector dominated the list of monitored institutions in the country over the 10-y period representing ∼87 %, while the industrial and education/research sectors represent ∼9 and ∼4 %, respectively. The number of monitored personnel in the same period follows a similar trend with medical, industrial and education/research sectors representing ∼74, ∼17 and ∼9 %, respectively. Analysis of dose data for 2009 showed that there was no instance of a dose above the annual dose limit of 20 mSv, however, 2.7 % of the exposed workers received individual annual doses >1 mSv. The highest recorded individual annual dose and total collective dose in all sectors were 4.73 mSv and 159.84 man Sv, respectively. Workers in the medical sector received higher individual doses than in the other two sectors, and average dose per exposed worker in all sectors is 0.25 mSv. PMID:21335631

  1. Summary history of domestic uranium procurement under US Atomic Energy Commission contracts. Final report

    SciTech Connect

    Albrethsen, H. Jr.; McGinley, F.E.

    1982-09-01

    During the period 1947 through 1970, the Atomic Energy Commission (AEC) fostered the rapid development and expansion of the domestic uranium mining and milling industry by providing a market for uranium. Some thirty-two mills were constructed during that period to produce U/sub 3/O/sub 8/ concentrates for sale to the AEC. In addition, there were various pilot plants, concentrators, upgraders, heap leach, and solution mining facilities that operated during the period. The purpose of this report is to compile a short narrative history of the AEC's uranium concentrate procurement program and to describe briefly each of the operations that produced uranium for sale to the AEC. Contractual arrangements are described and data are given on quantities of U/sub 3/O/sub 8/ purchased and prices paid. Similar data are included for V/sub 2/O/sub 5/, where applicable. Mill and other plant operating data were also compiled from old AEC records. These latter data were provided by the companies, as a contractual requirement, during the period of operation under AEC contracts. Additionally, an effort was made to determine the present status of each facility by reference to other recently published reports. No sites were visited nor were the individual reports reviewed by the companies, many of which no longer exist. The authors relied almost entirely on published information for descriptions of facilities and milling processes utilized.

  2. Sampling and analysis plan for the former Atomic Energy Commission bus lot property

    SciTech Connect

    Nielson, R.R.

    1998-07-01

    This sampling and analysis plan (SAP) presents the rationale and strategy for the sampling and analysis activities proposed in support of an initial investigation of the former Atomic Energy Commission (AEC) bus lot property currently owned by Battelle Memorial Institute. The purpose of the proposed sampling and analysis activity is to investigate the potential for contamination above established action levels. The SAP will provide defensible data of sufficient quality and quantity to support recommendations of whether any further action within the study area is warranted. To assist in preparing sampling plans and reports, the Washington State Department of Ecology (Ecology) has published Guidance on Sampling and Data Analysis Methods. To specifically address sampling plans for petroleum-contaminated sites, Ecology has also published Guidance for Remediation of Petroleum Contaminated Sites. Both documents were used as guidance in preparing this plan. In 1992, a soil sample was taken within the current study area as part of a project to remove two underground storage tanks (USTs) at Battelle`s Sixth Street Warehouse Petroleum Dispensing Station (Section 1.3). The results showed that the sample contained elevated levels of total petroleum hydrocarbons (TPH) in the heavy distillate range. This current study was initiated in part as a result of that discovery. The following topics are considered: the historical background of the site, current site conditions, previous investigations performed at the site, an evaluation based on the available data, and the contaminants of potential concern (COPC).

  3. Quality assurance and quality control programme in the Personal Dosimetry Department of the Greek Atomic Energy Commission.

    PubMed

    Kamenopoulou, V; Drikos, G; Carinou, E; Papadomarkaki, E; Askounis, P; Kyrgiakou, H; Kefalonitis, N

    2002-01-01

    A quality assurance (QA) and quality control (QC) programme was applied to the personal monitoring department (TLD based) of the Greek Atomic Energy Commission (GAEC). This programme was designed according to the recommendations of international bodies such as the International Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), the International Atomic Energy Agency (IAEA) and the European Commission (CEC). This paper deals with the presentation of the QA/QC programme which includes administrative data and information, technical checking of the equipment, acceptance tests of new equipment and dosemeters, issuing and processing of the dosemeters, dose evaluation, record keeping and reporting, traceability and reproducibility, handling of complaints, internal reviews and external audits. PMID:12382742

  4. Nuclear energy in the service of biomedicine: the U.S. Atomic Energy Commission's radioisotope program, 1946-1950.

    PubMed

    Creager, Angela N H

    2006-01-01

    The widespread adoption of radioisotopes as tools in biomedical research and therapy became one of the major consequences of the "physicists' war" for postwar life science. Scientists in the Manhattan Project, as part of their efforts to advocate for civilian uses of atomic energy after the war, proposed using infrastructure from the wartime bomb project to develop a government-run radioisotope distribution program. After the Atomic Energy Bill was passed and before the Atomic Energy Commission (AEC) was formally established, the Manhattan Project began shipping isotopes from Oak Ridge. Scientists and physicians put these reactor-produced isotopes to many of the same uses that had been pioneered with cyclotron-generated radioisotopes in the 1930s and early 1940s. The majority of early AEC shipments were radioiodine and radiophosphorus, employed to evaluate thyroid function, diagnose medical disorders, and irradiate tumors. Both researchers and politicians lauded radioisotopes publicly for their potential in curing diseases, particularly cancer. However, isotopes proved less successful than anticipated in treating cancer and more successful in medical diagnostics. On the research side, reactor-generated radioisotopes equipped biologists with new tools to trace molecular transformations from metabolic pathways to ecosystems. The U.S. government's production and promotion of isotopes stimulated their consumption by scientists and physicians (both domestic and abroad), such that in the postwar period isotopes became routine elements of laboratory and clinical use. In the early postwar years, radioisotopes signified the government's commitment to harness the atom for peace, particularly through contributions to biology, medicine, and agriculture. PMID:17575955

  5. Introduction to the journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971

    SciTech Connect

    Seaborg, G.T.

    1988-12-01

    This serves as an introduction to the 25-volume detailed daily diary kept by Glenn T. Seaborg during the time he served as Chairman of the US Atomic Energy Commission. It is a brief synopsis of some of the major issues and accomplishments of that period, 1961-1971, of US nuclear history. It is expected that the diary itself will be printed as a Lawrence Berkeley Laboratory report during the next year.

  6. Journal of Glenn T. Seaborg (Chairman, US Atomic Energy Commission, 1961 through 1971), July 1, 1961--December 31, 1961

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    This introduction to my journal of 1961--1971, covering my years of service as Chairman of the US Atomic Energy Commission, is written from the perspective of 1971, in order to reflect the attitudes expressed in my journal, which was written on a daily basis during that period. Thus, I express the points of view of that time rather than those of today (1988), which might occasionally be somewhat different. The journal consists of 25 volumes, averaging 700 pages each. This comprises about 15,000 items consisting of the approximately 4,000 daily journal entries and the average of about three attachments per day. The journal has three sections corresponding to each of the three presidents I served as chairman of the Atomic Energy Commission -- the first six volumes covering the John F. Kennedy years (February 1, 1961--November 22, 1963), the next 11 volumes covering the Lyndon B. Johnson years (November 22, 1963--January 20, 1969) and the final eight volumes, the Richard M. Nixon years and a few months of post-AEC chairman activities in Washington (January 20, 1969--November 6, 1971).

  7. Israel.

    PubMed

    1984-10-01

    A summary description of Israel's populzation, history, government, geography, economy, and foreign relations is provided. Israel's population of 4.1 million (1983) is composed of migrants and descendants of migrants from more than 100 different countries. 83% of the population is Jewish, and the remaining 17% is mostly Arab. The literacy rate is 88% among Jews and 48% among Arabs. Life expectancy is 72.1 for males and 75.7 for females, and the infant mortality rate is 14.1/1000. The state of Israel was created in response to the Zionist's desire to establish a homeland in Palestine for the world's Jewish population. With the help of the British government and the League of Nations, Jews began immigrating to Palestine in the 1920s. During the 1930s and 1940s, Jewish migration to Israel increased markedly, and in 1947 the UN adopted a plan to divide Palestine into a Jewish state and an Arab state, despite resistance from the Arab community. In 1948, Israel offically proclaimed its existence, and hostilities between the Israelis and Arabs broke out immediately. The ensuing years were characterized by sporadic conflict between Israel, Arab countries 2nd the Palestinians. The conflict between these groups continues into the present, despite many international attempts to promote peace in the region. The country has a parliamentary democratic form of government. It is governed by an elected unicameral legislature, the Knesset; a president, elected by the Knesset; a prime minister, selected by the president to represent the major party in the Knesset; and a coalition cabinet, which must be approved by the Knesset. The country has a market economy, but the government exerts considerable control over the economy, including price control. The country is straddled by a high trade deficit, heavey defense expeditures, inflation, and the high cost of absorbing a large number of immigrants. Despite these problems, as well as a lack of natural resources, Israel has a well

  8. Water supply for the Nuclear Rocket Development Station at the U.S. Atomic Energy Commission's Nevada Test Site

    USGS Publications Warehouse

    Young, Richard Arden

    1972-01-01

    The Nuclear Rocket Development Station, in Jackass Flats, occupies about 123 square miles in the southwestern part of the U.S. Atomic Energy Commission's Nevada Test Site. Jackass Flats, an intermontane valley bordered by highlands on all sides except for a drainage outlet in the southwestern corner, has an average annual rainfall of 4 inches. Jackass Flats is underlain by alluvium, colluvium, and volcanic rocks of Cenozoic age and, at greater depth, by sedimentary rocks of Paleozoic age. The alluvium and the colluvium lie above the saturated zone throughout nearly all of Jackass Flats. The Paleozoic sedimentary rocks contain limestone and dolomite units that are excellent water producers elsewhere ; however, these units are too deep in Jackass Flats to be economic sources of water. The only important water-producing unit known in the vicinity of the Nuclear Rocket Development Station is a welded-tuff aquifer, the Topopah Spring Member of the Paintbrush Tuff, which receives no significant recharge. This member contains about 500 feet of highly fractured rock underlying an area 11 miles long and 3 miles wide in western Jackass Flats. Permeability of the aquifer is derived mostly from joints and fractures; however, some permeability may be derived from gas bubbles in the upper part of the unit. Transmissivity, obtained from pumping tests, ranges from 68,000 to 488,000 gallons per day per foot. Volume of the saturated part of the aquifer is about 3.5 cubic miles, and the average specific yield probably ranges from 1 to 5 percent. The volume of ground water in storage is probably within the range of 37-187 billion gallons. This large amount of water should be sufficient to supply the needs of the Nuclear Rocket Development Station for many years. Water at the Nuclear Rocket Development Station is used for public supply, construction, test-cell coolant, exhaust cooling, and thermal shielding during nuclear reactor and engine testing, and washdown. Present (1967) average

  9. Journal of Glenn T. Seaborg, Chairman of the US Atomic Energy Commission, 1961--1971: Volume 1, February 1, 1961--June 30, 1961

    SciTech Connect

    Seaborg, G.T.

    1989-01-01

    This introduction to my journal of 1961--1971, covering my years of service as Chairman of the US Atomic Energy Commission, is written from the perspective of 1971, in order to reflect the attitudes expressed in my journal, which was written on a daily basis during that period. Thus, I express the points of view of that time rather than those of today (1988), which might occasionally be somewhat different. The journal consists of 25 volumes, averaging 700 pages each. This comprises about 15,000 items consisting of the approximately 4000 daily entries and the average of about three attachments per day. The journal has three sections corresponding to each of the three presidents I served as chairman of the Atomic Energy Commission -- the first six volumes covering the John F. Kennedy years (February 1, 1961--November 22, 1963), the next 11 volumes covering the Lyndon B. Johnson years (November 22, 1963--January 20, 1969) and the final eight volumes, the Richard M. Nixon years and a few months of post-AEC chairman activities in Washington (January 20, 1969--November 6, 1971.)

  10. Monitoring distant fallout: the role of the Atomic Energy Commission Health and Safety Laboratory during the Pacific tests, with special attention to the events following BRAVO.

    PubMed

    Eisenbud, M

    1997-07-01

    The fallout from test BRAVO in March 1954 has had scientific, political, and social implications that have continued for more than 40 years. The test resulted in serious injury to the people of the Marshall Islands and 23 men on a nearby Japanese fishing boat. Prior to BRAVO there was insufficient appreciation of the dangers of fallout to people living downwind from surface or near-surface explosions of megaton weapons. In the absence of sufficient preplanning for fallout monitoring beyond the test-sites of earlier smaller yield tests, and as a result of the concern of the photographic film manufacturers, the Atomic Energy Commission Health and Safety Laboratory, now the Department of Energy Environmental Measurements Laboratory, was requested to develop a program of fallout surveillance. Beginning with Operation IVY in 1952, these surveys included aerial monitoring of the islands of the mid and western Pacific, as well as establishment of fallout monitoring stations in the United States and abroad. The first evidence of the post-BRAVO fallout was detected by a Atomic Energy Commission Health and Safety Laboratory instrument installed on the atoll of Rongerik, where 28 military personnel were stationed. The results of radiation surveys conducted immediately after BRAVO, as well as the reports of medical investigations, radioecological studies, and dose reconstruction that have been conducted by many laboratories over the years have been available from the beginning in unclassified form. However, from the time of the fallout, and continuing to the present, there have been many unanswered questions about what happened during the hours immediately after the fallout was reported. No formal investigation of the circumstances of the fallout was ever conducted, and there were serious misrepresentations of the facts in the official statements made at the time. PMID:9199215

  11. Experiments in progress: The geography of science in the Atomic Energy Commission's peaceful uses of nuclear explosives program, 1956-1973

    NASA Astrophysics Data System (ADS)

    Kirsch, Scott Lawrence

    From 1957 to 1973, the United States Atomic Energy Commission (AEC) actively pursued the "peaceful uses of nuclear explosives" through Project Plowshare. Nuclear excavation, the detonation of shallowly buried hydrogen bombs for massive earthmoving projects like harbors and canals, was considered the most promising of the Plowshare applications, and for a time, the most economically and technically "feasible." With a basis in and contributing to theory in critical human geography and science studies, the purpose of this dissertation is to examine the collisions of science, ideology, and politics which kept Plowshare designs alive--but only as "experiments in progress." That is, this research asks how the experimental program persisted in places like the national weapons laboratory in Livermore, California, and how its ideas were tested at the nuclear test site in Nevada, yet Plowshare was kept out of those spaces beyond AEC control. Primary research focuses on AEC-related archival materials collected from the Department of Energy Coordination and Information Center, Las Vegas, Nevada, and from the Lawrence Livermore National Laboratory, as well as the public discourse through which support for and opposition to Plowshare projects was voiced. Through critical analysis of Plowshare's grandiose "geographical engineering" schemes, I thus examine the complex relations between the social construction of science and technology, on one hand, and the social production of space, on the other.

  12. Solid cancer mortality associated with chronic external radiation exposure at the French atomic energy commission and nuclear fuel company.

    PubMed

    Metz-Flamant, C; Samson, E; Caër-Lorho, S; Acker, A; Laurier, D

    2011-07-01

    Studies of nuclear workers make it possible to directly quantify the risks associated with ionizing radiation exposure at low doses and low dose rates. Studies of the CEA (Commissariat à l'Energie Atomique) and AREVA Nuclear Cycle (AREVA NC) cohort, currently the most informative such group in France, describe the long-term risk to nuclear workers associated with external exposure. Our aim is to assess the risk of mortality from solid cancers among CEA and AREVA NC nuclear workers and its association with external radiation exposure. Standardized mortality ratios (SMRs) were calculated and internal Poisson regressions were conducted, controlling for the main confounding factors [sex, attained age, calendar period, company and socioeconomic status (SES)]. During the period 1968-2004, there were 2,035 solid cancers among the 36,769 CEA-AREVA NC workers. Cumulative external radiation exposure was assessed for the period 1950-2004, and the mean cumulative dose was 12.1 mSv. Mortality rates for all causes and all solid cancers were both significantly lower in this cohort than in the general population. A significant excess of deaths from pleural cancer, not associated with cumulative external dose, was observed, probably due to past asbestos exposure. We observed a significant excess of melanoma, also unassociated with dose. Although cumulative external dose was not associated with mortality from all solid cancers, the central estimated excess relative risk (ERR) per Sv of 0.46 for solid cancer mortality was higher than the 0.26 calculated for male Hiroshima and Nagasaki A-bomb survivors 50 years or older and exposed at the age of 30 years or older. The modification of our results after stratification for SES demonstrates the importance of this characteristic in occupational studies, because it makes it possible to take class-based lifestyle differences into account, at least partly. These results show the great potential of a further joint international study of

  13. Coordination of the U.S. DOE-Argentine National Atomic Energy Commission (CNEA) science and technology implementing arrangement. Final report

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    In 1989, the US Department of Energy (DOE) established the Office of Environmental Management (EM) and delegated to the office the responsibility of cleaning up the US nuclear weapons complex. EM`s mission has three primary activities: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of wastes from past and current operations; and (3) to develop and implement innovative technologies for environmental remediation. To this end, EM has established domestic and international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industry meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas. Florida International University`s Hemispheric Center for Environmental Technology (FIU-HCET) serves as DOE-OST`s primary technology transfer agent. FIU-HCET acts as the coordinating and managing body for the Department of Energy (DOE)-Argentina National Atomic Energy Commission (CNEA) Arrangement. Activities include implementing standard operating procedures, tracking various technical projects, hosting visiting scientists, advising DOE of potential joint projects based on previous studies, and demonstrating/transferring desired technology. HCET hosts and directs the annual Joint Coordinating Committee for Radioactive and Mixed Waste Management meeting between the DOE and CNEA representatives. Additionally, HCET is evaluating the possibility of establishing similar arrangements with other Latin American countries.

  14. 75 FR 11166 - Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission; Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission March 2,...

  15. Activities with Argentina. Spring 1999. A U.S. Department of Energy Cooperative Program with the National Atomic Energy Commission of the Argentine Republic

    SciTech Connect

    1999-06-01

    In 1989, the US Department of Energy (DOE) responded to the need to redirect resources from weapons production to environmental restoration and waste management by establishing the Office of Environmental Management (EM) and delegated to this office the responsibility of cleaning up the US nuclear weapons complex. Now in its eight year, EM`s mission has three central facets: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of waste from past and current operations; and (3) to develop and implement innovative technologies for environmental cleanup. To this end, EM has established domestic and international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industries meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas.

  16. Division B Commission 14 Working Group: Atomic Data

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Nahar, Sultana; Zhao, Gang

    2016-04-01

    This report summarizes laboratory measurements of atomic wavelengths, energy levels, hyperfine and isotope structure, energy level lifetimes, and oscillator strengths. Theoretical calculations of lifetimes and oscillator strengths are also included. The bibliography is limited to species of astrophysical interest. Compilations of atomic data and internet databases are also included. Papers are listed in the bibliography in alphabetical order, with a reference number in the text.

  17. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  18. Energy from the Atom.

    ERIC Educational Resources Information Center

    Smith, Patricia L.

    This curriculum guide was written to supplement fifth and sixth grade science units on matter and energy. It was designed to provide more in-depth material on the atom. The first part, "Teacher Guide," contains background information, biographical sketches of persons in the history of nuclear energy, vocabulary, answer sheets, management sheets…

  19. Curriculum for Commissioning Energy Efficient Buildings

    SciTech Connect

    Webster, Lia

    2012-09-30

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual

  20. S. 946: A Bill to reorganize the functions of the Nuclear Regulatory Commission to promote more effective regulation of atomic energy for peaceful purposes. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, May 9, 1989

    SciTech Connect

    Not Available

    1989-01-01

    S. 946 is a bill to reorganize the functions of the Nuclear Regulatory Commission to promote more effective regulation of atomic energy for peaceful purposes. The Bill proposes the reorganization of the NRC activities under the structure and functions of a Nuclear Safety Agency.

  1. Commissioning

    SciTech Connect

    Huta, L.G.

    1995-12-01

    Building managers often find that HVAC, lighting and other systems in new buildings need adjustments and modifications. The owner, architect and contractor may mistakenly assume that all of a building`s systems--architectural, mechanical, control and electrical--function according to the design intent. Thus, energy managers can optimize their building`s performance through commissioning, a process that looks for and corrects the defects in a building` operating system or design, immediately before and after it is occupied (following construction or renovation).

  2. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    SciTech Connect

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  3. Audit of the Federal Energy Regulatory Commission`s Office of Chief Accountant

    SciTech Connect

    1995-04-07

    The Federal Energy Regulatory Commission`s (Commission) mission is to oversee America`s natural gas and oil pipeline transportation, electric utility, and hydroelectric power industries to ensure that consumers receive adequate energy supplies at just and reasonable rates. To carry out this mission, the Commission issues regulations covering the accounting, reporting, and rate-making requirements of the regulated utility companies. The Commission`s Office of Chief Accountant performs financial related audits at companies to ensure compliance with these regulations. The purpose of this audit was to evaluate the office of Chief Accountant`s audit performance. Specifically, the objectives were to determine if the most appropriate audit approach was used and if a quality assurance process was in place to ensure reports were accurate and supported by the working papers.

  4. Energy partitioning for ``fuzzy'' atoms

    NASA Astrophysics Data System (ADS)

    Salvador, P.; Mayer, I.

    2004-03-01

    The total energy of a molecule is presented as a sum of one- and two-atomic energy components in terms of "fuzzy" atoms, i.e., such divisions of the three-dimensional physical space into atomic regions in which the regions assigned to the individual atoms have no sharp boundaries but exhibit a continuous transition from one to another. By proper definitions the energy components are on the chemical energy scale. The method is realized by using Becke's integration scheme and weight function permitting very effective numerical integrations.

  5. Federal Energy Regulatory Commission`s fiscal year 1996 financial statement audit

    SciTech Connect

    1997-02-14

    This report presents the results of the independent certified public accountants` audit of the Federal Energy Regulatory Commission`s (FERC) financial statements as of September 30, 1996. The auditors have expressed an unqualified opinion on the 1996 statement of financial position and the related statements of operations and changes in net position.

  6. Federal Energy Regulatory Commission fiscal year 1997 annual financial statements

    SciTech Connect

    1998-02-24

    This report presents the results of the independent certified public accountants` audit of the Federal Energy Regulatory commission`s statements of financial position, and the related statements of operations and changes in net position. The auditors` work was conducted in accordance with generally accepted government auditing standards. An independent public accounting firm conducted the audit. The auditors` reports on the Commission`s internal control structure and compliance with laws and regulations disclosed no reportable conditions or instances of noncompliance.

  7. Instrumented home energy rating and commissioning

    SciTech Connect

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-05-01

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify deficiencies or to correct them. Solving this problem requires field performance evaluations using appropriate and agreed upon procedures in the form of a new process called residential commissioning. The purpose of this project is to develop and document these procedures and to demonstrate the value that applying them could provide in both new and existing California houses. This project has four specific objectives: to develop metrics and diagnostics for assessing house performance, to provide information on the potential benefits of commissioning using a whole-house approach, to develop programmatic guidelines for commissioning, and to conduct outreach efforts to transfer project results to industry stakeholders. The primary outcomes from this project are the development of residential commissioning guidelines and the analytical confirmation that there are significant potential benefits associated with commissioning California houses, particularly existing ones. In addition, we have made substantial advances in understanding the accuracy and usability of diagnostics for commissioning houses. In some cases, we have been able to work with equipment manufacturers to improve these aspects of their diagnostic tools. These outcomes provide a solid foundation on which to build a residential commissioning program in California. We expect that a concerted effort will be necessary to integrate such a program with existing building industry efforts and to demonstrate its use in the field.

  8. Commissioning: A Highly Cost-Effective Building Energy Management Strategy

    SciTech Connect

    Mills, Evan

    2011-01-06

    Quality assurance and optimization are essential elements of any serious technological endeavor, including efforts to improve energy efficiency. Commissioning is an important tool in this respect. The aim of commissioning new buildings is to ensure that they deliver-if not exceed-the performance and energy savings promised by their design. When applied to existing buildings, one-time or repeated commissioning (often called retrocommissioning) identifies the almost inevitable drift in energy performance and puts the building back on course, often surpassing the original design intent. In both contexts, commissioning is a systematic, forensic approach to improving performance, rather than a discrete technology.

  9. Electron correlation energies in atoms

    NASA Astrophysics Data System (ADS)

    McCarthy, Shane Patrick

    This dissertation is a study of electron correlation energies Ec in atoms. (1) Accurate values of E c are computed for isoelectronic sequences of "Coulomb-Hooke" atoms with varying mixtures of Coulombic and Hooke character. (2) Coupled-cluster calculations in carefully designed basis sets are combined with fully converged second-order Moller-Plesset perturbation theory (MP2) computations to obtain fairly accurate, non-relativistic Ec values for the 12 closed-shell atoms from Ar to Rn. The complete basis-set (CBS) limits of MP2 energies are obtained for open-shell atoms by computations in very large basis sets combined with a knowledge of the MP2/CBS limit for the next larger closed-shell atom with the same valence shell structure. Then higher-order correlation corrections are found by coupled-cluster calculations using basis sets that are not quite as large. The method is validated for the open-shell atoms from Al to Cl and then applied to get E c values, probably accurate to 3%, for the 4th-period open-shell atoms: K, Sc-Cu, and Ga-Br. (3) The results show that, contrary to quantum chemical folklore, MP2 overestimates |Ec| for atoms beyond Fe. Spin-component scaling arguments are used to provide a simple explanation for this overestimation. (4) Eleven non-relativistic density functionals, including some of the most widely-used ones, are tested on their ability to predict non-relativistic, electron correlation energies for atoms and their cations. They all lead to relatively poor predictions for the heavier atoms. Several novel, few-parameter, density functionals for the correlation energy are developed heuristically. Four new functionals lead to improved predictions for the 4th-period atoms without unreasonably compromising accuracy for the lighter atoms. (5) Simple models describing the variation of E c with atomic number are developed.

  10. Mutation, radiation, and species survival: The genetics studies of the Atomic Bomb Casualty Commission in Hiroshima and Nagasaki, Japan

    SciTech Connect

    Lindee, M.S.

    1990-01-01

    This is an analysis of the work of the Atomic Bomb Casualty Commission, an American agency which studied the effects of radiation on survivors of the atomic bombings at Hiroshima and Nagasaki, Japan, 1947-1975. Funded by the U.S. Atomic Energy Commission and directed by the National Academy of Sciences-National Research Council, the ABCC was the largest and longest medical study of the estimated 300,000 survivors. The morphological genetics study dominated the ABCCs first decade. James Neel and his principal collaborator William J. Schull tracked more than 76,000 pregnancies. Their results (1956) suggested the bombs radiation had no detectable impact on the offspring of survivors. Though geneticists knew that radiation caused heritable mutations in experimental organisms such as Drosophila, and believed it caused mutations in humans, the Neel-Schull findings were not a surprise. The practical difficulties of the study, and the relatively small increase in abnormal births to be expected, made a finding of significant effects unlikely. The Neel-Schull approach reflected the scientific debate over genetic load, and the Muller-Dobzhansky classical-balance controversy. Yet the findings also reflected the post-war debate over atomic energy and weapons testing. Many extra-scientific forces militated against a finding of positive effects at Hiroshima and Nagasaki. Negative findings were consistent with the needs of the Atomic Energy Commission, the State Department and the U.S. military. This dissertation explores how both the scientific debate about genetic load, and the political debate about atmospheric weapons testing, shaped this complex epidemiological study.

  11. Improving building energy system performance by continuous commissioning

    SciTech Connect

    Liu, M.

    1999-10-01

    Commissioning has played an important role in improved building comfort and reduced energy consumption. This article presents an advanced form of commissioning for existing buildings, called continuous commissioning (CC), which has produced energy savings comparable to those produced by the traditional audit/retrofit process at a third of the cost. It has also increased operating staff skills, reduced maintenance costs, and improved building comfort--extras which are not provided by usual retrofit programs. This article will present the philosophy, process, cost, and savings. Continuous commissioning is a process developed by the Energy Systems Laboratory (ESL) to: (1) optimize the operation of existing systems to improve building comfort and reduce building energy cost; (2) solve existing comfort and IAQ problems; (3) guarantee continuous optimal operation by operational staff in future years; and (4) provide optimal energy retrofit suggestions to owners to minimize the project costs.

  12. Audit of the Federal Energy Regulatory Commission leased warehouse space

    SciTech Connect

    1996-05-24

    The Federal Energy Regulatory Commission (Commission) stores furniture, automated data processing equipment, and office supplies in a warehouse located in Landover, Maryland. The annual operating cost for this space (25,830 square feet) approximates $455,000-$245,000 in lease costs and $210,000 for contractor personnel. The purpose of the audit was to assess the effectiveness of the Commission`s use of warehouse space. The specific audit objective was to determine whether the Commission was minimizing the need for warehouse space for the storage of office supplies, furniture, and equipment. Federal Property Management Regulations and prudent business practices require Government agencies to minimize their need for space. More space was being leased than needed because Commission officials understood that they were obligated by terms of the lease to -pay for the space until March 31, 2002. We found, however, that there was a misunderstanding by officials, and that the Commission could at any time relinquish warehouse space by giving 120 days notice. Because of this misunderstanding and the recent relocation of the Commission to a newly furnished facility, about 16,000 square feet of warehouse space was being used to store furniture and equipment that was no longer needed by the Commission. An additional 6,000 square feet of space was used to store office supplies instead of using a more frequent ordering program that would reduce space requirements.

  13. 77 FR 16828 - Constellation Energy Commodities Group, Inc.; Notice of Designation of Certain Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Constellation Energy Commodities Group, Inc.; Notice of Designation of Certain Commission Personnel as Non-Decisional Commission staff members Sandra Waldstein and...

  14. 76 FR 62055 - Mississippi Delta Energy Agency, Clarksdale Public Utilities Commission, Public Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Mississippi Delta Energy Agency, Clarksdale Public Utilities Commission... Practice and Procedures, and the applicable Tariff on file with the Commission, Mississippi Delta...

  15. Employment in the Atomic Energy Field, 1973

    ERIC Educational Resources Information Center

    Moylan, Maurice P.

    1974-01-01

    Private industry is gradually replacing the Federal Government in peaceful atomic energy activities. As a consequence, employment in the field of atomic energy is increasing in private industry and decreasing in government-owned establishments. (AG)

  16. Division D Commission 44: Space and High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Christine; Brosch, Noah; Hasinger, Günther; Baring, Matthew G.; Barstow, Martin Adrian; Braga, Joao; Churazov, Evgenij M.; Eilik, Jean; Kunieda, Hideyo; Murthy, Jayant; Pagano, Isabella; Quintana, Hernan; Salvati, Marco; Singh, Kulinder Pal; Worrall, Diana Mary

    2016-04-01

    Division XI, the predecessor to Division D until 2012, was formed in 1994 at the IAU General Assembly in The Hague by merging Commission 44 Astronomy from Space and Commission 48 High Energy Astrophysics. Historically, space astrophysics started with the high energy wavelengths (far UV, X-ray, and gamma-ray astronomy) which are only accessible from space. However, in modern astronomy, to study high energy astrophysical processes, almost all wavelengths are used (including gamma-ray, X-ray, UV, optical, infrared, submillimeter and radio). In addition other ground-based facilities, including gravitational wave antennas, neutrino detectors and high-energy cosmic ray arrays are joining in this era of multi-messenger astrophysics, as well as space missions with the primary goals to discover and study exoplanets, are under the umbrella of Division XI.

  17. A Quantum Model of Atoms (the Energy Levels of Atoms).

    ERIC Educational Resources Information Center

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  18. Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)

    SciTech Connect

    Thomas Benally, Deputy Director,

    2012-05-15

    The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketing tools to support outreach efforts targeting the public, vendors, investors and government audiences.

  19. 75 FR 20867 - DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1 Environmental Assessment and Finding of No... Operating License No. DPR-9 issued to DTE Energy (DTE or the licensee), for the Enrico Fermi Atomic...

  20. Semiconductor surface sublimation energies and atom-atom interactions

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Srinivasan; Berding, M. A.; Sher, A.; Chen, A.-B.

    1990-01-01

    The energy required to remove an atom from semiconductor surfaces is calculated using a Green's-function approach. Contrary to intuition, it is found that, in some cases, less energy is needed to remove an atom from the nearly full surface than from a nearly empty surface. The results are explained in terms of the relative energies of anion and cation dangling bonds, and the charge transfers between them. The deducted effective pair-interaction energies and their effects on surface morphology and growth perfection are discussed.

  1. Greetings: 50 years of Atomic Bomb Casualty Commission-Radiation Effects Research Foundation studies.

    PubMed

    Shigematsu, I

    1998-05-12

    The Atomic Bomb Casualty Commission was established in Hiroshima in 1947 and in Nagasaki in 1948 under the auspices of the U.S. National Academy of Sciences to initiate a long-term and comprehensive epidemiological and genetic study of the atomic bomb survivors. It was replaced in 1975 by the Radiation Effects Research Foundation which is a nonprofit Japanese foundation binationally managed and supported with equal funding by the governments of Japan and the United States. Thanks to the cooperation of the survivors and the contributions of a multitude of scientists, these studies flourish to this day in what must be the most successful long-term research collaboration between the two countries. Although these studies are necessarily limited to the effects of acute, whole-body, mixed gamma-neutron radiation from the atom bombs, their comprehensiveness and duration make them the most definitive descriptions of the late effects of radiation in humans. For this reason, the entire world relies heavily on these data to set radiation standards. As vital as the study results are, they still represent primarily the effects of radiation on older survivors. Another decade or two should correct this deficiency and allow us to measure definitively the human risk of heritable mutation from radiation. We look to the worldwide radiation and risk community as well as to the survivors who have contributed so much to what has been done already to accomplish this goal. PMID:9576897

  2. The International Atomic Energy Agency

    ERIC Educational Resources Information Center

    Dufour, Joanne

    2004-01-01

    The dropping of atomic bombs on Hiroshima and Nagasaki in World War II inaugurated a new era in world history, the atomic age. After the war, the Soviet Union, eager to develop the same military capabilities as those demonstrated by the United States, soon rivaled the U.S. as an atomic and nuclear superpower. Faced by the possibility of…

  3. Energy storage possibilities of atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R.

    1976-01-01

    The possibility of storing large amounts of energy in a free radical system such as atomic hydrogen is analyzed. Attention is focused on theoretical calculations of the ground state properties of spin-aligned atomic triplet hydrogen, deuterium, and tritium. The solid-liquid phase transition in atomic hydrogen is also examined.

  4. 77 FR 34379 - Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Joint Meeting of the Nuclear Regulatory Commission and the Federal Energy Regulatory Commission The Federal Energy Regulatory Commission (FERC) and the Nuclear Regulatory Commission (NRC) will hold a...

  5. 78 FR 56944 - Strata Energy, Inc. (Ross In Situ Recovery Uranium Project); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... COMMISSION Strata Energy, Inc. (Ross In Situ Recovery Uranium Project); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing Board... 2013. E. Roy Hawkens, Chief Administrative Judge, Atomic Safety and Licensing Board Panel. BILLING...

  6. Jobs in the Atomic Energy Field

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 1974

    1974-01-01

    According to a recent government survey, employment in privately-owned atomic energy facilities now exceeds employment in government facilities. In this field, engineers, scientists, technicians, and craft workers account for the highest proportion of total employment. (MW)

  7. Impacts of Modeled Recommendations of the National Commission on Energy Policy

    EIA Publications

    2005-01-01

    This report provides the Energy Information Administration's analysis of those National Commission on Energy Policy (NCEP) energy policy recommendations that could be simulated using the National Energy Modeling System (NEMS).

  8. Attenuation of Scattered Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.

    2011-01-01

    The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.

  9. Trends in chemisorption energies with atomic number

    NASA Astrophysics Data System (ADS)

    Flores, F.; Gabbay, I.; March, N. H.

    1981-12-01

    Three factors which are potentially important in determining the energy of chemisorption of atoms on transition metal surfaces are (i) the covalency associated with the metal atom-chemisorbed atom bond, (ii) the electronegativity difference between the chemisorbed atom and the metal substrate atoms, (iii) the breaking of metallic bonds near the surface due to the proximity of the chemisorbed atom. The dissociation or binding of molecules brought up to the metal surface is discussed as a balance between these factors (i)-(iii). Fáctor (ii) always aids dissociation while (iii) opposes it. Semiquantitative estimates are presented for N 2, O 2, NO and CO on a variety of transition metals. The cases of H 2 and NH 3 are briefly referred to.

  10. Energy storage possibilities of atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R.

    1976-01-01

    Several recent experiments designed to produce and store macroscopic quantities of atomic hydrogen are discussed. The bulk, ground state properties of atomic hydrogen, deuterium, and tritium systems are calculated assuming that all pair interactions occur via the atomic triplet potential. The conditions required to obtain this system, including inhibition of recombination through the energetically favorable singlet interaction, are discussed. The internal energy, pressure, and compressibility are calculated applying the Monte Carlo technique with a quantum mechanical variational wavefunction. The system studied consisted of 32 atoms in a box with periodic boundary conditions. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K; i.e., the internal energy is positive at all molar volumes considered.

  11. The Future of Atomic Energy

    DOE R&D Accomplishments Database

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  12. Spacecraft thermal energy accommodation from atomic recombination

    NASA Technical Reports Server (NTRS)

    Carleton, Karen L.; Marinelli, William J.

    1991-01-01

    Measurements of atomic recombination probabilities important in determining energy release to reusable spacecraft thermal protection surfaces during reentry are presented. An experimental apparatus constructed to examine recombination of atomic oxygen from thermal protection and reference materials at reentry temperatures is described. The materials are examined under ultrahigh vacuum conditions to develop and maintain well characterized surface conditions that are free of contamination. When compared with stagnation point heat transfer measurements performed in arc jet facilities, these measurements indicate that a significant fraction of the excess energy available from atom recombination is removed from the surface as metastable O2.

  13. The Atomization Energy of Mg4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The atomization energy of Mg4 is determined using the MP2 and CCSD(T) levels of theory. Basis set incompleteness, basis set extrapolation, and core-valence effects are discussed. Our best atomization energy, including the zero-point energy and scalar relativistic effects, is 24.6+/-1.6 kcal per mol. Our computed and extrapolated values are compared with previous results, where it is observed that our extrapolated MP2 value is good agreement with the MP2-R12 value. The CCSD(T) and MP2 core effects are found to have the opposite signs.

  14. Low-energy neutral-atom spectrometer

    SciTech Connect

    Voss, D.E.; Cohen, S.A.

    1982-04-01

    The design, calibration, and performance of a low energy neutral atom spectrometer are described. Time-of-flight analysis is used to measure the energy spectrum of charge-exchange deuterium atoms emitted from the PLT tokamak plasma in the energy range from 20 to 1000 eV. The neutral outflux is gated on a 1 ..mu..sec time scale by a slotted rotating chopper disc, supported against gravity in vacuum by magnetic levitation, and is detected by secondary electron emission from a Cu-Be plate. The energy dependent detection efficiency has been measured in particle beam experiments and on the tokamak so that the diagnostic is absolutely calibrated, allowing quantitative particle fluxes to be determined with 200 ..mu..sec time resolution. In addition to its present application as a plasma diagnostic, the instrument is capable of making a wide variety of measurements relevant to atomic and surface physics.

  15. The Harnessed Atom: Nuclear Energy & Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  16. New Goals for Atomic Energy

    ERIC Educational Resources Information Center

    Parsegian, V. L.

    1971-01-01

    There should be a "shifting of emphasis from fossil fuel to nuclear systems as quickly as possible," but with a major change in the design of reactor systems to enable more efficient use of the total energy produced. Waste heat may be used for agriculture. (AL)

  17. Kinetic energy of shakeoff atomic electrons from 37K β+ decay

    NASA Astrophysics Data System (ADS)

    Behr, J. A.; Gorelov, A.; Farfan, C.; Smale, S.; Olchanski, K.; Kurchananov, L.; Anholm, M.; Behling, R. S.; Fenker, B.; Shidling, P. D.; Mehlman, M.; Melconian, D.; Ashery, D.; Gwinner, G.; Trinat Collaboration

    2013-10-01

    We have measured the kinetic energies from 0 to 30 eV of atomic shakeoff electrons from the β+ decay of 37K. Despite much experimental and theoretical work on the distribution of final ion charge states, shakeoff electrons from β- decay have only been measured with energies above 150 eV [Mitrokhovich, Nucl. Phys. Atom. Energy, 11, 125 (2010)]. We use our magneto-optical trap's time-varying magnetic quadrupole field combined with a uniform electric field as a spectrometer. Our result has more 15 eV electrons than a model using the sudden approximation and hydrogenic wavefunctions [Levinger, Phys. Rev. 90, 11 (1958)]. The total energy carried away by electrons is, as expected, a negligible correction to superallowed Ft values. Understanding the energy of these low-energy electrons is important for their use in precision β decay to select events coming from trapped atoms and start time-of-flight for the recoil ions. Our results could provide a benchmark for shakeoff electron calculations used for biological radiation damage [Lee, Comp. Math. Meth in Medicine doi:10.1155/2012/651475]. Support: NSERC, NRC through TRIUMF, DOE ER41747 ER40773, State of Texas, Israel Science Foundation.

  18. Report to the Legislature on the California Energy Commission's Geothermal Development Grant Program for Local Governments

    SciTech Connect

    Not Available

    1983-04-01

    This report documents the California Energy Commission's administration of its Geothermal Development Grant Program for Local Governments. The Energy Commission established this program as a result of the passage of Assembly Bill 1905 (Bosco) in 1980. This legislation established the mechanism to distribute the state's share of revenues received from the leasing of federal mineral reserves for geothermal development. The federal government deposits these revenues in the Geothermal Resources Development Account (GRDA) created by AB 1905. The state allocates funds from the GRDA to the California Parklands and Renewable Resources Investment Fund, the counties of origin where the federal leases are located, and the Energy Commission. The legislation further directs the Energy Commission to disburse its share as grants to local governments to assist with the planning and development of geothermal resources. Activities which are eligible for funding under the Energy Commission's grant program include resource development projects, planning and feasibility studies, and activities to mitigate the impacts of existing geothermal development.

  19. 10 CFR 8.2 - Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in Nuclear Energy 75 (1959). In the testimony before the Joint Committee last year, Professor Samuel... 10 Energy 1 2011-01-01 2011-01-01 false Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954. 8.2 Section 8.2 Energy NUCLEAR REGULATORY COMMISSION INTERPRETATIONS §...

  20. Energy dissipation in multifrequency atomic force microscopy.

    PubMed

    Pukhova, Valentina; Banfi, Francesco; Ferrini, Gabriele

    2014-01-01

    The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip-sample interaction. PMID:24778976

  1. 78 FR 33449 - FirstEnergy Nuclear Operating Company; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Opportunity for a Hearing,'' see 78 FR 16,876, 16,883 (Mar. 19, 2013), a hearing request was filed on May 20... in August 2007. See 72 FR 49,139. Issued at Rockville, Maryland this 28th day of May 2013. E. Roy... COMMISSION FirstEnergy Nuclear Operating Company; Establishment of Atomic Safety and Licensing Board...

  2. 76 FR 56242 - Duke Energy Carolinas, LLC; Southern Nuclear Operating Company; Establishment of Atomic Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... Register, 37 FR 28,710 (1972), and the Commission's regulations, see, e.g., 10 CFR 2.104, 2.105, 2.300, 2... NRC promulgated in August 2007 (72 FR 49,139). Dated: Issued at Rockville, Maryland, this 6th day of... Energy Carolinas, LLC; Southern Nuclear Operating Company; Establishment of Atomic Safety and...

  3. 76 FR 62457 - Atomic Safety and Licensing Board; Nextera Energy Seabrook, LLC (Seabrook Station, Unit 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Atomic Safety and Licensing Board; Nextera Energy Seabrook, LLC (Seabrook Station, Unit 1); Notice... hearing will be announced in a subsequent notice or order. \\2\\ Id. at 63. It is so ordered. For the...

  4. Youth Aliyah in Israel.

    ERIC Educational Resources Information Center

    Amir, Eli

    1992-01-01

    Describes Youth Aliyah, department of Jewish Agency for Israel, which began in 1933 to rescue Jewish children from Nazi Germany, bring them to Israel, and place them in kibbutzim. Notes that, since its inception, Youth Aliyah has taken in Holocaust survivors and has taken active role in helping young immigrants to Israel in need of education and…

  5. Arab Education in Israel.

    ERIC Educational Resources Information Center

    Mar'i, Sami Khalil

    Arab education in Israel and sociocultural, socioeconomic and political issues of being a minority in Israel are considered in this book. Arab education in Israel is traced from elementary to university levels, and from its historical background to its present administration. Numerous Arabic, English, and Hebrew studies in education are analyzed,…

  6. 10 CFR 1.11 - The Commission.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.11 The Commission. (a) The Nuclear Regulatory Commission, composed of five members, one of whom is designated by the... of the licensing and regulatory process, as mandated by the Atomic Energy Act of 1954, as...

  7. 10 CFR 1.11 - The Commission.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.11 The Commission. (a) The Nuclear Regulatory Commission, composed of five members, one of whom is designated by the... of the licensing and regulatory process, as mandated by the Atomic Energy Act of 1954, as...

  8. 10 CFR 1.11 - The Commission.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.11 The Commission. (a) The Nuclear Regulatory Commission, composed of five members, one of whom is designated by the... of the licensing and regulatory process, as mandated by the Atomic Energy Act of 1954, as...

  9. 10 CFR 1.11 - The Commission.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.11 The Commission. (a) The Nuclear Regulatory Commission, composed of five members, one of whom is designated by the... of the licensing and regulatory process, as mandated by the Atomic Energy Act of 1954, as...

  10. 10 CFR 1.11 - The Commission.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.11 The Commission. (a) The Nuclear Regulatory Commission, composed of five members, one of whom is designated by the... of the licensing and regulatory process, as mandated by the Atomic Energy Act of 1954, as...

  11. 10 CFR 8.2 - Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954. 8.2 Section 8.2 Energy NUCLEAR REGULATORY COMMISSION INTERPRETATIONS § 8.2 Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954. (a) It is my opinion that an indemnity agreement entered into...

  12. Probing dark energy with atom interferometry

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E. A.

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  13. 77 FR 12087 - Atomic Safety and Licensing Board Panel; Strata Energy, Inc.; Memorandum and Order (Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... proceeding. See ; Establishment of Atomic Safety and Licensing Board, 76 FR 69,295 (Nov. 8, 2011). \\*\\ As... Document Access to Sensitive Unclassified Non-Safeguards Information for Contention Preparation, 76 FR 41... COMMISSION Atomic Safety and Licensing Board Panel; Strata Energy, Inc.; Memorandum and Order (Notice...

  14. 75 FR 24755 - DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... quality of the human environment as documented in Federal Register (FR) notice 75 FR 20867, April 21, 2010... COMMISSION DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste... and holder of Facility Operating License No. DPR-9 issued for Enrico Fermi Atomic Power Plant, Unit...

  15. Energy and Cost Savings of Retro-Commissioning and Retrofit Measures for Large Office Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Moser, Dave; Liu, Guopeng; Athalye, Rahul A.; Liu, Bing

    2012-08-03

    This paper evaluates the energy and cost savings of seven retro-commissioning measures and 29 retrofit measures applicable to most large office buildings. The baseline model is for a hypothetical building with characteristics of large office buildings constructed before 1980. Each retro-commissioning measure is evaluated against the original baseline in terms of its potential of energy and cost savings while each retrofit measure is evaluated against the commissioned building. All measures are evaluated in five locations (Miami, Las Vegas, Seattle, Chicago and Duluth) to understand the impact of weather conditions on energy and cost savings. The results show that implementation of the seven operation and maintenance measures as part of a retro-commissioning process can yield an average of about 22% of energy use reduction and 14% of energy cost reduction. Widening zone temperature deadband, lowering VAV terminal minimum air flow set points and lighting upgrades are effective retrofit measures to be considered.

  16. Atomic Mass and Nuclear Binding Energy for F-16 (Fluorine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-16 (Fluorine, atomic number Z = 9, mass number A = 16).

  17. Atomic Mass and Nuclear Binding Energy for I-162 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-162 (Iodine, atomic number Z = 53, mass number A = 162).

  18. Atomic Mass and Nuclear Binding Energy for I-189 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-189 (Iodine, atomic number Z = 53, mass number A = 189).

  19. Atomic Mass and Nuclear Binding Energy for I-182 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-182 (Iodine, atomic number Z = 53, mass number A = 182).

  20. Atomic Mass and Nuclear Binding Energy for I-171 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-171 (Iodine, atomic number Z = 53, mass number A = 171).

  1. Atomic Mass and Nuclear Binding Energy for I-175 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-175 (Iodine, atomic number Z = 53, mass number A = 175).

  2. Atomic Mass and Nuclear Binding Energy for I-184 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-184 (Iodine, atomic number Z = 53, mass number A = 184).

  3. Atomic Mass and Nuclear Binding Energy for I-169 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-169 (Iodine, atomic number Z = 53, mass number A = 169).

  4. Atomic Mass and Nuclear Binding Energy for I-174 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-174 (Iodine, atomic number Z = 53, mass number A = 174).

  5. Atomic Mass and Nuclear Binding Energy for I-172 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-172 (Iodine, atomic number Z = 53, mass number A = 172).

  6. Atomic Mass and Nuclear Binding Energy for I-168 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-168 (Iodine, atomic number Z = 53, mass number A = 168).

  7. Atomic Mass and Nuclear Binding Energy for I-170 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-170 (Iodine, atomic number Z = 53, mass number A = 170).

  8. Atomic Mass and Nuclear Binding Energy for I-194 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-194 (Iodine, atomic number Z = 53, mass number A = 194).

  9. Atomic Mass and Nuclear Binding Energy for I-186 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-186 (Iodine, atomic number Z = 53, mass number A = 186).

  10. Atomic Mass and Nuclear Binding Energy for I-161 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-161 (Iodine, atomic number Z = 53, mass number A = 161).

  11. Atomic Mass and Nuclear Binding Energy for I-190 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-190 (Iodine, atomic number Z = 53, mass number A = 190).

  12. Atomic Mass and Nuclear Binding Energy for I-181 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-181 (Iodine, atomic number Z = 53, mass number A = 181).

  13. Atomic Mass and Nuclear Binding Energy for I-193 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-193 (Iodine, atomic number Z = 53, mass number A = 193).

  14. Atomic Mass and Nuclear Binding Energy for I-179 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-179 (Iodine, atomic number Z = 53, mass number A = 179).

  15. Atomic Mass and Nuclear Binding Energy for I-164 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-164 (Iodine, atomic number Z = 53, mass number A = 164).

  16. Atomic Mass and Nuclear Binding Energy for I-176 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-176 (Iodine, atomic number Z = 53, mass number A = 176).

  17. Atomic Mass and Nuclear Binding Energy for I-185 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-185 (Iodine, atomic number Z = 53, mass number A = 185).

  18. Atomic Mass and Nuclear Binding Energy for I-163 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-163 (Iodine, atomic number Z = 53, mass number A = 163).

  19. Atomic Mass and Nuclear Binding Energy for I-187 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-187 (Iodine, atomic number Z = 53, mass number A = 187).

  20. Atomic Mass and Nuclear Binding Energy for I-165 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-165 (Iodine, atomic number Z = 53, mass number A = 165).

  1. Atomic Mass and Nuclear Binding Energy for I-160 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-160 (Iodine, atomic number Z = 53, mass number A = 160).

  2. Atomic Mass and Nuclear Binding Energy for I-177 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-177 (Iodine, atomic number Z = 53, mass number A = 177).

  3. Atomic Mass and Nuclear Binding Energy for I-167 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-167 (Iodine, atomic number Z = 53, mass number A = 167).

  4. Atomic Mass and Nuclear Binding Energy for I-178 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-178 (Iodine, atomic number Z = 53, mass number A = 178).

  5. Atomic Mass and Nuclear Binding Energy for I-192 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-192 (Iodine, atomic number Z = 53, mass number A = 192).

  6. Atomic Mass and Nuclear Binding Energy for I-173 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-173 (Iodine, atomic number Z = 53, mass number A = 173).

  7. Atomic Mass and Nuclear Binding Energy for I-191 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-191 (Iodine, atomic number Z = 53, mass number A = 191).

  8. Atomic Mass and Nuclear Binding Energy for I-183 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-183 (Iodine, atomic number Z = 53, mass number A = 183).

  9. Atomic Mass and Nuclear Binding Energy for I-188 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-188 (Iodine, atomic number Z = 53, mass number A = 188).

  10. Atomic Mass and Nuclear Binding Energy for I-166 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-166 (Iodine, atomic number Z = 53, mass number A = 166).

  11. Atomic Mass and Nuclear Binding Energy for I-180 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-180 (Iodine, atomic number Z = 53, mass number A = 180).

  12. Atomic Mass and Nuclear Binding Energy for F-22 (Fluorine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-22 (Fluorine, atomic number Z = 9, mass number A = 22).

  13. Atomic Mass and Nuclear Binding Energy for Sr-71 (Strontium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sr-71 (Strontium, atomic number Z = 38, mass number A = 71).

  14. Using atom interferometry to detect dark energy

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.

    2016-04-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the universe on giga-parsec scales may be found through metre scale laboratory-based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints, these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory.

  15. 10 CFR 1040.124 - Responsibility of the Federal Energy Regulatory Commission.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be placed in title 18 CFR. Judicial Review ... 10 Energy 4 2014-01-01 2014-01-01 false Responsibility of the Federal Energy Regulatory Commission. 1040.124 Section 1040.124 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION...

  16. 10 CFR 1040.124 - Responsibility of the Federal Energy Regulatory Commission.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be placed in title 18 CFR. Judicial Review ... 10 Energy 4 2010-01-01 2010-01-01 false Responsibility of the Federal Energy Regulatory Commission. 1040.124 Section 1040.124 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION...

  17. 10 CFR 1040.124 - Responsibility of the Federal Energy Regulatory Commission.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be placed in title 18 CFR. Judicial Review ... 10 Energy 4 2013-01-01 2013-01-01 false Responsibility of the Federal Energy Regulatory Commission. 1040.124 Section 1040.124 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION...

  18. 10 CFR 1040.124 - Responsibility of the Federal Energy Regulatory Commission.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be placed in title 18 CFR. Judicial Review ... 10 Energy 4 2011-01-01 2011-01-01 false Responsibility of the Federal Energy Regulatory Commission. 1040.124 Section 1040.124 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION...

  19. Costs and benefits from utility-funded commissioning of energy- efficiency measures in 16 buildings

    SciTech Connect

    Piette, M.A.; Nordman, B.

    1995-10-01

    This paper describes the costs and savings of commissioning of energy- efficiency measures in 16 buildings. A total of 46 EEMs were commissioned for all 16 buildings and 73 deficiencies were corrected. On average, commissioning was marginally cost effective on energy savings alone, although the results were mixed among all 16 buildings. When considered as a stand-alone measure, the median simple payback time of 6.5 years under the low energy prices in the Pacific Northwest. Under national average prices the median payback time is about three years. In estimating the present value of the energy savings from commissioning we considered low and high lifetimes for the persistence of savings from deficiency corrections. Under the low- lifetime case the average present value of the energy savings ($0. 21/ft{sup 2}) were about equal to the average commissioning costs ($0. 23/ft{sup 2}). Under the high-lifetime case the savings ($0.51/ft{sup 2}) were about twice the costs. Again, the savings would be about twice as large under national average prices. The results are subject to significant uncertainty because of the small sample size and lack of metered data in the evaluation. However, the findings suggest that investments in commissioning pay off. Building owners want buildings that work as intended, and are comfortable, healthy, and efficient. It is likely that the non-energy benefits, which are difficult to quantify, are larger than the energy-savings benefits.

  20. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  1. Energy of atomic shakeoff electrons from positron decay of 37K

    NASA Astrophysics Data System (ADS)

    Behr, John; Fenker, Benjamin; Gorelov, Alexandre; Anholm, Melissa; Behling, Spencer; Mehlman, Michael; Melconian, Dan; Ashery, Danny; Gwinner, Gerald

    2015-10-01

    We have measured the low-energy atomic shakeoff electron spectrum from the β+ decay of 37K. We collect atomic electrons emitted from laser-cooled 37K using a nearly uniform electric field at low magnetic field into a position-sensitive microchannel plate. A coincidence with energetic β+s removes background. The differential position information translates to a differential electron energy spectrum. The energy spectrum from 1-100 eV is reproduced well by an analytic calculation for hydrogenic wavefunctions [Levinger PR 90 11 (1953)] using potassium quantum defects. Less than one percent of the electrons have energies higher than the 25 eV threshold for double DNA strand breaks, so relative biological effectiveness would not be altered by including these electrons. The average energy carried off by these electrons (a few eV) is smaller than expected from simple Thomas-Fermi estimates (65eV). Supported by NSERC, NRC through TRIUMF, U.S. D.O.E., State of Texas, Israel Science Foundation

  2. Atomic polarizability, volume and ionization energy

    NASA Astrophysics Data System (ADS)

    Politzer, Peter; Jin, Ping; Murray, Jane S.

    2002-11-01

    Our primary focus in this work has been upon the relationship between atomic polarizability and volume, although we also looked at the role of ionization energy. For approximating volumes in this context, we tried ten different measures of atomic radii, based upon both empirical and theoretical criteria. Our results confirm that the polarizability can be expressed, to good accuracy, as directly proportional to the volume alone, provided that an appropriate set of radii is used. Most effective for the present purpose are (a) the distances to the outermost maxima of the orbital radial densities and (b) outermost orbital values. Our data also support an earlier prediction that the correlation would be enhanced by the inclusion of a slowly varying periodic function of the nuclear charge.

  3. 32 CFR 2400.4 - Atomic Energy Material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  4. 32 CFR 2400.4 - Atomic Energy Material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  5. 32 CFR 2400.4 - Atomic Energy Material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  6. 32 CFR 2400.4 - Atomic Energy Material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  7. 32 CFR 2400.4 - Atomic Energy Material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  8. European Union energy policy integration: A case of European Commission policy entrepreneurship and increasing supranationalism

    PubMed Central

    Maltby, Tomas

    2013-01-01

    Focusing on gas, this article explores the role of the European Commission in the process of European Union energy security policy development, and the extent to which the policy area is becoming increasingly supranational. Situating the article within the literature on agenda-setting and framing, it is argued that a policy window was opened as a result of: enlargement to include more energy import dependent states, a trend of increasing energy imports and prices, and gas supply disruptions. From the mid-2000s, the Commission contributed to a shift in political norms, successfully framing import dependency as a problem requiring an EU-level solution, based on the institution’s pre-existing preferences for a diversified energy supply and internal energy market. Whilst Member States retain significant sovereignty, the Commission has achieved since 2006 creeping competencies in the internal, and to a lesser extent external, dimensions of EU energy policy. PMID:24926115

  9. European Union energy policy integration: A case of European Commission policy entrepreneurship and increasing supranationalism.

    PubMed

    Maltby, Tomas

    2013-04-01

    Focusing on gas, this article explores the role of the European Commission in the process of European Union energy security policy development, and the extent to which the policy area is becoming increasingly supranational. Situating the article within the literature on agenda-setting and framing, it is argued that a policy window was opened as a result of: enlargement to include more energy import dependent states, a trend of increasing energy imports and prices, and gas supply disruptions. From the mid-2000s, the Commission contributed to a shift in political norms, successfully framing import dependency as a problem requiring an EU-level solution, based on the institution's pre-existing preferences for a diversified energy supply and internal energy market. Whilst Member States retain significant sovereignty, the Commission has achieved since 2006 creeping competencies in the internal, and to a lesser extent external, dimensions of EU energy policy. PMID:24926115

  10. Measuring energies with an Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Langer, J.; Díez-Pérez, I.; Sanz, F.; Fraxedas, J.

    2006-04-01

    The elastic and plastic response of ordered inorganic, organic and biological materials involving nanometer-scale volumes in the nano- and low micronewton force range can be characterized by means of an Atomic Force Microscope (AFM) using ultrasharp cantilever tips with radius R typically below 10 nm. Because the plastic onset can be easily identified, the maximal accumulated elastic energy can be directly determined from the force curves (force F vs. penetration δ curves), thus giving a realistic estimate of the characteristic energies of the materials. We illustrate the ability of AFMs to determine such energies with the case example of the molecular organic metal TTF-TCNQ (TTF = tetrathiafulvalene, TCNQ = tetracyanoquinodimethane), where the enthalpy of sublimation is obtained.

  11. 33 CFR Appendix B to Part 221 - Federal Energy Regulatory Commission Form L-3 (Revised October 1975)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Commission Form L-3 (Revised October 1975) B Appendix B to Part 221 Navigation and Navigable Waters CORPS OF... 221—Federal Energy Regulatory Commission Form L-3 (Revised October 1975) terms and conditions of... set forth herein. Federal Energy Regulatory Commission Form L-4 (Revised October, 1975) terms...

  12. Federal Energy Regulatory Commission financial statements, September 30, 1995 and 1994

    SciTech Connect

    1996-02-12

    The attached report presents the results of the independent certified public accountant`s audit of the Federal Energy Regulatory Commission`s (FERC) financial statements as of September 30, 1995 and 1994. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on FERC`s internal control structure and on compliance with laws and regulations, and management letter are also provided.

  13. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    SciTech Connect

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  14. International Spotlight: Israel

    ERIC Educational Resources Information Center

    Glicksman, Allen; Litwin, Howard

    2011-01-01

    The State of Israel provides significant opportunities to study social processes that can enhance our understanding of the aging experience. It has high life expectancy and rapid growth of its older population. With an older cohort that is composed largely of former immigrants and includes a minority Arab population, Israel provides much diversity…

  15. The Druzes of Israel.

    ERIC Educational Resources Information Center

    Lerner, Ed

    1986-01-01

    Describes the origin of the Druze people, a group of approximately 300,000 people living mainly in Syria, Lebanon, and Israel. The secret Druze religion, often mistaken for Moslems, is characterized in the contemporary customs displayed by the Druzes of Israel. (JDH)

  16. Radiative corrections to the energies of atoms and molecules.

    NASA Technical Reports Server (NTRS)

    Garcia, J. D.

    1966-01-01

    Approximation method using sum rules for energy shift in atomic system due to interaction of electrons with vacuum electromagnetic field applied to hydrogen, helium and lithium atom ground states and hydrogen molecule

  17. Commissioning of energy-efficiency measures: Costs and benefits for 16 buildings

    SciTech Connect

    Piette, M.A.; Nordman, B.; Greenberg, S.

    1995-04-01

    Building systems and energy-efficiency measures (EEMs) often don`t perform as well in practice as expected at the design stage. This fact has become clear to many organizations concerned with ensuring building performance. What to do about these problems is less clear. Several electric utilities around the U.S. have begun to take action to address the start-up, control, and operational problems that are found in nearly every building. One of the most beneficial periods to intervene in the building life cycle is during the start-up phase of a now building. Building commissioning during start up is such an intervention. Commissioning can be defined as: a set of procedures, responsibilities, and methods to advance a system from static installation to full working order in accordance with design intent. In broad terms, commissioning can extend from design reviews through operations and maintenance planning and training. With such a broad scope aimed at the entire building life cycle, commissioning is often likened to {open_quotes}Total Quality Management{close_quotes} Yet the heart of commissioning are the procedures developed and executed to ensure that all building systems function as intended. The incorporation of energy-efficiency criteria into building commissioning is a new development.

  18. Atomic Mass and Nuclear Binding Energy for Ra-186 (Radium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ra-186 (Radium, atomic number Z = 88, mass number A = 186).

  19. Atomic Mass and Nuclear Binding Energy for Pa-315 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-315 (Protactinium, atomic number Z = 91, mass number A = 315).

  20. Atomic Mass and Nuclear Binding Energy for Pa-282 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-282 (Protactinium, atomic number Z = 91, mass number A = 282).

  1. Atomic Mass and Nuclear Binding Energy for Pa-288 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-288 (Protactinium, atomic number Z = 91, mass number A = 288).

  2. Atomic Mass and Nuclear Binding Energy for Pa-283 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-283 (Protactinium, atomic number Z = 91, mass number A = 283).

  3. Atomic Mass and Nuclear Binding Energy for Pa-291 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-291 (Protactinium, atomic number Z = 91, mass number A = 291).

  4. Atomic Mass and Nuclear Binding Energy for Pa-253 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-253 (Protactinium, atomic number Z = 91, mass number A = 253).

  5. Atomic Mass and Nuclear Binding Energy for Pa-250 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-250 (Protactinium, atomic number Z = 91, mass number A = 250).

  6. Atomic Mass and Nuclear Binding Energy for Pa-251 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-251 (Protactinium, atomic number Z = 91, mass number A = 251).

  7. Atomic Mass and Nuclear Binding Energy for Pa-260 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-260 (Protactinium, atomic number Z = 91, mass number A = 260).

  8. Atomic Mass and Nuclear Binding Energy for Pa-281 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-281 (Protactinium, atomic number Z = 91, mass number A = 281).

  9. Atomic Mass and Nuclear Binding Energy for Pa-316 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-316 (Protactinium, atomic number Z = 91, mass number A = 316).

  10. Atomic Mass and Nuclear Binding Energy for Pa-284 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-284 (Protactinium, atomic number Z = 91, mass number A = 284).

  11. Atomic Mass and Nuclear Binding Energy for Pa-305 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-305 (Protactinium, atomic number Z = 91, mass number A = 305).

  12. Atomic Mass and Nuclear Binding Energy for Pa-298 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-298 (Protactinium, atomic number Z = 91, mass number A = 298).

  13. Atomic Mass and Nuclear Binding Energy for Pa-266 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-266 (Protactinium, atomic number Z = 91, mass number A = 266).

  14. Atomic Mass and Nuclear Binding Energy for Pa-247 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-247 (Protactinium, atomic number Z = 91, mass number A = 247).

  15. Atomic Mass and Nuclear Binding Energy for Pa-297 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-297 (Protactinium, atomic number Z = 91, mass number A = 297).

  16. Atomic Mass and Nuclear Binding Energy for Pa-268 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-268 (Protactinium, atomic number Z = 91, mass number A = 268).

  17. Atomic Mass and Nuclear Binding Energy for Pa-257 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-257 (Protactinium, atomic number Z = 91, mass number A = 257).

  18. Atomic Mass and Nuclear Binding Energy for Pa-300 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-300 (Protactinium, atomic number Z = 91, mass number A = 300).

  19. Atomic Mass and Nuclear Binding Energy for Pa-273 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-273 (Protactinium, atomic number Z = 91, mass number A = 273).

  20. Atomic Mass and Nuclear Binding Energy for Pa-248 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-248 (Protactinium, atomic number Z = 91, mass number A = 248).

  1. Atomic Mass and Nuclear Binding Energy for Pa-299 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-299 (Protactinium, atomic number Z = 91, mass number A = 299).

  2. Atomic Mass and Nuclear Binding Energy for Pa-287 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-287 (Protactinium, atomic number Z = 91, mass number A = 287).

  3. Atomic Mass and Nuclear Binding Energy for Pa-272 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-272 (Protactinium, atomic number Z = 91, mass number A = 272).

  4. Atomic Mass and Nuclear Binding Energy for Pa-279 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-279 (Protactinium, atomic number Z = 91, mass number A = 279).

  5. Atomic Mass and Nuclear Binding Energy for Pa-302 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-302 (Protactinium, atomic number Z = 91, mass number A = 302).

  6. Atomic Mass and Nuclear Binding Energy for Pa-289 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-289 (Protactinium, atomic number Z = 91, mass number A = 289).

  7. Atomic Mass and Nuclear Binding Energy for Pa-267 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-267 (Protactinium, atomic number Z = 91, mass number A = 267).

  8. Atomic Mass and Nuclear Binding Energy for Pa-252 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-252 (Protactinium, atomic number Z = 91, mass number A = 252).

  9. Atomic Mass and Nuclear Binding Energy for Pa-259 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-259 (Protactinium, atomic number Z = 91, mass number A = 259).

  10. Atomic Mass and Nuclear Binding Energy for Pa-265 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-265 (Protactinium, atomic number Z = 91, mass number A = 265).

  11. Atomic Mass and Nuclear Binding Energy for Pa-278 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-278 (Protactinium, atomic number Z = 91, mass number A = 278).

  12. Atomic Mass and Nuclear Binding Energy for Pa-285 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-285 (Protactinium, atomic number Z = 91, mass number A = 285).

  13. Atomic Mass and Nuclear Binding Energy for Pa-269 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-269 (Protactinium, atomic number Z = 91, mass number A = 269).

  14. Atomic Mass and Nuclear Binding Energy for Pa-246 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-246 (Protactinium, atomic number Z = 91, mass number A = 246).

  15. Atomic Mass and Nuclear Binding Energy for Pa-308 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-308 (Protactinium, atomic number Z = 91, mass number A = 308).

  16. Atomic Mass and Nuclear Binding Energy for Pa-274 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-274 (Protactinium, atomic number Z = 91, mass number A = 274).

  17. Atomic Mass and Nuclear Binding Energy for Pa-276 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-276 (Protactinium, atomic number Z = 91, mass number A = 276).

  18. Atomic Mass and Nuclear Binding Energy for Pa-256 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-256 (Protactinium, atomic number Z = 91, mass number A = 256).

  19. Atomic Mass and Nuclear Binding Energy for Pa-304 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-304 (Protactinium, atomic number Z = 91, mass number A = 304).

  20. Atomic Mass and Nuclear Binding Energy for Pa-270 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-270 (Protactinium, atomic number Z = 91, mass number A = 270).

  1. Atomic Mass and Nuclear Binding Energy for Pa-249 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-249 (Protactinium, atomic number Z = 91, mass number A = 249).

  2. Atomic Mass and Nuclear Binding Energy for Pa-271 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-271 (Protactinium, atomic number Z = 91, mass number A = 271).

  3. Atomic Mass and Nuclear Binding Energy for Pa-292 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-292 (Protactinium, atomic number Z = 91, mass number A = 292).

  4. Atomic Mass and Nuclear Binding Energy for Pa-290 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-290 (Protactinium, atomic number Z = 91, mass number A = 290).

  5. Atomic Mass and Nuclear Binding Energy for Pa-261 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-261 (Protactinium, atomic number Z = 91, mass number A = 261).

  6. Atomic Mass and Nuclear Binding Energy for Pa-280 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-280 (Protactinium, atomic number Z = 91, mass number A = 280).

  7. Atomic Mass and Nuclear Binding Energy for Pa-275 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-275 (Protactinium, atomic number Z = 91, mass number A = 275).

  8. Atomic Mass and Nuclear Binding Energy for Pa-306 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-306 (Protactinium, atomic number Z = 91, mass number A = 306).

  9. Atomic Mass and Nuclear Binding Energy for Pa-255 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-255 (Protactinium, atomic number Z = 91, mass number A = 255).

  10. Atomic Mass and Nuclear Binding Energy for Pa-301 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-301 (Protactinium, atomic number Z = 91, mass number A = 301).

  11. Atomic Mass and Nuclear Binding Energy for Pa-314 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-314 (Protactinium, atomic number Z = 91, mass number A = 314).

  12. Atomic Mass and Nuclear Binding Energy for Pa-293 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-293 (Protactinium, atomic number Z = 91, mass number A = 293).

  13. Atomic Mass and Nuclear Binding Energy for Pa-295 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-295 (Protactinium, atomic number Z = 91, mass number A = 295).

  14. Atomic Mass and Nuclear Binding Energy for Pa-307 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-307 (Protactinium, atomic number Z = 91, mass number A = 307).

  15. Atomic Mass and Nuclear Binding Energy for Pa-303 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-303 (Protactinium, atomic number Z = 91, mass number A = 303).

  16. Atomic Mass and Nuclear Binding Energy for Pa-254 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-254 (Protactinium, atomic number Z = 91, mass number A = 254).

  17. Atomic Mass and Nuclear Binding Energy for Pa-296 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-296 (Protactinium, atomic number Z = 91, mass number A = 296).

  18. Atomic Mass and Nuclear Binding Energy for Pa-263 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-263 (Protactinium, atomic number Z = 91, mass number A = 263).

  19. Atomic Mass and Nuclear Binding Energy for Pa-286 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-286 (Protactinium, atomic number Z = 91, mass number A = 286).

  20. Atomic Mass and Nuclear Binding Energy for Pa-262 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-262 (Protactinium, atomic number Z = 91, mass number A = 262).

  1. Atomic Mass and Nuclear Binding Energy for Pa-258 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-258 (Protactinium, atomic number Z = 91, mass number A = 258).

  2. Atomic Mass and Nuclear Binding Energy for Pa-294 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-294 (Protactinium, atomic number Z = 91, mass number A = 294).

  3. Atomic Mass and Nuclear Binding Energy for Pa-264 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-264 (Protactinium, atomic number Z = 91, mass number A = 264).

  4. Atomic Mass and Nuclear Binding Energy for Pa-277 (Protactinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Pa-277 (Protactinium, atomic number Z = 91, mass number A = 277).

  5. Atomic Mass and Nuclear Binding Energy for Uut-325 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-325 (Ununtrium, atomic number Z = 113, mass number A = 325).

  6. Atomic Mass and Nuclear Binding Energy for Uut-306 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-306 (Ununtrium, atomic number Z = 113, mass number A = 306).

  7. Atomic Mass and Nuclear Binding Energy for Uut-284 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-284 (Ununtrium, atomic number Z = 113, mass number A = 284).

  8. Atomic Mass and Nuclear Binding Energy for Uut-309 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-309 (Ununtrium, atomic number Z = 113, mass number A = 309).

  9. Atomic Mass and Nuclear Binding Energy for Uut-295 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-295 (Ununtrium, atomic number Z = 113, mass number A = 295).

  10. Atomic Mass and Nuclear Binding Energy for Uut-321 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-321 (Ununtrium, atomic number Z = 113, mass number A = 321).

  11. Atomic Mass and Nuclear Binding Energy for Uut-314 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-314 (Ununtrium, atomic number Z = 113, mass number A = 314).

  12. Atomic Mass and Nuclear Binding Energy for Uut-337 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-337 (Ununtrium, atomic number Z = 113, mass number A = 337).

  13. Atomic Mass and Nuclear Binding Energy for Uut-300 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-300 (Ununtrium, atomic number Z = 113, mass number A = 300).

  14. Atomic Mass and Nuclear Binding Energy for Uut-312 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-312 (Ununtrium, atomic number Z = 113, mass number A = 312).

  15. Atomic Mass and Nuclear Binding Energy for Uut-298 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-298 (Ununtrium, atomic number Z = 113, mass number A = 298).

  16. Atomic Mass and Nuclear Binding Energy for Uut-324 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-324 (Ununtrium, atomic number Z = 113, mass number A = 324).

  17. Atomic Mass and Nuclear Binding Energy for Uut-279 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-279 (Ununtrium, atomic number Z = 113, mass number A = 279).

  18. Atomic Mass and Nuclear Binding Energy for Uut-289 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-289 (Ununtrium, atomic number Z = 113, mass number A = 289).

  19. Atomic Mass and Nuclear Binding Energy for Uut-259 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-259 (Ununtrium, atomic number Z = 113, mass number A = 259).

  20. Atomic Mass and Nuclear Binding Energy for Uut-294 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-294 (Ununtrium, atomic number Z = 113, mass number A = 294).

  1. Atomic Mass and Nuclear Binding Energy for Uut-320 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-320 (Ununtrium, atomic number Z = 113, mass number A = 320).

  2. Atomic Mass and Nuclear Binding Energy for Uut-267 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-267 (Ununtrium, atomic number Z = 113, mass number A = 267).

  3. Atomic Mass and Nuclear Binding Energy for Uut-281 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-281 (Ununtrium, atomic number Z = 113, mass number A = 281).

  4. Atomic Mass and Nuclear Binding Energy for Uut-263 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-263 (Ununtrium, atomic number Z = 113, mass number A = 263).

  5. Atomic Mass and Nuclear Binding Energy for Uut-274 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-274 (Ununtrium, atomic number Z = 113, mass number A = 274).

  6. Atomic Mass and Nuclear Binding Energy for Uut-278 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-278 (Ununtrium, atomic number Z = 113, mass number A = 278).

  7. Atomic Mass and Nuclear Binding Energy for Uut-273 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-273 (Ununtrium, atomic number Z = 113, mass number A = 273).

  8. Atomic Mass and Nuclear Binding Energy for Uut-338 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-338 (Ununtrium, atomic number Z = 113, mass number A = 338).

  9. Atomic Mass and Nuclear Binding Energy for Uut-331 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-331 (Ununtrium, atomic number Z = 113, mass number A = 331).

  10. Atomic Mass and Nuclear Binding Energy for Uut-264 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-264 (Ununtrium, atomic number Z = 113, mass number A = 264).

  11. Atomic Mass and Nuclear Binding Energy for Uut-326 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-326 (Ununtrium, atomic number Z = 113, mass number A = 326).

  12. Atomic Mass and Nuclear Binding Energy for Uut-255 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-255 (Ununtrium, atomic number Z = 113, mass number A = 255).

  13. Atomic Mass and Nuclear Binding Energy for Uut-319 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-319 (Ununtrium, atomic number Z = 113, mass number A = 319).

  14. Atomic Mass and Nuclear Binding Energy for Uut-271 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-271 (Ununtrium, atomic number Z = 113, mass number A = 271).

  15. Atomic Mass and Nuclear Binding Energy for Uut-275 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-275 (Ununtrium, atomic number Z = 113, mass number A = 275).

  16. Atomic Mass and Nuclear Binding Energy for Uut-316 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-316 (Ununtrium, atomic number Z = 113, mass number A = 316).

  17. Atomic Mass and Nuclear Binding Energy for Uut-327 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-327 (Ununtrium, atomic number Z = 113, mass number A = 327).

  18. Atomic Mass and Nuclear Binding Energy for Uut-260 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-260 (Ununtrium, atomic number Z = 113, mass number A = 260).

  19. Atomic Mass and Nuclear Binding Energy for Uut-291 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-291 (Ununtrium, atomic number Z = 113, mass number A = 291).

  20. Atomic Mass and Nuclear Binding Energy for Uut-332 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-332 (Ununtrium, atomic number Z = 113, mass number A = 332).

  1. Atomic Mass and Nuclear Binding Energy for Uut-322 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-322 (Ununtrium, atomic number Z = 113, mass number A = 322).

  2. Atomic Mass and Nuclear Binding Energy for Uut-272 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-272 (Ununtrium, atomic number Z = 113, mass number A = 272).

  3. Atomic Mass and Nuclear Binding Energy for Uut-305 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-305 (Ununtrium, atomic number Z = 113, mass number A = 305).

  4. Atomic Mass and Nuclear Binding Energy for Uut-258 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-258 (Ununtrium, atomic number Z = 113, mass number A = 258).

  5. Atomic Mass and Nuclear Binding Energy for Uut-256 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-256 (Ununtrium, atomic number Z = 113, mass number A = 256).

  6. Atomic Mass and Nuclear Binding Energy for Uut-315 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-315 (Ununtrium, atomic number Z = 113, mass number A = 315).

  7. Atomic Mass and Nuclear Binding Energy for Uut-334 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-334 (Ununtrium, atomic number Z = 113, mass number A = 334).

  8. Atomic Mass and Nuclear Binding Energy for Uut-285 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-285 (Ununtrium, atomic number Z = 113, mass number A = 285).

  9. Atomic Mass and Nuclear Binding Energy for Uut-265 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-265 (Ununtrium, atomic number Z = 113, mass number A = 265).

  10. Atomic Mass and Nuclear Binding Energy for Uut-313 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-313 (Ununtrium, atomic number Z = 113, mass number A = 313).

  11. Atomic Mass and Nuclear Binding Energy for Uut-283 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-283 (Ununtrium, atomic number Z = 113, mass number A = 283).

  12. Atomic Mass and Nuclear Binding Energy for Uut-335 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-335 (Ununtrium, atomic number Z = 113, mass number A = 335).

  13. Atomic Mass and Nuclear Binding Energy for Uut-308 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-308 (Ununtrium, atomic number Z = 113, mass number A = 308).

  14. Atomic Mass and Nuclear Binding Energy for Uut-280 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-280 (Ununtrium, atomic number Z = 113, mass number A = 280).

  15. Atomic Mass and Nuclear Binding Energy for Uut-276 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-276 (Ununtrium, atomic number Z = 113, mass number A = 276).

  16. Atomic Mass and Nuclear Binding Energy for Uut-323 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-323 (Ununtrium, atomic number Z = 113, mass number A = 323).

  17. Atomic Mass and Nuclear Binding Energy for Uut-282 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-282 (Ununtrium, atomic number Z = 113, mass number A = 282).

  18. Atomic Mass and Nuclear Binding Energy for Uut-296 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-296 (Ununtrium, atomic number Z = 113, mass number A = 296).

  19. Atomic Mass and Nuclear Binding Energy for Uut-266 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-266 (Ununtrium, atomic number Z = 113, mass number A = 266).

  20. Atomic Mass and Nuclear Binding Energy for Uut-330 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-330 (Ununtrium, atomic number Z = 113, mass number A = 330).

  1. Atomic Mass and Nuclear Binding Energy for Uut-290 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-290 (Ununtrium, atomic number Z = 113, mass number A = 290).

  2. Atomic Mass and Nuclear Binding Energy for Uut-303 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-303 (Ununtrium, atomic number Z = 113, mass number A = 303).

  3. Atomic Mass and Nuclear Binding Energy for Uut-299 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-299 (Ununtrium, atomic number Z = 113, mass number A = 299).

  4. Atomic Mass and Nuclear Binding Energy for Uut-269 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-269 (Ununtrium, atomic number Z = 113, mass number A = 269).

  5. Atomic Mass and Nuclear Binding Energy for Uut-288 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-288 (Ununtrium, atomic number Z = 113, mass number A = 288).

  6. Atomic Mass and Nuclear Binding Energy for Uut-318 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-318 (Ununtrium, atomic number Z = 113, mass number A = 318).

  7. Atomic Mass and Nuclear Binding Energy for Uut-261 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-261 (Ununtrium, atomic number Z = 113, mass number A = 261).

  8. Atomic Mass and Nuclear Binding Energy for Uut-307 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-307 (Ununtrium, atomic number Z = 113, mass number A = 307).

  9. Atomic Mass and Nuclear Binding Energy for Uut-333 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-333 (Ununtrium, atomic number Z = 113, mass number A = 333).

  10. Atomic Mass and Nuclear Binding Energy for Uut-262 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-262 (Ununtrium, atomic number Z = 113, mass number A = 262).

  11. Atomic Mass and Nuclear Binding Energy for Uut-304 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-304 (Ununtrium, atomic number Z = 113, mass number A = 304).

  12. Atomic Mass and Nuclear Binding Energy for Uut-328 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-328 (Ununtrium, atomic number Z = 113, mass number A = 328).

  13. Atomic Mass and Nuclear Binding Energy for Uut-277 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-277 (Ununtrium, atomic number Z = 113, mass number A = 277).

  14. Atomic Mass and Nuclear Binding Energy for Uut-317 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-317 (Ununtrium, atomic number Z = 113, mass number A = 317).

  15. Atomic Mass and Nuclear Binding Energy for Uut-293 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-293 (Ununtrium, atomic number Z = 113, mass number A = 293).

  16. Atomic Mass and Nuclear Binding Energy for Uut-329 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-329 (Ununtrium, atomic number Z = 113, mass number A = 329).

  17. Atomic Mass and Nuclear Binding Energy for Uut-310 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-310 (Ununtrium, atomic number Z = 113, mass number A = 310).

  18. Atomic Mass and Nuclear Binding Energy for Uut-301 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-301 (Ununtrium, atomic number Z = 113, mass number A = 301).

  19. Atomic Mass and Nuclear Binding Energy for Uut-257 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-257 (Ununtrium, atomic number Z = 113, mass number A = 257).

  20. Atomic Mass and Nuclear Binding Energy for Uut-302 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-302 (Ununtrium, atomic number Z = 113, mass number A = 302).

  1. Atomic Mass and Nuclear Binding Energy for Uut-339 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-339 (Ununtrium, atomic number Z = 113, mass number A = 339).

  2. Atomic Mass and Nuclear Binding Energy for Uut-270 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-270 (Ununtrium, atomic number Z = 113, mass number A = 270).

  3. Atomic Mass and Nuclear Binding Energy for Uut-286 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-286 (Ununtrium, atomic number Z = 113, mass number A = 286).

  4. Atomic Mass and Nuclear Binding Energy for Uut-268 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-268 (Ununtrium, atomic number Z = 113, mass number A = 268).

  5. Atomic Mass and Nuclear Binding Energy for Uut-311 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-311 (Ununtrium, atomic number Z = 113, mass number A = 311).

  6. Atomic Mass and Nuclear Binding Energy for Uut-336 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-336 (Ununtrium, atomic number Z = 113, mass number A = 336).

  7. Atomic Mass and Nuclear Binding Energy for Uut-254 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-254 (Ununtrium, atomic number Z = 113, mass number A = 254).

  8. Atomic Mass and Nuclear Binding Energy for Uut-287 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-287 (Ununtrium, atomic number Z = 113, mass number A = 287).

  9. Atomic Mass and Nuclear Binding Energy for Uut-292 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-292 (Ununtrium, atomic number Z = 113, mass number A = 292).

  10. Atomic Mass and Nuclear Binding Energy for Uut-297 (Ununtrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uut-297 (Ununtrium, atomic number Z = 113, mass number A = 297).

  11. Atomic Mass and Nuclear Binding Energy for Hs-351 (Hassium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Hs-351 (Hassium, atomic number Z = 108, mass number A = 351).

  12. Atomic Mass and Nuclear Binding Energy for Mt-351 (Meitnerium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Mt-351 (Meitnerium, atomic number Z = 109, mass number A = 351).

  13. Atomic Mass and Nuclear Binding Energy for Db-351 (Dubnium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Db-351 (Dubnium, atomic number Z = 105, mass number A = 351).

  14. Atomic Mass and Nuclear Binding Energy for Sg-302 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-302 (Seaborgium, atomic number Z = 106, mass number A = 302).

  15. Atomic Mass and Nuclear Binding Energy for Sg-279 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-279 (Seaborgium, atomic number Z = 106, mass number A = 279).

  16. Atomic Mass and Nuclear Binding Energy for Sg-323 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-323 (Seaborgium, atomic number Z = 106, mass number A = 323).

  17. Atomic Mass and Nuclear Binding Energy for Sg-332 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-332 (Seaborgium, atomic number Z = 106, mass number A = 332).

  18. Atomic Mass and Nuclear Binding Energy for Sg-290 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-290 (Seaborgium, atomic number Z = 106, mass number A = 290).

  19. Atomic Mass and Nuclear Binding Energy for Sg-270 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-270 (Seaborgium, atomic number Z = 106, mass number A = 270).

  20. Atomic Mass and Nuclear Binding Energy for Sg-326 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-326 (Seaborgium, atomic number Z = 106, mass number A = 326).

  1. Atomic Mass and Nuclear Binding Energy for Sg-274 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-274 (Seaborgium, atomic number Z = 106, mass number A = 274).

  2. Atomic Mass and Nuclear Binding Energy for Sg-352 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-352 (Seaborgium, atomic number Z = 106, mass number A = 352).

  3. Atomic Mass and Nuclear Binding Energy for Sg-322 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-322 (Seaborgium, atomic number Z = 106, mass number A = 322).

  4. Atomic Mass and Nuclear Binding Energy for Sg-286 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-286 (Seaborgium, atomic number Z = 106, mass number A = 286).

  5. Atomic Mass and Nuclear Binding Energy for Sg-301 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-301 (Seaborgium, atomic number Z = 106, mass number A = 301).

  6. Atomic Mass and Nuclear Binding Energy for Sg-296 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-296 (Seaborgium, atomic number Z = 106, mass number A = 296).

  7. Atomic Mass and Nuclear Binding Energy for Sg-345 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-345 (Seaborgium, atomic number Z = 106, mass number A = 345).

  8. Atomic Mass and Nuclear Binding Energy for Sg-338 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-338 (Seaborgium, atomic number Z = 106, mass number A = 338).

  9. Atomic Mass and Nuclear Binding Energy for Sg-311 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-311 (Seaborgium, atomic number Z = 106, mass number A = 311).

  10. Atomic Mass and Nuclear Binding Energy for Sg-303 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-303 (Seaborgium, atomic number Z = 106, mass number A = 303).

  11. Atomic Mass and Nuclear Binding Energy for Sg-277 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-277 (Seaborgium, atomic number Z = 106, mass number A = 277).

  12. Atomic Mass and Nuclear Binding Energy for Sg-272 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-272 (Seaborgium, atomic number Z = 106, mass number A = 272).

  13. Atomic Mass and Nuclear Binding Energy for Sg-306 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-306 (Seaborgium, atomic number Z = 106, mass number A = 306).

  14. Atomic Mass and Nuclear Binding Energy for Sg-292 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-292 (Seaborgium, atomic number Z = 106, mass number A = 292).

  15. Atomic Mass and Nuclear Binding Energy for Sg-344 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-344 (Seaborgium, atomic number Z = 106, mass number A = 344).

  16. Atomic Mass and Nuclear Binding Energy for Sg-280 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-280 (Seaborgium, atomic number Z = 106, mass number A = 280).

  17. Atomic Mass and Nuclear Binding Energy for Sg-304 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-304 (Seaborgium, atomic number Z = 106, mass number A = 304).

  18. Atomic Mass and Nuclear Binding Energy for Sg-293 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-293 (Seaborgium, atomic number Z = 106, mass number A = 293).

  19. Atomic Mass and Nuclear Binding Energy for Sg-273 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-273 (Seaborgium, atomic number Z = 106, mass number A = 273).

  20. Atomic Mass and Nuclear Binding Energy for Sg-309 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-309 (Seaborgium, atomic number Z = 106, mass number A = 309).

  1. Atomic Mass and Nuclear Binding Energy for Sg-349 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-349 (Seaborgium, atomic number Z = 106, mass number A = 349).

  2. Atomic Mass and Nuclear Binding Energy for Sg-330 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-330 (Seaborgium, atomic number Z = 106, mass number A = 330).

  3. Atomic Mass and Nuclear Binding Energy for Sg-328 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-328 (Seaborgium, atomic number Z = 106, mass number A = 328).

  4. Atomic Mass and Nuclear Binding Energy for Sg-327 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-327 (Seaborgium, atomic number Z = 106, mass number A = 327).

  5. Atomic Mass and Nuclear Binding Energy for Sg-313 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-313 (Seaborgium, atomic number Z = 106, mass number A = 313).

  6. Atomic Mass and Nuclear Binding Energy for Sg-297 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-297 (Seaborgium, atomic number Z = 106, mass number A = 297).

  7. Atomic Mass and Nuclear Binding Energy for Sg-351 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-351 (Seaborgium, atomic number Z = 106, mass number A = 351).

  8. Atomic Mass and Nuclear Binding Energy for Sg-308 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-308 (Seaborgium, atomic number Z = 106, mass number A = 308).

  9. Atomic Mass and Nuclear Binding Energy for Sg-339 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-339 (Seaborgium, atomic number Z = 106, mass number A = 339).

  10. Atomic Mass and Nuclear Binding Energy for Sg-284 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-284 (Seaborgium, atomic number Z = 106, mass number A = 284).

  11. Atomic Mass and Nuclear Binding Energy for Sg-298 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-298 (Seaborgium, atomic number Z = 106, mass number A = 298).

  12. Atomic Mass and Nuclear Binding Energy for Sg-283 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-283 (Seaborgium, atomic number Z = 106, mass number A = 283).

  13. Atomic Mass and Nuclear Binding Energy for Sg-334 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-334 (Seaborgium, atomic number Z = 106, mass number A = 334).

  14. Atomic Mass and Nuclear Binding Energy for Sg-278 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-278 (Seaborgium, atomic number Z = 106, mass number A = 278).

  15. Atomic Mass and Nuclear Binding Energy for Sg-288 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-288 (Seaborgium, atomic number Z = 106, mass number A = 288).

  16. Atomic Mass and Nuclear Binding Energy for Sg-300 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-300 (Seaborgium, atomic number Z = 106, mass number A = 300).

  17. Atomic Mass and Nuclear Binding Energy for Sg-350 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-350 (Seaborgium, atomic number Z = 106, mass number A = 350).

  18. Atomic Mass and Nuclear Binding Energy for Sg-310 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-310 (Seaborgium, atomic number Z = 106, mass number A = 310).

  19. Atomic Mass and Nuclear Binding Energy for Sg-291 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-291 (Seaborgium, atomic number Z = 106, mass number A = 291).

  20. Atomic Mass and Nuclear Binding Energy for Sg-317 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-317 (Seaborgium, atomic number Z = 106, mass number A = 317).

  1. Atomic Mass and Nuclear Binding Energy for Sg-355 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-355 (Seaborgium, atomic number Z = 106, mass number A = 355).

  2. Atomic Mass and Nuclear Binding Energy for Sg-321 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-321 (Seaborgium, atomic number Z = 106, mass number A = 321).

  3. Atomic Mass and Nuclear Binding Energy for Sg-282 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-282 (Seaborgium, atomic number Z = 106, mass number A = 282).

  4. Atomic Mass and Nuclear Binding Energy for Sg-354 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-354 (Seaborgium, atomic number Z = 106, mass number A = 354).

  5. Atomic Mass and Nuclear Binding Energy for Sg-342 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-342 (Seaborgium, atomic number Z = 106, mass number A = 342).

  6. Atomic Mass and Nuclear Binding Energy for Sg-320 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-320 (Seaborgium, atomic number Z = 106, mass number A = 320).

  7. Atomic Mass and Nuclear Binding Energy for Sg-289 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-289 (Seaborgium, atomic number Z = 106, mass number A = 289).

  8. Atomic Mass and Nuclear Binding Energy for Sg-341 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-341 (Seaborgium, atomic number Z = 106, mass number A = 341).

  9. Atomic Mass and Nuclear Binding Energy for Sg-343 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-343 (Seaborgium, atomic number Z = 106, mass number A = 343).

  10. Atomic Mass and Nuclear Binding Energy for Sg-315 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-315 (Seaborgium, atomic number Z = 106, mass number A = 315).

  11. Atomic Mass and Nuclear Binding Energy for Sg-340 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-340 (Seaborgium, atomic number Z = 106, mass number A = 340).

  12. Atomic Mass and Nuclear Binding Energy for Sg-348 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-348 (Seaborgium, atomic number Z = 106, mass number A = 348).

  13. Atomic Mass and Nuclear Binding Energy for Sg-337 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-337 (Seaborgium, atomic number Z = 106, mass number A = 337).

  14. Atomic Mass and Nuclear Binding Energy for Sg-314 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-314 (Seaborgium, atomic number Z = 106, mass number A = 314).

  15. Atomic Mass and Nuclear Binding Energy for Sg-353 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-353 (Seaborgium, atomic number Z = 106, mass number A = 353).

  16. Atomic Mass and Nuclear Binding Energy for Sg-335 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-335 (Seaborgium, atomic number Z = 106, mass number A = 335).

  17. Atomic Mass and Nuclear Binding Energy for Sg-318 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-318 (Seaborgium, atomic number Z = 106, mass number A = 318).

  18. Atomic Mass and Nuclear Binding Energy for Sg-336 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-336 (Seaborgium, atomic number Z = 106, mass number A = 336).

  19. Atomic Mass and Nuclear Binding Energy for Sg-285 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-285 (Seaborgium, atomic number Z = 106, mass number A = 285).

  20. Atomic Mass and Nuclear Binding Energy for Sg-346 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-346 (Seaborgium, atomic number Z = 106, mass number A = 346).

  1. Atomic Mass and Nuclear Binding Energy for Sg-307 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-307 (Seaborgium, atomic number Z = 106, mass number A = 307).

  2. Atomic Mass and Nuclear Binding Energy for Sg-295 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-295 (Seaborgium, atomic number Z = 106, mass number A = 295).

  3. Atomic Mass and Nuclear Binding Energy for Sg-312 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-312 (Seaborgium, atomic number Z = 106, mass number A = 312).

  4. Atomic Mass and Nuclear Binding Energy for Sg-276 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-276 (Seaborgium, atomic number Z = 106, mass number A = 276).

  5. Atomic Mass and Nuclear Binding Energy for Sg-331 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-331 (Seaborgium, atomic number Z = 106, mass number A = 331).

  6. Atomic Mass and Nuclear Binding Energy for Sg-347 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-347 (Seaborgium, atomic number Z = 106, mass number A = 347).

  7. Atomic Mass and Nuclear Binding Energy for Sg-316 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-316 (Seaborgium, atomic number Z = 106, mass number A = 316).

  8. Atomic Mass and Nuclear Binding Energy for Sg-329 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-329 (Seaborgium, atomic number Z = 106, mass number A = 329).

  9. Atomic Mass and Nuclear Binding Energy for Sg-281 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-281 (Seaborgium, atomic number Z = 106, mass number A = 281).

  10. Atomic Mass and Nuclear Binding Energy for Sg-269 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-269 (Seaborgium, atomic number Z = 106, mass number A = 269).

  11. Atomic Mass and Nuclear Binding Energy for Sg-287 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-287 (Seaborgium, atomic number Z = 106, mass number A = 287).

  12. Atomic Mass and Nuclear Binding Energy for Sg-324 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-324 (Seaborgium, atomic number Z = 106, mass number A = 324).

  13. Atomic Mass and Nuclear Binding Energy for Sg-325 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-325 (Seaborgium, atomic number Z = 106, mass number A = 325).

  14. Atomic Mass and Nuclear Binding Energy for Sg-305 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-305 (Seaborgium, atomic number Z = 106, mass number A = 305).

  15. Atomic Mass and Nuclear Binding Energy for Sg-333 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-333 (Seaborgium, atomic number Z = 106, mass number A = 333).

  16. Atomic Mass and Nuclear Binding Energy for Sg-319 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-319 (Seaborgium, atomic number Z = 106, mass number A = 319).

  17. Atomic Mass and Nuclear Binding Energy for Sg-275 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-275 (Seaborgium, atomic number Z = 106, mass number A = 275).

  18. Atomic Mass and Nuclear Binding Energy for Sg-299 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-299 (Seaborgium, atomic number Z = 106, mass number A = 299).

  19. Atomic Mass and Nuclear Binding Energy for Sg-294 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-294 (Seaborgium, atomic number Z = 106, mass number A = 294).

  20. Atomic Mass and Nuclear Binding Energy for Sg-271 (Seaborgium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sg-271 (Seaborgium, atomic number Z = 106, mass number A = 271).

  1. Atomic Mass and Nuclear Binding Energy for Bh-324 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-324 (Bohrium, atomic number Z = 107, mass number A = 324).

  2. Atomic Mass and Nuclear Binding Energy for Bh-296 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-296 (Bohrium, atomic number Z = 107, mass number A = 296).

  3. Atomic Mass and Nuclear Binding Energy for Bh-302 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-302 (Bohrium, atomic number Z = 107, mass number A = 302).

  4. Atomic Mass and Nuclear Binding Energy for Bh-360 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-360 (Bohrium, atomic number Z = 107, mass number A = 360).

  5. Atomic Mass and Nuclear Binding Energy for Bh-342 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-342 (Bohrium, atomic number Z = 107, mass number A = 342).

  6. Atomic Mass and Nuclear Binding Energy for Bh-329 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-329 (Bohrium, atomic number Z = 107, mass number A = 329).

  7. Atomic Mass and Nuclear Binding Energy for Bh-284 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-284 (Bohrium, atomic number Z = 107, mass number A = 284).

  8. Atomic Mass and Nuclear Binding Energy for Bh-313 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-313 (Bohrium, atomic number Z = 107, mass number A = 313).

  9. Atomic Mass and Nuclear Binding Energy for Bh-281 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-281 (Bohrium, atomic number Z = 107, mass number A = 281).

  10. Atomic Mass and Nuclear Binding Energy for Bh-318 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-318 (Bohrium, atomic number Z = 107, mass number A = 318).

  11. Atomic Mass and Nuclear Binding Energy for Bh-310 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-310 (Bohrium, atomic number Z = 107, mass number A = 310).

  12. Atomic Mass and Nuclear Binding Energy for Bh-299 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-299 (Bohrium, atomic number Z = 107, mass number A = 299).

  13. Atomic Mass and Nuclear Binding Energy for Bh-306 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-306 (Bohrium, atomic number Z = 107, mass number A = 306).

  14. Atomic Mass and Nuclear Binding Energy for Bh-279 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-279 (Bohrium, atomic number Z = 107, mass number A = 279).

  15. Atomic Mass and Nuclear Binding Energy for Bh-338 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-338 (Bohrium, atomic number Z = 107, mass number A = 338).

  16. Atomic Mass and Nuclear Binding Energy for Bh-339 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-339 (Bohrium, atomic number Z = 107, mass number A = 339).

  17. Atomic Mass and Nuclear Binding Energy for Bh-341 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-341 (Bohrium, atomic number Z = 107, mass number A = 341).

  18. Atomic Mass and Nuclear Binding Energy for Bh-282 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-282 (Bohrium, atomic number Z = 107, mass number A = 282).

  19. Atomic Mass and Nuclear Binding Energy for Bh-308 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-308 (Bohrium, atomic number Z = 107, mass number A = 308).

  20. Atomic Mass and Nuclear Binding Energy for Bh-309 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-309 (Bohrium, atomic number Z = 107, mass number A = 309).

  1. Atomic Mass and Nuclear Binding Energy for Bh-354 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-354 (Bohrium, atomic number Z = 107, mass number A = 354).

  2. Atomic Mass and Nuclear Binding Energy for Bh-285 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-285 (Bohrium, atomic number Z = 107, mass number A = 285).

  3. Atomic Mass and Nuclear Binding Energy for Bh-303 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-303 (Bohrium, atomic number Z = 107, mass number A = 303).

  4. Atomic Mass and Nuclear Binding Energy for Bh-330 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-330 (Bohrium, atomic number Z = 107, mass number A = 330).

  5. Atomic Mass and Nuclear Binding Energy for Bh-336 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-336 (Bohrium, atomic number Z = 107, mass number A = 336).

  6. Atomic Mass and Nuclear Binding Energy for Bh-272 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-272 (Bohrium, atomic number Z = 107, mass number A = 272).

  7. Atomic Mass and Nuclear Binding Energy for Bh-343 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-343 (Bohrium, atomic number Z = 107, mass number A = 343).

  8. Atomic Mass and Nuclear Binding Energy for Bh-294 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-294 (Bohrium, atomic number Z = 107, mass number A = 294).

  9. Atomic Mass and Nuclear Binding Energy for Bh-355 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-355 (Bohrium, atomic number Z = 107, mass number A = 355).

  10. Atomic Mass and Nuclear Binding Energy for Bh-275 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-275 (Bohrium, atomic number Z = 107, mass number A = 275).

  11. Atomic Mass and Nuclear Binding Energy for Bh-352 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-352 (Bohrium, atomic number Z = 107, mass number A = 352).

  12. Atomic Mass and Nuclear Binding Energy for Bh-290 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-290 (Bohrium, atomic number Z = 107, mass number A = 290).

  13. Atomic Mass and Nuclear Binding Energy for Bh-346 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-346 (Bohrium, atomic number Z = 107, mass number A = 346).

  14. Atomic Mass and Nuclear Binding Energy for Bh-298 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-298 (Bohrium, atomic number Z = 107, mass number A = 298).

  15. Atomic Mass and Nuclear Binding Energy for Bh-305 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-305 (Bohrium, atomic number Z = 107, mass number A = 305).

  16. Atomic Mass and Nuclear Binding Energy for Bh-345 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-345 (Bohrium, atomic number Z = 107, mass number A = 345).

  17. Atomic Mass and Nuclear Binding Energy for Bh-274 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-274 (Bohrium, atomic number Z = 107, mass number A = 274).

  18. Atomic Mass and Nuclear Binding Energy for Bh-297 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-297 (Bohrium, atomic number Z = 107, mass number A = 297).

  19. Atomic Mass and Nuclear Binding Energy for Bh-327 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-327 (Bohrium, atomic number Z = 107, mass number A = 327).

  20. Atomic Mass and Nuclear Binding Energy for Bh-348 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-348 (Bohrium, atomic number Z = 107, mass number A = 348).

  1. Atomic Mass and Nuclear Binding Energy for Bh-328 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-328 (Bohrium, atomic number Z = 107, mass number A = 328).

  2. Atomic Mass and Nuclear Binding Energy for Bh-288 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-288 (Bohrium, atomic number Z = 107, mass number A = 288).

  3. Atomic Mass and Nuclear Binding Energy for Bh-344 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-344 (Bohrium, atomic number Z = 107, mass number A = 344).

  4. Atomic Mass and Nuclear Binding Energy for Bh-289 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-289 (Bohrium, atomic number Z = 107, mass number A = 289).

  5. Atomic Mass and Nuclear Binding Energy for Bh-286 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-286 (Bohrium, atomic number Z = 107, mass number A = 286).

  6. Atomic Mass and Nuclear Binding Energy for Bh-347 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-347 (Bohrium, atomic number Z = 107, mass number A = 347).

  7. Atomic Mass and Nuclear Binding Energy for Bh-315 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-315 (Bohrium, atomic number Z = 107, mass number A = 315).

  8. Atomic Mass and Nuclear Binding Energy for Bh-316 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-316 (Bohrium, atomic number Z = 107, mass number A = 316).

  9. Atomic Mass and Nuclear Binding Energy for Bh-349 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-349 (Bohrium, atomic number Z = 107, mass number A = 349).

  10. Atomic Mass and Nuclear Binding Energy for Bh-325 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-325 (Bohrium, atomic number Z = 107, mass number A = 325).

  11. Atomic Mass and Nuclear Binding Energy for Bh-280 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-280 (Bohrium, atomic number Z = 107, mass number A = 280).

  12. Atomic Mass and Nuclear Binding Energy for Bh-268 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-268 (Bohrium, atomic number Z = 107, mass number A = 268).

  13. Atomic Mass and Nuclear Binding Energy for Bh-307 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-307 (Bohrium, atomic number Z = 107, mass number A = 307).

  14. Atomic Mass and Nuclear Binding Energy for Bh-269 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-269 (Bohrium, atomic number Z = 107, mass number A = 269).

  15. Atomic Mass and Nuclear Binding Energy for Bh-358 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-358 (Bohrium, atomic number Z = 107, mass number A = 358).

  16. Atomic Mass and Nuclear Binding Energy for Bh-321 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-321 (Bohrium, atomic number Z = 107, mass number A = 321).

  17. Atomic Mass and Nuclear Binding Energy for Bh-270 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-270 (Bohrium, atomic number Z = 107, mass number A = 270).

  18. Atomic Mass and Nuclear Binding Energy for Bh-317 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-317 (Bohrium, atomic number Z = 107, mass number A = 317).

  19. Atomic Mass and Nuclear Binding Energy for Bh-320 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-320 (Bohrium, atomic number Z = 107, mass number A = 320).

  20. Atomic Mass and Nuclear Binding Energy for Bh-295 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-295 (Bohrium, atomic number Z = 107, mass number A = 295).

  1. Atomic Mass and Nuclear Binding Energy for Bh-353 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-353 (Bohrium, atomic number Z = 107, mass number A = 353).

  2. Atomic Mass and Nuclear Binding Energy for Bh-276 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-276 (Bohrium, atomic number Z = 107, mass number A = 276).

  3. Atomic Mass and Nuclear Binding Energy for Bh-334 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-334 (Bohrium, atomic number Z = 107, mass number A = 334).

  4. Atomic Mass and Nuclear Binding Energy for Bh-319 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-319 (Bohrium, atomic number Z = 107, mass number A = 319).

  5. Atomic Mass and Nuclear Binding Energy for Bh-304 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-304 (Bohrium, atomic number Z = 107, mass number A = 304).

  6. Atomic Mass and Nuclear Binding Energy for Bh-340 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-340 (Bohrium, atomic number Z = 107, mass number A = 340).

  7. Atomic Mass and Nuclear Binding Energy for Bh-332 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-332 (Bohrium, atomic number Z = 107, mass number A = 332).

  8. Atomic Mass and Nuclear Binding Energy for Bh-333 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-333 (Bohrium, atomic number Z = 107, mass number A = 333).

  9. Atomic Mass and Nuclear Binding Energy for Bh-287 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-287 (Bohrium, atomic number Z = 107, mass number A = 287).

  10. Atomic Mass and Nuclear Binding Energy for Bh-350 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-350 (Bohrium, atomic number Z = 107, mass number A = 350).

  11. Atomic Mass and Nuclear Binding Energy for Bh-312 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-312 (Bohrium, atomic number Z = 107, mass number A = 312).

  12. Atomic Mass and Nuclear Binding Energy for Bh-351 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-351 (Bohrium, atomic number Z = 107, mass number A = 351).

  13. Atomic Mass and Nuclear Binding Energy for Bh-323 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-323 (Bohrium, atomic number Z = 107, mass number A = 323).

  14. Atomic Mass and Nuclear Binding Energy for Bh-337 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-337 (Bohrium, atomic number Z = 107, mass number A = 337).

  15. Atomic Mass and Nuclear Binding Energy for Bh-356 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-356 (Bohrium, atomic number Z = 107, mass number A = 356).

  16. Atomic Mass and Nuclear Binding Energy for Bh-292 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-292 (Bohrium, atomic number Z = 107, mass number A = 292).

  17. Atomic Mass and Nuclear Binding Energy for Bh-291 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-291 (Bohrium, atomic number Z = 107, mass number A = 291).

  18. Atomic Mass and Nuclear Binding Energy for Bh-311 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-311 (Bohrium, atomic number Z = 107, mass number A = 311).

  19. Atomic Mass and Nuclear Binding Energy for Bh-293 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-293 (Bohrium, atomic number Z = 107, mass number A = 293).

  20. Atomic Mass and Nuclear Binding Energy for Bh-359 (Bohrium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-359 (Bohrium, atomic number Z = 107, mass number A = 359).